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Abstract 
 

High energy costs, the constant regulatory measures applied by administrations to 

maintain low healthcare costs, and the changes in healthcare regulations introduced in 

recent years have all significantly impacted the pharmaceutical and healthcare industry. 

The industry 4.0 paradigm encompasses changes in the traditional production model of 

the pharmaceutical industry with the inclusion of technologies beyond traditional 

automation. The primary goal is to achieve more cost-efficient drugs through the optimal 

incorporation of technologies such as advanced analytics. The manufacturing process 

of the pharmaceutical industry has different stages (mixing, drying, compacting, coating, 

packaging, etc..), and one of the most energy-expensive stages is the drying process. 

This process aims to extract the liquid content, such as water, by injecting warm and dry 

air into the system. This drying procedure time usually is predetermined and depends on 

the volume and the kind of units of a pharmaceutical product that must be dehydrated. 

On the other hand, the preheating phase can vary depending on various parameters, 

such as the operator's experience. It is, therefore, safe to assume that optimization of 

this process through advanced analytics is possible and can have a significant cost-

reducing effect on the whole manufacturing process. Due to the high cost of the 

machinery involved in the drug production process, it is common practice in the 

pharmaceutical industry to try to maximize the useful life of these machines, which are 

not equipped with the latest sensors. Thus, a machine learning model using advanced 

analytics platforms, such as cloud computing, can be implemented to analyze potential 

energy consumption savings. This thesis is focused on improving the energy 

consumption in the preheating process of a fluid bed dryer by defining and implementing 

an IIOT (Industrial Internet of Things) Cloud computing platform. This architecture will 

host and run a machine learning algorithm based on Catboost modeling to predict when 

the optimum time is reached to stop the process, reduce its duration, and consequently 

its energy consumption. Experimental results show that it is possible to reduce the 

preheating process by 45% of its time duration, consequently reducing energy 

consumption by up to 2.8 MWh per year.  
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Resumen 

 

Los altos costes energéticos, las constantes medidas regulatorias aplicadas por las 

administraciones para mantener bajos los costes sanitarios, así como los cambios en la 

normativa sanitaria que se han introducido en los últimos años, han tenido un impacto 

significativo en la industria farmacéutica y sanitaria. El paradigma Industria 4.0 engloba 

cambios en el modelo productivo tradicional de la industria farmacéutica con la inclusión 

de tecnologías que van más allá de la automatización tradicional. El objetivo principal 

es lograr medicamentos más rentables mediante la incorporación óptima de tecnologías 

como la analítica avanzada. El proceso de fabricación de las industrias farmacéuticas 

tiene diferentes etapas (mezclado, secado, compactado, recubrimiento, envasado, etc.) 

donde una de las etapas más costosas energéticamente es el proceso de secado. El 

objetivo durante este proceso es extraer el contenido de líquidos como el agua mediante 

la inyección de aire caliente y seco en el sistema. Este tiempo de secado normalmente 

está predeterminado y depende del volumen y el tipo de unidades de producto 

farmacéutico que se deben deshidratar. Por otro lado, la fase de precalentamiento 

puede variar dependiendo de varios parámetros como la experiencia del operador. Por 

lo tanto, es posible asumir que una optimización de este proceso a través de analítica 

avanzada es posible y puede tener un efecto significativo en la reducción de costes en 

todo el proceso de fabricación. Debido al alto coste de la maquinaria involucrada en el 

proceso de producción de medicamentos, es una práctica común en la industria 

farmacéutica tratar de maximizar la vida útil de estas máquinas que no están equipados 

con los últimos sensores. Así pues, es posible implementar un modelo de aprendizaje 

automático que utilice plataformas de analítica avanzada, como la computación en la 

nube, para analizar los posibles ahorros en el consumo de energía. Esta tesis está 

enfocada en mejorar el consumo de energía en el proceso de precalentamiento de un 

secador de lecho fluido, mediante la definición e implementación de una plataforma de 

computación en la nube IIOT (Industrial Internet of Things)-Cloud, para alojar y ejecutar 

un algoritmo de aprendizaje automático basado en el modelo Catboost, para predecir 

cuándo es el momento óptimo para detener el proceso y reducir su duración y, en 

consecuencia, su consumo energético. Los resultados experimentales muestran que es 

posible reducir el proceso de precalentamiento en un 45% de su duración en tiempo y, 

en consecuencia, reducir el consumo de energía hasta 2.8 MWh por año. 
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Resum 
 

Els elevats costos energètics, les constants mesures reguladores aplicades per les 

administracions per mantenir uns costos assistencials baixos, així com els canvis en la 

normativa sanitària que s'han introduït en els darrers anys, han tingut un impacte 

important en el sector farmacèutic i sanitari. El paradigma de la indústria 4.0 engloba els 

canvis en el model de producció tradicional de la indústria farmacèutica amb la inclusió 

de tecnologies que van més enllà de l'automatització tradicional. L'objectiu principal és 

aconseguir fàrmacs més rendibles mitjançant la incorporació òptima de tecnologies com 

l'analítica avançada. El procés de fabricació de les indústries farmacèutiques té diferents 

etapes (mescla, assecat, compactació, recobriment, envasat, etc.) on una de les etapes 

més costoses energèticament és el procés d'assecat. L'objectiu d'aquest procés és 

extreure el contingut de líquids com l'aigua injectant aire calent i sec al sistema. Aquest 

temps de procediment d'assecat normalment està predeterminat i depèn del volum i del 

tipus d'unitats de producte farmacèutic que cal deshidratar. D'altra banda, la fase de 

preescalfament pot variar en funció de diversos paràmetres com l'experiència de 

l'operador. Per tant, podem assumir que una optimització d'aquest procés mitjançant 

analítiques avançades és possible i pot tenir un efecte significatiu de reducció de costos 

en tot el procés de fabricació. A causa de l'elevat cost de la maquinària implicada en el 

procés de producció de fàrmacs, és una pràctica habitual a la indústria farmacèutica 

intentar maximitzar la vida útil d'aquestes màquines que no estan equipats amb els 

darrers sensors. Així, es pot implementar un model d'aprenentatge automàtic que utilitza 

plataformes de analítiques avançades com la computació en núvol, per analitzar l'estalvi 

potencial del consum d'energia. Aquesta tesis està enfocada a millorar el consum 

d'energia en el procés de preescalfament d'un assecador de llit fluid, mitjançant la 

definició i implementació d'una plataforma IIOT (Industrial Internet of Things)-Cloud 

computing, per allotjar i executar un algorisme d'aprenentatge automàtic basat en el 

modelatge Catboost, per predir quan és el moment òptim per aturar el procés i reduir-ne 

la durada, i en conseqüència el seu consum energètic. Els resultats de l'experiment 

mostren que és possible reduir el procés de preescalfament en un 45% de la seva 

durada en temps i, en conseqüència, reduir el consum d'energia fins a 2.8 MWh anuals. 
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1 Introduction 
 

1.1. Motivation 

 

The manufacturing process of medicines is divided into several phases: weighing, 

granulation, drying, sieving, mixing, compression, and packaging. Fluid bed drying 

technology is commonly used in pharmaceutical manufacturing due to the high efficiency 

of drying granules obtained by wet granulation. The biggest challenge when using a fluid 

bed dryer is to reduce the massive amount of time and energy the machine takes to 

complete the process. The drying process consists of three phases: (i) preheating the 
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machine without introducing any type of product, (ii) drying the product, and (iii) cooling 

the machine for product cooling. Cost is associated with all three phases, i.e., time 

consumed by machines and the energy required to heat and send the air. Moreover, the 

cost is also associated with the number of operators handling the machine.   

 

The economic situation, the constant measures applied by the administrations to contain 

healthcare costs, and the changes in healthcare regulations that have been introduced 

in recent years have a significant impact on the rise of the production costs of 

pharmaceuticals. For this reason and due to the high cost of fluid bed dryers and the rest 

of the machinery involved in the production process of medicines, an attempt is made to 

extend the useful life of these machines by maximum. The industry 4.0 paradigm 

encompasses changes in the traditional production model of the pharmaceutical industry 

with the inclusion of technologies that go beyond traditional automation [Arden et al., 

2021]. The primary goal is to achieve more cost-efficient drugs through the optimal 

incorporation of technologies such as advanced analytics [Chi et al., 2009]. 

 

In the pharmaceutical sector, fluid bed dryers are frequently used to reduce the water 

content of medicinal powders and their granules. The emulsification of feed materials is 

the basis of the equipment's operation. In a fluidization procedure, heated air is injected 

with high pressure with the help of a perforated bed of moistened solid particles. The 

humid particles are raised from the bottom of the tank and stopped in the fluidized-state 

airflow. Regular interaction between both wet solids and hot gasses is used to transfer 

heat. The dryer vapors carry the vaporized water away. Exhaust gasses are sometimes 

completely reprocessed to conserve energy [Arun, 2015]. 

 

Notably, most fluid bed dryers in production plants are not equipped with sensors that 

indicate when the machine has reached the optimum temperature for any of the three 

phases (preheating, drying, and cooling). They are usually performed in a deterministic 

way. That is, fixed times are used for each phase of the process, and these times are 

controlled by the operator who manages the machine. Also, during the drying process, 

the operator stops the machine after a specific time to obtain a sample of the product 

and to measure the humidity to check whether any of the critical parameters of the 

machine should be adjusted (inlet air temperature or airflow).  

 

Due to the high cost of the machinery involved in the drug production process, it is 

common practice in the pharmaceutical industry to try to maximize the useful life of these 

machines. Therefore, old fluidized bed dryers are not equipped with the latest sensors. 
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It is observed that this situation is frequent in the pharmaceutical industry (that machines 

are amortized in the long term or reused). Thus, a model implemented in equipment with 

older sensors can imply actual savings for a company.  

 

This thesis has been developed and implemented at Almirall [ALM], a manufacturing 

plant facility in Sant Andreu de la Barca, Barcelona, Spain (Figure 1). 

 

Figure 1. Almirall manufacturing facilities at Sant Andre de la Barca, Barcelona, Spain 

(www.almirall.com) 

 

Almirall is a leading medical dermatology-focused global pharmaceutical company that 

partners with healthcare professionals, applying Science to provide medical solutions to 

patients & future generations. Almirall is focused on medical dermatology addresses 

sustainable, granular unmet needs in well-defined patient and indication sub-groups. The 

company, founded over 75 years ago and with headquarters in Barcelona, is listed on 

the Spanish Stock Exchange (ticker: ALM) and was part of the IBEX35, IBerian IndEX 

Spain's principal stock exchange during the years 2020 and 2022. Almirall provides 

medical solutions and a product portfolio marketed through 13 affiliates, operating in 21 

countries in Europe and the US. Almirall has agreements with strategic partners in over 

70 countries on the five continents that contributes to its global business model [ALM]. 

Almirall has 1785 employees, with total revenues of 814.5 € million in the fiscal year 

2020), and it has three research and development facilities and three manufacturing sites 

in Spain and Germany. Almirall facilities are structured to optimize the sustainable use 

of resources, with a particular focus on energy efficiency. Almirall is taking concrete steps 
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to reduce the dependency on electricity and gas and reduce our consumption. As an 

example, since 2016, Almirall has been moving to solar power with the installation of 

photovoltaic panels at our chemical plant in Sant Celoni, Spain (300 kW) and their 

pharmaceutical plant in Sant Andreu de la Barca, Spain (800 kW). Almirall has been able 

to reduce its energy consumption to 8%, from 2017 to 2020 as seen in Table 1. 

 

Table 1. Almirall evolution energy consumption (www.almirall.com) 

 

Almirall is interested in using artificial intelligence or machine learning predictive models 

to improve its energy consumption in its manufacturing process; what is the objective of 

this work. This thesis has been developed in the most important manufacturing site of 

Almirall manufacturing facilities, located at Sant Andreu de la Barca, Barcelona, Spain. 

Figure 2 shows some of the products produced in Sant Andreu de la Barca 

manufacturing plant. 

 

Figure 2. Almirall products 

 

Several types of machinery produce these products, such as mixers, dryers, compacters, 

coaters, and packaging lines. This thesis is focused on improving the energy 



 

12 
 

consumption in the drying process by defining and implementing an IIOT (Industrial 

Internet of Things) -Cloud computing platform to host and run a machine learning 

algorithm based on Catboost modeling to predict when the optimum time is to stop the 

process and reducing its duration, and consequently its energy consumption. After 

connecting an actual fluid bed dryer to our architecture, it is demonstrated that it can be 

saved up to 2.8 MWh per year just for one of the processes from the fluid bed dryer, the 

preheating. The architecture defined in this thesis could also be used for other 

manufacturing machineries involved in the tablet manufacturing process, such as mixers, 

compacters, coaters, and packaging lines, by adapting the prediction model presented 

to a more suitable algorithm, based on the data available from the sensors. The energy 

savings could be up to 800 MWh per year, considering the number of manufacturing 

equipment in the different Almirall production plants.  
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1.2. Objectives and Contributions 

 

The primary objective of the present research is to propose a machine-learning model 

that can reduce the time needed for the preheating and drying phases, therefore, 

reducing overall energy consumption. Furthermore, since the experiments were 

performed on the Fielder Aeromatic MP 6/8 (FAMP68), an older machine, the 

methodology used to develop the model can be implemented in a wide range of 

equipment that does not possess state-of-the-art sensor technology.  

 

To obtain the data from the Fluid bed dryers, 56 sensors that measure inlet/outlet air 

temperature, airflow, and other outputs were used. The data was collected by a PLC 

(Programmable Logic Controller), stored in SCADA (Supervisory Control and Data 

Acquisition), and then uploaded to the Azure cloud to develop the model. We examined 

all data collected during this process to find information that can assist us in optimizing 

a preheating stage. After evaluating a set of ML algorithms, the Catboost algorithm was 

selected to develop the model for reducing energy consumption during the preheating 

and drying phases. The investigation and evaluation of the trial findings led to identifying 

the optimal configuration. 

 

Using our model, we were able to reduce the preheating time on average by 45 minutes. 

Regarding energy consumption, we can save 13.95 kWh per batch of 150 kg of a drug 

(API- Active Product ingredient) during the preheating phase. Considering a production 

of 200 batches per year, we save an average of 2.8 MWh during the preheating phase. 

It is important to note that the experiments were performed in an actual pharmaceutical 

plant of a multinational company in Barcelona- Almirall.  

 

The thesis is divided into several parts. Firstly, an overview of industry 4.0, the 

opportunities arising in producing solid drugs, and the use of machine learning 

techniques in the industry. Secondly, fluid bed dryer historical data will be analyzed to 

identify critical variables and patterns using preprocessing advanced analytics 

techniques. Thirdly, different machine learning algorithms will be evaluated using the 

collected data to select the most accurate one. Finally, an IIOT-Cloud computing 

architecture will be presented and implemented, showing the results regarding energy 

savings from analyzing fluid bed dryer data in real-time. Besides, some potential future 

work will be mentioned.  
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In summary, the main achievements presented in this thesis are: 

 

• A review of state of art on fluid bed dryer energy consumption and utilization of 

machine learning algorithms to improve manufacturing production process. 

 

• The proposal of applying EDA (exploration data analysis) methodology to 
analyze and optimize a large-scale drug production process, such as the 
preheating drying process for solid drugs (pharmaceutical granules) through a 
fluid bed dryer.  
 

• The study and adaptation of the machine learning algorithm Catboost for 

predicting the optimum preheating time based on fluid bed dryer air inlet-outlet 

temperature differences in actual equipment. 

 

• The proposal and implementation in an actual manufacturing plant located in 

Barcelona of an IIOT (Industrial Internet of Things) and Edge – Cloud Computing 

architecture based on Microsoft Azure to ingest, store and process fluid bed dryer 

data and manage our Catboost prediction model implementation. 

 

• The results demonstrate how implementing the Catboost machine learning 

algorithm in Microsoft Azure architecture and using real-time data from the fluid 

bed dryer, an average energy consumption saving is around 2.8 MWh per year 

for 200 batches of a drug product. 

 

1.3. Structure of the thesis 

 

This thesis has 6 chapters: 

 

• Chapter 1 Introduction: The introduction, motivation, and structure of the thesis. 

 

• Chapter 2 Related Work and theoretical framework: Presents state-of-the-art 

and a review of the most relevant literature on the different topics addressed in 

this thesis, including an introduction to the pharmaceutical manufacturing 

process, a brief description of fluid bed dryer operations, and an introduction to 

machine learning, including some state of art related work in the field of applying 

machine learning to reduce the energy consumption in the manufacturing 

industry.  
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• Chapter 3 Data capture and exploratory data analysis (EDA): This chapter 

provides a practical example of how to use EDA (exploration data analysis) 

methodology to analyze and optimize a large-scale drug production process, 

such as the preheating drying process for solid drugs (pharmaceutical granules) 

through a fluid bed dryer. 

 

• Chapter 4 Machine Learning model development: Presents the selection and 

development of a data model algorithm to predict the optimum time to stop the 

fluid bed dryer preheating process. 

 

• Chapter 5: Fluid Bed Dryer Cloud-IIOT architecture: Provides the definition 

and implementation of an IIOT and Edge – Cloud computing platform connected 

through OPC server technology to a fluid bed dryer in real-time and presents a 

calculation of how much time and energy we can reduce if we provide to the fluid 

bed dryer operators a prediction that indicates when the optimum moment is to 

stop the preheating process. 

 

• Chapter 6 Conclusions and future work: Presents a summary of our solution's 

main conclusions and potential future implementations. 
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2 Related Work and 

theoretical framework 
The primary objective of this thesis is to study how machine learning and advanced 

analytics techniques can improve pharmaceutical production processes by reducing their 

energy consumption, with a particular focus on fluid bed dryer processes for solid 

pharmaceutical dosages, also known as tablets.  

 

A review of the most relevant literature on these topics is presented. First, we introduce 

the pharmaceutical manufacturing process, focusing on the fluid bed drying process and 

briefly explaining how a fluid bed dryer works. Next, we explore the current paradigm of 

Industry 4.0 and how it is being tackled by the pharmaceutical industry, creating a new 

sub-concept called Pharma 4.0. We will comment on the digital twin technology, as it is 

one of the main enablers for Pharma 4.0. We will review their relationship with ICH, the 

International Council for Harmonization of Technical Requirements for Pharmaceuticals 

for Human Use. This organization brings together the regulatory authorities and the 

pharmaceutical industry to discuss scientific and technical aspects of pharmaceuticals 

and develop guidelines. Finally, we present an introduction to machine learning, 

including some state-of-the-artwork in applying machine learning to reduce energy 

consumption in the manufacturing industry. 

 

2.1. Pharmaceutical manufacturing 

process 

 

Large-scale manufacture of medicines requires advanced technologies that allow all the 

parameters of the production process to be controlled. In addition, this type of medicine 

requires that the active ingredients be worked on in a closed circuit and by highly qualified 

professionals. To work in optimal conditions, professionals have personal protection 

equipment such as autonomous breathing systems and specially adapted divers. In 

summary, the pharmaceutical manufacturing process can be summarized in 8 steps 

[Burggraeve et al., 2013]: 
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• Weigh-in. First, the active ingredients and excipients necessary for 

manufacturing a batch of medicines are divided and weighed with extreme 

precision, including the quantities indicated in the formula of each specialty, also 

called the recipe. 

 

• Granulation. In this phase, the active ingredient and the excipients are mixed 

with a solution to form the wet granulate. To achieve a perfect mix, the equipment 

has two agitators that can rotate at a speed of more than 200 revolutions per 

minute. 

 

• Drying. During the drying process, this solution is extracted to obtain a granulate 

with the appropriate moisture content. Drying is done with hot, filtered air, for 

which up to 800 cubic meters are used every hour. This is the process that we 

will be focused on in this thesis. 

 

• Screening. This phase's objective is always to obtain the appropriate granule 

size for each drug. 

 

• Mixed. The necessary excipients for its compression are added to the granules 

and then mixed until they are perfectly homogeneous. In this process, two 

specific parameters are controlled for each specialty: the tank's speed and 

turning time. 

 

• Compression. The granulate obtained after mixing is subjected to pressure to 

obtain tablets. In this phase, one hundred percent of the tablets produced are 

controlled in real-time, and statistical control of their weight, hardness, and 

dimension is also carried out. The team with which it works has a speed of 8,000 

tablets per hour. 

 

• Coating. Sometimes, tablets are coated with a polymer film, which is applied 

using a spray gun system. This coating constitutes a barrier between the tablet 

and the environment. This is the most delicate part of the process, and its 

functions can be to isolate it from light, modulate its release at the intestinal or 

gastric level, or simply give the tablet the desired color. 
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• Packaging. Once manufactured, the medicines go through the packaging 

process, placed in a blister to protect them from the environment. Together with 

the prospectus, they are packaged in their corresponding individual cases.  

 

2.1.1. Fluid bed dryer operations 

 

In this thesis, we will focus on the drying process, using fluid bed drying machines as 

they are widely used in the pharmaceutical industry to dry the granules of future 

pharmaceutical tablets. In this process, the drying is carried out through the transmission 

of hot air and the extraction of the humidity of the product by diffusion and forced 

convection. During this process, the granulate is fluidized by hot air and dehumidified so 

that the conversion of mass and energy takes place [Aghbashlo et al., 2014]. 

 

In more detail, the fluid bed dryer operates on the principle of material-fluidization. The 

fluidization procedure requires forcing heated air or gasses across the bed of hard 

particles. Through crevices between these particles, these gasses or airflow will rise. 

Some upward dragging factors on particles rise as velocity accelerates until equaling a 

gravitational pull beneath. As a result, the bed is hydrated, and particles hang in it. 

Following is an overview of the main fluidization steps [PHARMA]: 

 

• Load fluidized bed dryer: Substances can be pulled from the high-shear mixing 

chamber by the feeding tube, and a new batch of the wet granular is added to 

the products chamber using negative-pressure pumping. 

 

• Air Acquisition (air inlet): The control panel turns on the blower unit. The airflow 

is taken consistently from the Air Handled unit and into a tower through the lower 

plenum after the blower is turned on. 

 

• Fluidization: The fluidization phenomenon works in five different stages: 

streamlined fluidization, pressurized fluidization, turbulent fluidization, and initial 

fluidization. Inlet air is blown up through a static power bed. As the velocity of air 

increases, so does space among powdered particles till the material has become 

reprimanded in the bed. 
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• Dryness: Until the final limit is reached, the drying process is divided into three 

phases (at the endpoint, the solid particle's moisture level is equal to or less than 

1 percent) 

 

• Preheating: In the hot and dry airflow stream, wet materials are suspended. As 

energy moves through the body (traditional heating), humidity on the particle's 

surface evaporates, and the evaporation rate gradually rises as particles absorb 

additional heat. Although moisture loss while preheating is minimal, the overall 

temperature of the bed slowly rises. 

 

• Shake the filtering bag: The blowers take and release airflow from the Fluidized-

bed-dryer on a constant basis. Fines, or very minute particulates, may be present 

in the airstream. The particles are captured in filter bag pores, but this causes the 

dust layer to build up, which jams filter-bags and causes the pressure-drop. 

Mechanically shaking is the most effective approach to eliminate a dust layer, 

and it is carried out by the pneumatic cylinder at predetermined intervals. We 

have several filtration chambers, particularly 2, and shaking alternates between 

them. 

 

• Emptying of dry substances: The evacuation of the dried materials from the 

fluidized bed dryer is referred to as discharge. It can be performed manually by 

releasing a product vessel and rolling it to the next procedure on its cart. 

Conversely, vacuum transporting can be done by attaching product containers to 

the tube and employing the vacuum transfer system to provide minus pressure 

for the suction. Grinding is the next step following drying. 

 

The fluid bed drying machine has three critical parameters that characterize the 

efficiency of the drying process and, therefore, can influence the product's final quality. 

These parameters are temperature, humidity, and airflow, as presented in [Mujumda, 

2012]. In theory, a higher temperature and flow rate of the inlet air to the machine implies 

a shorter drying time. However, each of these three parameters must be configured 

correctly depending on the product type to avoid quality problems and deterioration of 

the final product obtained after drying. It is important to note that the inlet air temperature 

should not exceed the critical temperature of the product to be dried so as not to 

jeopardize its quality or pharmaceutical properties. 
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2.1.2. Improvements in the drying process 

 

A fluid bed dryer can eliminate unwanted humidity from a variety of substances, and its 

basic working principle is highly accurate and focuses on dehydrating materials while 

affecting their material characteristics. Pharmaceuticals, chemicals, food processing, 

fertilizer, and the dairy sectors are just a few businesses that use fluid bed dryers. For 

this reason, this technology adapts well to many processes in industries, taking into 

account physical and technical particularities in each one [Haron et al., 2017]. Different 

mathematical models have been studied in each industrial sector, almost always 

assisted by Computational Fluid Mechanics (CFD) tools. These are applied above all to 

the design of the geometry of the machine's distributor and the fluidized bed itself, 

contrasting later with the measurements of the experimental hydrodynamics. CFD 

introduces, for the calculation, simplifications such as the assumption of isothermal, non-

reactive flow, and no mass transfer between the solid and the air, which result in a slight 

(although significant) deviation from the experimental results, which is situated between 

7% and 15%. Among the achievements of this approach, it is worth mentioning the 

correct prediction of the temperature distribution of the particles in a pseudo-2D 

geometry of the bed, as well as the transfer of heat to the granular phase. It has also 

been successfully applied to calculating a gas-solid flow in a circulating bed, revealing 

the existence of convective flows (upward and downward) of the solid particles 

themselves. 

 

In the fluid-bed-dryer process for powdered drying, airflow is drawn in from outside by 

the fan powered by the electric motor within the dryer. The airflow is warmed as it moves 

through the dryer's heating system. The wet substances deposited on shaking pierced 

metal beds are then forced to pass through this heated drying air. This airflow is injected 

at the proper speed and temperature to condense the bed, enabling every particle to 

have close relations with air. The granules in the bed are transported gradually all along 

the height of the dryer while the bed vibrates or rattles. The heated air absorbs all the 

moisture in a particle that flows into a dust regenerator system and is recovered for use 

in the process. As particles flow over the bed, airspeed and temperature may be 

regulated, allowing very wet viscous substances to be evaporated efficiently with a fluid 

bed dryer. Experimental investigations have revealed some relationships between 

process variables in fluidized bed drying. For example, a higher temperature increases 

the rate of moisture diffusion and, thus, the drying rate. A decrease in bed load positively 

affects diffusivity as well. The supernatant discarded is subsequently supplied into the 
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cooling area, where the heat of the material is reduced to a necessary level by cold air. 

The entire procedure is handled by an automatic system, which speeds up the process. 

As a result, with the assistance of the fluid-bed-dryer, material or powdered drying can 

be accomplished effectively. As a result, with some help of the fluid-bed-dryer, item or 

powdered dehydration can be accomplished effectively.      

 

Some progress in fluidized bed technology incorporates a second heat source in the 

process, giving rise to a fluidized bed-assisted dryer. Said heat source may consist of a 

microwave oven, a solar collector, and an infrared emitter. Higher moisture reduction 

rates are obtained in all cases than in traditional fluid bed dryers. 

 

One of the most recent drying methods and an intelligent way to dry medication is to 

employ a dependable sensor for detecting and supervising different quality parameters 

of materials in line, allowing it to function and detect errors or inadequacies in dryer 

procedures. At the same time, it customizes the tools, techniques, mineral wealth, and 

practices that contribute to power conservation and environmental sustainability, 

allowing it to regulate medicine dryer-operating conditions domestically to generate high-

value medicine [Su et al., 2015]. Moisturized content, color, form, flavor, odor, or dry 

conditions, including suction, movement, heat, and dampness in the drying process, are 

all monitoring quality metrics that provide meaningful intelligence on drying system 

performance.      

 

As a result, intelligent drying methods include not merely dryers, but smart and advanced 

sensors, translators, and the control-systems that help increase product quality and 

power efficiency by changing operating parameters associated with the material drying. 

Intelligent drying technology should be developed with an understanding of the product 

to be dehydrated. Beneficial ingredients of the medicine must be subjected to rigorous 

quality restrictions, such as local drying conditions, an effect of predetermined quality 

attributes, and operational parameters, in order to ensure the product's quality while 

using as little energy as possible and having an as little environmental impact as 

possible. It is worth highlighting which food's freshness should be checked throughout 

the procedure. To ensure the quality of finished goods, the medicine unit working should 

be precisely regulated and managed throughout production utilizing cutting-edge 

instrumentation. [Chalortham et al., 2008]. As a result, making advanced drying 

technology for pharmaceutical dryers necessitates a thorough understanding of the 

process and meticulous refinement of best operating procedures. Even though the lofty 
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goal is unachievable in pharmaceutical industrial-dryers real soon, correctly engineered 

efficient drying technology can assist in boosting productivity and output dramatically. 

 

For more than twenty years, [Allison et al., 2015] and [Byrn et al., 2014] have advocated 

for developing advanced or cognitive dryers. Medicine drying is a high-energy process 

that has a significant impact on product quality and has a negative impact on the 

environment due to chemical emissions. It will be essential to make a long-term 

production by incorporating the most recent advancements in associated technologies, 

such as modern computer hardware and software and process control. It is possible to 

construct smart dryers thanks to recent improvements in numerical techniques, 

sophisticated sensors for the real-time measurements of the variables of requirement in 

automated dryer management, and robust control techniques. Advancements in 

computer technology, materials science, sensors technology, and online detection 

technology, as well as a better knowledge of underlying transport phenomena in 

medicine drying, have made it possible to achieve this goal. 

2.1.3. Psychometrics and fluid bed dryer 

 
Psychometrics is a crucial technique used to understand better how a fluid bed dryer 

works, and it is used in this thesis to model the preheating and drying process. 

Psychometrics is an area of physics dealing with the properties and processes typically 

of moist air (the gas phase of H2O), which can be broadened to cover mixtures of the 

gas of one substance and the condensation vapor of a second substance [Gatley, 2004].  

 

In the literature, the psychrometric model has been the basis of research in data 

exploration and modeling for complex systems. For example, [Schoen, 2005], in a 

meteorological context, developed a new model of the THI (Temperature-Humidity 

Index), which represented a simplification of the current NWS (National Weather Service) 

model (3 parameters vs. 16 for the NWS model). In [Kayihan, 1985], a Monte-Carlo 

simulation model was developed to predict the drying behavior of lumber in batch kilns. 

The drying rates were approximated by a novel combination of high and low moisture 

asymptotic rates, which provide a simple correction procedure to compensate for the 

temperature and humidity variations. In [Mittal et al., 2003], an artificial neural network 

(ANN)-based psychrometric chart was used for real-time calculations of the air properties 

required in drying agricultural and food materials and ventilation of farm buildings. Two 

ANN were developed to predict psychrometric parameters. In [Simões, 2019], 

mathematical models were developed for the psychrometric chart. The aim was to 
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identify and model dynamic mathematical relationships between psychrometric 

properties. Theoretical and empirical models were compared, the latter using a two-layer 

neural network as a transfer function for the relative humidity of the air. 

2.1.4. Energy consumption advances in fluid 

bed dryer machines 

 

The biggest challenge when using a fluid bed dryer is to reduce the enormous amount 

of time and energy the machine takes to complete the process. Following the electric 

energy crises of the 1970s [Lifset, 2014], electricity consumption became a topic of 

discussion. Furthermore, it has been established that global electric energy use is quickly 

expanding [Boyd, 2013], specifically in the pharmaceutical industry, which is a growing 

field nowadays. As a result, every pharmaceutical company seeks to utilize as little 

electric energy as possible in many sectors, such as manufacturing fields, packing 

industrial processes, and transportation to different hospitals or medical stores [Thomas, 

2006]. Because power energy originates from three sources: coal and oil fuel, solar 

energy, and nuclear power energy, keeping track of these forms of energy use in various 

areas takes much effort. Nevertheless, in doing so, we can forecast the quantity of 

electric energy utilized in various medicine manufacturing processes and attempt to 

devise strategies that are tailored to a specific use and domain. 

 

Predicting electricity utilization is very important for decision-making and policymakers 

for all the pharmaceutical industry energy-taking machines. We can conceive of 

improvements to pharmaceutical manufacturing processes or works to lessen the 

quantity of electric energy consumed if we understand how much electric energy will be 

utilized. Predicting future electric energy utilization in the pharmaceutical manufacturing 

industries, both in the short-term and long-term, would enable us to understand where 

we can save energy in the pharmaceutical manufacturing process and how we can 

reduce the current consumed energy. Moreover, types of electric energy are most often 

used and attempt to change the trend, as has happened in recent years with coal and oil 

and now with solar energy. Various elements, including such processing time of 

medicine, weather, and climate, affect the quantity of electric energy utilized in different 

companies and manufacturing steps of medicine. With many variables, estimating 

energy usage is a problematic manufacturing task [Mujumdar, 2014]. 
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Machine learning models are currently employed in various fields since they are 

beneficial. Machine learning operates similarly to the function that nicely maps the input 

data to the output. Machine-learning models can give high-accuracy predictions for 

energy usage in the pharmaceutical process or the heating process in the manufacturing 

process. As a result, pharmaceutical companies can use them to enact energy-saving 

initiatives in different manufacturing domains. For example, machine learning algorithms 

can forecast how much electric energy is utilized in a dryer machine in manufacturing 

[Aghbashlo et al., 2012]. They can also be used to forecast the future-energy 

consumption, such as power or organic gas [Ghasemi-Varnamkhasti et al., 2014]. This 

will be presented in more detail in the following chapters. 

 

2.2. Industry 4.0 in the pharmaceutical 

industry 

 

Industry 4.0 is the fourth industrial transformation that combines different fast-growing 

technologies, for example, internet-of-things (IOT), intelligent systems (AI), autonomous 

robotics, and sophisticated computation, to alter the production environment drastically, 

also called digital twins. Related, independent, and self-organizing manufacturing 

industries are the characteristics of Industry 4.0. To achieve Industrial Revolution 4.0 for 

medicines and overcome the conservatism of conventional pharmaceutical 

manufacturing architecture, procedures, and regulations, the latest ways of planning will 

be necessary. Whereas required to implementation of many advanced advance 

technologies and mass production methodologies required to facilitate Industry 4.0 may 

be difficult, it may be meaningful because they offer the potential for maximum output, 

maximum manufacturing protection, increased quality, improved value, maximum agility, 

great flexibility, and minimum wastage with high efficiency [Ezell, 2016], [Buvailo, 2018] 

and [Tilley, 2017]. 

2.2.1. Industrial revolution in pharmaceutical 

manufacturing 

 

Industry 1.0: If Industry 4.0 is the future, then Industry 1.0 is the contemporary 

pharmaceutical industry. Herbals or organic remedies have been used as medications 

since the dawn of human civilization. The way materials are handled and prepared for 
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medicinal uses has changed dramatically in the last three centuries. Mechanical 

processes of the botanical, minerals, and animal-derived substances progressed from 

ordinary hand-operated instruments to commercial-scale equipment capable of crushing, 

milling, blending, and pressing more significant amounts of medications in Industry 1.0. 

[Anderson, 2005]. Independent pharmaceuticals and the chemicals business 

[Sonnedecker et al., 1976], [Daemmrich et al., 2005] were two sources of larger-scale 

medication manufacturing using non-electric power-driven equipment in the 19th 

century. This shift from small-scale to large-scale medication manufacturing drove the 

formation of the pharmaceutical industry in the nineteenth century, which experienced 

phenomenal expansion over the previous century. Nevertheless, a few early machineries 

from the first industrialization, including pneumatic grinders and tablet presses, are also 

routinely employed nowadays [Barriga and Hassan, 2019]. 

 

Industry 2.0: Electrical and earlier electronics equipment and manufacturing processes 

having preset controllers which combined total mechanization and procedure 

management gave manufacturers the capacity to specify fundamental processing 

parameters enabling the second-generation industry revolution. This established itself in 

pharmaceutical manufacturing companies as electronics machine-based smashing, 

grinding, mixing, and tablet pressing, enabling larger-scale productions and more 

significantly, better procedure and quality control. On the other hand, process controls 

were typically limited to predetermined and static configurations that only permitted for 

vigilance systems and passively controlled measures. Sophisticated pills press which 

can consistently generate hundreds of thousands of tablets per minute [Nashet al., 

2003], are examples of Industrial revolution 2.0 innovations. Consequently, most of the 

modern pharmaceuticals manufacturing businesses might be said to continually be 

operating under Industry 2.0 framework [Lorenz et al., 2018]. 

 

Industry 3.0: The developments and affordability of computers and their communication 

techniques, including network computing, world wide web, and intra-wireless 

transmission, permitted the industrialization of revolution. These innovations allow for 

greater automated procedures and equipment, enabling principles like the continuous-

manufacturing and active control in pharmaceutical companies' manufacturing. Human-

computer interactions facilitated the development of more complex control techniques 

and improved product and process quality. Remote sensing and monitoring eliminated a 

need for human operators on factory floors and allowed for improving tracking of 

production factors and KPIs. 
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Several businesses have already transitioned to Industry 3.0, while the pharmaceutical 

industries are still in the early stages. Continuous manufacturing, for illustration, is a 

method that continually transmits components created throughout every process stage 

to the next phase for more processing; it has been extensively implemented in various 

businesses. The pharmaceuticals sector needs to be more active in implementing 

continuous production for a variety of purposes [Lee et al., 2015]. As a result, unlike other 

companies, the pharmaceutical business has failed to consistently reach the six-sigma 

production capability (For example, 3.5 errors per thousand possibilities) [Yu et al., 2017] 

 

The third industrial revolution brought improved process analytic technology (PAT) to 

pharmaceutical manufacturing, intending to provide processes and products quality 

information in nearly real-time. The Models-based or Qualities by the Design (QbD) 

procedures, which strive to regulate desired product quality characteristics inside 

predetermined quality criteria, were also upgraded in Industry 3.0. Nevertheless, to 

realize the full possibilities of the PAT and the QbD, extra technological improvements 

are required to gain profound processes knowledge and real-time predictive analysis, 

allowing for further widespread, meaningful release testing by high grades of products 

quality-assurance – particularly for the biotechnology products. Considering the quality 

difficulties accounting for over two-thirds of medicine constraints, it is evident that more 

work is needed to strengthen process control and reliability [FDA, 2019]. Regardless, 

Industry 3.0 allows for a much better grasp of acquiring, analyzing, and safeguarding 

enormous quantities of information in the pharmaceutical production process. 

 

Industry 4.0: The 4th industrial revolution combines sophisticated manufacturing 

technology to create interconnected, autonomous, and self-organizing production 

systems which work without human intervention. The knowledge gathered in automatic 

and digital environments of Industry 3.0 paves the way for the general shift to Industry 

4.0 in pharmaceutical production. Unlike Industrial 3.0, which saw significant advances 

in specific applications and instruments, Industry 4.0 promised enhancements in 

complete manufacturing infrastructures and applications. The productivity of data can be 

examined by various algorithms and uses for simple vital operations and the business 

considerations which directly affect the manufacturing outputs in such an atmosphere 

[Fuhr et al., 2014]. 

 

The journey from simple data collection to digital maturity consists of converting raw data 

collected during manufacturing processes to knowledge obtained via data analytics 

tools. This "intelligence" is just what drives the self-optimizing, judgmental, autonomous 
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movements, and controller design in the autonomous designs and the cyber-physical 

machinery (for example, computers with processes operated by the computer 

algorithms) [Guilfoyle, 2018]. 

 

The emergence of Industry 4.0 compels us to imagine how the completely digital and 

autonomous manufacturing environment might appear alike and how it might affect 

pharmaceutical procedures and laws [Leurent et al., 2018] [Moore, 2018]. As a result of 

digitization, automation, and real-time data aggregation, the latest operational paradigms 

will emerge in pharmaceutics, allowing for more significant than the six-sigma reliability 

for both tiny and big molecule therapeutic goods. The COVID-19 global medical crisis 

has brought attention to the need for production technology that can adapt to shifting 

demands and reduces reliance on human involvement. In the face of difficulties that 

prevent individuals from working in conjunction with everyone else, automation and 

robotics-based procedures may be essential. For a manufacturer, the consequence is a 

well-controlled, hyper-connected, digitized environment and pharmaceuticals value 

chain [Markarian, 2016]. Figure 3 shows a summary of the fourth industrial revolution 

commented. 

 

 

 

 

Figure 3. By Christoph Roser at AllAboutLean.com under the free CC-BY-SA 4.0 

license. 

2.2.2. From Industry 4.0 to Pharma 4.0 

 

The ICH (International Council for Harmonization of Technical Requirements for 

Pharmaceuticals for Human Use) guidelines established the pharmaceutical industry 4.0 

as the new paradigm where new production processes, equipment, facility design, 

https://www.allaboutlean.com/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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logistics, and operational concepts are integrated. Early collaboration of all departments 

in the pharmaceutical industry (quality assurance, quality control, process development, 

manufacturing operations, engineering, automation, and information technology) is 

required to design robust, flexible structures that operate at the level of quality required 

by a changing market with a strong demand such as the pharmaceutical. 

 

According to [Herwig et al., 2017], the current objective is to achieve a control strategy 

based on the global or integral vision of the process. For this, these authors identify a 

new need in the industry: design towards data integration. This encompasses process 

maps, data process maps, and data flows one step ahead of the current flow charts or 

process charts used in business today. The new design tools for data integration will 

entail implementing and controlling each change, physical or operational while ensuring 

the inclusion of key human factors such as knowledge and experience stored by the 

company's staff and workers' critical thinking. Therefore, prior knowledge must be 

present in one form or another. 

 

Likewise, the strategy based on the global vision will require the transversal confluence 

of all the organization's departments that, combined with data science and information 

technologies, will give rise to the goal of data integration. Integrating all computerized 

systems is critical to achieving this goal regarding data terminals and concepts such as 

PAT technologies and RTRT (real-time release testing) to achieve continuous 

manufacturing [Lourenço et al., 2012]. Companies that have adopted this philosophy 

have established a single significant data source for the entire company, using Big Data 

infrastructures, which they also use for real-time data acquisition and decision-making 

support. 

 

Regarding the adaptation of industry 4.0 to Pharma 4.0, the following characteristics 

must be implemented: 

 

• Work instructions for manufacturing. The master operations record will 

continue to be used, but to enable flexible execution, flexible strategies and 

predictive maintenance are implemented. ICHs are promoting this type of 

planning. 

 

• Quality and compliance with specifications. Modern Pharma 4.0 establishes 

quality assurance through transversal management of business resources, 

connecting organizational tasks and functions. 
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• Execution. To ensure economic efficiency, data must be evaluated, analyzed, 

and used for process optimization to a level of complex treatment that only big 

data can provide. Moreover, generating results at such a speed that the downtime 

and effort of optimization can be reduced. 

 

• Integration Plug & Produce. The characteristics of these new enormous data 

flows between equipment and cloud data centers will allow equipment and 

machines that were already working to adapt to the new way of functioning, like 

a digital twin, while facilitating the connection of new era equipment, making the 

Plug & Produce concept a reality. In the future, the flexibility of the industries will 

make this type of interconnectivity possible, reducing costs and minimizing the 

changes to be made in the production lines. 

 

In this thesis, we have used a digital twin approach by integrating real-time data from a 

fluid bed dryer to a machine learning algorithm, creating a digital model that can predict 

when the process needs to be stopped by the operator, with the consequent energy 

saving. 

2.2.3. Digital Twin technology and Industry 4.0 

 

A Digital Twin is a virtual representation that serves as the real-time digital counterpart 

of a physical process [Barricelli et al., 2019] [Boschert et al., 2016]. Digital twins are the 

outcome of continuous improvement in the creation of product design and engineering 

activities. Digital Twins can be considered the current leading edge in the evolution of 

design and simulation tools: from handmade product drawings and engineering 

specifications to computer-aided drafting/computer-aided design (CAD) to model-based 

systems engineering (MBSE). The digital twin of a physical process depends on the 

digital thread—the lowest level design and specification for a digital twin—and in order 

to preserve accuracy, the "twin" depends on the digital thread. With applications like real-

time system monitoring and control using Process Analytical Technology (PAT), 

continuous data acquisition from equipment, intermediate, and final products, and 

continuous global modeling and data analysis platforms [Lourenço et al., 2012], digital 

twins are playing an increasingly significant role in pharmaceutical and 

biopharmaceutical manufacturing systems [Chen et al., 2020], [Cheng et al., 2020]. 

Moreover, Digital twins have recently been identified as a critical approach in Industry 
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4.0 [Lourenço et al., 2012], and the European Union is financing a diversity of projects 

to develop digital twins in different fields, such as SPIRE industries and biomedical 

applications, among others. In [Fornasiero et al., 2021], a survey was recently conducted 

on the degree of implementation of Artificial Intelligence and Big Data systems in the 

"process industries" in Europe. Machine learning and predictive maintenance were found 

to be key fields and the most popular to be implemented in process industries, as 

commented by [Park et al., 2018] and [Ali et al., 2021]. Also, Cyber-Physical Systems 

were found to be an important framework being adopted by industries, especially for 

proactive or predictive maintenance solutions and tools [Shcherbakov et al., 2020]. Other 

solutions involving Big Data, user data management, and data processing 

methodologies are shown in [Shafqat et al., 2020] and by using digital twins in 

[Burggraeve et al., 2013]. It is also noteworthy to mention the use of data visualization 

for value analysis [Colombo et al., 2020]. Data-driven models trained using machine 

learning algorithms have recently been developed, as commented in [Liu, 2022], and 

also for specialized industrial processes requiring high precision. In this sense, micro-

pull winding and laser ablation processes have been modeled and simulated to find the 

optimum control parameters for a required production specification [Wasiak et al., 2017] 

[Nettleton et al., 2016].  

 

Figure 4 shows an overall depiction of the digital twin concept we have implemented in 

this thesis, with the physical system on the left, including the fluid bed dryer, the data-

driven simulator on the right, and the SCADA/Cloud interface in the center [Barriga ISPE, 

2022]. 

 

 
 

Figure 4. Schematic representation of the physical process and digital twin 
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Data mining and artificial intelligence techniques reviewed in the literature have been 

implemented in different applications including drying processes in the pharmaceutical 

industry [Peterson et al., 2019], [Keskes et al., 2020] and [Petrović et al., 2011]. In this 

thesis, different AI techniques have been evaluated to reduce pharmaceutical processes' 

high costs in terms of energy consumption. 

 

2.3. Machine Learning applied to 

manufacturing 

The usage of machine learning in the manufacturing industry represents many benefits 

and advantages in terms of efficiency and improvements. Machine learning in 

manufacturing has a number of immediate advantages, including improving operational 

efficiency, lowering energy or raw material costs, reducing maintenance costs, reducing 

inventory levels, improving quality control on production lines, and reducing waste or 

improving safety, among other benefits [Barriga and Hassan, 2021]. In this chapter, we 

will briefly explain an introduction to the machine learning process approach, types of 

machine learning algorithms, and some related work papers reviewed related to energy 

reduction in manufacturing. 

 

2.3.1. Introduction to machine learning 

 

Machine learning, also known as artificial intelligence, allows computers to acquire 

knowledge and progressively improve tasks' performance and data analysis. It presents 

an exciting way of generating learning based on the information patterns extracted from 

the data analyzed. By taking the data’s behavior, we can create predictive models 

designed for decision-making with a considerably high efficiency. The machine learning 

process can be broken down into seven major steps: 

 

Objective definition: The main purpose of this step is to understand the problem to be 

solved. For example, in our thesis, the main problem to be solved is to improve the 

pharmaceutical manufacturing drying process by reducing the energy consumption of a 

fluid bed dryer. 
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Data collection: This step aims to collect reliable data so that the machine learning 

model can find the correct patterns. The quality of the data used for the algorithm will 

determine how accurate the model is. If data is incorrect, the model will return wrong 

predictions. Good data contains few missing and repeated values and a good 

representation of the various scenarios to be analyzed. In this thesis, we will use data 

directly extracted from a fluid bed dryer collected by their sensors. 

 

Data preparation: Data preparation is one of the most effortful phases of machine 

learning. It includes data cleaning tasks like detecting and fixing, when possible, 

incomplete data sets or normalizing data to put the same format or scale. For example, 

in our thesis, we detected that some sensors were generating data related to the mixing 

process and not impacting the drying process, so we decided to eliminate it. 

 

Data understanding: Understanding the problem is as important as understanding the 

data we have available. EDA, exploratory analysis of data [Cox, 2017], is the technique 

used by data scientists to make analysis, graphs, correlations, and descriptive statistics 

to understand better what story the data is telling us. It also helps to estimate if our data 

is sufficient and relevant to build a model. This step usually requires more time and effort 

in building a machine learning project. 

 

Model building: In this step, we will select the machine learning model/algorithm that 

fits our objective and data set. The machine learning algorithm will automatically learn to 

obtain the relevant results with the historical data we have prepared, also called the 

training data set. There are various machine learning algorithms: predictive, 

classification, linear regression, clustering, 

 and Deep Learning, among many other variants. The next section will define the most 

common models/algorithms/techniques used. 

 

2.3.2. Machine learning algorithms 

 

Machine learning algorithms are classified into several that are described in Figure 5 

[Ghori et al., 2020]. 
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Figure 5. Machine learning and its types. [Ghori et al., 2020] 

 

Supervised Machine Learning: Supervised machine learning algorithms require 

external assistance to carry out their operation. The input dataset is split into training and 

test sets, whereby the training dataset has an output variable that needs to be classified. 

[Kotsiantis et al., 2007] Reported that all types of algorithms learn input data 

configuration from the training set and apply it to the test set for classification or forecast. 

The three most common supervised machine learning programs are Naïve Bayes [Lowd 

et al., 2005], Decision tree, and Support vector machine. 

 

Unsupervised Machine Learning: This machine learning type is employed to draw 

valuable insights from datasets with unlabeled input data [Meyer, 2004]. The machine-

learning algorithm uses the formerly learned features to detect the data class. This 

technique is mainly used for feature reduction and clustering. K-mean clustering and 

Principal Component Analysis (PCA) are the two key unsupervised learning algorithms. 

 

Semi-Supervised Machine Learning: This technique combines the strength of 

supervised and unsupervised. It is successful in both data mining and machine learning, 

where unlabeled data is available, and getting these data labeled is a tedious process 

[Zhang et al., 2003]. Many categories of semi-supervised learning algorithms, such as 

self-training, generative model, and transudative support vector machines, are described 

by [Zhu, 2005]. 
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Reinforcement Learning: This type of machine learning makes decisions based on 

which exact actions to take to ensure a more positive outcome. This learning is carried 

out without prior knowledge until given a particular scenario. Reinforcement learning 

mainly depends on two conditions: delayed outcome and trial and error search [Zhu et 

al., 2009].  

 

Multi-Task Machine Learning: Multitasking learning is a type of machine learning that 

helps other learners to perform excellently better. Applying multistage learning to a task 

retains task procedures, how it solved the problem, or how a certain insight was deduced. 

The algorithm follows these steps to solve similar problems. This learning system can 

also be termed an inductive transfer learning mechanism [Sutton, 1992] [Dey, 2016].  

 

Ensemble Learning: This is a combination of various individual learners to form one 

learner. It was disclosed by [Chaudhary, 2019] that a combination of several learners is 

way better at doing a particular task than an individual learner. The two most popular 

ensemble learning activities are boosting and bagging. 

 

Instance-Based Learning: In this type of machine learning, the algorithm learns a 

certain type of arrangement. This same arrangement is then applied to newly fed input 

data. This type of learning waits for the test set to be available and then acts on it together 

with the training set. The bigger the size of the data, the higher the complexity of the 

algorithm. One common example of instance-based learning is K-Nearest Neighbor 

[Opitz, 1999]. 

 

Neural Network Learning: Neural Network learning is derived from the biological theory 

of neurons. It is also called the Artificial Neural Network (ANN). Neurons have a cell-like 

structure in the brain. The neural network imitates the working principle of a human brain. 

ANN can be used in data mining, expert systems, medical, fuzzy logic, business, weather 

forecast, aviation, and computer science. Some notable ANN advantages are real-time 

operation, adaptive learning, pattern recognition, self-organization, amongst others. 
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2.3.3. Machine learning applied to energy 

reduction in the manufacturing industry 

 

Several studies demonstrate the high applicability of machine learning techniques in the 

pharmaceutical industry. [Aksu et al., 2012], performed a systematic study of the 

application of ANN to developing and formulating pharmaceutical products in Quality by 

design approach for tablet formulations using artificial intelligence techniques. Using 

historical data, they could infer detailed information on the interactions between the 

formulation and the specifications of various drugs. In the conclusions of their essay, 

they assured the efficiency of neural networks and genetic algorithms for the optimization 

of formulations, reducing energy consumption. 

 

Our thesis focuses on applying artificial intelligence algorithms to improve methods and 

processes in the manufacturing industry, particularly in drying processes. We have found 

stimulating studies such as the one published by [Ugur et al., 2008] in which they present 

a simplified physical model of the drying phenomenon of solid particles and approach 

the solution through genetic algorithms. For this, the authors establish the predictive 

control model, in which air temperature and air humidity are taken as control variables, 

while are taken as prediction variables those of the moisture content and the quality (a 

substance that disappears while the process continues and that, in our case, would be 

the active ingredient of the drug). They found that the training process converged 

reasonably and that the obtained drying times improved those obtained in the laboratory. 

Although it incorporates classical physical parameters, this modeling is less ambitious 

than the one we implemented since we study the evolution of a more complex system 

formed not by a simple particle (whose behavior is described by the starting equations). 

In our case, the system to be studied is made up of N solid particles that move randomly 

through the fluidized bed dryer, traversed by a hot air current that moves between the 

particles. Although the substance to be dried in this study to which we refer differs from 

the one we handle in our thesis, and the physical process is significantly less complex, 

it gives us an idea of which methods of machine learning can optimize highly complex 

problems that would otherwise be difficult to tackle. 

 

Another research reference was carried out by professors [Nazghelichi et al., 2011], from 

the Faculty of Agricultural Engineering of the University of Tehran. They focused on the 

energetic aspects of the fluidized bed drying process. They also had a machine in which 

different tests were carried out for their experiment, and they trained the model against 
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experimental data. However, their results cannot be extrapolated to our work because it 

is a different machine, and the tests are carried out with different materials. Despite the 

differences, this research brings two interesting novelties: they tried to measure the 

influence of many variables in their study. Thus, they changed the temperature of the 

inlet air (50ºC, 60ºC and 70ºC) in the thickness of the bed (30, 60 and 90 mm) and the 

drying time. In total, 518 tests were performed, of which 259 were used for training and 

259 for validation.  

 

2.4. Introduction to Cloud Computing 

and IIOT 

2.4.1. Cloud Computing IaaS, SaaS and PaaS 

 

Cloud computing offers the possibility to consume computing services such as servers, 

storage, databases, networking, software, analytics, and intelligence over the Internet to 

offer flexible resources and economies of scale. Rather than owning a computing 

infrastructure or data centers, this can be rented to access applications, storage, or 

infrastructure from a cloud service provider. Utilizing cloud computing services has the 

advantage of avoiding the upfront costs and complexity of purchasing and maintaining 

one's own IT infrastructure in favor of paying for it only as it is utilized. Cloud computing 

service companies can gain enormous economies of scale by offering the same services 

to a wide range of consumers. Manufacturing plants can use a cloud computing solution 

to handle the 'big data' associated with manufacturing operations and complex 

computational capacities in a secure, protected environment. In addition, when different 

systems are running on the cloud, they can be synced to communicate automatically. 

Cloud computing can be broken down into several different elements, focusing on 

different parts of the technology stack and different use cases such as IaaS 

(Infrastructure as a Service), SaaS (Software as a Service) and PaaS (Platform as a 

Service). Each cloud service model (IaaS, SaaS and PaaS) gives a range of control, 

which corresponds to a range of responsibility as shown in Figure 6. A SaaS system is 

completely managed by the service provider, and some configurations can be changed. 

IaaS gives complete control because the infrastructure is rented, not owned. PaaS 

solutions allow the service provider handles everything else except the application and 

data. 
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Figure 6. Service models in cloud computing. IaaS, PaaS, SaaS 

 

As the term "infrastructure" suggests, IaaS architecture contains all the physical data 

centers to support your application and your servers on virtual machines to provide a 

virtual data center [DNS] and [EGINN]. This allows outsourcing all network and 

computing needs to a cloud architecture. This includes operating systems, databases, 

development tools, and other middleware or applications, which can enable running 

essential operations like building web applications, hosting websites, developing, and 

testing new environments, and running high-performance computing like machine 

learning algorithms. IaaS gives virtualized resources such as servers, disks, networks, 

and IP addresses, but they are not responsible for administering the operating system, 

data, applications, middleware, and runtimes. IaaS allows the freedom to buy only the 

compute capability required and scales those resources up or down as necessary. 

Besides, there are other advantages of using IaaS, such as a range of hardware 

configurations with pre-configured operating systems like Linux or Windows are available 

from cloud service providers. It also enables dynamic scaling – add capacity during peak 

times, scale down as needed and eliminate the need for large investments. The "pay as 

you use" pricing models offered by cloud service providers allow to only pay for the 

resources utilized, lowering costs. Billing stops when a virtual machine stops. As 

opposed to standard flat/fixed prices, they only charge for the actual usage in this 

situation, which results in significant cost savings. Provisioning and deploying resources 

are very simple and global infrastructure with edge locations is available worldwide. 
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There are some disadvantages of IaaS. Given that the service provider controls the 

infrastructure, outages in the infrastructure can affect the customer infrastructure. 

Because IaaS users have limited access to the cloud service provider's infrastructure, 

troubleshooting is more challenging. Besides, if peak usage is high, monthly costs may 

be much higher than expected, and the provider may share infrastructure across multiple 

clients. This adds to the security risk when working in a highly regulated industry such 

as the pharmaceutical industry. 

 

PaaS (Platform as a Service) offers a platform for developing and deploying applications. 

The technical stack required for application development is available on the cloud, which 

requires no download or local installation. With PaaS, developers can concentrate on 

creating their apps rather than worrying about infrastructure, storage, software upgrades, 

or operating systems. As a result, programmers may create, launch, and manage their 

own apps quickly and easily without having to construct and maintain the infrastructure 

or platform that is often required for the process. PaaS apps adopt certain cloud features, 

making them scalable and highly available. PaaS can also be beneficial when needed to 

create and deploy applications quickly or if it is needed to streamline workflows when 

multiple developers are working on the same development project. 

 

A web-based software deployment approach called software as a Service (SaaS) makes 

the software accessible through a web browser. The main benefit is that it is not relevant 

where the software is hosted, which operating system it uses, or which language it is 

written in. The SaaS software is made accessible from any device with an internet 

connection. Capital expenses of purchasing servers or software while using SaaS are 

avoided. You only need to connect to the SaaS application using a console dashboard 

or API because the service provider is shielding you from software maintenance. 

Microsoft Office 365, Intuit, Salesforce CRM, Zoom, ZoomInfo, Dropbox, Google Apps, 

and many more products geared toward end users are typical examples. These 

applications run on the cloud and need not be downloaded to a local device. Webmail 

such as Outlook, Gmail, Yahoo, etc., is one of the earliest forms of SaaS [EGINN].  

2.4.2. Edge computing 

 

Edge computing refers to computing done at the location closest to a system's data 

source where information is coming from or going. Edge architecture allows processing 

to occur more quickly by reducing latency. Applications and programs running at the 
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edge can work quicker and more efficiently than a cloud computing architecture, resulting 

in a better user experience and improved overall performance. For example, if you're a 

manufacturing company, your "edge" infrastructure can be located close to the 

production lines where row material is loaded, for collecting and managing information. 

Your manufacturing cloud computing solution could be located miles away, housing the 

main datacenter, but the edge is where the app-processing action is. Edge computing in 

manufacturing uses sensors, communication, and data processing technologies to 

interconnect many components [REDHAT]. For instance, the data generated from 

sensors from production lines located on the shop floor needs to be uploaded to the 

cloud computing layer, and the routing strategy will directly affect the delay performance. 

Edge computing refers to a new computing model that analyzes and processes a portion 

of data using the computing, storage, and network resources distributed on the paths 

between data sources and the cloud computing center. Edge computing uses devices 

with sufficient computing power to implement local preprocessing of source data [Qiu et 

al., 2020]. 

 

 

Figure 7. The comparison of cloud computing and edge computing. [Sun et al.,2020] 

 

Figure 7 shows the comparison between cloud computing and edge computing. Edge 

computing is an extension of the concept of cloud computing, which cannot completely 

replace cloud computing. The relationship between edge computing and cloud 

computing is collaborative and complementary. The edge ends can analyze and process 

a large number of real-time data quickly, but most of the data is not only used once. Even 

after the edge-end processing ends, it needs to be collected from the edge end to the 

cloud. The mining and analysis of massive data, the storage of key data and the linkage 
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of multiple edge nodes all need to rely on the cloud, and the virtualization resources and 

management of the edge also need to be completed by the cloud. When edge computing 

and cloud computing work closely together, they can achieve different demand 

scenarios, thus maximizing the application value of edge computing and cloud computing 

[Sun et al., 2020l]. Figure 8 shows a basic cloud computing and edge computing 

architecture for manufacturing. The factory network contains production lines 

sending/receiving data to/from edge computing infrastructure located in on-premise 

servers at the same physical location. On the other hand, edge computing is connected 

to cloud computing infrastructure located outside the manufacturing facilities.  

 

Figure 8. Cloud computing and Edge computing architecture. 

 

2.4.3. Industrial Internet of Things (IIOT) 

 

Industrial internet of things (IIOT) is the use of smart sensors to improve manufacturing 

and industrial processes. IIOT uses the power of cloud computing and edge computing 

to perform Utilizing real-time analytics to benefit from the data that "dumb machines" 

have been producing in industrial settings for years. Connected sensors enable 

manufacturing plants to quickly pick up on inefficiencies and problems and save time 

and money while supporting business intelligence efforts. The IIOT has enormous 

potential for improving supply chain efficiency, traceability, sustainable and green 

manufacturing methods, and quality control. In an industrial setting, IIOT is key for 

improving processes such as predictive maintenance, enhanced field service, energy 
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management and asset tracking. IIOT is a network of devices or sensors connected to a 

system that monitor, collect, exchange, and analyze data. These sensors transmit 

information directly to the data communications infrastructure, edge computing or cloud 

computing, or both, where it is transformed into useful knowledge about how a specific 

piece of equipment is working. This data can be utilized to improve manufacturing 

procedures and for predictive maintenance. 

 

There are some differences between IOT and IIOT. Cloud platforms, sensors, 

networking, machine-to-machine communications, and data analytics are just a few of 

the technology that both use but they are used for different purposes. Applications for 

the Internet of Things (IOT) link devices in a variety of industries, including agriculture, 

healthcare, consumer products, utilities, and government and urban areas. Smart 

appliances, fitness trackers, and other IOT applications typically don't cause 

emergencies if something goes wrong. On the other hand, IIOT applications link 

machines and gadgets. mainly in manufacturing industries. IIOT implementations can 

lead to high-risk situations as a result of system failures and downtime. IIOT applications 

are likewise more focused on increasing productivity. versus the user-centric nature of 

IOT applications. 

2.4.4. Communications gateway OPC UA 

 

Open platform communications unified architecture OPC UA is a standard that 

guarantees the open connectivity, interoperability, security, and dependability of cloud 

and edge computing systems as well as industrial automation equipment. OPC UA is 

widely recognized as the key communication and data modeling technology for Industry 

4.0 projects connecting manufacturing production lines with software capabilities. The 

OPC UA standard is driven by the OPC Foundation, a non-profit organization to facilitate 

multi-vendor, multi-platform, secure, and reliable interoperability. Manufacturing 

automation consists of different controllers and devices from different providers or 

vendors with different protocols. These controllers and devices are essential to 

communicate with management systems (Enterprise Resource Planning, Manufacturing 

Execution Systems, etc.). OPC UA, therefore, creates an environment for accessing real-

time plant floor data from these vendors. It also offers "plug and play" connectivity from 

proprietary devices and acts as an interface between various data sources such as PLCs 

(Programable Logic Controllers) and field devices, sensors and actuators; applications 

https://enterprise.microsoft.com/en-us/articles/industries/discrete-manufacturing/microsoft-and-opc-foundation-accelerating-the-future-of-manufacturing/
https://enterprise.microsoft.com/en-us/articles/industries/discrete-manufacturing/microsoft-and-opc-foundation-accelerating-the-future-of-manufacturing/
https://enterprise.microsoft.com/en-us/articles/industries/discrete-manufacturing/microsoft-and-opc-foundation-accelerating-the-future-of-manufacturing/
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such as the SCADA (Supervisory Control And Data Acquisition system). This technology 

is implemented in server/client pairs. 

 

On the one hand, the hardware communication protocol used by a PLC is converted by 

a software program called the OPC server. In comparison, client software is any program 

that needs to connect to the hardware. On the other hand, the client uses the server to 

get data or send commands to the hardware. OPC is valuable because it is an open 

standard, which results in cheaper prices for producers and more options for consumers. 

To enable communication between their devices and any OPC client, hardware 

manufacturers just need to supply a single OPC server. Software vendors need only 

OPC client capabilities in their products, and they instantly become compatible with 

thousands of hardware devices. Ultimately, users can choose any client software they 

need, safe in the knowledge that it will communicate seamlessly with their OPC-enabled 

hardware, and vice versa [MSC]. 

 

2.5. Microsoft Azure Cloud Computing 

platform 

 

Several cloud computing platforms are available in the market, like Amazon Web 

Services, IBM Cloud, Google Cloud or Microsoft Azure. [Muhammed et al., 2020] 

compared the big three, using the constraints of hubs, analytics, and security. The study 

also recommends which IOT cloud platform vendor is ideal.  

 

MS Azure is the platform that the company where the fluid bed dryer is allocated is using 

as a cloud computing corporate solution. Microsoft's cloud services and resources can 

be accessed and managed using Azure [AZURE], a framework for cloud computing and 

online portal. These resources and services may keep and modify our data based on our 

needs. To use these tools and services, we need an operational internet connection and 

the ability to log in to the Azure site [Gundu et al., 2020]. MS Azure was launched on 

February 1, 2010, longer ago than its largest opponent, Amazon Web Services. It's free 

to sign up and follows a pay-per-use model, which means that you pay only for the 

services you use. Besides, Azure supports a number of programming languages, 

including Java, Node js, C# and Phyton, the language we use for our machine learning 

algorithm. Around 200 services are available on Azure, categorized into 18 different 

groups. Computing, containers, networking, storing, the Internet of Things, analytics, 
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mobile, artificial intelligence migration, machine learning, databases, security, developer 

tools, media identification, management tools, and web services are just a few. Following 

is a list of some of the key Azure services we will use for our work. 

2.5.1. MS Azure Databricks 

 

The Apache Spark implementation on Azure is called Databricks. Large data workloads 

may be processed utilizing fully managed Spark clusters, particularly helpful for data 

engineering, exploration, and machine learning-based data visualization. The team 

behind Apache Spark and Microsoft collaborated to create Databricks. It offers a unified 

platform for big machine learning and data processing for analytical, engineering, and 

data science teams. The Apache-Spark environment provided by Databricks is quick and 

efficient and enables large-scale data processing for batch and streaming applications. 

Databricks is one of the most prominent platforms you can use to deal with big data and 

perform collaborative tasks in the Data Science field. We will use Databricks to store the 

dataset in the data lake and create pipelines to integrate the data sources with the 

platform. We will use AI/ML module to analyze the data and make predictions after 

training models. Figure 9 shows a summary of the different components of MS Azure 

Databricks. 

 

 

Figure 9. MS Azure Databricks components. Source Microsoft.com 

 

Data scientists, Data engineers, and machine learning engineers may work in an 

interactive environment due to Databricks engineering and data science. Sometimes, 
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Databricks Data Science & Engineering is referred to as Workspace. It is an Apache 

Spark-based analytics platform. Apache Spark cluster technologies and capabilities are 

fully open-source and included in Databricks Data Science & Engineering. A managed 

service for experiment tracking, feature development, model training and maintenance, 

feature and model serving is comprised in the integrated end-to-end machine learning 

platform called Databricks. The development of a well-suited collection for ML is 

automated using Databricks machine learning. The most renowned machine learning 

libraries, including PyTorch, Keras, TensorFlow, and XGBoost, are contained in 

Databricks Runtime machine learning clusters.  

 

Databricks machine learning allows us to:  

 

• Develop models manually or using AutoML. In our thesis, we will develop the 

model manually. 

• Training variables and models are monitored by using MLflow tracking 

experiments.  

• Produce feature tables used for model training and inference.  

• Utilize Model Registry to share, oversee, and provide models. 

 

Databricks machine learning is a crucial service that will enable us to register over the 

workspace and dataset and then train our machine learning models on our dataset.  

2.5.2. MS Machine Learning 

 

A cloud-based service for building and administering machine learning solutions is called 

Azure Machine Learning (Azure ML). It is intended to assist data scientists and machine 

learning experts in utilizing their current modelling and data processing abilities. Assist 

them in scalability, workload distribution, and cloud deployment as well. Classes are 

available in the Azure ML SDK for Python that we may use to interact with Azure ML in 

our Azure subscriptions. It enables us to build, manage, deploy, test, or keep an eye on 

machine learning models in a scalable cloud setting. Many open-source Python 

packages, including TensorFlow, Matplotlib, and scikit-learn, are supported by it. This 

module enables us to build, test, deploy, manage, or monitor our ML models. Models will 

create, train, and deploy by using a few different tools from Azure machine learning 

[AZURE]: 
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• Azure Machine Learning for Visual Studio Code Extension: It is an add-on 

for free that enables resource management, process modelling for deployments 

and training in Visual Studio Code. 

 

• Jupyter Notebooks: We may generate and transfer documents with live code, 

graphics, narrative prose, and mathematics with this open-source web 

application. 

 

• Azure Machine Learning Studio: You can design, develop, and train machine 

learning models in this workspace. 

 

• Model Registry: It is a machine learning service where the model is stored once 

trained. A model registry is responsible for keeping records of the models being 

built and trained. The versions and names of the models can be used to identify 

them. The registry service records each new model registered with a name used 

as a previous version. The model's name is left unaltered while the version 

number is raised. Additional metadata tags can be added during the model 

registration, which helps in easy searching. 

 

• Image Registry: It keeps a record of the pictures that the models produced. 

When creating an image that is stored by an image registry, more metadata tags 

are added. To discover the image, you can use these tags as a search term. 

 

Before we start collecting and processing our data, we need a Workspace where we can 

perform all the operations. The most organized level of machine learning solution is 

represented by a Workspace. It contains a list of all the computation targets utilized 

during model training. It keeps a record of each training session's metrics, results, and 

snapshots. The optimum training model for the project can be chosen with the use of 

these data. Through the workspace, the model is registered. Azure ML service workflow 

is a three-step process that includes: 

 

• Prepare Data: The process of collecting and processing data from datasets and 

datastores is the initial stage in the creation of a machine learning model. Some 

examples of supported Azure storage services that can be listed as datastores 

are: Azure Data Lake, Azure SQL Database, Databricks File System and Azure 

Blob Container. 
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• Experiment: The following stage is to create, test, and train the model after the 

data has been registered and stored in the dataset. 

 

• Model: It is a part of code that receives input and outputs the specified results. 

The steps involved in creating a ML model include choosing an algorithm, 

obtaining data, and fine-tuning hyperparameters. A trained model inherits what it 

learned from the training process due to the cyclical nature of training. Executing 

in Azure Machine Learning produces the model. 

 

• Compute Targets: The host service deployments or training scripts are run on 

a system or a group of machines. A compute target might alternatively be a local 

computer or a distant computing resource. The compute resources used for 

compute targets are attached to the workspace. 

 

• Deployment: Once the model is trained and tested, it is stored in the model 

registry and then deployed in web service or IOT modules.  

2.5.3. MS Azure Data Factory 

 

Data is moved and transformed between different data repositories and compute 

resources using Azure Data Factory. Data-driven workflows, also known as pipelines, 

can be planned, and created to ingest data from various data repositories. With data 

flows or computing services like Azure Synapse Analytics, Azure Databricks, Azure 

HDInsight, and Azure SQL Database, you can create intricate ETL processes that 

graphically change data. Data Factory's function is to extract data from one or more data 

sources and transform it into a structure that can be processed. It may be necessary to 

remove noise from the data sources because they may present data differently. 

 

 Data can be converted in a format that the other services in the warehousing solution 

can use to handle it. You may create the data copy, ingestion, and transformation 

workflows using the various parts of Azure Data Factory, by creating pipelines to carry 

out one or more actions. Afterward, the associated services linked to the data sources 

or services can be used. You can also add triggers to an existing pipeline to have it run 

automatically at predetermined intervals or in response to certain occurrences. In Figure 

10, we can observe the different components that will be explained in more detail 

[AZURE]. 
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Figure 10. Azure Data Factory components. source Microsoft.com 

 

 

• Pipeline: A pipeline is a logical collection of tasks that carry out a single task. 

There could be one or even more pipelines in Data Factory. A pipeline can be 

activated physically or by a trigger. The operations in a pipeline can run 

independently in parallel or sequentially when chained together. 

 

• Activity: Activities consume and/or produce Datasets. Activities in a pipeline 

reflect a specific processing step or activity. Activities in a pipeline specify the 

actions to be taken concerning the data. Activities typically assist data 

transformation, control, and movement. Activities can be carried out sequentially 

or concurrently.  

 

• Dataset: Dataset is the representation of the data. Datasets serve as a 

representation of data structures in data repositories. The data to input or output 

for actions are represented by datasets (data source or sink). 

 

• Linked Services: The information a linked service contains varies according to 

the resource. The linked service defines the link to the source of data. It indicates 

the location of the data. Similar to connection strings that specify the connection 

details required for Data Factory to join to external resources, Linked Services 

define the connection information (source or destination). A linked service 

specifies a target data storage or a compute service. 

 

The connection between Linked Services and Activity is made possible by the Integration 

Runtime. Data Factory uses Integration Runtime as its computing environment 

(infrastructure), where the activities operate on or are dispatched. When a pipeline 

should be executed is decided by triggers. A pipeline can be run on a wall-clock 
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schedule, at regular intervals, or during an event. When a pipeline execution requires to 

begin, triggers serve as the processing unit that makes that call. Data engineers can 

visually create a data transformation logic using these unique activities rather than writing 

code. A visual editor can alter data in several phases without writing any more code than 

data expressions. For scaled-out processing using Spark, they are carried in the ADF 

pipeline on the Azure Databricks cluster (managed Spark cluster). ADF manages all 

code translation and data flow execution. It can handle many data easily. 

 

In summary, for our project, we will use Data Factory to create Pipelines for data transfer. 

We will set the schedule of pipelines according to our requirements daily or weekly to 

run the job. Data factory will also be used to visualize and monitor the pipelines and set 

up security alerts. 

2.5.4. MS Azure Data Lake 

 

Azure Data Lake Storage offers a highly scalable and secure data lake for high-

performance analytics applications. The Azure Lake Data Store is occasionally used to 

refer to Azure Lake Data Storage. It offers a single storage platform that can utilize to 

connect their data and is intended to do away with data silos. With tiered storage and 

policy control, the storage can aid in cost optimization. Data of any shape, size, and 

speed with the aid of Azure Data Lake by data scientists, developers and analysts, which 

provides all the tools and services required. It is beneficial to carry out various processing 

and analytical tasks across platforms and in different languages. Using batch, streaming, 

and interaction analytics, it simplifies and speeds up storing and absorbing data. There 

are several advantages of Azure Data Lake because it is hosted in the cloud, it is very 

versatile and scalable and enables streamlined data storage for any business 

requirements. Processing enormous amounts of data simultaneously enables speedy 

access to insights. As shown in Figure 11, Data Lake holds all types of information, 

including binary, chat, people, sensor, log, and XML data. There is no file or data size 

restriction. Allows for extremely high analytics workloads for thorough analysis. It 

supports storage data with no schema. In our project, Azure data lake makes storing the 

data in any shape easy. Our data is dynamic in type and comes from different sources 

(historical and real-time fluid bed dryer data), so Data Lake is suitable for storing them. 

It also allows training machine learning models and scaling them according to future 

needs.   
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Figure 11. Data Lake source Microsoft.com 

 

2.5.5. MS Azure IOT Hub 

 

A networking of physical objects, such as furniture, vehicles, appliances, and other items, 

that are linked together and share data is known as the Internet of Things (IOT). These 

objects are embedded with electronics, sensors, actuators, software, and connectivity. 

Microsoft's Internet of Things cloud connector is called Azure IOT Hub. With the help of 

this managed cloud service, millions of IOT devices might safely and reliably 

communicate with a back end of a system. Azure IOT hub permits two-way 

communication between IOT applications and managed devices. With this cloud-to-

device communication, you may not only receive the data from your devices but also 

communicate with them by sending commands and policies. The way Azure IOT hub 

differs from other options is that it also offers the infrastructure needed to connect, 

authenticate, and manage the connected devices as shown in Figure 12. 

 

Figure 12. MS Azure architecture for IOT 

 

Full-featured and scalable IOT systems are possible with Azure IOT Hub. Virtually any 

device can be connected using Azure IOT Hub, which can scale to hundreds of 
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thousands of devices. It is possible to record and watch events such as the formation, 

failure, and connections of devices. For simple device connecting, Azure IOT Hub offers:  

 

• Device libraries for the most popular programming languages and platforms for 

simple device interfacing.  

 

• Hyperscale connectivity between devices and clouds that is secure and offers a 

variety of possibilities.  

 

• Storage of meta-data and individual device state information. 

 

In our project, we use Azure IOT to take/send data from/to the fluid bed dryer to our MS 

Azure architecture, which will be explained in more detail in the next chapter. 

 

2.6. Conclusions 

 

To recap the content of this chapter, we have presented the state of art and a review of 

the most relevant literature of the different topics addressed in this thesis, including an 

introduction to the pharmaceutical manufacturing process, a brief description of fluid bed 

dryer operations,  the current paradigm Industry 4.0 and the new sub concept called 

Pharma 4.0, digital twin technology and an introduction to machine learning, including 

some state of art related work in the field of applying machine learning to reduce the 

energy consumption in the manufacturing industry.  

 

Besides, we have included an introduction to cloud computing concepts, industrial 

internet of things, Edge computing, and an overview about Microsoft Azure platform main 

components or modules that have been used to implement this thesis.  

 

This thesis offers an innovative proposal on improving energy consumption on fluid bed 

dryer operations in the pharmaceutical industry, proposing combining different 

techniques including in the related work, for data extraction, data preprocessing, data 

modeling, and real time cloud computing connection to the machinery to predict and help 

operators to know what the optimum moment is to stop the process and save time and 

costs.  
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We proposed a methodology that covers end-to-end implementation, from data capture 

to cloud computing prediction in real time. This methodology can be easily implemented 

to reduce energy consumption in fluid bed dryers in pharmaceutical manufacturing or 

other industries, such as food, dairy, metallurgical, or chemicals. This methodology could 

also be extended to other process operations such as mixing, compacting or coating in 

the pharmaceutical industry. 
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3 Data capture and 

exploratory data analysis 

(EDA) 
 

This chapter proposes a methodology to show how the data is captured, pre-processed 

and analyzed from a fluid bed dryer [Barriga et. al. 2023]. The fluid bed drying machine 

that will be used in this thesis is the Fielder Aeromatic MP 6/8 (FAMP68) located in a 

pharmaceutical manufacturing plant in Barcelona (Spain), which is shown in Figure 13. 

This machine has 56 sensors governed by SCADA (Supervisory Control And Data 

Acquisition), through which the operators monitor and configure the basic parameters of 

the machine such as the inlet air temperature or the air flow.  

 

The fluid bed drying machine has three critical parameters that characterize the 

efficiency of the drying process and therefore can influence the final quality of the 

product. These parameters are: temperature, humidity and air flow. In theory, a higher 

temperature and flow rate of the inlet air to the machine implies a shorter drying time.  

 

However, each of these three parameters must be configured correctly depending on 

the type of product, to avoid quality problems and deterioration of the final product 

obtained after the drying process. It is important to note that the inlet air temperature 

should not exceed the critical temperature of the product to be dried so as not to 

jeopardize its quality or pharmaceutical properties.  
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Figure 13. Fluid bed dryer model Fielder Aeromatic MP 6/8 

 

This process is monitored by the operator through SCADA, which records the increase 

in outlet air temperature as the product is being dried, taking into account that the outlet 

air temperature is almost the same to the inlet air when the product has been dried and 

water has been completely removed from the granulate. At this point it is critical to stop 

the operation, since lengthening it more than necessary could put the quality of the 

product at risk, as well as consume more time and energy than necessary for the 

process, with as consequence an increase in costs for the process. 

 

The fluid bed drying machine it is not equipped with sensors that indicate when the 

machine has reached the optimum temperature for the different drying phases 
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(preheating, drying and cooling), so usually, fixed times are used for the drying phases 

by the human operators. However, for the preheating phase, the time can vary 

depending on the experience of the operator with the machine. 

 

3.1. Proposed methodology 

 
This section describes the proposed methodology to capture, pre-process and analyze 

the data of the fluid bed dryer. This process aims to evaluate if there is room for 

improvement in the finalizing time of the current processes that the machine performs a) 

preheating, b) drying, or c) cooling.  

 

Figure 14 shows the general process that will be followed for the data capture and 

exploration analysis. 

 

 

 

Figure 14. Proposed methodology for pre-heating analysis 

 
 

• Extract data SCADA: First step is to extract the data from the fluid bed dryer. As 

commented before, the fluid bed dryer is equipped with some sensors connected 

to a SCADA, so we can easily extract from the SCADA an historic of a year and 

a half data in a CSV format that includes sensor values for each minute.  
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• Load data MS Azure: Once the data is extracted to a CSV file, it will be uploaded 

to a Microsoft Azure Databricks platform to perform next steps. 

 

• Format data: Phyton libraries are used to format/clean the data. The practice of 

correcting or deleting inaccurate, damaged, improperly formatted, duplicate, or 

incomplete data from a dataset is known as data cleaning. Even if results and 

algorithms appear to be correct, they are unreliable if the data is inaccurate. 

 

• Exploratory analysis: With the aid of summary statistics and graphical 

representations, exploratory data analysis refers to the crucial process of 

conducting first investigations on data in order to find patterns, uncover 

anomalies, test hypotheses, and verify assumptions. 

 

• Relevant variables selected: During this step, based on the exploratory 

analysis, the most relevant variables of the preheating process are identified 

thanks to the analysis of how the fluid bed dryer works. 

 

• Pre-heating graphic process: Statistical graphic visualization tools are used to 

be able to analyze in detail the behavior of each batch in the fluid bed dryer and 

detect behavior patterns. 

 

• Pre-heating detailed analysis: In this step, the batches will be analyzed in detail 

to detect possible time savings in the preheating process. 

 

• Optimization process conclusions: Finally, the conclusions of the analysis and 

the potential savings in time and therefore in energy, will be shared and verified 

with the experts of the fluid bed dryer. 

 
 

As shown in Figure 15, the data will be collected in a matrix D with m columns and n 

rows, where n corresponds to the time measured minute by minute and m to the 56 

sensors of the machine. We define the variables that measure the airflow, fan motor and 

phase as Cφ, Mσ, F~, respectively. The variables used to select data by days and 

batches are also defined as QD and QL, respectively. PS will indicate the drying process 

and t the time. 
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1. Define a matrix D [m, n] 
2. Assign data extracted from SCADA to D 
3. Upload D in the cloud environment (Azure) 
4. Eliminate values with variability equal to zero in D 
5. Generate charts from D 

6. Select key variables D( 𝑇𝐴𝑒 𝑇𝐴𝑠𝐶  𝑀  𝐹)  

7. Select key rows D~ ~ ( 𝑄𝐷 𝑄𝐿) 
8. Generate charts from D~ ~ for PS 
9. Distribution t (D~ ~, PS) 

10. Distribution 𝑇𝐴𝐷 (D~ ~, PS) 
 

Figure 15. Algorithm of the proposed methodology for pre-heating analysis 

 

 

3.2. Data Capture 

 

The first step of the process is to capture data from the different sources as shown in  

Figure 14. In our case, we have the FAMP68 machine that currently operates in a real 

pharmaceutical plant of a multinational company in Barcelona. This machine typically 

processes between one or two batches of pharmaceutical drug granules per day, each 

batch of product contains approximately 150Kg of drug that has been mixed previously 

with 25Kg of alcohol and 10Kg of another excipient before being introduced into the fluid 

bed dryer. The machine has 56 sensors that measure inlet / outlet air temperature, air 

flow in m3/h, motor rotation speed, and air pressure, among others. Each sensor collects 

data minute by minute. We have 2 years’ worth of data, which is equivalent to more than 

700,000 readings of each of the 56 signals. The data is collected by a PLC 

(Programmable Logic Controller) and stored in SCADA (Supervisory Control And Data 

Acquisition).  

 

Table 2 shows the fluid bed dryer sensors including a description for each signal, the 

minimum and maximum value and their units of measure.  
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Table 2. Fluid Bed Dryer sensors 
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Some of these sensors are involved in different processes, such as granulation (column 

PMA), drying (column TSG) or cleaning (column CIP). For the exploration phase, we will 

select the sensors involved just in the drying process (column TSG), but as we will 

explain in chapter 4, for the data modeling, we will select all of them, simulating a real 

situation where we were not able to differentiate which sensor belongs to which phase.  

 

Figure 16 shows the SCADA that is used by the operators to interact with the machine 

(start / stop controller, inlet air temperature indicator, inlet air flow indicator, etc.). The 

data from SCADA has been exported into a table composed of more than 700.000 rows 

and 56 columns.  

 

 

Figure 16. Fluid bed dryer SCADA  

 

On the SCADA screen, we can see the status of the station in detail, including the values 

of the sensors and valves, as for example temperature or pressure, and in the upper 

right it shows the state of the fluid bed dryer, what process it is carrying out and what 

state each of them is in (granulating, drying or cleaning). For example, when steam is 
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added to the fluid bed dryer to control the humidity of the air that is introduced into the 

dryer, if the humidity is very low, more steam is added to increase it. The air that is 

introduced into the dryer, allow us to control both the temperature and its humidity. The 

pressure of the dryer is indicative of the clogging of the filters, if there is a big difference 

between the internal pressure and the output pressure, it means that we have dirty filters, 

and you need to clean them. The SCADA records and monitors the operating status of 

the fluid bed dryer in its operating modes and states and the duration of these and the 

registers of the analog parameters involved. The system must acquire, display and 

record the following analog variables of the air conditioner associated with the fluid bed 

dryer process: 

 

• Air inlet temperature (ºC) 

• Preheating temperature (ºC) 

• Cooling temperature (ºC) 

• Industrial steam temperature (ºC) 

• Inlet air humidity (ºC) 

 

3.3. Exploratory Data Analysis 

 

The collected data is loaded to a cloud computing platform to be processed. Due to the 

high volume of data (more than 3GB of data), we have selected the Azure platform and 

its advanced analytics module Databricks using Python for data analysis. Before we 

begin the exploration analysis, we must first format and clean our dataset. To ensure 

that the dataset has a valid format for the exploration, we will use some Phyton functions, 

such as “normalize” or var_zero_remove”. Although the majority of the columns are 

already using the same format, we will use functions such as the function shown in Figure 

17. The function normalize permits to ensure consistency in the dataset's format. In this 

case, sensor FS3_GEA_NFMP and FS3_GEA_NFMP are normalized with the function. 

These sensors indicate the fluid bed dryer number of phase (preheating, drying or 

cooling). 
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Figure 17. Sensor data normalization function 

 

After normalizing the data, it is observed that the data produced by some sensors 

(columns) do not vary over time. So, we proceed to delete these columns to simplify the 

data set and to focus on the data from sensors that can help optimize the preheating 

process of the machine. Overall, we find 11 sensors that do not provide any relevant 

information about the preheating or drying process as they remain constant over the year 

and a half period and can therefore be eliminated from the dataset.  

 

3.3.1. Psychometric model 

 

A psychometric model to select the most relevant sensors/variables for exploratory 

analysis will be presented in this subsection. The psychrometric chart (see Figure 18) is 

a useful and easy to use tool for determining moist air psychrometric properties and 

visualizing the changes of properties in a sequence of psychrometric processes.  
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Figure 18. Psychrometric Chart including the example commented in red 

 

The vapor pressure is the outermost curve, which would mark the water-vapor change 

of state. As we can see, the pressure of change of state increases with increasing 

temperature, therefore, if we carry out a process with constant humidity, we have that 

the partial pressure of the water in the mixture increases with increasing temperature. 

For this reason, the constant RH curves are increasing. In our fluidized bed drying 

process, we are carrying out a constant pressure process. This causes the air entering 

the chamber to travel along a horizontal line starting from an initial point at the entrance 

to the chamber. 

 

The movement of the point, represented in Figure 18, is going to be the horizontal line 

to the left that starts from the initial point because, by absorbing the water from the 

granules, the humidity of the air is going to increase. The air can continue to absorb 

water as long as this line does not reach the Dew Point, at which time the air will be 

saturated with moisture. Fluidized bed dryers are designed so that the inlet air is 

sufficiently hot and dry so that the length of this dew point line is long enough to absorb 
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all the moisture in the granules. According to the psychrometric chart, the psychrometric 

ratio is defined formally as the ratio of the heat transfer coefficient to the product of mass 

transfer coefficient and humid heat at a wetted surface. It is quantified using the following 

equation, where r = psychrometric ratio, ℎ𝑐 = convective heat transfer coefficient (Wm-

2K-1), 𝑘𝑦 = convective mass transfer coefficient (kg m-2 s-1) and 𝑐𝑧= humid heat (J kg-

1K-1). 

 

𝑟 =  
ℎ𝑐

𝑘𝑦𝑐𝑧
 

 

Based on the psychometric diagram [Barriga and Romero, 2022], noticed lines colored 

in red, we can determine the quantity of heated air necessary to evaporate a given 

quantity of water. For example, an air temperature of 15ºC and a humidity of 30% can 

import up to 26g of water per kg of dry air if this has been boiled at 50ºC previously and 

considered exit at 60% relative humidity. The comparison of the theoretical value of 

evaporable water and the real one is a measurement of the effectiveness of the 

assessment, typical of the conditions of each recipient and each product named for this 

equipment. These effectiveness values can be set and fixed in such a way that the 

measure of evolved over time to support the preventive maintenance actions. Taking into 

account the psychrometric model and how the fluid bed machine works, we have 

selected four sensors for the exploration analysis: 

 

• Fan motor: The signal shows when the fluid bed dryer is on or off. 

 

• Air flow: The signal indicates the air flow (quantity in m3 / h) that enters the fluid 

bed dryer. This is configured by the machine operator. This sensor helps us to 

identify if the fluid bed dryer is preheating or drying, as both processes need air 

to be completed 

 

• Inlet air temperature: The signal indicates the temperature at which the air 

enters the fluid bed dryer and is also set by the operator at the beginning of the 

process. 

 

• Outlet air temperature: The signal indicates the temperature at which the air 

leaves the fluid bed dryer.  

 



 

63 
 

In Table 3, it can be seen the information for 4 selected sensors (power impeller, liquid 

flow, ai flow, and inlet air temperature) from the 56 sensors of the fluid bed dryer shown 

in Table 2. Fluid Bed Dryer sensors. The information presented in the rows of Table 3 

corresponds to the number of sensor readings (count), the average value of each sensor 

(mean), the standard deviation of each sensor (std), as well as the maximum and 

minimum values, and the limit of each of the quartiles for each sensor. This preliminary 

information allows us to know the average values of the variables and discard batches 

that have been processed and do not approximate the average parameters, since they 

would correspond to batches that have had, for example, a problem during the drying 

process where an unexpected issue has occurred. 

 

 
 

Table 3.  Example of signals used for the experiment 

 
Following the principle of the psychrometric process, once the fluid bed dryer is running 

and the hot air inlet process begins, we have to take into account the heat absorbed by 

the machine to reach preheating temperature. This means that we can rely on the sensor 

that indicates the temperature of the outlet air of the machine to know how much heat 

the fluid bed dryer is absorbing. By subtracting the air inlet and outlet temperatures, we 

can detect when the machine is not capable of absorbing more heat and therefore the 

inlet air temperature will be similar to the outlet air temperature. To better understand 

process behavior, we will consider the temperature differences of the air inlet and outlet 

of the machine, as we have commented previously, a variable that we will define in 

equation 1. 
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𝑇𝐴𝐷 = 𝑇𝐴𝑠 − 𝑇𝐴𝑒                    (1) 

 

where 𝑇𝐴𝑠 is the outlet air temperature, 𝑇𝐴𝑒 the inlet air temperature and 𝑇𝐴𝐷 is the 

temperature difference. 

3.3.2. Sensor Exploratory Data Analysis 

 

Once the sensors have been selected, as next step, we will choose random days, to 

observe the behavior of the machine signals when carrying out the preheating, drying 

and cooling process each time a batch of pharmaceutical product is processed. The main 

objective of this exploration is to identify trends and better understand fluid bed dryer 

processes to identify improvement opportunities. Figure 19 illustrates graphically the 

behavior of the signals on different days, which indicates a full day operation of the fluid 

bed dryer. Figure 19 also shows on the x-axis the elapsed time for one day fluid bed 

dryer operation (1440 minutes in total corresponding to 24 hours) and on the y-axis the 

difference in temperature of the machine's inlet and outlet air. Blue dots indicate the 

preheating process, orange dots the drying process, and green dots the cooling process.  

 

 
 

Figure 19.  Plot of phases of the drying process. 
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Table 4 includes the name of the four sensors commented in Table 3, and a new sensor 

that will identify in which phase the fluid bed dryer is operating. 

 

Table 4. Signals used for the experiment 

 

The IF signal (phase indicator) can take the values 1, 2 or 3, depending on the phase 

the fluid bed dryer is in. Phase 1 corresponds to the preheating phase, where the 

machine needs to warm up through the hot air inlet to be able to start the drying process 

(which corresponds to the value 2). When the IF signal (phase indicator) acquires the 

value 3, it means that the drying process has concluded (phase 2), and therefore the 

machine must be cooled with air inlet to a lower temperature for the environmental 

conditioning that will avoid condensation when cooling. The TAE (inlet air temperature) 

signal corresponds to the degrees to which the air enters the machine for any of the three 

phases (1: preheat the machine, 2: dry the product, 3: cool the machine). The TAS (outlet 

air temperature) signal corresponds to the temperature in degrees of the air coming out 

of the machine. The CAE signal (inlet air flow) indicates the volume of air per unit of time 

supplied by the machine's fan, and finally the MOT (fan motor) signal is used to know 

when the machine is activated in any of the three phases (when the fan motor starts). In 

Table 4, we can see the different signals, as well as their mean, maximum and minimum 

values for a random sample of signals. Note that it is expected to see null values for the 

minimums of the inlet and outlet temperatures. 

 

Finding how many product batches are dried in the fluid bed dryer each day is the first 

task that has been performed for the data exploratory analysis. A random sample of 

signals is taken using only those in which we have the fan motor running (MOT> 1). In  

 

Figure 20, the x-axis indicates the number of minutes elapsed in a day 1400 minutes, 

and the y-axis corresponds to the inlet air temperature difference (TAE) and output (TAS) 

of the machine. Each point corresponds to a phase of the IF signal (phase indicator). 

The value 1 corresponds to the preheating phase (blue), value 2 to the drying phase 

(orange), and the value 3 to the cooling phase (green) of the machine. 
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Figure 20. Batches produced per day. Left one batch. Right two batches. 

 

It has been also analyzed how much time (in minutes) it takes on average to complete 

the three drying phases: preheating, drying and cooling, as shown in  

 

Figure 20. It is identified that the fluid bed dryer requires approximately 350 minutes (or 

6 hours), to dry a batch of product. Figure 21 shows an example of 8 different days taken 

randomly where we can observe that some days the fluid bed dryer processes one batch, 

and other days two batches, with an average of around 350 minutes per batch. We can 

observe, how figure of date 02-12-2019 there are two batches that are processed and if 

we look at the blue dots, we will see that the preheating process lasts much longer in the 

two batches, compared to the duration of the preheating process, for example, on 07-

10-2018, where we see that the blue dots are much smaller and the temperature 

difference, y-axis, does not exceed 10 degrees. We can also observe that the duration 

of the drying process, orange dots, is more or less homogeneous, it lasts approximately 

the same for all days and all batches (x-axis), as well as the temperature differences are 

approximately similar (y axis). Another relevant example of excessive duration of the 

heating process would be the figure of the date 04-10-2018, where it can be observed 

that the pre-heating process, blue dots, lasts approximately 150 minutes (x-axis). If we 

compare the duration of this process with other days, for example on 07-03-2018, it can 

clearly be observed that there are no criteria to define the optimum number of minutes 

that the fluid bed dryer needs to be properly preheated before starting the drying process.   
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As a conclusion, we can observe that the duration of the preheating process seems to 

be variable. To preheat the fluid bed dryer, some batches take longer time preheating 

the machine than others, with the consequent unnecessary consumption of energy 

[Barriga MAD, 2019]. 

 

 

Figure 21.  Example of 8 different days of batch drying. Above each figure is plotted the 

date of the batch. 
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3.3.3. Preheating phase analysis 

 

The preheating phase is denoted by the blue dots in Figure 22 is the center of our 

attention once the average drying time of a batch, which includes its three phases 

(preheating the machine, drying the product, and cooling the machine), is determined. 

This time period lasts roughly 6 hours. The goal is to know how much time it takes to 

heat up the dryer before starting the drying process. Since we are going to focus on the 

preheating phase, we will select the data that meets the condition IF = 1 (preheat phase) 

and CAU> 0 (airflow greater than zero), and we will choose a day to identify the duration 

in minutes of the preheating phase. 

 

Figure 22.  Preheating phase analysis of 1 batch of product. 
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In Figure 22, the blue dots represent the difference between the inlet (TAE) and outlet 

(TAS) temperatures. The x-axis corresponds to the time in minutes of the preheating 

phase IF = 1. We have used a smooth function, Savitzky–Golay filter, that is a digital 

filter that can be applied to a set of digital data points for the purpose of smoothing the 

data, that is, to increase the precision of the data without distorting the signal tendency. 

The purple horizontal line represents the maximum value predicted by the smoothing 

function, and the horizontal line dotted in red represents the maximum value. 

 

The data consists of a set of points (xj, yj), j = 1...n, where xj is an independent variable 

and yj is an observed value. The data is processed with a set of m convolution 

coefficients Ci, expressed in equation 2: 

 

𝑌𝑗 = ∑
𝑚−1

2

𝑖=
1−𝑚

2

𝐶𝑖𝑦𝑗+𝑖  ,
𝑚+1

2
≤ 𝑗 ≤ 𝑛 −

𝑚−1

2
    (2) 

 

where 𝑌𝑗 is a smoothed data point corresponding to observed value y j. 

 
By studying the data from a day of processing of a batch of product from Figure 22, we 

can observe that the machine uses for preheating more than 100 minutes (x-axis), at 

which point the curve begins to descend. At this point, the next phase starts where the 

granulated product is loaded into the machine to begin drying.  It can also be observed 

that the maximum difference between the air inlet and outlet temperatures in both cases 

is between 12 and 15 degrees (y-axis). 

 

Therefore, it can be deduced that hot air is being introduced into the machine for a longer 

period than necessary (since the temperature differences between the inlet and outlet 

air remain stable). Thus, the fluid bed dryer is keeping the process longer than the 

necessary time and during which energy is being consumed and wasted.  

 

https://en.wikipedia.org/wiki/Digital_filter
https://en.wikipedia.org/wiki/Digital_filter
https://en.wikipedia.org/wiki/Digital_data
https://en.wikipedia.org/wiki/Smoothing
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Figure 23. Preheating phase analysis of several days. X axis minutes, Y axis in-out 

temperature difference. 

 

Figure 23 shows data for 6 random days. We can observe the same behavior for most 

of the days related to the inlet-outlet temperature differences. Values are over 10-12.5 

degrees, however, there are some days that the duration of the process is less than 100 

minutes, which could indicate that the operator stopped the preheating operation before 

due to for example that the fluid bed dryer already was preheated from a previous 

process. For instance, if we compare the days 04-10-2018 and 03-11-2019, it can be 

observed how the minutes duration is almost twice (x-axis). In the first case, 04-10-2018, 

the duration of the preheating process is around 100 minutes, which is when the blue 

dotted line begins to descend on the y axis, which indicates the difference in temperature 

between the air entering and the air leaving. It can be observed in both graphs that from 

minute 30, the temperature difference between the air that comes out and the one that 
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enters is stable and constant around 10-12 degrees, for which the fluid bed dryer is 

already in its optimal state of preheating, and it is ready for the drying process.   

 

3.3.4. Evaluation of preheating phase for 

historical production 

 

After key trends have been identified in selected sample days, the next step is to evaluate 

the preheating phase of all the 200 product batches available in the 700,000 signals. 

One year and a half fluid bed dryer sensor’s data will be processed using histograms 

and box plot tools by analyzing the distribution of preheating times to determine if any 

outliers or patterns exist for the 200 product batches data.  

 

A histogram is a graphical representation of the distribution of a set of numerical data. It 

is an estimate of the probability distribution of a continuous variable. The data is divided 

into a set of intervals (or "bins"), and the height of each bar represents the number of 

observations that fall within that interval. Histograms are used to visualize the distribution 

of data and to identify patterns and trends. 

 

A box plot is a graphical representation of numerical data that provides information about 

the distribution of the data, including median, quartiles, and outliers. The box in the plot 

represents the interquartile range (IQR), which is the range of the middle 50% of the 

data. The line in the middle of the box represents the median, and the top and bottom of 

the box represent the first and third quartiles, respectively. The whiskers extending from 

the box show the range of the data, excluding outliers, which are plotted as individual 

points outside the whiskers. Box plots are useful for quickly visualizing the distribution of 

a dataset and identifying outliers. 

 

3.3.4.1 Inlet – outlet air temperature analysis 

 

First, we will create a histogram and a box plot to visualize the 200 batches inlet – outlet 

air temperature difference. To create a histogram, the range of sensor data is divided 

into intervals, or bins, of equal size (5 points each). The bins represent the inlet-outlet air 

temperature difference. Then, we count the number of batches that fall into each bin and 
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represent this count with a bar. The height of each bar represents the frequency of 

batches in that bin.  

 

Second, we will create a box plot to verify the results. The box plot shows that the majority 

of the batches are between 12 and 15 inlet-outlet air temperature difference, with the 

median score being 12.5. There are no outliers in the sensor dataset related to inlet-

outlet air temperature difference. 

 

Figure 24.   Temperature distribution during preheating for 200 batches of product: 

Histogram (left), Box plot (right) 

 

Figure 24 shows the temperature distribution during preheating for 200 batches of 

product. We can see how the inlet and outlet temperature difference is distributed. This 

difference indicates when the fluid bed dryer is in its optimum preheating state, as it is 

not able to absorb more hot air. It can be observed that the median is around 12 degrees 

which is similar to the median of the previous commented sample figures. 

 

3.3.4.2 Preheating duration analysis 

 

Next, same steps will be followed to visualize the 200 batches data but instead of 

focusing on the inlet-outlet air temperature difference, we will focus on the preheating 

duration in minutes. Initially, we will use histograms and box plots to analyze time 
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duration in minutes of the 200 batches. The histogram will be created by dividing the 

sensor data range into 100 point or bins, which corresponds to preheating minutes 

duration, counting the number of batches in each bin, and showing the frequency with 

bar heights. The box plot will provide a visual representation of the majority of the batches 

being processed. Figure 25 shows the duration in minutes of the preheating phase for 

all the batches analyzed. The preheating duration varies mainly between 50.1 and 180.3 

minutes, with the median being around 99.7 minutes.  

 

Figure 25. Distribution of preheating completion times for 200 product batches: 

Histogram (left), Box plot (right) 

 

In Figure 26, it can be observed for the 200 batches analyzed, how many minutes on 

average the fluid bed dryer is used to perform the preheating process. Each line indicates 

for each individual batch the time taken to complete the preheating process in the fluid 

bed dryer. This time variability depends on when the operator has started and finished 

the preheating process. Since it is a manual process due to the age of the machine, the 

machine is kept for preheating less than 50.1 minutes, whereas other times, the machine 

is kept preheating for up to 180.3 minutes. The fluid bed dryer is initially set up with hot 

air inlet at 45 degrees and airflow 2000 m3/h. However, the fluid bed dryer doesn't have 

any sensor notifying when the machine is warm enough to introduce the drug product 

and start the drying process. Red dotted line in the graph indicates the average that is 

around 99.7 minutes duration to complete the preheating process. As summary, this 

indicates again the opportunity to harmonize the preheating process by establishing an 
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optimum preheating time, and potentially, to be able to reduce the preheating process 

time, and consequently reducing the fluid bed dryer energy consumption. 

 

 
 

Figure 26. Fluid bed dryer preheating duration minutes. 

 
 

3.3.4.3 Energy savings analysis 

 

Figure 27 shows the variability of analyzing the energy consumption used to complete 

the preheating process for each batch in the fluid bed dryer. The energy consumption𝐸𝐶𝑏 

is calculated using the equation 3. 

𝐸𝐶𝑏 = 𝐵𝑎𝑡𝑐ℎ𝑡 ∗  Cpm    (3) 

 

where  𝐵𝑎𝑡𝑐ℎ𝑡 is the time consumed by the fluid bed dryer for preheating the batch, and 

Cpm corresponds to the fluid bed dryer energy consumption per minute. The fluid bed 

dryer currently consumes 18.5 kWh during the preheating process, this means that for 

each minute it consumes 0.31 kWh (18.5 kWh / 60 minutes = 0.31kWh). If the preheating 

process may take between 50.1 and 180.3 minutes, therefore the fluid bed dryer 

consumes between 15.5 kWh and 55.8 kWh for preheating the machine to dry one batch 

of drug product. 
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Figure 27. Fluid bed dryer preheating energy consumption (kWh) 

 

It can be observed that some batches need 55.8 kWh, however, other batches need less 

than 15.5 kWh, which means in some cases around 72.2% less energy consumption for 

some batches. The dotted red line indicates the average consumption for the 200 

batches, around 30.9 kWh. This indicates important potential energy savings if the 

preheating process in the fluid bed dryer is optimized. To calculate the potential energy 

savings of the fluid bed dryer during the preheating process for each batch, a machine 

learning model will be implemented, in the next chapter, to predict when the right time is 

to stop the process, and therefore, consume just the energy needed for preheating the 

fluid bed dryer. 

 

3.4. Conclusions 

 
This chapter has proposed an adapted exploration data analysis methodology to analyze 

and optimize a large-scale drug production process, such as the preheating drying 

process for pharmaceutical granules solid drugs through a fluid bed dryer.  

 

It has been shown that once the 12.5º temperature difference between the inlet and 

outlet air is reached, the fluid bed dryer is at the correct temperature to proceed with the 

drying of the product. Therefore, from this point on, it is not necessary to continue 
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preheating, since this temperature is optimal for drying, going beyond this point implies 

a waste of time and energy consumption. 

 

As a conclusion drawn from exploratory data analysis of the signals, it can be stated that 

the preheating phase lasts longer than necessary. Some batches need less than 50.1 

minutes to complete the preheating process, however, there are batches that take up to 

180.3 minutes. In terms of energy consumption, it means that for some batches the fluid 

bed dryer consumes 15.5 kWh, and for others is 55.8 kWh, which could represent 

savings, in some cases, of 72.2% of energy. 

 

In the next chapter, we will develop a data model using machine learning algorithms to 

predict when the optimum time is to stop the fluid bed dryer for the preheating process, 

and we will calculate how much time and energy we are able to save.  
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4 Machine Learning model 

development 
 

4.1. Proposed methodology 

 
In this chapter, a machine learning model to reduce energy consumption of the fluid bed 

dryer preheating process, is proposed [Barriga et al., 2022]. The overall approach for 

data modeling and simulating follows a pipeline as illustrated in Figure 28 from left to 

right. First, a business needs and objective have to be defined. Checking and exploring 

the data steps have been detailed in chapter 3. In this chapter we will focus on creating 

and evaluating the results of the data model to predict the optimization of the preheating 

process. This method can in practice become a cyclic process iterating back from the 

results evaluation phase to the data obtaining phase, or even back to re-evaluate the 

business need. Next, we will explain briefly the steps: 

 

 

 
Figure 28. Overall procedure for data analysis and modeling 

 
 

• Define business problem: The initial phase of the machine learning workflow 

involves defining the business problem. The duration of this step varies, ranging 

from several days to a few weeks, depending on the complexity of the problem 

and its specific application. During this stage, data scientists collaborate with 

subject matter experts (SMEs) to gain a comprehensive understanding of the 

problem. This involves conducting interviews with key stakeholders, gathering 

pertinent information, and establishing overall project goals. In the case at hand, 

our objective is to minimize energy consumption in the fluid bed dryer. 
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• Get the data: Once the understanding of the problem is achieved, it is about 

getting the information identified and available for solving the business problem. 

In our case, we will use the data obtained from the fluid bed dryer directly. 

 

• Explore the data (EDA). The next step in the process is data exploration (EDA), 

which involves analyzing the raw data. The primary objective of EDA is to delve 

into the data, evaluate its quality, identify any missing values, examine feature 

distributions, assess correlations, and so on. 

 

• Create the model: Model creation encompasses various tasks, including 

dividing the data into training and testing sets, handling missing values, training 

multiple models, fine-tuning hyperparameters, consolidating models, evaluating 

performance metrics, and ultimately selecting the optimal model for deployment 

to forecast our target variable. In our specific scenario, we aim to predict the 

duration required for the preheating process in order to minimize energy 

consumption. 

 
This chapter is devoted to the definition of the most suitable model to improve the energy 

consumption during the preheating process. Figure 29 shows the proposed approach to 

select and fine tune the machine learning model, consisting of: data selection, ML 

algorithm definition, hyper-parameter tuning, and finally the deployment of the predictive 

data model.  

 

• Select key variables: In machine learning, variables or features are used to build 

models that can predict outcomes or classify data. Selecting key variables 

involves identifying which features are most relevant to the problem at hand and 

excluding those that are not. This can help to reduce the complexity of the model 

and improve its accuracy. 

 

• Benchmark algorithms: Benchmarking involves testing and comparing the 

performance of different algorithms on a given task. This is useful to determine 

which algorithm is best suited for the problem at hand and provide a baseline for 

evaluating the performance of other algorithms. 

 

• Tune hyperparameters: Hyperparameters are parameters that are set before 

training a machine learning model and can significantly impact its performance. 

Tuning involves adjusting these hyperparameters to optimize the model's 
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performance. This is typically done using techniques such as grid search, random 

search, or Bayesian optimization. The goal is to find the hyperparameters that 

produce the best results on a validation set. 

 

 

 
Figure 29. Proposed approach for data model 

 
 

4.2. Data selection 

 
One of the main challenges is that the fluid bed dryer does not incorporate sensors that 

indicate when the air inside is at the optimum temperature to finish the drying process 

due to the age of the machine. Besides, depending on the type of product to be treated, 

the drying time and the temperature, airflow, or humidity conditions vary. The operator 

manually analyzes the different parameters of the machine according to the formula of a 

corresponding product, as well as defines the time of the preheating, drying, and cooling 

processes. 

 

From a data modeling point of view, the problem has several interesting features: 
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● The number of potential inputs is very high because multiple sensors are 

considered (56 sensors). 

 

● The number of production batches is large, more than 200 batches of dried 

product, but the machine does not record the beginning or end of the drying 

process. Hence, the deduction is performed based on the temperature 

differences and air inlet and outlet of the machine. 

 

● The objective is that the estimated model is interpretable to provide information 

on the sources of variability of the air inlet and outlet temperature 

difference curves. In this way, the estimation of the time required for the drying 

process can be performed.  

 

In conceptual terms, a function model f (i) will be built to estimate the drying time through 

the data of a matrix X that contains the data extracted from the fluid bed dryer. The 

information available in the automatic learning models is used to predict the estimated 

drying time for each batch so that the operators can know when the optimal instant is to 

stop the machine's drying operation, with the consequent energy saving. The expected 

output from our model will be the remaining time that the fluid bed dryer needs to 

complete the drying process (based on the inlet-outlet temperature differences). It was 

applied data preprocessing techniques to the input dataset to reduce the unwanted 

information for the further analysis such as missing values. 

 

The first step to select the most suitable model, is to split the data set into training and 

testing data. This technique is used for evaluating the performance of a machine learning 

algorithm. It can be used for classification or regression problems and can be used for 

any supervised learning algorithm. The process consists of taking a dataset and dividing 

it into two subsets. The first subset is used to fit the model and is referred to as the 

training dataset. The second subset is not used to train the model; instead, the input 

element of the dataset is provided to the model, then predictions are made and compared 

to the expected values. This second dataset is referred to as the test dataset [ML]. 

 

The objective of splitting the dataset into train and test, is to estimate the performance of 

the machine learning model on new data that will be capture directly from the fluid bed 

dryer. Namely, to fit it on available data with known inputs and outputs, then make 

predictions on new examples in the future where we do not have the expected output or 

target values. The train-test procedure is appropriate when there is a sufficiently large 

dataset available, what means that there is enough data to split the dataset into train and 

test datasets and each of the train and test datasets are suitable representations of the 
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problem domain. A suitable representation of the problem domain means that there are 

enough records to cover all common cases and most uncommon cases in the domain. 

 

 Figure 30. Splitting data set Code into training and testing datasets 

 

Figure 30 indicates the used code to split our data set into training and testing. Our target 

value, the value which we are trying to predict, is inout_minutes which is time to optimal 

time when the fluid bed dryer should be stopped based on the in-out air temperature. 

The function takes the data, drops the target and saves it into X, which is our feature 

matrix, and it takes the data and only saves the target, which is inout_minutes, into the 

variable which we are trying to predict. Finally, it makes the split on these two data X and 

Y. The result is that we have X_train, Y_train, X_test, Y_test, where 80% of the data set 

is included in training, and 20% of the data will be used for testing. The train_test_split() 

makes a random split. Sometimes, rarely not always, it happens that while making this 

split the distribution of values of train and test changes. For instance, if the overall data 

has y which has the following distributions:  

 

Y > 10 = 50% values 

Y <= 10 = remaining 50% values 

 

But after splitting, let us say by chance all the 20% test values come from Y <= 10. This 

result is not adequate because now the distribution of both train and test comes from 

different values. To solve these situations, we will use the function stratify:  

 

stratify=X[["FS3_GEA_BATCHN","qcut_minutes"] 

 

The Python function "stratify" is used in the context of splitting a dataset into training and 

testing sets, while ensuring that the proportion of a certain combination of variables 

remains the same in both sets. The function is using the columns "FS3_GEA_BATCHN" 

and "qcut_minutes" from the data X to create strata. Strata refers to subgroups or 

partitions of a population that share similar characteristics or attributes. The function will 

then assign the observations in X to different strata based on these two variables and 

split the data into training and testing sets, such that each set has a proportional 

representation of the different strata. 
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The column FS3_GEA_BATCHN is the batch identifier which means to perform a split 

where the distribution of batch identifiers for both train and test are the same. The second 

column qcut_minutes contains numerical values representing time intervals in minutes. 

The column has been created using the function "qcut", which is used to bin a numerical 

variable into discrete intervals or quantiles. The data has been divided into equal-sized 

time intervals that contain an equal number of observations.  

 

4.3. Machine learning algorithms 

benchmarking 

 

Once we have split our data set into training and testing data, the next step is to find the 

most suitable ML algorithm to adapt to the problem of the fluid bed dryer. To this end, a 

list of ML models that will be benchmarked, is proposed in Table 5. 

 

Table 5. List of Machine learning algorithms 
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Firstly, some of the top state of the art ML algorithms shown in Table 5 will be briefly 

described: Random Forests, Lasso Regression, k-Nearest Neighbors and Ridge 

Regression in more detail, and a brief explanation for the rest of the models. A special 

focus will be performed in the explanation of Catboost algorithm because it will be the 

solution adopted in the present thesis. 

 

• Random forests [Breiman, 2001] are a combination of tree predictors such that 

each tree depends on the values of a random vector sampled independently and 

with the same distribution for all trees in the forest. Using a random selection of 

features to split each node yields error rates that are equal to other state of the 

art algorithms, but with the advantage that they are more robust with respect to 

noise.  

 

• Lasso regression [Tibshirani, 1996] is based on estimation for linear models. 

LASSO (Least Absolute Shrinkage and Selection Operator) minimizes the 

residual sum of squares subject to the sum of the absolute value of the 

coefficients being less than a constant. LASSO solves two problems with 

standard regression techniques: (i) overfitting to outliers and (ii) overestimation 

of model performance based on variability.  

 

• The k-nearest neighbors (KNN) algorithm [Fix et al., 1989] is a simple, supervised 

machine learning algorithm that can be used to solve both classification and 

regression problems. It's easy to implement and understand, but it has a 

performance drawback of becoming significantly slower as the size of the data 

grows. The KNN algorithm groups data records based on their” closeness” to 

each other, which is calculated by an appropriate distance metric. When 

independent variables in a multiple-regression model are highly correlated, ridge 

regression is a technique for predicting their coefficients.   

 

• Ridge regression was developed as a possible solution to the imprecision of least 

square estimators when linear regression models have some multicollinear 

(highly correlated) independent variables. It creates a “ridge regression 

estimator” (RR), which provides a more precise ridge parameters estimate, as its 

variance and mean square estimator are often smaller than the least square 

estimators previously derived. 
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• Linear Regression is a linear model that seeks to find the relationship between a 

target variable and one or more predictor variables. 

 

• Elastic Net is a linear model that combines the L1 (Lasso) and L2 (Ridge) 

penalties to balance between sparsity and smoothness in the solution. 

 

• Least Angle Regression is a linear model that seeks to identify the most important 

predictors and add them to the model one at a time. 

 

• Lasso Least Angle Regression is a combination of Lasso Regression and Least 

Angle Regression. 

 

• Orthogonal Matching Pursuit is a linear model that selects a subset of predictors 

that are most correlated with the target variable. 

 

• Bayesian Ridge is a linear model that applies Bayesian methods to the regression 

problem to estimate the posterior distribution of the regression coefficients. 

 

• Automatic Relevance Determination is a linear model that applies Bayesian 

methods to the regression problem to estimate the relevance of each input 

variable to the target variable. 

 

• Passive Aggressive Regressor is a linear model that updates the regression 

coefficients in an online manner to handle streaming data. 

 

• Decision Tree Regressor is a decision tree that models the relationship between 

the target variable and input variables using a tree-like structure. 

 

• Extra Trees Regressor is an extension of Random Forest that further randomizes 

the splitting process to increase diversity among the trees. 

 

• Support Vector Machine (SVM) is a non-linear model that maps the input 

variables to a higher-dimensional feature space and finds a linear boundary 

between the classes. 
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• Gradient Boosting Regressor is a decision tree ensemble method that 

sequentially fits new trees to the residual errors of the previous trees to improve 

accuracy. 

 

• Extreme Gradient Boosting: An extension of Gradient Boosting that incorporates 

additional regularization to reduce overfitting. 

 

• Light Gradient Boosting Machine is a highly optimized implementation of Gradient 

Boosting that uses histogram-based algorithms to speed up the computation. 

 

• AdaBoost Regressor is an ensemble method that fits a sequence of weak 

learners to the training set, with each new learner focusing on the misclassified 

observations of the previous learners. 

 

• Extra Boost Regressor is an extension of AdaBoost that adds a random 

component to the weight updates of the training set. 

 

4.4. Catboost algorithm 

 

Catboost Regression is a recent and reportedly powerful new machine learning based 

algorithm with numerous advantages [Prokhorenkova et al., 2017]. In general, machine 

learning algorithms are applied to identify complex patterns in large volumes of data to 

predict future behaviors. Catboost is a technique for decision trees that uses gradient 

boosting. For regression and classification problems, gradient boosting is a machine 

learning technique that generates a prediction model in the form of a group of "weak 

prediction models," often decision trees [Liu, 2022]. The overall idea is to apply a 

steepest descent step to a minimization problem (functional gradient descent). A gradient 

boosting procedure iteratively builds a sequence of approximations Ft: 𝑅m→𝑅, t = 0,1, 

… in a greedy fashion. Thus, Ft is obtained from the previous approximation Ft-1 in an 

additive manner: Ft = Ft-1+αht, where α is a step size and function ht: 𝑅m→𝑅, known as 

a base predictor, is chosen from a family of functions H such that it minimizes the 

expected loss ht. Catboost is an implementation of gradient boosting using binary 

decision trees as the function h(x), which is defined as 

ℎ(𝑥) = ∑

𝐽

𝑗=1

𝑏𝑗𝑙{𝑥∈𝑅𝑗} 
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where Rj are the disjoint regions corresponding to the leaves of the tree and 𝑏𝑗𝑙{𝑥∈𝑅𝑗}  is 

the jth binary variable corresponding to attribute x. 

 
One key innovation of the Catboost implementation is that it can process mixed data 

types together to build a model. That is categorical (converts to numbers) and numerical 

inputs. Other strong points are (i) how its default hyper-parameters require very little 

tuning - they work well for the majority of data scenarios and (ii) auto-correction for 

overfitting. 

 

Application of Catboost to the data: In order to mitigate the increase of the model size 

and the memory consumption, the following measures were taken through the 

assignment of the meta-parameters: 

 

• RAM limit - limit value to restrict memory usage 

 

• Set max_ctr_complexity to 1 or 2. Default values is 4. 

 

• Model_size_reg assigned a bigger value to penalize heavy combinations. 

 
Memory usage is indeed the major limitation of Catboost currently. Catboost demands 

that all data be immediately accessible in memory for quick random sampling, unlike 

stochastic gradient and neural network models. This can be mitigated using for batch 

training the following configuration: 

 

Random subspace method is the percentage of features to use at each split selection, 

when features are selected repeatedly at random. Another consideration is to introduce 

random subspaces along rows, with a similar approach to a rolling-tree generator, with 

the following steps: 

 
1) Read N initial rows from pool 

2) Generate M trees 

3) Discard first k<N rows, read next k rows from pool, return to step 2. 

 

where N is user defined, and M and k are deducted from the total number of rows and 

total number of iterations, respectively This could also be applied to other techniques 

such as random forests, gradient-boosting trees. Another important issue is the 

sensitivity of Catboost to hyper-parameters and the importance of hyper-parameter 

tuning. This can also be dependent on the Big Data environment, such as the Apache 
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Spark distributed framework [Markarian, 2018].  The hyper-parameter tuning details are 

given later. For use with very large datasets, the Catboost model can be fit to a 

representative sample using the Catboost Python API, then applied to the larger dataset 

using Spark or Hadoop [Nettleton et al., 2018] with Catboost’s Java API.  

 

4.5. Evaluation of ML algorithms 

 

To perform the evaluation and selection of the best fit algorithm for the fluid bed dryer 

process we used the Phyton libraries [Barriga, 2021]. The same dataset has been 

injected in the different algorithms. The dataset contains 18 months data coming from 

the 56 sensors of the fluid bed dryer and the values represent the average of 10-fold 

cross validation (partitioning of the data set into 10 parts, 9 for train and one for test, then 

rotating 10 times to obtain different combinations of partitions). The results of the most 

relevant algorithm’s evaluation are shown in Table 6. 

 
 

Model MAE MSE RMSE R2 

Catboost Regressor 8.1453 130.1740 11.2289 0.7079 

Extra Trees Regressor 8.6712 142.9386 11.8076 0.6779 

Extreme Gradient Boosting 9.1954 166.0124 12.7120 0.6246 

Light Gradient Boosting Machine 9.5825 171.4744 12.9023 0.6138 

Gradient Boosting Regressor 10.4752 189.7955 13.5794 0.5689 

Random Forest Regressor 10.8158 205.1762 14.1438 0.5397 

K Neighbors Regressor 13.0786 280.3520 16.5922 0.3520 

AdaBoost Regressor 14.0844 290.1670 16.9228 0.3361 

Decision Tree Regressor 12.8016 361.9191 18.5659 0.1620 

Lasso Regression 16.0411 388.7161 19.5774 0.1198 

Elastic Net 16.3309 392.0491 19.6636 0.1135 

Orthogonal Matching Pursuit 16.0035 393.0683 19.6999 0.1045 

Bayesian Ridge 16.4593 403.1359 19.9437 0.0854 

 

Table 6. Benchmarking results of different machine learning and statistical 
techniques on the dataset 

 

Regarding the assessment, four contrasting evaluation metrics were calculated for each 

test. The metric is one single value which provide the performance of the model. By itself, 
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it has no worth but when there are two metric values, both can be compared. So, metrics 

are useful only when they are available for many algorithms to be compared. 

 

In regression, the basic objective is to predict the observations as closely to the true 

values as possible. Let us say I have one model which predicts one observation as 14 

while the true is 13. We can just take the difference between these two and say metric = 

14 - 13 = 1, now, let us say we have another model which predicts for the same 

observations, 13.7, here, the same metric will be 0.7. Hence, the second model wins 

because it has low error. 

 

The four metrics that analyzed are: MAE (Mean Absolute Error), MSE (Mean Squared 

Error), RMSE (Root Mean Squared Error) and R2. 

 

• MAE (Mean Absolute Error) is a metric used to evaluate the average difference 

between the predicted and actual values. It is calculated as the mean of the 

absolute differences between each predicted and actual value. It is used to 

measure the accuracy of regression models. 

 

• MSE (Mean Squared Error) is another metric to evaluate the performance of 

regression models. It measures the average of the squared differences between 

the predicted and actual values. It penalizes large errors more heavily than small 

ones. 

 

• RMSE (Root Mean Squared Error) is the square root of MSE. It provides the 

same unit of measurement as the dependent variable and is a more interpretable 

metric. It also penalizes large errors more heavily than small ones. 

 

• R2 (R-squared) is a metric used to evaluate the goodness of fit of a regression 

model. It represents the proportion of the variance in the dependent variable that 

is explained by the independent variables. It ranges from 0 to 1, with 1 indicating 

a perfect fit and 0 indicating no linear relationship between the dependent and 

independent variables. The R2 value has the advantage that it is scale free, a 

negative value indicates the model is worse than predicting the average.  
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Based on Table 6, the Catboost Regressor has the lowest MAE of 8.1453 and the lowest 

RMSE of 11.2289, indicating that it has the best predictive accuracy compared to the 

other models. It also has the highest R2 value of 0.7079, indicating that it can explain 

about 70.79% of the variance in the target variable. The Extra Trees Regressor has the 

second-best performance, with slightly higher MAE and RMSE values than the Catboost 

model, and an R2value of 0.6779. The Extreme Gradient Boosting, Light Gradient 

Boosting Machine, and Gradient Boosting Regressor models have higher MAE, MSE, 

and RMSE values and lower R2values than the Catboost and Extra Trees Regressor 

models, indicating that they may not perform as well on this specific dataset, same with 

the rest of the models. To select the best metric for the Catboost algorithm, it is 

considered the nature of the problem and the evaluation criteria. To measure the 

proportion of variance in the target variable that can be explained by the model, R2 is 

the most suitable metric. MAE has been discarded because focus on minimizing the 

average absolute difference between predicted and actual values, and MSE or RMSE 

penalize larger errors more than smaller errors.  

 

Let us focus in R2 parameter which is actually quite an important metric but should not 

be looked at alone. R2 is the percentage of variance described by the model. So, if R2 

is 0.7, it means that our current model is able to explain the 70% variation in the value 

which we are trying to predict and leaving the 30% to random causes. It should not be 

looked at alone because sometimes it may happen that although R2 is large but other 

error metrics are also large. Also, R2 can simply increase by adding redundant features 

which does not help the model. Ideal values of errors should be 0 while R2 should be 1. 

 

4.6. Catboost adaptation to the fluid bed 

dyer 

4.6.1. Catboost model configuration 

 
In this section, the adaptation of the Catboost ML algorithm to the fluid bed dryer process 

and the evaluation of the quality of the model using a set of observational data of the 

machine, is performed. The variable to predict the performance is the time remaining to 

finish the drying process based on temperature differences of inlet and outlet air. The 

data set that will be used is the same data set used in chapter 3 for the exploratory data 

analysis. The fluid bed dryer data from the 56 sensors that measure inlet / outlet air 
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temperature, air flow in m3/h, motor rotation speed, and air pressure. Each sensor 

collects data minute by minute. We have one year and a half worth of data, which is 

equivalent to more than 700,000 readings. Due to the high volume of data (more than 

3GB of data), we have selected the Azure platform and its advanced analytics module 

Databricks using Python for data analysis of the Catboost model.  

 

Firstly, Catboost model was run using default parameter settings, giving the results 

shown in Table 7. It is applied to the 10-fold cross validation. The 0 to 9 are just interval 

partitions of the train data to evaluate the models. So, it can be seen as fitting 10 different 

Catboost models on some subset of train data and getting results and storing them, then 

the final result will be the mean of all these 10 runs. These 10 runs in ML terminology 

are known as “cross Validations”. Cross validation is a technique where training data is 

further splitted into two parts. One part of data is used to actually train the model and 

another part is used to calculate the cross-validation score. But it is performed multiple 

times [Barriga BER, 2019]. For example, in the experiment, it was done 10 times which 

means that at each time, some parts of training data were used to train and while the 

remaining part was used as cross validation data and the score shown in the Table 7 is 

actually a cross validation score.  

 

Table 7 shows the results of a 10-fold cross-validation of the Catboost model, with 

metrics including mean absolute error (MAE), mean squared error (MSE), root mean 

squared error (RMSE), and R-squared (R2). The table shows the results for each of the 

10 iterations, as well as the mean and standard deviation (SD) of the metrics across all 

iterations. The R2 column in this cross-validation table shows the coefficient of 

determination, which is a measure of how well the model fits the data. The R2 values 

range from 0 to 1, where a value of 1 indicates a perfect fit and a value of 0 indicates 

that the model does not explain any of the variability in the data. In this table, the R2 

values range from 0.5315 to 0.7829, with a mean R2 value of 0.7079 and a standard 

deviation of 0.0805. These values suggest that the model has a good fit with the data, 

with some variability in performance across the different folds of the cross-validation. 
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  MAE MSE RMSE R2 

0 65.538 837.852 91.534 0.7603 

1 93.913 1.714.283 130.931 0.6881 

2 109.114 2.508.916 158.396 0.5883 

3 87.544 1.540.916 124.134 0.5315 

4 75.330 908.290 95.304 0.7005 

5 83.647 1.165.782 107.971 0.7444 

6 60.740 849.854 92.188 0.7602 

7 82.784 1.279.620 113.120 0.7415 

8 86.285 1.321.672 114.964 0.7829 

9 69.633 890.218 94.351 0.7816 

Mean 81.453 1.301.740 112.289 0.7079 

SD 13.590 494.731 20.212 0.0805 

 

Table 7. Benchmarking of Catboost with 10-fold cross validation 

 

4.6.2. Analysis of Catboost model 

 

In this subsection, the analysis of the results using residuals, prediction error and 

learning curve graphs, is performed. A residual plot is a graph that displays the residuals 

on the vertical axis and the independent variable on the horizontal axis. 

 

The difference between the observed value of the dependent variable (y) and the 

predicted value (ŷ) is called the residual (e). If the points on a residual plot are randomly 

scattered around the horizontal axis, a linear regression model is appropriate for the 

data; otherwise, a nonlinear model is more appropriate. The ideal graph should be a 

graph where all points are on a horizontal line around zero i.e Residuals should be small.  

 

For our case, we observe in Figure 31, on the x-axis, the predicted value that is computed 

by our model. On the x-axis, we plot the residuals. On the right of the Figure 32, we plot 

the histogram of the residuals. These values are centered around zero (an ideal case), 

but sometimes we also have situations where some values are far away from the right 

and left. Besides, it can be seen, in green, that the distribution of most of the residuals 

for the test data, fall between -10 and 10, which means that the selected model is correct. 
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Figure 31. Distribution of residuals for CatboostRegressor model 

 

Comparing the distribution of residuals for CatboostRegressor with a LinearRegression 

model (see Figure 32), it can be observed that the linear regression model is just too 

good to be true. We can see the graph of predicted vs actual values that they are in 

perfect line. This situation indicates that overfitting could arise. Overfitting is a simple 

phenomenon where the model performs best in a training set while it performs poorly on 

the test data. 
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Figure 32. Distribution of residuals for LinearRegressor model 

 

The second parameter used to evaluate our model is the prediction error. Prediction error 

is a method to check what is wrong with a machine learning model. Typically, when we 

build a regression model, we are concerned with the error metric that describes how well 

it fits the data. In our case, we use the root mean square error parameter (MAE). This 

parameter informs us that the mean squared error has an approximate value X, this is a 

very precise description of the error. Let us say the actual inout_minutes (temp) are 60 

and against that our model has predicted 70.8, then we will plot these two pairs on x and 

y axis respectively. Ideally, since both predicted and actual values should be equal, this 

plot should form a straight line. The further away this plot is from the diagonal line, the 

worse the model is. Figure 33 shows the prediction error of the Catboost model. An R-

squared (R2) value of 0.778 for a CatBoostRegressor model indicates that the model 

explains approximately 77.8% of the variance in the target variable. In other words, the 

model is able to capture and predict about 78% of the total variation in the data. The 

remaining 22% of the variation in the target variable is not captured by the model and is 

considered to be the prediction error. 
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Figure 33. Distribution of prediction error for CatboostRegressor model 

 

 

Another used technique is the learning curve. This technique represents a graph relating 

the number of iterations and score on a training and testing set. It is a measure to find 

out the optimal number of iterations required to get a good score. When the model 

training is performed, the model starts with the first iteration and then we get a certain 

score. Let us say with the first iteration we got R2 of 0.1 and with the second we got 0.12 

and this way we will keep on training until the model starts to have a flattened score, 

which essentially means that the score is no more increasing with the increase of number 

of iterations. So, the learning curve plots the number of iterations and so on x-axis, and 

corresponding scores on y-axis. This is important to avoid the problem of overfitting and 

at the same time saving the computational resources. 

 

Figure 34 explains the learning curve for the Catboost model. It can be seen how the test 

precision behaves (y axis) with respect to an increasing number of training instances (x 

axis), which reaches a maximum of 0.7 for 300 instances, what means that as the model 
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is taking more data, the learning curve is improving, and the prediction will be more 

accurate.  

 
 

 
 

Figure 34. Distribution of learning curve for CastBoostRegressor 

 

The shap plot objective, Figure 35, is used to measure the feature importance of the 

Catboost model. On the right, we have been given the scale of importance. The blue 

indicates low while red indicates high importance. A feature which has more reds than 

blues will be considered very important for the model. Each feature has some blues and 

some reds. More red points in the feature indicate its importance in predicting the target 

which is inout_minutes temperature. 

 

If we need the exact measure of which feature is most important in terms of numerical 

values, we need to run a different function to get shap numerical values.  Let us try to 

understand one of the features, say min15_mean_inout. There appears to be more 

blues, more on the positive side. It means this feature has a more positive side response 

on the target what is the prediction of the pending time to finish the fluid bed dryer 

preheating process. 
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Figure 35. Shap plot 

 

 

Next step is to apply hyper-parameter tuning to check if there is a better set of optimal 

hyperparameters for improving the learning Catboost algorithm accuracy. For this 

purpose, it is implemented hyperoptfitter algorithm shown in Figure 36.  
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Figure 36. Hyperoptfitter algorithm 

 
 

This code imports the CatBoostRegressor class from the CatBoost library and a custom-

defined HyperoptFitterMinutes class from the src.models.hyperopt_fitter module. It then 

loads a dataset from a pandas data frame, filters out rows where the "inout_minutes" 

column is less than 70, and separates the features (X) from the target variable (y). The 

HyperoptFitterMinutes object is initialized with X, y, and the name of the metric to 

optimize (r_squared). The fit method of the HyperoptFitterMinutes object is called with a 

maximum number of evaluations to run (80). This uses Bayesian optimization to find the 

best hyperparameters for the CatBoostRegressor model, and the best result is printed, 

including the metric value and the hyperparameters used. Finally, the best model is 

trained using the hyperparameters found by the optimization process and saved in the 

"model" variable.  
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In summary, this code will take an eval_metric (R2 in this case) and try to find out that 

combination of hyperparameters which gives us maximum R2. Some of the important 

hyperparameters for Catboost algorithm are: 

 

• Number of trees 

• Number of interactions 

• Max_leaves 

• Learning Rate 

• Tree Depth 

• Border Count 

• Tree growing policy 

 
 

Some of these hyperparameters are explained below: 

 

• Number of trees: This hyperparameter decides how many trees we train in a cat 

boost algorithm since it is a tree-based algorithm which fits many decisions tree 

and uses each one to boost the previous model’s results.  

 

• Max Depth: We know that the Catboost model is just a collection of trees boosted 

together. We know that a decision tree is formed by asking a series of questions 

and keeping splitting the data.? How many questions should I ask for a decision 

tree to split my data? This is defined by the maximum depth of each tree.   

 

• Samples required to make a split: We looked at the max_depth in the previous 

point. Now, consider a situation where we keep asking 10 questions and we are 

in a case where the data has been splitted so much that only 1 data. In that case, 

our leaf node has 1 data point and we will be predicting based on that one point 

only. One sample cannot be a representative of a group. Hence, we should have 

a way to specify a minimum number of samples required to make a split. If the 

number of samples go below that, we stop splitting that node and that one 

becomes a leaf node.  

 

• Learning Rate: It is a measure of how quickly the learning happens. If you fix a 

large value for this, then with few iterations only, we can converge faster. But it 

should be tweaked very carefully because the minima can be overshot by a 

large learning rate.  
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HYPERMARAMETER    Value 

'sampling_frequency'  'PerTree' 

 'leaf_estimation_method'  'Newton' 

 'grow_policy'  'SymmetricTree' 

 'penalties_coefficient' 1 

 'boosting_type'  'Plain' 

 'model_shrink_mode'  'Constant' 

 'feature_border_type'  'GreedyLogSum' 

 'bayesian_matrix_reg'  0.10000000149011612 

 'l2_leaf_reg' 3 

 'rsm' 1 

 'boost_from_average'  True 

 'model_size_reg'  0.5 

 'depth' 6 

 'posterior_sampling'  False 

 'border_count' 254 

 sparse_features_conflict_fraction' 0 

 'leaf_estimation_backtracking'  'AnyImprovement' 

 'best_model_min_trees' 1 

 'model_shrink_rate' 0 

 'min_data_in_leaf' 1 

 'loss_function'  'RMSE' 

 'learning_rate' 0.032058000564575195 

 'score_function'  'Cosine' 

 'leaf_estimation_iterations' 1 

 'bootstrap_type'  'MVS' 

 'max_leaves'  64. 

 'learning_rate'  .032058000564575195 

 'score_function'  'Cosine' 

 'leaf_estimation_iterations' 1 

 'bootstrap_type'  'MVS' 

 'max_leaves'  64. 

 

Table 8. HYPER-PARAMETER TUNNING RESULTS 

 
 

A brief explanation of the results of Table 8 is provided below: 

 

• sampling_frequency: This hyperparameter specifies the sampling frequency for 

features when building decision trees. It can take on different values depending 

on the specific implementation of the Catboost algorithm. 
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• leaf_estimation_method: This hyperparameter specifies the method used to 

estimate the values of leaf nodes in decision trees. In the table, the value 'Newton' 

indicates that the algorithm uses a Newton-Raphson method to estimate the leaf 

values. 

 

• grow_policy: This hyperparameter controls the strategy used to grow decision 

trees. The value 'SymmetricTree' indicates that the algorithm grows symmetric 

decision trees, where each leaf node has the same depth. 

 

• penalties_coefficient: This hyperparameter is a penalty coefficient used in the 

algorithm's objective function. In the table, the value of 1 indicates that there is 

no penalty. 

 

• boosting_type: This hyperparameter specifies the type of boosting used in the 

Catboost algorithm. In the table, the value 'Plain' indicates that the algorithm uses 

standard Catboosting. 

 

• feature_border_type: This hyperparameter specifies the method used to split 

data along the feature borders. The value 'GreedyLogSum' indicates that the 

algorithm uses a greedy algorithm to find the optimal split point. 

 

• bayesian_matrix_reg: This hyperparameter is a regularization term used to 

control the complexity of the model. In the table, the value of 0.1 indicates a 

moderate level of regularization. 

 

• l2_leaf_reg: This hyperparameter is another regularization term that controls the 

L2 regularization applied to the weights of the decision trees. 

 

• rsm: This hyperparameter is the "feature fraction" parameter, which controls the 

fraction of features that are randomly selected for each tree. 

 

• model_size_reg: This hyperparameter is a regularization term that controls the 

size of the trees in the ensemble. 
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• posterior_sampling: This hyperparameter specifies whether or not to perform 

posterior sampling during training. 

 

• border_count: This hyperparameter controls the number of splits to consider 

when finding the best split point along each feature. 

 

• sparse_features_conflict_fraction: This hyperparameter is used in sparse data to 

determine the minimum overlap between categories before considering them 

distinct. 

 

• leaf_estimation_backtracking: This hyperparameter specifies the type of 

backtracking algorithm used to optimize the leaf values during training. 

 

• best_model_min_trees: This hyperparameter specifies the minimum number of 

trees in the ensemble to consider the model as "best". 

 

• model_shrink_rate: This hyperparameter specifies the shrinkage rate for the 

ensemble. 

 

• min_data_in_leaf: This hyperparameter specifies the minimum number of 

samples required to form a leaf node in the decision tree. 

 

• loss_function: This hyperparameter specifies the loss function used during 

training. In the table, the value 'RMSE' suggests that the algorithm minimizes the 

root mean squared error. 

 

• score_function: This hyperparameter specifies the score function used to 

evaluate the model during training. 

 

• leaf_estimation_iterations: This hyperparameter specifies the maximum number 

of iterations for optimizing the leaf values in each tree. 

 

• bootstrap_type: This hyperparameter specifies the type of bootstrap sampling 

used during training. 
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• learning_rate: This hyperparameter controls the step size taken during gradient 

descent updates to the model parameters. 

 

In Figure 37, we compare the residuals and prediction for error graph of Catboost versus 

Catboost with hyperopt function. It can be observed that values are not improving as the 

Test R2 metric is reduced from 0.778 Catboost, to 0.632 if we apply hyperopt function. 

In the left plot, the training performance is good which is clearly visible from tightly packed 

residuals in the left plot. In the right plot, residuals are not tightly packed around zero. 

The testing performance is also better in the left plot as very few points are away from 

zero horizontal line than in the right plot.  

 

 

 

Figure 37. Catboost vs Catboost after hyperopt function results 

 

If we compare the residuals and prediction for error graph, Figure 38, we can also 

observe that values are not improving as the Test R2 metric is reduced from 0.778 

Catboost, to 0.632 if we apply hyperopt function. In the left plot, the training performance 

is way good which is clearly visible from tightly packed residuals in the left plot. In the 

right plot, residuals are not tightly packed around zero. The testing performance is also 

better in the left plot as very few points are away from zero horizontal line than in the 

right plot. So, overall, the left plot looks superior than the right one which is also clear 

from the R2 itself. 
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It is not uncommon to see a decrease in performance (in terms of metric like R2) after 

applying hyperparameter tuning. Hyperparameter tuning has limitations to how much 

improvement can be achieved by tuning hyperparameters. In our case this happens for 

following reasons: 

 

• Overfitting: When tuning hyperparameters, there is a risk of overfitting the model 

to the training data. This means that the model is optimized to perform well on 

the training data, but does not generalize well to new data. This can lead to a 

decrease in performance on the validation or test data. 

 

• Randomness: The performance of machine learning models can be affected by 

random fluctuations in the data or in the modeling process. It is possible that a 

particular combination of hyperparameters that performed well on one dataset 

may not perform as well on another dataset due to these random fluctuations. 

 

• Complexity: In some cases, the best hyperparameters may lead to a more 

complex model than the default hyperparameters. This can lead to a decrease in 

performance on the validation or test data. 

 

 

Figure 38. Catboost vs Catboost after hyperopt for residuals and prediction error 
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4.7. Evaluation of the model with fluid 

bed dryer data 

 

In this section, Catboost model will be executed using the historical data obtained from 

the activity of the fluid bed dryer process in the production plant. The data set 

corresponds to 200 batches of medical products processed during one year and a half. 

The objective is to analyze the prediction of the model in terms of reduction of the 

preheating time of the machine and of the energy consumption savings of the fluid bed 

dryer for the preheating process. To this end, the evaluated parameters are: inlet air 

temperature difference, the preheating time prediction and energy consumption 

prediction. In this subsection, the Catboost model prediction regarding the duration and 

power savings of the preheating phase will be compared with the real results of duration 

and energy consumption.  

 

4.7.1. Preheating temperature analysis 

 

Figure 39 contains the analysis for the 200 batches from the historical information 

extracted from the fluid bed dryer using the Catboost model. The Y-axis indicates the 

difference in inlet air temperature and outlet, and the X-axis the time in minutes. The 

continuous red line is the average time used to preheat the fluid bed dryer before 

introducing the drug product for drying. The red dotted line is the Catboost prediction that 

indicates a potential saving of the preheating time. Approximately, on average, Catboost 

predicts that at 14.8 degrees, the air differences are stabilized. Therefore, from this 

instant on the machine is consuming unnecessarily energy since the fluid bed dryer is at 

the optimum point. As the temperature difference between the inlet and outlet air is very 

low, which means that the fluid bed dryer is warm enough, so it cannot absorb air and 

the air difference between inlet and outlet is stable.  

.  
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Figure 39. Average time of 200 test batches. Red continuous line is real average 

preheating and red dotted line is predicted value. 

4.7.2. Time duration analysis 

 

In Figure 40, it can be seen in blue color the real duration of the preheating process per 

month from the historical dataset. This duration is measured in minutes and represents 

the average of the time spent by the process for the whole month. This measure has 

been performed for the 200 batches evaluated during 18 months.  

 

The results show that the preheating process duration varies from one month to another 

and fall in between 88.5 and 110.6 minutes, depending on when the optimal temperature 

difference in-out is reached. The average duration of the 200 batches during the 18 

months is around 99.7 minutes. This key information will allow us to calculate the real 

consumption of the preheating process. 

 

Figure 40 shows also the Catboost prediction duration of the preheating process. It can 

be observed how for the 200 batches, during 18 months evaluation, the predicted time 

is always lower than the real time. The reduction of the predicted time is significant, 

ranging this decrease from 34.7 minutes (39.2% time reduction) in the month of Dec’18 

to 66.0 minutes (59.68.2% reduction) in the month of Oct’18.  
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The optimal time predicted by the algorithm corresponds on average per month between 

42.5 and 59.5 minutes, with an average of 49.4 minutes The average predicted time 

reduction is 50.3 minutes. Therefore, duration of the process can be reduced on average 

by 50.45%. 

 

 

 

Figure 40. Time duration for preheating process comparing real duration with Catboost 

prediction 

 

4.7.3. Energy saving analysis 

 

In Figure 41, it can be seen in blue color the real energy consumption of the preheating 

process per month from the historical dataset. This energy consumption is measured in 

kWh and represents the average of the energy spent by the process for the whole month 

per batch. This measure has been performed for the 200 batches evaluated during 18 

months.  

 

The results show that the real preheating process energy consumption varies from one 

month to another and fall in between 27.1 kWh and 34.3 kWh per batch every month, 



 

107 
 

depending on when the optimal temperature difference in-out is reached. The average 

energy consumption of the 200 batches is 30.9 kWh per batch. 

 

Figure 41 shows also the Catboost prediction energy consumption of the preheating 

process. It can be observed how for the 200 batches, during 18 months evaluation, the 

predicted energy consumption is always lower than the real energy consumption. The 

reduction of the predicted energy consumption is significant, ranging this decrease from 

10.8 kWh (39.8% energy reduction) in the month of Dec’18 to 20.5 kWh (59.76% energy 

reduction) in the month of Oct’18.  

 

The optimal energy consumption predicted by the algorithm corresponds on average per 

batch between 13.2 kWh and 18.4 kWh.The average predicted energy reduction is 15.6 

kWh. Consequently, the reduction of energy consumption predicted by the algorithm, to 

complete the prehearing process, represents 50.48% less energy.  

 

The total energy saving is calculated using the equation 4. 

𝐸𝑆𝑡 = 𝑁𝑏𝑎𝑡𝑐ℎ𝑒𝑠 ∗ 𝐸𝑆𝑏    (4) 

 

Being 𝑁𝑏𝑎𝑡𝑐ℎ𝑒𝑠 the number of batches and 𝐸𝑆𝑏 the energy saved per batch.  

 

Based on Figure 40, there is a potential saving of 50.3 minutes per batch each time the 

fluid bed dryer is preheated. This means a saving of around 15.6 kWh per batch (50.3 

minutes x 0.31 kWh). If the machine processes approximately 200 batches per year, 

based on the current estimation, then the annual potential energy savings could be 

approximately 3.120 kWh applying equation 4. 
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Figure 41. Energy consumption for preheating process comparing real energy with 

Catboost prediction 

 

 

4.8. Conclusions 

 

As summary, in this chapter we have selected the most suitable model for the fluid bed 

dryer prediction process based on the current data set obtained from the activity of the 

fluid bed dryer process in the production plant. First, several models, including Catboost, 

elastic net, random forest or linear regression, have been compared. We have selected 

Catboost because it provides the lowest error at the same time highest R2 as it has been 

described in previous sections.   

 

Catboost with default hyperparameters have been evaluated in more detail as it was the 

best among all the algorithms, with highest R2 and lowest errors. Linear Regression 

model has been also evaluated but results It has been disregarded because of 

overfitting. Finally, we have evaluated Catboost with bayesian hyperparameter tuning 

but it did not produce better results.  
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Once the model has been selected, it has been adapted to the fluid bed dryer process. 

The analysis of the historical data set, 200 batches from 18 months of production has 

been performed. It has been shown that the model is able to predict on average a 

reduction of 50.45% of the preheating process duration and up to 59.68% in some cases. 

Likewise, the energy consumption of the fluid bed dryer for the preheating process could 

be reduced on average by 50.48% and up to 59.76%, what results on average in around 

3.120 kWh energy consumption savings per year. 
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5 Fluid Bed Dryer Cloud-IIOT 

architecture 
 

This chapter has been removed as it contains confidential information about the 
architecture and the infrastructure implemented. 
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6 Conclusions and Future 

Work 
 
In this chapter, we summarize the main conclusions that have been achieved. Also, we 

include the publications and contributions derived from the research that has been 

carried out during this thesis. Finally, future lines of work that could be extended from 

the conclusions and contributions are described. 

 

 

6.1. Conclusions 

 
The motivation of this work was broad as we wanted to define an end-to-end IOT – Cloud 

computing definition and implementation architecture to reduce energy consumption for 

a fluid bed dryer machine located in a pharmaceutical manufacturing plant in Barcelona 

(Spain). This thesis adopts an innovative approach to improve the pharmaceutical drying 

process, identifying start and end of the preheating phase, by continuously monitoring 

critical parameters of the manufacturing equipment.  

 

To fulfill these objectives, in chapter 2 it was presented a review of the most relevant 

literature of the different topics addressed in this thesis, including an introduction to the 

pharmaceutical manufacturing process, a brief description of fluid bed dryer operations, 

the current paradigm Industry 4.0 and Pharma 4.0., digital twin technology and an 

introduction to machine learning, including some state of art related work in the field of 

applying machine learning to reduce the energy consumption in the manufacturing 

industry 

 

In chapter 3, fluid bed dryer historical data has been analyzed to identify critical variables 

and patterns using preprocessing advance analytics techniques. As conclusion, it can 

be stated that the preheating phase lasts longer than necessary. Some batches need 

less than 50.1 minutes to complete the preheating process, however, there are batches 

that take up to 180.3 minutes. In terms of energy consumption, it means that for some 

batches the fluid bed dryer consumes 15.5 kWh, and for others is 55.8 kWh, which could 

represent savings, in some cases, of 72.2% of energy. 
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In chapter 4, it was selected the most suitable model for the fluid bed dryer prediction 

process based on the current data set obtained from the activity of the fluid bed dryer 

process in the production plant. It was selected Catboost model because it provides the 

lowest error at the same time highest R2. Once the model was selected, it was adapted 

to the fluid bed dryer process. The analysis of the historical data set, 200 batches from 

18 months of production shown that the model is able to predict on average a reduction 

of 50.45% of the preheating process duration and up to 59.68% in some cases. Likewise, 

the energy consumption of the fluid bed dryer for the preheating process could be 

reduced on average by 50.48% and up to 59.76%, what results on average in around 

3.120 kWh energy consumption savings per year. 

   

Finally, in chapter 5, an IIOT-Cloud computing architecture has been implemented, 

presenting the results in terms of energy savings from analyzing fluid bed dryer data in 

real time. According to the evaluated results, after three months of analyzing the fluid 

bed dryer data with our IIOT – Cloud computing architecture, the proposed machine 

learning Catboost model exhibits good performance and is capable of reducing 45 

minutes of drying time per batch, which implies an energy saving for each batch of 13.95 

kWh, corresponding to an estimated annual energy saving of approximately 2.8 MWh.  

 

As it will be explained in future work, this architecture can be used to reduce energy 

consumption for other fluid bed processes such as drying, and in the future by other type 

of machinery, such us mixers, compactors, or coaters, by defining new machine learning 

models adapted to the new processes. 

 

6.2. Publications and contributions. 

 

During the development of this thesis, some papers were published in scientist journals. 

Besides we presented our work in different conferences, with the aim to share our 

research and obtain valuable feedback from other colleagues. In addition, we 

collaborated indifferent research projects. Finally, our work was awarded with the annual 

prize from Actualidad Economica magazine, El Mundo newspaper, as one of the best 

ideas of 2021 in the category of Industry 4.0. 
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6.2.1. Research projects 

 
The present thesis has been developed in the framework of 3 research projects. These 

projects are directly related to energy savings in fluid bed dryers and the use of advanced 

analytics or machine learning for the optimization of production processes, which are 

main topics of the thesis. The projects are briefly described below, as well as their 

duration and the collaborating entities. 

 

• “INCOGNITO: Towards the smart, green and self-organized Cognitive Plant of 

the future for the European process industries”. Objective: Definition of the use 

case 'Optimization of manufacturing processes through Data Analytics' in the 

proposal for the R+D+i for the DT-SPIRE-06-2019 contest within the innovation 

framework of the European Commission H2020. Duration 2 years between 2018 

and 2019. Sponsored by IRIS Technology and Almirall SA. 

 

• “IOT Analytics chemical plant”. Objective: To implement a proof of concept using 

IOT and machine learning technologies, to improve cleaning process from the 

chemical reactors of a manufacturing chemical plant, by reducing the 

consumption of reagents and energy. Duration 1 year during 2019. Sponsored 

by Almirall SA. 

 

• “Dryer IOT Analytics”: Objective: To connect the IOT sensors from Fielder 

Aeromatic dryer to a Machine Learning algorithm platform (Azure) in real time 

either a model deployed in Azure Container Instances or an edge device (OPC 

Server). Duration 6 months between 2020 and 2021. Sponsored by Almirall SA. 

6.2.2. Publications in scientific journals 

 

• Barriga, R, Hassan, H, Romero, M, Nettleton, D. “Advanced data modeling for 

industrial drying machine energy optimization”, The Journal of Supercomputing, 

volume 78, pages 16820–16840, 2022.  

 

• Barriga, R. Zahn, M. Blumenthal, R. Zamora, D and Romero, M. “Artificial 

Intelligence Used to Optimize Fluid Bed Drying”, International Society for 

Pharmaceutical Engineering, ISSN 0273-8139, Spain, 2022 
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• Barriga, R. Hassan, H. Romero, M and Nettleton, D. “Energy consumption 

optimization of drying machines in pharmaceutical process control”, Sensors 

Journal, 23 (8), 3994, 2023  

 

• Barriga, R. Hassan, H. Romero, M and Nettleton, D. “Cloud computing-IIOT 

architecture for reducing fluid bed drier energy consumption”, Cluster 

Computing, 2023 (Under Review). 

 

6.2.3. Conferences 

 

• Barriga, R. “Big data in the pharmaceutical Industry 4.0”, Conference of Industry 

of things World, Berlin, Germany, September 2019 

 

• Barriga, R. “Industrial big data o analitica avanzada de datos, claves para la 

toma de decisiones y mejorar el proceso productivo”, Conferencia de Fabrica 

Inteligente, IKN, Madrid, Spain, June 2019 

 

• Barriga, R. “Industria 4.0”, Conferencia de Convergencia IT/OT Industria 4.0, 

Altran, Barcelona, Spain, June 2019 

 

• Barriga, R and Romero, M. “Digitalization & Advance Analytics in 

Pharmaceutical Operations”, Conference of Artificial intelligence applied to 

pharmaceutical, International Society for Pharmaceutical Engineering, Madrid, 

Spain, November 2020 

 

• Barriga, R. “Machine Learning and Artificial Intelligence for production 

optimization”, Conference of Digital Transformation Masterclass, Zigurat, 

Barcelona, Spain, April, 2021 

 

6.2.4. Awards 

 
Actualidad Economica magazine of El Mundo newspaper selected, as one of the ‘100 

best Ideas of the year) in 2021, within the Industry 4.0 category, our “IOT Dryer Analytics” 

project, which has been the frameworkof the present thesis. The award ceremony has 
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been organized in Madrid by El Mundo newspaper. Miquel Romero (center of the 

picture), co-tutor of this thesis and me (right side of the picture) attended the ceremony. 

 
 

 
 

6.3. Future work 

 
The main areas of future research and developments that has been noticed during the 
development of this thesis are described in the following subsections. 

 

6.3.1. Drying process implementation 

 
One area with potential benefits, consists of using the current fluid bed dryer cloud 

computing infrastructure, for analyzing other processes beyond the current preheating 

process analyzed in this thesis, as for example, the optimization of the fluid bed dryer 

drying process. In chapter 3 we explain that the fluid bed dryer for drying a drug product 

includes 3 phases, the first phase is the preheating, which is the central objective of this 

thesis, the second phase with a shorter duration is drying, where the product to be dried 

is introduced inside the machine, and the third phase is the cooling. 

 

Taking the one year and a half historical data from the fluid bed dryer hosted in our Azure 

architecture for the three processes (preheating, drying and cooling), we did some 

preliminary analysis of the drying process, using our Catboost model explained in 

chapter 4, and we discovered some interesting insights of reducing also the drying 
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process. This potential saving would be applied to the processing time and the energy 

consumed, therefore, in addition to reducing the 350 minutes that the entire process lasts 

(from the time we start the preheating of the machine, until the end of the cooling) 

approximately between 20-25 minutes per batch, the saving of the energy could be 

achieved.  

 

In order to use any software that implies a change in the current drying process, like for 

example using a machine learning algorithm to predict when the drying process is 

finished, the system must be validated, as it has an impact on the activities of production 

of medicines or medical devices and, therefore, that may affect the quality of the final 

product, the safety of the patient and the integrity of the data generated. The validation 

of computer systems is a requirement that companies in the pharmaceutical sector must 

complete in order to comply with applicable regulations and obtain the necessary 

authorizations and certifications. It involves conducting a review process to validate that 

the computer system adheres to its specifications and possesses the capability to 

perform its designated task in accordance with relevant regulations and the intended use 

by the end user who is subject to regulation. In order to validate the infrastructure 

implemented in the development of this thesis, it could be necessary between 6 months 

and 1 year of work with the quality department.  

 

6.3.2. Drug product end-to-end architecture 

 
Another area for future work, it would be the use of the architecture developed in this 

thesis for the optimization of another type of process besides drug drying. As explained 

in previous chapters of this thesis, the production process of a drug product in the 

pharmaceutical industry, consists of different phases. The API (Active Product 

Ingredient), is the component of a drug or that has biological activity, and as first step it 

has to be mixed with other types of excipients or components in a mixer, then it goes 

through the drying process in a dryer, a fluid bed dryer in our case. Once the drug product 

is dried, then it is compacted in a compactor to give it the shape of a tablet, and finally 

the coating process is carried out to enhance the surface properties for corrosion and 

wear protection in a coater machine, and finally the drug product is moved to a packaging 

line to be included in a blister and a final consumer packaging box. As future work, it 

could be possible to connect all this type of machinery that are part of the drug 

manufacturing process (mixer, dryers, compacters, coaters, and packaging lines), 

directly to our IOT – Cloud computing solution as shown in Figure 42. We will have to 
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connect each PLC directly to our OPC Server, and then configure our MS Azure Edge 

Computing and Databricks modules, to be able to process the data coming from the 

sensors. We will have first to preprocess the data as explained in chapter 3, in order to 

identify the most relevant variable of the process, and to analyze each process to detect 

patterns and potential areas of optimization. After this, we will have to develop a new 

machine learning algorithm as shown in chapter 4, that is able to improve the 

performance of the process. In summary, most of the defined architecture in this thesis 

could be used not only to improve the drying process, but also for the complete end-to-

end improvement of the drug manufacturing process. 

 

 

 
Figure 42.  Architecture proposal for machine learning end to end drug manufacturing 

process. 

 

6.3.3. Signal alert device 

 

Finally, another potential benefit would be the implementation of a signal alert device in 

the fluid bed dryer. Once the Catboost model was connected in real time to the fluid bed 

dryer in order to save energy consumption, it is detected that in order to make easier for 

the operators to stop the preheating process, once our algorithm informs them in the 

SCADA screen explained in chapter 5, about the pending time to finish the preheating 

process, it would be interesting to provide the SCADA with a signal device. Signaling 
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devices, including tower lights, beacons and audible alarms, provide operators with 

alerts, allowing them to react to problems or manual actions more quickly.  
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