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Subnanokelvin thermometry of an interacting d-dimensional homogeneous Bose gas
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We propose experimentally feasible means for nondestructive thermometry of homogeneous Bose-Einstein
condensates in different spatial dimensions (d ∈ {1, 2, 3}). Our impurity-based protocol suggests that the funda-
mental error bound on thermometry at the subnanokelvin domain depends highly on the dimension, in that the
higher the dimension the better the precision. Furthermore, suboptimal thermometry of the condensates by using
measurements that are experimentally feasible is explored. We specifically focus on measuring position and
momentum of the impurity that belong to the family of Gaussian measurements. We show that, generally, exper-
imentally feasible measurements are far from optimal, except in one dimension, where position measurements
are indeed optimal. This makes realistic experiments perform very well at few nanokelvin temperatures for all
dimensions, and at subnanokelvin temperatures in the one-dimensional scenario. These results take a significant
step towards experimental realization of probe-based quantum thermometry of Bose-Einstein condensates, as
it deals with them in one, two, and three dimensions and uses feasible measurements applicable in current
experimental setups.
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I. INTRODUCTION

The fundamental and technological importance of temper-
ature of quantum systems has led to the rapid development of
the theory of quantum thermometry [1,2]. Among the funda-
mental questions of interest in this subject are (i) what are the
ultimate limits on thermometry precision? and (ii) what is the
best measurement?—which is mainly relevant for quantum
systems due to the incompatibility of measurements. Often,
quantum thermometry proposals are probe based, in that,
the information about the unknown temperature of a sample
is registered on the quantum state of a probe (thermome-
ter) through some sort of sample-probe interaction [3–5]. By
performing a suitable measurement on the probe, one aims
to infer the temperature with minimal statistical error. This
forms a nondestructive thermometry strategy, thanks to the
fact that the probe size is significantly smaller than the sample,
and that the sample is not directly measured. The theory of
probe-based thermometry has been adapted to describe vari-
ous platforms such as fermionic or bosonic samples, and by
using different resources like entanglement, criticality, and
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coherence [3–20]. When probes equilibrate with the sample
the answer to (i) is given by the heat capacity of the probe, and
as for (ii), energy measurements are the most precise ones [6].
Nonetheless, we know from the theory of open quantum sys-
tems that probes rarely thermalize with the sample that they
interact with [21,22]. This phenomena is specifically relevant
at low temperatures and/or strong probe-sample coupling.
Therefore, the impact of nonthermalizing probes in thermom-
etry, specifically of bosonic gases, has been considered in
several works. For example, it is shown that depending on
the temperature regime, strong probe-sample interaction can
be beneficial or disadvantageous for thermometry [3,23]. The
extremely determinant role of spectral density at low temper-
ature thermometry was considered in [10], and the impact of
bath induced correlations present at low temperatures were
addressed in [24]. This work is dedicated to thermometry
of homogeneous or uniform ultracold Bosonic gases, in any
spacial dimensionality. We provide answers to the fundamen-
tal questions (i) and (ii) for local thermometry settings and
address the practical problem of (iii) designing experimentally
feasible measurements that perform fairly close to optimal.

Homogeneous ultracold gases represent a unique platform
to test fundamental quantum phenomena, and have a high
potential for quantum technologies. They can be realized
experimentally in very versatile and extremely controlled
setups. First realizations were obtained in a uniform three-
dimensional (3D) optical box trap, formed by a tube laser
beam and two perpendicular sheet laser beams [25] (forming
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a dark optical trap, see [26,27]). This experiment allowed for
a thorough characterization of the properties of the gas, such
as the condensate interaction energy [28], or the critical point
for condensation [29]. A similar technique was used in [30] to
realize uniform Bose gases in a two-dimensional (2D) boxlike
potential, which is confined in an annular geometry contained
between an external ring and an inner disk. Uniform ultracold
Bose gases in a variety of two-dimensional configurations
(e.g., disk, rectangle, double rectangle), were further explored
in [31]. The establishment of this neat experimental tool paved
the way to study a large collection of fundamental phenomena
in uniform gases, e.g., supercurrents [30], the Kibble-Zurek
mechanism [30–33], the power-law scaling of the coherence
length [32], the quantum version of the Joule-Thomson effect
[29], several aspects of the depletion and quasiparticle excita-
tions [34,35], or giant vortex clusters, recently [36].

Experiments in uniform Bose-Einstein condensates have
thus shown that they are outstandingly controllable systems
which allow us to test many fundamental effects. On top of
this, there is a large number of theoretical proposals which
take advantage of their properties for which the uniformity
of the gas and the associated universality of the long-wave
behavior is crucial. Moreover, the great uniformity of this
system makes it a great setup for correlation studies for very
low temperatures (T → 0 see [28]). To date, most theoret-
ical works in thermometry of cold gases have fallen short
in being applied to experiments, first, because the theory in-
volves oversimplifications as they consider toy models as a
proof of concept. Second, due to technological limitations the
thermometry schemes with ultimate precision are not exper-
imentally feasible. Nonetheless, probe-based thermometry of
ultracold gases with suboptimal precision have been experi-
mentally realized in particular cases [37].

Our proposal is therefore of large interest in studies of
uniform BECs due to its nondestructive feature, rigorous
modeling, and high precision with experimentally realizable
measurements. Such temperature estimation will boost, e.g.,
characterization of phase diagrams [38–44], or help to account
for thermal fluctuations and separate them from the quantum
ones. Furthermore, this thermometer keeps its accuracy at
very low temperatures, a regime in which the uniform gases
promise a large number of interesting effects and applications
(e.g., this system has been proposed as a quantum simulator of
the early universe [45–47] or for relativistic quantum metrol-
ogy, as acceleration produces observable relativistic effects
on homogeneous BECs [48]). Particularly, our first-of-its-
kind exploration of impurity-based thermometry in one-, two-,
and three-dimensional homogeneous Bosonic gases suggest
that the ultimate precision substantially improves by increas-
ing the spatial dimension, and thus giving more importance
to the thermal fluctuations in 3D Bosonic gases. As an ex-
ample, one can estimate the subnanokelvin temperature of a
3D Bosonic gas in a homogeneous trap with a relative error
below 13% with as few as 100 measurement runs, whereas
in the one-dimensional (1D) scenario one needs more than
500 measurements for the same precision. We further explore
more practical measurements, namely based on the position
and momentum of the impurity. Indeed, they can perform
well compared to the ultimate bound: For the same target
precision they may need twice as many measurements as
the optimal (but experimentally complex) measurement. For

FIG. 1. Schematic of our proposed thermometry protocol. The
sample is a collection of BEC atoms (represented by the blue balls)
trapped in a uniform potential/box with arbitrary dimension d ∈
{1, 2, 3}. An impurity atom (represented by the green ball) plays
the role of our thermometer. The impurity is trapped in a harmonic
potential (not shown here). After allowing for sufficiently long inter-
action, the quantum state of the impurity atom acquires information
about the temperature T of the sample. By measuring some property
of the impurity, e.g., its position fluctuations, one can infer T by
minimally disturbing the BEC sample.

the 1D scenario and at low enough temperatures the position
measurement is de facto optimal.

II. IMPURITY DYNAMICS IN A BEC

Our setup is illustrated in Fig. 1. We consider an impurity
atom with mass mI in an external potential Uext (r). The impu-
rity atom is immersed within a hosting BEC. We consider a
homogeneous BEC of dimension d . In total, the Hamiltonian
describing the noninteracting parts and all the interactions of
such a composite system is given by

H = HI + HB + HBB + HIB. (1)

Here the four terms represent the noninteracting Hamiltonians
of the impurity and of the bosons, and the Hamiltonians of
the boson-boson atomic interaction and the impurity-boson
atomic interaction, respectively. Within the second quantiza-
tion formalism, their explicit forms are [49]

HI = P2

2mI
+ Uext (r), HB =

∑
k

εka†
kak, (2)

HBB = 1

2V

∑
k,k′,q

VB(q)a†
k′−qa†

k+qak′ak, (3)

HIB = 1

V

∑
k,q

VIBρI(q)a†
k−qak. (4)

In d < 3, the external potential experienced by the bosons,
Vext (r), and that of the impurity, Uext (r), are tightly parabolic
in the directions in which the degrees of freedom of the
BEC and the impurity are frozen, so to realize the reduction
of dimensionality. In d = 3, and for d < 3 in all directions
where dimensionality is not reduced, the external potential for
the bosons is zero and the potential for the impurity Uext (r)
is parabolic with trapping frequency �. Then, in these di-
rections, the BEC is homogeneous and contained in spatial
domain of size V , say a uniform box in d = 3 [32], a quasi-2D
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uniform potential [31], or even an annulus geometry [30].
The bosonic operators ak (a†

k ) destroy (create) a boson of
mass mB having wave vector k and energy εk. The quantities
VB and VIB represent the Fourier transforms of the impulsive
(contact) boson-boson and impurity-boson interactions, re-
spectively. In addition, the impurity density in the momentum
space is ρI(q). The Hamiltonian can be recast in the form of a
Fröhlich Hamiltonian, with some constraints over the values
of the parameters of the system (like the temperature, trapping
frequency � for the impurity, or strength of interactions, see
Appendix C in [49] and for the trapped case and higher di-
mensions see [50,51]). We call the regime in which all these
conditions are fulfilled the Fröhlich regime, and we check in
all the calculations presented in this paper that indeed these
conditions are fulfilled. Then, in this regime, the Hamiltonian
can be written as

H = P2

2mI
+ Uext (r) +

∑
k �=0

Ekb†
kbk +

∑
k �=0

h̄gk · r πk. (5)

In Eq. (5) the first term represents the free kinetic energy
of the impurity. The last term is the interaction between the
position coordinate r of the impurity atom and the Bogoliubov
bosonic modes of BEC. This interaction part is linear when the
constraints over the parameters mentioned above are fulfilled
[49,51]. This part of the Hamiltonian is written in terms of
its canonical dimensionless momenta πk = i(bk − b†

k ), with
bk (b†

k ) representing the Bogoliubov annihilation (creation)
operator for the mode with momentum k. It thus has the form
of the quantum Brownian motion (QBM) model, in which
the impurity plays the role of a Brownian particle, while the
Bogoliubov modes of BEC act as an effective bosonic envi-
ronment. Such an environment forms the multimode thermal
states due to the finite temperature of the gas. The coupling
constant is given by

gk = kVk

h̄
, Vk = gIB

√
n0

V

[
(ξ |k|)2

(ξ |k|)2 + 2

]1/4

. (6)

In the above expressions, the coherence length and the speed
of sound are, respectively, given as

ξ = h̄√
2gBmBn0

, c = h̄√
2mBξ

. (7)

Within the linear Bogoliubov dispersion relation, it has been
shown that the bath is conveniently described by the super-
ohmic spectral density tensor Jd(ω) = d−1[Jd(ω)]I d×d for
the dimension d of the hosting BEC (see Appendix C and
Ref. [51] for further details). In this expression, the spectral
function Jd is shown to take the superohmic form

Jd(ω) = mI(τd )dωd+2K(ω,	d ), (8)

while we introduce the sharp ultraviolet cut-off K with a
cut-off frequency 	d. This is customary to avoid divergences
due to the rising behavior of the spectral density at high
frequencies. Here the d-parametrized characteristic time τd is
given by

(τd )d = Sd(ηd )2

2(2π )d mI

(
mB

[gB,d][
d

d+2 ]n0,d

)( d+2
2 )

. (9)

For d = 1, 2, and 3 we have S1 = 2, S2 = 2π , and S3 = 4π ,
respectively, while the d-parametrized bath characteristic fre-
quency is 	d = (gB,dn0,d )/h̄. We have additionally written
the impurity-Boson coupling in the units of the boson-boson
coupling as ηd = (gIB,d/gB,d ). In addition, the d-dimensional
density is n0,d = (n0,1)d . The external potential for the BEC
atoms, which contains the transverse harmonic confinement of
BEC for d < 3 that realizes the reduction of dimensionality,
is explicitly given by

Vext (r) =
⎧⎨
⎩

(1/2)mBω2
⊥(y2 + z2), for d = 1,

(1/2)mBω2
z (z2), for d = 2,

0, for d = 3.

(10)

The boson-boson coupling gB,d is written in terms of the exter-
nal trap frequency ωd = {ω1 = ω⊥, ω2 = ωz, ω3 = 0} for the
dimension involved, and it has the expression [52,53]

gB,d = Sd h̄2a3

mB(
√

h̄/mBωd )
3−d

. (11)

This makes the cases d = 1 and d = 2 to be quasi-1D and
quasi-2D, respectively. In Ref. [51], the above bath character-
ization has been employed to derive the equations of motion
(EOM) of the impurity position coordinates, while taking into
account the bath memory effects. This is accounted for by
the time-nonlocal form of the damping kernel with its tensor
component �xx

d , and x in one of the relevant directions (in
d = 2 and d = 3 similar expressions are found in the other
directions). The harmonically bond impurity motion is driven
by the effective Brownian stochastic force Bx(t ), which is
further formed by the Bogoliubov modes of the BEC. The
corresponding EOM reads

ẍ(t ) + �2x(t ) + ∂t

∫ t

0
�xx

d (t − s)x(s)ds =
(

1

mI

)
Bx(t ),

(12)

with x representing the position of the impurity in one of the
relevant directions. The solution of this equation is shown to
take form

x(t ) = G1,d(t )x(0) + G2,d(t )ẋ(0)

+ (1/mI )
∫ t

0
dsG2,d(t − s)Bx(s), (13)

where we formulate the Green’s functions G1,d and G2,d

through their Laplace transforms

LS,d[G1,d(t )] = S
S2 + �2 + SLS,d

[
�xx

d (t )
] , (14)

LS,d[G2,d(t )] = 1

S2 + �2 + SLS,d
[
�xx

d (t )
] . (15)

By introducing the sharp cutoff given by K = (	d − ω),
with  as the Heaviside step function, the d-parametrized
damping kernel reads

LS,d
[
�xx

d (t )
] = (	d )d+2(τd )d

2F1
(
1, d+2

2 ; d+4
2 ; − (	d )2

S2

)
d (d + 2)S ,

(16)

with 2F1[·] denoting the hypergeometric function.
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In the following we aim to use the impurity motion sta-
tistical properties to estimate the temperature of the BEC,
generalizing to any dimension and homogeneous gases the
proposal introduced in [3] for one-dimensional and trapped
gases. The quadratures of interest are the position and mo-
mentum of the impurity. Additionally, the Gaussian nature of
its dynamics is fully characterized by its covariance matrix.
In order to quantify the dynamics of the impurity, we start
by writing a formal representation of the steady state covari-
ance matrix of the impurity. It is important to note that the
steady state covariance matrix is diagonal taking the form
σ ≡ diag(�x2,�p2). Here �x2 and �p2 (with zero-mean
values) are the steady state position and momentum variances
of the impurity mechanical mode, which are appropriately
scaled such that the uncertainty relation reads �x�p � 1
[54]. The fundamental expressions of the position and mo-
mentum variances in the unscaled coordinates has explicit
connectivity to the imaginary part of the susceptibility χ̃ ′′

d (ω)
(fluctuation-dissipation theorem), that is,

〈x2〉d = h̄

π

∫ ∞

0
dω coth

(
h̄ω

2kBT

)
χ̃ ′′

d (ω), (17)

〈p2〉d = h̄m2
I

π

∫ ∞

0
dω ω2 coth

(
h̄ω

2kBT

)
χ̃ ′′

d (ω), (18)

where

χ̃ ′′
d (ω) = 1

mI

ξ xx
d (ω)ω[

ωξ xx
d (ω)

]2 + [
�2 − ω2 + ωθ xx

d (ω)
]2 . (19)

We point out that any kind of superohmicity (and also the
dimensional information) is captured here by the functions
ξ xx

d (ω) and θ xx
d (ω) which are, respectively, the Fourier domain

real and imaginary part of the damping kernel [cf. Eq. (16)].

III. THERMOMETRY OF BEC IN DIFFERENT
DIMENSIONS

Estimation theory, in part, deals with inference of a pa-
rameter P from a set of measurement outcomes with the
aim of minimizing the estimation error. This set is collected
through performing a positive operator-valued measurement
(POVM) on the quantum system, with a density matrix ρ̂(P )
that depends on the parameter. Let {�̂k

x} represent the POVM
elements of the measurement. Here k denotes the choice of
measurement while x labels different outcomes. Then �̂k

x � 0
and we have

∫
dx �̂k

x = I, ∀k. The uncertainty (randomness)
in the POVM outcomes allows us only to infer the parameter
with limited precision. According to the Crámer-Rao bound
for an unbiased estimator the estimation error—as quantified
by the mean squared error and denoted by Var(P, k)—is
lower bounded by the inverse of the Fisher information,
which is Var(P, k) � [NF (P, k)]−1. Here N is the number
of (independent) measurement runs and appears as a result of
the central limit theorem. The Fisher information F (P, k) is
given by

F (P, k) =
∫

[∂P ln p(x|P, k)]2 p(x|P, k)dx, (20)

with p(x|P, k) = Tr[ρ̂(P )�̂k
x] being the distribution of the

measurement outcomes, conditioned on the true value of the

parameter to be P and the measurement k being performed.
Note that the Cramér-Rao bound can be saturated using the
maximum likelihood estimator.

The Fisher information clearly depends on the specific
measurement performed, hence the argument k. One may
optimize it over all possible measurements to get the so called
quantum Fisher information (QFI) that quantifies yet another
fundamental lower bound on the estimation error regardless
of the measurement. The QFI can be written as [55,56]

F Q(P ) := max
k

F (P, k) = Tr[ρ̂(P )	̂2(P )], (21)

where the Hermitian operator 	̂(P ) is the symmetric logarith-
mic derivative (SLD) defined as

∂P ρ̂(P ) ≡ {	̂(P ), ρ̂(P )}/2. (22)

In fact, a measurement performed in the basis of SLD is
optimal.

Generally speaking, finding the optimal measurement
and/or the ultimate error bound is a challenging task.
Nonetheless, as we proved in the previous section, here we
are dealing with a bosonic Gaussian system, which is fully
characterized by its displacement vector and covariance ma-
trix. It has been shown that the QFI of Gaussian systems can
be written in terms of the covariance matrix σ, as follows
[57–60]:

F Q(P ) = 1

2

Tr[(σ−1[∂Pσ])
2]

1 + μ2
+ 2

(∂Pμ)2

1 − μ4
. (23)

Here μ = 1/
√

�x2�p2 is the purity function of the impu-
rity state. The optimal measurement that achieves the QFI
can be also found analytically. For our thermometry problem
we have P = T , and use Eqs. (17) and (18) to obtain the
optimal measurement. This is generally a projective measure-
ment in the basis of 	̂(T ) ≡ Cx(T )(x̂2 − 〈x̂2〉) + Cp(T )( p̂2 −
〈p̂2〉), where the coefficients Cp(T ) and Cx(T ) are temperature
dependent [57,61]. While measuring position and momen-
tum are experimentally feasible via time-of-flight or in situ
absorption imaging, unfortunately performing the optimal
measurement is often not practical since it involves both x̂2

and p̂2.
For any measurement we let our figure of merit to be

δT (k)/T :=
√

NT 2F (T, k) which is the relative temperature
error using the measurement k and maximum likelihood es-
timator; the smaller it is, the more precise the thermometer
will be. One has δT (k)/T �

√
NT 2F Q(T ) = δT (	̂)/T =:

δTmin/T . In what follows we examine the optimal and ex-
perimentally feasible suboptimal measurements in different
spacial dimensions.

A. The optimal thermometry and the fundamental bounds

In Fig. 2 we fix the temperature, and show the relative tem-
perature error δTmin/T versus the dimensionless system-bath
coupling η. The relative error peaks at some coupling ηp,d that
depends on the temperature and the dimensionality. For the
regime where η < ηp,d, the error increases as we strengthen
the system-bath coupling. On the other hand, for η > ηp,d,
the opposite is observed. For the latter case, however, the en-
hancement of the coupling is limited by the maximum allowed
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FIG. 2. Minimum relative temperature error—obtained by mea-
suring 	̂—as a function of the dimensionless system-bath coupling.
Solid blue, dotted green, and dashed orange curves represent the
1D, 2D, and 3D cases, respectively. The corresponding background
vertical lines set the upper bound of the coupling ηc,d for the validity
of the Fröhlich regime. The three-dimensional scattering length is
a3 = 100a0. The 1D density is kept to be n0,1 = 3 (μm)−1. For the
cases of quasi-1D and 2D settings, we have set bosons transverse
confinement frequency to be ω⊥ = ωz = 2π × 34 kHz. These results
correspond to T = 0.2 nK for all the dimensions. The impurity trap-
ping frequency is � = 2π × 10 Hz. The number of measurements
are N = 1. These results refers to a potassium K impurity atom with
mass mI = 6.4924249 × 10−26 kg, immersed in a gas of rubidium Rb
atoms with mass mB = 1.44316060 × 10−25 kg.

system-bath coupling ηc,d in order to keep the calculations
within the Fröhlich regime (see caption of Fig. 2). As shown
in Appendix A, for all the dimensions, the thermal statistics of
the impurity is mostly contributed by the ground state for η <

ηp,d. Such regime would then reflect a state with high purity.
For the case of η > ηp,d higher order Fock states significantly
contribute in the construction of such statistics and the state
becomes more mixed. This leads to the results that smaller
values of the coupling—as characterized by η < ηp,d—are
suitable for thermometry only as long as the system closely
follows the ground state with high purity. Yet, for a strongly
coupled bath with the system (η > ηp,d)—where bath induced
thermalization occurs—the large coupling values give better
thermometric performance. However, the latter regime is al-
ways bounded above by some critical coupling in the present
physical setup. Finally, from Fig. 2, the peak error is rela-
tively reduced as we move to higher dimensions reflecting
that higher dimensions are better for thermometry. In order
to further analyze the performance of the thermometer, we
plot the relative temperature error versus the true temperature
of the hosting BEC for different dimensions in Fig. 3. For
temperature range of interest—0.2 � T � 10 nK—higher d
always leads to smaller error. This is an evidence that for high
enough temperatures larger nonohmicity (which is related to
higher dimension) leads to better thermometry precision. In
[23], a similar behavior is reported. There it is also shown
that at extremely low temperatures, the opposite behavior is
observed, i.e., lower nonohmicity leads to higher precision.
Nonetheless, for our BEC setup such extreme lows are irrele-
vant as they fall even below the picokelvin regime. For d = 3

FIG. 3. Minimum relative temperature error as a function of the
temperature. We set the coupling to η = 0.3. For comparison we also
plot the error of a thermal state, which matches the d = 3 case for the
range of temperatures considered here. The rest of the parameters are
the same as in Fig. 2.

scenario we observe that the δTmin/T  1.25 at T = 0.2 nK
for a single shot. Thus with N = 100 measurements one gets
a relative error of  12.5%. In d = 1 the same precision
requires about N = 400 measurements. For temperatures T �
1 nK the relative error in two and three dimensions saturate
to δTmin/T  1, i.e., one can have 10% error with N = 100
measurements. This is in fact a result that one expects when
the impurity is thermalized and the ratio T/� � 1. For the
one-dimensional scenario, the saturation of error only appears
for T � 10 nK. We also show the relative error down to 50 pK
in Appendix B, serving as a guide to the eye about the error
enhancement at low temperature.

B. Suboptimal thermometry and feasible measurements

Now that we have found the ultimate precision bounds
on estimating the temperature of the BEC, we move forward
to examine the estimation error by measuring more practical
observables, namely an individual measurements of either on
position or momentum of the impurity [62].

We note that both position and momentum belong to the
family of Gaussian measurements, and can be fully char-
acterized by an associated covariance matrix σk , with k ∈
{x̂, p̂} labeling the measurement. In particular, we have σ x̂ =
lim

R→∞
diag(1/R, R), and σ p̂ = lim

R→∞
diag(R, 1/R), with R being

some squeezing parameter. When performed on a system with
covariance matrix σ, the corresponding Fisher information of
these measurements is given by [61]

F (T, k) = 1
2 Tr{[(σk + σ )−1∂T (σk + σ)]2}. (24)

By doing some algebra we find

F (T, x̂) = |∂T 〈x̂2〉|2
2〈x̂2〉2 = |∂T 〈x̂2〉|2

Var(x̂2)
, (25)

which is nothing but the (inverse) of error propagation for
the observable x̂2. A similar relation connecting the Fisher
information of measuring p̂ and the error propagation of the
observable p̂2 holds by changing x̂ → p̂.
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FIG. 4. Upper panels: Relative error as a function of coupling based on quadrature measurements (x̂ and p̂) as well as the optimal
measurement 	̂. (a), (b), and (c) The 1D, 2D, and 3D cases, respectively. For all plots we set η = 0.6 and N = 1. Lower panels: Corresponding
to each case above, the Wigner function of the impurity state is plotted against the phase space variables αr and αi and for T = 0.2 nK. In the
1D case, an enhanced position squeezing is obtained, while as we move to higher dimensions, we obtain a lesser position squeezing effect.

In Figs. 4(a)–4(c) we depict, for all dimensions, the
relative temperature error by measuring position and momen-
tum and compare them to the optimal—yet challenging—
measurement. Quite notably, in the quasi-1D setting, the
position-based measurement reaches the optimal profile in
the low temperature regime, i.e., below T � 1 nK. This is
because of the notable position squeezed states of the impurity
motion in the 1D case. As such, the Fisher information scales
as F (T, x̂) ∼ 1/�x4. Therefore, the small amount of noise in
the position would lead to an enhanced value of the Fisher
information and hence a smaller value of the relative error.
However, this is obtained at the expense of the error enhance-
ment in the momentum-based measurement. The squeezing
effects are shown through the Wigner function (for its expres-
sion, see Appendix A) of the impurity state as in Fig. 4, where
it is plotted against the phase space variables αr and αi. For
higher dimensions, there is a less position squeezing effect
and either of the measurements would result in the equivalent
amount of error. For the 2D case, the separation of the error
between position and momentum becomes lesser and both of
them are always away from optimality, but within the same or-
der of magnitude as the optimal measurement. For the 3D case
the relative error for position and momentum measurements
is equal, which is a reflection of the fact that both quadratures
have the same temperature dependence. In this dimension the
suboptimal measurements are not quite effective in extreme
lows, but for T � 1 nK they are within the same order of mag-
nitude as the optimal measurement. Lastly, let us comment
that as a result of thermalization at high enough temperatures
(T � 10 nK for 1D, T � 5 nK for 2D, and T � 1 nK for 3D)
one has δT (k)/T ≈

√
2δTmin/T =

√
2 for k ∈ {x̂, p̂}. This

means with measuring position/momentum twice as many

times as the optimal measurement one can achieve the same
target precision.

Perhaps the easiest way of performing the measurement of
mean square displacement or momentum fluctuations could
be done in the following scenario: Instead of looking at a
single impurity, we can consider, say, 1000 to a few thou-
sand of noninteracting impurities being polarized with cold
Fermionic atoms. This idea contradicts in a sense the principal
idea of the sample-probe interactions, where the probe size
is significantly smaller than the sample, and that the sample
is not directly measured. Still, with a condensate, say, 107

bosons, a few thousand probing, noninteracting Fermions will
not make much difference. On the other hand, both their
spatial and momentum density distributions are easily acces-
sible experimentally: the former either through nondestructive
light (refractive index) imaging or, more sophisticated, atomic
microscopy, the latter through opening the trap for Fermions
and looking at the momentum distribution in the time-of-flight
measurement [63,64].

IV. CONCLUSION

Using an individual impurity as a temperature probe is
crucial in nondemolition thermometry of cold gases; it has
been studied theoretically in abstract models as well as
more comprehensive ones in both fermionic and bosonic
gases [3,7,23,24,65]. Recently, the idea was even put into
experimental examination in the millikelvin thermometry of
fermionic gases [37]. The results of the current work pave the
path towards implementation of impurity-based thermometry
in more versatile experimental setups of Bosonic gases in
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different spacial dimensions d = 1, d = 2, and d = 3, for
example [66–75].

Our results show that, for the temperature range 0.2 �
T � 10 nK, as one decreases the spatial dimension d the
relative error reduces. Specifically, in the 3D scenario and for
temperatures as small as T ≈ 0.2 nK one can achieve the min-
imum relative error of 12.5% by N = 100 measurements. To
achieve the same precision in the 1D case, one should perform
more than N = 400 measurements. It must be noted that these
are the fundamental bounds characterized by the quantum
Cramér-Rao bound, they are in principle achievable, i.e., there
exist physical measurements that can achieve such precisions.
Nonetheless, experimental limitations will not allow for their
realization. What is more doable are suboptimal Gaussian
measurements, namely measuring position and momentum of
the impurity.

In the 3D case and for T � 0.5 nK these measurements
should be repeated an order of magnitude more than the
optimal measurement in order to reach the same precision.
For the 2D scenario one only requires few times more repeti-
tions, while for the 1D scenario the position measurement is
optimal. At higher temperatures, both position and momen-
tum measurements perform very well and their relative error
can be as good as the minimum error with twice as many
measurements.

Apart from the experimental realization of our analysis,
a possible future direction is the theoretical development of
thermometry of bosonic gases by means of dynamical probes,
i.e., measuring the probe before it reaches the steady state.
This can be of more use in scenarios with long thermalization
time. In such settings, the initial state of the impurity plays
a crucial role in thermometry precision, and thus quantum
resources at the initial state can be exploited for thermometry.
Among these resources one can refer to the initial squeezing
of the probe. It is well known that squeezing can improve
metrology precision in phase estimation problems—i.e., when
the parameter is encoded via a unitary dynamics [76–79].
While thermometry generally involves dissipative encoding
of temperature, some recent works have shown that for short
enough times squeezing can be indeed useful for thermometry
[80]. Although this result was seen for Markovian dynamics,
one can expect similar results when considering the BEC
dynamics that we describe here, which are not necessarily
Markovian.

In this work we mainly focused on local thermometry,
where the parameter (temperature) is a priori known with
a good precision, and one aims at estimating fluctuations
around it. In some problems, however, one has a significant
initial ignorance about the true parameter. These problems
are termed global temperature estimation. For local parameter
estimation problems the frequentist approach is the favorite,
where the Cramér-Rao bound (CRB)—like those presented
in this work—are valid even at single shot N = 1. When
dealing with global schemes, the CRB is generally valid only
at the asymptotic limit (N → ∞). However, for the Gaussian
measurements (position and momentum) that we use in this
work, the Cramér-Rao bound is always valid, even for N = 1
and global schemes. This is so because when we perform these
Gaussian measurements the probability of outcomes, i.e.,
p(x|P, k), belongs to the family of Gaussian probability dis-
tributions, for which the Cramér-Rao bound saturates in single

shot—by means of a maximum likelihood estimation [81,82].
Beyond these measurements, e.g., for the optimal measure-
ment, the best scheme for global thermometry remains the
Bayesian approach that has been the focus of several recent
works [18,83–87]. We leave this as an interesting problem
for future exploration. Finally, taking the temperature of pure
Bosonic gases, aligned with the recently proposed framework
of [88], is an interesting problem that deserves further investi-
gation.
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APPENDIX A: THERMAL STATISTIC OF THE IMPURITY

In order to calculate the thermal statistics of the impurity,
we formally write the density operator of the impurity ρ̂I.
Any physical state being represented by the density opera-
tor is bounded since its Hilbert Schmidt norm is finite. It
is then possible to expand a boson mode state in the basis
{D̂†(λ)∀λ ∈ C, λ = λr + iλi}. Hence, one can write the state
of the impurity as [89]

ρ̂I = 1

π2

∫
d2λ χ (λ, λ∗)D̂†(λ). (A1)

Here D̂†(λ) is the conjugate transpose of the coherent dis-
placement operator D̂(λ) = eλâ†−λ∗â and d2λ = dλrdλi is the
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FIG. 5. Phonon number distribution of the impurity motion. Left, middle, and right columns represent the 1D, 2D, and 3D cases,
respectively. The chosen couplings regimes and their values are shown in the inset of each of the figures. Rest of the parameters are the
same as in Fig. 2.

measure for a two-dimensional integral corresponding to real
part λr and imaginary part λi of the complex variable λ. For
a canonical position x̂ and momentum p̂ variables associated
with the harmonic oscillator, they can be expressed in terms of
the quadrature x̂ = (â + â†)/

√
2 and p̂ = i(â† − â)/

√
2, re-

spectively. The commutation relation therefore reads [x̂, p̂] =
i. Here â (â†) is the annihilation (creation) operator for the
bosonic mode. In such coordinates α = (1/

√
2)(〈x̂〉 + i〈p̂〉).

This reflects that the αr and αi are simply the scaled posi-
tion and momentum expectation value and therefore a valid
representation of the phase space. The symmetric ordered
characteristic function χ (β, β∗) is the expectation value of
the Weyl operator, given by χ (β, β∗) = Tr[ρ̂ID̂(β )]. If the
dynamics is Gaussian, the quantum characteristic function
is fully captured by the covariance matrix by the expres-
sion χ (β, β∗) = e−(1/2)x σ xT

. Here σ is the covariance matrix
associated with the mode and x = (βi, βr ) are the phase
space variables [90]. The Wigner quasiprobability distribution
function W (α, α∗) is the two-dimensional complex Fourier
transform of the characteristic function such that

W (α, α∗) = 1

π2

∫
d2βχ (β, β∗)e−(βα∗−β∗α). (A2)

In addition, the phonon number statistics, that is, the proba-
bility of finding n phonon in the mode, is connected to the
density operator by the expression P(n) = 〈n|ρ̂I|n〉. This can
be calculated via the matrix elements of the displacement
operator being evaluated in the Fock basis and given by the
expression [91]

〈n|D̂(α)|m〉 =
√

m!

n!
e−|α|2/2(α)n−mLn−m

m [|α|2], n � m,

(A3)

where Ln−m
m [·] are the generalized Laguerre polynomials. In

the present case we are mainly interested in the diagonal en-

tries, therefore we have m = n. We plot the impurity phonon
number distribution both for η < ηp,d and η > ηp,d for each
dimension in Fig. 5. For the η < ηp,d thermal statistics of the
impurity are almost fully contributed by the ground state while
for η > ηp,d, higher order Fock states contribute significantly
in the construction of the thermal phonon statistics.

APPENDIX B: RELATIVE ERROR FOR EXTENDED
TEMPERATURE RANGE DOWN TO 50 pK

In this Appendix we show the relative error for the low
temperature domain down to 50 pK. This reflects how much
the relative error enhances as we move to lower values of the
temperature. As such, the cases based on optimal measure-
ments are shown in Fig. 6. Here the relative error of the 3D
case starts deviating from the thermal profile at temperature

FIG. 6. Same as in Fig. 3, only the temperature domain has been
extended within the interval 0.05 � T � 10 nK.
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FIG. 7. Same as in the upper panel of Fig. 4 of the main text, however, temperature domain has been extended within the interval 0.05 �
T � 10 nK.

below T  60 pK. Moreover, the relative errors based on the
suboptimal measurements are shown in Figs. 7(a)–7(c).

APPENDIX C: SPECTRAL FUNCTION

The Bogoliubov bosonic environment is characterized
through the self-correlation function

C(τ ) =
∑
k �=0

h̄gk〈πk(τ )πk(0)〉, (C1)

with gk = gk gk
T representing the coupling tensor in a given

dimension d . The environment at the finite temperature T fol-
lows the Bose-Einstein statistics. Therefore, the mean number
of bosons in each of the bath modes is given by

〈b†
kbk〉 = 1

exp(h̄ωk/kBT ) − 1
. (C2)

In order to calculate the correlation, we invoke the expression
for the dimensionless momenta and make use of Eqs. (C2) and
(C1) which results in

C(τ ) =
∑
k �=0

h̄gk

[
coth

(
h̄ωk

2kBT

)
cos(ωkτ ) − i sin(ωkτ )

]

≡ ν(τ ) − iλ(τ ), (C3)

where the real and imaginary part of the self-correlation func-
tion are given by

ν(τ ) =
∫ ∞

0
J (ω) coth

(
h̄ω

2kBT

)
cos(ωτ )dω, (C4)

λ(τ ) =
∫ ∞

0
J (ω) sin(ωτ )dω = −mI�̇(τ ). (C5)

Moreover, the damping kernel �(t ) can be obtained from the
expression

�(t ) = (1/mI )
∫ ∞

0
dω(1/ω)J (ω) cos(ωt ). (C6)

In the above expressions we have introduced the spectral
density J (ω), which fully characterizes the effects of the bath
on the system. This information is contained in the coupling
strengths of the various modes of the bath with the system.
The spectral density is defined as

J (ω) =
∑
k �=0

h̄gkδ(ω − ωk ). (C7)

The expression for the spectral density tensor for a given
dimension has been formulated in Ref. [51]. This has been
shown to take the form

Jd(ω) = d−1[Jd(ω)]I d×d, (C8)

where I d×d is the identity matrix and the scalar spectral func-
tion Jd(ω) in dimension d is given by

Jd(ω) =
(

Sd(
√

2)d (ηd )2(	d )d+2

(2π )d

)

×

⎛
⎜⎝

[( mB

[gB,d][ d
d+2 ]n0,d

)(√
ω2

(	d )2 + 1 − 1
)]( d+2

2 )

(√
ω2

(	d )2 + 1
)

⎞
⎟⎠. (C9)

Here for d = 1, 2, and 3 we have S1 = 2, S2 = 2π , and
S3 = 4π , respectively. Moreover, we have introduced the
characteristic frequency 	d = (gB,dn0,d )/h̄. We also write the
impurity-boson coupling in the units of the boson-boson cou-
pling as ηd = (gIB,d/gB,d ), and 	d naturally appears as the
characteristic cut-off frequency. Within the low frequency part
given by ω � 	d, and together with the introduction of the
cutoff, the spectral function takes the form as presented in
Eq. (8) of the main text [51].
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