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Abstract
We address the efficient realization of matrix multiplication (gemm), with applica-
tion in the convolution operator for machine learning, for the RISC-V core present 
in the GreenWaves GAP8 processor. Our approach leverages BLIS (Basic Linear 
Algebra Instantiation Software) to develop an implementation that (1) re-organizes 
the gemm algorithm adapting its micro-kernel to exploit the hardware-supported dot 
product kernel in the GAP8; (2) explicitly orchestrates the data transfers across the 
hierarchy of scratchpad memories via DMA (direct memory access); and (3) oper-
ates with integer arithmetic.

Keywords Matrix multiplication · High performance · RISC-V GAP8

1 Introduction

In the last years, there is a strong interest to realize deep learning (DL) at the edge, 
in IoT (Internet-of-things) devices, in order to improve safety and privacy, reduce 
the latency experienced by the end-user, and/or decrease energy consumption [1–4]. 
This implies that DL technologies have to be deployed on IoT devices, with limited 
computational and memory capacities, restrictions in power supply and, in many 
cases, with strict time constraints.

Convolutional neural networks (CNNs) are the mainstream DL tool for image 
recognition and classification as well as signal processing [5], yet nowadays they are 
also being deployed for other types of DL tasks [6, 7]. From the computational point 
of view, the convolution is the most expensive operator in this type of DL networks 
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[7]. The im2col-based approach (also known as lowering) is a popular, flexible, and 
general-purpose approach to transform the convolution operator into a compute-
intensive, cache-friendly matrix–matrix multiplication (gemm) [8, 9]. By embedding 
the initial im2col transform into the data packing routines that are intrinsic to a high-
performance realization of gemm, the time cost of this transform can be fully amor-
tized over the calculations and the need for an additional memory disappears [10].

While there exist many popular dense linear algebra (DLA) libraries that include 
high-performance realizations of the gemm kernel (e.g., Intel MKL, AMD AOML, 
NVIDIA cuBLAS, GotoBLAS2, OpenBLAS, BLIS, etc.), these do not provide an 
effective tool to perform inference on IoT devices for a couple of reasons mainly. 
On the one hand, the memory footprint of these libraries is considerable (sometimes 
even too large for IoT appliances), as they cover a range of DLA functionality much 
beyond the simple gemm kernel that is needed in DL inference. On the other hand, 
these DLA libraries support floating point arithmetic, while many IoT devices can 
only operate with integer or fixed point data.

In this work, we build the upon BLIS ideas and techniques [11] to develop an 
im2col-based convolution operator for the GAP8 platform1 [12]. This is an ultra-
low-power processing processor with a RISC-V 1+8-core cluster for computa-
tion-intensive workloads. From the point of view of optimizing the im2col-based 
convolution/gemm, the GAP8 system presents some particular features that result in 
the following contributions from our work:

• We develop a BLIS-like gemm that operates on top of the dot (scalar or inner) 
product, a vector kernel that is intended to receive special support in the GAP8. 
This is different from the approach taken in the BLIS baseline algorithm, which 
is built around the outer product. (A second major difference between the BLIS 
baseline algorithm and ours is the layers of the memory hierarchy where the dis-
tinct matrix operands reside when accessed from the micro-kernel.)

• We develop an instance of gemm optimized for 8-bit integer (INT8) arithmetic 
that can be easily adapted for fixed point arithmetic.

• Similarly to [13], we orchestrate a careful sequence of data transfers between the 
different memory areas of the GAP8 via DMA transfers, integrating these move-
ments into the BLIS packing routines.

• We perform an experimental evaluation of the gemm realization in the FC (fabric 
controller) in the GAP8 platform.

We close this general discussion with two remarks:

• Depending on the convolution parameters, a Winograd or FFT convolution oper-
ator [14, 15] may (or may not) be more time-efficient (but also less precise) than 
an im2col-based convolution. However, a comparison of these approaches is out-
of-scope for this paper.

1 https:// gwt- websi te- file. s3. amazo naws. com/ gap8_ datas heet. pdf.

https://gwt-website-file.s3.amazonaws.com/gap8_datasheet.pdf
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• The major part of our paper is focused on the efficient realization of gemm on 
the GAP8 processor. We emphasize that, given a high-performance realization of 
this kernel, transforming that into an efficient im2col-based convolution operator 
is straightforward [10].

The rest of the paper is structured as follows: In Sect. 2, we offer a brief review of 
the BLIS algorithm for gemm. Next, in Sect.  3 we detail the main features of the 
GAP8 platform. In Sect. 4, we describe the approach to obtain a BLIS-like gemm 
algorithm for the GAP8 system and evaluate the resulting routine. Finally, in Sect. 5 
we close the paper with a summary of the insights gained and a discussion of future 
work.

2  Matrix multiplication in BLIS

Consider the general matrix–matrix multiplication (gemm) C += AB , where the 
dimensions of the matrix operands A, B and C are m × k , k × n and m × n , respec-
tively. BLIS implements this operation as five nested loops (L1–L5) around two 
packing routines and a micro-kernel. In addition, the latter is decomposed into an 
additional loop (L6) around an outer product. The realization of this BLIS baseline 
algorithm for gemm is illustrated in Fig. 1.

The ordering of the loops in the BLIS baseline algorithm, together with a proper 
selection of the loop strides and dimensions of the A

c
,B

c
 buffers [16], orchestrate 

the movement of the matrix operands across the processor memory hierarchy dur-
ing the execution of the matrix product. Concretely, a k

c
× n

c
 block of B is copied 

into a buffer B
c
 that is expected to reside in the L3 cache; and an m

c
× k

c
 block of A 

is copied into a buffer A
c
 that targets the L2 cache. Furthermore, the micro-kernel 

operates with a k
c
× n

r
 micro-panel of B

c
 (to be retrieved from the L1 cache), an 

m
r
× k

c
 micro-panel of A

c
 (in the L2 cache), and an m

r
× n

r
 micro-tile of C (streamed 

directly from the main memory); see [11, 16]. For the BLIS baseline algorithm, we 
will refer to the micro-panels of A

c
,B

c
 as A

r
 , B

r
 , respectively; and the micro-tile of 

C as C
r
.

Fig. 1  High-performance implementation of the BLIS baseline algorithm for gemm. Here C
c
 is a notation 

artifact, introduced to ease the presentation
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For high performance, the values of the cache configuration parameters m
c
, n

c
, k

c
 

are either determined via extensive experimental evaluation or, alternatively, using 
an analytical model that takes into account the size and associativity of each cache 
level [16].

The copies into A
c
,B

c
 ensure that the entries of the micro-panels A

r
,B

r
 are 

accessed with unit stride from the micro-kernel (see Fig.  2), enabling the use of 
SIMD (single-instruction multiple-data) vector instructions [11].

To close this section, in the following we will next refer to the BLIS baseline 
algorithm as B3A2C0, where the letter “Z” ∈ {A,B,C} corresponds one of the three 
matrix operands and the subsequent number, i ∈ {0, 1, 2, 3} , specifies the target 
cache level for that operand (with 0 referring to the processor registers).

3  An overview of the GAP8 platform

The GAP8 platform, from GreenWaves Technologies, is an IoT application proces-
sor based in the PULP (Parallel-Low-Power Processing Platform) that comprises (1) 
a fabric controller (FC) core for control, communications, and security functions; 
(2) a cluster of 8 cores designed for the execution of parallel algorithms; and 3) a 
specialized accelerator (HWCE). All these components share the same 512-KB L2 
memory area (MA). Furthermore, the FC has a 16-KB L1 MA while the cluster 
cores and HWCE share a 64-KB multi-banked TCDM L1 (data/instruction) MA. 
Several DMA units allow fast transfers between MAs. The layout of the GAP8 plat-
form is illustrated in Fig. 3.

All 1+8 cores support the same extended RISC-V instruction set architecture 
(ISA), including the I (integer), C (compressed instruction), M (Multiplication and 
division) extensions and a portion of the supervisor ISA subset. Specialized instruc-
tions exist for zero overhead hardware loops, pointer post-/pre-modified memory 
accesses, instructions mixing control flow with computation (e.g., min and max), 
multiply/subtract and accumulate, vector operations, fixed point operations, bit 
manipulation, and the dot product of two vectors. The SIMD registers in the GAP8 
processor are 32-bit long (i.e., 4 INT8) and the dot product vector operations are 

Fig. 2  Packing in the BLIS baseline algorithm for gemm (left) and micro-kernel with C resident in the 
processor registers (right)
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simulated by software in the current SDK. Our current code targets the FC. Porting 
the realization of the GAP8 cluster is part of ongoing work.

According to the GAP8 manual2, the banks of the shared L1 MA can be accessed 
from the cluster cores in a single cycle. In comparison, accessing data in external 
MAs (referred to as L3 memory,) incurs a very high cost and, therefore, should be 
avoided whenever possible.

The GAP8 does not include data caches but instead relies on programmable DMA 
units to orchestrate data transfers to/from peripherals and in between the internal 
L1 and L2 MAs. Therefore, these memory spaces can be viewed as “scratchpads.” 
The micro-DMA unit is used to transfer data to/from peripherals, including the L3 
memory.

In conclusion, the GAP8 platform (1) provides special extended instructions set 
to optimize the performance of signal processing and machine learning algorithms, 
including support for the dot product vector operation; and (2) requires a careful 
management of the data transfers to extract optimal performance and energy effi-
ciency. To address these, in the next section we describe (1) how to leverage the 
BLIS framework in order to formulate a BLIS-like realization of gemm that is based 
on the dot product; and (2) discuss how to accommodate the data movements in 
gemm as part of the packing routines in a BLIS-like realization of the matrix multi-
plication for the GAP8 platform.

4  Experimental results

Setup As a starting point for the experimental evaluation, we analyze the 
distribution of time costs for a particular gemm of moderate dimensions 
m, n, k = 1792, 1536, 1024 . Table 1 reports the execution times of the data transfers 

Fig. 3  GAP8 layout

2 https:// green waves- techn ologi es. com/ manua ls/ BUILD/ HOME/ html/ index. html.

https://greenwaves-technologies.com/manuals/BUILD/HOME/html/index.html
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as well as the arithmetic cost for the B3C2A0 realization of gemm for this matrix 
multiplication, when setting m

c
= 384 , n

c
= 682 , k

c
= 3072 ; and using a micro-

kernel with m
r
× k

r
= 4 × 12.3 For reference, we include the volume of memory 

transfers corresponding to each pack/unpack/copy routines (i.e., B → B
c
 , C → C

c
 , 

C
c
→ C , and B

c
→ B

r
 ); and the data streamings from/into the processor regis-

ters performed from within the micro-kernel (in the table referred to as “Stream 
A
r
∕B

r
∕C

c
”). The bottom part of the table shows the cost of the arithmetic performed 

in the micro-kernel when all data is already present in the processor registers. There-
fore, it gives a realistic estimation of the practical peak performance that can be 
attained with the dot product operations, in the GAP8 FC, for a 4 × 12 micro-kernel.

Before we analyze the performance results, it is interesting to carry out 
a preliminary analysis of the GAP8 processor. Concretely, Table  1 reports 
that the time to compute a single INT8 operation in the GAP8 processor is 
1∕(76.7 ⋅ 106) = 1.30e − 08 s, while the costs to transfer a single INT8 number from 
the L1 (for B

r
)/L2 (for C

c
 ) MAs to the processor registers are, respectively, given 

by 1∕(178 ⋅ 210) = 5.35e − 09  s and 1∕(7.18 ⋅ 210) = 1.32e − 07  s. This is relevant 
because, for each fused multiply-add operation, the micro-kernel for the B3C2A0 
algorithm retrieves an element of B

r
 from the L1 MA and reads/writes a single entry 

of C
c
 from the L2 MA. The important L2 access cost (higher than the cost of the 

arithmetic) determines that, even though gemm is often viewed as a compute-bound 
operation, this is a memory-bound kernel in the GAP8 processor.

Performance analysis We can highlight a few of aspects by inspecting the 
table. First, as could be expected from a blocked algorithm for gemm, the larger 
volumes of memory transfers involve those data that are closer to the processor 

Table 1  Distribution of costs between the different “components” that are involved in the B3C2A0 
implementation of gemm with m = 1792, n = 1536, k = 1024,m

c
= 384, n

c
= 682, k

c
= 3072,m

r
= 4 , 

and k
r
= 12

Component Time (s) #Mem. accesses Mbytes/s Observations

Pack B
c

1.85 3.15E+06 1.62E+00 L3 (via L2) to L3
Pack C

c
4.95 2.75E+06 5.30E−01 L3 to L2

Unpack C
c

4.01 2.75E+06 6.54E−01 L2 to L3
Copy B

r
0.85 7.86E+06 8.81E+00 L3 (via L2) to L1

Stream A
r

10.80 5.51E+06 4.87E−01 L3 (via L2) to registers
Stream B

r
3.78 7.05E+08 1.78E+02 L1 to registers

Stream C
c

62.80 4.73E+08 7.18E+00 L2 to registers to L2

Time (s) #INT8 ops INT8 MOPS Observations

Arithmetic 70.09 5.64E+09 7.67E+01 Only arithmetic ops
Total 159.13 – 3.38E+01 Arithm. and mem. ops

3 We also experimented with 4 × 4 and 4 × 8 micro-kernels, but these options were discarded due to the 
considerably higher costs of transferring C

c
 between the L2 MA and the registers.
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registers. The transfer rates are also coherent, reporting higher bandwidth for the 
data movements between the L1 MA and the processor registers, followed by the 
transfers between the L2 MA and the registers, and so on. In this sense, the dis-
tinct transfer rates observed for the packings involving B

c
 and C

c
 can be explained 

because the former operates with “sub-vectors” of dimension k
r
= 12 while the 

latter operates with sub-vectors of sizes m
r
= 4 , improving the efficiency of 

the DMR mechanism by a factor of k
r
∕m

r
= 3 . Also, note the different transfer 

rates for the copy of B
r
 as this does not incur the overhead of re-organizing data 

required by the packing/unpacking routines.
Second, adding up all costs, the total execution time is 159.13 seconds for this 

particular problem, selection of cache configuration parameters, and micro-kernel. 
This offers a rate of 33.8 MOPS (millions of INT8 operations per second), which 
is lower than the practical peak of 76.7 MOPS if we only consider the arithmetic, 
attaining about 44% of that peak. For this particular problem, the results in the table 
expose a clear bottleneck due to the transfers of C

c
 between the L2 MA and the pro-

cessor registers.
To further investigate this, we developed an analytical model that estimates the 

partial costs due to each component, and validated its accuracy using the data from 
the table as well as that of several other executions using different cache configu-
ration parameters and/or distinct ( 4 × 4 , 4 × 8 ) micro-kernels. (The relative errors 
for all tested cases remained below 2%.) We then used this model to estimate that, 
for example, using a 4 × 16 micro-kernel and properly scaling the dimensions 
of m

c
, n

c
, k

c
 to fit the buffers into the memory system, the performance could be 

improved to 39.8 MOPS for the same problem dimension. Figure  4 reports some 
of the results attained from experiments with other micro-kernels and the analyti-
cal model. At this point, we would like to note that developing manually optimized 
micro-kernels is a complex task that we are working to transform into an automatic 
procedure. Given that the analytical model provides accurate estimations of the per-
formance of the algorithm when combined with a particular micro-kernel, we did 
not see much purpose in creating a large variety of micro-kernels.
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From these results, we recognize that there is a clear path to improve the perfor-
mance of our gemm realization by integrating a prefetching scheme within the micro-
kernel that overlaps the access to C

c
 from within it with the arithmetic operations. 

We plan to investigate this as our next immediate step.
Finally, Fig. 5 reports the MOPS rates attained for the convolution layers appear-

ing in the MobileNet-v1 [17] CNN, when processed using the im2col approach 
followed by our GAP8-specific implementation of gemm, for three different micro-
kernel sizes. This figure confirms the superiority of the 4 × 12 micro-kernel for the 
practical cases appearing in DL, but also the practical use of the gemm realization as, 
in many of the cases, the throughput rate remains between 25 and 55 MOPS.

Comparison with other gemm algorithms. The family of BLIS-like algorithms for 
gemm comprises 6 variants which are obtained by re-ordering the loops of the algo-
rithm in Fig. 1 (though BLIS only implements one: the baseline algorithm) [18–20]. 
We next briefly discuss the main features of these alternative realizations:

• Variant B3C2A0 is obtained by swapping the roles of operands B and C with 
respect to the C3B2A0 realization presented in this work. As a result, B is now 
re-packed into the L3 memory (as B

c
 ), and from there copied into the L1 MA 

(as B
r
 ); C is packed into the L2 MA (as C

c
 ); and a micro-tile of A remains in 

the processor registers during the execution of the micro-kernel, with the latter 
cast in terms of a sequence of dot products. Given the bottleneck that we identi-
fied in the access to the L2 MA, and the fact that this variant needs to both read 
and write the entries of C from that level of the memory, we can expect that, 
in general, this variant incurs in higher memory access costs than our C3B2A0 
algorithm, which only needed to read B from the L2 MA.

• Variant B3A2C0 (BLIS baseline algorithm) was already discussed in Sect.  2. 
From the point of view of the memory access to the L2 MA, this variant should 
present a similar behavior as that of our realization C3B2A0 (depending on the 
gemm operands’ dimensions and provided there is a proper selection of the cache 
configuration parameters). However, as argued earlier, B3A2C0 implements its 
micro-kernel as a sequence of outer products, which have no software/hardware 
support in the GAP8 processor. Therefore, we can expect higher arithmetic costs 
for the BLIS baseline algorithm in the GAP8 processor.
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• The remaining 3 variants (C3A2B0, A3B2C0, A3C2B0) are obtained by sim-
ply swapping the roles of A and B in the three algorithms previously discussed, 
and they should no significant advantage over them. For example, A3C2B0 is 
the “twin” of the B3C2A0 algorithm proposed in this paper. As both A and B are 
input operands with “symmetric” roles in gemm, the fact that either A or B is the 
operand that resides in a certain level of the memory hierarchy should be irrel-
evant (again, provided it is not affected by the gemm operands’ dimensions and 
the cache configuration parameters are selected properly).

5  Concluding remarks

We have described a member of the BLIS family of algorithms for gemm especially 
designed to exploit the hardware support for the dot product kernel provided by the 
RISC-V core that is integrated into the GreenWaves GAP8 processor. Our approach 
operates with 8-bit integer arithmetic in order to offer an energy-efficient inference 
tool for CNNs. The experimental analysis demonstrates that a careful orchestration 
of the data transfers across the GAP8 memory hierarchy is crucial to obtain fair per-
formance. The path ahead of us is broad. As part of future work, we plan to develop 
more sophisticated micro-kernels that overlap data transfers with arithmetic, as well 
as exploit the 8-core cluster in the GAP8 platform.
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