
Phys. Fluids 34, 123328 (2022); https://doi.org/10.1063/5.0126434 34, 123328

© 2022 Author(s).

Assessment of the mixing-limited hypothesis
with first-principles simulation results 
Cite as: Phys. Fluids 34, 123328 (2022); https://doi.org/10.1063/5.0126434
Submitted: 15 September 2022 • Accepted: 02 December 2022 • Accepted Manuscript Online: 05
December 2022 • Published Online: 29 December 2022

 David P. Schmidt,  Marco Arienti,  José M García-Oliver, et al.

COLLECTIONS

 This paper was selected as Featured

ARTICLES YOU MAY BE INTERESTED IN

Mesoscopic simulation of liquid bridge spreading under squeezing of parallel plates
Physics of Fluids 34, 123101 (2022); https://doi.org/10.1063/5.0127420

Electric field enhancement of pool boiling of dielectric fluids on pillar-structured surfaces: A
lattice Boltzmann study
Physics of Fluids 34, 123327 (2022); https://doi.org/10.1063/5.0122145

Pore-scale modeling of multiphase flow in porous media using a conditional generative
adversarial network (cGAN)
Physics of Fluids 34, 123325 (2022); https://doi.org/10.1063/5.0133054

https://images.scitation.org/redirect.spark?MID=176720&plid=1953425&setID=405127&channelID=0&CID=715940&banID=520851912&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=f4521c2804b4749c1ac687d9a9c83c3f141667e9&location=
https://doi.org/10.1063/5.0126434
https://aip.scitation.org/topic/collections/featured?SeriesKey=phf
https://doi.org/10.1063/5.0126434
https://orcid.org/0000-0003-4876-1143
https://aip.scitation.org/author/Schmidt%2C+David+P
https://orcid.org/0000-0001-8166-0016
https://aip.scitation.org/author/Arienti%2C+Marco
https://orcid.org/0000-0002-2676-9681
https://aip.scitation.org/author/Garc%C3%ADa-Oliver%2C+Jos%C3%A9+M
https://aip.scitation.org/topic/collections/featured?SeriesKey=phf
https://doi.org/10.1063/5.0126434
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0126434
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0126434&domain=aip.scitation.org&date_stamp=2022-12-29
https://aip.scitation.org/doi/10.1063/5.0127420
https://doi.org/10.1063/5.0127420
https://aip.scitation.org/doi/10.1063/5.0122145
https://aip.scitation.org/doi/10.1063/5.0122145
https://doi.org/10.1063/5.0122145
https://aip.scitation.org/doi/10.1063/5.0133054
https://aip.scitation.org/doi/10.1063/5.0133054
https://doi.org/10.1063/5.0133054


Assessment of the mixing-limited hypothesis
with first-principles simulation results

Cite as: Phys. Fluids 34, 123328 (2022); doi: 10.1063/5.0126434
Submitted: 15 September 2022 . Accepted: 2 December 2022 .
Published Online: 29 December 2022

David P. Schmidt,1,a) Marco Arienti,2 Jos�e M Garc�ıa-Oliver,3 and Jos�e M. Pastor3

AFFILIATIONS
1Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
2Thermal/Fluid Sciences and Engineering, Sandia National Laboratories, Mail Box 905 2, Livermore, California 94550, USA
3CMT-Motores T�ermicos, Universitat Politècnica de València, 46022 Valencia, Spain
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ABSTRACT

Starting with two well-tested, one-dimensional models of non-evaporating, mixing-limited sprays, governing equations for liquid mass and
two-phase momentum for each model can be manipulated to reveal the formal similarity between momentum and liquid volume fraction.
The consequence of this similarity is that momentum, when properly non-dimensionalized, is equal to the liquid volume fraction at any time
and at any axial location within a non-evaporating, mixing-limited spray with a constant rate of injection. An alternative, the more well-
known similarity between mass fraction and velocity, is also mathematically evident. We compare predictions of this mathematical analysis
to high-fidelity, first-principles simulation results of a non-evaporating spray to assess the validity of the theoretical similarity. The analysis
of the simulation not only confirms the mathematical derivations but also points to subtlety in the definition of the spray velocity. In particu-
lar, the density-weighted velocity is required to observe similarity. The requirement of density-weighted velocity means that similarity tests
require knowledge of both phase velocities. The agreement also works to confirm that the first-principles simulations are indeed mixing-
limited, despite the finite nature of domain size and resolution.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0126434

I. INTRODUCTION

A crucial idea in spray research from the late 20th century was
that the locally homogeneous flow (LHF) assumption could be used to
model spray behavior. The main advocate of this theory, G. Faeth,
explained that “The approximation requires that all phases have the
same velocity and temperature, and that phase equilibrium is main-
tained at each point in the flow. Therefore, the use of an LHF model
implies that the process is mixing controlled.”1 Experimental data col-
lected for evaporating sprays supported this model.

The realization that high-speed sprays could be mixing-limited
fundamentally changed the understanding of sprays. The pivotal
assumption of locally homogeneous flow is closely related to the
assumption of mixing-limited flow. Siebers2 found that spray evolu-
tion correlated with global parameters, such as spray angle, and that,
under engine-relevant conditions, interfacial details played no
observable role in spray evolution. Apparently, the interfacial area is
so great that the mixing of ambient gas into the spray is the limiting
factor in interfacial momentum and mass exchange. Consequently,
spray evolution is dominated by turbulent mixing between the liquid
and the ambient gas. In the absence of interfacial details, which

Siebers showed was not germane, the view of the spray was more of
a continuum, such as would occur in the turbulent mixing of a high
density gas jet.

Similar to these integral analyses, earlier work by Faeth1 and Ruff
et al.3 observed a parallel structure in the governing partial differential
equations for transport of mixture fraction and momentum. Like the
more recent works, the parallelism indicates similitude of velocity and
mixture fraction. Neglecting pressure gradient, viscous energy dissipa-
tion, and assuming unity Lewis number and Schmidt number produ-
ces differential transport equations for mass, momentum, and energy
that are identical once non-dimensionalized. The dimensionless
boundary conditions are identical, leading to the existence of identical
solutions among the governing equations.

This advance in our understanding of sprays led to a new class of
one-dimensional, transient spray models that tended to have a set of
common features and assumptions. The models extended the steady-
state LHF models1 to time-varying sprays with arbitrary rates of injec-
tion. These models were inspired by existing gas jet theories and
assumed some shape of the radial profile.4 The models could then
emphasize evolution of either centerline or transversely averaged
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quantities. These models delivered fundamental insights into spray
physics at a remarkably low cost.

One of the more useful models of transient, non-evaporating
sprays was developed by Musculus and Kattke5 based on the principle
of mixing-limited spray evolution.2 This model includes the ability to
capture transient effects and radial profiles in liquid volume fraction
(LVF) and velocity. The validity of the model was checked against
experimental data from subsequent studies by Musculus,6 Pickett
et al.,7 Kook and Pickett,8 and Bardi et al.9 Often, the model is
employed by fitting spray angle or coefficient of area of the nozzle, but
the wide applicability and excellent agreement is still noteworthy.

Another relevant model is the one originally presented by Pastor
et al.10 (hereafter, the DICOMmodel). This model is contemporary to
the one by Musculus and Kattke, and it follows a very similar formula-
tion as the discussion below will show. The performance of both mod-
els is similar, but DICOM has been extended under inert conditions to
include real gas evaporation properties,11 as well as heat release-
derived changes in spray mixing behavior12,13 and even detailed chem-
istry effects that lead to ignition delay or lift-off length predictions.14

Since the evolution of these fundamental models, validated only
against experimental data, the spray community has enjoyed the advent
of highly resolved simulations based on first principles.15–19 These high-
fidelity simulations offer the potential for assessing the assumptions of
LHF and mixing-limited physics in a new way. While experiments offer
the undeniable veracity of reality, the simulations offer a nearly unlim-
ited ability to sample data that are experimentally inaccessible.

This article revisits the assumptions of both previous one-
dimensional models for transient sprays using recently developed
high-fidelity numerical results. We will study a canonical single-hole,
plain orifice, spray. The focus of the present work is on non-
evaporating conditions, for the sake of clarity. The present work will
investigate the evidence of similitude between mass and momentum
transfer and the evidence of mixing-limited behavior in the simula-
tions. These kinds of similarities are a powerful tool for both modeling
and experimental characterization of sprays, as demonstrated by the
work of Buchmann et al.20 The results will show new implications of
the locally homogeneous flow modeling assumptions and reveal to
what degree we may simplify the behavior of sprays to what amounts
to a gas jet analogy.

The present work will extend a mathematical analysis of the one-
dimensional models to show that the similarity is not limited to veloc-
ity and liquid mass fraction, as the past literature has emphasized.1,3,6

Manipulation of the equations show that another formal similarity
exists between liquid volume fraction and momentum. In addition,
the analysis shows both consistency and a few subtle differences
between one-dimensional models. The fact that two different one-
dimensional models yield the same similarity relationships indicates
that the results of this paper are not tied to any one model.

The present work will examine the similarity relationships pre-
dicted by the one-dimensional models and then look for these similarities
in high-fidelity CFD results, since finding them in experimental results is
very difficult. These similarities, where present, can be used to predict
one quantity frommeasurements of a different, similar, quantity.

II. ONE-DIMENSIONAL SPRAY MODELING

Our analysis begins with the governing equations used in 1D
spray models. In general, a one-dimensional finite volume approach is

employed together with an a priori assumed radial profile for some of
the transported variables, as illustrated in Fig. 1.

These 1D spray models make some general hypotheses that apply
to any type of spray flow according to the following list:

1. Symmetry on the spray axis with no swirl.
2. Incompressible flow.
3. Turbulent (and molecular) viscous forces acting on each control

volume are neglected. This assumption does not mean that tur-
bulent effects are small, but that they disappear due to the type
of control volume, which spans over the spray cross section until
a radial position where gradients are very small.

4. Axial mixing due to molecular or turbulent diffusion is
neglected, i.e., conservation equations only need to consider axial
convection. This is a typical simplification used in boundary
layer flows.21

5. Pressure gradients are neglected.
6. Radial profiles are defined for some of the transported variables.

One of the variables is the axial component of the velocity vector,
linked to the corresponding momentum equation. A second variable
has to be linked to the fuel transport equation. In this case, liquid
volume fraction is used by Musculus and Kattke,5 while mass frac-
tion is used in DICOM.10 In DICOM, the mathematical formulation
of these self-similar profiles remains constant along the whole calcu-
lation, even after the end of injection, while Musculus and Kattke
use the evolving Abramovich22 gas jet profile.

7. Locally homogeneous flow, i.e., there exists a local equilibrium
both in thermal and inertial conditions.

The two following additional hypotheses apply only for the type
of spray flow of relevance for the present investigation, namely a non-
evaporating spray:

1. For the present work, spray angle is constant during and after
the end of injection. This results in a simple cone-shaped spray
contour. This hypothesis has also been extended to a two-cone
angle shape11,23 to get more accurate predictions of entrainment
and hence penetration in the near-nozzle area.

2. There is no mass transfer between liquid and gas phase. This
means that the phase separation is actually also a species separa-
tion, with the fuel species restricted to the liquid phase.

FIG. 1. Eulerian control volumes used in the Musculus–Kattke model. Taken from
Musculus–Kattke.5
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The starting point is a Reynolds-averaged approach for the differ-
ential conservation equations of fuel mass and momentum, followed
by a Boussinesq-type approach with a turbulent viscosity to close the
turbulent fluctuation terms. These equations are integrated over the
particular cell to derive the corresponding integral equations, which
according to the previous assumptions end up consisting of the time-
derivative of the volume integral term and cell inlet and outlet convec-
tive flux terms. The conservation of liquid fuel mass,ml, is given in Eq.
(1) and the equation for axial momentum, M, is given in Eq. (2).
Consistent with the non-vaporizing spray assumption, the momentum
flux conservation is written for both phases as follows, although the
fuel mass conservation equation is only for the liquid phase,

@ml

@t
¼ _ml;in � _ml;out ; (1)

@M
@t
¼ _Min � _Mout : (2)

The unknown of the axial momentum equation is always the cor-
responding component of the convective velocity u. As for the fuel
equation, at least two different options are available. Musculus and
Kattke formulate their fuel conservation in terms of the liquid volume
fraction Xl, consistent with an approach based on a multiphase flow
description and similar to Siebers. The DICOM model, however, uses
mixture fraction f as the unknown to be solved, which enables the later
extension to reacting conditions. In principle, this could look like just
a formulation detail, which should lead to the same solution with both
variables being related by the following equation:

qlXl ¼ qf : (3)

Equation (3) reveals the non-linearity between Xl and f due to the ratio
ql=q. However, imposing a self-similar radial profile on either variable
to convert the 2D problem into a 1D one produces some differences
in results from both formulations in regions where there are important
differences between liquid ql and mixture density q.

Following the analysis of the conservation equations, both the liq-
uid mass and momentum fluxes are defined using an integral across
the cross section of the jet [Eqs. (4) and (5)]. Note that both phases are
assumed to move at the same velocity and that all relevant magnitudes
are Reynolds averaged:

_ml ¼
ð

qlXludA ¼
ð

qfudA; (4)

_M ¼
ð

qu2dA: (5)

Because the mixture density varies with location, it must remain
within the integral of Eq. (5) or Eq. (4) in mixture fraction formula-
tion. For a non-vaporizing spray, the mixture density is a simple func-
tion of both the fuel ql and air density qg, which is given as

q ¼ qlXl þ qg 1� Xlð Þ ¼ 1
f
ql
þ 1� f

qg

: (6)

At this point, another difference between formulations turns up
when evaluating the integrals, and hence, impacts the solution
obtained. While the DICOM model solves on-axis values for the

unknown quantities (fcl, ucl), i.e., values for radial coordinate r¼ 0,
Musculus and Kattke use cross-sectionally averaged values, which are
denoted by an overbar (Xl ; �u) and follow the fundamental definitions
given in the following equations:

Xl ¼
1
A

ð
XldA; (7)

�u ¼ 1
A

ð
udA: (8)

Using either approach, the previous flux terms are re-written as
shown in Eqs. (9) and (10), where additional terms appear, namely b
in Musculus and Kattke, and Pu, Pf, and R in DICOM:

_ml ¼ bqlXl�uA ¼ fcluclA
ð

qPuPf d r=Rð Þ2; (9)

_M ¼ b�q�u2A ¼ u2clA
ð

qP2
ud r=Rð Þ2: (10)

The variable b is a varying quantity that describes the shape of the radial
self-similar profile, R is the spray outer radius, as given by the cone
angle, and is linked to the cross-sectional area A. Pu and Pf are the self-
similar radial profiles for axial velocity and mixture fraction, respec-
tively, which are assumed to follow a Gaussian distribution in the
DICOM model according to Eqs. (11) and (12), where f is the value of
the profile Pu defining the spray radial limit (f ¼ 0:01 in this work).
Both distributions are related by the turbulent Schmidt number Sc:

Pu ¼
u
ucl
¼ exp �log fÞðr=RÞ2

� �
;

�
(11)

Pf ¼
f
fcl
¼ PSc

u : (12)

Further details on the formulations are given in the correspond-
ing papers. For the present work, it is sufficient to know that b is a
measure of correlation between the Xl and u profiles, as shown in fol-
lowing equation:

b ¼ 1

Xl�u

ð
XludA: (13)

For a uniform radial profile, b is unity. For a fully developed profile,
where the Abramovich22 radial profile is used, b is approximately 2.
Though b represents a correlation between the two variables, Xl and u,
the momentum flux depends on the square of velocity, requiring a cor-
relation assessment of Xl and u

2. However, Musculus and Kattke chose
to use b in both calculation of mass and momentum flux for reasons
of mathematical convenience.

A last difference in formulations between both models is related
to the momentum equation. Musculus and Kattke made an assump-
tion in Eq. (10) that density at a given radial cross section is constant
and equal to the cross-sectional average density �q. Conversely, the
DICOM model always operates with the local density definition, and
conservation equations are solved by using numerical integration of
the terms that account for local density.

III. MOMENTUM AND LIQUID TRANSPORT ANALOGY

Starting from the previously introduced equations of fuel mass
and momentum, a theoretical analysis is included in the Appendix
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showing that the transport equations for liquid volume fraction and
non-dimensional momentum are identical and that the boundary con-
ditions for both are identical, yielding the formal similarity stated in
following equation:

Xl ¼ �Q: (14)

The dimensionless momentum �Q represents the ratio of cross-
sectionally averaged momentum divided by the momentum issuing
from the nozzle, Eq (15). The value of �q, required in the definition of
�Q, can be calculated from Xl using Eq. (6). The fact that the numerator
is �q�u instead of qu is a consequence of the mathematical simplifica-
tions used in the one-dimensional models:

�Q � �q�u
qluinj

: (15)

Because the solution for liquid volume fraction must be unique,
the end result is that dimensionless momentum equals liquid volume
fraction at any time and axial location in non-evaporating, mixing-
limited sprays. Measuring one of these quantities provides knowledge
of the other. For example, if liquid volume fraction or velocity were
available at a variety of transverse locations, one could use the funda-
mental definition of a cross-sectional average to calculate Xl or �u [Eqs.
(7) and (8)]. Though the value of u is strictly an average of the two
phase velocities, the mixing-limited hypothesis assumes that the two
phases are moving at the same velocity. This hypothesis opens the
question, if only liquid or gas velocities were experimentally available,
would these data be sufficient? This question will be answered later.

At first glance, this result may appear to be equivalent to that of
Kastengren et al.24 or Musculus.6 The difference is that the definition
of momentum in the present work uses a density that is a weighted
average of the gas and liquid density. Another subtle point of the pre-
sent analysis is that if momentum and liquid volume fractions have
the same transverse profile, then this result indicates that at every loca-
tion, LVF and momentum ratio are equal, without any transverse inte-
gration. The present result applies to any part of the spray.

A manipulation of the governing equations shows that these
prior results are in fact consistent with the present work. From Eq.
(A13), we can substitute the elementary variables.

ml

qlADz
¼ �q�u

qluinj
: (16)

The liquid density cancels and the mixture density can be com-
bined with the denominator of the left side to represent the total mass
of all species (gas or liquid), hereaftermt.

ml

mt
¼ Yl ¼

�u
uinj

: (17)

Thus, when manipulated, the dimensionless velocity is proportional to
mass fraction of liquid, as indicated by prior work. This proportionality
is more apparent when one considers the DICOM model approach,
where the fuel mass transport equation makes use of fuel mass fraction,
resulting in an identical formulation to that of axial momentum. For a
constant injection rate evolution, taking into account the boundary con-
ditions, this can be shown to lead to the already known similarity
between the solution of both variables for steady jets, as shown in classi-
cal gas-jet theory25 and locally homogeneous flow analysis of sprays,1

u
uinj
¼ f : (18)

Combining the previous result with Eq. (3), one can obtain a sim-
ilar relationship as in Eq. (14):

u
uinj
¼ qlXl

q
! Xl ¼

qu
qluinj

: (19)

Equations (19) and (18) turn out to be equivalent to Eqs. (14) and
(17), as derived from the Musculus and Kattke model, but they are
expressed in terms of local variables instead of cross-sectionally aver-
aged ones.

IV. VERIFICATION AND VALIDATION

The first step in confirming the validity of this analysis is to verify
the similarity against the predictions of the 1D models from which the
present results are derived. This test serves as a check of the mathemat-
ical analysis.

The prediction of Eq. (14) is assessed in Fig. 2 for a high ambient
pressure condition at an arbitrary time using a uniform rate of injec-
tion. The conditions are listed in Table I, and coincide with those later
presented in the numerical simulation. This figure shows both �Q and
Xl plotted vs distance from the orifice using a line and symbols,
respectively. Though the two models treat the leading edge slightly dif-
ferently, in both cases, the results show that indeed, dimensionless
momentum is equal to LVF in both 1D models. Thus, the derived
results are not specific to any single 1D model. The next step is to
determine if these model predictions correspond to more realistic rep-
resentations of sprays.

Validation of the analysis was conducted using data generated by
the CLSVOF CFD code applied to Spray D, as described in the study

FIG. 2. Verification with DICOM and Musculus–Kattke model results. The dimen-
sionless momentum and liquid volume fraction are plotted vs distance from the
injector at a time of 0:05 ms after the start of injection. The leading edge of the
spray is at 71d0.
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by Arienti and Sussman15 and applied in the work by Battistoni et al.26

While, ideally, validation would involve experimental results, we have
not been able to find sufficient data in the open literature. The experi-
mental data would require both liquid volume and velocimetry mea-
surements from the same regions of the spray without recourse to
similarity assumptions as in the study by Kastengren et al.24 Data
would be required for the velocity of both phases under non-
evaporating, mixing-limited conditions.

CLSVOF can provide high-fidelity, time-dependent datasets of
spray velocity and mass distribution at injection conditions that are
relevant to the mixing-limited hypothesis. The code numerically solves
the compressible multi-phase Navier–Stokes equations in three
dimensions while updating in time the interface separating the gas
from the liquid phase. The main structure of the algorithm is described
in a previous publication.27 As evaporation is not included in the sim-
ulation, the interface effectively separates two immiscible fluids; sur-
face tension is calculated from the local curvature. Spatial and
temporal fluctuations of velocity in both phases are resolved to the
degree allowed by grid resolution, with velocity continuity enforced at
the interface; the subgrid turbulent fluctuations are modeled in the
LES framework as added turbulent viscosity by following the WALE
method.28 Compressible effects are included;27 the gas phase (modeled
as a perfect gas) can become locally supersonic in diesel injections, and
weak shocks have been observed at starting conditions.15 Naturally,
the density of the liquid phase is not significantly affected by pressure
variations at the conditions considered here.

Spray D is a single axial hole injector which, in this case, was dis-
charged into high pressure, low temperature nitrogen. The conditions
are summarized in Table I. Figure 3 shows a snapshot of the Spray D
simulation, including the resolved liquid surface and the cross-
sectional planes that will be discussed in this section. The surface tes-
sellation used to represent the injector’s internal walls was obtained by
combining x-ray computed tomography and optical microscopy
images of the common-rail fuel injector Bosch 3–22 (specimen
209 134, or 134D). The exit diameter, calculated from the recon-
structed orifice area, is d0 ¼ 0:189mm, slightly smaller than the value
reported by Payri et al.29 for 134D of 0.191mm.

The effective minimum grid resolution, obtained at the numeri-
cally reconstructed liquid surface by block-structured adaptive mesh
refinement was Dx ¼ 3:5 lm. This value is twice coarser than the Dx
used in previous work26 because here the simulation is designed to
resolve the model-free dynamics of the liquid surface of the jet within
a reasonable computational time, rather than the full range of droplet
size distribution from primary atomization. The results are still time-
accurate, and, as such, their analysis should be based on sample

averaging of multiple simulation instances at a given time. That
approach, deemed too computationally demanding, is avoided here by
replacing sample averaging with time averaging, at the price of restrict-
ing the scope of the validation to the steady-state portion of the jet.

Because the analysis in the current paper relies on a single uni-
form nozzle velocity uinj, we must extract this value from the CFD
results. Conceptually, our goal is to represent the nozzle exit profile
with a reduced model as shown in Fig. 4. To do so, we follow the anal-
ysis of Payri et al.30 In this model, the value of uinj is presumed to be
equal to an effective velocity ueff issuing over an area Aeff that is less
than the nozzle exit area. The values of ueff and Aeff are calculated
such that the effective area and velocity transit the same mass flow rate
and momentum flux as the actual profile. These quantities are then
employed in Eqs. (15) and (18).

To calculate ueff from the CFD results, we use the following pro-
cedure. The value of ueff is then used in the place of uinj in the above
analysis, particularly in Eqs. (18) and (17):

1. Calculate the Bernoulli velocity, uth, from the upstream and
downstream pressures

TABLE I. Parameters used in the CLSVOF Spray D simulation.

Parameter Value

Liquid n-Dodecane
Nozzle diameter 0.189 (mm)
Injection pressure 100 (MPa)
Fuel temperature 298 (K)
Gas density 22.8 (kg/m3)
Ambient temperature 298 (K)

FIG. 3. Snapshot of CLSVOF Spray D simulation showing the resolved liquid surface
and the cross-sectional planes used for analysis, all colored by axial velocity. The sim-
ulation includes the flow internal to the injector, which is partially visible in the picture.
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2. Calculate the average velocity, �u, based on mass flow rate from
the nozzle

3. Calculate the coefficient of discharge Cd from �u
4. Calculate the value of the momentum coefficient CM from the

ratio of momentum flux and 2ADP
Cv ¼ CM=Cd

5. The value of ueff is Cvuth

As in the rest of this section, integrals are calculated by numerical
quadrature over the chosen cross section. From the conditions listed
in Table I, and taking the reference value ql ¼ 720 kg=s, we find
uth ¼ 522 m=s, whereas �u ¼ 497 m=s from the time average of the
simulation snapshots. Then, CM ¼ 0:863; Cd ¼ 0:915, and
ueff ¼ 492 m=s. The range of velocity values reported by Payri et al.29

at the same injection conditions (but with diesel instead of n-dodecane)
is between 400 and 450m/s.

Next, the cross-sectionally averaged values of Xl and �u are calcu-
lated from Eqs. (7) and (8). The application of the integral begs the
question of the extent of the cross-sectional area. As the velocity pro-
files from the simulation tends to be wider than the LVF profiles, we
consider two sets of data assuming 6� and 10� cone half angle. This
discrepancy between the width of the LVF and the velocity profiles is
explored in Sec. V.

The results of the comparison are shown in Figs. 5–8. They test
the assertion that the cross-sectional averages (dashed lines) of Y and
u are equal. The points in the diagram are temporal averages taken
over the simulation samples (eight snapshots separated from each
other by one microsecond) with error bands corresponding to their
standard deviation. We observe that for both integration cone angles,
the pairs ð�Y ; �uÞ are not close to equality. The discrepancy reflects the
fact that velocity in the liquid phase is transferred to the gas phase
more rapidly, or to a broader cross section, than the liquid mass,
bound by surface tension; this delay is eventually recovered in the far
field of the jet, as shown in Figs. 5 and 7. Depending on the cone angle,
the presence of recirculating flow at the periphery of the jet (depending
on the finite distance of the computational boundaries) may enter in
the cross-sectional integral and further decrease �u.

Examination of the mixing-limited assumptions reveals that both
phases are supposed to be moving at the same velocity. Hence, one
might conclude that the details of the velocity calculation are immate-
rial. However, per Ishii and Hibiki,31 the fluid center of mass moves
with a density-weighted velocity. Their definition, however, requires
time averaging of the quantities. In the current work, where data are
extracted from three-dimensional snapshots, a cross-sectional averag-
ing is used. Each cell in the CFD cross section is either fully liquid or
gas, with the subscript k referring to the corresponding phase of that
cell,

FIG. 4. Sketch of the exit velocity profile and the modeling assumptions used in the
current paper. The three-dimensional exit profile (left) must be represented as a uni-
form profile with equivalent mass and momentum flux (right). FIG. 5. Pairs of cross-sectional averages of mass fraction and axial velocity. The

cone angle is 10�. The labels show the location of the cross sections. The error
bars correspond to the standard deviation of the averages over the samples. The
dashed line, Y¼ X, represents the theoretical equality of the two variables.

FIG. 6. Pairs of cross-sectional averages of mass fraction and density-weighted
axial velocity. The cone angle is 10�. The labels show the location of the cross sec-
tions. The error bars correspond to the standard deviation of the averages over the
samples. The dashed line, Y¼ X, represents the theoretical equality of the two
variables.
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�~u ¼

X
A

qkuk
X
A

qk

: (20)

Because of the correlation between the distribution of velocity
and liquid concentration, the mass-weighted average is significantly
different than the unweighted average. Furthermore, the density-
weighted velocity �~u, which more closely corresponds to the velocity in
the core of the jet, better approximates the cross-sectional average of
the mass fraction as shown in Figs. 6 and 8. The observed similarities

are invariant of the assumed spray angle used for data collection.
Analogously, Figs. 9 and 10 illustrate the model identity of cross-
sectionally averaged liquid volume fraction and momentum for a cone
angle of 10� and 6�, respectively (the q u integral is made non-
dimensional by qlueff ). Again, while the numerical values depend on
the assumed spray angle, for both spray angles, the pairs ðLVF ; �QÞ

FIG. 7. Pairs of cross-sectional averages of mass fraction and axial velocity. The
cone angle is 6�. The labels show the location of the cross sections. The error bars
correspond to the standard deviation of the averages over the samples. The
dashed line, Y¼ X, represents the theoretical equality of the two variables.

FIG. 8. Pairs of cross-sectional averages of mass fraction and density-weighted
axial velocity. The cone angle is 6�. The labels show the location of the cross sec-
tions. The error bars correspond to the standard deviation of the averages over the
samples. The dashed line, Y¼ X, represents the theoretical equality of the two
variables.

FIG. 9. Pairs of cross-sectional averages of liquid volume fraction and momentum.
The cone angle is 10�. The labels show the location of the cross sections. The
error bars correspond to the standard deviation of the averages over the samples.
The dashed line, Y¼ X, represents the theoretical equality of the two variables.

FIG. 10. Pairs of cross-sectional averages of liquid volume fraction and momentum.
The cone angle is 6�. The labels show the location of the cross sections. The error
bars correspond to the standard deviation of the averages over the samples. The
dashed line, Y¼ X, represents the theoretical equality of the two variables.
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fall near the Y¼X line that represents the theoretical equality of the
two variables. Another benefit of the density-weighted velocity is that
the sensitivity to the assumed spray angle is minimal.

Plotted on log –log axes in Fig. 11, the pairs ð�Y ; ~uÞ (circle and
diamond symbols) follow the –1 slope suggested by round jet theory.
The cross sections for z < 10 d0 depart from that slope as �Y and ~u
decrease more slowly near the jet orifice. The cross-sectional averages
of LVF and momentum (square and cross symbols) are similarly close,
but they follow a steeper slope in the diagram, closer to –2, due to the
non-linear density effect. The 1D model predictions have also been
included, showing a very good agreement with the simulation predic-
tions in spite of the simplicity of the model approach. The comparison
underlines the deviations of the CFD results in the near-injector field,
caused by wall effects, from the fully self-similar behavior. Overall, our
analysis highlights the fact that the 1D models exchange mass and
momentum appropriately and can lead to a good estimation of major
spray variables.

V. AN EXAMINATION OF RADIAL DISTRIBUTION

The distribution of LVF, axial velocity u, and fuel mass fraction
Yl are more closely examined in Fig. 12 at three cross sections located
at 21.1, 31.5, and 52:4 d0 from the nozzle exit. The first axial location
is selected to probe the end of the jet core region, whereas the 52:4 d0
cross section is taken almost at the end of the computational domain.
The radial profiles are calculated as the time-average of eight snapshots
separated from each other by one microsecond; they are plotted as a
function of the radial distance from the geometrical axis of the jet,

normalized by r0. The velocity profiles are normalized by uth and the
momentum profiles by qluth. Curves of the mean value plus or minus
one standard deviation are added to the plots to convey the increasing
fluctuation experienced by the jet downstream of the injection point.
The curves show differences in noise levels connected to the discontin-
uous nature of density change in the primary atomization region and
dense spray.32 The sharp density changes make the numerical conver-
gence to an average value much slower compared to the velocity field,
which must observe continuity in the gas-liquid interface. The more
jagged features of some of the plots could therefore be explained in
terms of requiring more snapshots for the analysis. Relevant to this
point is the fact that the peak value of some of the profiles is not
reached at the jet axis, suggesting that, further downstream, oscilla-
tions of the jet become sufficiently intense and of longer period that
their dynamics are not completely captured within the averaging time
window used here.

As expected, near the orifice, the radial profiles of the three varia-
bles are all smoothed-out approximations of the top-hat profile of Fig.
4. However, already at 20 orifice diameters from injection, the LVF
profile remains visibly more compact than the velocity and mass frac-
tion profiles. Further downstream, the radial profiles flatten to a more
uniform distribution, but the spreading continues to occur at a greater
rate for u and Yl than for LVF. This feature is visible in pictures of the
spray simulations, such as the one in Fig. 3, where the gas region that
is entrained by the jet is much broader than the spray cone at every
cross-sectional plane. This different behavior can be explained by con-
sidering that, while also promoting droplet pinch-off and breakup, sur-
face tension tends to delay the diffusion of fuel mass. This effect
impacts the distribution of liquid mass more than velocity and, there-
fore, affects the similarity of Yl and velocity. So, the fact that similarity
in mass fraction and velocity is observed in most of the jet confirms
the low magnitude of surface tension effects and is consistent with the
high Weber number associated with this spray.

Because of the large density ratio between liquid and gas, we can
deduce that the normalized momentum of the flow and the liquid vol-
ume fraction of the jet eventually tend to follow a very similar radial
profile, as concluded by our mathematical derivation. So, similarity is
present, not just using cross-sectionally averaged quantities, but also in
their radial distribution. Going even further in the analysis, these radial
profiles are self-similar. The results of Fig. 13 show that by using the
axial distance as a scaling factor for the radial distance, the curves at
various axial distances collapse.

VI. CONCLUSIONS

Two different one-dimensional models have been compared to
each other, both on a conceptual basis and using a practical example.
These models give very similar results, and both indicate similarity
relationships in the limit of mixing-limited spray behavior.
Consequently, the analysis presented here is not a peculiarity of any
single one-dimensional model. These similarities were sought in a
high-fidelity CFD simulation of a non-evaporating spray.

The comparison to high-fidelity spray simulations begins to
address the question of what similarity relationships are found in
actual sprays. The results of the present work confirm that the high-
fidelity simulations are able to capture these relationships, which do
not depend on the assumed spray angle used for data extraction from
the high-fidelity results. The more novel equivalence between liquid

FIG. 11. Log–log plot of the cross-sectional averages of liquid mass fraction
(circles), density-weighted axial velocity (triangles), liquid volume fraction (squares),
and momentum (crosses) as a function of axial distance normalized by orifice diam-
eter. The cone angle is 10�. The error bars correspond to the standard deviation of
the averages over the samples. Blue lines are 1D model predictions corresponding
to the cross-sectional averages of liquid mass fraction and liquid volume fraction at
0:05 ms. Gray dashed lines are used to show reference trends with ðz=d0Þ�1
(solid) and ðz=d0Þ�2 (dashed).
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FIG. 12. Tangentially averaged profiles of axial velocity, liquid mass fraction, liquid volume fraction, and momentum (from top to bottom in the panel). The profiles are evaluated
from the time-averaged CFD results at three axial locations: 21:1 d0; 31:5 d0, and 52:4 d0 from the nozzle exit; they are ordered from left to right in the panel. The thicker lines
in each plot correspond to the average value from eight solution snapshots, the thinner lines represent the line average 6 one standard deviation.
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volume fraction and momentum is evident in the results. Additionally,
the similarity between velocity and mass fraction can be extracted
from the CFD results, though doing so requires that the density-
weighted velocity be used.

The reliance on a density-weighted velocity raises an interesting
point for experimentalists. Typically, an experiment can measure the
velocity of one phase or another, but not both phases. Thus, one would
not expect experimentally measured velocity data to be sufficient for
validating the velocity/mass fraction similarity seen in the simulation
results. Though the density of the gas is much less than that of the liq-
uid, at the elevated pressure conditions typical of mixing-limited
sprays, the density of the gas phase is not negligible.

Evidence of similarity was more difficult to observe in tangen-
tially averaged profiles. The effects of statistical noise were evident and
the tendency of the spray to meander from the centerline made agree-
ment with the similarity results more uncertain.

The observed decay and mixing rates deviated somewhat from
round jet mixing theory. The exact reason for this deviation is unclear.
It is, perhaps, an indication of the limitation of applying jet theory to
two-phase mixing where the density ratio is large.

The agreement between the high-fidelity model and the one-
dimensional models affirms the validity of the assumptions made in the
construction of the one-dimensional models. In particular, the assump-
tion of incompressibility is noteworthy, since the multi-dimensional cal-
culations were compressible. At least for the metrics considered here,
compressibility produces little observable effect, perhaps due to the
absence of very strong pressure gradients in the free spray.

Given the high density ratio between phases, it may be unreason-
able to expect that the unity Schmidt number assumption holds.
Certainly, the transport of liquid mass into a region consisting of pri-
marily of gas represents a shift of the center of mass that would not be
observed in a uniform density gas jet. The shift in center of mass
requires a force, such as a pressure gradient, that is not required for
equal-density mixing and could break the similarity relationship. This
difference between sprays and jets is significant because gas jets often
serve as an inspiration for mixing-limited spray analyses. Further
investigation should focus on the interplay between variable-density
mixing and pressure gradients in sprays.

Taking the aforementioned results as a whole, we can make sev-
eral specific and salient points. First, the similarity of momentum to
liquid volume fraction is evident in the analysis of governing equa-
tions, one-dimensional models, and high-fidelity CFD. The similarity
is not specific to any single one-dimensional model, but is rather a fun-
damental feature. Additionally, the fact that the CFD reproduces this
particular behavior is evidence that the CFD is able to capture the
mixing-limited behavior of ECN Spray D. Looking ahead, this similar-
ity can be used in the construction of simplified models, as demon-
strated by Buchmann et al.,20 or to extend experiments where a
measured quantity is used to estimate a formally similar quantity, as in
Kastengren et al.24 Perhaps, the theory could even be extended to
flow-blurring spray regimes of more complex atomizers, as studied by
Murugan et al.33
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APPENDIX: DERIVATION OF THE ANALOGY BETWEEN
MOMENTUM AND LIQUID TRANSPORT

The Musculus–Kattke model solves two transport equations
using a control volume approach. In fact, for the case of constant
injection velocity, the governing equations can be reformulated to
show that there is a formal similarity between the liquid volume
fraction and the two-phase momentum. The analysis begins with
the Eqs. (1) and (2). The first step is to recast the transport of liquid
mass into liquid mass fraction. This process begins by dividing the
equation by qlADzDt:

mtþ1
f ;i �mt

f ;i

qlADzDt
¼

bXl�uA
� �t

i�1� bXl�uA
� �t

i

h i
ADz

: (A1)

Note that ql is a constant and ADz represents the finite vol-
ume. We use the definition of liquid volume fraction to replace ml

with Xl :

Xl ¼
ml

qlADz
: (A2)

Inserting this expression into Eq. (A1) and taking the limits as
both Dz and Dt approach zero gives us a partial differential equa-
tion for the transport of Xl :

@Xl

@t
¼ �1

A
@

@z
bXl�uA
� �

: (A3)

The result in Eq. (A3) is sufficient for the present purposes, but for
clarity of interpretation, the equation can be rearranged in a Lagrangian
form. First, apply the product rule to the expression on the right:

@Xl

@t
¼ �b�u

@Xl

@z
� Xl

A
@

@z
b�uAð Þ: (A4)

Then, define a Lagrangian total derivative operator where the
advection speed is defined as b�u. This appearance of b, which is
greater than unity, shows that one consequence of the radial profile
is to increase the average advection speed:

DðÞ
Dt
� @ðÞ
@t
þ b�u

@ðÞ
@z

: (A5)

This operator can then be used to put Eq. (A4) into a
Lagrangian form:

DXl

Dt
¼ �Xl

A
@

@z
b�uAð Þ: (A6)

An examination of this equation shows that it is linear. Thus,
for a given bðzÞ; �uðzÞ and A(z), there exists only one solution for
Xl . In addition, the boundary conditions are unity at the injector
orifice and zero in the limit of infinite z.

The next step is to perform an analogous manipulation of the
momentum equation. This process begins by dividing the conserva-
tion of momentum equation [Eq. (A7)] by ADzDt:

Mtþ1
i ¼ Mt

i þ b�q�u2A
� �t

i�1� b�q�u2A
� �t

i

h i
Dt; (A7)

Mtþ1
i �Mt

i

ADzDt
¼ 1

A

b�q�u2Að Þti�1� b�q�u2Að Þti
h i

Dz
: (A8)

Momentum in the control volume is defined as follows:

M ¼ �q�uADz: (A9)

Noting that A and Dz are not functions of time, the left side
can be transformed into an expression for the time rate of change
of �q�u. Using Eq. (A9) and taking the limits as Dt and Dz go to zero
gives a partial differential equation for the transport of �q�u:

@�q�u
@t
¼ �1

A
@

@z
b�q�u2A
� �

: (A10)

For steady injection conditions, the denominator of Eq. (15) is
a constant and may be pulled into the temporal derivative. Whereas
the density in the numerator is an average of the two phases, as
defined by Eq. (6), the density in the denominator represents only
the liquid density.

Inserting this expression into Eq. (A10) and scaling with qluinj
gives a result that is analogous to the transport of mass, Eq. (A3)
but in terms of the scaled momentum as defined in Eq. (A5):

@ �Q
@t
¼ �1

A
@

@z
b�Q�uA
� �

: (A11)

Applying the product rule and employing the same definition
of Lagrangian derivative given in Eq. (A5) produces an expression
for the evolution of momentum in the Lagrangian reference frame:

D�Q
Dt
¼ �

�Q
A
@

@z
b�uAð Þ: (A12)

Comparing Eqs. (A12) and (A6) reveals the formal similarity.
Except for the symbol Xl or �Q, these equations are identical. As for
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Xl , the boundary condition for �Q is unity at the injector and zero in
the far field. Hence, these are the same equations and the same
boundary conditions. We then apply the idea of mathematical simi-
larity: if these are the same equations and boundary conditions,
then they admit the same solution. Thus, the following equation is
the ultimate result of this derivation:

Xl ¼ �Q : (A13)
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