
Vol.:(0123456789)

The Journal of Supercomputing (2022) 78:14703–14725
https://doi.org/10.1007/s11227-022-04446-y

1 3

Schedulability analysis of dynamic priority real‑time
systems with contention

Ana Guasque1 · José María Aceituno1 · Patricia Balbastre1 · José Simó1 ·
Alfons Crespo1

Accepted: 10 March 2022 / Published online: 8 April 2022
© The Author(s) 2022

Abstract
In multicore scheduling of hard real-time systems, there is a significant source of
unpredictability due to the interference caused by the sharing of hardware resources.
This paper deals with the schedulability analysis of multicore systems where the
interference caused by the sharing of hardware resources is taken into account. We
rely on a task model where this interference is integrated in a general way, without
depending on a specific type of hardware resource. There are similar approaches but
they consider fixed priorities. The schedulability analysis is provided for dynamic
priorities assuming constrained deadlines and based on the demand bound function.
We propose two techniques, one more pessimistic than the other but with a lower
computational cost. We evaluate the two proposals for different task allocators in
terms of the increased estimated utilization. The results show that both bounds are
valid for ensuring schedulability although, as expected, one is tighter than the other.
The evaluation also serves to compare allocators to see which one produces less
interference.

Keywords Real-time · Scheduling · Dynamic priorities · Contention · Multiple
sources contention

 * Ana Guasque
 anguaor@ai2.upv.es

 José María Aceituno
 aceituno@ai2.upv.es

 Patricia Balbastre
 patricia@ai2.upv.es

 José Simó
 jsimo@ai2.upv.es

 Alfons Crespo
 acrespo@ai2.upv.es

1 Instituto de Automática e Informática Industrial (ai2), Universitat Politècnica de València,
Camino de Vera, s/n, 46022 Valencia, Spain

http://orcid.org/0000-0002-2900-8466
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04446-y&domain=pdf

14704 A. Guasque et al.

1 3

1 Introduction

The use of multicore in embedded systems is already widespread. In critical real-
time systems, ensuring the temporal requirements of multicore systems is much
more complicated than in single-processor systems. Not only because there is one
more dimension (the number of processors) but also because the execution of tasks
no longer depends not only on their own computational time, but also on the hard-
ware resources shared between processors. This sharing means interference between
processors, so that there are additional delays in the execution of tasks because these
resources may be being used by other tasks on other processors. Some works have
identified the main sources of interference in multicore systems such as in [11, 16,
21]. Three main sources of interferences are identified: cache, memory bus and main
memory. In a multicore platform with a shared memory model, the data in the cache
must be kept coherent. To prohibit access to stale data, additional bus transactions
are required. This increases indeterminism. In general, the main memory comprises
multiple components such as ranks, banks, and buses that cause unpredictability due
to its non-deterministic access time.

The study of such systems, in particular the analysis of interference, has been the
focus of attention in recent years in the real-time systems community. Many works
have focused on calculating this interference at a low level for each type of shared
hardware resource. The idea is to add this estimated interference to the task model,
either directly by adding it to the Worst Case Execution Time (WCET), or by adding
it to the schedulability test. The advantage is that this estimation is very close to the
real interference values. The problem is that this analysis is only valid for that type
of hardware resource.

Another approach is to consider a more general task model, not directly linked
to the type of shared hardware resource and therefore independent of it. This solu-
tion is the only one possible when the hardware vendor does not provide detailed
information about the shared resource behaviour. The advantages and disadvantages
are obvious: the model does not depend on the specific type of hardware, but by not
modelling interference in detail, the temporal analysis is more pessimistic.

The recent work [1] proposes a general task model that considers the contention
of the previous mentioned hardware shared resources. They also propose an allo-
cation algorithm to minimize the interference due to contention of shared hard-
ware resources. Nevertheless, their work lacks a schedulability test and assumes an
implicit deadline task model for both fixed and dynamic priorities.

1.1 Contribution

This paper proposes a schedulability test for multicore real-time systems. We extend
the model in [1] to consider constrained task deadlines. In particular, authors pro-
pose two contention-aware demand bound functions with different levels of pes-
simism. The novelty of the contribution is the consideration of dynamic priority
scheduling in a model that considers interference due to shared hardware resources

14705

1 3

Schedulability analysis of dynamic priority real‑time systems…

and constrained deadlines. We use a general model that can be used with different
types of shared hardware resources in contrast with other works that assume a very
specific kind of resource. Other works assume only fixed priorities or the interfer-
ence is only valid for a specific type of shared resource.

This work is organized as follows: The main contributions in the related research
area are presented in Sect. 2. Section 3 presents the system model for constrained-
deadline systems. Section 4 reviews the classical schedulability analysis for multi-
core systems with dynamic priorities. Then, we propose two upper bounds to the
dbf based on the classical analysis with their corresponding schedulability tests. The
experimental evaluation in Sect. 5 demonstrates the acceptance of our schedula-
bility tests. It also compares the different allocation techniques in terms of degree
of approximation between the proposed algorithms in terms of utilisation and the
actual utilisation.

2 Related works

There has been a trend towards using multicore platforms due to their high comput-
ing performance. From the key results in the field in 2006, there is a lot of research
about real-time multicore systems. Some of the main surveys in the area are [14, 16,
17, 25, 26].

This work is focused on hard real-time systems, in which the non-compliance
of temporal constraints could have dramatic consequences. Therefore, partitioned
scheduling is considered in these systems, as migration of tasks between cores is
not allowed. Then, the problem of scheduling in a multicore hard real-time system
involves a first phase of task to cores allocation and a second phase of independent
scheduling of each core.

However, in multicores, the schedulability analysis does not only consider the
WCET of each task but also the interference produced when tasks are executing in
parallel on other cores and access to the shared hardware resource. This way, the
timing correctness of the hard real-time system becomes more complicated. In [25]
it is presented a survey about timing verification techniques for multi-core real-time
systems until 2018.

In order to integrate the effects of the interference in the schedulability analy-
sis, each task is characterized by its WCET (running in isolation) and the effect of
the contention of the shared resource in the response time of the task. Many works
consider a single shared resource: memory bus [10, 23], scratchpad memories and
DRAM [19, 22, 34], etc. For example, [19] focus on the analysis of memory conten-
tion delays in heterogeneous commercial-off-the-shelf (COTS) MPSoC platforms,
where their goal is to derive a safe bound on these delays suffered by any critical
task in a mixed-criticality system executing on these platforms upon accessing the
off-chip DRAM.

However, other works consider multiple shared resources in the contention, which
is on the scope of this work. Among the most relevant works of interference contend-
ing for multiple resources, [2] presented a Multicore Response Time Analysis (MRTA)
framework, that provides a general approach to timing verification for multicore

14706 A. Guasque et al.

1 3

systems. They omit the notion of WCET and instead directly target the calculation of
task response times through execution traces. They start from a given mapping of tasks
to cores and assume fixed-priority preemptive scheduling. Other works as [12] or [30]
come from the MRTA framework.

In [20], a schedulability test and response time analysis for constrained-deadline sys-
tems is proposed. They analyse the amount of time for shared resource accesses and
the maximum number of access segments, which is out of the scope of this work. They
also assume fixed priorities.

[7] propose a conservative modeling technique of shared resource contention sup-
porting dependent tasks, in contrast to our work, that considers independent tasks.
They also assume fixed-priority scheduling. Another work that considers fixed priority
scheduling is [3]. This work presents a task model for tasks with co-runner-dependent
execution times that generalizes the notion of interference-sensitive WCET (isWCET).
Their model considers constrained-deadline sporadic task sets and a fixed priority
scheduling. Here, tasks are represented by a sequence of segments, each of which has
execution requirements and co-runner slowdown factors with respect to sets of other
segments that could execute in parallel with it.

In [1], the interference due to contention is added to the temporal model. Instead of
adding it to the WCET, they propose a scheduling algorithm that computes the exact
value of interference and an allocator that tries to reduce this total interference. This
model considers implicit deadlines in the system and both fixed or dynamic priorities
can be used. However, they do not propose any schedulability test to ensure the sys-
tem’s feasibility.

In [18], a partitioned scheduling that considers interference while making partition
and scheduling decisions is presented. They present a mixed integer linear program-
ming model to obtain the optimal solution but with a high computation cost and also
they propose approximation algorithms. They only consider implicit deadline models.
This paper differentiates between isolated WCET and the WCET with interference and
overhead. They define an Inter-Task interference matrix, in which each element of the
matrix is the interference utilisation between two tasks, considering the inflated WCET
when two tasks run together. This work is similar to [1] but in [1] a general model is
considered, valid for any type of shared hardware resource while in [18] only interfer-
ence due to cache sharing is considered.

A similar work is presented in [15]. They define the Multicore Resource Stress and
Sensitivity (MRSS) task model that characterises how much stress each task places on
resources and its sensitivity to such resource stress. This work also considers a general
model to cope with different hardware resources but only fixed priority scheduling poli-
cies are considered. The task-to-cores allocation is known a priori.

In this work, we proceed under the assumption of the task model in [1] (as fixed and
dynamic priorities can be used) with an extension to a constrained-deadline model and
we propose two schedulability tests for dynamic priorities.

14707

1 3

Schedulability analysis of dynamic priority real‑time systems…

3 Problem definition and task model

This task model is similar to the one presented in [1]. The only difference is the
introduction of the parameter D in the temporal model since in this case we will
assume that deadlines are less than or equal to periods. We suppose a multicore
system with m cores (M0,M1,M2, ...,Mm−1) where a synchronous task set � of n
independent tasks should be allocated to these cores. Each task �i is represented
by the tuple:

where Ci is the WCET, Di is the relative deadline, Ti is the period and Ii is the inter-
ference. We assume constrained deadlines, so Di ≤ Ti . Tasks can be periodic or
sporadic.

The term Ii is the time the task takes to access shared hardware resources. A
typical case is the operation of reading and writing in memory. Although Ii is part
of Ci , during the time the task is accessing the shared resource, other tasks on
other cores will be delayed if they try to access the same resource. So this inter-
ference time is defined independently of Ci , as will be used to represent the delay
caused to other tasks. A detailed description of this parameter can be found in [1].

When we refer to M�i
 , we mean the core in which �i is allocated. Moreover, we

will define as �Mk
 the subset of tasks in � that belong to the core Mk . Therefore,

�M0
∪ ... ∪ �Mm−1

= �.
The hyperperiod of the task set, H, is the smallest interval of time after which

the periodic patterns of all the tasks are repeated, and it is calculated as the least
common multiple of the task periods. The utilisation of a task �i is calculated as
the relation between the computation time and the period, Ui =

Ci

Ti
 . The utilisation

of a core Mk is the sum of the utilisation of all tasks that belong to this core:
U�Mk

=
∑

�i∈Mk
Ui . The total utilisation of the system is the sum of the utilisation

of all cores: U� =
∑

∀k U�Mk

.
We define Ai as the number of activations that �i has throughout H, Ai = H∕Ti.
We will also need the following definitions:

Definition 1 [1] A task is defined as a receiving task when it accesses shared hard-
ware resources and suffers an increase in its computation time due to the interfer-
ence produced by other tasks allocated to other cores.

Definition 2 [1] A task is defined as a broadcasting task when it accesses shared
hardware resources and provokes an increase in computation time in other tasks
allocated to other cores due to contention.

If Ii = 0 , �i is neither broadcasting nor receiving task. If Ii > 0 , �i will be a broad-
casting and receiving task if there is at least one task �j in other core whose Ij > 0.

Figure 1 represents the scheduling of a system when interference is consid-
ered. In the example, there is a set of three tasks allocated to a platform with two

(1)�i = (Ci,Di, Ti, Ii)

14708 A. Guasque et al.

1 3

cores. Tasks �0 and �1 are allocated to core 0 and �2 , to core 1. As I0 = 0 is neither
broadcasting nor receiving task, so it only executes its WCET. As I1, I2 > 0 and
are allocated to different cores, both are broadcasting and receiving tasks. When
they coincide in execution, the interference appears as extra units of execution
due to accesses to shared hardware resources (depicted as rectangles with diago-
nal lines). Note that interference is not caused in all activations, only when two or
more broadcasting tasks in different cores are executing.

4 Interference‑aware schedulability analysis for dynamic priorities

There are two phases in order to obtain the schedulability plan of a partitioned mul-
ticore system: First, tasks are allocated to cores and then, each core schedules its
tasks. Migration is not allowed, since the context of our problem is highly critical
real-time systems. Then, once the allocation is performed, the scheduling can be
solved as a multiple monocore scheduling problem.

In this section, first we present a well-known dynamic-priority schedulability
analysis for constrained deadline task models and then we extend the study to con-
sider the effect of the interference.

4.1 Earliest deadline first schedulability analysis

Dynamic priority-based schedulers do not assign an initial priority to the tasks but
at runtime. Earliest Deadline First (EDF) in [24] is an optimal scheduling algorithm
for dynamic priorities. EDF assigns the highest priority to the task with the earliest
absolute deadline, which is a ⋅ Ti + Di for the ath activation in a periodic task �i.

With constrained deadlines task models, the demand bound function, dbf� ,
determines the schedulability of the system. It is a positive and increasing func-
tion that only increases in scheduling points i.e., when a deadline arrives. For

Fig. 1 Example. Execution of the task set with �0 = (1, 2, 3, 0) , �1 = (2, 4, 5, 1) , and �2 = (1, 3, 5, 1) allo-
cated to a dual-core platform

14709

1 3

Schedulability analysis of dynamic priority real‑time systems…

partitioned scheduling, this function is calculated for each core so if a task set �
is allocated to m cores, the system is characterised by m demand bound functions.

Definition 3 [4] The maximum cumulative execution time requested by a set of syn-
chronous tasks �Mk

 over any interval of length t is:

Therefore, the task set �Mk
 is schedulable by EDF if and only if [5]:

However, studying the demand bound function over all the hyperperiod H is a tedi-
ous process. Some schedulability tests as in [6] reduce the time interval in which the
schedulability condition must be satisfied. In 1996, [31, 33] derived another upper
bound for the time interval which guarantees the schedulability of the task set. This
interval is called the synchronous busy period. It is a processor busy period in which
all tasks are released simultaneously at the beginning of the processor busy period
and ends by the first processor idle period. Its length is the maximum of any possi-
ble busy period in any schedule. The length of this interval is calculated by an itera-
tive process [31, 33] Then, the schedulability condition is defined as:

Theorem 1 [31] A general task set �Mk
 is schedulable if and only if U�Mk

≤ 1 and

where Lb is the length of the synchronous busy period of the task set.

4.2 Interference‑aware schedulability analysis for EDF

In this section, we propose a demand bound function that considers the interfer-
ence so we can provide a schedulability test.

Let us start with the following task set, � = [�0, �1] with �0 = (2, 4, 5, 1) and
�1 = (4, 5, 6, 1) , allocated to a dual-core platform. �0 is allocated to core M0 , and
�1 , to M1 . Figure 2 shows the demand bound function for each core, according to
Eq. 2. Note that this function only considers the execution times of the task set of
each core and not the received interference.

In order to derive a demand bound function with interference considerations,
some definitions need to be introduced.

Definition 4 Let �����⃗vj→i be the activation pattern from a broadcasting task �j to a receiv-
ing task �i.

(2)dbf�Mk

(t) =
∑

∀�i∈Mk

Ci

⌊
t + Ti − Di

Ti

⌋

(3)dbf�Mk

(t) ≤ t ∀t ≤ H

dbf�Mk

(t) ≤ t, ∀t ≤ Lb

14710 A. Guasque et al.

1 3

The meaning of this array is the number of activations of �j that fall within an
activation a of �j . Note that this is an array that later we will use to represent the
interference that a broadcasting task �j can cause to a receiving task �i . In this
way, �����⃗vj→i[a] coincides with the maximum overlapping between �j and �i in its ath
activation, etc. The length of this array coincides with the number of activations
of �i.

The following example shows graphically how the array �����⃗vj→i is characterised.
Let us suppose a system with two tasks, �� = [��

0
, ��

1
] with ��

0
= (1, 2, 3, 1) and

��
1
= (1, 6, 7, 1) , allocated to a dual-core platform. �′

0
 is allocated to core M0 , and

�′
1
 , to M1 . For the sake of simplicity, computation times and deadlines are not

depicted. As seen in Fig. 3, �������⃗v1→0 = [1, 1, 2, 1, 2, 1, 1] . Equivalently, �������⃗v0→1 = [3, 3, 3].
Note that in the scheduling, not all activations receive the same interference

from other tasks. As showed in Fig. 1, this will depend on whether the tasks coin-
cide in execution.

Fig. 2 (a) Demand bound function dbf for �M0
 (b) Demand bound function dbf for �M1

 . Demand bound
functions for the task set, � = [�0, �1] with �0 = (2, 4, 5, 1) and �1 = (4, 5, 6, 1) , allocated to a dual-core
platform. �0 is allocated to core M0 , and �1 , to M1 . Interference is not considered

Fig. 3 Example of �����⃗vj→i for a task set with ��
0
= (1, 2, 3, 1) and ��

1
= (1, 6, 7, 1) allocated to a dual-core

platform

14711

1 3

Schedulability analysis of dynamic priority real‑time systems…

In the next theorem, we are going to provide an expression to calculate �����⃗vj→i and
we will demonstrate that this is the maximum number of activations of the broad-
casting task �j that fall within each activation of �i.

Theorem 2 The maximum number of activations of the broadcasting task �j that fall
within ath activation of �i is:

being

Proof Let us assume that exists t1 so that t1 = � ⋅ Tj and aTi ≤ t1 < (a + 1)Ti.
In this case:

and then g(t1) = 1.
Therefore, g(t) is equal to 1 only when the broadcasting task �j is released in the

interval [aTi + 1, (a + 1)Ti) . Evaluating g(t) all over the previous interval we get the
number of activations that fall within activation a of �i.

It is not possible for the sum of g(t) to be greater than this number of activations,
so we can say that the maximum number of activations falling within the interval is
correctly calculated with Eq. 4. ◻

Note that if �i is not a receiving task, �����⃗vj→i[a] = 0 ∀j, a.
Listing 1 shows the pseudo-code (python-like) to calculate �����⃗vj→i.

In the next sections, we will use vector �����⃗vj→i to obtain a demand bound function
that incorporates the interference. We will present two proposals, one more pessi-
mistic than the other but with a lower computational cost.

(4)�����⃗vj→i[a] = 1 +

(a+1)Ti−1∑
t=aTi+1

g(t)

(5)g(t) =

{
1 If t − Tj

⌊
t

Tj

⌋
= 0

0 Elsewhere

t1 − Tj

⌊
t1

Tj

⌋
= � ⋅ Tj − Tj

⌊
� ⋅ Tj

Tj

⌋
= 0

14712 A. Guasque et al.

1 3

4.2.1 A first approximation

In order to deduce a demand bound function that contemplates the interference,
a first approximation is to consider that all the activations of the receiving task �i
receive the maximum possible interference from the broadcasting task �j . From
the definition of �����⃗vj→i array, this maximum interference is calculated as:

Then, the execution time of a receiving task will be defined as the sum of its own
computation time and the worst-case interference received by the broadcasting tasks
allocated in other cores.

Note that if �i is not a receiving task, �����⃗vj→i[a] = 0 ∀j, a and then C�
i
= Ci.

Definition 5 From Eq. 2, we can propose a new definition of the demand bound
function with interference considerations:

Consequently, the corresponding schedulability test is:

Theorem 3 A task set �Mk
 allocated to a core Mk with constrained deadlines is

schedulable by dynamic priorities if and only if:

Proof As �����⃗vj→i[a] represents the maximum number of activations of �j that fall within
an activation of �i , the maximum of this array multiplied by the interference factor Ij
is the maximum interference that �i can receive from �j . There is no possibility for a
task to receive more interference than maxa �����⃗vj→i[a] ⋅ Ij in activation a so if by adding
this value to the demand function the system is schedulable, no deadline will be lost
in the execution. ◻

By adding this maximum value to Ci , we are considering that the maximum
interference occurs in all activations. On the one hand, introducing the same
maximum value of interference in all activations makes the system still periodic.
Then, the schedulability test must be satisfied in the synchronous busy period
and not in the hyperperiod and only in the scheduling points. On the other hand,
previous definition is very pessimistic as not all the activations of the receiving
task receive its maximum value of interference. This is only a first approximation
in order to provide a simple schedulability test. As �����⃗vj→i[a] ⋅ Ij exactly provides
the maximum possible interference received from �j at each activation a of �i ,

(6)max
0≤a≤Ai−1

�����⃗vj→i[a] ⋅ Ij

(7)C�
i
= Ci +

∑
𝜏j∉Mk

max
0≤a≤Ai−1

�����⃗vj→i[a] ⋅ Ij

(8)dbf �
�Mk

=
∑

∀�i∈Mk

C�
i

⌊
t + Ti − Di

Ti

⌋

(9)dbf �
�Mk

(t) ≤ t ∀t ≤ Lb

14713

1 3

Schedulability analysis of dynamic priority real‑time systems…

next section presents a more accurate (less pessimistic) definition of the demand
bound function.

4.2.2 A more accurate definition

In this section, let us present a schedulability test using the exact definition of the
activation pattern array, �����⃗vj→i . We will estimate an upper bound of the interference
received with this array and we will include it, not in the computacion time but in
the demand bound function.

Definition 6 The less pessimistic demand bound function of a task set allocated to a
core Mk considering the interference is:

Corollary 1 dbf ��
�Mk

(t) is less pessimistic than dfb�
�Mk

(t) . Therefore:

dbf
��

�Mk

(t) ≤ dfb�
�Mk

(t)

Proof It is easy to see that:

{To simplify the notation, let us define max0≤a≤Ai−1
�����⃗vj→i[a] as maxV.} Developing

both sides of the equation:

In both sides of the previous equation there are exactly
⌊
t+Ti−Di

Ti

⌋
 terms. As

maxV ≥ �����⃗vj→i[a] ∀a , each term on the right side is equal or greater than each term on
the left side. Therefore:

 ◻

The second term in Eq. 10 includes the upper bound of the total interference
received by �i . It is calculated as the number of interferences that all the tasks allo-
cated in other cores provoke to all activations of �i released until time t. If �i is

(10)dbf
��

𝜏Mk

(t) =
�
𝜏i∈Mk

⎛
⎜⎜⎜⎝
Ci

�
t + Ti − Di

Ti

�
+

�
𝜏j∉Mk

�
t+Ti−Di

Ti

�
−1�

a=0

�����⃗vj→i[a] ⋅ Ij

⎞
⎟⎟⎟⎠

⌊
t+Ti−Di

Ti

⌋
−1∑

a=0

�����⃗vj→i[a] ≤ max
0≤a≤Ai−1

�����⃗vj→i[a] ⋅

⌊
t + Ti − Di

Ti

⌋

�����⃗vj→i[0] + �����⃗vj→i[1] + ... + �����⃗vj→i

[⌊
t + Ti − Di

Ti

⌋
− 1

]
≤ maxV + maxV + ... + maxV

dbf
��

𝜏Mk

(t) ≤
�
𝜏i∈Mk

⎛⎜⎜⎝
Ci

�
t + Ti − Di

Ti

�
+

�
𝜏j∉Mk

max
0≤a≤Ai−1

�����⃗vj→i[a] ⋅

�
t + Ti − Di

Ti

�
Ij

⎞⎟⎟⎠

14714 A. Guasque et al.

1 3

neither receiving nor broadcasting, the second term of this equation will be equal to
0 (as �����⃗vj→i[a] = 0 ∀j, a). If �j is not broadcasting, Ij = 0 and also �����⃗vj→i[a] = 0.

This is an upper bound in the sense that the �����⃗vj→i[a] array is maximum, as demon-
strated in Theorem 2.

However, when interference is considered throughout the �����⃗vj→i[a] array, the maxi-
mum cumulative execution time requested by the tasks may happen indifferently at
any time during all the hyperperiod making the demand not periodic. With the fol-
lowing counterexample, we will show that studying the schedulability of the system
in the synchronous busy period is not a valid approach.

4.2.3 Counterexample for dynamic priorities

Let us consider the task set defined in the beginning of Sect. 4.2, � = [�0, �1] with
�0 = (2, 4, 5, 1) and �1 = (4, 5, 6, 1) , allocated to a dual-core platform. �0 is allocated
to core M0 , and �1 , to M1 . Once tasks are allocated to cores, EDF algorithm sched-
ules tasks in each core. The actual execution of the task set is shown in Fig. 4. From
[31], proving that dbf�Mk

(t) ≤ t during the first busy period is enough to assure the
schedulability of the task set. As seen in Fig. 4, the first busy period in M1 is [0,5], as
t=5 is the first instant when all requests have already been served and no additional
requests have arrived yet. Then, it may be assumed that the system is schedulable.
However, due to interferences, a deadline miss is produced in t=10. So, we can con-
clude that when interference is considered, the worst scenario may happen at any
time during the hyperperiod.

Moreover, not always this interference will be received, it will depend on the real
scheduling. For example, suppose that the WCET of �0 is 1 unit instead of 2. Then,
the second activation of �0 will not interfere with �1 as it ends just when the second
activation of �1 starts. However, as this work evaluates the worst-case scenario, it
will consider that these activations interfere as one falls within the other.

Fig. 4 Counterexample. Execution of the task set with �0 = (2, 4, 5, 1) and �1 = (4, 5, 6, 1) allocated to a
dual-core platform

14715

1 3

Schedulability analysis of dynamic priority real‑time systems…

The schedulability condition for constrained-deadline synchronous and peri-
odic task models based on the demand bound function was presented in Eq. 3.
This equation is applied with periodic or sporadic tasks, whose requests happen
every inter-arrival time, Ti . When interference is considered with the first
approach dbf ′

�Mk

 , i.e., considering the maximum of the array �����⃗vj→i , the model is
still periodic, as this maximum value is introduced in all the activations. How-
ever, if we consider the array �����⃗vj→i per se in the dbf ′′

�Mk

 , the behaviour of the task
set is no longer periodic, as there is no repeatability. Other works as [5, 29]
include the definition of the demand bound function for extended models, for
example, those in which tasks are also defined by their start times, whose behav-
iour would be similar to ours with interference. Therefore, schedulability tests
are evaluated by intervals, in particular, by the intervals of activation of each
task, to ensure that all temporal constraints are met. For this reason and from
now on, the demand bound function will be evaluated by intervals, dbf�Mk

(t1, t2) ,
with 0 ≤ t1 < t2 ≤ H . Note that dbf�Mk

(t1, t2) = dbf�Mk

(t2) − dbf�Mk

(t1) . It can be
applied to all the demand bound functions presented in this work.

Considering the interference in the demand bound function and the previous
considerations, the schedulability test is now presented.

Theorem 4 A task set �Mk
 allocated to a core Mk with constrained deadlines is

schedulable by dynamic priorities if:

Proof Similar to the proof of Theorem 3, �����⃗vj→i[a] represents the maximum number of
times a task �j can cause interference in another task �j at an activation a. Thus, it is
not possible to receive in total more than:

interference units. If the system slack (t2 − t1 − dbf (t1, t2)) is greater than or equal to
this value, the set of tasks will be schedulable. ◻

Let us follow with the example in Sect. 4.2.3. Figure 5 shows the demand
bound functions dbf, dbf ′ and dbf ′′ for both cores. First, the activation patterns
are calculated: �������⃗v1→0 = [1, 2, 2, 2, 2, 1] and �������⃗v0→1 = [2, 2, 2, 2, 2] . Figures 5a and b
show the demand bound functions for cores 0 and 1, respectively. In Fig. 5b,
dbf � = dbf

�� as max0≤a≤Ai−1
�����⃗vj→i[a] = �����⃗vj→i[a] ∀a.

As seen in Fig. 5a, there is a deadline missed in the execution of the tasks in
core M1 . This infeasibility is demonstrated with the demand bound functions
(Fig. 5b) as dbf �

𝜏M1

(0, t) > t and dbf ��
𝜏M1

(0, t) > t for some instants of time during
the hyperperiod.

(11)dbf
��

𝜏Mk

(t1, t2) ≤ t2 − t1 0 ≤ t1 < t2 ≤ H

(12)
∑
𝜏i∈Mk

∑
𝜏j∉Mk

⌊
t+Ti−Di

Ti

⌋
−1∑

a=0

�����⃗vj→i[a] ⋅ Ij

14716 A. Guasque et al.

1 3

5 Evaluation

5.1 Experimental conditions

In order to obtain the schedule in a multicore system, first the tasks are allocated
to cores (allocation phase) and then each core is scheduled (scheduling phase)
independently, as this work does not consider migration of tasks between cores.

Therefore, to validate the proposed technique, a simulator that considers both
allocation and scheduling phases is implemented. The simulation scenario devel-
oped for this work is depicted in Fig. 6. It is divided into three steps:

• Generation of the load (see Sect. 5.1.1).
• Allocation phase (see Sect. 5.1.2).
• Scheduling phase (see Sect. 5.1.3).

Fig. 5 (a) dbf ′ and dbf ′′ for �M0
 (b) dbf ′ and dbf ′′ for �M1

 . Relation between dbf ′ , dbf ′′ and schedulability
of the task set in Sect. 4.2.3

Fig. 6 Experimental evaluation overview

14717

1 3

Schedulability analysis of dynamic priority real‑time systems…

5.1.1 Load generation

The load is generated using a synthetic task generator. The number of tasks in each
set and the total system utilisation depends on the number of cores in which tasks
are allocated to. Given the total system utilisation and a number of tasks for each
set, the utilisation is shared among the tasks using the UUniFast discard algorithm
of [13]. Periods are generated randomly in [20,1000] and computation times are
deduced from the system utilisation. Deadlines are constrained to be less or equal to
periods and are set to Di ∈ [0.5Ti, Ti].

The experimental parameters of the evaluation process are specified in Table 1.
To ensure the reproducibility of the results, these parameters coincide with those
used in [1] (Table 2).

The theoretical utilisation varies between 50 and 75% of the possible maximum
load of the system. For example, the maximum load of a system with 4 cores is 4, so
for evaluation purposes, the initial utilisation is set to 2.1 (≈50%) and 3 (75%).

Table 1 Definition of the experimental scenarios

Number of cores Utilisation Tasks Broadcasting Interference Scenario
Tasks Over WCET (%)

2 cores 1.1 4 2 10 1
20 2
30 3

1.5 10 4
20 5
30 6

4 cores 2.1 12 3 10 7
20 8
30 9

3 10 10
20 11
30 12

8 cores 4.1 20 5 10 13
20 14
30 15

6 10 16
20 17
30 18

10 cores 5.1 28 7 10 19
20 20
30 21

7.5 10 22
20 23
30 24

14718 A. Guasque et al.

1 3

The number of broadcasting tasks is set to 25% of the total number of tasks,
except for scenarios 1–6 (2 cores), which is 50%. This is due to the fact that, if
only one task is broadcasting, no interference will be produced. Each combina-
tion of number of cores and utilisation is evaluated with 10, 20 and 30% of inter-
ference over the WCET. Note that not all the tasks in a task set have the same
interference value, but the same percentage of interference over the WCET.

5.1.2 Allocation phase

Once the load is generated, it is shared among the cores using different algo-
rithms. In the following, we briefly discuss several existing allocation techniques.

Bin packing heuristics such as Worst Fit (WF) and First Fit (FF) are typically
used to solve the allocation problem [8, 28]. Moreover, task ordering such as
decreasing utilisation (DU) directly affects the task allocation outcomes. In this
sense:

• First Fit (FF) algorithm. Each item is allocated into the first bin that it fits
into, without exceeding the maximum capacity of the bin. If there is no one
available, a new bin will be opened. This algorithm results in an unbalanced
allocation between cores.

• Worst Fit (WF) algorithm. WF allocates each item into the bin that leaves
more remaining capacity, i.e., the emptiest bin. This algorithm results in a bal-
anced allocation between cores.

• FFDU algorithm (WFDU algorithm). Arrange items i in the decreasing order
of utilisation Ui and apply FF (WF) in the resulting order of i.

In addition to these heuristics, there are other bin packing algorithms used to
solve the allocation problem. [9] presents a survey and classification of these
algorithms.

However, these heuristic techniques do not consider the interference delays due to
contention of shared hardware resources but only the utilisation of the tasks. In [1],
authors present an allocation algorithm Wmin, whose objective consists of minimiz-
ing a binary matrix W that describes if there is (1) or not (0) interference between
tasks. They consider that the contention-aware execution time C′

ia
 of �i in activation

a is the sum of Ci plus the interferences caused by running tasks in other cores.
This approximation is similar to the one presented in Sect. 4.2.1. Once these algo-
rithms are introduced, let us continue with the description of the allocation phase
in the simulation scenario. Tasks are allocated to cores following the three alloca-
tion methods: WFDU, FFDU and Wmin. Each allocator generates an allocation
file, that contains the information about how tasks are allocated to cores. Then, the
feasibility of this allocation plan must be checked. The validation of the allocation
phase consists of assuring that the maximum capacity per core is not exceeded, i.e.,
UMk

≤ 1∀k = 0, ..,m − 1 and that all tasks are allocated. If these conditions are not
satisfied, the corresponding task set is discarded and a new one is generated. Other-
wise, the task set moves to the scheduling phase.

14719

1 3

Schedulability analysis of dynamic priority real‑time systems…

5.1.3 Scheduling phase

The contention aware scheduling algorithm proposed in [1] is applied in the sched-
uling phase. As any priority-based algorithm can be used as the basis for this algo-
rithm, we selected EDF, following the proposal of this paper. The scheduler gener-
ates a temporal plan, that contains the information about how tasks are scheduled at
each time at each core. This plan must also be validated, checking that all temporal
constraints are satisfied. First, we need the following definitions:

The utilisation of the core Mk , U′
Mk

 , calculated from the definition of dbf ′
�Mk

 , is:

As a consequence, the utilisation of all the system would be the sum of all the core
utilisations:

The upper bound of the utilisation of the core Mk , U
′′

Mk
 , calculated from the defini-

tion of dbf ′′
�Mk

 , is:

As a consequence, the upper bound of the utilisation of all the system would be the
sum of all the core utilisations:

The actual utilisation of the system is defined as Ureal
�

 and is determined after the
scheduling phase, when the actual interference is measured. This utilisation is
always lower or equal than U′

�
 and U′′

�
 , as not always the estimated interference will

be produced, as stated in Sect. 4.2.3. From previous sections (see Corollary 1), it is
easy to deduce that:

5.2 Experimental results

After conducting the experiments, the evaluation phase consists of measuring the
previous utilisation factors and making a comparison between them, for all the sce-
narios in Table 1. The objective is to compare the allocation algorithms and confirm
that no set with Ureal > U′′

𝜏
 is schedulable. We also want to know how pessimistic

dbf ′ and dbf ′′ are.

(13)U�
Mk

=

dbf �
�Mk

(H)

H

(14)U�
�
=
∑
∀k

U�
Mk

(15)U
��

Mk
=

dbf
��

�Mk

(H)

H

(16)U
��

�
=
∑
∀k

U
��

Mk

(17)U� ≤ Ureal
�

≤ U
′′

�
≤ U′

�

14720 A. Guasque et al.

1 3

First, the difference in terms of utilisation between both demand bound func-
tions presented in this work is evaluated. To do that, we measure two parameters:

• Difference between U′
�
 and Ureal

�
 , measured as �� =

U�
�
−Ureal

�

Ureal
�

(%).

• Difference between U′′

�
 and Ureal

�
 , measured as ���

=
U

��

�
−Ureal

�

Ureal
�

(%).

Figures 7, 8 and 9 depict the percentage difference �′ and �′′ for each scenario
and different allocators. As expected, for all scenarios and all allocators �′′

≤ �′ ,
as a consequence of Eq. 17. As a general trend, the more cores in the system, the
bigger �′ vs �′′ are. This is due to the fact that the estimated worst-case interfer-
ence increases with the number of cores, as there is more contention between
tasks allocated to different cores. However, this difference becomes zero in some
cases from scenarios 13. One can differentiate between:

• FFDU (Fig. 7): This allocator unbalances the load among cores. It allocates the
tasks in the less possible number of cores. Therefore, the used cores are over-
loaded. Then, when interference appears, the feasibility of the system decreases,
as there is little scope to schedule this interference. Generally, FFDU presents
low schedulability rates (10% and decreasing in systems from 8 cores [1]). For
this reason, there are no values of the percentage difference from 8 cores on (sce-
nario 13 and so on). Scenarios with 2 cores have a bigger percentage of broad-
casting tasks as stated in Sect. 5.1.1, so �′ and �′′ are bigger than in the rest of
scenarios.

Fig. 7 Percentage difference �′ vs �′′ for each scenario with FFDU allocator

14721

1 3

Schedulability analysis of dynamic priority real‑time systems…

• WFDU (Fig. 8): This allocator balances the load among cores. It maximizes the
number of used cores so when interference appears, there is enough scope to
schedule this interference. With this allocator, the schedulability ratio is high
(almost 100% for all number of cores [1]) and we can observe the expected
behaviour: the more cores in the system, the more �′ and �′′ are obtained, up to
60 and 50% in scenarios with many cores, respectively. Again, with 10 cores,

Fig. 8 Percentage difference �′ vs �′′ for each scenario with WFDU allocator

Fig. 9 Percentage difference �′ vs �′′ for each scenario with Wmin allocator

14722 A. Guasque et al.

1 3

75% of utilisation and 20-30% of interference over WCET, the schedulability
ratio becomes zero so the percentage difference �′ and �′′ become zero.

• Wmin (Fig. 9): This allocator tries to group broadcasting tasks together, in order
to reduce the overall provoked interference. In scenarios with few numbers of
cores (and consequently few broadcasting tasks), the percentage difference is
almost zero as interference is avoided in most of the cases by grouping broadcast-
ing tasks in the same cores. As the number of cores increases, �′ and �′′ increase.
Last scenarios (10 cores and 75% of utilisation), the feasibility is reduced and
systems cannot be scheduled when interference appears. So �′ and �′′ are zero.

Figure 10 depicts the average values of all scenarios for each allocator. From this
figure we can conclude that Wmin is the allocator in which �′ and �′′ are lower (U′

�

and U′′

�
 are closer to the actual utilisations) because it tries to decrease the interfer-

ence. For WFDU, �′ and �′′ are the highest with respect to the studied allocators.
We can conclude that the proposed bounds dbf ′

�Mk

 and dbf ′′
�Mk

 are valid to assure the
schedulability but they are pessimistic as not in all activations the worst case inter-
ference may be produced. However, with dbf ′′

�Mk

 this pessimism is reduced. Moreo-
ver, depending on the allocation method, these upper bounds are more accurate,
especially in those cases in which the interference is considered in the allocation
phase (Wmin allocator).

6 Conclusions

This paper proposes two contention-aware schedulability analysis for real-time task
models that consider constrained deadlines and dynamic priorities in hard real-time
multicore systems. Both approaches are based on the demand bound function dbf to

Fig. 10 Average percentage �′ vs �′′ for each allocator

14723

1 3

Schedulability analysis of dynamic priority real‑time systems…

determine the schedulability of the system. The first approximation, dbf ′ , is pessi-
mistic in the sense that it considers that all activations of all tasks receive the maxi-
mum possible interference. The second approximation, dbf ′′ , reduces this pessimism
as it considers specifically the maximum interference at each activation of the tasks.
A schedulability test for each approach is proposed in this work.

We evaluate both approaches with different allocation techniques: FFDU, WFDU
and Wmin. We measure the difference between both approaches proposed in this
work (in terms of utilisation factors) and the actual utilisation factor measured after
the scheduling phase for all the allocators. With this evaluation it is demonstrated
that the dbf ′′ approach is much closer to the real value than the dbf ′ approach, as
demonstrated mathematically in this work. Among all allocators, Wmin is the algo-
rithm in which both approaches are more accurate, due to the fact that it considers
the interference factor in the allocation process.

We plan to further investigate to use scheduling techniques that reduce interfer-
ence as much as possible. Some variants of well-known scheduling algorithms such
as Modified Least Laxity First [27] or Modified Maximum Urgency First [32], can
achieve promising results with respect to interference.

We also plan to consider more task models such as mixed-criticality systems or
partitioned systems.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. his
work was supported under Grant PLEC2021-007609 funded by MCIN/ AEI/ 10.13039/501100011033
and by the “European Union NextGenerationEU / PRTR”.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

 1. Aceituno JM, Guasque A, Balbastre P et al (2021) Hardware resources contention-aware scheduling of
hard real-time multiprocessor systems. J Syst Archit 118:1–11

 2. Altmeyer S, Davis RI, Indrusiak L et al (2015) A generic and compositional framework for multicore
response time analysis. In: Proceedings of the 23rd International Conference on Real Time and Net-
works Systems, RTNS ’15, pp 129–138

 3. Andersson B, Kim H, Niz DD et al (2018) Schedulability analysis of tasks with corunner-dependent exe-
cution times. ACM Trans Embed Comput Syst 17(3):1–29

 4. Baruah SK, Mok AK, Rosier LE (1990a) Preemptively scheduling hard-real-time sporadic tasks on one
processor. In: (1990) Proceedings 11th Real-Time Systems Symposium, pp 182–190

 5. Baruah SK, Rosier LE, Howell RR (1990) Algorithms and complexity concerning the preemptive schedul-
ing of periodic, real-time tasks on one processor. Real-Time Syst 2(4):301–324

 6. Baruah SK, Howell RR, Rosier LE (1993) Feasibility problems for recurring tasks on one processor.
Theor Comput Sci 118:3–20

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

14724 A. Guasque et al.

1 3

 7. Choi J, Kang D, Ha S (2016) Conservative Modeling of Shared Resource Contention for Dependent Tasks
in Partitioned Multi-core Systems. In: 2016 Design, Automation Test in Europe Conference Exhibition
(DATE), pp 181–186

 8. Coffman EG, Garey MR, Johnson DS (1996) Approximation algorithms for bin packing: a survey. PWS
Publishing Co

 9. Coffman EG Jr, Csirik J, Galambos G et al (2013) Bin packing approximation algorithms: survey and clas-
sification. Springer, New York

 10. Dasari D, Andersson B, Nelis V, et al (2011) Response time analysis of cots-based multicores consider-
ing the contention on the shared memory bus. In: 2011 IEEE 10th International Conference on Trust,
Security and Privacy in Computing and Communications, pp 1068–1075

 11. Dasari D, Akesson B, Nélis V, et al (2013) Identifying the sources of unpredictability in cots-based
multicore systems. In: 2013 8th IEEE international symposium on industrial embedded systems (SIES),
pp 39–48

 12. Davis R, Altmeyer S, Indrusiak L et al (2018) An extensible framework for multicore response time
analysis. Real-Time Syst 54:607–661

 13. Davis RI, Burns A (2009) Priority assignment for global fixed priority pre-emptive scheduling in multi-
processor real-time systems. In: 2009 30th IEEE real-time systems symposium, pp 398–409

 14. Davis RI, Burns A (2011) A survey of hard real-time scheduling for multiprocessor systems. ACM
Comput Surv 43(4):1–44

 15. Davis RI, Griffin D, Bate I (2021) Schedulability Analysis for Multi-core Systems Accounting for
Resource Stress and Sensitivity. In: 33rd Euromicro Conference on Real-Time Systems, ECRTS 2021
Virtual Conference, LIPIcs, vol 196. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp 7:1–7:26

 16. Fernandez G, Abella J, Quiñones E et al (2014) Contention in Multicore Hardware Shared Resources:
Understanding of the State of the Art. In: Falk H (ed) 14th international workshop on worst-case execu-
tion time analysis, openaccess series in informatics (OASIcs), vol 39. Schloss Dagstuhl-Leibniz-Zen-
trum fuer Informatik. Dagstuhl, Germany, pp 31–42

 17. Gracioli G, Alhammad A, Mancuso R et al (2015) A survey on cache management mechanisms for
real-time embedded systems. ACM Comput Surv 48(2):1–36

 18. Guo Z, Yang K, Yao F et al (2020) Inter-task cache interference aware partitioned real-time scheduling,
association for computing machinery, p 218-226

 19. Hassan M, Pellizzoni R (2020) Analysis of Memory-Contention in Heterogeneous COTS MPSoCs. In:
Völp M (ed) 32nd Euromicro Conference on Real-Time Systems (ECRTS 2020), pp 23:1–23:24

 20. Huang WH, Chen JJ, Reineke J (2016) Mirror: symmetric timing analysis for real-time tasks on multi-
core platforms with shared resources. In: Proceedings of the 53rd Annual Design Automation Confer-
ence, DAC ’16

 21. Karuppiah N (2016) The impact of interference due to resource contention in multicore platform for
safety-critical avionics systems. Int J Res Eng Appl Manag (IJREAM) 02:39–48

 22. Kim H, de Niz D, Andersson B et al (2014) Bounding memory interference delay in cots-based multi-
core systems. In: 2014 IEEE 19th real-time and embedded technology and applications symposium
(RTAS), pp 145–154

 23. Lampka K, Giannopoulou G, Pellizzoni R et al (2014) A formal approach to the wcrt analysis of multi-
core systems with memory contention under phase-structured task sets. Real-Time Syst 50:736–773

 24. Liu CL, Layland JW (1973) Scheduling algorithms for multiprogramming in a hard-real-time environ-
ment. J ACM 20(1):46–61

 25. Maiza C, Rihani H, Rivas JM et al (2019) A survey of timing verification techniques for multi-core real-
time systems. ACM Comput Surv 52(3):1–46

 26. Mitra T, Teich J, Thiele L (2018) Time-critical systems design: a survey. IEEE Design Test 35(2):8–26
 27. Oh SH, Yang SM (1998) A Modified Least-Laxity-First Scheduling Algorithm for Real-Time Tasks. In:

Proceedings Fifth International Conference on Real-Time Computing Systems and Applications (Cat.
No.98EX236), pp 31–36

 28. Oh Y, Son SH (1995) Allocating fixed-priority periodic tasks on multiprocessor systems. Real-Time
Syst 9(3):207–239

 29. Pellizzoni R, Lipari G (2005) Feasibility analysis of real-time periodic tasks with offsets. Real-Time
Syst 30:105–128

 30. Rihani H, Moy M, Maiza C, et al (2016) Response Time Analysis of Synchronous Data Flow Programs
on a Many-Core Processor. In: Proceedings of the 24th International Conference on Real-Time Net-
works and Systems, RTNS ’16, p 67-76

14725

1 3

Schedulability analysis of dynamic priority real‑time systems…

 31. Ripoll I, Crespo A, Mok AK (1996) Improvement in feasibility testing for real-time tasks. Real-Time
Syst 11(1):19–39

 32. Salmani V, Taghavi Zargar S, Naghibzadeh M (2005) A Modified Maximum Urgency First Scheduling
Algorithm for Real-Time Tasks. Proc Seventh World Enformatika Conference

 33. Spuri M (1996) Analysis of deadline scheduled real-time systems. Tech. rep
 34. Xiao J, Altmeyer S, Pimentel A (2017) Schedulability analysis of non-preemptive real-time scheduling

for multicore processors with shared caches. In: 2017 IEEE real-time systems symposium (RTSS), pp
199–208

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Schedulability analysis of dynamic priority real-time systems with contention
	Abstract
	1 Introduction
	1.1 Contribution

	2 Related works
	3 Problem definition and task model
	4 Interference-aware schedulability analysis for dynamic priorities
	4.1 Earliest deadline first schedulability analysis
	4.2 Interference-aware schedulability analysis for EDF
	4.2.1 A first approximation
	4.2.2 A more accurate definition
	4.2.3 Counterexample for dynamic priorities

	5 Evaluation
	5.1 Experimental conditions
	5.1.1 Load generation
	5.1.2 Allocation phase
	5.1.3 Scheduling phase

	5.2 Experimental results

	6 Conclusions
	References

