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Abstract 
 

In recent years, the emergence of massive machine type communications (mMTC) 

has led to a significant increase in the number of connected devices in 5G networks. 

This rapid growth of mMTC devices has created a new challenge for network 

operators, as the congestion caused by these devices can result in network failure and 

service degradation. To address this issue, the Access Class Barring (ACB) method 

has been implemented in 5G cellular networks. It aims to increase the probability of 

successful access by randomly delaying access requests of User Equipments (UEs) 

based on a barring rate and a barring time. Proper selection of those parameters is 

essential for effective congestion control. However, the 3GPP does not provide any 

specific algorithm for setting and adapting these parameters. This study focuses on a 

simplified version of the ACB algorithm using Reinforcement Learning (RL) to 

dynamically adapt the access probability (barring rate) to maximize network 

performance. A grant-free access type protocol has been used in this scenario to 

reduce energy consumption, as they minimize the signalling need for network access. 

The proposed scheme was evaluated using discrete-event simulation and compared 

with an ideal and a heuristic congestion control schemes. The results show that RL-

based congestion control policies can effectively reduce collisions and improve 

network efficiency but may require careful tuning of hyperparameters to achieve 

optimal performance across different metrics. 

Keywords: Reinforcement Learning, Access Class Barring, Grant-Free Access, 

mMTC, IoT. 
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Resum 
 

En els últims anys, l'aparició de comunicacions massives de tipus màquina (mMTC) 

ha provocat un augment significatiu del nombre de dispositius connectats a les 

xarxes 5G. Aquest ràpid creixement dels dispositius mMTC ha creat un nou repte per 

als operadors de xarxa, ja que la congestió causada per aquests dispositius pot 

provocar una fallada de la xarxa i la degradació del servei. Per solucionar aquest 

problema, s'ha implementat el mètode Access Class Barring (ACB) a les xarxes 

cellulars 5G. El seu objectiu és augmentar la probabilitat d'èxit d'accés retardant 

aleatòriament les sol·licituds d'accés dels equips d'usuari (UE) en funció d'una taxa 

de restricció i un temps de restricció. La selecció adequada d'aquests paràmetres és 

essencial per a un control efectiu de la congestió. Tanmateix, el 3GPP no proporciona 

cap algorisme específic per configurar i adaptar aquests paràmetres. Aquest estudi se 

centra en una versió simplificada de l'algorisme ACB que utilitza Reinforcement 

Learning (RL) per adaptar dinàmicament la probabilitat d'accés (taxa de restricció) 

per maximitzar el rendiment de la xarxa. En aquest escenari s'ha utilitzat un protocol 

d'accés del tipus ‘grant-free’ per reduir el consum d'energia dels dispositius al 

minimitzar la necessitat de senyalització per a l'accés a la xarxa. L'esquema proposat 

es va avaluar mitjançant simulació d'esdeveniments discrets i es va comparar amb un 

esquema de control de congestió ideal i un heurístic. Els resultats mostren que les 

polítiques de control de la congestió basades en RL poden reduir eficaçment les 

collisions i millorar l'eficiència de la xarxa, però poden requerir una ajustada acurada 

dels hiperparàmetres per aconseguir un rendiment òptim en diferents mètriques. 

Paraules clau: aprenentatge de reforç, prohibició d'accés a classe, accés grant-free, 

mMTC, IoT. 
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Resumen 
 

En los últimos años, la aparición de las comunicaciones masivas de tipo máquina 

(mMTC) ha provocado un aumento significativo del número de dispositivos 

conectados en las redes 5G. Este rápido crecimiento de los dispositivos mMTC ha 

creado un nuevo reto para los operadores de redes, ya que la congestión causada por 

estos dispositivos puede provocar fallos en la red y degradación del servicio. Para 

hacer frente a este problema, se ha implantado el método Access Class Barring (ACB) 

en las redes celulares 5G. Su objetivo es aumentar la probabilidad de éxito del acceso 

retrasando aleatoriamente las solicitudes de acceso de los equipos de usuario (UE) en 

función de una tasa y un tiempo de restricción. La selección adecuada de estos 

parámetros es esencial para un control eficaz de la congestión. Sin embargo, el 3GPP 

no proporciona ningún algoritmo específico para establecer y adaptar estos 

parámetros. Este estudio se centra en una versión simplificada del algoritmo ACB 

que utiliza el aprendizaje por refuerzo (RL) para adaptar dinámicamente la 

probabilidad de acceso (tasa de restricción) con el fin de maximizar el rendimiento de 

la red. En este escenario se ha utilizado un protocolo de acceso del tipo ‘grant-free’ 

para reducir el consumo de energía de los dispositivos al minimizarse la necesidad 

de señalización para el acceso a la red. El esquema propuesto se evaluó mediante 

simulación de eventos discretos y se comparó con un esquema de control de 

congestión ideal y otro heurístico. Los resultados muestran que las políticas de 

control de la congestión basadas en RL pueden reducir eficazmente las colisiones y 

mejorar la eficiencia de la red, pero pueden requerir un ajuste cuidadoso de los 

hiperparámetros para lograr un rendimiento óptimo en diferentes métricas. 

Palabras clave: Aprendizaje por refuerzo, bloqueo de clases de acceso, acceso grant-

free, mMTC, IoT. 
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Introduction 

 
The evolution of the fifth generation (5G) networks has opened up a new era in 

wireless communication, promising to deliver ultra-low latency, high-speed data 

transmission, and high-reliability connectivity. These capabilities have paved the way 

for the development of massive machine type communications (mMTC), which 

involves the connection of a massive number of devices to the network, ranging from 

Internet of Things (IoT) devices to autonomous vehicles. As the world moves towards 

a new technological era where everything is connected, the demand for MTC and IoT 

communications via LTE-Advanced networks is growing each year. According to IoT 

connectivity industry forecasts, the global IoT market is projected to grow from $213 

billion in 2021 to $621 billion in 2030, and the number of IoT devices worldwide is 

expected to exceed 29 billion by 2030 [1]. 

New generation cellular networks aim to provide extensive coverage through their 

widespread infrastructure, global connectivity, high quality of service (QoS), robust 

charging, and security solutions [2,3]. While cellular networks offer the most viable 

option for UE interconnection, the high density mMTC traffic poses a significant 

challenge for congestion control in a cellular network. The conventional mechanisms, 

such as the Transmission Control Protocol (TCP), are designed for low density human- 

generated traffic, and they are not capable of handling MTC. When a massive number 

of MTC devices try to access the base stations, severe congestion can occur, causing 

performance degradation for both MTC and human-to-human (H2H) communications 

[4,5]. Therefore, there is a need for new congestion control policies that can effectively 

manage the congestion caused by mMTC traffic. 

The Access Class Barring (ACB) method has been implemented in 5G cellular 

networks to address this issue. ACB is one of the efficient and common approaches 

which is suggested in 3GPP specifications. It aims to increase the probability of 

successful access by randomly delaying access requests of User Equipments (UEs) 

based on a barring rate and a barring time, parameters broadcast by the BS [6]. Proper 

selection of these ACB parameters is essential for effective congestion control and 

optimal performance. However, the 3GPP does not provide any specific algorithm for 

setting and adapting these parameters. Determining how this parameter should be set 

and adapted in dynamic traffic conditions in scenarios with mMTC is challenging. 

Many studies in the literature address the congestion control with ACB for mMTC. 

The optimization of ACB parameters has been analyzed in [7], [8], [9], and [10], and 

the performance analysis of ACB in [6] demonstrates its effectiveness for mMTC 
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applications. The evaluation scenario examined in this study is taken from [6]. Unlike 

the scenario in [6], we only considered what is referred to as low priority traffic there, 

i.e., mMTC traffic. In addition, instead of using a stationary arrival regime (binomial 

packet arrivals to nodes), we used the arrival regime proposed by the 3GPP [11], where 

devices become active (they start contending for access) according to a Beta (3,4) 

distribution over 2000 subframes (10 seconds). Moreover, it is noteworthy that in 

contrast to the scenario proposed in the current study, the access probability in the 

scenario presented in [6] is broadcast in every subframe, rather than every 10 

subframes. However, this is not implementable with the current definition of the 

eNode radio interface. 

To enhance the performance of conventional ACB methods in complex and 

unpredictable 5G networks, reinforcement learning (RL) mechanisms are proposed to 

dynamically adapt the ACB parameters. This approach has been shown promising in 

optimizing network performance, as it allows for real-time decision-making and 

adaptation to uncertain network environments. RL is a type of machine learning 

algorithm that enables agents to learn optimal policies based on the feedback received 

from the environment. In the context of congestion control, RL algorithms can learn to 

allocate network resources in an optimal or quasy-optimal way by continuously 

observing the network's state and adjusting the congestion control parameters 

accordingly [12]. Several publications in the literature have analyzed the RL-based 

ACB mechanism for managing mMTC traffic, including the study presented in [9]. 

In 5G networks, managing congestion often involves controlling access, which is 

traditionally accomplished through a grant-based (GB) approach where UEs request 

network access and awaits a grant before transmitting their packets. However, 

controlling UE uplink accesses in this way can become challenging for mMTC, as the 

probability of collisions between multiple devices transmitting at once increases as the 

number of contending devices increases. This can result in significant delays, 

decreased network throughput, and higher energy consumption, particularly in 

situations where a vast number of devices are present [13]. Thus, GB access may not 

be the most suitable option for mMTC due to its limitations. 

To overcome the limitations of grant-based (GB) access, researchers are exploring 

grant-free (GF) access methods. GF transmission involves user equipment (UE) 

transmitting data over a predetermined set of resources using a contention-based 

approach, without requiring explicit grants from the base station (BS) [13,14,15]. GF 

access enables devices to transmit small amounts of data, without waiting for a grant, 

resulting in lower latency and increased efficiency. Furthermore, GF access is more 

scalable for a large number of devices and reduces the energy consumption of devices 

by eliminating the need for frequent requests for network access [14]. 

In this study, we proposed a grant-free access protocol that utilizes a simplified version 

of the ACB scheme to improve the performance and adaptability of conventional 
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methods in dynamic and complex environments, such as wireless 5G networks. The 

proposed scheme implements reinforcement learning access control algorithms at the 

BS to determine the access probability that maximizes network performance. Unlike 

the conventional ACB method, the BS broadcasts the access probability ρ determined 

by the RL algorithm rather than broadcasting the barring time and rate. The access 

probability ρ is broadcasted once every 10 subframes, referred to as a superframe. This 

type of delayed feedback conforms to the definition of the 3GPP radio interface at a 

eNode. Since there is no handshaking procedure between UEs and the BS in the GF 

access approach, UEs can send their packets without waiting for a grant from the BS. 

The primary objectives of this master's thesis are to investigate the potential of RL- 

based congestion control policies for mMTC in 5G networks and to analyze the impact 

of various RL algorithm parameters and hyperparameters on the performance of 

congestion control mechanisms. To achieve these objectives, we evaluated the 

performance of the proposed congestion control scheme using discrete-event 

simulation and compared it with an ideal and a heuristic congestion control. 

Performance evaluation was made using three RL algorithms (Q-learning, Double Q- 

learning, and Expected Sarsa) and their associated parameters. 

 
 

This thesis is organized as follows: 

Chapter 1 provides a general overview of the random-access procedure in LTE-A 

networks. In the following, contention-based random access and access class barring 

are explained. 

Chapter 2 gives theoretical background about the Markov decision process, value 

functions, and the Bellman equations. Then, it provides a general overview of 

reinforcement learning and its algorithms Q-learning, Double Q-learning, and 

Expected Sarsa. 

Chapter 3 presents the details of the scenario designed to evaluate the performance of 

the proposed grant-free access protocol, assumptions, and performance parameters. 

Chapter 4 demonstrates the achieved simulation results and evaluates the 

performance of our proposed method in detail, considering defined performance 

parameters. 

Chapter 5 concludes the whole thesis, summarizes the methods followed and the 

results obtained, and provides insights to extend this work. 
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Objectives 
The main objective of this master’s thesis is to examine the potential of reinforcement 

learning (RL) algorithms for the design of congestion control policies in the analysis 

scenario defined by 3GPP for massive machine type communication (mMTC) traffic. 
 

This study focusses on designing and implementing a grant-free access protocol using 

a simplified version of the access class barring mechanism to control the access to the 

upstream base station resources and minimize collisions. The studied protocol 

broadcasts an access probability to user equipment (UEs), such as sensors, every 

certain number of subframes, according to the 3GPP upstream subframe specification. 

Controlling UE accesses by BS with grant-free (GF) access instead of conventional 

grant-based (GB) access, where UEs request access to the network and wait for a grant 

before transmitting their packets, has enabled UEs to immediately transmit small 

amounts of data without waiting for grants. With GF access, lower latency and higher 

efficiency are achieved without handshaking. 
 

Specifically, we aim to achieve the following objectives: 
 

▪ Analyze the impact of various RL algorithm parameters and hyperparameters 

on the performance of congestion control mechanisms. 

▪ Provide insights into the feasibility and effectiveness of RL algorithms for 

designing congestion control policies in mMTC networks. 

▪ Evaluate the performance of RL-based congestion control policies in terms of 

subframe throughput, average delay, loss probability, 95 percentile of the delay, 

successful access probability, average number of collisions per successfully 

transmitted packet, and last subframe. 

▪ Contribute to the development of more efficient and adaptive RL-based 

congestion control mechanisms for future mMTC networks. 

▪ Compare the performance of RL-based policies with the heuristic policy and 

ideal, non-implementable policy that has complete state information of the 

system and generates the access probability accordingly and highlight their 

advantages and limitations. 

Overall, this study aims to contribute to ongoing efforts towards developing effective 

and adaptive congestion control policies for mMTC networks that can learn from 

experience and adapt to changing network conditions. By achieving these objectives, 

we hope to provide valuable insights into the potential of RL-based mechanisms for 

improving network efficiency, reducing collisions, and enhancing quality-of-service 

for mMTC applications in 5G networks. 
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1 Random Access in LTE-A 

This chapter provides a general overview of the random access procedure in LTE-A 

networks. In the following, contention-based random access and access class barring 

will be explained in sections 1.1 and 1.2, respectively. 

Random access is an essential mechanism in LTE-A for supporting mMTC. mMTC is 

a key enabler of the Internet of Things (IoT) and refers to the communication between 

many low-power, low-cost, and low-data-rate devices. Random access provides an 

efficient way for MTC devices to transfer data packets to a base station. 

It is essential for the MTC devices (UEs) to initiate the random access procedure to the 

base station (known as eNodeB in LTE) in the following five situations according to 

reference [16]: 

1. during the initial access to the network, when establishing a connection; 

2. when the device receives or transmits new data; 

3. when no scheduling request resources are configured on the uplink control 

channel for transmitting new data; 

4. during handover to prevent a session drop; 

5. after a radio link failure in order to re-establish the connection. 

 
 

To handle all these situations, two different modes of Random Access (RA) procedure 

are defined in LTE-A: contention-free and contention-based. The contention-free mode 

assigns orthogonal transmission resource units (resource blocks in OFDMA) that we 

refer to from now on as timeslots, to each device based on a pre-defined schedule to 

avoid collisions. It is used in situations such as downlink data arrival, positioning or 

handover. On the other hand, the contention-based mode involves devices contending 

for the transmission medium without prior coordination, which can lead to collisions. 

It is mostly used by UEs for changing the radio resource control state from idle to 

connected, recovering from a radio link failure, uplink synchronization, or sending 

scheduling requests [17]. In this study, we focus on the analysis of the contention- 

based random access procedure. 
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1.1. Contention-based random access 
Contention-based random access is a method of accessing a shared communication 

medium, such as a wireless network, where multiple devices contend for the 

transmission medium at the same time without any prior coordination. Random access 

attempts of UEs are allowed in predefined time/frequency resources called random 

access opportunities (RAOs). Before initiating the procedure, UEs need to receive basic 

configuration parameters such as the available time-slots (RAOs) for transmitting 

preambles. This information is broadcast periodically by the eNodeB [6]. After 

obtaining this information, the UE can start the four-message handshake process 

illustrated in Figure 1.1 [19]. 
 

 

Figure 1.1: Contention-based random access procedure 

Message 1, RACH preamble transmission: Each UE transmits a preamble as an access 

request to the eNB for a dedicated resource blocks in the upcoming RAO. This 

preamble is selected randomly from a pool of up to 64 orthogonal preambles known 

to both UEs and eNBs. If multiple devices send the same preamble in the same RA 

time-slot, a collision occurs. However, if different preambles are used, the eNB can 

distinguish them from each other due to their orthogonality. After detecting the 

preamble successfully, the eNB sends a random-access response message [17,10,20]. 

Message 2, random access response (RAR): It is responsible for allocating time- 

frequency resources for UEs to transmit Message 3. It contains one uplink grant for 

each detected preamble. UEs, wait for a predefined time window to receive the uplink 

grant. If no uplink grant is received by the end of this window and the maximum 
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number of access attempts has not been reached, the UEs wait for a random time and 

then perform a new access attempt by selecting a new preamble and transmitting it at 

the next RAO [17,18,20]. 

Message 3, connection request: Once the UE has received the RAR, it sends a 

connection request with its ID using the uplink resource specified by the eNB. It 

indicates that the UE wants to establish a connection and begin transmitting data. In 

some cases, if the eNB correctly decodes the preambles transmitted by multiple UEs, 

they may transmit their connection request, over the same physical resources. This can 

cause a collision where multiple UEs transmit their messages simultaneously, 

resulting in interference and making it difficult or impossible for the eNB to decode 

the messages [17]. 

Message 4, contention resolution: Upon reception of a connection request, the eNB 

broadcasts a contention resolution message including the ID of related UE. Then eNB 

allocates the required data resources for UE. If UE does not receive a response to a 

preamble or a contention request message, it restarts the procedure. Each UE repeats 

this procedure until establishing a connection or reaching the maximum allowed 

number of preambles retransmissions [6]. 

By using this four-message handshake, contention-based access systems can ensure 

that only one device transmits data at a time, avoiding collisions and ensuring reliable 

data transfer. 

1.1.1) Backoff procedure 

According to the LTE-A standard [16], in case of failure during the RACH procedure, 

regardless of the cause, the UE has to perform a backoff procedure before re-transmit 

a new preamble in the next RAO. In order to reduce the collision, the UE waits for a 

random time, 𝑇𝐵𝑂 [ms], until it can attempt to transmit a new preamble as follows 

 
𝑇𝐵𝑂 = 𝑡 (0, 𝐵𝐼) (1.1) 

 

where 𝑡(⋅) stands for uniform distribution, 𝐵𝐼 is the backoff indicator broadcasted by 

the eNB in the RA response and its value ranges from 0 to 960 ms. The RA Response 

is read by all UEs which transmit a RACH preamble in the previous RAO. It is 

indicated that every UE that failed the access attempt receives the BI [9]. 

 

1.2. Access class barring 

Access Class Barring (ACB) is a mechanism aimed at controlling congestion by 

limiting the maximum number of UEs that simultaneously access the eNB. It 

accomplishes this by categorizing all UEs into 16 different access classes (ACs) from 0 

to 15 based on service requirements. MTC devices are assigned an AC between 0 and 

9. 
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Other classes can be used to give priority access to specific MTC devices or groups of 

devices that require a higher level of service [20, 11]. 

ACB aims to reduce the number of access requests per RAO by redistributing access 

requests from UEs over time and it is applied only to UEs that have not yet started 

their random access procedures. In case ACB is not implemented, all ACs are allowed 

to access PRACH. With the implementation of ACB, the eNB broadcasts mean barring 

times, 𝑇𝐴𝐶𝐵 ∈ {4, 8, 16,…, 512 s}and barring rates, 𝑃𝐴𝐶𝐵∈ {0.05, 0.1,...,0.95} through 

System Information Block Type 2 (SIB2) for the upcoming RAO. Barring factors are 

generally applied to ACs 0-9, while the special categories are exempted from the 

barring process [11]. 

At the start of the random access procedure, each UE generates a random number q, 

between 0 and 1 (𝑡[0, 1)), and if q is less than or equal to 𝑃𝐴𝐶𝐵, the UE selects and 

transmits its random preamble; otherwise, the UE waits for a random time calculated 

using the Equation (1.2). 
 

𝑇𝑏𝑎𝑟𝑟𝑖𝑛𝑔 = [0.7 + 0.6 𝑡[0, 1)] x 𝑇𝐴𝐶𝐵 (1.2) 
 

This process is repeated until the UE generates a random number lower than 𝑃𝐴𝐶𝐵 and 

sends its preamble. In this way, ACB reduces the number of access requests per RAO. 

Demonstration of ACB scheme is given in Figure 1.2 [9]. 
 

 

Figure 1.2: Access class barring scheme. 
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2 Reinforcement Learning Algorithms 

Nowadays, 5G networks are expected to support various applications with diverse 

requirements, becoming increasingly heterogeneous and decentralized. Conventional 

resource management methods that rely on complete and accurate knowledge of the 

systems are impractical due to the unpredictable nature of the wireless network 

environments of 5G. To overcome this challenge, reinforcement learning (RL) has 

emerged as a viable solution for making real-time dynamic decisions in uncertain 

network situations. 

A solid understanding of the Markov decision process is essential for understanding 

the concept of reinforcement learning. This chapter will begin by introducing the 

Markov decision process, as well as value functions and the Bellman equations, which 

are key components of the process. Following this, reinforcement learning will be 

introduced, and its algorithms Q-learning, Double Q-learning, and Expected Sarsa will 

be examined. 

 

2.1. Markov decision process 

A Markov decision process (MDP) allows modelling the evolution of the state of a 

system over time when the system follows a certain action policy. An action policy 

defines the action taken at each state. By assigning rewards to each of the possible 

actions that can be taken at each state, a policy that maximizes the long-term reward, 

the optimal policy, can be determined. 

More formally, an MDP is characterized by the following elements: 

1. States: A finite or infinite set of all possible conditions or situations that the system 

can be in [12]. 

2. Actions: A finite or infinite set of possible actions that can be chosen at each state 

[12]. 

3. Transition probabilities: The probability that the system transits from one state to 

another depends on the action taken and the present state of the system. This 

probability is referred to as the transition probability. Let 
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𝑃𝑎 = 𝑃𝑟 {𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎} 
𝑆𝑆′ (2.1) 

 

be the probability of moving to state s’ when action a is taken in state s, and t denotes 

the time [22]. 

4. Rewards: Rewards help to define the system operation goal. The system receives a 

reward each time an action is taken at any system state. This reward signal defines the 

immediate benefits (positive or negative) that result from taking the specific action in 

a particular state. The system should select the best actions to maximize the total 

reward it receives over time [12]. Let 
 
 

𝑅𝑎 = 𝐸 {𝑅𝑡+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎} 
𝑆𝑆′ (2.2) 

 

be the reward function, where t is the time, and E is the expected value for the reward 

[22]. 

5. Discount Factor: It is a number between 0 and 1 that represents how much the 

system values immediate rewards over future rewards. A discount factor of 0 means 

that only immediate rewards are valuable. While a discount factor of 1 means all 

rewards are equally valuable, regardless of how far in the future they occur [12]. 

The concept of return is commonly associated to the discount factor. The return at time 

t is the cumulative discounted reward obtained over the sequence of actions taken 

from time t onwards. It is defined as, 

∞ 

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + ⋯ = ∑ 𝛾𝑘 𝑅𝑡+𝑘+1 (2.3) 
𝑘=0 

The discount factor 𝛾∈ [0, 1] allows to define the present value of future rewards [3]. 

6. Policy: The policy is a mapping between a state and action taken at that state. There 

are two types of policies: deterministic policies and stochastic policies. A deterministic 

policy maps each state to a single action, while a stochastic policy maps each state to a 

probability distribution over actions. Deterministic and stochastic policies are given in 

Equation (2.4) and Equation (2.5), respectively, 
 

a = π(s) , (2.4) 

π(a|s) = P[𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠], (2.5) 
 

where (2.4) π is the policy, i.e., the probability that, at time t, action a is chosen at state 

s [23,24]. 
 

2.1.1. Value functions 

The value function represents the expected long-term return that the system can expect 

to receive by starting from a given state and following a specific policy. It assigns a 
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value to each state or state-action pair, indicating how valuable that state or action is 

in terms of the future rewards that can be received. 

The value function is important since it helps to choose the best action to take at each 

state in order to maximize the expected long-term return. In addition, the action-value 

function provides a way to estimate the expected future return for each possible action 

taken at each possible state. By choosing the action with the highest value at each state, 

the system will achieve the highest long-term return. In general, there are two types of 

value functions: state-value functions and action-value functions [12,24]. 

The state-value function 𝒗𝝅(𝒔) is the expected return starting from state s, and then 

following policy π. We can define 𝑣𝜋(𝑠) formally by [12]. 
 

 
𝑣𝜋(𝑠) = 𝐸𝜋[ 𝐺𝑡 | 𝑆𝑡 = 𝑠] (2.6) 

 

The action-value function 𝑞𝜋(𝑠, 𝑎) is the expected return starting from state s, taking 

action a, and then following policy π. We can define 𝑞𝜋(𝑠, 𝑎) formally by [12]. 
 

 

𝑞𝜋(𝑠, 𝑎) = 𝐸𝜋[ 𝐺𝑡 | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (2.7) 
 

where 𝐸𝜋[·] represent the expected value of a random variable given that the agent 

follows policy 𝜋 and t is any time step. 

The optimal state-value function 𝒗∗(s) defines the maximum expected return when 

the system starts from state s over all policies, 
 
 

𝑣∗(𝑠) = 𝑚𝑎𝑥 𝑣𝜋(𝑠) 
𝜋 

(2.8) 

 

The optimal action-value function q∗(s, a) defines the maximum of the expected 

return when the system starts from state s and takes action a overall policies, 
 
 

𝑞∗(𝑠, 𝑎) = 𝑚𝑎𝑥 𝑞𝜋(𝑠, 𝑎) 
𝜋 (2.9) 

 

∀𝑠 ∈ 𝑆 and ∀𝑎 ∈ 𝐴(𝑠)[4]. By computing optimal state-values or action-values the 

optimal policy can be determined. 

A policy π is defined to be better than or equal to a policy π’ if its expected return is 

greater than or equal to that of π’ for all states. In other words, π ≥ π’ if and only if 

𝑣𝜋(𝑠) ≥ 𝑣𝜋𝐹(𝑠) for ∀𝑠 ∈ 𝑆 . For any MDP [24], 

▪ There is always at least one policy that is better than or equal to all other 

policies. It is called an optimal policy, 𝜋∗ ≥ 𝜋 . 

▪ All optimal policies achieve the optimal value function, 𝑣𝜋∗ ≥ 𝑣∗(𝑠). 

▪ All optimal policies achieve the optimal action-value function, 𝑞𝜋∗ ≥ 𝑞∗(𝑠). 
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2.1.2. Bellman equations 

The Bellman equations relate the state transition probabilities, state values, and long- 

term average reward. By iteratively solving the set of Bellman linear equations, the 

optimal actions at each state can be determined. However, to solve MDPs analytically, 

the state transition probabilities are required, which are not available in many practical 

scenarios. 

 

The Bellman equation states that value functions can be decomposed into two parts: 

immediate reward and discounted future rewards. Using this equation makes the 

computation of the value function easier, as we can break down a complicated 

problem into simpler, recursive subproblems. The Bellman equation can be defined as 

[23,25] 

 
𝑣(𝑠) = 𝐸[𝑅𝑡+1 + 𝛾𝑣(𝑆𝑡+1) | 𝑆𝑡 = 𝑠] (2.10) 

 
2.1.2.1. Bellman expectation equation 

The Bellman expectation equation is a specific form of the Bellman equation. It is used 

to calculate the expected value of a state under a given policy. The Bellman expectation 

equation for state-value functions is defined as [23]: 
 
 

𝑣𝜋(𝑠) = 𝐸𝜋[𝑅𝑡+1 + 𝛾𝑣𝜋(𝑆𝑡+1) | 𝑆𝑡 = 𝑠] (2.11) 

 

The action-value function can similarly be decomposed, 
 
 

𝑞𝜋(𝑠, 𝑎) = 𝐸𝜋[𝑅𝑡+1 + 𝛾𝑞𝜋(𝑆𝑡+1, 𝐴𝑡+1 ) | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (2.12) 

 

The state values can be expressed as a function of Q-values, 
 

 

𝑣𝜋(𝑠) = ∑ 𝜋(𝑎 |𝑠)𝑞𝜋(𝑠, 𝑎) 
𝑎∈𝐴 

(2.13) 

 

When necessary adjustments are made, the equations below are obtained. 
 

𝑞𝜋(𝑠, 𝑎) = 𝑅𝑎 + 𝛾 ∑ 𝑃𝑎 𝐹 𝑣 (𝑠′) 
𝑠𝑠′ 𝑠𝑠 𝜋 

𝑠𝐹∈𝑆 

(2.14) 

𝑣𝜋(𝑠) = ∑ 𝜋(𝑎 |𝑠)( 𝑅𝑎  + 𝛾 ∑ 𝑃𝑎 𝐹  𝑣  (𝑠′)) 
𝑠𝑠′ 𝑠𝑠 𝜋 

𝑎∈𝐴 𝑠𝐹∈𝑆 

 

(2.15) 
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𝑞𝜋(𝑠, 𝑎) =  𝑅𝑎  + ∑ 𝑃𝑎 
𝐹  + ∑ 𝜋(𝑎′ |𝑠′)𝑞  (𝑠′, 𝑎′) 

𝑠𝑠′ 𝑠𝑠 𝜋 

𝑠𝐹∈𝑆 𝑎′∈𝐴 

 

(2.16) 
 

 

 

2.1.2.2. Bellman optimality equation 

The Bellman optimality equations are used to determine the optimal value function 

and the optimal policy for a given problem. The equations express the optimal value 

of a state in terms of the maximum expected reward obtained by taking an optimal 

action in that state. 

Bellman optimality equations for 𝑣∗(s) and 𝑞∗(s, a) are defined as [23]: 
 
 

𝑣∗(𝑠) = 𝑚𝑎𝑥 𝑅𝑎 + 𝛾 ∑ 𝑃𝑎 𝐹  𝑣 (𝑠′) 
𝑎 𝑠𝑠′ 𝑠𝑠 ∗ 

𝑠𝐹∈𝑆 

(2.17) 

𝑞∗(𝑠, 𝑎) = 𝑅𝑎 + 𝛾 ∑ 𝑃𝑎 𝐹 𝑚𝑎𝑥 𝑞 (𝑠′, 𝑎′) 
𝑠𝑠′ 𝑠𝑠 𝑎′ ∗ 

𝑠𝐹∈𝑆 

(2.18) 

 

 

2.2. A brief introduction to reinforcement learning 
Before introducing reinforcement learning in more detail, it's essential to understand 

the general context of machine learning and its different categories. 
 

Machine learning (ML) is a subfield of artificial intelligence that involves developing 

algorithms and models that can learn from data and make predictions on data. There 

are several machine learning types, including supervised learning, unsupervised 

learning, and reinforcement learning [12, 26]. 
 

Supervised learning involves training an agent using a labelled dataset provided by a 

knowledgeable external supervisor. The input data and the corresponding output are 

given to the agent as input during the training process. The goal of supervised learning 

is to learn a mapping between the input and the output so that the agent can generalize 

well to new, unseen input data. Although it is an important type of learning, it is not 

sufficient for solving interactive problems. Examples of supervised learning include 

image classification, speech recognition, and regression analysis [26]. 
 

Unsupervised learning involves training an agent using an unlabelled dataset to detect 

hidden patterns or structures in the data, such as clusters or anomalies. If the goal is to 

discover similarities or relationships between data points, such as clustering similar 

data points together, unsupervised learning is the appropriate choice. Examples of 
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unsupervised learning include clustering, anomaly detection, and dimensionality 

reduction [26]. 
 

Reinforcement learning (RL) involves training an agent to make decisions based on 

rewards and penalties received from the environment. Similar to how humans and 

animals learn from experience, an agent learns to take actions that maximize the 

cumulative rewards or minimize the cumulative penalties through trial and error 

[12,27]. 
 

RL stands out among other machine learning algorithms as it allows agents to learn 

and adapt to new situations in real time without explicit programming. It is especially 

beneficial for applications where optimal action cannot be easily deduced from the 

given information but instead depends on the output of a series of actions taken over 

time, such as robotics, gaming, control, and finance. Besides, RL has indeed shown 

promising results in the field of congestion control. RL algorithms can dynamically 

adapt to changing network conditions and learn policies that optimize network 

performance. A comparison of major machine learning types is shown in Figure 2.1 

[24]. 
 

 

 

 

Figure 2.1: Categorization of machine learning as supervised learning, unsupervised learning 

and reinforcement learning. 
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2.2.1. The agent–environment interface 

The reinforcement learning process involves the interaction between an agent and its 

environment, as shown in Figure 2.2. The agent, responsible for learning and making 

decisions, interacts with the environment which is outside of itself [12]. 
 

Figure 2.2: Reinforcement learning model. 

At each time step t, the agent observes the current state of the environment 𝑆𝑡 and 

chooses an action 𝐴𝑡 to execute. Then, the environment transits to a new state 𝑆𝑡+1 and 

generates a new reward 𝑅𝑡+1. This process is repeated until the agent approaches an 

optimal behaviour [12]. 

As described in the previous section, the Bellman optimality equation plays a crucial 

role in reinforcement learning, as it simplifies the calculation of the value function. 

There are several methods to solve the Bellman optimality equation in RL. Some of 

these methods are given below [12]. 

 

▪ Dynamic programming (DP) methods; 

▪ Monte Carlo methods; 

▪ Approximate solution methods; 

▪ Policy gradient methods; 

▪ Temporal difference (TD) methods. 
 

2.2.2. Temporal-difference learning 

Temporal-Difference (TD) learning stands out among other methods thanks to its 

ability to efficiently handle complex and large-scale problems, learn from partial 

feedback, adapt to changes in the environment in real-time, and handle delayed 

rewards. These properties make TD learning a powerful tool for congestion control 

policies in 5G networks. By using TD learning methods, agents can quickly adapt to 

changing network conditions and optimize their contention control policies for better 

network performance. 
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In this thesis, we will focus on Q-learning, Expected Sarsa, and Double Q-learning, 

which are TD learning methods. 

 

2.2.2.1. Q-learning: Off-policy TD control 

The development of an off-policy TD control algorithm known as Q-learning was one 

of the first breakthroughs in reinforcement learning [12]. As a model-free algorithm, 

Q-learning does not require prior knowledge of the MDP dynamics. It estimates the 

optimal action-value function, called the Q-function, representing the expected 

cumulative reward of taking a specific action in a particular state [28]. 

As mentioned, Q-learning is an off-policy reinforcement learning algorithm that uses 

a target policy to estimate the optimal Q-values while following a different 

behavioural policy to collect data. The target policy is typically greedy and chooses the 

action with the highest expected Q-value. However, the behavioural policy can be an 

ε-greedy and chooses the best action with probability (1-ε) and a random action with 

probability ε to encourage exploration. This approach allows the agent to learn the 

optimal policy while exploring the environment and collecting data using a different 

policy [24,28]. 

The Q-learning algorithm iteratively updates the Q-function using the Bellman 

equation: 
 

𝑄(𝑆, 𝐴) = 𝑅 + 𝛾 𝑚𝑎𝑥 𝑄(𝑆′, 𝑎) 
𝑎 

(2.19) 

 

where 𝑄(𝑆, 𝐴) and 𝑄(𝑆′, 𝑎) are the return from the current state and the next state, 

respectively, R is the observed reward, and γ is the discount factor that determines the 

importance of future rewards. The max operator selects the action that maximizes the 

Q-function for the next state [28]. 

At each time step t, the agent observes the current state 𝑆𝑡, performs action 𝐴𝑡 

according to its exploration policy and observes the reward 𝑅𝑡+1 and state 𝑆𝑡+1. Then 

it performs an action with the maximum possible reward for the next state and uses 

 

𝑄(𝑆𝑡, 𝐴𝑡) ← 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼 [𝑅𝑡+1  + 𝛾 max 𝑄(𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡, 𝐴𝑡)] 
𝑎 

(2.20) 

 

that for updating the current Q-value. The Q-function is updated using the following 

equation: where α is the learning rate that determines how much weight is given to 

new information compared to previous information [12,28]. The steps of the Q- 

learning algorithm are shown in the figure below [28]. 
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Figure 2.3: Q-learning algorithm. 

Although Q-learning has several advantages, including its simplicity, generality, and 

ability to handle large state spaces, it can suffer from slow convergence and instability 

due to the high variance of the Q-function estimates. Various extensions and 

improvements have been proposed in the literature, such as Double Q-learning and 

Deep Q-learning [24]. 

 

2.2.2.2. Expected Sarsa 

Expected Sarsa is another model-free reinforcement learning algorithm that learns the 

optimal action-value function in a Markov decision process (MDP) through trial and 

error. It is a different version of the Sarsa algorithm that estimates the action-value 

function of a policy by performing a sample-based update at each time step. 

It estimates the expected value of the following action-value function for a given state 

instead of updating it based on the following state and the following action. While Q- 

learning estimates the optimal policy directly, Expected Sarsa estimates the expected 

value of the policy being followed. With this approach, Expected Sarsa can achieve 

more stable learning and better convergence than Q-learning [29]. 

To implement Expected Sarsa, Q-values for all state-action pairs are initialized. Then, 

the following steps are repeated. 



18 2| Reinforcement Learning Algorithms 
 

 
 

1. At each time step, the agent observes the current state S and selects an action A 

according to a policy, which could be an ϵ-greedy policy. 

2. The agent then observes the reward 𝑅𝑡+1 and the next state 𝑆𝑡+1, and uses the current 

Q-values and policy to compute the expected value of the next state-action pair, 

denoted by 𝑄(𝑆𝑡+1, 𝐴𝑡+1). 

3. Finally, the agent updates the Q-value for the current state-action pair using the 

observed reward and the expected value of the next state-action pair: 

 

 

𝑄(𝑆𝑡, 𝐴𝑡) ← 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼[𝑅𝑡+1 + 𝛾𝐸𝜋[𝑄(𝑆𝑡+1, 𝐴𝑡+1) | 𝑆𝑡+1] − 𝑄(𝑆𝑡, 𝐴𝑡)] (2.21) 

 
 

← 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼 [𝑅𝑡+1 + 𝛾 ∑ 𝜋(𝑎 | 𝑆𝑡+1) 𝑄(𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡, 𝐴𝑡)] 
𝑎 

 

(2.22) 

 

 

where α is the learning rate, γ is the discount factor, 𝜋(𝑎 | 𝑆𝑡+1) is the probability of 

taking action 𝑎 in the next state 𝑆𝑡+1 under the current policy, and 

∑𝑎 𝜋(𝑎 | 𝑆𝑡+1) 𝑄(𝑆𝑡+1, 𝑎) is the expected value of the next action-value function [1]. 

Expected Sarsa has similarities with on-policy Sarsa and off-policy Q-Learning 

algorithms, but it differs in the action value function it follows. Expected Sarsa can be 

used either as an on-policy or off-policy and this feature makes Expected Sarsa much 

more flexible than both algorithms [12,29]. 

Overall, Expected Sarsa is a beneficial algorithm for RL problems where the optimal 

policy may involve stochastic actions, rather than deterministic actions. It estimates 

the expected value of the next state-action pair instead of using the maximum Q-value, 

as in the Q-learning algorithm. This can make Expected Sarsa more stable and less 

prone to overestimation, especially in stochastic environments [29]. 

 

2.2.2.3. Double Q-Learning 

Double Q-learning is an extension of Q-learning, which addresses the overestimation 

problem of Q-values that may occur when the same set of parameters is used to both 

choose and evaluate actions. By using two separate Q-functions, Q1 and Q2, Double 

Q-learning aims to reduce overestimation errors, leading to enhanced performance 

and stability. These Q-functions share the same policy for selecting actions, but they 

learn independently. At each time step, the agent selects one of the Q-functions 
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randomly to update and uses the other Q-function to determine the action to take 

[12,30]. The update rule for Double Q-learning is as follows: 
 

𝑄1(𝑆𝑡, 𝐴𝑡) ← 𝑄1(𝑆𝑡, 𝐴𝑡) + 𝛼 [𝑅𝑡+1 + 𝛾𝑄2(𝑆𝑡+1, arg max 𝑄1(𝑆𝑡+1, 𝑎)) − 𝑄1(𝑆𝑡, 𝐴𝑡)] 
𝑎 

(2.23) 

𝑄2(𝑆𝑡, 𝐴𝑡) ← 𝑄2(𝑆𝑡, 𝐴𝑡) + 𝛼 [𝑅𝑡+1 + 𝛾𝑄1(𝑆𝑡+1, arg max 𝑄2(𝑆𝑡+1, 𝑎)) − 𝑄2(𝑆𝑡, 𝐴𝑡)] 
𝑎 

(2.24) 

 

 
where 𝑆𝑡 is the current state, a is the action, 𝑅𝑡+1 is the reward, 𝑆𝑡+1 is the next state, 𝛼 

is the learning rate, and 𝛾 is the discount factor. 

Overall, these three RL algorithms (Q-learning, Expected Sarsa, and Double Q- 

learning) are efficient approaches in training agents to make decisions in complex 

environments. By estimating the value of each action in each state, these algorithms 

can learn to choose the best possible action at each step of the learning process, 

maximizing the cumulative reward received over time. It makes them powerful 

methods in challenging environments. 
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3 Preliminaries, Scenario and 

Assumptions 
 

This section presents the details of the scenario designed to evaluate the performance 

of the proposed grant-free access protocol, assumptions, and performance parameters. 

The evaluation scenario under study is taken from [6]. We only evaluate what in [6] is 

referred to as low priority traffic, i.e., mMTC traffic. However, instead of using a 

stationary arrival regime (binomial packet arrivals to nodes), we use the arrival regime 

proposed by the 3GPP, where devices become active (they start contending for access) 

according to a Beta (3,4) distribution over 10 seconds (2000 subframes) as described in 

[11]. Then, the evaluation scenario studied is more stringent and realistic than the one 

used in [6]. 

 

3.1. Network and traffic models 

The system model for this study focuses on a wireless network consisting of a single 

cell, with subframes structured in V = 10 timeslots for the uplink. This would be 

equivalent to deploying one RAO every subframe with a total of 10 preambles in the 

hand-shaking scenario. However, in a grant-free scenario, sensors transmit their 

packet without previous signalling with the base station. The network comprises 

20,000 user equipments (UEs) that contend for access to an eNB (base station, BS) using 

a random access protocol. 
 

We assume that all sensors share the same radio resources and transmit their packets 

that fit in a timeslot. A collision occurs if multiple packets are transmitted during the 

same timeslot, resulting in the loss of all packets. In such cases, the collided packets 

are retransmitted up to a maximum of 10 times before being considered lost. As in [6], 

we assume that for each subframe, the BS can detect the number of holes (timeslots 

that where not occupied by any transmission, h), successes (timeslots with a single 

packet transmission, s) and collisions (timeslots with more than one packet 

transmissions, c). An example of operation of the system under study is given in Figure 

3.1 below. 
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Figure 3.1: System model. 

 

 

 
 

Figure 3.1: System model. 

 
 

In this study, we implemented the network configuration and the Traffic Model 2 

suggested in the 3GPP specification [11]. Suggested traffic models for Machine Type 

Communication (MTC) are presented in Table 3.1. 
 

Characteristics Traffic Model 1 Traffic Model 2 

Number of M2M UEs 1000, 3000, 5000, 10000, 30000 1000, 3000, 5000, 10000, 20000 

Arrival distribution Uniform Beta (3,4) 

Distribution period 

(T) 
60 seconds 10 seconds 

 

Table 3.1: Suggested M2M traffic models for RACH evaluation. 

 

Traffic model 1 represents a uniform distribution of UEs over a period for simulating 

a non-synchronized access behaviour of UEs in the network. On the other hand, traffic 

model 2 represents an extreme scenario where a large number of UEs attempt to access 

the network simultaneously in a highly synchronized manner. 
 

In the proposed model, as described in traffic model 2, the number of UEs is selected 

as 20,000 and activations for packet transmission follow a Beta (3,4) distribution over 

𝑇𝐷 = 2000 subframes. The pdf at subframe n, where n ≤ 𝑇𝐷, is expressed as 
 
 

𝑝𝐴 = 60𝑛2(𝑇𝐷 − 𝑛)3/𝑇𝐷6 (3.1) 
 

where pA is the probability that arrivals occur at subframe n, where n ≤ 𝑇𝐷. For 20,000 

UEs, the number of sensor activations per subframe is shown in Figure 3.2. 
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Figure 3.2: (a) Probability density function (pA) and (b) number of sensor activations per 

subframe (20,000 UEs). 

 

3.2. Congestion control scheme 

In the proposed scheme, the base station broadcasts an access probability ρ once every 

10 subframes, referred to as a superframe. This approach represents a simplified 

version of the Access Class Barring scheme proposed by the 3GPP. 
 

In our scheme, with probability ρ, each active UE randomly chooses one of the slots 

within the current subframe to transmit a packet to the BS. At the same time, other UEs 

postpone their transmission to the next subframe with probability 1- ρ. Then, the BS 

observes each slot of the current subframe and counts the number of holes, successes, 

and collisions. It continues to observe these values for ten subframes and at the end of 

the 10th subframe, it determines a new access probability. This type of delayed 

feedback defined is in accordance with the definition of the eNode radio interface by 

the 3GPP. It should be noted that it differs from the approach in [6], where the feedback 

is performed every subframe and, therefore, is not implementable with the current 

definition of the eNode radio interface. 
 

To minimize the number of collisions per subframe, the number of contending UEs 

per subframe must be equal to the number of available timeslots in the subframe [30]. 
 

To determine a new ρ, the BS estimates the average number of UEs that transmitted 

per subframe. For that, the BS must consider the total number of active UEs, i.e., both 

new arrivals during the superframe and backlogged devices that will attempt to access 

the BS during the next superframe. Backlogged UEs refer to those that delayed their 

transmission in the current superframe due to the access probability, and those that 

suffered collisions and will retry. In the next superframe, all active UEs will attempt to 
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transmit their packets following the access probability broadcasted by the BS, 

computed as, 
 
 

ρ = V/MAS , (3.2) 

 

where MAS is the number of active UEs per subframe estimated by the BS for the next 

subframes. In our case, a reinforcement learning algorithm is used to determine the 

access probability ρ. The details of the algorithm will be discussed in a Section below. 

 

3.3. Performance parameters proposed by 3GPP 

The five key performance indicators (KPIs) proposed by 3GPP are now defined [11]. 

We refer to the access period (AP) as the number of subframes required to empty the 

queue of contending sensors that access the system, i.e., the number of subframes 

required for the last sensor to abandon the system. 

 

1. Collision probability, defined as 
 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑑 𝑈𝐸 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑜𝑛 
𝑃𝐶 = 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑓𝑢𝑙 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑜𝑛𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 𝐴𝑃 
(3.3) 

 
2. Access success probability, denoted as 𝑃𝑠, defined as the fraction of UEs that 

successfully transmit its packet. 

3. Statistics of the number of times UEs transmit a packet before successfully 

completing the random access procedure. This KPI is measured by its average value, 

represented as E[k]. 

4. The access delay statistics represent the time interval between the instant in which 

the sensors become active and the successful completion of the random access 

procedure. To evaluate this KPI, we generate its cumulative distribution function 

(CDF) and calculate its average and the 95th percentile, referred to as 𝐷95. 

5. Statistics of the simultaneous packet transmissions per timeslot. This parameter is 

not evaluated in this study. 

 

 

3.4. Implementation of reinforcement learning 

algorithms 

Many centralized access control problems have a key characteristic where the access 

controller is unaware of how many users are competing for resources and their access 

times. In the LTE-A system, the base station has the ability to determine the number 
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of successfully received packets per subframe (𝑁𝑠𝑢). But, due to various factors such 

as collisions, interference, or decoding issues, 𝑁𝑠𝑢 often have a different value than the 

total number of transmitted packets, particularly in heavily congested scenarios [5]. In 

this study, we propose a control scheme based on the BS calculating the access 

probability by estimating the number of active UEs in the subframe using 

reinforcement learning techniques. The access probability is periodically broadcast to 

the UEs, achieving in this way an efficient congestion control mechanism that 

enhances network performance. 
 

In our system, an agent is located at the BS and observes UE’s access outcomes, 

represented by the number of (S, C, H) per subframe. The environment is made of UEs 

accessing the upstream subframe and the interaction between the agent and the 

environment by the agent broadcasting the access probability ρ at each superframe. 

Although the BS has complete knowledge of the number of active UEs contending for 

resources at each subframe in the simulation model, this information is not available 

to the RL mechanism, as in a real scenario. 

 

The previous chapter provided an overview of Q-learning, Double Q-learning and 

Expected Sarsa, which are RL algorithms. In this section we will focus on the 

implementation of these RL algorithms to the system. 

 

Before starting to implement the RL method, some parameters need to be designed: 

▪ The environment state; 

▪ The set of actions (access probabilities); 

▪ The reward functions; 

▪ The RL scheme/algorithm; 

▪ The exploration distribution (𝜀), discount factor (γ), and learning rate (α); 

3.4.1. The environment state 

We defined different agent states to observe their effects on performance. The first state 

is based on averaging and rounding the number of successes and collisions over the 

last superframe since the access probability was broadcasted. 
 

𝑆𝑡1 = (𝑆, 𝐶) 𝑆, 𝐶 ∈ N 𝑆, 𝐶 ∈ {0, 𝑉} (3.4) 

where S/C is the rounded average success/collisions per subframe, and V is the number 

of available timeslots. To provide more information, a summary of the preceding states 

is added. 𝑆𝑡−1 denoted by 𝜃𝑡−1 and 𝑆𝑡−2 denoted by 𝜃𝑡−2. 
 

𝑆𝑡2 = (𝜃𝑡−1, 𝑆, 𝐶), 𝑆, 𝐶 ∈ {0, 𝑉}, 𝜃𝑡−1 ∈ {0, 8} (3.5) 

𝑆𝑡3 = (𝜃𝑡−1, 𝜃𝑡−2, 𝑆, 𝐶), 𝑆, 𝐶 ∈ {0, 𝑉}, 𝜃𝑡−2, 𝜃𝑡−1 ∈ {0, 8} (3.6) 
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𝜃𝑡−2, 𝜃𝑡−1 are designed to keep manageable the size of Q (s, a) table. The summary of 

the preceding states is included in the state definition, as it might help to improve the 

estimation performed by the R algorithm (MAS). 
 

3.4.2. The set of actions 

In our model, two action sets with 28 and 64 elements are deployed as shown below. 

 

𝐴28= {0.0, 0.01, 0.05, 0.08, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 

11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0} 

 

𝐴64= {0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 

0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 

2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2, 4.4, 4.6, 4.8, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 

14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0} 

 

The action set A is composed of the actions that change access probability ρ to one of 

its possible values. Note that 𝑎 × 103 , a ∈ A, is an estimate of the number of active 

UEs. When action a is taken, the agent broadcasts the access probability shown below. 
 

ρ = V/ (a x 103) (3.7) 

 

3.4.3. The reward functions 

The reward function is one of the most important parameters of reinforcement 

learning. We defined different reward functions to explore their impact on 

performance. 

The first reward function is, 
 

𝑅𝑡1 = S, S ∈ N, S ∈ {0, V} (3.8) 

where S is the rounded value of the average number of successes per subframe over 

the last superframe. To provide more information, we also explored with, 

 

if 𝐶𝑡𝑜𝑡 < RWCOMXv then 

err ← RWPv (positive reward) 

else 

err ← − RWNv (negative reward) 

end if 

𝑅𝑡2 ← S + err 

 

where 𝐶𝑡𝑜𝑡 is the total number of collisions over the last superframe, and RWCOMXv, 

RWNv, and RWPv are conguration parameters. For example, parameters can be 

selected as [RWCOMXv, RWPv, -RWNv] = [20, 0.5, 0.1]. 
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3.4.4. Q-learning based congestion control policy 

 
Q-learning is a model free RL algorithm that is used to estimate the optimal action- 

value function (Q-function) for a given environment. In this study it was used to 

determine the access probability ρ that maximized the performance of the proposed 

congestion control scheme. The main advantage of Q-learning is that it does not 

require prior knowledge of the environment or a model of the system dynamics, 

making it well-suited for real-time, online decision making in dynamic environments. 

According to the proposed scenario of study, the RL algorithm evolves at discrete time 

instants (end of superframes), the current state 𝑆𝑡 and action 𝐴𝑡 are not available until 

the end of the current superframe, and the next reward 𝑅𝑡+1 and the next state 𝑆𝑡+1 are 

not available until the end of the next superframe. The RL evaluation instants are 

shown in Figure 3.3. 
 

Figure 3.3: RL evaluation time instants. 

Access probability is calculated at the end of a superframe and UEs send their packets 

according to this probability during each subframe of the next superframe. The 

implementation steps of Q-learning can be described as follows: 

1. At each time step, the agent observes the current state 𝑆𝑡 and selects an action 𝐴𝑡 

according to a ϵ-greedy policy. With probability ε, the agent selects a random action, 

and with probability 1-ε, it selects the action with the highest Q-value for the current 

state. 

2. According to the selected action, the agent updates the access probability ρ using 

the formula ρ = 𝑉/(𝑎 × 103), where 𝑀𝐴𝑆 = 𝑎 × 103, is the estimated number of active 

UEs in the next superframe. Then, ρ is broadcasts to the UEs. 

3. After 10 subframes, the agent observes the next state 𝑆𝑡+1 and calculates the reward 
𝑅𝑡+1. 

4. Finally, the agent updates the Q-value for the current state-action pair is updated Q- 

learning update rule: 
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𝑄(𝑆𝑡, 𝐴𝑡) ← 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼 [𝑅𝑡+1  + 𝛾 max 𝑄(𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡, 𝐴𝑡)] 

𝑎 
(3.9) 

 

5. The agent sets the current state to the next state and repeats the above steps are for 

each superframe. 
 

3.4.5. Expected SARSA based congestion control policy 
 

Expected Sarsa is another RL algorithm similar to Q-learning. But, instead of selecting 

the maximum Q-value for the next state-action pair, it uses the expected value of all 

possible actions. This approach can lead to more stable learning, especially in 

environments with stochastic rewards or actions. In Expected Sarsa, the agent updates 

its Q-function estimate using the expected value of the Q-function for the next state- 

action pair. This algorithm ensures that the agent is not too optimistic or too 

pessimistic about the value of the next action and can lead to more efficient learning. 
 

Like Q-learning, access probability is calculated at the end of a superframe and UEs 

send their packets according to this probability during each subframe of the next 

superframe. The implementation steps of Expected Sarsa can be described as follows: 

1. At each time step, the agent observes the current state 𝑆𝑡 and selects an action 𝐴𝑡 

according to a policy, which could be an ϵ-greedy policy. 

2. According to the selected action, the agent updates the access probability ρ using 

the formula ρ = 𝑉/(𝑎 × 103), where 𝑀𝐴𝑆 = 𝑎 × 103, is the estimated number of active 

UEs in the next superframe. Then, ρ is broadcasts to the UEs. 

3. After 10 subframes, the agent observes the next state 𝑆𝑡+1 and calculates the reward 

𝑅𝑡+1 and uses the current Q-values and policy to compute the expected value of the 

next state-action pair, denoted by 𝑄(𝑆𝑡+1, 𝐴𝑡+1). 

4. Finally, the agent updates the Q-value for the current state-action pair using the 

observed reward and the expected value of the next state-action pair with update rule: 
 

𝑄(𝑆𝑡, 𝐴𝑡) ← 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼[𝑅𝑡+1 + 𝛾𝐸𝜋[𝑄(𝑆𝑡+1, 𝐴𝑡+1) | 𝑆𝑡+1] − 𝑄(𝑆𝑡, 𝐴𝑡)] (3.10) 

 

← 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼 [𝑅𝑡+1 + 𝛾 ∑ 𝜋(𝑎 | 𝑆𝑡+1) 𝑄(𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡, 𝐴𝑡)] 
𝑎 

 

(3.11) 

 
5. The agent sets the current state to the next state and repeats the above steps are for 

each superframe. 
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3.4.6. Double Q-learning based congestion control policy 

Double Q-learning is an extension of Q-learning. It addresses the overestimation 

problem of Q-values that may occur when the same set of parameters is used to both 

choose and evaluate actions. The implementation steps of Double Q-learning are very 

similar to Q-learning. The key difference between them is that Double Q-learning uses 

two Q-functions, Q1 and Q2, to estimate the state-action values and alternates between 

them during the learning process. This helps to prevent overestimation of the Q-values 

and can lead to more accurate estimates of the optimal policy. These Q-functions share 

the same policy for selecting actions, but they learn independently. 

Similar to other RL algorithms mentioned in this study, access probability is calculated 

at the end of a superframe. 

The implementation steps of Double Q-Learning can be described as follows: 

1. At each time step, the agent observes the current state 𝑆𝑡 and selects an action 𝐴𝑡 

according to a ϵ-greedy policy. With probability ε, the agent selects a random action, 

and with probability 1-ε, it selects the action that maximizes the sum of Q1(s,a) and 

Q2(s,a). 

2. According to the selected action, the agent updates the access probability ρ using 

the formula ρ = 𝑉/(𝑎 × 103), where 𝑀𝐴𝑆 = 𝑎 × 103, is the estimated number of active 

UEs in the next superframe. Then, ρ is broadcasts to the UEs. 

3. After 10 subframes, the agent observes the next state 𝑆𝑡+1 and calculates the reward 
𝑅𝑡+1. 

4. Finally, the agent selects one of the Q-functions randomly to update and uses the 

other Q-function to determine the action to take. The update rule for Double Q- 

learning is as follows: 

 
𝑄1(𝑆𝑡, 𝐴𝑡) ← 𝑄1(𝑆𝑡, 𝐴𝑡) + 𝛼 [𝑅𝑡+1 + 𝛾𝑄2(𝑆𝑡+1, arg max 𝑄1(𝑆𝑡+1, 𝑎)) − 𝑄1(𝑆𝑡, 𝐴𝑡)] 

𝑎 
(3.12) 

𝑄2(𝑆𝑡, 𝐴𝑡) ← 𝑄2(𝑆𝑡, 𝐴𝑡) + 𝛼 [𝑅𝑡+1 + 𝛾𝑄1(𝑆𝑡+1, arg max 𝑄2(𝑆𝑡+1, 𝑎)) − 𝑄2(𝑆𝑡, 𝐴𝑡)] 
𝑎 

(3.13) 

5. The agent sets the current state to the next state and repeats the above steps are for 

each superframe. 
 

3.4.7. The exploration, discount factor, and learning rate 
 

The exploration strategy is a crucial element in RL that determines how the agent 

explores the environment to learn more about it. As discussed in Chapter 2, 

exploration denotes the process of actively seeking out new and unexplored states and 

actions in the environment. The agent needs to balance exploration with exploitation, 

which refers to selecting actions that are known to yield high rewards. Too much 



3| Preliminaries, Scenario and 
Assumptions 30 

 

 

exploitation can lead to the agent getting stuck in a suboptimal solution, while too 

much exploration can lead to inefficient learning. [12]. 
 

To achieve this balance, we used an epsilon-greedy approach in our analysis scenario. 

Epsilon-greedy selects the action with the highest estimated value with probability 1- 

epsilon and selects a random action with probability epsilon. 
 

Apart from exploration strategies, we also investigate the impact of discount factor 

and learning rate on the performance of RL-based congestion control policies. The 

discount factor ranges between 0 and 1 that is used to weigh future rewards in the 

agent's decision-making process. A high discount factor means that the agent values 

long-term rewards more, while a low discount factor means that the agent values 

immediate rewards more. The discount factor is used to calculate the expected return, 

which is the sum of the discounted future rewards that the agent expects to receive 

[12]. 
 

The learning rate determines how much weight is given to new information compared 

to old information in updating state-action values. A higher learning rate allows for 

faster adaptation but may also lead to instability or oscillations in some cases. To 

analyze the impact of these parameters on congestion control performance, we 

conducted a series of experiments using different combinations of parameter settings 

and evaluated their performance based on performance metrics. 
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4 Experimental Results 

In this chapter, the performances of reinforcement learning based congestion control 

policies for mMTC in 5G networks were evaluated through simulation. Policies 

obtained by RL algorithms were compared with each other, heuristic and ideal 

approaches based on performance parameters. Then, the impact of RL parameters and 

hyperparameters on performance were examined. 

In the previous chapter, we presented the details of the scenario designed to evaluate 

the performance of the proposed congestion control policy, assumptions, and 

reinforcement learning parameters. To summarize, we implemented a network 

configuration and the Traffic Model 2 recommending in the 3GPP specification [11]. 

The number of user equipment (UE) was set at 20,000, and packet transmission 

activations followed a Beta (3,4) distribution, where the activation of UEs occur along 

2000 subframes of 5 ms long, lasting 10 seconds. The access probability ρ is broadcasted 

by the base station (BS) every 10 subframes, referred to as a superframe, which is in 

line with 3GPP's eNode radio interface definition. In case of collision, the collided 

packets are retransmitted up to a maximum of 10 times before being considered lost. 

Please refer to Chapter 3 for more detailed information. We refer to this type of 

feedback from the BS to the UEs as delayed feedback. It is different to the one used by 

the ideal and the studied heuristic approach, which provide feedback every subframe, 

and we refer to it as immediate feedback. 

Note that the operation of the system is episodic. Activation of UEs occur along 2000 

subframes. However, due to the operation of the congestion control scheme and 

sometimes due to collisions, the UEs access to the upstream subframe is spread along 

time. We refer to an access period as the number of consecutive subframes during 

which UEs access the upstream subframe. We also refer to the last subframe as the 

subframe at which the last UE completes its access, i.e., the last subframe of the access 

period. 
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4.1. Performance metrics 
The following metrics were computed for the purpose of performance analysis of the 

proposed algorithm: 
 

▪ Thsf: Subframe throughput. Average number of successful transmissions per 

subframe. 

▪ E[D]: Average delay. Average number of subframes elapsed from the instant a 

sensor becomes active, until it successfully completes its packet transmission. 

▪ D95: 95 percentiles of the delay. It is an access delay D95 such that 95% of the 

sensors complete its packet transmission successfully with a delay lower than 

D95. 

▪ E[Co]: Average number of collisions per successfully transmitted packet. 

▪ AcSP: Successful access probability. Fraction of sensors that complete its packet 

transmission successfully. AcSP = 1 – LP. 

▪ Last_Sub: Last Subframe. The subframe at which the queue of sensors that 

access the system becomes empty. 

 

4.2. Ideal policy 

In the ideal policy, the BS has complete knowledge of the number of active UEs 

contending for resources at each subframe. This information is available in the 

simulation model. Let this number be MAS. Then, the optimal access probability at 

each subframe is, 
 
 

ρ = V/MAS (4.1) 

 

The 3GPP standard proposed that the optimum access probability ρ be broadcast only 

every superframe. However, the ideal policy follows the immediate feedback 

approach where access probability is broadcasted in each subframe. The ideal policy 

results obtained from the simulation are given Table 4.1. 
 
 

Thsf E[D] D95 E[Co] AcSP Last_Sub 

3.78E+00 1.83E+03 4110 1.56E+00 9.93E-01 5257 
 

Table 4.1: The results of ideal policy. 

 

4.3. Heuristic policy 

In addition to the ideal policy, a heuristic estimation proposed by Rives [32], and 

deployed in [6], was used to compare our results. This policy is based on a pseudo- 
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Bayesian estimation algorithm, and it estimates the number of active UEs per 

subframe. Like the ideal policy, also this policy follows an immediate feedback 

approach. Although it might not be applicable in the studied scenario, where the 

arrival process is not stationary, we deployed it as a reference. Note that the traffic 

process deployed in [6] was stationary and, therefore, different from the one 

recommended by the 3GPP for evaluating mMTC access schemes. 
 

Error! Bookmark not defined.The results obtained when deploying the Rives estimation 

algorithm and their relative error when compared to the ideal algorithm are given in 

Table 4.2. 
 

 

Thsf E[D] D95 E[Co] AcSP Last_Sub 

3.28E+00 2.21E+03 4751 1.97E+00 9.97E-01 6075 

-13.06% 20.60% 15.60% 26.04% 0.47% 15.56% 
 

Table 4.2: The results of heuristic policy. 

 
Figure 4.1 shows the number of active sensors in the queue obtained when deploying 

the ideal policy and Rives algorithm and the number of active sensors estimated by 

the Rives algorithm per subframe along an access period. 
 

Figure 4.1: Rives estimation with respect to ideal policy. 

As can be seen from the Figure 4.1, the Rives algorithm underestimated the number of 

active sensors until the first half of the access period and overestimated the number of 

active sensors in the second half. Although the Rives algorithm has an important 

position in the literature in the field of congestion control, its performance in the 

studied scenario is not adequate. This might be due to the fact that it was designed for 

a different traffic arrival process and for stationary traffic scenarios. 
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4.4. Performance comparison of RL algorithms 
One of the main objectives of this thesis is to investigate and evaluate the congestion 

control performances of Reinforcement Learning (RL) algorithms that have been 

proposed in the literature. To achieve this goal, the performances of the 3 RL 

algorithms (Q-Learning, Double Q-Learning, and Expected Sarsa) were compared 

based on the 𝑆𝑡2 = (𝜃𝑡−1, 𝑆, 𝐶). Our approach involved quantifying the relative error 

of the results obtained by the RL algorithms with respect to the ideal policy, thus 

enabling a clear comparison of the outcomes. The simulation parameters were 

determined as (RWPv, RWNv, 𝛼, 𝛾) = (0.5, 1, 0.3, 0.5), where RWPv is positive reward, 

RWNv is negative reward, 𝛼 is learning rate and is discount factor 𝛾. The outcomes of the 

simulation are shown in Figure 4.2. 
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QL -13.20% 13.91% 12.60% -8.92% -0.18% 13.62% 

Q2L -14.95% 17.79% 17.04% -18.06% 0.62% 16.89% 

ESarsa -12.77% 13.35% 12.70% -22.44% 0.68% 14.04% 
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Figure 4.2: Performance comparison of RL algorithms. 

Based on the simulation results, it can be observed that all RL algorithms outperform 

the ideal scheme in terms of the E[Co] parameter. However, it is important to note that 

this improvement comes at the expense of enlarging the access period, which may lead 

to a slight increase in access delay. This trade-off between access delay and energy 

consumption can be beneficial in scenarios where reducing E[Co] is more critical than 

minimizing access delay. 

On the other hand, all RL-based policies perform worse than ideal policy for other 

performance parameters such as E[D] and Last Sub. This is because the ideal policy 

aims only at minimizing the last subframe performance parameter. However, RL- 

based policies are more flexible as they can be designed to optimize other performance 

parameters by adequately defining the reward function. 
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When the proposed policies are compared within themselves, it can be seen that the 

policy based on Double Q-Learning shows the lowest performance, except for the 

parameters average number of collisions and access success probability, while the 

policy based on Expected Sarsa stands out in almost all the parameters. 
 

 

(a) 
 

(b)  
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(c)  

Figure 4.3: Comparison of the IDEAL approach with (a) Q-Learning, (b) Expected Sarsa, and 

(c) Double Q-Learning over the number of active sensors 

The graphs show that Double Q-Learning has performed well in estimating the 

number of active sensors, except where the number of active sensors peaks. However, 

it started to underestimate the number of sensors, especially after the number of active 

sensors rose above 11,000. 

On the other hand, Q-Learning and Expected Sarsa showed much better results than 

Double Q-Learning at points where the number of active sensors is maximum. Besides, 

it can be observed that the predictions made by Expected Sarsa and Q-Learning are 

similar in terms of estimating the number of active sensors. However, it is worth noting 

that Expected Sarsa tends to make predictions that follow the shape of the actual active 

sensor distribution more closely than Q-Learning. 

Finally, when the results obtained from Q-Learning and Expected Sarsa are examined, 

it is observed that both algorithms make estimates very close to the actual number of 

sensors while the number of active sensors increases, and they begin to overestimate 

the values while the number of active sensors decreases. The solution of this problem 

is one of the future research topics. Also, the reduction of the estimation oscillations, 

both in magnitude and frequency, is a topic for future research. As observed, the 

tracking of the actual number of active sensors worsens once the slope of the number 

of active sensors changes its sign. This might suggest that the state definition might 

require to be supplemented with a filtered value of the queue length estimation. That 

is, the current state definition based only of success and collisions might be insufficient 

to detect a slope sign change. 

Lastly, when we collect all the algorithms in a single graph, Figure 4.4, we can observe 

that they all have a longer access period compared to the ideal policy. Among all the 
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algorithms, Double Q-Learning exhibits the shortest access period, while Expected 

Sarsa has the slightly largest access period and produces results that are closest to the 

IDEAL. 
 

Figure 4.4: Comparison of RL algorithms in terms of active sensors. 

 

4.5. Impact of state representation selection 

In order to analyze how state representation impacts performance, we conducted a 

comparison of three   state   definitions   (𝑆𝑡1 = (𝑆, 𝐶), 𝑆𝑡2 = (𝜃𝑡−1, 𝑆, 𝐶), 𝑎𝑛𝑑 𝑆𝑡3 = 

(𝜃𝑡−1, 𝜃𝑡−2, 𝑆, 𝐶)) using the E[Co] and Last Subframe parameters. The simulation 

parameters were determined as (RWPv, RWNv, 𝛼, 𝛾) = (0.5, 1, 0.3, 0.5). The comparison 

of state representations using Q-Learning is shown in Figure 4.5. 
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Figure 4.5: A performance comparison of state representations using Q-learning. 
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Based on the results obtained, it is evident that ST3 state definition outperforms other 

state definitions, including the ideal approach, in terms of E[Co] and the Last Sub 

parameter. On the other hand, ST1 state definition exhibited the poorest results for 

both parameters. 

This means that increasing the contribution of previous states to the current state 

definition results in a reduction of the average number of collisions, shorter access 

period, and consequently, a decrease in energy consumption. 

 

4.6. Impact of action set selection 

To evaluate the impact of the action set selection on the performance, we conducted a 

comparison of two sets of actions comprising 28 and 64 elements, taking into account 

all relevant performance parameters. The simulation parameters were determined as 
(RWPv, RWNv, 𝛼, 𝛾) = (0.5, 1, 0.3, 0.5), and state definition was selected as 𝑆𝑡3 = 
(𝜃𝑡−1, 𝜃𝑡−2, 𝑆, 𝐶). 

The comparison of two sets of actions with 28 and 64 elements using Expected Sarsa is 

shown in Figure 4.6. 
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Figure 4.6: A performance comparison of two sets of actions with 28 and 64 elements using 

Expected Sarsa. 

It is observed that the action set comprising 64 elements outperformed the action set 

comprising 28 elements except AcSP parameter. This result can be explained by the 

fact that the action set comprising 64 elements offers a wider range of feasible values 

for modifying the access probability ρ. This results in the system being able to optimize 

its performance better. In contrast, the action set comprising 28 elements has a more 

limited range of feasible values, which limits the system's capability to optimize its 

performance. 
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Furthermore, an evaluation of the performance of the two action sets was conducted 

based on the queue length, defined as the number of active sensors in the queue. The 

results of this analysis are illustrated in Figure 4.7. 
 

 
(a) 

 

(b) 

Figure 4.7: Queue length comparison of two sets of actions comprising (a) 28 and (b) 64 

elements using Expected Sarsa. 
 

Even though the queue length is mostly overestimated in both scenarios, it is estimated 

more accurate when the action set consists of 64 elements. 
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4.7. Impact of reward function selection 
The effects of two reward functions, R1 and R2, on performance were investigated by 

considering all performance parameters. The simulation parameters were determined 

as (𝛼, 𝛾) = (0.3, 0.5), and state definition was selected as 𝑆𝑡3 = (𝜃𝑡−1, 𝜃𝑡−2, 𝑆, 𝐶). The selected 

reward functions are given below. 

 
R1 = [RWCOMXv, RWPv, RWNv] = [30, 0.5, 0.5] (4.2) 

R2 = [RWCOMXv, RWPv, RWNv] = [30, 0.5, 1] (4.3) 
 

The comparison of reward functions using Expected Sarsa is illustrated in Figure 4.8. 
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Figure 4.8: A performance comparison of reward functions using Expected Sarsa. 

Figure 4.8 shows that the reward functions R1 and R2 achieve almost the same results 

except for the E[Co] parameter. However, when the E[Co] parameter is examined, the 

R2 function shows significantly superior results compared to the R1 function. 

Based on the outcomes, we can say that the increase in the negative reward given when 

the collisions exceed the determined limit caused a decrease in the average number of 

collisions per successful transmission. 
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5 Conclusion and future developments 

The demand for machine type communication (MTC) and IoT communications 

through LTE-Advanced networks is increasing every passing year. However, LTE-A 

was designed for low-density human-to-human traffic and is not suitable for handling 

high-density massive machine type communication (mMTC). As a result, a large 

number of MTC devices attempting to access the base station (BS) can cause severe 

congestion that leads to performance degradation. Reinforcement learning (RL)-based 

congestion control policies are proposed to meet the need for a new congestion control 

policy that can effectively manage congestion caused by mMTC traffic. 
 

This study presents a simplified version of the Access Class Barring (ACB) algorithm 

that utilizes RL to adjust the access probability (barring rate) dynamically to maximize 

network performance. A grant-free access protocol has been used in this scenario to 

minimize the energy consumption of devices by eliminating the need for frequent 

network access requests. 
 

The main objectives of this study are to explore the potential of RL algorithms (Q- 

learning, Double Q-learning, and Expected Sarsa) for the design of congestion control 

policies for mMTC traffic in 5G networks and analyze the impact of RL parameters on 

the performance of congestion control. The performance of the RL-based congestion 

control policies was evaluated using discrete-event simulation, and they were 

compared with an ideal and a heuristic congestion control policy. The comparison was 

made by considering the performance parameters subframe throughput, average 

delay, 95 percentile of the delay, last subframe, and average number of collisions per 

successfully transmitted packet. 
 

The simulation results show that RL-based policies outperformed the ideal policy in 

reducing the average number of collusions and increasing access success probability. 

However, this performance has been achieved at the expense of extending the access 

period, which may lead to a slight increase in access delay. This trade-off between 

energy consumption and access delay can be beneficial in scenarios that focus on 

reducing average collisions rather than minimizing access delay. Since the ideal policy 

only aims to reduce the last subframe performance parameter, it shows better results 

than RL-based policies in other performance parameters such as last subframe and 

access delay. However, RL algorithms are more flexible, as they can be designed to 

optimize other performance parameters by adequately defining the reward function. 
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Comparing the proposed policies within themselves, it can be seen that the policy 

based on Expected Sarsa stands out in almost all parameters, while the policy based 

on double Q-learning showed the lowest performance, except for the parameters 

average number of collisions and access success probability. Then, the policies are 

compared in terms of access period, and it is observed that all RL-based policies have 

a longer access period than the ideal policy. Besides, Double Q-Learning exhibits the 

shortest access period, while Expected Sarsa has a slightly longer access period and 

produces results closest to the ideal policy. 
 

The study also investigated the impact of state representation, action set, and reward 

function selection on performance. It was found that increasing the contribution of 

previous states to the current state definition led to a reduction in the average number 

of collisions, resulting in a shorter access time and lower energy consumption. 

Furthermore, using an action set with more elements yielded better overall 

performance by providing a wider range of feasible values to change the access 

probability, leading to better system performance optimization. Lastly, increasing the 

negative reward given when the collisions exceed the predetermined limit resulted in 

a decrease in the average number of collisions per successful transmission. 
 

In conclusion, RL-based congestion control policies can effectively reduce collisions 

and improve network efficiency but may require careful tuning of parameters to 

achieve maximum performance across different metrics. The trade-off between access 

delay and energy consumption should be considered when designing congestion 

control policies for mMTC scenarios in 5G networks. 
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