

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/195082

Hernández, D.; Cano, J.; Silla, F.; Tavares De Araujo Cesariny Calafate, CM.; Cecilia-
Canales, JM. (2022). AI-enabled autonomous drones for fast climate change crisis
assessment. IEEE Internet of Things. 9(10):7286-7297.
https://doi.org/10.1109/JIOT.2021.3098379

https://doi.org/10.1109/JIOT.2021.3098379

Institute of Electrical and Electronics Engineers

1

AI-enabled autonomous drones for fast climate
change crisis assessment

Daniel Hernández, Juan-Carlos Cano, Federico Silla, Carlos T. Calafate, and José M. Cecilia

Abstract—Climate change is one of the greatest challenges
for modern societies. Its consequences, often associated with ex-
treme events, have dramatic results worldwide. New synergies
between different disciplines including Artificial Intelligence
(AI), Internet of Things (IoT), and edge computing can lead to
radically new approaches for the real-time tracking of natural
disasters that are also designed to reduce the environmental
footprint. In this article, we propose an AI-based pipeline for
processing natural disaster images taken from drones. The
purpose of this pipeline is to reduce the number of images
to be processed by the first responders of the natural disaster.
It consists of three main stages, (1) a lightweight auto-encoder
based on deep learning, (2) a dimensionality reduction using
the t-SNE algorithm and (3) a fuzzy clustering procedure.
This pipeline is evaluated on several edge computing platforms
with low-power accelerators to assess the design of intelligent
autonomous drones to provide this service in real time. Our
experimental evaluation focuses on flooding, showing that the
amount of information to be processed is substantially reduced
whereas edge computing platforms with low-power GPUs are
placed as a compelling alternative for processing these heavy
computational workloads, obtaining a performance loss of only
2.3x compared to its cloud counterpart version, running both
the training and inference steps.

Index Terms—Climate Change; UAVs; Deep Learning; Edge
computing; Artificial Vision; Sustainable ICT.

I. Introduction

CLIMATE has dramatic consequences all over the
world, with effects having noticeably negative re-

sults [1]. The consequences of floods are undoubtedly
one of the most dramatic ones among the many natural
disasters, as they encompass loss of human life and loss
of natural ecosystems. Floods also cause economic losses.
Indeed, the effects of natural disasters have consequences
where immediacy in decision-making is essential. Improv-
ing preparedness for an effective response to these events
is essential in situations where every minute counts. In
this regard, technological advances can help to achieve
this efficiency in response times where sustainability,
efficiency, and ubiquity should be the main ingredients
of these developments [2].

Unmanned Aerial Vehicles (UAVs), commonly referred
to as drones, are autonomous unmanned aircrafts that are
widely used for different applications and tasks. The use
of drones has gradually evolved from more recreational
areas such as photography and video, to more technical

Daniel Hernández, Juan-Carlos Cano, Federico Silla, Carlos T.
Calafate and José M. Cecilia are with Computer Engineering Depart-
ment (DISCA), Universitat Politècnica de València, 46022, Valencia,
e-mail: dhervic@doctor.upv.es

ones such as border surveillance, precision agriculture and
infrastructure inspections, just to name a few [3]. Drones
are also playing an important role in emergency and
response protocols. They are currently widely used in the
response stage and are also used, albeit to a lesser extent,
in the other stages of a natural disaster, i.e., prevention,
preparation and recovery [4].

Natural disaster management situations are very stress-
ful, and the use of technological tools such as drones
could be helpful. However, using drones requires qualified
personnel that can monitor and process the information
generated by these tools. In particular, drones can gen-
erate an enormous amount of video and images that
need to be analysed by experts in conditions where it
is very easy to make mistakes. The probability of errors
can be reduced by using image processing techniques for
the detection of potential risks in a natural disaster,
including Machine Learning techniques (ML) and Deep
Learning (DL), which can automate the process of image
interpretation and clustering in order to speed-up decision
making by managers, and to avoid possible human errors.
However, these AI-techniques, particularly their training,
is a compute-intensive process, and although there is an
industry-wide trend towards hardware specialization to
improve performance and energy consumption [5], tradi-
tionally these workloads have been executed in a cloud-
fashion approach. Nevertheless, the rescue of people, the
identification of affected areas, and the prevention of the
secondary effects of a natural disaster are all emergency
tasks, and therefore the information should be processed
in real time, or at least, as quickly as possible.

An alternative that is emerging in the last decade is
edge computing [6]. In edge computing, data processing
is performed, totally or partially, on the devices that are
at the edge of the network; i.e., at those devices that
are closest to mobile devices or sensors. This distributed
way of computing provides energy savings, scalability and
responsive web services for mobile computing, and offers
a mechanism for data privacy in the IoT context. In
addition, it offers the possibility to mask transient cloud
outages. Edge computing devices should be designed in
such a way that energy efficiency is the main objective.
To this end, leading processor companies are developing
energy-efficient solutions with low power consumption and
high performance. In particular, the Nvidia Jetson family
of embedded systems can be highlighted, which include
low-power graphics accelerators (GPUs) that deliver good
performance for massively parallel applications with power

2

consumption between 7.5 and 10 watts [7].
In this paper, we propose an AI-based pipeline for the

identification o f t he d rone-based i mages t hat a re related
to floods. We use a deep-learning-based auto-enconder to
highlight the main features of the images taken from the
drones. Then, those features are reduced and clusterized
to help first responders of natural disasters in dealing with
large datasets. We also evaluate the AI-based pipeline in
different low-power GPU-based edge computing platforms
to figure out i f they would b e a compelling a lternative to
the main aim of developing an AI-based autonomous drone
for emergency situations. Hence, the major contributions
of this paper are:

1) A deep-learning based lightweight auto-encoder is
proposed to identify the main features of aerial flood
images.

2) An AI-based pipeline to reduce the amount of
information to be supervised by first responders in
natural disasters is designed.

3) An in-depth performance evaluation of different
low-power GPU-based edge computing devices is
provided to assess the feasibility of autonomous AI
drones in natural disasters.

4) A particular case study that targets flooding scenar-
ios is under study.

The rest of the article is structured as follows. Section II
provides the required knowledge related to the main
research areas of this work. Section III introduces the
general infrastructure of the AI-based pipeline to deal with
aerial images of natural disasters. Section IV shows the
experimental setup before showing the performance and
quality evaluation of our approach in Section V. Finally,
Section VI shows conclusions and directions for future
work.

II. Background and related work
This section provides the main background on the

different topics related to this paper: UAVs, DL for
artificial vision, and edge computing.

A. UAVs in natural disasters
UAVs have recently experienced unprecedented growth,

with countless areas of application foreseen for the coming
years [8]. Regarding works proposing the use of drones for
rescue and survivor search tasks, the first works in the area
[9] studied the use of a single drone for this endeavour.
Years later drones have been used to analyse the effects
of a landslide in Tibet [10], comparing the profile of the
terrain before and after the catastrophe. More recently,
Mehrdad et al. [11] proposed a technique specifically
applicable to natural disasters that is able to quickly and
efficiently combine aerial images, and which has direct
applicability in the case of using a swarm of drones to
obtain such images. However, if we are attempting to
perform complex tasks in a short time, such as assessing
the effects of a natural disaster and searching for survivors,
the deployment of swarms of UAVs is a very interesting

alternative. Drone swarms can improve the efficiency of
individual systems by offering many advantages, including
the possibility of extending mission coverage in a short
time, thanks to the cooperation between UAVs [12].

To date, very few tests have been conducted with
outdoor multicopter swarms, and even fewer have been
conducted on large scale, the most notable to date being
the test conducted by China, which managed to coordinate
up to 1000 UAVs for the first time ever [13]. This lack of
works in the literature is due to the fact that using a
swarm of drones collaborating with each other to perform
a cooperative task presents significant communication,
synchronisation and quality of service issues [14].

B. Artificial vision in natural disasters
Natural disasters present characteristics where immedi-

acy in decision-making is fundamental. There are image
processing techniques for the detection of potential risks in
a natural disaster, including ML techniques such as Sup-
port Vector Machines (SVM), Bayesian non-parametric
Models, Genetic Algorithms (GA), Random Forest (RF),
Fuzzy Clustering (FC) or K-nearest Neighbours (KNN),
that are used for image classification. In [15], authors
proposed an extended motion diffusion-based (EMD) to
detect changes in airport ground. Its method was verified
from the Airport Ground Video Surveillance (AGVS)
benchmark test by obtaining positive results in situations
such as fog and camouflage. In [16], a genetic algorithm
combined with a neural network was proposed to classify
images coming from a flood; this proposal was compared
with three FC methods, being that the proposed algorithm
was able to obtain better results. The authors of [17]
proposed a hybrid framework composed of a Deep Learn-
ing algorithm, specifically a convolutional neural network
(CNN), and a feature extraction algorithm, to classify
images of natural disasters such as avalanches, cyclones,
tornadoes and fires, among others. The data used to test
this framework was an artificial dataset created by the
authors. The proposed CNN is compared with RF, SVN,
and KNN techniques, obtaining the CNN the best result.
The same happens with the CNN proposed in [18]. In that
study, the authors proposed the use of a CNN for flood
image classification using images obtained from a UAV,
producing such offline image classification. The authors
made a comparison with a SVM technique, obtaining
better results with the proposed CNN-based technique. In
short, the techniques based on Deep Learning are the ones
that achieve the best performance in image classification
of natural disasters so far.

There are some works in the literature where Deep
Learning techniques are applied for image classification in
general and, in particular, for images of natural disasters.
However, these techniques consume a lot of computational
resources, and image classification is performed offline.
However, the rescue of people, the identification of affected
areas, and the prevention of secondary effects of a natural
disaster, are emergency tasks requiring information to be

3

processed in real time. Hence, our paper explores the
design of these techniques so that they can be executed in
low-power processors that can be introduced into the UAV
swarm; this allows performing real-time image processing
from different p erspectives (thanks t o t he s warm and
coordination of the UAVs) to make effective and accurate
decisions in real time.

C. Edge computing platforms
In the history of computing, the paradigms of cen-

tralised and decentralised computing have alternated over
time. In the early days, computing was developed using
centralised processing with batch and time-sharing tech-
niques. The development of personal computers in the
1980s brought about a shift to a decentralised approach.
This approach was re-centralised at the beginning of the
21st century with cloud computing. Cloud computing has
now established itself as the most widely used approach,
mainly driven by the rise of mobile devices and the
IoT, for which cloud computing offers high-performance
computing and storage services that are not available on
these low-power, low-cost devices. However, the nearest
cloud infrastructure running mobile and IoT application
services may be too far away from the source of data.

Satyanarayanan et al. [6] proposed a two-level ar-
chitecture to pursue interactive performance of mobile
applications. A first level consisting of a traditional cloud
and a second level consisting of a network of cloudlets; i.e.
dispersed elements containing state information cached
from the first level [19]. In addition, Bonomi et al.
also proposed a multi-tier architecture that they called
fog computing. In this case, the authors designed this
architecture motivated by the lack of scalability of IoT
infrastructures [20]. As in the case of edge computing,
the proximity of cloudlets (or fog nodes) to the nodes
capturing data offers a number of benefits, in addition
to the scalability benefits initially sought by the authors.
These benefits include the availability of highly responsive
cloud services, the reduction of end-to-end latency, the
increased bandwidth and low jitter to services located
at the edge, etc. In [21], authors studied computation
offloading in fifth generation networks and proposed a
distributed learning method to address the technical
challenges arising from uncertainties and limited resource
sharing in an multi-access edge computing (MEC) system.
They provided a case study on resource orchestration
to show the potential of the proposal, outperforming
benchmark resource orchestration algorithms.

Edge computing provides computing power in close
proximity to sensors or mobile devices. In fact, as men-
tioned above, there are compute-intensive applications for
which this technology is opening up new development
opportunities such as interactive mobile applications for
augmented reality. Undoubtedly, the design of cloudlets
has to be highly energy efficient, while providing the
highest computational horsepower possible. Actually, mi-
croprocessor industry is releasing systems on chip (SoCs)

that include low-power accelerators such as Graphics
Processing Units (GPUs) or Tensor Processing Units
(TPUs). Among them, we may highlight the Nvidia’s
Jetson family [22], Intel’s Movidius [23] or the Google’s
Coral project [24]. Thanks to these accelerators, the energy
efficiency of edge devices can substantially increase.

Another important feature of edge/fog computing re-
lated to this work is the reduction of the amount of data
that needs to be transferred to the cloud. This has great
benefits such as reduction of network overhead, energy
savings, cost reduction in the cloud, reduction of storage
space, etc. For instance, Simeons et al. developed a video
processing system, known as GigaSight [25], where videos
obtained from mobile devices are processed in the nearest
cloudlet, sending only the results and some metadata to
the cloud, drastically reducing the application’s band-
width and storage needs. This feature is of particular
interest for the UAV environment, where autonomy is
scarce. Furthermore, in the particular case of natural
disasters, the reduction of data delivery through edge
processing provides clarity in analysing the information
for first responders.

III. AI-pipeline proposed for management of natural
disasters

Natural disasters require immediacy so that decisions
can be taken as quickly as possible to save lives. First-
responders need tools that allow them to quickly assess
the magnitude of the natural disaster. As previously
mentioned, drones are capable of exploring wide areas
inaccessible by first-responders, allowing a large number
of images to be taken to assess the impact of the disaster.
However, manually processing this large amount of infor-
mation is very difficult for humans, even more in these
types of critical scenarios.

This section introduces the AI-pipeline proposed to deal
with unclassified drone-based images of natural disasters.
The main objective of this AI-pipeline is to reduce the
number of drone-generated images to be processed by the
first-reponders. This is developed through an unsupervised
process which identifies the main features of the images
through a deep-learning based auto-encoder and reduces
the dimensionality of these features to eventually perform
a clustering process to group those images by similarity.
This AI-pipeline outputs an image that represents each
cluster. This image can be evaluated by first-responders
to determine whether that group of images are of interest
for decision making. Another important feature of natural
disasters is that they usually occur in remote locations,
where connectivity is limited. For this purpose, the last
part of this work evaluates the complete execution of the
proposed AI-pipeline on egde computing platforms, so that
Internet connection will not be required to obtain the
benefits of this system.

A. Deep learning based auto-encoder structure
An auto-encoder is a neural network architecture de-

signed for feature learning from unlabeled data. It has

4

conv1
pool1

conv2

pool2
conv3

pool3
conv4

dconv1

unpool1

dconv2

unpool2

dconv3
unpool3

pool3Indexes

pool2Indexes

pool1Indexes

Fig. 1: Deep learning based auto-enconder.

a distinctive shape consisting of two layers; the first one
is the encoder which is responsible for data compression
so that it becomes smaller in size than its input by
decreasing its dimensionality from the input layer to a
central information layer. The other is the decoder, which
attempts to regenerate the input data compressed by the
first layer to regenerate the original input to the encoder
phase as faithfully as possible.

The data to be processed is formed by a set of
images, therefore the neural network that forms the
auto-encoder is composed of convolutional networks that
behave better for this type of scenario. This type of auto-
encoder is known as convolutional auto-encoder (CAE).
The structure of the proposed auto-encoder for this work
is described in Figure 1. For its design, we have tried to
prioritize simplicity and the reduction of the total number
of parameters as much as possible, since this network will
be trained and used for the clustering process entirely
in the devices located at the edge, and therefore the
limitations of memory and computational capacity have
been taken into account.

One of the differences with traditional auto-encoders
is that no fully-connected layers have been used within
the autoencoder. Moreover, average pooling operations are
performed on the feature map extracted from the filters
of the central layer for the feature extraction process. The
blocks that compose the CAE are convolutional, as well
as the pooling layers for the encoding and compression
phase, and deconvolutional and unpooling blocks for the
regeneration phase of the original input.

Convolutional blocks, called “conv” in Figure 1, are
responsible for filtering an input to create a feature map

that summarizes the presence of features detected in
that input. In contrast, deconvolutional elements, called
“deconv” in Figure 1, apply a 2D transposed convolution
operator on an input image composed of several input
planes. This operation can be viewed as the gradient of
Conv2d with respect to its input, also known as fractional
convolution. With this operation, we will decompress the
abstract representation generated by the convolutional
layers into something more visual.

Max Pooling, “pool” in Figure 1, is a sample-based
discretization process designed to filter out noisy activa-
tions by retaining only the robust activations in the upper
layers, but the spatial information is lost during pooling.
This reduces its dimensionality and allows assumptions
to be made about the features contained in the binned
subregions. Unpooling, “unpool” in Figure 1, is the oppo-
site operation. It captures example-specific structures by
tracing the original locations with strong activations back
to image space. As a result, it reconstructs the detailed
structure that was done in the pooling phase. Pooling
and unpooling layers do not have tuning parameters,
although they will have to share parameters between them
since indices generated by each of the pooling layers in
the encoding part have to be sent to their respective
unpooling layer when decoding in order to reconstruct the
original dimensionality prior to the pooling operation. This
operation can be seen in layers poolxIndexes in Figure 1.

B. t-SNE
The second main step of the proposed pipeline is a

dimensionality reduction. The objetive of this step is
two-fold, (1) for easy viewing of information and (2)

5

for reducing the computational complexity. We use a t-
distributed Stochastic Neighbor Embedding (t-SNE) algo-
rithm [26], which is a non-linear technique that reduces the
number of dimensions of the input data. More specifically,
we use the t-SNE implementation made available by the
scikit-learn Python library [27]. The algorithm searches
for joint probabilities based on similarities between data
points. In our case, each data point is the average flatten
pooling obtained from the convolutional autoencoder.
This input is a 240-feature vector, and we apply t-SNE to
obtain a two-dimensional one before performing the clus-
tering. The t-SNE algorithm attempts to minimise the so-
called Kullback-Leibler (KL) divergence between the input
data and the joint probabilities of the low-dimensional
embedding. This divergence is a way to measure the
difference between two distributions. The t-SNE procedure
follows the following equations. First, Equation 1 shows
the calculation of the conditional probability of point xj
to be next to point xi.

pj|i =
exp(−∥xi − xj∥2/2σ2)∑
k ̸=i exp(−∥xi − xk∥2/2σ2)

(1)

Then, the joint probability distribution is calculated
based on the conditional distributions (see Equation 2).

qij =
(1 + ∥yi − yj∥2)−1∑
k ̸=l(1 + ∥yi − yl∥2)−1

(2)

Finally, the KL divergence is calculated for both distri-
butions P and Q in the probability space of x to optimize
their distribution (see Equation 3).

KL(P∥Q) =
∑
i

P (i) ln
P (i)

Q(i)
(3)

C. The clustering algorithm
Clustering algorithms are data analysis techniques that

organise n-dimensional data-points into groups or clusters.
Each cluster is composed of those points that are most
similar to each other based on a metric defined in the
algorithm [28]. Several clustering algorithms have been
proposed in the literature as applied to different scientific
applications [29], [30]. They are mainly divided into two
main groups, i.e. hard and soft clustering techniques. In
hard clustering techniques, such as the well-known k-
means algorithm, a data-point can only belong to one
group. However, in soft clustering techniques, a probability
of belonging to each group is assigned to each data point.
Among the soft clustering techniques, we may highlight
the fuzzy c-means (FCM) algorithm [31] and the fuzzy
minimals (FM) algorithm [32]. Another important feature
of clustering algorithms is the number of clusters to be
generated; k-means and FCM require us to define the
number of clusters to be developed. In contrast, FM does
not need this parameter to be set in advance without
the need for the clusters to be Compact Well-Separated
(CWS). This feature enables unsupervised clustering that
does not condition the sets of images to be obtained from

each drone mission, and thus it is what motivated us to
introduce FM at the final stage of the pipeline proposed in
this article. In what follows, we briefly introduce the FM
algorithm and refer the reader to [32], [33] for insights.

The FM algorithm is an iterative fixed-point algorithm
whose main purpose is to minimise an objective function
given by Equations (4) and (5). The FM algorithm has two
main functions shown in Algorithm 1. The FM needs two
input parameters: varepsilon1, which sets the maximum
allowable degree of error, and varepsilon2, which shows
the difference between the potential minima. Once these
parameters are set, the r factor is calculated for the input
dataset before calculating the prototypes.

J(v) =
∑
x∈X

µxv · d2xv, (4)

where

µxv =
1

1 + r2 · d2xv
, (5)

Algorithm 1 Fuzzy Minimals Algorithm pseudocode.
1: LoadDataSet()
2: Choose input variables ε1 and ε2.
3: r=CalculateFactorR(dataset)
4: PrototypeCalculation(dataset, r)

The r-factor is a non-linear function for measuring the
degree of homogeneity and isotropy breakdown of a data
set. This function is shown in Equation (6). Factor r takes
as a partition hypothesis that clusters are created when
isotropy and/or homogeneity is broken.√

|C−1|
nrF

∑
x∈X

1

1 + r2d2xm
= 1, (6)

where |C−1| is the determinant of the inverse of the
covariance matrix, m is the mean of the sample X, dxm
is the Euclidean distance between x and m, and n is the
number of elements of the sample.

Algorithm 2 shows the calculation of prototypes de-
veloped by the FM approach. This procedure is based
on a scoring function that has, as an argument, the
previously calculated r factor. The membership function
is described in equation 5, which measures the probability
of an element x to belong to a particular cluster in which
v is the prototype. In fact, these prototypes are the output
of the FM that represents the most significant images of
our pipeline.

D. AI-pipeline ensemble
Figure 2 shows the proposed AI-pipeline applicable after

CAE training. The pipeline begins with the raw images
that go through the auto-encoder shown in Figure 1.
The trained auto-encoder is able to compress the main
features in the conv4 layer. This layer outputs a matrix
with a transformation of the input image that has been

6

STEP 0: Conv4 STEP
1: AVG
Pooling

STEP 2:
Flatten

STEP3: t-SNE

X

X

STEP4: FM

Fig. 2: AI-pipeline for the latent space clustering extracted from the autoencoder.

Algorithm 2 Baselines of the FM PrototypeCalculation.
n is the size of the input dataset. V is a vector with the
prototypes found by FM. F is the dimensionality (2 in our
case).

1: Initialize V = { } ⊂ RF .
2: for i = 1; i < n; i++ do
3: v(0) = xi, t = 0, E(0) = 1
4: while E(t) ≥ ε1 do
5: t = t+ 1
6: µxv = 1

1+r2·d2
xv

, using v(t−1)

7: v(t) =
∑

x∈X(µ
(t)
xv)

2·x(
µ
(t)
xv

)2

8: E(t) =
∑F

α=1

(
vα(t) − vα(t−1)

)
9: end while

10: if
∑F

α (vα − wα) > ε2, ∀w ∈ V then
11: V ≡ V + {v}.
12: end if
13: end for

obtained by applying a set of filters. At this point, the
layers behind conv4 will be removed, and this will be the
new output layer of the network. Then, an iteration of the
whole dataset will be performed to obtain all the filters
extracted from the network for each image.

Each image processed by the autoencoder is converted
into a set of matrix-represented filters.The Average (AVG)
polling is applied on 2×2 blocks to each of these filters
in order to create a down-sampled (pooled) feature map
as shown in step 2 at Figure 2. The AVG polling obtains
an one-dimensional vector for each filter by calculating
the mean of each block of each filter. This means that
each 2×2 square of each filter is sampled downwards to
the mean value of the square. These 1-D vectors will be
concatenated to feed step 3 called Flatten in Figure 2,
forming a single vector where all relevant CAE information
will be extracted.

Once a flatten vector for each of the images is obtained,
the t-SNE algorithm is applied so that all images will be
embedded into a two-dimensional array grouped by the
similarity detected after applying t-SNE. It is important
to note that this matrix contains all the images with-
out creating any clusters; i.e. all images are considered

as homogeneous points. Then, this matrix is clustered
based on image similarity. Since the optimal number of
clusters to be obtained is not known, a fuzzy logic based
clustering will be applied using the FM algorithm, where
the coordinates of the most representative images of the
dataset (i.e. the prototypes of the cluster) will be obtained
along with the percentage of belonging to each of the image
clusters generated. With this extracted information, every
image can be labeled for subsequent submission. Images
representing the prototypes will be sent for follow-up by
the first responders.

E. Solution deployment and execution flow

Ground station

1. Standby state
Ground station

2. Images collection

conv1
pool1

conv2

pool2
conv3

pool3
conv4

dconv1

unpool1

dconv2

unpool2

dconv3
unpool3

pool3Indexes

pool2Indexes

pool1Indexes

STEP0: conv4 STEP1:
AVG

Pooling
STEP2:
Flatten STEP3: t-SNE

X

X

STEP:4 FM

3. Device processing

4. Send results

Fig. 3: Natural disasters management overview.

Having defined the problem and the proposed AI-
pipeline, Figure 3 shows the execution flow that should be
carried out in real natural disaster management scenarios.
Drones start from a standby position (step 1) in order to
prepare for take-off before they begin taking images of the

7

affected area. Once images have been taken in step 2, the
proposed AI-pipeline is executed (step 3). The first step
of this pipeline would be the training of the autoencoder,
which is performed with the images captured by the drone
during the first fl ight. It is im portant to no te th at this
training is only performed once for each affected area, and
the information learned by the autoencoder can be reused
to encode the images of the following flights o ver the
same affected area. Therefore, the training stage, the most
computationally expensive, would be executed once and
the inference stage would be executed as many times as
surveillance missions are performed by the drone. In other
words, the training stage will provide the neural network
weights that will be used in the following missions in the
inference stage, running only the first part of the network
(i.e., Conv1-Conv4 in Figure 1). After the inference stage,
the feature vector will be generated and reduced using
t-SNE and clustered using FM. Finally, once the most
significant i mages h ave b een s elected w ith t he execution
of the AI-pipeline, they are sent in step 4.

Regarding the execution flow, a ll s teps o f the proposed
AI-pipeline could be executed at the edge. The pipeline
is designed to have a low memory footprint, as it will
be shown in Section IV. Furthermore, the pipeline only
uses the images captured during the mission (step 2
in Figure 3). Therefore, there is no need to perform a
knowledge transfer with the pre-trained network weights
using other datasets.

IV. Experimental setup
This section provides an overview of the dataset used

to train and test the AI-pipeline proposed in Section III.
Then, the main hardware features and software details of
our experimental environment are described.

A. Dataset
The AI-pipeline previously introduced requires a dataset

to train the auto-encoder. To the best of our knowledge
there are few datasets that meet our requirements; i.e.
natural disaster and aerial images. Particularly, we use
AIDER (Aerial Image Dataset for Emergency Response
applications) [34], [35] for the training and testing pro-
cedures, as will be shown in Section V. This dataset
contains images from five different categories. Four of them
are related to disaster events such as Fire/Smoke, Flood,
Collapsed Building/Rubble, and Traffic Accidents, and the
latter is the control case; i.e., there is not any sort of
accident on it. Figure 4 shows all categories contained in
this dataset with random examples of them to illustrate
its content. It is important to note that AIDER is only
composed of aerial images that were obtained by several
online sources such as Google or Bing images, Youtube
or news agencies websites. Particularly, authors used the
keywords ”Aerial View”, ”UAV” and/or ”Drone”, along
with the particular event they wanted to include in the
dataset, such as ”flood” or ”fire”. Moreover, images also
have different viewpoints, resolutions, and illumination

conditions. It is important to note that authors manually
inspected all images to make sure that they are related to
the expected disaster, and also that the event is centered
at the image. The latter is to guarantee that any geometric
transformation during augmentation does not remove the
object of interest from the image. Finally, the dataset
is not well balanced to replicate real world scenarios;
i.e., it contains more images from the control class. In
particular, the dataset is composed of about 500 images
for each disaster class, and over 4000 images for the control
class. In our case, the dataset is even more imbalanced as
we have removed the images from Fire/Smoke, Collapsed
Building/Rubble, and Traffic Accidents and will only use
the control class and the flooding class. As shown in
Figure 4, we will use the set made up of the normal
and flood images as the framework on which we will
perform the clustering tasks. Before being processed by
the clustering pipeline, all images have been resized to a
side size of 255 pixels, and all of them have been cropped
at the center.

Collapsed

Fire

Flood

Accidents

Normal

Fig. 4: Classes within the AIDER dataset.

B. Hardware and software environment
This section introduces the hardware and software

environment used to perform the experiments in Section V
(see Table I). We focused on four different architectures: a
High Performance Computing (HPC) node called Pedra,
and three low-power edge computing devices from the
NVIDIA Jetson family (i.e. Jetson nano, Jetson TX2, and
Jetson AGX Xavier). Although Pedra cannot be mounted
directly on the UAVs (due to its weight, size, and energy
consumption), it could be used via a cloud solution when
mobile Internet speed and coverage are sufficient. The
main purpose of this comparison is to determine whether
the AI-pipeline proposed in Section III adapted for GPUs
decreases the calculation time, if it can also be performed
in the edge in a reasonable time frame and, if so, which

8

TABLE I: Specification of the various GPU platforms used in our experiments.

Pedra Jetson AGX Xavier Jetson TX2 Jetson Nano

CPU Intel Silver 4216 NVIDIA Carmel ARM v8.2 ARMv8 ARM Cortex-A57 MPcore

2xGPU (NVIDIA) GeForce RTX 2080 Ti Volta Pascal Maxwell

Memory [Gb] 12 DDR5 32 LPDDR4x 8 LPDDR4 4 LPDDR4

Size [mm] 73.4 x 8.7 x 44.8 105 x 105 50 x 87 70 x 45

Weight [g] 17,000 280 85 61

Energy consumption [W] 80-100 10-30 7.5 3-5

platform is the most suitable one. Table I introduces the
the main features of the hardware platforms targeted.

The software environment is based on gcc v7.4.0, CUDA
v10.2 with cuDNN and Python v3.6 with pytorch v1.8.0
built for edge devices, torchvision v0.9.0 built for edge
devices and scikit-learn v0.24.1.

On the other hand, notice that the training stage of the
neural network described above has been performed on
all the devices described in Table I in order to achieve a
process that is able to run on the edge from the beginning
to the end. This approach differs from the usual practice
of first training on a high-performance cluster, and then
trying to apply techniques to adapt the trained model
to low-performance devices. In our case, we designed a
model with a total size of 88275 trainable parameters (the
lightness of the network is evident) that is efficient enough
for the target task. The main parameters of the training
procedure were 30 epochs, MSELoss loss criterion, and
Adam Optimizer. The batch size to feed each epoch has
been adapted depending on the memory limitations of
each device that was running the training process at that
time.

It is worth mentioning that although this AI-pipeline
is designed to train a new auto-encoder for each available
dataset, if the new images are similar to those used in a
previous dataset, e.g. same geographical area or same day
time, with similar weather, a previously trained encoder
could be reused to obtain the most relevant images for
this new particular scenario. Another option could be to
perform new incremental training epochs starting from a
previously trained auto-encoder to which new images are
added, thus reducing the convergence time with respect
to performing a training process from the beginning.

V. Evaluation
This section shows the quality results obtained by

training and validating the aerial images dataset shown in
Section IV-A. Moreover, the performance of several CPU-
GPU based computing solutions is presented to evaluate
edge computing platforms as potential infrastructure for
processing AI-based workloads on drones.

A. Quality evaluation and memory footprint
As explained in Section III-D, all images of the target

dataset are fed into the pipeline. First, the auto-encoder

(a) Data points for flooding images (blue), and
others (green)

(b) Images corresponding to data
points.

Fig. 5: Data points and images after running the t-SNE
algorithm.

compresses the information into a feature vector that is
reduced to two dimensions for later visualisation. Such a
visualisation is shown in Figure 5. In Figure 5a the images
are represented as data points where the blue points are
images related to floods, and green points are the other
images. Figure 5b shows the clustering generated by t-SNE
which creates an image cloud where, for each coordinate
extracted from the clustering phase, the original image
corresponding to the index of that position has been
drawn. It is important to note that, although the dataset
is labelled so that the class of each image is known in
advance, our methodology does not use this information

9

(a) Data points of flooding images (blue), others
(green), and prototypes obtained by the FM
algorithm (red).

(b) Images closer to the prototype found by FM.

Fig. 6: Data points and images after running the FM
algorithm.

at any point. This information is used only for evaluation
purposes, and to figure out which images are actually
related to the flooding class.

The cluster prototypes generated by the FM algorithm
are shown in Figure 6a where 48 different groups have
been detected for the targeted dataset. It is worth noting
that the main objective of this work is to synthesise the
information sent by the drone in an unsupervised manner.
In this way, the drone would only send 48 out of the 5500
images captured during the mission. These 48 images are
the most representative ones in the dataset. From these
images, the natural disaster managers would be able to
identify which images are of real interest for their work,
being able to access all the images in that cluster if
required. In particular, Figure 6b shows the prototype
images that are related to flooding (highlighted in red).

Finally, it is worth mentioning that there are deep
learning models which can be used for feature extraction,
and that are usually pretrained on datasets such as
MobileNetV2 [36], Inception V3 [37], ResNet50 [38] or
VGG16 [39]. The use of these pretrained models can be a
good alternative to an autoencoder in high-performance

VGG16

ResNet50

Inception V3

MobileNetV2

Edge CAE

528

98

92

14

0.36
Size MB

Fig. 7: Memory footprint of similar models used for feature
extraction.

environments where the highest possible accuracy is
required. However, these models have a high memory
footprint, and they are very heavy for edge computing
devices. Figure 7 shows a memory footprint comparison
between these models and our proposal, Edge CAE. It can
be seen that our proposal is 38x lighter than the lightest
proposal in the state of the art, and orders of magnitude
lighter than the rest. It makes sense, as these networks
have been designed for supercomputing environments,
which makes them not feasible in resource-constrained IoT
environments.

A further consideration is that these models have been
pre-trained on classified images using a different sample
than the type of images used for the clustering phase.
Therefore, this proposal intends to perform a sandbox
execution from start to end without relying on data other
than that collected by the drone in an actual mission.

pedra2 pedra1 xavier tx2 nano

0

0.5

1

1.5

·105

Ex
ec

ut
io

n
tim

e
(s

ec
s.)

GPU
CPU

Fig. 8: Execution time GPU/CPU for the auto-encoder’s
training stage.

10

B. Performance evaluation

This section evaluates the performance (i.e. execution
time) of the AI-pipeline previously presented in Sec-
tion III. We focused on four different architectures (see
Table I): a High Performance Computing (HPC) node
called Pedra, and three low-power edge computing devices
from the NVIDIA Jetson family (i.e. Jetson nano, Jetson
TX2, and Jetson AGX Xavier). The main purpose of
this comparison is to determine whether the AI-pipeline
proposed adapted for GPUs reduces the calculation time,
and whether it can be performed in the edge in a
reasonable time frame and, if so, which platform is the
most suitable.

First of all, the training stage of the auto-enconder is
evaluated in Figure 8. It shows the execution time for CPU
and GPU versions in all targeted architectures. We ran
30 epochs, which is the actual number of epochs needed
for convergence. Several conclusions can be drawn from
these numbers. First of all, the use of GPUs increases the
performance in all platforms, including edge computing
platforms. The performance difference between CPU and
GPU in the server version is up to 16.5x speed-up factor by
using a single GPU. This difference increases by a factor of
2.33x when 2 GPUs are targeted on the same server (i.e.
Pedra). GPU performance numbers are also interesting
on the edge computing side. The use of low-power GPUs
in edge devices also increases application performance
substantially. The Xavier GPU delivers up to 12.7x speed-
up factor compared to the sequential code, executed on
the Xavier ARM-based CPU. In the same way, the TX2
GPU delivers up to 10.11x speed-up factor compared to
its sequential counterpart version. The difference decreases
when using the Jetson Nano GPU, with a speed-up factor
of up to 4.5x when using the GPU instead of the CPU. In
fact, this GPU is a very low-power, low-cost solution that
cannot offer a performance as high as its counterparts,
but its use is definitely a good contribution in terms of
efficiency.

Another relevant point is the performance difference
between edge and cloud approaches. The cloud infras-
tructure, Pedra, defeats edge devices by a wide margin,
as expected. Pedra, using two GPUs, achieves a speed-
up factor of up to 2.8x compared to AGX Xavier, 8.15x
compared to Jetson TX2, and 22.17x compared to Jetson
Nano. It is important to note that these figures refer
to training, which is not well-suited to be executed
at the edge. For the inference stage, the performance
differences between the computing platforms are similar
(see Figure 9), but the overall execution time is much
shorter.

Finally, the last two steps of the proposed AI-pipeline
are shown in Figure 10. Execution times of these two
steps are very low compared to the training and inference
of the neural network. Therefore, these processes have
been executed on CPU as their computation is hidden
by the first step of the pipeline. In particular, the cross-
platform differences for this algorithm are similar to those

discussed above, with the pedra HPC server showing the
best performance, followed by Xavier, TX2 and Jetson
Nano. While it is true that the differences between Pedra
and Xavier are 2.5x in speedup factor, and up to 7x
between Pedra and TX2, in general execution times in
the edge are reduced, with both algorithms taking less
than a minute to run.

VI. Conclusions and future work
Autonomous UAVs could play a ”key role” in addressing

the consequences of climate change. However, hardware
and software developments are needed for these drones to
really be determinant actors in these tasks. The intersec-
tion between AI and edge computing is undoubtedly the
answer today, allowing to transform autonomous drones
into useful tools under different emergency situations. This
paper has proposed an AI-based pipeline to be run on edge
computing platforms in order to enable efficient processing
of drone images of natural disasters.

Our results reveal that the use of GPUs in edge com-
puting platforms increases performance by up to a 12.7x
speed-up factor, providing computational horsepower that
enables the full execution of the proposed AI-pipeline.
The computational differences between edge and cloud
platforms are still large; in the range of 2.8x-22.17x speed-
up factor, but the development of efficient platforms
for the execution of specific workloads, such as those
within deep learning, shows a roadmap that enables the
development of applications for relevant autonomous and
intelligent systems such as the one proposed here.

We definitely believe that smart autonomous drone
technology can be a milestone in the fight against climate
change. However, there is still a lot of work to be done
from different perspectives. In terms of communication,
extending the results of this article to a swarm of drones
can provide a greater coverage of the area to be inspected,
which is much needed in this type of natural catastrophes.

pedra2 pedra1 xavier tx2 nano

0

500

1,000

1,500

2,000

Ex
ec

ut
io

n
tim

e
(s

ec
s.)

GPU
CPU

Fig. 9: Inference comparison of GPU/CPU for the entire
dataset.

11

pedra xavier tx2 nano
0

20

40

60

80

8.69

21.83

61.57

75.6

Device

Ex
ec

ut
io

n
tim

e
(s

ec
s.)

(a) t-SNE algorihtm.

pedra xavier tx2 nano

10

20

30

40

50

8.55 9.45

45.8 46.12

Device

Ex
ec

ut
io

n
tim

e
(s

ec
s.)

(b) FM clustering algorithm.

Fig. 10: Execution time of the last two steps of the AI-
pipeline.

The inclusion of highly energy-efficient processors in such
low autonomy devices is a must in order to enable AI-based
applications; tinyML is actually a good step forward in this
direction. More processing steps could be added in this AI-
pipeline which, after manual labeling or pseudolabeling of
the clusters, the information stored in the autoencoder
will be reused to categorize all the images and send the
desired information in a more granular way. Finally, real-
case scenarios will be approached with first-reponders to
figure out new features and requirements.

Acknowledgment
This work has been partially supported by the Span-

ish Ministry of Science and Innovation, under grants
RYC2018-025580-I, RTI2018-096384-B-I00 and RTC2019-
007159-5, by the Fundación Séneca under grant E, and by
the “Conselleria de Educación, Investigación, Cultura

y Deporte, Direcció General de Ciéncia i Investigació,
Proyectos under Grant AICO/2020/302.

References
[1] R. Dellink, E. Lanzi, and J. Chateau, “The sectoral and

regional economic consequences of climate change to 2060,”
Environmental and resource economics, vol. 72, no. 2, pp. 309–
363, 2019.

[2] S. K. Sood and K. S. Rawat, “A scientometric analysis of ict-
assisted disaster management,” Natural hazards, pp. 1–19, 2021.

[3] H. Shakhatreh, A. H. Sawalmeh, A. Al-Fuqaha, Z. Dou, E. Al-
maita, I. Khalil, N. S. Othman, A. Khreishah, and M. Guizani,
“Unmanned aerial vehicles (uavs): A survey on civil applications
and key research challenges,” IEEE Access, vol. 7, pp. 48 572–
48 634, 2019.

[4] M. A. R. Estrada and A. Ndoma, “The uses of unmanned aerial
vehicles–uav’s-(or drones) in social logistic: Natural disasters
response and humanitarian relief aid,” Procedia Computer
Science, vol. 149, pp. 375–383, 2019.

[5] Y. E. Wang, G.-Y. Wei, and D. Brooks, “Benchmarking tpu,
gpu, and cpu platforms for deep learning,” arXiv preprint
arXiv:1907.10701, 2019.

[6] M. Satyanarayanan, “The emergence of edge computing,” Com-
puter, vol. 50, no. 1, pp. 30–39, 2017.

[7] H. Halawa, H. A. Abdelhafez, A. Boktor, and M. Ripeanu,
“Nvidia jetson platform characterization,” in European Con-
ference on Parallel Processing. Springer, 2017, pp. 92–105.

[8] P. J. Hardin and R. R. Jensen, “Small-scale unmanned aerial
vehicles in environmental remote sensing: Challenges and op-
portunities,” GIScience & Remote Sensing, vol. 48, no. 1, pp.
99–111, 2011.

[9] P. A. Rodriguez, W. J. Geckle, J. D. Barton, J. Samsundar,
T. Gao, M. Z. Brown, and S. R. Martin, “An emergency response
uav surveillance system,” in AMIA Annual Symposium Pro-
ceedings, vol. 2006. American Medical Informatics Association,
2006, p. 1078.

[10] Q. Wen, H. He, X. Wang, W. Wu, L. Wang, F. Xu, P. Wang,
T. Tang, and Y. Lei, “Uav remote sensing hazard assessment in
zhouqu debris flow disaster,” in Remote Sensing of the Ocean,
Sea Ice, Coastal Waters, and Large Water Regions 2011, vol.
8175. International Society for Optics and Photonics, 2011, p.
817510.

[11] S. Mehrdad, M. Satari, M. Safdary, and P. Moallem, “Toward
real time uavs’image mosaicking,” The International Archives
of Photogrammetry, Remote Sensing and Spatial Information
Sciences, vol. 41, p. 941, 2016.

[12] I. Bekmezci, O. K. Sahingoz, and Ş. Temel, “Flying ad-hoc
networks (fanets): A survey,” Ad Hoc Networks, vol. 11, no. 3,
pp. 1254–1270, 2013.

[13] J. Lin and P. Singer, “China is making 1,000-uav drone swarms
now,” Popular Science, vol. 8, 2018.

[14] E. A. Marconato, J. A. Maxa, D. F. Pigatto, A. S. Pinto,
N. Larrieu, and K. R. C. Branco, “Ieee 802.11 n vs. ieee 802.15.
4: a study on communication qos to provide safe fanets,” in
2016 46th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks Workshop (DSN-W). IEEE,
2016, pp. 184–191.

[15] X. Zhang, H. Wu, M. Wu, and C. Wu, “Extended motion
diffusion-based change detection for airport ground surveil-
lance,” IEEE Transactions on Image Processing, vol. 29, pp.
5677–5686, 2020.

[16] A. Singh and K. K. Singh, “Satellite image classification using
genetic algorithm trained radial basis function neural network,
application to the detection of flooded areas,” Journal of Visual
Communication and Image Representation, vol. 42, pp. 173–
182, 2017.

[17] R. Nijhawan, M. Rishi, A. Tiwari, and R. Dua, “A novel deep
learning framework approach for natural calamities detection,”
in Information and Communication Technology for Competitive
Strategies. Springer, 2019, pp. 561–569.

[18] A. Gebrehiwot, L. Hashemi-Beni, G. Thompson, P. Kord-
jamshidi, and T. E. Langan, “Deep convolutional neural net-
work for flood extent mapping using unmanned aerial vehicles
data,” Sensors, vol. 19, no. 7, p. 1486, 2019.

12

[19] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The
case for vm-based cloudlets in mobile computing,” IEEE per-
vasive Computing, vol. 8, no. 4, pp. 14–23, 2009.

[20] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing
and its role in the internet of things,” in Proceedings of the first
edition of the MCC workshop on Mobile cloud computing, 2012,
pp. 13–16.

[21] X. Chen, C. Wu, Z. Liu, N. Zhang, and Y. Ji, “Computa-
tion offloading in beyond 5g networks: A distributed learning
framework and applications,” IEEE Wireless Communications,
vol. 28, no. 2, pp. 56–62, 2021.

[22] B. Blanco-Filgueira, D. Garcia-Lesta, M. Fernández-Sanjurjo,
V. M. Brea, and P. López, “Deep learning-based multiple object
visual tracking on embedded system for iot and mobile edge
computing applications,” IEEE Internet of Things Journal,
vol. 6, no. 3, pp. 5423–5431, 2019.

[23] M. H. Ionica and D. Gregg, “The movidius myriad architecture’s
potential for scientific computing,” IEEE Micro, vol. 35, no. 1,
pp. 6–14, 2015.

[24] S. Cass, “Taking ai to the edge: Google’s tpu now comes in a
maker-friendly package,” IEEE Spectrum, vol. 56, no. 5, pp.
16–17, 2019.

[25] P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha, and M. Satya-
narayanan, “Scalable crowd-sourcing of video from mobile de-
vices,” in Proceeding of the 11th annual international conference
on Mobile systems, applications, and services, 2013, pp. 139–
152.

[26] L. Van der Maaten and G. Hinton, “Visualizing data using t-
sne.” Journal of machine learning research, vol. 9, no. 11, 2008.

[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg et al., “Scikit-learn: Machine learning in python,”
the Journal of machine Learning research, vol. 12, pp. 2825–
2830, 2011.

[28] A. Nagpal, A. Jatain, and D. Gaur, “Review based on data
clustering algorithms,” in 2013 IEEE conference on information
& communication technologies. IEEE, 2013, pp. 298–303.

[29] Z. Cui, X. Jing, P. Zhao, W. Zhang, and J. Chen, “A new
subspace clustering strategy for ai-based data analysis in iot
system,” IEEE Internet of Things Journal, 2021.

[30] J. M. Cecilia, I. Timón, J. Soto, J. Santa, F. Pereñíguez,
and A. Muñoz, “High-throughput infrastructure for advanced
its services: A case study on air pollution monitoring,” IEEE
Transactions on Intelligent Transportation Systems, vol. 19,
no. 7, pp. 2246–2257, 2018.

[31] J. C. Bezdek, R. Ehrlich, and W. Full, “Fcm: The fuzzy c-means
clustering algorithm,” Computers & geosciences, vol. 10, no. 2-3,
pp. 191–203, 1984.

[32] I. Timón, J. Soto, H. Pérez-Sánchez, and J. M. Cecilia, “Parallel
implementation of fuzzy minimals clustering algorithm,” Expert
Systems with Applications, vol. 48, pp. 35–41, 2016.

[33] J. M. Cebrian, B. Imbernón, J. Soto, J. M. García, and J. M.
Cecilia, “High-throughput fuzzy clustering on heterogeneous
architectures,” Future Generation Computer Systems, vol. 106,
pp. 401–411, 2020.

[34] C. Kyrkou, “Aider (aerial image dataset for emergency response
applications),” Jun 2020.

[35] C. Kyrkou and T. Theocharides, “Deep-learning-based aerial
image classification for emergency response applications using
unmanned aerial vehicles.” in CVPR Workshops, 2019, pp. 517–
525.

[36] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C.
Chen, “Mobilenetv2: Inverted residuals and linear bottlenecks,”
in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2018, pp. 4510–4520.

[37] X. Xia, C. Xu, and B. Nan, “Inception-v3 for flower classifica-
tion,” in 2017 2nd International Conference on Image, Vision
and Computing (ICIVC). IEEE, 2017, pp. 783–787.

[38] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 770–778.

[39] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

Daniel Hernández is a PhD Student at UPV
(Spain). His main research interests include
artifical vision, deep learning, edge computing.
Contact him at dhervic@doctor.upv.es.

Juan-Carlos Cano is a full Professor at
the Department of Computer Engineering,
UPV (Spain) and Senior Member of IEEE.
His current research interests include vehic-
ular networks, mobile ad hoc networks, and
pervasive computing. Contact him at ju-
cano@disca.upv.es.

Federico Silla is a full Professor at the Depart-
ment of Computer Engineering, UPV (Spain).
His current research interests include GPU
virtualization techniques and interconnection
networks. Contact him at fsilla@disca.upv.es.

Carlos T. Calafate is a full Professor at the
Department of Computer Engineering, UPV
(Spain). His research interests include ad-hoc
and vehicular networks, UAVs, Smart Cities
& IoT, QoS, network protocols, video stream-
ing, and network security. Contact him at
calafate@disca.upv.es.

José M. Cecilia is a Ramón y Cajal research
fellow (Associate Professor Tenure track) at
the Computer Engineering Department, UPV
(Spain). His research interest includes HPC,
IoT, AI and social sensing. Contact him at
jmcecilia@disca.upv.es.

