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Abstract
Multi-omic approaches, which combine information from various biological data layers, have
become increasingly popular in recent years because of their ability to provide a thorough un-
derstanding of biological systems.

This study aims to conduct a comprehensive evaluation of MAMBA (Metabolic Adjustment
via Multiomic Blocks Aggregation), a Constraint-Based Modeling approach recently developed
in the Conesa Lab that extends Flux Balance Analysis by incorporating biological data from
different molecular layers. Saccharomyces cerevisiae, specifically the Yeast Metabolic Cycle,
provides an interesting biological scenario for this purpose due to its well-annotated genome and
abundance of experimental data.

The corresponding multi-omic datasets were retrieved from public repositories, and include
transcriptomic, epigenomic and metabolomic information for 16 time points distributed through-
out the 3 phases of the cycle. The data were obtained using RNA-seq, ChIP-seq, and LC-MS
techniques, respectively.

Differential expression analysis was independently applied to each omic. Further, functional
analysis by means of conventional enrichment-based methods (ORA, GSEA) and using the novel
constraint-based approaches (MAMBA) allowed to evaluate the performance of both types of ap-
proaches for the different omics. ORA and GSEA identified metabolic pathways that contained
differentially expressed genes across the three phases, aligning with previous knowledge on the
Yeast Metabolic Cycle. The reaction activity prediction feature implemented in MAMBA also
identified differentially active pathways, albeit with only partial overlap between the pathways
identified by the enrichment methods. Enrichment analysis exposed regulation along the yeast
metabolic cycle for critical biological functions, such as DNA replication, proteasome degrada-
tion, and mismatch repair. These differences were not observed in MAMBA’s results as it is
confined to the metabolic reactions within the model. However, MAMBA’s results were more
proficient in capturing the downstream effects of these fundamental processes, represented by
specific reactions and metabolic pathways.

In order to evaluate the performance of both methods in terms of identifying and capturing
the biological differences between conditions, a Gene Set Variation Analysis (GSVA) was applied
only to those pathways identified as relevan. The resulting GSVA scores were then utilized to
cluster the samples in an unsupervised manner. In the case of RNA-seq, pathways identified
by both MAMBA and ORA accurately captured the underlying biological differences between
conditions for both MAMBA and ORA. Notably, MAMBA exhibited superior performance when
employing epigenetic information.

In conclusion, MAMBA shows great potential as an effective approach for integrating tran-
scriptomic and epigenetic data to unravel the complexities of biological processes such as the
yeast metabolic cycle. However, further research is needed to enhance the functional character-
ization of the metabolic model and optimize the incorporation of diverse omics datasets within
the MAMBA framework. These efforts will contribute to improving the accuracy and reliability
of MAMBA’s predictions, thereby advancing our understanding of complex biological systems.

This project is related to the Sustainable Development Goals, specifically contributing to
Health and Well-being (SDG 3), Quality Education (SDG 4), Gender Equality (SDG 5), Climate
Action (SDG 11) and Responsible production and consumption (SDG 12).

Keywords Multi-omic; Metabolic Modelling; Flux Balance Analysis; Saccharomyces cerevisiae;
Yeast Metabolic Cycle; RNA-seq; Chip-seq; Metabolomics



Resumen
Los enfoques multi-ómicos, que combinan información de varias capas de datos biológicos, se
han vuelto cada vez más populares en los últimos años debido a su capacidad para proporcionar
una comprensión profunda de los sistemas biológicos.

Este estudio tiene como objetivo llevar a cabo una evaluación exhaustiva de MAMBA, una
herramienta de integración multi-ómica que extiende el Análisis de Balance de Flujos mediante
al incorporación conjunta de datos biológicos de diferentes capas moleculares. Saccharomyces
cerevisiae, en concreto el Ciclo Metabólico de la Levadura, ofrece un escenario biológico intere-
sante para este propósito debido a la extensa caracterización de su genoma y a la abundancia
de datos experimentales. Los datos multi-ómicos correspondientes se extrajeron de repositorios
públicos e incluyen información transcriptómica, epigenómica y metabolómica para 16 puntos
de tiempo distribuidos a lo largo de las 3 fases del ciclo.

El análisis de expresión diferencial se aplicó de manera independiente a cada ómica. Pos-
teriormente, el análisis funcional mediante métodos convencionales de enriquecimiento (Over
Representation Analysis, Gene Set Enrichment Analysis) y mediante los nuevos métodos basa-
dos en restricciones (MAMBA) permitió realizar una evaluación comparativa del rendimiento
de ambas metodologías.

ORA y GSEA identificaron vías metabólicas enriquecidas en genes diferencialmente expre-
sados a lo largo de las tres fases. MAMBA también permitió identificar vías diferencialmente
activas a partir de la predicción de flujos. El análisis de enriquecimiento permitió identificar los
procesos biológicos clave en cada fase del ciclo, tales como la replicación del ADN o la síntesis
de proteinas. Estas funciones globales no se observaron en los resultados de MAMBA, limita-
dos a las reacciones metabólicas explícitamente incluidas en el modelo. Sin embargo, MAMBA
demostró capturar con éxito los efectos aguas abajo de estos procesos fundamentales, en forma
de reacciones y vías metabólicas específicas.

Con el objetivo de evaluar si ambos métodos eran capaces de capturar las diferencias biológicas
entre las fases, se realizó un Análisis de Variación de Conjunto de Genes incluyendo únicamente
las vías metabólicas identificadas como relevantes en los análisis previos. Las puntuaciones re-
sultantes se utilizaron para agrupar las muestras de manera no supervisada. Pese a que en el
análisis de los datos transcriptómicos no se observó una diferencia significativa entre el ORA
y MAMBA, siendo ambos capaces de identificar y resumir las diferencias biológicas fundamen-
tales entre ambos métodos, MAMBA demostró un desempeño claramente superior en el análisis
basado en datos datos epigenéticos.

En conclusión, MAMBA emerge como una herramienta con gran potencial en la integración
de datos epigenéticos y transcriptómicos para estudiar procesos biológicos complejos, tales como
el Ciclo Metabólico de la Levadura. Sin embargo, sería conveniente optimizar la caracterización
del modelo metabólico y desarrollar adaptaciones de MAMBA más específicas que tengan en
cuenta la naturaleza de las distintas capas moleculares.

Este proyecto se enmarca dentro de los Objetivos de Desarrollo sostenible, en concreto con-
tribuyendo a la Salud y Bienestar (ODS 3), Educación de calidad (ODS 4), Igualdad de Género
(ODS 5), Acción por el clima (ODS 11) y Producción y consumo responsables (ODS 12).

Palabras clave Multi-ómica; Modelado Metabólico; Análisis de Balance de Flujos; Saccha-
romyces cerevisiae; Ciclo Metabólico de la Levadura; RNA-seq; ChIP-seq; Metabolómica
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1 Introduction

1.1 Multi-omic
Over the past few decades, there has been a remarkable emergence of high-throughput technolo-
gies that offer the opportunity of massively analysing diverse data derived from the different
biochemical components of biological systems. The study of these omics data across different
molecular layers of cellular processes help to understand the complex connections underlying
the genetic information and the resulting observable traits (Marín de Mas, 2018). Some of the
most widely used omics in systems biology are epigenomics, transcriptomics and metabolomics
(Fig. 1)(Ugidos Guerrero, 2023).

Figure 1: Omic technologies. The most relevant omics data in system biology represented as the different layers of
biological information (Figure adapted from Marín de Mas, 2018).

Transcriptomics encompasses the comprehensive investigation of all transcripts present within
a cell, involving their identification and quantification under specific biological states or condi-
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CHAPTER 1. INTRODUCTION

tions (Wang et al., 2009). To analyze the transcriptome, various technologies can be employed,
including hybridization-based and sequencing-based approaches, with RNA-sequencing (RNA-
seq) currently being the most prevalent method. In essence, RNA-seq involves the conversion
of an RNA population into a library of cDNA fragments that have adaptors attached to their
ends. Subsequently, high-throughput sequencing technologies are employed to generate short
reads from either one or both ends of these cDNA fragments.

Epigenetics is a field of study that investigates alterations to the genome that do not involve
changes in the underlying DNA sequence. These modifications can be broadly classified into
two categories: nucleotide modifications and histone modifications. Both types of modifications
play a pivotal role in the regulation of gene expression by influencing the packaging of DNA and
modifying the surface of nucleosomes (O’Geen et al., 2011).

However, due to the diverse range of alteration types (such as methylation and acetylation),
the multitude of potential histone modification sites, and the possibility of simultaneous modi-
fications, comprehending their precise impact on gene expression regulation is inherently chal-
lenging.

Chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq) is a widely employed
technique for investigating histone marks on a genome-wide scale. Briefly, ChIP-seq involves
the initial crosslinking of DNA-protein complexes, followed by chromatin fragmentation and
subsequent enrichment of the fragments using antibodies specific to the histone modifications
of interest. The crosslinks are then reversed, and the DNA fragments are sequenced (O’Geen et
al., 2011).

Metabolomics is an emerging scientific field that aims to comprehensively measure all metabo-
lites and low-molecular-weight molecules present in a biological sample. Unlike genomic and
proteomic, metabolomics aims to study molecules that have very different physical properties,
which represents a significant analytical challenge (Clish, 2015).

Analytical platforms commonly utilized in metabolomics include Mass Spectrometry (MS)
and Nuclear Magnetic Resonance (NMR). While NMR may have lower sensitivity compared
to MS, it offers valuable advantages such as high reproducibility, non-selective detection and
non-invasive nature (Gowda & Raftery, 2021).

By employing multi-omic approaches that encompass the simultaneous analysis of various
omic data types, a deeper understanding of the cell as a complex system can be achieved.

1.2 Functional Enrichment Methods
The advent of high-throughput omic technologies has facilitated the measurement of gene expres-
sion levels in a biological sample of interest. However, comprehending the underlying molecular
phenomena remains a significant challenge. In many studies focusing on the identification of
significant differences between two groups or conditions of interest, a preliminary step involves
conducting a Differential Expression (DE) Analysis. DE Analysis allows to identify which genes
expressed at distinct levels between the groups, providing insight into the cellular processes
affected by the different conditions. DE analysis returns a list of genes along with their corre-
sponding Fold Change (FC) or magnitude of change and statistical measures like p-values, but
these results alone may be challenging to interpret in terms of biological significance.

Functional enrichment (FE) analysis provides a valuable solution to this issue. FE methods
rely on previous biological knowledge that enables to include each gene within pre-define “gene
sets”, that is, collection of genes sharing a certain characteristic (biological process, location,
disease or a given metabolic pathway).

One of the most basic forms of FE analysis is Over Representation Analysis (ORA). ORA
is a statistical method that determines whether genes from pre-defined gene sets are present
more than expected (overrepresented) in a collection of differentially expressed (DE) genes. The
underlying principle is that a pathway exhibiting a significantly higher occurrence of DE genes
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than expected is more likely to be biologically relevant to the given condition. Given a list of
significantly differentially expressed genes (L), and a gene set (G) that has n genes in common
with L, ORA considers G as being differentially enriched if the occurrence of n in G is higher
than would be expected by chance (Maleki et al., 2020). For each G, an enrichment p-value
is calculated one-by-one in a linear mode (Huang et al., 2009) using the Binomial distribution,
Hypergeometric distribution, the Fisher exact test, or the Chi-square test.

However, the main limitation of ORA is its dependence on an arbitrarily defined threshold
to select the list of DE genes. Consequently, the results are highly influenced by the criteria
employed to classify genes as DE, including the choice of statistical tests and magnitude or
significance thresholds.

In this context, Functional Class Scoring methods, such as Gene Set Enrichment Analysis
(GSEA) (Fig. 2) provide an interesting alternative, as they eliminate this dependency on gene
selection criteria by taking all gene expression values into consideration.

Figure 2: Overview of Gene Set Enrichment Analysis. (A) Genes are ranked according to a statistical metric ac-
counting for differential expression between conditions. (B) Enrichment Score (ES) is calculated for each pathway
based on the distribution of the corresponding genes throughout the ranked list (Adapted from Subramanian et
al., 2005).

GSEA, similar to ORA, evaluates gene expression data at the level of gene sets. It takes
as input a ranked list of genes (L) based on a metric derived from the differential expression
analysis. If a gene set (S) is unrelated to the phenotypic differences between the experimental
conditions being compared, the genes in S are expected to be randomly distributed throughout
L. Conversely, if S is associated with the phenotypic differences, the corresponding genes are
anticipated to predominantly occur at the top or bottom of the list (Subramanian et al., 2005).

To examine this distribution, GSEA computes an enrichment score (ES) for each gene set
by walking down the list L, increasing a running-sum statistic when a gene belonging to S is
encountered and decreasing it when the gene is not in S. For each ES, defined as the maximum
deviation from zero encountered in the random walk (Fig. 2), its significance level is estimated
(nominal p-value) and adjusted for multiple hypothesis testing (Subramanian et al., 2005).

GSEA, despite proving a more unbiased approach for functional analysis, still relies on the
pre-defined gene sets. Considering metabolic pathways as un-order and unstructured collection
of genes discards a substantial amount of information about the biological processes described
by these pathways, as they do not contemplate the dependencies and interaction between genes
or other cellular components (Fig. 3).

Therefore, alternative methodologies that incorporate more comprehensive information about
genes, for example in form of metabolic models, may prove valuable in attaining a deeper
understanding of biological processes.
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Figure 3: Gene set vs pathway analysis. Schematic representation of the information that is lost when considering
metabolic pathways as gene sets (Adapted from ADVAITA, 2019).

1.3 Constraint-Based Modeling
MAMBA (Metabolic Adjustment via Multiomic Blocks Aggregation) is a Constraint-Based Mod-
eling (CBM) approach recently developed in the Conesa Lab that extends Flux Balance Analysis
(FBA) by incorporating biological data from different molecular layers, such as transcriptomics,
epigenomics, or metabolomics.

1.3.1 Flux Balance Analysis
FBA is a mathematical approach widely used to study the flow of metabolites through a
metabolic network. It is based on genome-scale metabolic reconstructions, which encompass
all known reactions in an organism and the associated genes that code for the enzymes (Orth
et al., 2010). The metabolic network is represented mathematically as a stoichiometric matrix
(Fig. 4), where each row corresponds to a unique metabolite, and each column represents a
reaction. The stoichiometric coefficients in the matrix are negative for metabolites consumed,
positive for metabolites produced, and zero if a metabolite does not participate in a reaction.
The fluxes through the network reactions are represented by the vector x.

These stoichiometric relationships impose mass balance constraints on the system by ensuring
that the total amount of any compound being produced is equal to the total amount being
consumed, thereby maintaining the steady state. The system does not have a unique solution,
and any flux distribution (x) that satisfies the mass balance equation lies in the null space of the
stoichiometric matrix. In FBA, additional constraints in the form of upper and lower bounds
can be added to each reaction, further limiting the allowable flux distributions.

To narrow down the solution space, FBA incorporates a biological objective that represents
a relevant function to the problem being studied, such as biomass production. The objective is
included as an additional reaction to the stochiometric matrix, where metabolites important for
biomass production have negative coefficients, indicating their consumption during cell growth.

Thus, an objective function, in which all reactions have a zero coefficient except for the biomass
production reaction, is stablished. The system of linear equations defined by the stoichiometric
matrix and constraints is solved using linear programming techniques. The optimization problem
aims to find the flux distribution that maximizes the objective function while satisfying the mass
balance and flux constraints.

1.3.2 MAMBA
In MAMBA, the basic FBA is extended by incorporating biological data to determine an optimal
metabolic flux solution that aligns with a specific phenotype of interest (Fig. 5). This integration
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Figure 4: Overview of Flux Balance Analysis. (A) A simplified version of the metabolic network Representation
of the metabolic network. (B) Mathematical representation of FBA elements, including Stochiometric matrix
(S), Flux vector (x), steady state assumption (b), coefficients of the objective function for each reaction (C)
and capacity constraints (lower and upper bounds). c) FBA formulated as a linear programming problem. (D)
Example of a FBA solution for the network (Adapted from Ugidos et al., 2022).

of gene-centric information is achieved through the implementation of Gene-Protein-Reaction
rules (GPRs), which describe the associations between genes, proteins, and the corresponding
metabolic reaction.

Gene-centric data, such as transcriptomic (RNA-seq) or epigenetic (ChIP-seq) data, are uti-
lized to define the activation state of genes. MAMBA overcomes the challenge of setting absolute
threshold values for gene states by working with differential values between compared conditions
rather than absolute values (Ugidos et al., 2022). An effect-size measure, such as FC, along with
associated p-values resulting from a DE analysis, allow to determine whether a gene is active or
inactive in a particular condition based on significant over- or underexpression with respect to
other condition(s).

Based on the relative omics data, genes are categorized into three groups: UP (genes with sig-
nificantly increased activity), DOWN (genes with decreased activity), and CONSTANT (genes
with non-significant changes in activity) (Ugidos et al., 2022). The incorporation of these gene
states into the model is achieved through capacity constraints (upper and lower bounds) of the
corresponding reactions. In a simplified scenario where the gene-reaction association is one-to-
one, the following rules apply: for reactions associated with DOWN genes, the upper bound
(Ub) and lower bound (Lb) are set to zero, effectively forcing the reaction to be inactive. For
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CHAPTER 1. INTRODUCTION

UP genes, Ub and Lb are set to non-zero values, ensuring the reaction remains active. For
CONSTANT genes, the reaction state is left undetermined (Lb zero and Ub non-zero), and it
will adopt the state that best fits the remaining constraints in the model.

Figure 5: Constraints reduce solutions space. Omics data are incorporated as constrains to reduce the steady-state
solution space of the metabolic network (Adapted from Covert & Palsson, 2003).

The algorithm in MAMBA searches for a sequence of binary expression states (active/inactive)
that optimally fits the differential expression data for each compared condition. By iteratively
adjusting the gene states and solving the resulting FBA problem, MAMBA determines the
metabolic flux distribution that aligns with the observed gene expression changes, allowing for
a more accurate representation of metabolic adjustments in response to different conditions or
perturbations (Fig. 5).

In addition to gene-centric data, MAMBA integrates semi-quantitative metabolomics infor-
mation to enhance the accuracy of metabolic predictions. This information is incorporated as
differential values between conditions and is used by MAMBA to optimize the flux distribution
in order by minimizing the discrepancy between the predicted and experimentally measured
metabolite ratios.

1.4 Yeast Metabolic Cycle
Saccharomyces cerevisiae was chosen as the biological scenario for evaluating conventional
enrichment-based and model-based functional analysis approaches. Saccharomyces cerevisiae, or
budding yeast, is a well-established model organism for this type of study due to its extensively
annotated genome, well-characterized metabolic network, and the abundance of experimental
data available in public repositories.

Budding yeast cells exhibit oscillatory dynamics in various cellular pathways, including those
involved in cell cycle, glucose metabolism, and respiration. This metabolically driven rhythm
is known as the Yeast Metabolic Cycle (YMC) (Rao & Pellegrini, 2011). Studies that link
post-translational modifications of histones to cycling transcripts in the YMC have revealed
that chromatin is globally altered as cells progress through the cycle, providing a valuable
opportunity to investigate cell metabolism from a multi-omic perspective (Cai et al., 2011).

Monitoring the YMC is achieved by measuring the dissolved oxygen levels in the media, which
reflect the oxygen consumed by the cells. This allows for the integration of data from different
studies or molecular data layers. The periodic oscillations in oxygen levels suggest that cells
transition between two metabolic states: a high oxygen consumption phase and a low oxygen
consumption phase (Mellor, 2016).

Previous studies on the functional profiling of the YMC reported that gene expression cycles in
three distinct phases: the Oxidative phase (OX), Reductive Building phase (RB), and Reductive
Charging phase (RC) (Fig. 6).

The OX phase is characterized by increased oxygen consumption and encompasses energeti-
cally demanding processes such as protein synthesis. Genes overexpressed in this phase encode

6



1.4. YEAST METABOLIC CYCLE

Figure 6: Gene expression oscillations along the YMC. Gene expression cycles in 3 distinct phases (OX, RB and
RC), each of them with a characteristic functional profile (Adapted from Casaní Galdón, 2021).

for proteins involved in transcriptional machinery, ribosome biogenesis, and amino acid biosyn-
thesis. The RB phase follows, with ongoing high oxygen consumption. Gene profiles during this
phase exhibit a lower dynamic range and are mainly associated with DNA replication. Finally,
the RC phase begins as oxygen levels start to increase and is characterized by non-respiratory
metabolism and protein degradation (Casaní Galdón, 2021).

This data set, generated by Kuang et al. (2014) and Casaní Galdón (2021) and retrieved
from public repositories, provided a comprehensive resource for investigating the YMC and its
associated molecular dynamics.

Given the comprehensive nature of this multi-omic dataset, which offers insights into the
cellular activity of the YMC in Saccharomyces cerevisiae at various molecular levels, it presents
an ideal scenario for assessing the performance of MAMBA in metabolic modelling of a specific
condition of interest. Furthermore, it allows for the exploration of MAMBA’s potential in
uncovering novel metabolic pathways involved in cellular processes that may not be readily
captured by conventional enrichment-based methods.

Figure 7: Time points sampled during the YMC. RNA-seq and of ChIP-seq samples used in this study are aligned
and associated to the corresponding metabolic phase by measuring the dissolved oxygen levels (Adapted from
Casaní Galdón, 2021).
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2 Objectives
The primary objective of this bachelor’s thesis is to conduct a comprehensive evaluation of
MAMBA as a metabolic modelling tool, specifically focusing on its performance when applied
to different types of omic data, including transcriptomic and epigenetic data. In addition, this
thesis aims to characterize the advantages and limitations of MAMBA in comparison to more
conventional enrichment-based methods commonly used in functional analysis. To achieve these
objectives, the thesis will pursue the following main goals:

1. Pre-processing and Differential Expression analysis on a multi-omic dataset that encom-
passes transcriptomic, epigenomic, and metabolomic information.

2. Conduct functional analysis using functional enrichment methods to identify enriched bio-
logical functions associated with the differentially expressed genes. Compare the overregu-
lated pathways inferred from the transcriptomic and epigenetic information to investigate
potential differences.

3. Use MAMBA for metabolic modelling and perform functional analysis based on the flux
predictions. Compare the functional profiles obtained from the different molecular layers
to identify potential regulatory relationships.

4. Evaluate and compare the performance of both MAMBA and conventional enrichment-
based methods in capturing the underlying biological differences between the studied con-
ditions.
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3 Materials and methods

3.1 Omic data
3.1.1 RNA-seq
RNA-seq data availability

Short-read RNA-seq data from Saccharomyces cerevisiae used in the expression profiling of the
Yeast Metabolic Cycle (YMC), generated by Kuang et al. (2013), was downloaded from SRA
accession SRP032970 using fasterq-dump. This included 16 time points over one metabolic cycle
(GEO_accession: GSM1263339 to GSM1263354).

RNA-seq data pre-processing

RNA-seq data from the 16 time samples were pre-processed simultaneously. Initial quality
control from the reads was done using fastqc (LaMar, 2015) with default parameters. Reads
were trimmed to remove N content from the ends using cutadapt (Martin, 2011) with option –
trim-n. Final quality check was performed with fastp (Chen et al., 2018). The reference genome
of Saccharomyces cerevisiae (Strain: S288C) and structural annotation was downloaded from
RefSeq database (GCF_000146045.2). STAR v2.7.10 (Dobin et al., 2013) was used for indexing
the genome and aligning the processed reads, with option –quantMode GeneCounts to obtain
raw counts for each gene.

3.1.2 ChIP-seq
Histone modification data generated by Kuang et al. (2013) and processed by Casaní (2021)
were used to study epigenetic regulation. Only two out of the eight histone modifications in
Casaní’s study were considered (H3K9ac and H3K18ac), as they proved to have the greatest
correlation with transcriptomic data (Casaní Galdón, 2021). H3 that was used as a control.
Counts for each gene were obtained by calculating the average read coverage in a pre-defined
region (300 bp upstream from the Transcription Start Site). TMM (Trimmed Mean of M values)
normalization (Robinson et al., 2010) using NOISeq R package was applied to make all samples
have the same dynamic range (Ugidos Guerrero, 2023). Then, the average H3 count value of
each gene for each phase was calculated. H3K9ac and H3K18ac were normalized with H3 control
by dividing each gene count by the H3 mean for that gene in the corresponding phase.

3.1.3 Metabolomics
The normalized metabolomic values used in this study were obtained from Casaní (2021).
Metabolic measurements were performed on a Liquid Chromatography - Mass Spectrometry
(LC-MS) platform. After correction for protein abundance and median normalization, the final
data set consisted of 50 metabolites in 21 time-points distributed along the cycle.

3.2 Study of variability
Variability of gene expression inside and between phases was evaluated by means of several com-
plementary statistical methods, including Coefficient of Variation (CV), Principal Component
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Analysis (PCA) and unsupervised clustering. All analyses were performed in RStudio.

3.2.1 Coefficient of Variation
CV testing was applied only to the RNA-seq dataset and the results were assumed to be repre-
sentative of the rest of the omics. CV is defined as the ratio of the standard deviation to the
mean. For gene expression values, the CV was calculated for each gene in each of the 3 phases
(Eq. 1).

CV =
sd
x̂

(1)

In order to infer the significance of these values, 50 sample groupings were randomly generated
maintaining the original size of the phases: 3 samples were randomly assigned to OX, 6 samples
to RB and 6 to RC. The mean of CV (all genes) of each random grouping phase was compared
with the CV mean of the original grouping. Finally, the average of the 3 phases in each random
grouping was compared to the original biological-based grouping.

3.2.2 Clustering:
PCA was performed for all 4 omics data sets independently (RNA-seq, ChIP-seq H3K9, ChIP-
seq H3K18, metabolomics). Hierarchical unsupervised clustering based on the gene-expression
data was used as a complementary test.

3.3 Differential Expression Analysis
3.3.1 RNA-seq
In the case of RNA-seq, differential expression (DE) analysis was performed in RStudio using
DESeq2 package, which tests for differential expression by use of negative binomial generalized
linear models (Love et al., 2014). Time point 12 was excluded from the analysis due to its
lower resemblance to the other samples in RB, according to the results of the previous study of
variability.

Two objects were created for this purpose: count matrix (raw counts of the 15 time samples,
non-normalized) and sample information (YMC phase assigned to each sample in order to define
the groups to be compared). The contrasts were done as pairwise comparisons considering the
biologically meaningful transitions: OX vs RC (from RC to OX), RB vs OX (from OX to RB)
and RC vs RB (from RB to RC).

DE Analysis output for each contrast (phase transition) consisted of six columns of information
reported for each gene: mean of normalized counts for all samples, log2FoldChange (log2FC),
standard error, Wald statistic, p-value and Benjamini-Hochberg adjusted p-value (p-adj), ac-
counting for multiple testing. Those genes with a p-adj < 0.05 were considered significant.

3.3.2 ChIP-seq and metabolomics
In the context of ChIP-seq and metabolomic data analysis, the LIMMA package (Ritchie et
al., 2015) was employed to conduct DE analysis of gene counts and metabolite abundance in
RStudio. The normalized counts of the two histone modifications (H3K9ac and H3K18ac) were
analysed separately. Similar to the approach utilized in RNA-seq analysis, the samples were
divided into three groups based on the YMC phases, and pairwise comparisons were conducted
considering the direction of the cell cycle (i.e., OX vs. RC, RB vs. OX, and RC vs. RB).

Several statistics were computed for each gene and contrast, including log2FC, standard errors,
t-statistics, p-value and Benjamini-Hochberg p-adj (accounting for multiple testing). Those
genes with a p-adj < 0.05 were considered significant.
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3.4 Functional analysis with enrichment – based methods

To gain a more comprehensive understanding of the differentially expressed (DE) genes, the
outcomes of the DE analysis were examined using two distinct functional enrichment methodolo-
gies, namely Gene Set Enrichment Analysis (GSEA) and Over-Representation Analysis (ORA).
The annotation of genes was carried out utilizing Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway database.

3.4.1 Gene Set Enrichment Analysis

GSEA requires a ranked list of genes derived from differential expression analysis. The choice of
ranking metric for GSEA significantly influences the outcomes of pathway enrichment analysis,
as emphasized by Zyla et al. (2017). In this particular study, the genes were ranked based on
the Wald Statistic, which accounts for both the significance and the direction/magnitude of the
gene expression changes in the cycle’s phase transitions.

For GSEA, the WebGestalt (WEB-based GEne SeT AnaLysis Toolkit) platform was employed,
with the following parameter settings: organism (Saccharomyces cerevisiae), ID type (ensem-
ble_gene_id), functional database (KEGG pathway), minimum number of IDs (20), maximum
number of IDs (500), False Discovery Rate (FDR) method (Benjamini-Hochberg), significance
level (FDR < 0.05) and the number of permutations (1000).

3.4.2 Over Representation Analysis

ORA was independently conducted for each phase, exclusively considering genes deemed signif-
icant (p-adj < 0.05) and exhibiting upregulation in that phase with respect to the other two.
This selection process took into account both the significance (p-adj) and the direction (log2FC)
of the change, respectively.

ORA was carried out using the WebGestalt platform to analyse the three phases and the three
omics independently. The analysis incorporated the following parameter settings: organism
(Saccharomyces cerevisiae), ID type (ensemble_gene_id), functional database (KEGG path-
way), minimum number of IDs (5), maximum number of IDs (2000), FDR Method (Benjamini-
Hochberg), and significance level (FDR < 0.05). The entire list of genes encompassed in the
sequencing experiment was utilized as the background for the analysis.

Those pathways with a FDR value lower than 0.05 were considered biologically relevant.

3.5 MAMBA

3.5.1 Flux prediction

To streamline the computational analysis, the YMC was simplified by assuming a linear progres-
sion and focusing solely on two specific transitions: from RC to OX and from OX to RB. For each
of the three omics datasets (RNA-seq, ChIP-seq H3K18ac, ChIP-seq H3K9ac), a list comprising
the log2FC and p-adj of each transition for all genes was provided as input for MAMBA.

In addition to gene-centric information, MAMBA incorporates metabolomic data to enhance
the accuracy of flux predictions. However, it should be noted that certain experimentally mea-
sured metabolites, namely citrulline, Adenosine Diphosphate Ribose (ADPR) and nicotinic acid
mononucleotide (NAMN), could not be included in the analysis, as they were not present in
the pre-existing yeast metabolic model. As a result, log2FC and p-adj for only 47 metabolites
were used for further analysis. The predicted fluxes were visualized using the Central Carbon
Metabolism metabolic map of Saccharomyces cerevisiae in ESCHER (King et al., 2015).
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4 Results and discussion

4.1 Omic data pre-processing
The obtention of RNA-seq gene counts involved several steps. Initially, raw reads data was
acquired from the SRA database, followed by quality assessment and trimming procedures.
The resulting reads were subsequently mapped against the reference genome of Saccharomyces
cerevisiae.

The detailed process is exemplified for a single sample, which can be considered representative
of the entire dataset. The raw reads obtained from the SRA database encompassed a total of
11 million reads. Prior to further analysis, a quality check was conducted using the fastqc tool.
The examination revealed high quality scores both per base and per sequencing, indicating that
the overall quality of the reads was satisfactory (Fig. 8).

Figure 8: Quality assessment of RNA-seq reads using FastQC. (A) Per base sequence quality. (B) Per sequence
quality scores. Statistics refer to a single sample, but are representative of the rest.

Nevertheless, the per base N quality exhibited a relatively elevated level towards the end of
the reads (Fig. 9). Consequently, a trimming step was employed to eliminate the N content
utilizing cutadapt. Notably, all reads were retained throughout this trimming process.

Following the mapping against the reference genome using the STAR, gene counts were cal-
culated for unstranded RNA-seq data based on the characteristics of the library preparation.
This analysis yielded the following results: 30,000 reads remained unmapped, 1 million reads
were found to have multiple mapping locations (multimapped), 700,000 reads were mapped but
did not correspond to any specific genomic feature, and 19,000 reads were ambiguously mapped.
Ultimately, a total of 9 million reads were uniquely and unambiguously mapped to one gene
in the reference genome and used for downstream analysis. The distribution of mapped reads
across all samples can be observed in Figure 10.

4.2 Study of variability
4.2.1 Coefficient of variation
MAMBA operates on differential values between two comparing conditions, in this case the
phases of the Yeast Metabolic Cycle (YMC): RC, OX and RB. To ensure the significance of the
gene expression levels resulting from the differential expression analysis, replicates are needed.
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Figure 9: Quality assessment of RNA-seq reads using FastQC. (A) Per base N content of the original reads. (B)
N content after trimming with cutadapt.

Figure 10: STAR Alignment Scores. Percentage of multimapped, unmapped and uniquely mapped reads of the 16
RNA-seq samples.

The original dataset comprised 16 different time points distributed along the cycle. In the
study by Kuang et al. (2013), oxygen levels were used to categorize these time points into the
corresponding metabolic phases. However, the samples are not replicates, as they had not been
collected simultaneously.

Therefore, the first assumption to validate was whether time points within the same phase
were sufficiently similar to be treated as biological replicates. This assumption holds true if the
gene expression values of time points within the same phase exhibit greater similarity compared
to those of time points belonging to different phases. In other words, the intra-phase variability
should be significantly smaller than the inter-phase variability, or at least smaller than any other
random grouping.

To evaluate gene expression variability within the phases, the distribution of variation co-
efficients (CV) for genes was analyzed (Table 1). OX phase, despite having a smaller sample
size (3), exhibited the highest variability, as indicated by a median CV of 0.28. In contrast,
the RB and RC phase, with sample sizes of 7 and 6 time samples, respectively, demonstrated
significantly lower variability, with a median variation coefficient of 0.19.

To further validate the original biological-based grouping, the variation following original
phase division was compared to the variation of randomly grouped samples. For this purpose,
50 random groupings were generated by randomly assigning 3, 7 and 6 samples to the OX, RB
and RC phase, respectively. The CV mean of this new groups was computed for each phase and
compared to the original one. Despite of the CV mean of these random groups being consistently
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Table 1: Distribution of Coefficients of Variation (CV) in the three phases of the cycle. 3, 7 and 6 samples
were assigned to OX, RB and RC, respectively, following the oxygen-based biological division.

Phase min Q1 median Q3 max sd
OX 0.0008228417 0.1622016 0.2761438 0.4473455 1.732051 0.3389449
RB 0.01718768 0.1190627 0.1919416 0.3304646 2.588891 0.2674267
RC 0.01925737 0.1212407 0.194726 0.3323307 1.361343 0.2606483

higher for all phases compared to the original one (Fig. 11), certain random groupings exhibited
lower variability than the original grouping for specific phases, particularly in the case of OX
(Table 2).

Figure 11: Coefficient of Varitation (CV) distribution. (A) CV of each gene for OX, RB and RC following the
original biological-based phase division. (B) Mean of the CV of all genes in each phase for 50 randomly
generated groupings maintaining sample size.

However, evaluating the phases independently does not provide sufficient information because
a random grouping that exhibits lower variability in one phase but higher variability in the
other two should not be considered superior. In other words, for a grouping to be deemed more
suitable than the original one, the average of CV means for all three phases must be smaller. The
mean of the three phases was calculated for each random group and compared to the original
one (Fig. 12).

Table 2: Coefficient of Variation (CV) means distribution. 50 groupings were randomly generated mantaining the
original sample size.
Phase min Q1 median Q3 max sd
OX 0.1188018 0.290143 0.3238123 0.3955575 0.4901735 0.3330523
RB 0.2908184 0.3483872 0.403333 0.4350434 0.447873 0.3919544
RC 0.2895896 0.3493645 0.39949 0.4131738 0.4605378 0.3821736

Figure 12: Coefficient of Variation (CV) means distribution. Distribution of CV means of the three phases for
each random grouping. The CV mean following the original grouping is presented as a base line.

Following the biological-based phase division, the CV mean was 0.339, while the mean for the
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randomly generated groups was consistently higher, between 0.347 and 0.378 in all simulations.
Based on these results, it can be inferred that the initial oxygen-based grouping is optimal, as
it demonstrated the lowest intra-phase variability compared to any alternative grouping.

4.2.2 Clustering
Principal Component Analysis (PCA) is a statistical technique used to analyze and visualize
the variability in a dataset. It transforms the original variables into a new set of uncorrelated
variables, called principal components (PC), which capture the maximum amount of variance in
the data. A 2D plot of the PC allows to visually identify clusters of closely related data points,
providing insights into the patterns and relationships between the samples (Jolliffe & Cadima,
2016).

In the case of RNA-seq analysis (Fig. 13), it was found that approximately 60.44% of the
variance could be explained by the first two principal components. PC1 effectively distinguished
the RB and OX from RC phase, while PC2 primarily separated RB from OX. This suggests
that RB and OX phases exhibit greater similarity to each other compared to RC, which stands
out as the phase with the most distinct gene expression patterns. These findings align with the
observations from the expression-based unsupervised clustering (Fig. 14), where RB and OX are
clustered together and separated from RC, providing further consistency to the overall analysis.

Figure 13: PCA of RNA-seq samples. Time samples are coloured according to the original phase division.

It is noteworthy that Time 12 is clustered within RC samples. This, together with the fact
that oxygen levels at Time 12 were more similar to RC than RB (Fig. 7) suggest that this
particular sample is not representative of the gene expression profile of its phase. Given that the
RB phase has the largest sample size, the omission of Time 12 from the dataset for downstream
analysis is possible without compromising the significance of the DE analysis. As evident from
the heatmap (Fig. 14), a similar situation occurs with Time 3, which is clustered within the RC
samples. However, in the case of Time 3, it cannot be excluded from the analysis due to the
limited sample size of the OX phase.

In the case of ChIP-seq analysis, the clustering of samples before H3 normalization (Supp.
Fig. 33) and after H3 normalization (Fig. 15) demonstrated consistent alignment with the phase
division for both histone modifications. This means that samples belonging to the same phase
exhibited closer proximity to each other and were more distinct from samples in other phases.
The observed clustering patterns validate the effectiveness of H3 normalization in preserving the
inherent phase-specific characteristics of the histone modification data.

It is worth noting that in the case of K18ac analysis, Time 11 exhibited a closer proximity
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Figure 14: Unsupervised clustering of the samples based on RNA-seq gene expression values. Columns refer
to genes and rows to time points. Side colors represent the YMC phase associated to each time point (blue for
RC, green for RB, red for OX).

to the RC samples compared to the RB samples. This observation aligns with the anticipated
pattern based on the similarity of oxygen levels (Fig. 7), which indicate a greater resemblance
to the RC phase. However, despite this observation, Time 11 was not excluded from the analysis
in order to maintain consistency in the sample size across the ChIP-seq datasets.

Finally, the PCA revealed that the variability in the ChIP-seq data exhibited a circular pat-
tern. In addition to grouping samples according to their respective YMC phases, the PCA
analysis captured the temporal differences between samples within the same phase.

Figure 15: PCA of ChIP-seq samples. (A) H3K9ac after H3 normalization (B) H3K18ac after H3 normalization.

Regarding the analysis of metabolomics data (Fig. 16), PC1 clearly separates the RB phase
from the OX and RC phase, indicating a distinct metabolic profile between these phases. On the
other hand, PC2 differentiates the RC phase from the OX phase, suggesting that RC and OX ex-
hibit a greater similarity in terms of metabolic profiles compared to the RB phase. This contrast
in the metabolomic data’s pattern of separation is different to the epigenetic and transcriptomic
data, where RB and OX were found to be more similar.

Furthermore, similar to ChIP-seq data, the metabolomic data also demonstrates YMC tempo-
ral variability. The positioning of samples along the principal components suggests a temporal
progression of metabolite profiles during the YMC, where changes in metabolic states are ob-
served between different phases and gradual variations occur within each phase. This temporal
variability observed in the metabolomic dataset further emphasizes the dynamic nature of the
metabolic processes underlying the YMC.
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CHAPTER 4. RESULTS AND DISCUSSION

Figure 16: PCA of metabolomic samples. Metabolomic information includes 21 samples distributed along the 3 phases
of the cycle.

In summary, the final datasets used for downstream Differential Expression (DE) analysis
included 15 time samples for transcriptomic data (excluding Time 12), 16 time samples for
both histone modifications, and 21 time samples for metabolomic data. The samples were
categorized into three phases based on the original oxygen-based division and were treated as
biological replicates for downstream analysis.

4.3 Differential Expression analysis
The general goal of the DE analysis is to determine which genes are expressed at different
levels between conditions, as they can offer biological insight into the processes affected by the
condition(s) of interest. In this work, results of DE analysis were introduced in MAMBA as
input to define genes and metabolites constraints for metabolic modelling.

In the case of RNA-seq data (Table 3), nearly half of the genes had a p-value below 0.05 for
all transitions, confirming distinct functional profiles across the different phases. By applying an
additional magnitude criterion of absolute log2 Fold Change (log2FC) > 2, the list of significantly
differentially expressed (DE) genes is substantially reduced. Notably, the transition from RC to
OX exhibits the highest number of DE genes, indicating pronounced differences between these
phases, consistent with the findings from the exploratory variance analysis.

Table 3: Differentially Expressed (DE) genes. Number of DE genes for the 3 transitions based on RNA-seq data.
p-adj <0.05 p-adj <0.05 and |log2FC| >2

From RC to OX 3818 592
From OX to RB 2763 311
From RB to RC 3172 277

Conversely, the transitions entering and leaving RB (from OX to RB and from RB to RC)
exhibit a lower number of DE genes, implying that RB may serve as an intermediate stage
between OX and RC. This observation is further supported by the overlap analysis of DE genes
between different transitions, where the transitions from OX to RB and RB to RC exhibit the
least overlap (Fig. 17). This suggests that genes that become activated or inactivated upon
entering RB are unlikely to undergo substantial changes when this phase transitions to the
subsequent phase.
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Figure 17: Overlap between the Differentially Expressed (DE) genes in the different transitions based on
RNA-seq. The intersection between the circles represent the number of DE genes identified in the two or
three corresponding transitions.

The DE analysis of epigenetic data reveals a significant number of genes with a p-value below
0.05 as well (Table 4). However, when considering the log2FC threshold, there are notably fewer
genes meeting the criteria, particularly in the case of H3K18ac (Table 4). This observed dis-
crepancy can be attributed to the distinct characteristics of omics technologies employed, which
result in a narrower dynamic range in ChIP-seq compared to RNA-seq. While gene expression
levels can exhibit considerable variation, chromatin accessibility as measured by ChIP-seq is
confined to a single genome per cell, leading to a more constrained range of observed changes.

Table 4: Differentially Expressed (DE) genes. Number of DE genes for the 3 transitions based on H3K18ac ChIP-seq
data.

p-adj <0.05 p-adj<0.05 and |log2FC| >2
From RC to OX 3494 49
From OX to RB 2230 5
From RB to RC 2243 30

Comparing the two histone modifications (Fig. 18A), there is a substantial overlap in the set
of DE genes, indicating that they likely to be cooperating in the regulation of shared biological
processes. This may imply that histone marks have a combined effect that may not be fully
captured when analysing them separately.

However, when comparing the DE genes from transcriptomic and epigenetic data, it becomes
apparent that the majority of DE genes are exclusive to either one of the omics, with very few
genes overlapping between the two (Fig. 18B).

Figure 18: Overlap of Differentially Expressed (DE) genes altogether for the three transitions (A) Overlap
between histone modifications. (B) Overlap between epigenetic and transcriptomic data. The intersection
between the circles represents the number of DE genes identified by the two omics.
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The observation that transcriptomic and epigenetic data provide distinct information about
gene expression regulation is indeed significant. It highlights the complementary nature of these
two types of data and suggests that epigenetic marks captured by ChIP-seq can provide valuable
insights into the regulation of metabolic pathways through epigenetic mechanisms.

4.4 Functional Enrichment Analysis
To gain greater biological insight on the DE genes, several analyses were performed, including
Gene Set Enrichment Analysis (GSEA) and Over Representation Analysis (ORA). Both methods
aim to identify biological functions that are enriched in the set of DE genes, but approaches and
statistical models vary substantially.

4.4.1 Gene Set Enrichment Analysis

The DE analysis highlighted the challenge of comparing gene-associated p-values and log2FC
between omics technologies due to the different dynamic ranges of RNA-seq and ChIP-seq. This
disparity renders enrichment analysis tools that rely on an arbitrary pre-selection of ”interesting”
genes based on significance or magnitude thresholds, such as ORA, less suitable for this scenario.
For this reason, we decided to use GSEA, which circumvents the need for pre-selection by taking
as input a ranked list of all genes based on a statistical measure, such as the Walt statistic. By
doing this, GSEA provides a more comprehensive and unbiased assessment of biological functions
associated to the DE genes, overcoming the limitations posed by comparing p-values and log2FC
directly.

Functional Enrichment (FE) analysis using GSEA allowed for the identification of pathways
that were upregulated or downregulated during the three phase transitions within the YMC.
Specifically, during the transition from RC to OX phase (Fig. 19), there is a consensus among
the three omics regarding the activation of pathways related to protein synthesis. These path-
ways mainly include processes associated with transcription and translation. The first category
encompasses cellular functions involved in nucleotide availability such as purine metabolism and
pyrimidine metabolism, as well as RNA polymerization pathways including RNA polymerase,
basal transcription factors, spliceosome and RNA transport. The second category comprises
pathways related to ribosome function, including structural genes involved in ribosomal RNA
(rRNA) and genes associated with ribosome assembly and biogenesis.

It is noteworthy that functional characterization based on ChIP-seq data does not reveal path-
ways related to amino acid availability, in contrast to the clear identification of these functions
in RNA-seq. These pathways include the biosynthesis of amino acids (lysine, valine, leucine,
isoleucine, methionine, cysteine and aromatic aminoacids). Other more isolated pathways in-
clude DNA replication, whose activation is further emphasize in the next transition (OX to
RB).

In contrast, when examining the pathways that are inactivated during the RC to OX tran-
sition, it becomes apparent that energy production-related pathways are significantly affected.
These include sugar metabolism pathways such as galactose, starch and sucrose, fructose and
mannose metabolism, as well as oxidative respiration-related pathways encompassing glycolysis,
pyruvate metabolism, citrate cycle, and oxidative phosphorylation. Additionally, pathways asso-
ciated with the mobilization of alternative energetic compounds, such as glycerolipid metabolism,
fatty acid degradation, amino sugar and nucleotide sugar metabolism, and propanoate metabolism,
are also observed to be inactivated. These findings suggest that energy production is a key pro-
cess during the RC phase of the YMC. However, the interpretation of the other two transitions
(entering and leaving RB) is not as straight-forward. From OX to RB, there is a consensus among
the omics data regarding the inactivation of protein synthesis-related pathways (Fig. 20). This
indicates that these pathways are overregulated in the OX phase and become downregulated as
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the YMC transitions into RB.

Figure 19: GSEA results OX vs RC. Pathways with differential activity in the RC to OX transition based on RNA-seq
and ChIP-seq. Pathways with a positive enrichment score (ES) are activated in the transition, while pathways
that have a negative ES are inactivated.

In terms of upregulated pathways, there is a significant overlap between OX to RB and
RB to RC transitions. This suggests that RB serves as a transitional phase between OX and
RC, exhibiting similarities to both phases. The upregulated pathways primarily pertain to
energy production, further highlighting the importance of energy metabolism. Interestingly, the
RNA-seq analysis reveals the activation of DNA replication-related processes, aligning with the
observations made in the RC to OX transition. These include pathways involved in mismatch
repair and homologous recombination, underscoring the crucial role of DNA replication during
RB and implying a potential connection with cell division.

GSEA provides a broad understanding of the progression of the YMC, but its focus on transi-
tions makes it difficult to achieve a comprehensive and accurate functional profiling of the three
phases independently. Nonetheless, several key points can be inferred from the analysis.

Firstly, protein synthesis is activated upon entering the OX phase, indicating the initiation
of cellular resource generation to support metabolic activity and cell division. Secondly, DNA
replication-related processes are observed in the RB phase, suggesting ongoing DNA replication
during this stage. Lastly, the RC phase exhibits the highest levels of energy production, implying
a shift towards energy extraction from lipid reservoirs. These findings align with previous
knowledge of the YMC, as described by Casaní Galdón (2021). According to this knowledge,
the cycle begins with protein synthesis to provide the necessary cellular resources for metabolic
activity and cell division. This is followed by a phase of high energy consumption, primarily
through respiratory metabolism, to facilitate cell division. Once cell division is completed,
the cycle enters a phase where energy is derived from lipid reservoirs until enough energy is
accumulated to initiate the cycle again.

Regarding the performance of both omics, RNA-seq outperforms ChIP-seq in terms of sensi-
tivity, as it identifies a higher number of relevant pathways in all three transitions. However,
ChIP-seq data still capture similar cellular functions, and there are even exclusive pathways
identified by ChIP-seq, such as ABC transporters. Additionally, there appears to be a slight
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Figure 20: GSEA results for 2 transitions. Pathways with differential activity based on RNA-seq and ChIP-seq in
the (A) OX to RB transition and (B) RB to RC transition. Pathways with a positive enrichment score (ES)
are activated in the transition, while pathways that have a negative ES are inactivated.

delay between epigenetic and transcriptomic data, as some processes activated in one transition
based on RNA-seq may be activated in a different transition based on ChIP-seq.

Comparing the two histone modifications, H3K9ac and H3K18ac, there is no clear evidence
of one being superior to the other. Each modification seems to better recapitulate functional
differences in specific transitions. For example, H3K9ac captures differences in the RB to RC
and RC to OX transitions, while H3K18ac highlights differences in the RB to OX transition.
This suggests that the histone modifications may have distinct roles in different phases of the
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cycle or that they have a coordinated effect that cannot be fully understood through independent
analysis.

4.4.2 Over Representation Analysis

ORA is a statistical method that determines whether genes from pre-defined sets (those be-
longing to a specific KEGG pathway) are present more than expected (overrepresented) in a
subset of your data (significantly under- or overexpressed genes). While the focus of GSEA was
to study phase transition (which genes are up- or downregulated when going from one phase
to the next one), ORA’s focus was set in the characterization of functional differences for each
phase independently. In other words, the goal of this analysis was to identify which biological
functions are differentially and exclusively active in each of the phases. Genes related to these
biological functions are expected to be upregulated when the cell enters that phase (log2FC >
0) and downregulated (log2FC < 0) when it enters the next one or, in other words, upregulated
in that phase with respect to the other two (Fig. 21).

Figure 21: Differentially Expressed genes for ORA. (A) Simplified representation of the gene expression profiles that
are selected for ORA (B) In order to identify metabolic functions characteristic of each YMC phase, only those
genes being exclusively active between conditions were considered.

ORA based on the genes that are exclusively active in the OX phase (Fig. 22), provided a
clear and consistent observation of high protein synthesis. This is evident from the enrichment of
processes related to transcription, such as RNA polymerase activity, transcription factors, and
nucleotide metabolism. Similarly, pathways associated with translation, such as the ribosome
and aminoacyl-tRNA biosynthesis, are also identified by all three omics datasets, and they
exhibit similar levels of significance.

In the RB phase (Fig. 23), there is also a notable overlap in the functional pathways identified
by the different omics datasets. Cell cycle is consistently identified by RNA-seq and ChIP-seq
datasets, but it exhibits the lowest enrichment scores among the identified pathways.

Transcriptomic data highlights the activation of pathways related to O- and N-type biosyn-
thesis, as well as cell division-related processes such as mismatch repair and DNA replication.
These findings align with the previous results from GSEA connecting RB and cell division.

In contrast to OX, in which the overlap between epigenetic marks was almost total, H3K9ac
and H3K18ac exhibit differences in the pathways identified as upregulated in the RB phase
(Fig. 23). H3K9ac shows a strong association with the proteasome pathway, which is not
observed in the RNA-seq or H3K18ac results. Both H3K9ac and H3K18ac show an association
with oxidative phosphorylation, although it is not significant in the RNA-seq analysis. Notably,
H3K18ac is strongly associated with the DNA replication machinery, with DNA replication,
mismatch repair, and homologous recombination identified as the most significant pathways.

In the RC phase (Fig. 24), transcriptomic data highlights pathways associated with en-
ergy production from various resources, including lipids (fatty acid degradation, peroxisome,
propanoate) and carbohydrates (starch and sucrose metabolism, glycolysis, pyruvate metabolism).
This emphasizes the significance of energy production in the RC phase. Additionally, processes
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Figure 22: Over Representation Analysis results for OX. Pathways significantly enriched in DE genes based on
RNA-seq data, H3K9ac data and H3K18ac data.

Figure 23: Over Representation Analysis results for RB. Pathways significantly enriched in DE genes based on
RNA-seq data, H3K9ac data and H3K18ac data.

such as autophagy and endocytosis are also identified as active during this phase. An intriguing
finding is the contrasting results regarding the activation of the proteasome pathway in the
RC phase. While transcriptomic data shows a high enrichment score for the proteasome path-
way, indicating its activation in this phase, neither of the histone modifications (H3K9ac and
H3K18ac) exhibit any significant association with the proteasome pathway in the RC phase.

However, it is worth noting that the H3K9ac mark strongly anticipates the activation of the
proteasome pathway in the RB phase, where it shows the same high enrichment score as observed
in the RC phase transcriptomic data. This discrepancy implies that histones are modified to
favour gene expression, but expression levels can change without altering chromatin accesibility.
This suggest a possible time shift or a differential regulatory mechanism in the activation of
the proteasome pathway between the RB and RC phases. Epigenetic data, in addition to
aligning with the energetic metabolism pathways identified in RNA-seq, reveal the activation
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Figure 24: Over Representation Analysis results for RC. Pathways significantly enriched in DE genes based on
RNA-seq data, H3K9ac data and H3K18ac data.

of pathways related to secondary metabolites, steroid biosynthesis, and antibiotics biosynthesis.
These pathways were not identified in the GSEA analysis, indicating the unique contribution of
epigenetic information in capturing specific biological functions.

Altogether, the integration of ORA results from epigenetic and transcriptomic datasets has
provided a more comprehensive and precise functional profiling of the three phases of the YMC.
Briefly, the OX phase is characterized by high protein synthesis, RB is associated with oxidative
phosphorylation and cell division, and RC focuses on energetic production from lipids and carbo-
hydrates. The YMC begins with protein synthesis, transitions to respiratory metabolism for cell
division, and concludes with energy extraction from lipid reservoirs. Notably, a biological delay
between transcriptomic regulation and epigenetic modifications could be observed. Processes
like proteasome, strongly highlighted by ChIP-seq in RB, appear in RC in the RNA-seq results,
which may indicate that changes in histone modifications are translated into gene expression
changes at a later time point.

Unlike the GSEA analysis, which showed lower sensitivity for ChIP-seq data, performing
ORA allowed for meaningful insights from both epigenetic and transcriptomic data, as it focus
on significance and direction of the change rather than the magnitude. However, the different
dynamic range of these datasets underscores the need for more adapted analysis procedures
for both omics. Furthermore, the differences in upregulated pathways observed between omics
datasets suggest that each dataset provides unique and complementary information about the
YMC. While there is some overlap, the presence of exclusive pathways in specific omics indicates
that integrating these findings is crucial for capturing a more complete understanding of the
molecular events during the different phases of the YMC.

4.5 MAMBA

4.5.1 Flux prediction

In order to model the metabolic activity of the YMC, we used MAMBA, a tool that allows for
the incorporation of transcriptomics or epigenomics in combination with metabolomics data.
The predicted fluxes, i.e. the activity of the reactions of the metabolic network, were visualized
using ESCHER (King et al., 2015). The advantage of this approach is that, unlike FE analysis,
which is limited to an overview of pathway activity, the visualization of MAMBA’s prediction in
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ESCHER allows for the identification of concrete reactions that are differentially active in the
different conditions.

For example, when examining the fluxes based on ChIP-seq data in the OX phase (Fig. 25),
it was observed that the oxidative carboxylation of pyruvate (Equation 3) is inactive.

Figure 25: Metabolic map of Central Carbon Metabolism in Saccharomyces cerevisiae (iMM904). The intensity
of the colors is proportional to the predicted flux based on H3K9ac information. Generated using ESCHER.
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Cytoplasmic pyruvate (pyr_c) does not enter the mitochondria using pyruvate mitochondrial
transport via proton symport but is instead being diverted towards ethanol metabolism and
entering the mitochondria through an alternative route.

A big advantage of ESCHER is that it can also incorporate multiple sets of fluxes, allowing
for comparisons between different conditions or omics data. By comparing the flux predictions
based on RNA-seq for RC and OX phases, specific differences in pyruvate metabolism were also
observed.

Specifically, the oxidative decarboxylation of pyruvate catalysed by the pyruvate dehydroge-
nase complex (Equation 3) was found to be significantly more active in the RC phase compared
to OX (Fig. 26) This finding aligns with previous observations that indicated the importance of
carbohydrate metabolism, including pyruvate metabolism, in the RC phase and indicates again
an alternative metabolism in the case of OX.

Pyruvate + CoA + NAD+
→ acetyl-CoA + NADH (3)

However, it should be noted that this approach is limited by the reactions included in the map
provided by ESCHER, which represents only a small part of the central carbon metabolism and
does not encompass the entire metabolic network. This lack of biological context around specific
reactions hinders the interpretation of many observed differences in reaction fluxes. Regarding
the comparison of reaction activities between RNA-seq and ChIP-seq conditions, no significant
differences were observed. The limited set of reactions in the map prevented the determination
of specific differences in reaction activities between the two omics datasets.

To address these limitations and transform MAMBA’s solution into biologically interpretable
results, further analysis was performed to summarize the activity of individual reactions into
specific pathways. This allowed for a more comprehensive understanding of the overall activity
of pathways, providing a broader context for the functional characterization of the cycle.

Figure 26: Partial metabolic map of Carbon Central Metabolism in Saccharomyces cerevisiae. Reactions
highlighted in red represent those reactions that are inactivated when transitioning from RC to OX (significantly
more active in RC than OX). Only reaction state (active / inactive), not the flux, was considered, based on
RNA-seq data. Generated using ESCHER.

4.5.2 Pathway Enrichment Score

In order to identify pathways with differential activity between conditions, a similar approach
to FE analysis was employed. Specifically, reactions that were exclusively active in each phase,
meaning they had a non-zero flux value only in one of them, were designated as Differentially
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Active Reactions (DARs). Subsequently, a Pathway Enrichment Score (PES) was calculated to
as the percentage of DARs within each pathway.

To establish the association between reactions, pathways and genes, the KEGG pathway
database was utilized. However, it is important to note that only a subset of reactions (625
out of 1577) could be annotated with the corresponding KEGG IDs, thereby constraining the
analysis to the annotated reactions. The pathways identified and their corresponding PES values
for each of the three phases and three omics datasets are provided as supplementary material
(Supp. Fig. 34, 35, 36).

Upon initial examination, it is evident that the predictions based on ChIP-seq data identified
an equal or larger number of differently activated pathways for all three conditions in comparison
to RNA-seq (Fig 27). This contrasts with enrichment-based methods, which suggested that tran-
scriptomic data exhibited higher sensitivity. However, the analysis conducted using MAMBA
allowed for obtaining comparable information in terms of both the quantity and significance
of pathways from both omics datasets. This difference in findings may be attributed to the
fact that MAMBA’s analysis of pathway activity is focused on reactions rather than genes. By
transforming quantitative gene-centric omics data into binary gene activation states, MAMBA
mitigates the impact of the distinct dynamic ranges observed in RNA-seq and ChIP-seq gene
counts.

Figure 27: Number of differentially activated pathways. Differentially activated pathways for each phase predicted
by the different omics. ”Unique” refers to the total number of pathways that are identified by one or more of
the omics.

In the context of specific phases, it is observed that the RB phase exhibits a lower number of
differentially active pathways. This finding is consistent with previous analyses suggesting that
RB is the phase that differs the least from the other phases. However, the decreased number of
DARs in RB may also be attributed to its specific functional profile. Enrichment-based methods
have indicated that RB is characterized by processes related to cell division, DNA replication,
mismatch repair, and the cell cycle. These pathways, which are associated to global cellular
processes rather than specific reactions, are not included in MAMBA’s metabolic model and
therefore not captured in the analysis.

However, MAMBA does provide insights into downstream metabolic processes that may be
associated with these general functions, such as folate biosynthesis, highlighted by both RNA-
seq and ChIP-seq in RB. Folate biosynthesis plays a crucial role in various cellular processes
related to DNA replication, including DNA synthesis, repair, and methylation reactions (Bailey
& Gregory, 1999). OX phase also exhibits a similar pattern. General processes related to protein
synthesis, such as RNA polymerase or ribosome biogenesis are not observed, but MAMBA still
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and epigenetic data demonstrate similar sensitivity and detect a similar number of pathways.
Interestingly, when we examine the pathways identified by RNA-seq and ChIP-seq across all
three phases (Fig. 29), we find that there are no pathways exclusively identified by RNA-seq.
However, the overlap between the phases is only partial when considering them independently.
This suggests that the observed differences between the two omics approaches are more likely
due to biological delays between the different molecular layers, but a more in-depth analysis
would be necessary to derive meaningful biological conclusions from these observations.

Figure 29: Overlap of relevant pathways. Overlap of the differentially activated pathway between the omics when
considering all phases together.

4.6 Gene Set Variation Analysis
In order to evaluate the performance of both methods in terms of identifying and capturing the
biological differences between conditions, a Gene Set Variation Analysis (GSVA) was applied only
to those pathways identified as relevant by the different methods. GSVA provides an estimate
of pathway activity by transforming gene-by-sample expression data into a corresponding gene-
set-by-sample expression data, that can be used for clustering in a pathway-centric manner
(Hänzelmann et al., 2013).

For MAMBA, pathways with a PES higher than the significance threshold (general PES
score) were considered relevant. In the case of FE methods, relevant pathways were defined as
the pathways identified ORA with a False Discovery Rate lower than 0.05. The resulting GSVA
scores, derived from the gene expression data of genes involved in pathways classified as relevant,
were utilized for unsupervised clustering of the samples.

The unsupervised clustering analysis of the RNA-seq data (Fig. 30) showed distinct separation
of samples according to the three phases of the cycle, indicating that the pathways identified as
relevant by MAMBA and ORA were able capture the major biological changes across conditions.
The only exception is Time 11, which is grouped within the RC phase in MAMBA based
clustering.

In the case of ORA (Fig. 30), pathways can be clustered into 3 categories, each showing
significantly higher activity in one of the phases compared to the other two. Aligning with
previous work, the pathways enriched in the OX phase are related to protein synthesis, those
enriched in the RB phase are associated with DNA replication, and the pathways enriched in
the RC phase are involved in energetic metabolism. The clustering of the samples suggests a
subdivision of RB in “early” RB (time points 6, 7 and 8), with a functional profile more similar
to OX, and “late” RB (time points 9, 10 and 11), more similar to RC. Notably, in the case of
MAMBA (Fig. 30), the pathways were clustered into two distinct groups instead of three. One
group exhibited higher activity in the samples from RC, while the other group showed higher
activity in the samples from OX. Interestingly, the pathways with higher activity in the RB
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phase were shared between these two groups. This, on the one hand, indicates that RB is acting
as an intermediate phase between OX and RC. However, it also highlights that the differential
activity of RB, specifically associated with cell division, is not adequately captured by MAMBA.

Figure 30: Unsupervised clustering of the samples using GSVA scores. Applied only to relevant pathways iden-
tified by MAMBA (A) and ORA (B) based on RNA-seq information.
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In contrast to the clustering results based on ORA of ChIP-seq data, which did not reveal
distinct phase divisions, the clustering based on pathways identified by MAMBA successfully
grouped the samples according to their biological conditions. This indicates that MAMBA is
better able to capture the relevant information from ChIP-seq (Fig. 31 and 32).

However, it is worth noting that there were a few exceptions in the clustering results. Specif-
ically, Time 6, which falls on the border between OX and RB phases, was clustered within the
OX phase, while Time 11, which falls on the border between RB and RC phases, was clustered
within the RC phase. These observations indicate that the transitional samples at the phase
boundaries may exhibit characteristics more similar to the adjacent phases and can be therefore
problematic when treated as replicates.

In conclusion, the analysis of the transcriptomic data using both MAMBA and ORA demon-
strated their ability to identify pathways that accurately captured the underlying biological
differences between conditions. These findings were evident in the clear separation of samples
into distinct phases, highlighting the robustness of both methods in capturing dynamic changes
associated with the YMC. However, when it comes to the analysis of epigenetic data, a differ-
ence between MAMBA and ORA can be observed. MAMBA effectively identified pathways that
exhibited differential activity across conditions, allowing for clustering of the sample following
the 3 functional phases of the cycle, with only a few exceptions for samples at the border of RB.
In contrast, the ORA of the epigenetic data failed to provide clear phase division, indicating its
limitations in capturing the regulatory patterns associated with ChIP-seq data.
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Figure 31: Unsupervised clustering of the samples using GSVA scores. Applied only to relevant pathways iden-
tified by MAMBA (A) and ORA (B) based on H3K18ac information.
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Figure 32: Unsupervised clustering of the samples using GSVA scores. Applied only to relevant pathways iden-
tified by MAMBA (A) and ORA (B) based on H3K9ac information.
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5 Conclusions
In conclusion, this study conducted a comprehensive evaluation of MAMBA as a metabolic
modelling tool, assessing its performance when applied to transcriptomic and epigenetic data.
Furthermore, a comparison was made between MAMBA and conventional functional enrichment
methods commonly used in functional analysis. Based on the findings, the following conclusions
can be drawn:

1. A high-quality multi-omic dataset comprising transcriptomic, epigenomic, and metabolomic
information of Saccharomyces cerevisiae during the Yeast Metabolic Cycle was successfully
obtained. Differential expression analysis was effectively applied to the three transitions
of the cycle.

2. Functional enrichment analysis enabled the identification of enriched biological functions
associated with the different phases. The comparison between RNA-seq and ChIP-seq
data revealed that RNA-seq demonstrated higher sensitivity in the context of Gene Set
Enrichment Analysis, while Over Representation Analysis (ORA) yielded a similar num-
ber of relevant pathways across all three transitions. Moreover, the transcriptomic and
epigenetic information showed distinct activation patterns in certain pathways, indicating
a temporal shift between the two molecular layers.

3. MAMBA’s metabolic modelling and flux predictions provided valuable insights into the
functional profiling of the Yeast Metabolic Cycle, both for RNA-seq and ChIP-seq data.
By translating quantitative gene-centric information into binary gene states, MAMBA
compensated for the different dynamic ranges of the two technologies, yielding similar
results in terms of sensitivity.

4. Overall, both MAMBA and conventional enrichment-based methods offered complemen-
tary information. ORA demonstrated the ability to identify broader biological functions,
while MAMBA’s results focused on the underlying metabolic pathways, as it is limited to
the reactions that are explicitly included in the model. When utilizing RNA-seq data, both
methods effectively captured the underlying biological differences between the phases. No-
tably, MAMBA exhibited superior performance when employing epigenetic information.

5.1 Limitations of the study
Several limitations were identified during the course of this research, which should be taken into
consideration when interpreting the findings:

Firstly, MAMBA is characterized by a relative rather than absolute approach for metabolic
modelling, as it relies on the differential values between conditions. The comparing conditions
employed in this study are the phases of the YMC, which differ in very broad cellular functions,
such as cell cycle or protein synthesis. MAMBA may not be the optimal tool for comparing
such conditions, as the main expected differences are only indirectly included in the metabolic
model.

Secondly, the absence of biological replicates within the same phase poses a limitation. Not all
time points within a given phase, particularly those located at the phase boundaries, exhibited
equivalent gene expression profiles. Incorporating biological replicates would have provided a
more robust foundation for the analysis and enhanced the reliability of the results. Furthermore,
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limitations were encountered during the functional analysis of MAMBA’s results. A considerable
amount of information was lost due to the inability to assign KEGG IDs to approximately half
of the reactions encompassed by the metabolic model. This limitation restricts the biological
interpretation of the results, as the comprehensive annotation of reactions would have facilitated
a deeper understanding of the underlying metabolic pathways.

5.2 Future perspectives
MAMBA emerges as a promising approach for leveraging both transcriptomic and epigenetic
data to unravel the complex dynamics of biological processes such as the Yeast Metabolic Cycle.
However, there is ample room for further refinement and optimization, mainly addressing the
following areas: Firstly, improving the functional annotation of the reactions encompassed by
the metabolic model is crucial. Enhancing the coverage and accuracy of reaction annotations
would significantly enhance the biological interpretation of the results, allowing for a more com-
prehensive understanding of the underlying metabolic pathways and their associated functions.
Additionally, developing modifications to the incorporation of epigenetic data that account for
the biological delay between chromatin modifications, transcriptional events, and metabolic reg-
ulation to provide a more realistic representation of the temporal dynamics of these processes
and enhance the precision and reliability of the predictions generated by MAMBA.
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Supplementary material

Supplementary figures
PCA of ChIP-seq data before normalization

Figure 33: PCA of samples before H3 control normalization. Samples are coloured according to the corresponding
phase of the cycle. Based on H3K18ac (A) and H3K9ac (B) ChIP-seq data.
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Pathway Enrichment Score for MAMBA

Figure 34: Pathway Enrichment Score (PES) in the OX phase. Relevant Pathways identified by MAMBA with
the corresponding PES based on RNA (A), H3K18ac (B) and H3K18ac (C) information.

41

A

B

C



SUPPLEMENTARY MATERIAL

Figure 35: Pathway Enrichment Score (PES) in the RB phase. Relevant Pathways identified by MAMBA with
the corresponding PES based on RNA (A), H3K18ac (B) and H3K18ac (C) information.
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Figure 36: Pathway Enrichment Score (PES) in the RC phase. Relevant Pathways identified by MAMBA with
the corresponding PES based on RNA (A), H3K18ac (B) and H3K18ac (C) information.
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SUPPLEMENTARY MATERIAL

Sustainable Development Goals
This project is related to several Sustainable Development Goals (SDG) (Fig. 37):

• Health and Well-being (SDG 3): Developing strategies that enable to model cell
metabolism based on experimental data is key for understanding the molecular mechanisms
of complex diseases and creating effective treatments.

• Climate Action (SDG 11) and Responsible production and consumption (SDG
12): In this work, experimental data were retrieved from public repositories. Analysing
pre-existing data from a different scientific perspective allowed to draw significant biological
conclusions while minimizing the production of plastic waste or other contaminants. In
this sense, Bioinformatic approaches favour a more sustainable scientific when compared
to wetlab.

• Quality Education (SDG 4) and Gender Equality (SDG 5): This work contributes
the development and growth of girls and woman in science.

Figure 37: Sustainable Development Goals (SDG). Each SDG has been assigned to a certain level of relationship
with the project (High, Medium, Low, Not applicable).
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R script
The R script used for functional analysis of MAMBA’s flux prediction to obtain the biologically
relevant pathways in the different phases is presented as an example of the bioinformatic workflow
that has been followed in this work.
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R script for functional analysis of MAMBA

2023-06-03

library(ggplot2)

library(KEGGREST)

library(GSVA)

library(RColorBrewer)

Para el análisis de flujos de MAMBA (H3K9ac)

PASOS PREVIOS GENERALES - Lo primero es sacar los ID de los pathways:

name_KEGG<-read.table("C:/Users/crist/Downloads/id_kegg.tsv",sep = "\t")

#Con esto tengo las reacciones, pero necesito los pathways

reaction<-name_KEGG$V2

pathway_id<-c()

no_annotated<-c()

for (i in reaction){

result <- tryCatch(keggGet(i), error = function(x) {return(NA)})

if (!is.na(result)){

result_name<-names(result[[1]]$PATHWAY)

if(is.null(result_name)){

no_annotated<-append(no_annotated,i)

}

pathway_id<-append(pathway_id,result_name)

}

}

KEGG_pathway_ID<-unique(pathway_id)

KEGG_pathway_ID –> todos los pathways con su KEGG ID no_annotated –> reacciones CON KEGG ID
que no tienen información de a qué pathway pertenecen

• Una vez tenemos una lista con todos los ID de los PATHWAYS, queremos una lista con todos los ID de
las reacciones que hay en ese pathway dentro.

pathway_reaction<-c()

no_reaction<-c()

for (m in 1:length(KEGG_pathway_ID)){

z<-KEGG_pathway_ID[m]

to<-keggGet(z)

me<-names(to[[1]]$REACTION)

if(is.null(me)){

no_reaction<-append(no_reaction,m)

}

pathway_reaction[[KEGG_pathway_ID[m]]]<- me

}

AHORA YA ESPECÍFICO DE LA K9
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1. Cargar los flujos y quedarte solo con los exclusivos en alguna condición (DAR)

fluxes_alejandro_k9<-read.csv("C:\\Users\\crist\\Downloads\\reaction_activity_k9.csv")

fluxes_alejandro_k9$total<-apply(fluxes_alejandro_k9[2:4],1,sum)

fluxes_dif<-fluxes_alejandro_k9[which(fluxes_alejandro_k9$total != 3 & fluxes_alejandro_k9$total != 0),]

fluxes_dif<-fluxes_alejandro_k9[which(fluxes_alejandro_k9$total ==1),]

2. Definir las DAR para las 3 condiciones. El orden es RC, OX, RB.

reactions_ox<-fluxes_dif[which(fluxes_dif$Condition_2 == 1),]

dif_reactions_ox<-as.vector(reactions_ox$Reaction_id)

reactions_rc<-fluxes_dif[which(fluxes_dif$Condition_1==1),]

dif_reactions_rc<-as.vector(reactions_rc$Reaction_id)

reactions_rb<-fluxes_dif[which(fluxes_dif$Condition_3 == 1),]

dif_reactions_rb<-as.vector(reactions_rb$Reaction_id)

3. Anotar las reacciones del modelo con el KEGG_ID correspondiente

name_KEGG<-read.table("C:/Users/crist/Downloads/id_kegg.tsv",sep = "\t")

all_dif_reactions<-list(RB=dif_reactions_rb,RC=dif_reactions_rc,

OX=dif_reactions_ox)

KEGG_ID<-c()

KEGG_ID_all<-list()

order<-c("RB","RC","OX")

for (i in order){

for (s in all_dif_reactions[[i]]){

index<-which(name_KEGG$V1 == s)

id<-name_KEGG[index,2]

KEGG_ID<-append(KEGG_ID,id)

}

KEGG_ID_all[[i]]<-KEGG_ID

KEGG_ID<-c()

}

4. Calcular el Pathway Enrichment Score: previamente se ha generado una lista con todos los pathways y
todas las reacciones que hay dentro (pathway_reaction)

PSE_list_all<-list()

PES_new<-data.frame()

PES_all<-list()

for (i in order){

for (r in 1:length(pathway_reaction)){

e<-intersect(pathway_reaction[[r]],KEGG_ID_all[[i]])

v<-length(pathway_reaction[[r]])

y<-length(e)

PES_score<-y/v*100

PES_df<-data.frame("pathway"= names(pathway_reaction)[r], "PES" = PES_score, "phase" = i)

PES_new<-rbind(PES_new, PES_df)

}

PES_all[[i]]<-PES_new

PES_new<-data.frame()
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}

3. Quedarnos solo con aquellos pathways que tengan un PES significativo

for (i in order){

PES_all[[i]]<-PES_all[[i]][which(PES_all[[i]]$PES !=0),]

}

4. Extraer el nombre biológico descriptivo descriptivo de cada identificador. -cambiar el identificador de
rn (general) a sce (de Saccharomyces Cerevisiae)

• consulta de keggGet para saber el “name”
• crear una data frame con todos los rn, sce y biological pathway
• quedarse solo con los que tengan las tres cosas

df_ID_all<-data.frame()

for (i in order){

for (p in names(pathway_reaction)){

sce<-gsub("rn","sce",p)

kegg_result<-tryCatch(keggGet(sce),error=function(x){return(NA)})

if(!is.na(kegg_result))

name<-as.character(kegg_result[[1]][["NAME"]])

name_ok<-strsplit(name, "- Sac")[[1]][1]

df_ID<-data.frame("sce"=sce,"biological_name"=name_ok,"pathway"=p)

df_ID_all<-rbind(df_ID_all, df_ID)

name<-"Hola"

}

df_ID_all<-unique(df_ID_all)

}

df_merged_all<-list()

final_df_all<-list()

for (i in order){

df_merged_all[[i]]<-merge(PES_all[[i]],df_ID_all,by="pathway", all=TRUE)

final_df_all[[i]]<-unique(na.omit(df_merged_all[[i]][which(df_merged_all[[i]]$phase ==

i ),]))

}

for (i in order){

final_df_all[[i]]<-final_df_all[[i]][which(final_df_all[[i]]$biological_name != "Hola"),]

}

5. Hacer un plot para cada fase por separado:

ggplot(data = final_df_all[["OX"]], aes(x = PES, y = reorder(biological_name, PES))) +

geom_bar(stat = "identity", fill = "steelblue") +

labs(x = "Enrichment Score", y = "Pathways") +

ggtitle("Pathway Enrichment Score") +

theme_minimal() +

theme(plot.title = element_text(hjust = 0.5))
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ggplot(data = final_df_all[["RB"]], aes(x = PES, y = reorder(biological_name, PES))) +

geom_bar(stat = "identity", fill = "steelblue") +

labs(x = "Enrichment Score", y = "Pathways") +

ggtitle("Pathway Enrichment Score") +

theme_minimal() +

theme(plot.title = element_text(hjust = 0.5))
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ggplot(data = final_df_all[["RC"]][which(final_df_all[["RC"]]$PES>2),],

aes(x = PES, y = reorder(biological_name, PES))) +

geom_bar(stat = "identity", fill = "steelblue") +

labs(x = "Enrichment Score", y = "Pathways") +

ggtitle("Pathway Enrichment Score") +

theme_minimal() +

theme(plot.title = element_text(hjust = 0.5))

6. Quedarse solo con los pathways que tengan un PES mayor que el threshold

sig_pathways_sce_ox_k9<-final_df_all[["OX"]][which(final_df_all[["OX"]]$PES>2),]$sce

sig_pathways_sce_rb_k9<-final_df_all[["RB"]][which(final_df_all[["RB"]]$PES>2),]$sce

sig_pathways_sce_rc_k9<-final_df_all[["RC"]][which(final_df_all[["RC"]]$PES>2),]$sce

sig_pathways_sce_all_k9<-c(sig_pathways_sce_ox_k9,sig_pathways_sce_rb_k9,sig_pathways_sce_rc_k9)

7. Para el GSVA:

• sacar todos los genes que que esten dentro de los pathways significativos

sig_genes_pathways_k9<-list()

for (m in sig_pathways_sce_all_k9){

bu<-tryCatch(keggGet(m),error=function(x){return(NA)})

if(!is.na(bu)){

ho<-bu[[1]][["GENE"]]

s<-length(ho)

l<-seq(from=1,to=s,by=2)

d<-bu[[1]][["NAME"]]

e<-strsplit(d, "- Sac")

e<-e[[1]][1]
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sig_genes_pathways_k9[[e]]<-ho[l]

e<-"Hola"

}

}

• hacer un GSVA solo considerando los pathways significativos

load("C:/Users/crist/Documents/crist_TFG/chip/countsK9_H3.RData")

boxplot(log(countsK9_H3))

gs<-sig_genes_pathways_k9

X<-countsK9_H3

gsva.es.k9 <- gsva(X, gs, verbose=TRUE)

• Heatmap (unsupervised clustering)

my_group<-c(1,1,1,3,3,3,3,3,3,2,2,2,2,2,2,2)

#my_group<-c(1,1,3,3,3,3,3,3,2,2,1,2,2,2,2,2)

colSide <- brewer.pal(9, "Set1")[my_group]

group_order<-c(10,1,2,3,4,5,6,7,8,9,11,12,13,14,15,16)

#group_order<-c(2,1,3,4,5,6,7,8,15,11,10,16,13,14,9,12)

heatmap(gsva.es.k9, ColSideColors=colSide,main= "K9", Colv = group_order,cexRow = 0.5)

6



7


