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Abstract

Infrastructure design is strongly influenced by the search for solutions considering the
impact on the economy, the environment, and society. These criteria were strongly
related to the definition of sustainability by the Brundtland Commission in 1987. This
milestone posed a challenge for technicians, scientists, and legislators alike. This
challenge consisted of generating methods, criteria, tools, and regulations that would
allow the inclusion of the concept of sustainability in developing and designing new
infrastructures. Since then, small advances have been made in the search for sus-
tainability, but they need more in the short term. As an action plan, the United Nations
established the Sustainable Development Goals, setting the year 2030 as the target
for achieving them. Within these goals, infrastructure is postulated as a critical point.
Traditionally, methods have been developed to obtain optimal designs from the point
of view of economic impact. However, although recent advances have been made in
implementing and using complete life cycle analysis methods, there still needs to be
a clear consensus, especially in the social pillar of sustainability. Given that sustain-
ability encompasses different criteria, which in principle do not necessarily go hand
in hand, the problem of finding sustainability is posed not only as an optimization
problem but also as a multi-criteria decision-making problem.

The main objective of this doctoral thesis is to propose different methodologies for
obtaining optimal designs that introduce the pillars of sustainability in the design of
steel-concrete composite bridges. A three-span box-girder bridge is proposed as
a representative structural problem. Given the complexity of the structure, which
involves 34 discrete variables, optimization with mathematical methods is unafford-
able. Therefore, the use of metaheuristic algorithms is proposed. This complexity
also translates into a high computational cost for the model, so a deep neural net-
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works model is implemented to allow the validation of the design without the need for
computation. Given the problem’s discrete nature, discretization techniques are pro-
posed to adapt the algorithms to the structural optimization problem. In addition, to
improve the solutions obtained from these discrete algorithms, hybridization methods
based on the K-means technique and mutation operators are introduced depending
on the type of algorithm. The algorithms used are classified into two branches. The
first are those based on trajectories such as Simulated Annealing, Threshold Accept-
ing, and Old Bachelor Acceptance. Moreover, swarm intelligence algorithms such as
Jaya, Sine Cosine Algorithm, and Cuckoo Search are used. The Life Cycle Assess-
ment methodology defined in the ISO 14040 standard is used to evaluate the social
and environmental impact of the proposed designs. The application of this method-
ology allows the evaluation of the impact and comparison with other designs. The
single-objective evaluation of the different criteria leads to the conclusion that cost
optimization is associated with a reduction of the environmental and social impact of
the structure. However, optimizing environmental and social criteria does not neces-
sarily reduce costs. Therefore, to perform a multi-objective optimization and find a
compromise solution, a technique based on Game Theory is implemented, propos-
ing a cooperative game strategy. The multi-criteria technique used is the Entropy
Theory to assign criteria weights for the aggregate objective function. The criteria
considered are the three pillars of sustainability and the constructive ease of the top
slab. Applying this technique results in an optimal design concerning the three pillars
of sustainability and from which the constructive ease is improved.
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Resumen

El diseño de infraestructuras está fuertemente influido por la búsqueda de soluciones
que tengan en cuenta el impacto en la economía, el medio ambiente y la sociedad.
Estos criterios están muy relacionados con la definición de sostenibilidad que hizo
la Comisión Brundtland en 1987. Este hito supuso un reto para técnicos, científi-
cos y legisladores. Este reto consistía en generar métodos, criterios, herramientas
y normativas que permitieran incluir el concepto de sostenibilidad en el desarrollo
y diseño de nuevas infraestructuras. Desde entonces, se han producido pequeños
avances en la búsqueda de la sostenibilidad, pero se necesitan más a corto plazo.
Como plan de acción, las Naciones Unidas establecieron los Objetivos de Desarrollo
Sostenible, fijando el año 2030 como meta para alcanzarlos. Dentro de estos obje-
tivos, las infraestructuras se postulan como un punto crítico. Tradicionalmente, se
han desarrollado métodos para obtener diseños óptimos desde el punto de vista del
impacto económico. Sin embargo, aunque en los últimos tiempos se ha avanzado
en la aplicación y utilización de métodos de análisis del ciclo de vida completo, aún
falta un consenso claro, especialmente en el pilar social de la sostenibilidad. Dado
que la sostenibilidad engloba diferentes criterios, que en principio no van necesari-
amente de la mano, el problema de la búsqueda de la sostenibilidad se plantea no
sólo como un problema de optimización, sino también como un problema de toma
de decisiones multi-criterio.

El objetivo principal de esta tesis doctoral es proponer diferentes metodologías para
la obtención de diseños óptimos que introduzcan los pilares de la sostenibilidad en
el diseño de puentes mixtos acero-hormigón. Como problema estructural represen-
tativo se propone un puente viga en cajón de tres vanos mixto. Dada la complejidad
de la estructura, en la que intervienen 34 variables discretas, la optimización con
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métodos matemáticos resulta inabordable. Por ello, se propone el uso de algoritmos
metaheurísticos. Esta complejidad también se traduce en un alto coste computa-
cional para el modelo, por lo que se implementa un modelo de redes neuronales
profundas que permite la validación del diseño sin necesidad de computación. Dada
la naturaleza discreta del problema, se proponen técnicas de discretización para
adaptar los algoritmos al problema de optimización estructural. Además, para mejo-
rar las soluciones obtenidas a partir de estos algoritmos discretos, se introducen
métodos de hibridación basados en la técnica K-means y operadores de mutación
en función del tipo de algoritmo. Los algoritmos utilizados se clasifican en dos ra-
mas. La primera son los basados en trayectorias como el Simulated Annealing,
Threshold Accepting y el Algoritmo del Solterón. Por otra parte, se utilizan algo-
ritmos de inteligencia de enjambre como Jaya, Sine Cosine Algorithm y Cuckoo
Search. La metodología de Análisis del Ciclo de Vida definida en la norma ISO
14040 se utiliza para evaluar el impacto social y medioambiental de los diseños prop-
uestos. La aplicación de esta metodología permite evaluar el impacto y compararlo
con otros diseños. La evaluación mono-objetivo de los diferentes criterios lleva a
la conclusión de que la optimización de costes está asociada a una reducción del
impacto medioambiental y social de la estructura. Sin embargo, la optimización de
los criterios medioambientales y sociales no reduce necesariamente los costes. Por
ello, para realizar una optimización multi-objetivo y encontrar una solución de com-
promiso, se implementa una técnica basada en la Teoría de Juegos, proponiendo
una estrategia de juego cooperativo. La técnica multi-criterio utilizada es la Teoría
de la Entropía para asignar pesos a los criterios para la función objetivo agregada.
Los criterios considerados son los tres pilares de la sostenibilidad y la facilidad con-
structiva de la losa superior. Aplicando esta técnica se obtiene un diseño óptimo
relativo a los tres pilares de la sostenibilidad y a partir del cual se mejora la facilidad
constructiva.

x



Resum

El disseny d’infraestructures està fortament influït per la cerca de solucions que
tinguen en compte l’impacte en l’economia, el medi ambient i la societat. Aquests
criteris estan molt relacionats amb la definició de sostenibilitat que va fer la Comissió
Brundtland en 1987. Aquesta fita va suposar un repte per a tècnics, científics i leg-
isladors. Aquest repte consistia a generar mètodes, criteris, eines i normatives que
permeteren incloure el concepte de sostenibilitat en el desenvolupament i disseny
de noves infraestructures. Des de llavors, s’han produït xicotets avanços en la cerca
de la sostenibilitat, però es necessiten més a curt termini. Com a pla d’acció, les Na-
cions Unides van establir els Objectius de Desenvolupament Sostenible, fixant l’any
2030 com a meta per aconseguir-los. Dins d’aquests objectius, les infraestructures
es postulen com un punt crític. Tradicionalment, s’han desenvolupat mètodes per a
obtindre dissenys òptims des del punt de vista de l’impacte econòmic. No obstant
això, encara que en els últims temps s’ha avançat en l’aplicació i utilització de mè-
todes d’anàlisis del cicle de vida complet, encara falta un consens clar, especialment
en el pilar social de la sostenibilitat. Atés que la sostenibilitat engloba diferents cri-
teris, que en principi no van necessàriament de la mà, el problema de la cerca de la
sostenibilitat es planteja no sols com un problema d’optimització, sinó també com un
problema de presa de decisions multi-criteri.

L’objectiu principal d’aquesta tesi doctoral és proposar diferents metodologies per
a l’obtenció de dissenys òptims que introduïsquen els pilars de la sostenibilitat en
el disseny de ponts mixtos. Com a problema estructural representatiu es proposa
un pont viga en calaix de tres vans mixt. Donada la complexitat de l’estructura, en
la qual intervenen 34 variables discretes, l’optimització amb mètodes matemàtics
resulta inabordable. Per això, es proposa l’ús d’algorismes metaheurísticos. Aque-
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sta complexitat també es tradueix en un alt cost computacional per al model, per la
qual cosa s’implementa un model de xarxes neuronals profundes que permet la val-
idació del disseny sense necessitat de computació. Donada la naturalesa discreta
del problema, es proposen tècniques de discretització per a adaptar els algorismes
al problema d’optimització estructural. A més, per a millorar les solucions obtingudes
a partir d’aquests algorismes discrets, s’introdueixen mètodes d’hibridació basats en
la tècnica K-*means i operadors de mutació en funció del tipus d’algorisme. Els
algorismes utilitzats es classifiquen en dues branques. La primera són els basats
en trajectòries com la Simulated Annealing, Threshold Accepting i el Old Bache-
lor Acceptance. D’altra banda, s’utilitzen algorismes d’intel·ligència d’eixam com
Jaya, Sine Cosine Algorithm i Cuckoo Search. La metodologia d’Anàlisi del Cicle
de Vida definida en la norma ISO 14040 s’utilitza per a avaluar l’impacte social i
mediambiental dels dissenys proposats. L’aplicació d’aquesta metodologia permet
avaluar l’impacte i comparar-lo amb altres dissenys. L’avaluació mono-objectiu dels
diferents criteris porta a la conclusió que l’optimització de costos està associada a
una reducció de l’impacte mediambiental i social de l’estructura. No obstant això,
l’optimització dels criteris mediambientals i socials no redueix necessàriament els
costos. Per això, per a realitzar una optimització multi-objectiu i trobar una solució
de compromís, s’implementa una tècnica basada en la Teoria de Jocs, proposant
una estratègia de joc cooperatiu. La tècnica multi-criteri utilitzada és la Teoria de
l’Entropia per a assignar pesos als criteris per a la funció objectiu agregada. Els cri-
teris considerats són els tres pilars de la sostenibilitat i la facilitat constructiva de la
llosa superior. Aplicant aquesta tècnica s’obté un disseny òptim relatiu als tres pilars
de la sostenibilitat i a partir del qual es millora la facilitat constructiva.
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Chapter 1. Introduction and objectives

1.1 Background

There has been growing recognition of the impact of raw material consumption and
emissions from various industrial processes in recent years. Society has become
aware that uncontrolled resource depletion could endanger the planet’s future. The
concept of sustainable development was introduced by the Brundtland Commission
in 1987 to address this concern. Sustainable development is a form of development
that meets the needs of the present without compromising the ability of future gener-
ations to meet their own needs [1]. Since then, significant efforts have been made to
develop cleaner production processes and materials with fewer contaminants.

However, the construction industry remains one of the most carbon-intensive indus-
tries [2], [3]. Furthermore, construction activities also contribute significantly to en-
vironmental pollution [4]. According to Choi [5], the construction industry accounts
for 30% of global energy consumption, 30% of greenhouse gas emissions, and 40%
of raw material extraction. Therefore, optimizing human activities regarding mate-
rial consumption and emissions is crucial to ensure more sustainable processes
that minimize environmental impact. As sustainability is paramount, numerous re-
searchers have studied existing construction processes to enhance and optimize
their sustainability.

It is widely acknowledged that infrastructure is a critical driver of economic prosperity
and social development, as it provides essential services and promotes territorial
integration. According to the International Monetary Fund, investing an additional
1% of the Gross Domestic Product (GDP) in infrastructure would lead to an average
increase of 1.5% in the world’s GDP within four years. This estimate aligns with the
observation that around 20% of World Bank loans in recent years have been directed
towards transport infrastructure [6]. Moreover, the construction sector accounts for
approximately 9% of Europe’s GDP and provides 18 million direct jobs [7].

Given the infrastructure’s economic, environmental, and social impact, sustainability
must be considered in its design to achieve the 2030 Agenda goals. Bridges, in par-
ticular, are critical infrastructure in civil engineering, contributing to economic growth
and connecting distinct geographical areas. Therefore, their structural design must
consider the concept of sustainability.

Engineers are tasked with designing structures that fulfill their intended purpose and
consider various other factors. In the case of bridge design, factors such as the con-
struction process and the structure’s potential for reuse or demolition must be evalu-
ated. This necessitates a thorough understanding of the materials’ behavior and the
stresses that will undergo throughout the service life [8]. Furthermore, constructing
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1.1 Background

these structures has a significant environmental impact that cannot be overlooked
[9]. However, this impact can be minimized through careful design and planning [10].

Steel-concrete composite bridges (SCCBs) could be suitable to accomplish the cur-
rent design objectives. The steel components of these bridges are recyclable, as
highlighted by Gervasio [11]. Since developing composite structure theories in the
20th century, SCCBs have been widely used, as noted by Bernabeu [12]. According
to Musa and Diaz, SCCBs are highly efficient because steel and concrete can be
placed in the cross-section zones where they perform best. In addition, SCCBs pro-
vide aesthetic appeal, as observed by Musa and Diaz [13]. However, the design of
such structures can be quite complex due to the numerous design variables involved
[14].

Researchers have developed various methods to achieve optimal structures using
algorithms. These procedures involve changing the structure’s variables to guide the
search for optimal solutions. Accepting new solutions depends on the objective func-
tion’s value and the algorithm’s specific characteristics. Optimization methods have
been applied to all kinds of structures, including bridges, as evidenced by the work of
Martí et al. [15], Martins et al. [16], [17], and Penadés-Plà [18]. However, research
on optimization has primarily focused on concrete bridges, with limited knowledge
available for SCCBs. In this field, only the economic dimension of sustainability has
been explored, considering it as a single objective.

In contrast, sustainability should be considered more broadly to encompass the so-
cial and environmental impacts, as previously mentioned. Furthermore, the complex-
ity of structural problems is associated with high computational costs. This makes,
on the one hand, the application of mathematical methods to solve the problems
unavoidable and, on the other hand, the need for large amounts of time when con-
sidering the application of metaheuristic optimization techniques. This problem can
be solved by using metamodels to assist the optimization process. The application
becomes more critical in the multi-objective SCCBs optimization problem approach
since the evaluation of different objective functions directly translates into increased
computational time.

Considering the importance of sustainability in the design of SCCBs structure, it is
imperative to propose a methodology that encompasses a comprehensive sustain-
ability profile. Such a methodology should aim at achieving a compromise solution by
leveraging the benefits of optimization, machine learning, and multi-criteria decision-
making techniques to address the challenges posed by complex structural problems.
In recent research, the Life Cycle Assessment (LCA) methodology has emerged as
a prominent approach for evaluating the environmental and social impact of such
structures [19]
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Chapter 1. Introduction and objectives

This doctoral thesis was conducted at the University Institute of Concrete Science
and Technology (ICITECH) at the Universitat Politècnica de València (UPV). The
research group has extensive experience in this field. It has produced numerous
publications related to the topic, which provided a solid foundation for this study.

Furthermore, several public funding sources supported the thesis’s preparation, in-
cluding the Spanish Ministry of Science and Innovation (BIA2017-85098-R, PID2020-
117056RB-I00, and FPU-18/01592).

1.2 Research objectives

This PhD thesis proposes a comprehensive sustainable profile design strategy for
structures using the LCA methodology to evaluate the environmental and social im-
pacts. Furthermore, the economic dimension have been taken into account to con-
sider the typical inclination of governments to enforce budgetary constraints on in-
frastructure. The method is applied to a three-span steel-concrete composite bridge
using discrete hybrid optimization techniques guided by a neural network artificial
intelligence model. The following research questions are formulated in light of the
current context and identified knowledge gaps to assess the sustainable design:

• Question 1: Are steel-concrete composite bridges a viable alternative in terms
of their environmental and social impact and how the steel recycling affect in
the assessment?

• Question 2: Can optimization techniques be aligned with sustainable develop-
ment goals in the design of steel-concrete composite bridges?

• Question 3: Is there a direct relationship between the cost and environmental
and social impact in the design of steel-concrete composite bridges?

• Question 4: Do the design results, encompassing the three dimensions of
sustainability, affect the ease of construction for certain elements of the solution
obtained?

• Question 5: How can advances in artificial intelligence and predictive model-
ing be leveraged to improve designs and reduce computational time for bridge
optimization?

This PhD thesis proposes an LCA-oriented Game Theory approach for providing
sustainable designs following ISO 14040 standard and using discrete hybrid meta-
heuristic techniques assisted by a deep neural network metamodel for improving both
computational and performance design results.
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1.3 Methodology

The following goals were set for this doctoral dissertation:

1. Review the existing literature related with steel-concrete composite bridges de-
sign, sustainability assessment, maintenance and decision making techniques
used for finding the lacks of knowledge in SCCB design.

2. Compare composite bridges’ environmental and social impact with other types
to determine whether they represent a viable solution considering different steel
recycling ratios.

3. Propose procedures for searching optimal designs using discrete metaheuristic
algorithms applying discretization and hybridization techniques.

4. Conclude the relationship between the three pillars of sustainability when opti-
mizing them in isolation in SCCBs.

5. Apply game theory and entropy theory to enable a search for optimal solutions
considering the three dimensions of sustainability and the constructive ease of
certain elements.

6. Study the behavior of the proposed methods when deep learning techniques
such as deep neural networks are introduced to improve computational time.

1.3 Methodology

This dissertation methodology employs five different techniques to achieve the re-
search objectives.

The first step involves reviewing the State of the Art of SCCBs design from a sustain-
ability perspective. This is accomplished through exploring and evaluating existing
research in various fields related to SCCBs design. This study examines research
related to composite bridges, including their design, behavior, optimization, construc-
tion processes, maintenance, impact assessment, and decision-making approaches
to provide a comprehensive approach to design. The review summarizes the findings
and employs multivariate analysis to identify patterns and knowledge gaps relevant
to sustainable SCCBs design.

Next, meta-heuristic techniques have been selected as design methods to auto-
mate the process. Two main branches have been chosen: swarm intelligence and
trajectory-based methods. Swarm intelligence utilizes a population of individuals that
interact with each other to generate new solutions. The meta-heuristic algorithms
used in this method are Jaya, Sine Cosine Algorithm, and Cuckoo Search. On the
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other hand, trajectory-based algorithms make minor changes between iterations to
modify the individual and search for the optimum solution. The main feature of these
algorithms is the definition of a threshold for accepting or rejecting a new solution. In
this case, the algorithms used are Simulated Annealing, Threshold Accepting, and
Old Bachelor Acceptance. The latest algorithm can increase or decrease the thresh-
old during iterations, depending on the number of solutions accepted.

Moreover, discretization and hybridization techniques have been employed to adapt
the algorithms to the discrete nature of the SCCB optimization problem and improve
their performance. The first technique employs V-shaped functions to convert the
continuous swarm intelligence algorithms into discrete ones. Additionally, two hy-
bridization techniques have been utilized. For the swarm intelligence algorithms, a
K-means clustering technique has been applied. Meanwhile, for trajectory-based
metaheuristics, a mutation operator has been utilized to take advantage of the explo-
ration of genetic algorithms by inducing random mutations in individuals.

These design techniques have been utilized to achieve an optimal and sustainable
design for a three-span box-girder SCCB with three spans of 60-100-60. The pro-
cess involved the automation of model generation, stress analysis, measurement,
and structural verification using a Python program with modules that produce results
for the considered objective functions. Five objective functions were employed to
evaluate sustainability in all dimensions, including cost, CO2 emissions, embodied
energy, and environmental and social life cycle assessment. An additional objective
function was included to improve construction feasibility by considering the number
of reinforcement bars required for bridge resistance.

Environmental and social impact evaluations were conducted utilizing the cradle-to-
grave approach with the LCA methodology. Besides employing this tool for calculat-
ing objective functions, it was also used to compare SCCB with slab and box-girder
concrete bridges. The software, openLCA, was utilized for modeling the complete life
cycle, and the environmental and social impact databases used were ecoinvent and
soca, respectively. The life cycle inventory analysis methods employed were ReCiPe
and Social Impact Weighting.

Due to the structural modeling and objective function calculation, this approach has a
high computational cost. A Deep Neural Networks model has been trained to predict
the feasibility of solutions to address this issue.

The selected objective functions were implemented as both single and multi-objective
approaches. To achieve a three-dimensional sustainable design, a cooperative strat-
egy utilizing the Game Theory approach was developed, taking into account cost, en-
vironmental and social LCA, in addition to constructive ease. This approach enables
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the search for a compromise solution among all the alternatives using a mathemat-
ical framework. To achieve this, the Entropy Theory multi-criteria decision-making
method was also utilized to reach a solution.

1.4 Dissertation structure

The structure of this dissertation presents the research into 12 chapters:

• Chapter 1: Explains the research backdrop, aims, and major contributions of
the actual PhD dissertation, as well as the research methods used.

• Chapter 2: Shows the state of art of SCCB design and assess how the sus-
tainability have been applied for reaching those designs by using optimization,
MCDM and LCA techniques.

• Chapter 3: Presents a life cycle environmental assessment comparing alter-
natives of box-girder SCCB with different types of concrete bridges for studying
its feasibility depending on the span length. Furthermore, applies different steel
recycling ratios in order to compare the variability in the impact produced.

• Chapter 4: Presents a social impact evaluation using the life cycle assess-
ment methodology and comparing SCCB with concrete alternatives with differ-
ent steel recycling ratios for the SCCB steel. Moreover, compares the results
with a environmental LCA analysis.

• Chapter 5: Describes the optimization problem and applies both cost and CO2

single-objective optimizations using a v-shape transfer function as discretiza-
tion techniques for Sine Cosine and Jaya algorithms. Moreover, compares the
results with a Simulated Annealing with a mutation operator and shows the
differences between cost and CO2 optimum designs.

• Chapter 6: Applies both the v-shape transfer function and the K-means hy-
bridization technique to Sine Cosine and Cuckoo Search algorithms and com-
pares the results to the ones obtained by same algorithms without the K-means
clustering technique and the Simulated Annealing with a Mutation Operator for
both cost and CO2 single objective optimization.

• Chapter 7: Uses the hybrid techniques proposed using as objective function
the embodied energy and compares the results with a cost optimization.

• Chapter 8: Utilizes deep learning models to predict the feasibility of the bridge.
These machine-learning models are applied to the hybrid techniques proposed
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in previous chapters. The objective functions considered are cost and social
and environmental life cycle assessment considered as a single objective. The
chapter aims to compare the design differences and computation time improve-
ments.

• Chapter 9: Applies a cooperative strategy based on the game theory ap-
plied mathematics branch to carry out a multi-objective optimization consid-
ering cost, the environmental and social life cycle assessment, and the con-
structive ease of the upper slab. This chapter compares the results obtained
by the multi-criteria optimization with the single objective optimization results of
the previous chapters.

• Chapter 10: Presents a detailed analysis of the outcomes obtained in the pre-
ceding chapters.

• Chapter 11: Provides a concise overview of the key aspects and case-specific
findings derived from this doctoral dissertation and proposed avenues for fur-
ther investigation.

Figure 1.1 summarizes the methodologies employed in this dissertation for reaching
the SCCB study case sustainable design.
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Abstract

Steel-concrete composite bridges are used as an alternative to concrete bridges be-
cause of their ability to adapt their geometry to design constraints and the possibility
of reusing some of the materials in the structure. In this review, we report the re-
search carried out on the design, behavior, optimization, construction processes,
maintenance, impact assessment, and decision-making techniques of composite
bridges in order to arrive at a complete design approach. In addition to a qualitative
analysis, a multivariate analysis is used to identify knowledge gaps related to bridge
design and to detect trends in research. An additional objective is to make visible the
gaps in the sustainable design of composite steel-concrete bridges, which allows us
to focus on future research studies. The results of this work show how researchers
have concentrated their studies on the preliminary design of bridges with a mainly
economic approach, while at a global level, concern is directed towards the search
for sustainable solutions. It is found that life cycle impact assessment and decision-
making strategies allow bridge managers to improve decision-making, particularly at
the end of the life cycle of composite bridges.

Keywords: steel-concrete composite bridges; design; optimization; maintenance;
MCDM; LCA

2.1 Introduction

Bridges are one of the most important structural typologies made by civil engineers
and have a great impact on society by favoring territorial connection. The design
of bridges must integrate different requirements to reach a design according to the
required needs. In addition, the design of bridges must consider the context in which
the structure is framed. This context is related to the characteristics of the place
where the structure will be located and the determining factors from economic, cul-
tural and environmental point of views. Engineers are faced with making designs
that must take into account factors that go beyond the simple fact that their work ful-
fills the function for which it is designed [8]. In bridge design, other aspects, such
as the construction process or the structure’s reuse or demolition strategies, must be
evaluated. This requires a clear understanding of the behavior and stresses that their
materials will be subjected to throughout their service life [8]. In addition, these infras-
tructures have an associated environmental impact during their construction [9] that
must also be considered. This impact can be mitigated with good design and plan-
ning [10]. Since the World Commission of Environment and Development defined
sustainable development guidelines [1], national policies have focused on obtaining
infrastructures that accomplish the sustainable development terms. In addition, the
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Figure 2.1: Scheme of design criteria

United Nations defined the Sustainable Development Goals [20] as objectives for
2030. Because of this, it can be understood that one of the demands of society is
the incorporation of sustainability in infrastructure design. Authors such as Rams
[21] add environmental friendliness as one of their design principles. Furthermore,
innovation in building materials and structural shapes give designers more tools to
make designs more in line with current design criteria. In figure 2.1, the scheme of
design criteria have been displayed.

To achieve the objectives of the current design, steel-concrete composite bridges
(SCCBs) can be a good alternative due to the recyclability of the steel parts of the
structure [11]. SCCBs have been used extensively since the 20th century, when
composite structure theories were developed more generally [12]. In addition, Musa
and Diaz state that this type of bridge is highly efficient due to the possibility of placing
the steel and concrete in the parts of the cross section where they perform best. They
also provide added value due to their attractive appearance [13].

The aim of this review is to collect knowledge regarding SCCBs to identify the ap-
proach that designers and researchers have given to design. This work provides
designers and technicians with a guide where current information is collected re-
garding the behavior of this type of structure, the methods used by authors to reach
the optimum design, the construction methods and maintenance, as well as the re-
pair strategies. Furthermore, a lack of knowledge related to SCCBs is found, offering
researchers the possibility of focusing their efforts on the weakest areas. The gaps
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are obtained by using statistical techniques that analyze the correlation between dif-
ferent variables. Furthermore, all the information considered in this study gives a
broader vision of the possibilities of the sustainable design of SCCBs, considering
sustainability in the whole process.

2.2 Data sampling strategy

The searches related to the subject of this work were carried out with the scientific
bibliographic databases of SCOPUS and the Web of Science. The search period
was limited from 1995 to 2019. The terms used for the search of the different arti-
cles were the combination of "Steel-concrete composite bridges" with the following
words: "Optimization", "Decision making", "Multi-attribute decision making", "Multi-
target decision making", "Multi-criteria decision making", "Life cycle assessment",
"Life cycle", "Maintenance", "Fatigue", "Reliability", "Uncertainty", "Robustness", "Fire
resistance", "Construction process", "Safety", "Strength", "Seismic" and "Buckling",
finding a total of 4784 articles.

In order to filter the works that are directly related to the relevant topics, a first ex-
clusion criterion was applied considering only peer-reviewed scientific papers and
conference works. In addition, studies that do not consider the complete composite
action of the structure or that deal with the behavior of independent composite ele-
ments were discarded. Finally, we only considered articles written in English for this
study. This screening strategy resulted in 90 articles.

2.2.1 Statistical analysis

To identify the fields that have been extensively studied and those that present a lack
of knowledge, a simple correspondence analysis was carried out using IBM SPSS
Statistics 25 (IBM Corp., Armonk, NY, USA) software [22]. This method allows us to
represent the relationship between two variables. In this case, it was used to relate
the fields of knowledge related to the design with the type of section of the SCCB
and the stages of the design process. This statistical method has been applied in
other literature review studies [23].
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2.3 Steel-concrete composite bridge design

2.3.1 General overview

SCCBs have been studied extensively due to the good behavior of this type of struc-
ture. The information obtained from the literature review was divided into six fields of
study: Design and Behavior, Optimization, Construction Process, Maintenance and
Repair, Life Cycle Assessment (LCA) and Multi-Criteria Decision Making (MCDM).
This division is not arbitrary. The division is related to the sustainable design phases
that Penadés-Plà and others proposed in their work [23]: Planning and Design, Con-
struction, Operation and Maintenance and Demolition and Recycle.

The first stage encompasses the Design and Behavior field of knowledge, where re-
searchers study the behavior of the structure and propose calculation methods and
structural solutions to improve the behavior of specific areas or the whole set. In the
next phase of the process, designers use techniques to achieve better solutions and
study how to bring their designs to reality. At this stage of the design process, the
optimization and construction processes play a crucial role and must be considered
together to reach the best solution for the construction phase. Once the structure
materializes, the design should consider maintenance periods and methods to eval-
uate the condition of the structure, in order to assess the actions to be taken, either
for repair or maintenance. When the service life has come to an end, the construc-
tion has to be demolished and recycled. All these processes and decisions have an
associated impact, which is where the LCA method allows technicians to assess the
impact of the structures. Throughout the design process, decisions have to be made
to reach the best solution for each stage. MCDM methods offer a powerful tool for
designers to select the solution that most closely matches the constraints [24].

In addition, the SCCBs found in the articles of this review can be grouped by the
type of cross section into three categories, plate girder, twin girders or box girder,
according to the classification of Vayas and Iliopoulos [25]. In Figure 2.2, the three
bridge sections described are displayed. The plate girder bridge consists of a num-
ber of steel girders that are connected to a concrete slab by shear connectors that
allow composite behavior. The twin girders bridge has two or more steel girders that
are usually I-shaped girders, which, like the plate girder bridge, are connected to a
concrete slab. The difference between the slab bridge and the beam bridge is the
behavior of the steel beams. On the one hand, slab bridges have a larger number of
smaller beams. Because of their slenderness, these beams are classified as class 1
or 2 sections according to the Eurocodes [26]. On the other hand, in beam bridges,
the larger dimensions of the beams make it impossible for the steel beams to behave
as class 1 or 2 sections these are classified as class 4 sections and a reduction must
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Figure 2.2: Bridge cross sections considered

be taken into account for calculations [26]. The geometry of the concrete slab is also
reduced considering an effective width due to the phenomenon of shear lag accord-
ing to regulations [26]. Finally, the box girder bridge is made up of an open steel box
girder connected to a concrete slab on the top. The difference lies in the torsional
behavior of this type of cross section, which is better than for twin girders bridges
[13].

The distribution of studies found in every field is displayed in Figure 2.3. As shown,
the greatest number of studies is focused on the Design and Behavior of bridges
(66%), followed by the Optimization (13%) and the LCA (8%). Furthermore, the
studies can be grouped by the year of publication and research field, as shown in
Figure 2.4. The period of greatest production related to SCCBs was between 2010
and 2019. In 2019, there was a change in trend, with more studies carried out in fields
related to optimization and decision making instead of continuing with the study of
the behavior of bridges and the generation of new designs.
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Figure 2.3: Distribution of publications in every research field

Figure 2.4: Number of publications grouped by year and research field
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2.3.2 Design and behavior

The field of design and behavior includes all the studies related to the behavior of
SCCBs towards traffic loads, torsion, fire, fatigue and seismic actions. In addition,
this field includes new designs proposed by authors for the global design of the bridge
deck or other local parts that have unique behavior.

In this field, three main approaches have been found: design proposals, behavior
studies and calculation methods. Design proposals are focused on the conception
of new geometries or the distribution of materials that improve the behavior of SC-
CBs [27]–[37]. Behavior studies are centered on the application of experimental
or numerical approaches to study the bridge response when submitted to fire [38]–
[42], seism [43]–[51], fatigue [52]–[64], secondary torsion [65], vibrations [66]–[71],
blasting loads [72] or other phenomena [73]–[79]. Alternatively, some authors have
focused their studies on implementing new calculation methods for SCCBs [80]–[87].

Table 2.1: Summary of SCCB design publications

Ref. Author Topic Cross section Method
[27] Nakamura et al. Cross-section designs Twin girders Experimental
[31] Kim and Jeong Cross-section and shear connector design Plate girder Experimental & Numerical
[29] Xie et al. Steel sections depth for mid-span in concrete bridges Box girder Numerical
[32] Kim and Jeong Cross-section and shear connector design Plate girder Experimental & Numerical
[30] Vasseghi Shear connectors in negative bending region Plate girder Numerical
[33] Shao et al. Cross-section design with reactive powder concrete Box girder Experimental & Numerical
[34] Wu et al. Cross-section U-shaped design Box girder Experimental & Numerical
[35] Nie et al. Corrugated steel web cross-section Box girder Experimental
[36] Esteves, Almeida and Oliveira Pedro union between concrete and composite sections Box girder Numerical
[37] Peng-Zhen et al. Negative bending region Twin girders Experimental
[28] Xie et al. Steel sections length for mid-span in concrete bridges Box girder Numerical

Table 2.1 summarizes the studies carried out for bridge design, with the majority of
the studies dealing with proposals for the design of bridge cross sections and shear
connectors. The most studied cross-section type is the box girder. According to
the amount of studies found, it can be seen that work is focused on analyzing the
behavior of SCCBs. Fire resistance studies are focused on modeling fire action with
numerical models [38], [42] or fluid mechanics [39]. Other studies, related to the
analysis of the fire behavior of SCCBs, they have also carried out experimental tests
to calibrate the numerical models [40], [41]. However, all the authors conclude that
there are very few studies on the fire behavior of SCCBs. This lack of studies is
also reflected in issues such as blasting loads [72] or the torsional behavior of curved
SCCBs [65]. On the contrary, the behavior of SCCBs to fatigue and seism has been
largely studied.

Studies related to new calculation methods focus on adding new concepts to the de-
sign of SCCBs. Zona et al. [80] proposed a probabilistic non-linear analysis method
for bridge design using the first-order second-moment approximation [88] and the
direct differentiation method [89]–[92] for the sensitivity analysis. Nie and Zhu [82]
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created a beam-truss model for box girder SCCBs based on classical shear-flexible
grillage analysis, obtaining a 10% difference between this model and traditional ones.
Jia et al. [84] included in their method the system reliability to failure with a ten de-
grees of freedom finite element model. Other authors have focused their method on
evaluating the shear lag [81], shrinkage, creep and cracking [85] or flexural lateral
loads [86], [87].

2.3.3 Optimization

The design of structures is based on the search for solutions that allow the struc-
tures to be able to fulfil their function using as fewer resources as possible. The
designers use an iterative process that consists of the modification of the geometry
and a later verification to arrive at a better design of the structure. This procedure is
clearly based on the experience and judgement of the designer. Researchers have
developed different methods to achieve optimal structures by means of algorithms.
These procedures guide the search for optimal solutions by changing the variables
that define the structure. The acceptance of new solutions depends on the value of
the objective function and the characteristics of the algorithm. These optimization
methods have been applied to all types of structures, including bridges [15], [18],
[93], [94].

Some researchers have focused their studies on the search for optimum designs, tak-
ing as an objective the cost reduction of the structure [95], starting from basic stud-
ies carried out by applying techniques that include penalty functions for the search
of the optimum [96]. Since then, techniques have become increasingly more com-
plex, with the use of optimization algorithms, like in the study of Musa and Diaz [13]
who used the Excel optimization module to reach a preliminary design without crack-
ing and fatigue checks. The optimization process generally uses a numerical model
to evaluate the stresses of the bridge, which has a high computational cost, with
the authors having developed methods that divide the optimization process into two
stages. Briseghella et al. [97] used a simple model to reach the optimum geometry
with the Ansys optimization tool and later applied topological optimization [98]–[102]
to a more complex numerical model using the finite element method to reduce the
steel sections that are subjected to local buckling.

Pedro et al. [103] applied different algorithms in a two-stage optimization process.
The results of their analysis gave good behavior for the optimization techniques for
SCCB optimization, with good results. Other authors have applied the fmincon Mat-
lab functions [104] to SCCB I girder bridges, taking good results for span lengths up
to 20 m. In other studies, the life cycle cost of the structure were evaluated, com-
paring the SCCB solution with pre-stressed concrete solutions and stating that the
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pre-stressed concrete solutions are better than the composite ones [105]. These re-
sults could depend on the life cycle phases that have been considered. Rempling
et al. [106] propose a set-based parametric design [107], [108] applied to SCCB
optimization. Kaveh et al. applied and compared different algorithms to composite
bridges in their studies successfully [109], [110]. The optimization techniques are
summarized in Table 2.2.

Table 2.2: Optimization techniques used by authors

Ref. Author Cross section Method
[110] Kaveh Box girder Colliding bodies optimization [111]

Enhanced colliding bodies optimization [112]
Vibrating partial systems [113]

[106] Rempling et al. Twin girders Set-based parametric design [107], [108]
Set-based design [107], [108]

[103] Pedro et al. Twin girders Backtracking search algorithm [114]
Firefly algorithm [115]
Genetic algorithm [116]
Imperialist competitive algorithm [117]
Search group algorithm [118]

[110] Kaveh et al. Box girder Cuckoo search [119]
Harmony search [120]
Particle swarm optimization [121]

[104] Lv et al. Plate girder Matlab fmincon function
Twin girders

[97] Briseghella et al. Box girder Ansys optimization tool
Topological optimization [98]–[102]

[13] Musa and Diaz Box girder Excel solver

Nowadays, the value of structures is not assessed only by their economy, but also
by their social and environmental impact. Optimization studies carried out in the cur-
rent literature focus on the optimization of a single objective and fundamentally on
the reduction of weight and therefore on an economic improvement. The social and
environmental pillars of sustainability are not studied from the point of view of op-
timization. Furthermore, in studies carried out on concrete bridges, multi-objective
optimization has been applied [122], [123], while in SCCBs, these methods are not
applied, nor are those of accelerated optimization [124]. Therefore, it can be said
that there is a lack of knowledge in the field of multi-criteria optimization and the
use of methodologies that allow the optimization of the structure from a social and
environmental point of view for the SCCBs. Moreover, the approach given to the
optimization of structures consists mainly of the application of different algorithms to
the problems. There are no studies related to the knowledge of the algorithms in
a more scientific way in the field of bridge optimization. Arnold [125] exposes this
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phenomenon in his work and indicates that the trend to be taken is towards the un-
derstanding of the behavior of algorithms. The application of optimization algorithms
in the field of structures and especially in the field of SCCBs is quite recent and there-
fore further studies of different optimization methods is needed to have the possibility
to compare. However, the study of how these techniques work and why some are
better than others for this field of study should not be left aside.

2.3.4 Construction process

The construction process of the SCCB is unique because the construction has a dif-
ferentiation between the steel and concrete parts of the structure. The most common
process is to build and place the steel part first using support systems to reduce the
deflections of the steel part of the bridge. Then, the concrete slab formwork and the
reinforcement are placed and the concrete is poured. This unique procedure gives
the structure a characteristic behavior and researchers are currently developing and
studying different construction processes for SCCBs [126]–[131]. The construction
processes can be summarized as continuous precast girder bridges, incremental
launching, span-by-span construction and cantilever construction [132].

Here, we review the effects of the construction processes. Marí, Mirambell and
Estrada studied the effects of construction process and slab prestressing on the ser-
viceability behavior using a finite element model of one dimension [132], with a 14%
increase in negative bending zones and a reduction of 50% in positive bending re-
ported. Jung, Kim and Sim [133] studied the behavior of a prestressed concrete box
girder bridge with corrugated steel webs built by incremental launching. The results
of the study conclude that this type of structural cross section allows the maximum
span-to-depth ratio due to the self-weight reduction of the structure to be extended
compared with a prestressed concrete box girder. Other authors have studied the
precast construction of bridges in Europe and America [134]. They state that the
construction of prefabricated bridges accelerates the construction of bridges and that
the possibility of doing so with steel-concrete bridges is a good solution for the use
of the material. This also occurs because such precast structures usually work in
an isostatic way and therefore the upper concrete slab is compressed and the steel
section is pulled. Another possibility is the use of removable prefabricated elements,
allowing for connection of the precast concrete slabs with the steel beams, as in the
study by Valipour et al. [135]. This study reveals that good results are obtained in the
construction process in terms of ductility and strength using prefabricated elements.

In this field, the literature on SCCBs is scarce, so a detailed study is needed of their
structural behavior with different construction methods. In addition, there are new
methods being used to build mixed bridges that differ from the traditional ones. In
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addition, it is important to consider the new construction procedures as a further
boundary condition for the models and work to find optimal solutions.

2.3.5 Maintenance and repair

To reach a sustainable design, a complete study of all the stages of the service life of
the bridge is required. Service life is a concept that allows designers and engineers
to define the period of time that is considered to use the infrastructure. However,
maintenance activities are necessary to keep the structure in a state that allows it
to be used in a safe way. These activities can be preventive when related with the
design of infrastructures preventing the possibility of damage [136] or corrective, with
a repair approach. Focusing on the search in SCCBs, two main trends have been
established: repair and renovation [137], [138] and the evaluation of bridge conditions
[139]–[141].

In contrast, Albrecht and Lenwari propose three methods of fatigue damage repair
[137]. The method that gives better results is to tension a steel wire in the low part
of the steel section to compress the section, so that when loads are applied the sec-
tion will always be compressed. This gives a fatigue resistance higher than the one
imposed by the AASTHO. Sugimoto, Yoshida and Tanigaka [138] proposed the re-
inforcement of steel railway bridges, placing a concrete slab on the top of the steel
beams, transforming the steel bridge in a composite one, taking advantage of the
composite action between steel and concrete and improving the behavior against
deflections. Alternatively, authors have proposed different methods to assess bridge
conditions, giving stakeholders infrastructure management data to make decisions
regarding the maintenance of the bridge. Gheitasi and Harris [139], using a finite
element model, assess the composite action that is still working in bridges with dam-
age in the concrete slabs, this method allows us to evaluate if the structure needs
maintenance or, on the contrary, it still has sufficient resistance capacity. In other
studies, authors proposed a decision making method according to the data obtained
by instrumented bridges that have corrosion damage on the steel beams [140]. The
numerical model proposed by the author is capable to assess the maintenance needs
of the bridge by the infrastructure manager. Moreover, Matos et al. [141] proposed a
model that is capable of introducing data from the bridge condition and uses Bayesian
inference [142], [143] to reduce the uncertainty of model parameters, allowing stake-
holders to take better decisions according to maintenance.
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2.3.6 Life cycle assessment

Bridges have an associated impact during all phases of their life cycle. Therefore,
researchers have searched for different ways to evaluate the impact of bridges in an
objective way. Widman [144] applied the Environmental Priority Strategies in Product
Design (EPS), the Environmental Theme Method (ETM) and the Ecoscarcity Method
(EM) to assess the life cycle of a box girder SCCB. This evaluation resulted in a low
maintenance impact of the bridge. The author states that the maintenance phase is
very small and, therefore, it is not necessary to protect the structures, it is better to
repair it. ISO 14040:2006 [145] defines the methodology to assess the life cycle of
bridges for the first time, in this way a framework is generated that allows researchers
to have a guide for their studies. Gervasio and da Silva compared concrete with
composite bridge solutions, analyzing the cost and the environmental impact, with
the results showing that SCCBs have a higher cost but a low environmental impact
[11]. Du and Karoumi [146] state that SCCBs are better from the point of view of
the environmental impact due to the possibility of materializing slender sections and
the higher capability to recycle of structural steel. The steel recycling rate for struc-
tural steel is 98% [147], which allows us to reduce the impact of SCCBs. In other
research, author have done a literary review of the LCA methods and software and
implemented new LCA methods to reach the impact evaluations of SCCB railway
bridges [148] and short span bridges [149].

Table 2.3: Summary of SCCB LCA publications

Ref. Year Author Structural Type Pillar Method Approach

[144] 1998 Widman Box girder Environmental
EPS

Cradle to graveETM
EM

[11] 2008 Gervasio and da Silva Twin girders
Environmental

Lippiatt [150] Cradle to grave
Economic

[146] 2013 Du and Karoumi Twin girders Environmental ReCiPe [151] Cradle to grave
[95] 2017 Batikha et al. Twin girders Economic Cost of materials and maintenance Cradle to grave

[149] 2020 Milani and Kripka Plate girder Environmental ReCiPe [151] Cradle to gate

As seen in Table 2.3, the studies carried out for the LCA of SCCBs have been focused
on the economic and environmental pillars. For SCCBs, there exists a knowledge gap
in the approach social of LCA. Furthermore, researchers have considered a cradle
to grave approach. It is necessary to carry out studies with a broader vision to take
into account the entire life cycle process, including the phases of dismantling and
demolition of the structure and the recycling and reuse of materials.
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2.3.7 Multi-Criteria Decision-Making

Decision making is a process that allows solutions to be obtained that satisfy different
objectives. This process can be carried out in many ways. Hwang and Yoon [152]
classified the multi-criteria decision making processes into multi-attribute decision
making (MADM), and multi-objective decision making. MADMs are used to decide
on a discrete number of solutions that is what usually occurs in bridge design and
more specifically at SCCBs.

Penadés-Plà et al. carried out a review of MCDM methods applied to bridges [23],
but in SCCBs, these methods have not been extensively applied. Only two publi-
cations have been found related with that field. The first applies SCORE [153] and
PANTURA [154] methods to choose the best alternative between concrete and com-
posite I girder bridges [155]. In the other study, the method AHP [156] and Vikor
[157] have been applied to short span bridges. In this second study, the results ob-
tained gives as the most suitable solutions for the two methods the steel-concrete
composite one. Furthermore, authors state that the application of MCDM in short
span bridges can provide good design for small-span bridges to fulfil the needs of
connection between areas in undeveloped countries [149].

According to the small number of well-founded investigations related to this research
topic; it can be said that there is a lack of knowledge in this field. This must be
completed with future studies that take into account the MCDM methodologies in
each of the phases of the SCCB design cycle, introducing uncertainty and robustness
in the decision-making process [158], [159].

2.4 Discussion

Most of the studies focus on preliminary design and structure behavior as these rep-
resent 66% of the total with 55 articles. Inside this category, three main trends have
been found: bridge design (18%), behavior (42%) and calculation methods (13%).
The bridge design studies have been focused on the definition of the transverse
section of bridges and the connection between the steel and concrete parts of the
structures. In the behavior approach, a lack of research is observed in accidental
actions, like fire and blasting loads, compared with other topics considered by au-
thors, such as seism and fatigue behavior. In addition, other works have focused
on the new calculation method considering sensitivity or reliability and carrying out
statistical methods applied to the design of the structure.

Optimization research, which means the 13% of the total with 11 articles, has fo-
cused on cost optimization. There is a lack of knowledge in applying multi-criteria
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optimizations methods and considering other criteria for the optimization, such as
environmental or social. Furthermore, the optimization is only focused on the appli-
cation of different algorithms to take results; however, authors are not considering
the study of the behavior of algorithms in structural optimization. There is a lack
of knowledge according to the search for causes and reasons why some heuristics
work better than others. Related with that field, authors do not emphasize in the
construction process, which is decisive in many cases. This may be due to the lack
of study of the behavior of SCCBs in the construction processes with only a 5% of
papers of the total considered.

Once the final design is defined, the structure has a defined service life. To reach
this, it is important to define the maintenance periods and, if it were necessary, the
repairs. There are few studies focused on the repair and maintenance of SCCBs, rep-
resenting the 6% of the total. Work in this field focuses on evaluating the condition of
bridges and defining the repairs to be carried out. There is a lack of knowledge in the
preventive maintenance of this type of structures. There are currently techniques for
evaluating the impact of these actions and methods for making decisions regarding
maintenance, repair and demolition. These methods are LCA and MCDM.

LCA and MCDM studies, which represents the 8% and 2% respectively, are closely
related in the studies included in this review. These methods are used to choose the
best alternative, comparing between concrete, steel, composite and timber bridges.
These methods always give SCCBs as a good alternative compared with concrete.
Because of this, it is important not only to apply these methods for the type of bridge
selection, but also to use these methods to assess the needs of the bridges built, in
maintenance, repair or demolition according to different criteria.

To identify the relation between the research fields, the sustainable design phases
and the structural type of the cross sections of bridges, a statistical analysis has been
carried out. The method used to study the relation between that variables have been
the simple correspondence analysis [160]. To use this method, every publication has
to be classified according to the research field, the design phase and the structural
type considered in every study. Once the classification is completed, the frequency of
each combination of variables has to be obtained. The method uses the Chi-square
distance to give as a result the relation between every categories of each variable.
IBM SPSS Statistics for Windows, Version 25.0 [22] software have been used to carry
out the statistical analysis. For clearer results, the variables have been compared in
pairs, obtaining the results shown in Figures 2.5 and 2.6.

In Figure 2.5, the results of the simple correspondence analysis are shown for the
Research field and Sustainable design stage variables. The graphic shows a clear
relationship between Design and Behavior with Planning and Design stages, and

25



Chapter 2. Steel-concrete composite bridges: design, life cycle assessment, maintenance, and

decision-making

Figure 2.5: Simple correspondence analysis for research field and sustainable design stages.

between Construction and Optimization. These results are logical because the Plan-
ning and Design stage is related with obtaining a first design that has to be improved
at later stages. To reach that first design, it is necessary to consider the structural
behavior of the SCCB. To obtain the final design to build the bridge, the construction
process of the bridge and the optimization procedure must be considered. These
concepts are in line with the graph, but it is observed that in the studies considered
in this review the construction design is focused more on optimization than on the
construction process. This result shows a lack of consideration of the construction
process in the optimization. Furthermore, it can be seen that the LCA and MCDM are
quite linked to the Demolition and Recycle design stage. This is because a large part
of these studies focus on making decisions between maintenance and repair of SC-
CBs or demolition. This is an important topic that should be developed in subsequent
studies due to the lack of studies related to these topics for SCCBs.

Figure 2.6 shows the relation between the research fields and the structural type of
the transverse section. Articles that consider the box girder sections for the studies
are 28. Otherwise, plate girder and twin girder sections are considered in 23 and 64
of the articles in this paper. There is a relation between the box girder cross section
and the Optimization field, while the twin girders section is more related with the
LCA. The distance between the box girder section with other research field shows a
need to carry out studies related with the construction process, the maintenance and
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Figure 2.6: Simple correspondence analysis for research field and structural type

repair and the study of the design and behavior considering MCDM and LCA. The
results of the analysis between the field of knowledge and the structural type of the
cross section, in general do not show a clear relation between them. This is a sign
of a lack of studies in most fields, which is an opportunity for researchers to develop
these topics in greater depth.

The statistical analysis accomplished in this review shows the relation between the
fields of knowledge with every design phase. Based on the results obtained, it can be
state that construction should be considered in optimization as a determining factor.
The LCA and MCDM method are related with maintenance and repair and demolition
phases due to the need of decision making and assessment methods to ease the
decision of stakeholders in infrastructure management. The studies have not a clear
relation between the research fields and the cross-section type of SCCBs. A larger
study should be done to complete the lack of knowledge identified in this work.

2.5 Conclusions

This review has focused on a design approach for steel-concrete composite bridges.
Four design stages have been considered and the research fields related with that
phases have been reviewed. These research fields are Design and Behavior (66%),
Optimization (13%), Construction Process (5%), Maintenance and Repair (6%), Life
Cycle Assessment (5%) and Multi-Criteria Decision-Making (2%). To improve the lit-
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erature review, a statistical analysis has been carried out to look for relations between
fields of study, design stages and bridge cross-section types.

Most of the studies focus on preliminary design and structure behavior. The bridge
design studies have been focused on the definition of the transverse section of
bridges and the connection between the steel and concrete parts of the structures.
It is observed a lack of research in the behavior of SCCBs summited to acciden-
tal actions. Furthermore, the trend of new calculation methods is related with adding
sensitivity or reliability to the analysis. Optimization research has focused on cost op-
timization. There is lack of knowledge in applying multi-criteria optimizations methods
and considering other criteria for the optimization, such as environmental or social.
This is far from the current trend of searching for sustainable solutions considering all
the pillars of sustainability. The studies focused on the repair and maintenance eval-
uate the condition of bridges and define the repairs to be carried out. There is a lack
of knowledge in the preventive maintenance of this type of structures and LCA and
MCDM methods for maintenance management. These methods are applied only to
compare between types of bridge. It is observed that the results of these methods
give SCCBs as a good alternative from an environmental point of view.

The SCCB literature review carried out shows the gaps in the fields related with
bridge design. This work can be a useful tool for researcher to focus their analysis in
those gaps. In this way, research related to the design of steel-concrete composite
bridges will be able to focus on those topics that have not yet been dealt with in depth.
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Abstract

Achieving sustainability is currently one of the main objectives, so a consensus be-
tween different environmental, social, and economic aspects is necessary. The con-
struction sector is one of the main sectors responsible for environmental impacts
worldwide. This paper proposes the life cycle assessment (LCA) and comparison
of four bridge deck alternatives for different span lengths to determine which ones
are the most sustainable solutions. The ReCiPe method is used to conduct the life
cycle analysis, by means of which the impact value is obtained for every alternative
and span length. The Ecoinvent 3.3 database has been used. The life cycle has
been divided into four phases: manufacturing, construction, use and maintenance,
and end of life. The associated uncertainties are considered, and the results are
shown in both midpoint and endpoint approaches. The results of our research show
that for span lengths less than 17 m, the best alternative is the prestressed concrete
solid slab. For span lengths between 17 and 25 m, since the box-girder solution is
not used, then the prestressed concrete lightened slab is the best alternative. For
span lengths between 25 and 40 m, the best solution depends on the percentage of
recycled structural steel. If this percentage is greater than 90%, then the best alter-
native is the composite box-girder bridge deck. However, if the percentage is lower,
the cleanest alternative is the prestressed concrete box-girder deck. Therefore, the
results show the importance of recycling and reusing structural steel in bridge deck
designs.

Keywords: life cycle assessment; sustainability; structures; ReCiPe; environment;
bridges

3.1 Introduction

Over the last few years, awareness of the consequences of the consumption of raw
materials and the emissions of various processes has risen. Society has realized
that if we continue with the uncontrolled consumption of resources, our current ac-
tions will compromise the future of the planet. For this reason, the sustainable de-
velopment concept appeared, a term that was introduced in 1987 by the Brundtland
Commission, defining it as “development that meets the needs of the present without
compromising the ability of future generations to meet their own needs” [1]. Since
then, a significant effort has been invested to achieve cleaner production processes
for known materials and the development of new materials with the same character-
istics but fewer contaminants.
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Construction is one of the most carbon-intensive industries [2], [3], and in terms of
CO2 emissions, its cement requirements alone produce 5% of the total emissions
[161]. Furthermore, construction contributes to environmental pollution [4]. This
negative contribution is mainly produced by cement and concrete production [161],
[162]. The impact of these activities is produced by their energy consumption, and in
the construction sector, concrete is one of the most important materials used in build-
ings. Due to this circumstance, concrete consumption, and therefore the associated
pollution, will increase over the next years [163]. Because of this, human activities
must be optimized in terms of material consumption and emissions to ensure more
sustainable processes that will not compromise the environment as much.

Due to the importance of achieving this objective, many researchers have been
studying current construction processes in order to improve and optimize their sus-
tainability. Researchers have studied the emissions produced by concrete projects
[164]–[166] or construction procedures [167]–[169]. Other studies have focused on
the optimization of concrete structures such as prestressed bridges [170], [171] and
earth-retaining walls [172]–[175]. Other researchers have studied CO2 fixation by
carbonation processes and their influence on the emissions [176], [177] and the con-
crete recycling ratio [148], [178], [179].

However, to study the environmental impact, life cycle analysis (LCA) is performed.
This is a powerful and versatile method capable of evaluating any type of construction
or process [180] or the materials used therein [181]–[183], from concrete and earth
retaining walls [184], [185] to optimal bridge decks [159], house structures [186], and
facades [187], [188]. However, some reviews state that there is a lack of LCA in
steel–concrete composite bridges [189].

The aim of this study is to carry out analyses of the life cycle of four bridges: pre-
stressed concrete solid slab (PCSS), prestressed concrete lightened slab (PCLS),
prestressed concrete box-girder (PCBG), and steel–concrete composite box-girder
(CBG). The aim is to determine which of them, depending on the span length, has
the lowest environmental impact [148], [178], [190]. Additionally, a sensitivity analysis
is carried out to evaluate the impact of the life cycle of a composite bridge depending
on its steel recycling ratio in order to study the feasibility of this structural type com-
pared to concrete alternatives. This allows us to provide a broader approach and to
make a comparison of the amount of recycled steel that has been used in the man-
ufacturing processes. Steel manufacturing comprises two main production methods:
basic oxygen furnace (BOF) and electric arc furnace (EAF). In both processes, iron is
combined with steel scrap, which is the product that is obtained by the steel recycling
process. In EAF production, the percentage of steel scrap (recycled steel) used is
between 90 and 100%, while in the BOF production process, the percentage of steel
scrap (recycled steel) is reduced to 10–30% [147]. The rates of BOF and EAF and, in
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consequence, the rate of recycled steel used for steelmaking depend largely on the
technological development of countries. Therefore, this makes this study useful not
only for countries with a high technological development in the steelmaking process
but also for other countries where steel contains a smaller amount of recycled raw
material.

3.2 Materials and Methods

The life cycle analysis (LCA) method consists of obtaining the environmental impact
of an activity, evaluating the potential contribution of the processes that make up that
product. These processes together encompass all the activities required to complete
the main product. The procedures begin by obtaining the raw material and end with
the waste management. The LCA of the bridge decks has been carried out accord-
ing to ISO 14040:2006 [145]. It comprises four phases to obtain the assessment:
definition of goal and scope, inventory analysis, impact assessment, and interpreta-
tion of the results. The life cycle impact assessment (LCIA) that has been chosen
for this research is the ReCiPe 2008 method [151]. The database used to obtain the
environmental impact information is Ecoinvent v3.3.

3.2.1 Goal and Scope Definition

The main goal of this research is to compare, from the environmental point of view,
four different bridge deck types. The structural system selected is a continuous
beam, and the analyses have been carried out on six span lengths: 15, 20, 25, 30,
35, and 40 m. The purpose of this research is to compare different deck types with
different span lengths to evaluate the differences between them, and the LCA method
makes it possible to obtain a quantitative assessment of the different solutions pro-
posed. Pang et al. [191] affirm that there are three main reasons for performing an
LCA analysis on bridges: comparison of different alternatives, comparison of differ-
ent bridge component alternatives, and comparison of new material with conventional
material. To compare different bridge alternatives, these have to be similar in terms
of load capacities, deck dimensions, and span if all the alternatives are in the same
geographical area. If they are not, then it is necessary to take into account other
conditions such as the geotechnical information of the ground, the seismicity of the
building location, and the corrosion capacity of the environment, among others. In
this study, the same location has been considered for all the alternatives.
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Bridge Deck Type Selection

Bridges are very important infrastructures that allow society to avoid obstacles and
enable users to close the gap between two points. Furthermore, these structures
have a direct impact on society in terms of their economic, social, and environmen-
tal role. For beam bridges, the most important part is the deck, because it has to
resist the stresses produced by the traffic loads. The deck type depends on dif-
ferent conditionings: functional, constructive, economic, and environmental, among
others. In this paper, four deck types have been compared: prestressed concrete
solid slab (PCSS), prestressed concrete lightened slab (PCLS), prestressed con-
crete box-girder (PCBG), and composite box-girder (CBG). Figure 3.1 presents a
sketch of each of the alternatives.

PCSS PCLS

PCBG

CBG

Figure 3.1: Bridge deck cross sections

The use of these decks depends on the span length. On the one hand, continuous
slab depth decks are used for lengths between 5 and 50 m, but the usual range of
application is from 15 to 35 m. However, the box-girder bridges have lengths between
25 and 125 m, and the most used range is 35–80 m. In box-girder bridges, two
main materials are used to form the resistant section of the bridge: concrete, which
can be reinforced or prestressed, and steel. The choice of material may depend on
various factors, including the environment to which the structure is exposed, the road
alignment, and geotechnical constraints, among others.
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Slab bridges are usually used for shorter distances, because for greater lengths, the
amounts of concrete, passive reinforcing steel (PRS), and active reinforcing steel
(ARS) increase to a large extent, which translates into a higher cost, which is even
more acute in PCSS. On the other hand, box-girder bridges can be used for greater
lengths due to the ease of increasing their bridge deck depth, taking advantage of the
mechanical arm increase and making the most of the mechanical characteristics of
the materials. This study focuses on the comparison of these four bridge deck types
with span lengths from 15 to 40 m, assessing them from the environmental point of
view. This selection of alternatives comprises two slab and two box-girder decks,
providing a wide range of choice and an estimation of the environmental cost of the
structures for structural engineers and designers, depending on the dimensions of
the structure.

Phases of the Analysis

Four stages are defined to assess the bridge’s life cycle. To carry out the complete
analysis of the structure, the processes that encompass all the activities should be
considered, starting with the design, going through the manufacturing and the con-
struction of the structure, and finally, the demolition and collection of the used ma-
terials. To consider all these activities, the life cycle of the structure is divided into
four phases: manufacturing, construction, use and maintenance, and end of life, de-
pending on the moment at which every activity is carried out. In this paper we have
focused on PCSS, PCLS, PCBG, and CBG deck types, but it could be used for all
bridge deck types by making minor modifications.

Manufacturing The manufacturing stage includes all activities needed to produce
the materials that will be used for the resistant section, since the raw materials are
extracted to be ready for use in the construction phase. The most widely used mate-
rials in bridge structures are concrete and steel. Databases usually refer to products
that allow for the modeling of these materials, but it is possible to create a new prod-
uct with real manufacturing processes and distances or in the case of concrete, with
different dosages. The general processes to obtain one cubic meter of concrete and
one kilogram of steel are shown in Figure 3.2.

The concrete matrix is created from different components that allow the quantity of
each product that forms the concrete matrix to be controlled. Furthermore, it per-
mits the control of the distance that every raw material is transported to the concrete
manufacturing factory, allowing the study to be more specific, depending on the loca-
tion where the concrete is created. Once all the materials of the concrete matrix are
brought together, to simulate the concrete mixing, another process is created, includ-
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ing the concrete matrix along with the energy, the mixing factory, or other activities
that are needed to create one cubic meter of the final concrete product.

To produce a cubic meter of concrete, the mass of the final product and the wastes
produced in the process must be considered. Marceau et al. [192] concluded that
for the production of one cubic meter of concrete, the solid waste is 24.5 kg and
the wastewater is 0.0348 m3, the solid waste being small amounts of concrete. The
real amount of each material that forms the concrete matrix can be calculated in
Equations (3.1–(3.5) [159].

Total solid = Cement+Gravel + Sand (3.1)

Primary cement = Cement+

(
Cement

Totalsolid

)
·Waste concrete (3.2)

Primary gravel = Gravel +

(
Gravel

Totalsolid

)
·Waste concrete (3.3)

Primary sand = Sand+

(
Sand

Totalsolid

)
·Waste concrete (3.4)

Primary water =Water +Wastewater (3.5)

Steel manufacturing comprises two main production methods: basic oxygen furnace
(BOF) and electric arc furnace (EAF). In both processes, iron is combined with steel
scrap, which is the product that is obtained by the steel recycling process. In EAF
production, the percentage of steel scrap (recycled steel) used is between 90 and
100%, while in the BOF production process, the percentage of steel scrap (recycled
steel) is reduced to 10–30% [147]. The use of steel scrap has a direct relation with
the environmental impact, and for this reason, the EAF and BOF have very different
impacts. The ratio of steel scrap used for BOF and EAF production is known, so by
controlling the EAF and BOF ratio to produce a kilogram of steel, the quantity of re-
cycled steel for each steel product can be controlled in the manufacturing processes.
The BOF and EAF waste production is considered in the product manufacturing part
of the database.

The steel recycling ratio is especially important for steel and steel–concrete compos-
ite bridges. Because of the great amounts of steel used in their construction, slight
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Figure 3.2: Concrete and steel manufacturing processes

variations in the steel recycling ratio produce great differences in the environmental
impact of the bridge, as it is produced in general with a great amount of steel. From
this point of view, it is important to distinguish between structural and rebar steel,
as the USA steel recycling ratio for rebar steel is 71%, while the structural steel re-
cycling ratio is 98% [193]. The difference between the recycling ratios of these two
types of steel is occasioned by the difficulty of separating rebar steel from the con-
crete, because of which the recycling ratio for rebar steel is lower. Furthermore, the
separation between the EAF and BOF steel production processes allows the specific
steel recycling ratio of the study area to be introduced [184].
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Construction The construction phase includes all the activities that are necessary
to build the bridge, considering the machinery, depending on the chosen construction
method and the location of the structure. The construction method must be defined at
this stage. At this stage, the formwork, scaffolding, vibrators, and concrete pouring
must be considered. In addition, for steel and steel–concrete composite bridges,
the processes of welding the different parts that have not been considered in the
manufacturing phase must be introduced. The construction method is introduced in
the LCA model through the diesel consumption of the machinery obtained from the
manufacturer’s data, the literature, or other databases.

Use and Maintenance The use and maintenance stage contains all the activities
that will be needed throughout the life of the structure. These activities can be clas-
sified into three different categories: maintenance activities, CO2 fixation, and traffic
detour. To carry out the different maintenance activities, the partial or total closure
of the bridge may be necessary. If closure of the bridge is necessary, it implies that
the vehicles will need to take an alternative route to reach their destination. This
increase of the distance is translated into an increment of the environmental impact.
The traffic detour impact is affected by different factors such as the location of the
structure, the ratio of heavy vehicles, and the detour distance.

Authors have two different options to handle the maintenance stage. On the one
hand, researchers assess the maintenance operations through a literature review to
consider these operations [148], [178], [194]. On the other hand, different possible
scenarios have been considered to analyze which one has the lowest environmental
impact [191]. If the closure of the bridge is necessary for the maintenance activities,
and their duration is defined, then this activity will be considered by introducing the
processes that simulate those activities. These processes depend on the material
used in the design of the bridge. The maintenance of steel bridges depends on the
type of steel; if the steel is resistant to corrosion, this operation will be irrelevant, but
if the steel needs to be treated for corrosion, this treatment will be repeated along
the bridge life. For concrete bridges, these operations include the demolition of the
external layer and their replacement with a reparation mortar. All these operations
are considered by introducing the materials necessary for the repair, the diesel con-
sumption of the machinery, and the emissions produced by the traffic detour if it
occurs.

On the other hand, studies have concluded that concrete can fix CO2 through carbon-
ation [164], [176], [195]. Carbonation is one of the principal damage mechanisms of
reinforced concrete bridges, and it is determined by three main factors [177]: the w/b
ratio, the concentration of CO2 in the surrounding air, the specific climate conditions,
and the depth of embedded steel. Carbonation damages the concrete structure, but
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if we focus on the environmental impact, carbonation reduces the structure’s envi-
ronmental impact. Lagerblad et al. [196] studied the CO2 fixed by carbonation during
the life-cycle based on Fick’s first law. Equation 3.6 allows the fixed CO2 to be calcu-
lated, in which k is the carbonation coefficient, t is the service life, A is the exposed
area of concrete, r is the ratio of CaO that is going to become carbonated, C is the
content of cement in one cubic meter of concrete, k is the content of clinker in the
cement, L is the content of CaO in the clinker, and ϵ is the molecular weight ratio
of CO2/CaO. This equation is simplified grouping the constants. Lagerblad et al.
[196] consider that r takes the value of 0.75 and L of 0.65 and assume that ϵ takes
the value of 0.7857. Clearing out the equation with these constants, the expression
changes to (3.7). García-Segura et al. [177] state that concrete structures can fix
CO2 along their service life.

CO2fixed(kg) =
k
(

mm√
year

)
·
√
t(year)

1000
·A(m2)·r·C

(
kg

m3

)
·k(%)·L(%)·ϵ (3.6)

CO2fixed (kg) = 0.383 ·
k
(

mm√
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)
·
√
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1000
·A(m2) ·C

(
kg

m3

)
· k(%) (3.7)

End of Life The end of life stage includes all the activities related to the dismantling
of the structure, i.e., with the processes that occur when the life of the structure
has ended. The principal processes involved in that stage of the bridge life are the
machinery used to carry out the demolition of the structure and the transport and the
treatment of the generated waste products.

Consequently, it is necessary to define the distances between the bridge construction
location and the landfill or the waste treatment plants. There are three main possi-
bilities for the waste materials: to reuse them, to recycle them, or to dispose of them
in a landfill, depending on their characteristics. In this case study, and generally in
bridges, the most commonly used materials are concrete and steel, and depending
on the needs of the society of the region studied, there will be several possibilities for
the waste treatment.

The steel recycling ratio has been studied by many researchers. Hammervold et
al. [194] considered a 100% steel recycling ratio, while other authors such as Du
et al. [178] and Hettinguer et al. [179] considered a lower value. Penadés-Plà et
al. [19] considered the Spanish average steel recycling ratio of 71%. Other authors
use the average value of larger areas of study. As you can see above, the steel
recycling ratio depends on the location of the construction, and it is possible to refine
the assessment of the steel used in the LCA model by controlling the ratio.
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The concrete case is different from steel, because it can be recycled and reused
with ease, especially in bridges. The Spanish concrete regulations recommend us-
ing at most 20% of concrete recycled coarse aggregates to produce new concrete
[197]. Different concrete recycling ratios are considered [148], [178], [179]. As de-
scribed before, the carbonation processes of concrete are carried out. If all the con-
crete is crushed [177], the surface available to perform the carbonation processes
increases; therefore, the carbonation of the all concrete volume can be produced.
Lagerblad [196] states the coefficient for concrete carbonation depending on con-
crete’s strength. In this study, two types of concrete have been used, with 30 and
40 MPa strengths. The carbonation coefficient (k) is 1.5 mm/year0.5, 4 mm/year0.5, 6
mm/year0.5, 0.75 mm/year0.5, and 1 mm/year0.5, depending on whether the concrete
is exposed, sheltered, indoors, wet, or buried, for 30 MPa concrete strength, and 1
mm/year0.5, 2.5 mm/year0.5, 3.5 mm/year0.5, 0.5 mm/year0.5, and 0.75 mm/year0.5 for
40 MPa concrete strength. The crushed concrete aggregate is assumed to have a
10 mm diameter.

Functional Unit

The study has been realized considering a square meter as the functional unit to
enable the comparison of the different bridges. It is necessary to carry out a compar-
ison between bridges to consider other factors such as the geotechnical parameters
of the soil, seismic conditions, or contour restraints. If the location of the studied
bridges is different, then the impact can differ depending on the processes used in
the manufacturing of the materials. Another possibility is to consider the linear meter
as the functional unit, as Penadés-Plà et al. [19] did. To compare the linear meter
with the square meter, the values of the parameters must be divided by the deck
width.

3.2.2 Inventory Analysis

The inventory analysis consists of the data collection of all the materials and energy
consumption that are needed to develop all the processes involved in the bridge life
cycle; in this case, all the values are referred to a square meter of bridge. These
processes produce an output in terms of emissions to the environment, and the con-
sideration of the output of every process together gives the environmental impact
associated with the product that is being assessed.
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Software

The model has been developed with the OpenLCA software from GreenDelta. This
is an open source program that allows LCA applications to be performed, especially
for the scientific community [198]. Furthermore, this software allows the introduction
of the uncertainty attached to the processes previously imported from a database.

The database used to import the processes was Ecoinvent [199] in its version 3.3.
This database was selected for this study because of its scientific reliability and con-
stant updating [200].

3.2.3 Uncertainty

Uncertainty appears in LCA analyses due to the differences between the processes
that are implemented in the database and the real ones [201]. These differences
are caused by different factors, but the most important are the geographical location
[202] and the time period over which the data were collected. For instance, it is
not the same producing a kilogram of steel in Germany or in Spain, because the
technology of the production process or the distances between the quarry and the
facilities differ, and the manufacturing processes of steel in Spain in 2000 or in 2017
cannot be considered the same. These variations of location and time will introduce
uncertainty in the processes.

To accommodate this uncertainty, the pedigree matrix [203] has been used. This
method allows uncertainty factors to be introduced by means of five indicators: re-
liability, completeness, temporal correlation, geographical correlation, and further
technological correlation. In addition, a basic uncertainty factor will be considered
depending on the nature of the processes [199].

3.2.4 Bridge Deck Design

In Table 3.1, the quantity of materials per square meter has been provided. The
amounts of materials for the PCSS and PCLS bridge decks have been obtained from
the study by Yepes et al. [204]. The materials used to define the PCBG and CBG
deck alternatives have been obtained from the instruction “Obras de paso de nueva
construcción” of the Spanish Ministry of Public Works [205].

Table 3.2 shows the dosage of 30 and 40 MPa strength concrete used for this study.
The PCSS, PCLS, and PCBG decks have been designed with HP-40 prestressed
concrete, while for the CBG bridge deck, HA-30 reinforced concrete has been con-
sidered. The biggest difference in the use of materials is that in the CBG alternative,
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Table 3.1: Amount of materials per square meter of deck.

Unit 15 20 25 30 35 40

PCSS
Concrete HP-40 m³ 0.473 0.561 0.649 0.738 0.826 0.914
Reinforcement Steel kg 51.728 61.380 71.033 80.686 90.339 99.992
Prestressed Reinforcement Steel kg 9.223 17.133 25.043 32.953 40.863 48.773
Formwork m² 1.500 1.500 1.500 1.500 1.500 1.500
PCLS
Concrete HP-40 m³ 0.509 0.557 0.605 0.654 0.702 0.750
Reinforcement Steel kg 52.165 57.109 62.052 66.996 71.939 76.883
Prestressed Reinforcement Steel kg 5.069 10.914 16.759 22.604 28.449 34.294
Formwork m² 1.700 1.700 1.700 1.700 1.700 1.700
PCBG
Concrete HP-40 m³ 0.441 0.461 0.482 0.503 0.523 0.544
Reinforcement Steel kg 28.790 32.601 36.632 40.884 45.356 50.048
Prestressed Reinforcement Steel kg 3.042 4.917 6.792 8.667 10.542 12.417
Formwork m² 1.900 1.900 1.900 1.900 1.900 1.900
CBG
Concrete HA-30 m³ 0.220 0.230 0.240 0.250 0.261 0.272
Reinforcement Steel kg 20.976 22.250 23.603 25.037 26.559 28.173
Structural Steel kg 59.400 63.700 68.175 81.000 80.600 88.375
Shear Connector Steel kg 0.310 0.346 0.381 0.423 0.437 0.494
Formwork m² 1.000 1.000 1.000 1.000 1.000 1.000

a steel–concrete composite structure, the structural steel beam that supports the
slab, is added.

Table 3.2: Concrete dosage considered for bridge decks

Material Unit C30/37 C40/50

Gravel kg 1110.00 829.00
Sand kg 730.00 1102.00
Cement kg 300.00 320.00
Water kg 201.00 160.00
Superplasticizer kg 0.27 5.00
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Life Cycle Model Description

The life cycle model comprises four stages, the processes considered for the model-
ing of the decks have been obtained mainly from the Ecoinvent database, and those
that were not included there have been generated, such as some types of machin-
ery that have been modeled by their diesel consumption considering their operation
times.

Manufacturing In the production phase, all the processes to produce materials
have been included. In addition, the transport of the materials to the construction
site has been considered, where the distances between the facilities and the bridge
construction location are 30 km for concrete and 150 km for both the structural and
rebar steels. Two types of concrete have been introduced depending on the deck
type. Concrete of 30 MPa strength has been introduced directly from the Ecoinvent
database, while the 40 MPa strength concrete process has been created as shown
in Figure 3.2.

Steel production has been considered, creating two different steel production pro-
cesses to consider the differences between the steel recycling ratio of the rebar and
the structural steels. Ecoinvent’s BOF process considers 19% of steel scrap (recy-
cled steel), while the EAF process considers 100% of steel scrap. If the steel scrap
amount is known, it is possible to control the total steel recycling ratio for the re-
bar and the structural steels. For the former, a 71% steel recycling ratio has been
considered, while for the structural steel, many different recycling ratios have been
determined to study their different impacts. Those ratios are 71% (CBG_71), 90%
(CBG_90), and 98% (CBG_98). This varying of the steel recycling ratios has been
considered in order to reflect differences between countries reusing materials, be-
cause in developing countries, policies that consider reuse are lower [206].

Furthermore, the CBG bridge deck needs to take into account the welding of the
steel sheets in the manufacturing process, so this has been introduced in the CBG
model considering the Ecoinvent database process.

Construction Construction was considered to be in situ. The activities considered
in this stage are those related with concrete pouring and vibrating, the assembly
of the different steel parts of the CBG, and the handling of the active reinforce-
ment steel. A concreting with no special concrete curing requirements has been
considered. The machinery is modeled introducing the diesel consumption data,
which have been obtained from the Bedec database [207]. The diesel consumption
is 123.42 MJ of energy per cubic meter of concrete and 10.2 MJ per kg of active
reinforcement steel. The CO2 emissions are 32.24 kg and 2.62 kg, respectively.
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Use and Maintenance For the use and maintenance phase, it has been consid-
ered that traffic detours are not necessary to carry out the maintenance operations
and that only the concrete needs to be maintained because the steel that has been
considered is a weathering steel that does not need maintenance. The machinery
for the maintenance was estimated considering two different periods of maintenance.
The machinery consumption contemplated in this phase of the life cycle is 584.28 MJ,
and the CO2 emissions are 46.58 kg of CO2 per square meter repaired.

End of Life At this stage, the activities related to the demolition and transport to
landfill have been introduced in the LCA model. On the one hand, for the concrete
elements, the machinery needed for their demolition has been considered. In addi-
tion, to be able to consider that all the concrete is carbonated, the crushing process
has been included. On the other hand, only the transportation to the landfill has
been reflected in the model because the recycling process of the steel has already
been taken into account in the manufacturing process. For the CBG bridge deck
alternative, steel sheet cutting with a flame cutting process has been considered.

3.2.5 Impact Assessment

The impact assessment consists of converting the impact of the processes consid-
ered to model the life cycle with an indicator that allows researchers, scientists, or
readers to interpret them more easily. These indicators differ depending on the life
cycle impact assessment (LCIA) method selected. The results of each process are
shown as a list of emissions and consumed resources, and the LCIA methods dis-
tribute the emissions and consumed resources in a shorter list of indicators.

The LCIA method chosen is the ReCiPe method. There are two main impact as-
sessment approaches, the midpoint and the endpoint, and the LCIA method trans-
forms the emissions and the resource consumptions into an indicator, depending
on the approach. For example, CML is an LCIA method that gives a midpoint ap-
proach, a list of indicators that shows a complete environmental profile that is diffi-
cult to interpret [208]. On the other hand, the eco-indicator LCIA method gives an
endpoint approach. This approach takes the midpoint approach indicators and con-
centrates them in three damage categories: resources measured in dollars, human
health measured in disability-adjusted life years, and ecosystem impact measured in
species·year. This endpoint approach allows researchers to analyze the impact of
the activity more easily. The ReCiPe LCIA method provides both the endpoint and
the midpoint approaches and has therefore been chosen for the LCIA.

The ReCiPe midpoint approach provides a list of 18 environmental indicators. These
indicators are useful if the study carried out is focused on one specific impact, such
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as the global warming potential or the metal depletion. The categories supplied by
this method are: agricultural land occupation (ALO), global warming potential (GWP),
fossil depletion (FD), freshwater ecotoxicity (FEPT), freshwater eutrophication (FEP),
human toxicity (HTP), ionizing radiation (IRP), marine ecotoxicity (MEPT), marine eu-
trophication (MEP), metal depletion (MD), natural land transformation (NLT), ozone
depletion (OD), particulate matter formation (PMF), photochemical oxidant formation
(POFP), terrestrial acidification (TAP), terrestrial ecotoxicity (TEPT), urban land oc-
cupation (ULO), and water depletion (WD). In this study, the recycling and further
use of the materials has been considered and therefore the hierarchist (H) version is
chosen [209]. To assess the total impact, the normalization of the endpoint impact
is needed in order to add the three categories. The normalization set used in this
research is the Europe ReCiPe H/A person/year.

3.2.6 Interpretation

The interpretation phase is the last stage of the LCA, in which the impact results
of the analyzed activity are evaluated and compared with other activities or studies.
The interpretation depends on the objective of the study. The study can be focused
on the contribution of each life cycle phase to the final impact, on the impact of every
material compared with the others, or on the comparison between the emissions or
the resource consumption between alternatives, among others. In this study, the
comparison between the different bridge deck alternatives is carried out.

3.3 Life Cycle Assessment

In this research, the uncertainty has been considered using a Monte Carlo simulation
with 1000 iterations to obtain the probabilistic uncertainty values of the LCA results.
In the comparison graphs, only the mean values are shown to make them easier to
interpret. The life cycle flowchart for bridge decks is summarized in Figure 3.3.

3.3.1 Midpoint Approach

The midpoint impact categories, as stated before, provide more reliable results due
to the wide range of indicators provided. The data obtained allows the study to
be focused on particular impacts, such as the global warming potential, evaluating
the CO2 emissions of the activity. The full results of a 35 m span length bridge
are provided in Table 3.3, including the coefficients of variation of all indicators. A
global warming potential (GWP) study has been done to compare the emissions of
each alternative, as shown in Figure 3.4. The difference between the slab decks
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Figure 3.3: Life cycle of the bridge decks

and the box-girder can be clearly distinguished. For span lengths in which the box-
girder decks are built, these are the best alternatives from the GWP point of view.
The PCLS emits lower quantities of CO2 than the PCSS for span lengths of less
than 17 m. In larger span length ranges, we can state that the CBG bridges are
better than the PCBG, even though we consider a 71% steel recycling ratio for the
structural steel (CBG_71). If we focus on the contribution of every life cycle stage to
the GWP indicator, it is observed that in the end of life phase, all the alternatives have
a negative impact on the GWP, due to the CO2 fixation caused by the carbonation of
concrete.

Figure 3.5 shows that the concrete alternatives (PCSS, PCLS, and PCBG) have a
greater negative impact in the end of life phase, because the high amounts of con-
crete that they contain allow a great CO2 fixation by the carbonation processes. The
PCBG alternative has a greater impact on the GWP during the use and maintenance
phase because it has a larger surface to repair.

45



Chapter 3. Comparative life cycle analysis of concrete and composite bridges varying steel recycling ratio

Table 3.3: Midpoint approach impacts of 35 m long bridges. Mean and coefficient of variation (cv).

PCSS PCLS PCBG CBG_98

Acronym Unit Mean cv (%) Mean cv (%) Mean cv (%) Mean cv (%)

ALO m2*a 31.35 59.31% 31.67 63.27% 29.09 71.18% 22.583 55.17%
GWP kg CO2 eq 636.76 45.72% 556.19 44.00% 392.14 40.28% 322.776 35.37%
FD kg oil eq 148.79 26.09% 129.51 24.25% 95.97 20.58% 83.494 26.26%
FEPT kg 1,4-DB eq 7.53 41.45% 6.01 40.54% 3.76 39.15% 6.285 43.37%
FEP kg P eq 0.16 40.84% 0.13 39.08% 0.08 37.43% 0.100 37.76%
HTP kg 1,4-DB eq 276.00 44.56% 218.63 44.03% 135.98 42.66% 253.954 47.37%
IRP kg U235 eq 56.39 44.71% 49.34 44.12% 35.33 40.17% 25.067 31.96%
MEPT kg 1,4-DB eq 7.41 40.88% 5.92 39.98% 3.71 38.60% 6.140 43.13%
MEP kg N eq 0.14 23.59% 0.13 21.70% 0.10 17.53% 0.079 24.98%
MD kg Fe eq 98.26 50.78% 78.60 47.04% 46.66 44.54% 42.531 35.66%
NLT m2 0.13 25.82% 0.12 24.29% 0.09 20.45% 0.094 39.37%
ODP kg CFC-11 eq 0.00 19.32% 0.00 17.68% 0.00 14.55% 0.000 21.31%
PMFP kg PM10 eq 1.74 27.47% 1.51 24.64% 1.10 20.31% 0.948 26.43%
POFP kg NMVOC 3.63 19.95% 3.29 17.87% 2.63 14.03% 1.761 18.52%
TAP kg SO2 eq 2.90 26.53% 2.57 24.56% 1.95 20.35% 1.504 24.73%
TETP kg 1,4-DB eq 0.08 33.95% 0.07 33.60% 0.04 32.70% 0.122 48.71%
ULO m2*a 7.18 34.96% 6.10 34.11% 4.19 33.32% 4.070 32.24%
WD m3 1540.31 45.90% 1294.58 45.72% 851.61 44.25% 852.564 38.79%

A comparison between all the alternatives for every midpoint approach impact is pre-
sented in Figure 3.6 for a 35 m span length bridge, providing their impact relative to
the biggest one. The alternative that has the most impact in all the categories is the
PCSS, excluding the TEP where the highest impact alternative is the CBG_98. In
MD, the CBG_71 reaches the impact of the PCLS alternative because of the large
amount of steel that is needed for this bridge deck section. However, the CBG_91
alternative, from which a high impact was expected, does not produce such a high
one because of the steel recycling, which allows for the generation of a new product
with the same characteristics using low amounts of raw material. These steel recy-
cling processes, excluding the raw material reduction, produce a greater impact on
the HTP indicator.

Furthermore, the contribution of every life cycle stage on every indicator is illustrated
in Figures 3.7–3.10. In all the alternatives, the life cycle phase that has the highest
impact in most categories is manufacturing, but there are many exceptions. For the
ALO indicator, the phase with the greatest impact is the construction for all the alter-
natives. The contribution of the use and maintenance stage has a greater impact in
the MEP, NLT, ODP, PMFP, POFP, and TAP indicators, especially in the PCBG bridge
deck alternative, due to having the highest surface exposed to the environmental
conditions, which requires more maintenance. In Figures 3.7–3.10, the results of the
midpoint approach for PCSS, PCLS, PCBG, and CBG_98 are shown.
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Figure 3.4: Development of GWP according to the span length

3.3.2 Endpoint Approach

To obtain the assessment results in a way that is easier to interpret to compare be-
tween different categories, the endpoint approach is provided. The three categories
can be significant for choosing the best alternative depending on the situation. If the
study area is close to a protected area, then the environmental impact of the struc-
ture will be the most important one for the study. If it is built close to a population
center, the human health impact will be the most significant, and if the location lacks
resources, then the resources category will be the most important one. In this study,
a normalization set has been applied to these three impact category results to obtain
a global impact. This is useful when there is no preference between the environmen-
tal criteria, and equal importance is considered for all the criteria. In this way, a total
impact score for the bridge deck alternatives was obtained. The normalization and
weighting set adopted was the Europe ReCiPe H/A person/year.

A comparison between the PCSS, PCLS, PCBG, and CBG bridge deck solutions was
done. For the CBG alternative, three structural steel recycling ratios were considered,
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Figure 3.5: Contribution of deck alternatives to life cycle stages for 35 m span length
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Figure 3.6: Midpoint impacts for 35 m span length
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Figure 3.7: Impact categories for 35 m span length PCSS solution

ALO GWP FD FEPT FEP HTP IRP MEPT MEP MD NLT ODP PMFP POFP TAP TETP ULO WD
20%

0%

20%

40%

60%

80%

100%

Manufacturing Construction Use End of life

Figure 3.8: Impact categories for 35 m span length PCLS solution

71% (CBG_71), 90% (CBG_90), and 98% (CBG_98), to analyze the differences
between the composite box-girder bridge decks and the concrete alternatives.

First, the ecosystems impact is provided in Figure 3.11 in species.year. The best
solution is the PCBG, the PCSS is competitive for span lengths shorter than 18 me-
ters, and for longer ones, the PCLS is even better than the CBG alternative. If the
steel recycling ratio of the structural steel is 98%, then the PCLS is better until 30
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Figure 3.9: Impact categories for 35 m span length PCBG solution
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Figure 3.10: Impact categories for 35 m span length CBG_98 solution

m, but if we reduce that ratio, then the PCLS is the best solution until 35 m. These
results are because the PCSS needs great amounts of steel when the span length
increases. If we compare the PCLS and the CBG, the high increment of materials
for the PCLS is compensated by the high environmental cost of the steel production
when the recycling ratio of this process is lower.

50



3.3 Life Cycle Assessment

15 20 25 30 35 40
Span length (m)

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Ec
os

ys
te

m
s 

Im
pa

ct
 (s

pe
ci

es
.y

r)

10-6

PCSS PCLS PCBG CBG_71 CBG_90 CBG_98

Figure 3.11: Development of the ecosystems impact with regard to span length

The damage caused to human health is measured in disability-adjusted life years,
and it is shown in Figure 3.12. PCSS is a competitive alternative up to 17 m, then
the PCLS is the best alternative from that span length up to 25 m. The PCBG alter-
native is competitive with CBG when the structural steel recycling ratio is 71%. If the
recycling ratio is greater, then the CBG alternative is the best solution.

The damage caused by the resources, measured in dollars, is shown in Figure 3.13.
The PCSS remains the best solution for span lengths shorter than 17 m, and from
there up to 25 m, the best solutions are the box-girders. From the resources point of
view, the best solution is the CBG if the structural steel recycling ratio is 90%; if it is
not, then the PCBG is a competitive solution compared with the CBG.

Normalization has been done to compare the total impact results. These results are
provided in Figure 3.14 measured in points. The best solutions are usually the CBG
with structural steel recycling ratios higher than 90% in the ranges where they are
usually built. If the ratio is lower, then the PCBG is the best solution. The PCSS
and PCLS solutions are much worse in terms of the environmental impact due to the
great increase of materials as the span length increases. These alternatives must
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Figure 3.12: Development of the human health impact with regard to span length

be used for lengths less than 25 m from the environmental point of view, and, tuning
even more, the PCSS alternative is the most sustainable one for span lengths below
17 m.

A comparison between the contributions of the life cycle stages considered in this
study is shown in Figure 3.15 for the three main environmental categories. For all
categories, the manufacturing process is the most important one and the construction
the least. It is observed that in the end of life stage, the concrete carbonation of the
crushed concrete gives a negative value, which becomes even lower for the CBG_98
alternative, due to the smaller amounts of concrete used for this bridge deck section.
The use and maintenance stage is more important for the PCBG alternative. The
contribution of the construction phase is almost null for the composite alternative in
all categories.

Finally, a comparison between the impacts of every material on the total impact is
provided in Figure 3.16. Steel and concrete are the most important materials in terms
of the environmental impact. In the PCBG, the diesel consumption also becomes
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Figure 3.13: Development of the resources impact with regard to span length

important. It is observed that the contribution of steel takes a value of 50.44% for the
composite alternative.

3.4 Conclusions

One of the most important sectors that influences climate change is construction.
For this reason, environmental assessments are required to analyze the impact of
construction and to select options that do not affect the future of the planet. In this
study, an LCA has been done for four different bridge deck sections, with an endpoint
and midpoint approach.

A comparison between the impacts of the alternatives has been carried out. For span
lengths less than 25 m, the box-girder solutions have not generally been used, but
they are the best alternatives in terms of the environmental impact for these lengths.
The PCSS and PCLS alternatives are competitive from 15 to 25 m, and between 15
and 17 m, the best solution is the PCSS. The difference between these slab bridge
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Figure 3.14: Development of the total impact with regard to span length

Manufacturing Construction Use End of life
20

0

20

40

60

80

100

Im
po

rta
nc

e 
of

 L
C

A 
ph

as
es

 to
 E

nd
po

in
t i

m
pa

ct
 c

at
eg

or
ie

s 
(%

)

84

12 13

-9

80

11

18

-9

71

11

27

-9

88

4

12

-3

Ecosystems

Manufacturing Construction Use End of life
20

0

20

40

60

80

100

81

9

15

-5

76

8

20

-5

68

6

32

-5

82

1

19

-2

Human Health

Manufacturing Construction Use End of life
20

0

20

40

60

80

100

67

11

17

5

62

9

23

5

53

6

36

5

72

2

23

4

Resources

PCSS PCLS PCBG CBG_98

Figure 3.15: Importance of the LCA stages according to the endpoint impact categories

54



3.4 Conclusions

Concrete

22.9%Steel
42.7%

Diesel

26.9%

Transport
5.6%

Other1.9%

PCSS

Concrete

24.0%Steel

38.6%

Diesel

30.9%

Transport
5.4%

Other1.2%

PCLS

Concrete

24.5%

Steel

29.6%

Diesel

39.2%

Transport
5.0%

Other1.7%

PCBG

Concrete

21.6%
Steel

50.4%

Diesel

21.2%

Transport
5.3%

Other1.5%

CBG_98

Figure 3.16: Importance of materials to total impact

deck alternatives is caused by the increment of materials for the PCSS alternative,
mainly steel.

The steel recycling ratio is determinant in comparing steel and composite bridge
decks. The structural recycling ratio is usually greater than the rebar one, and this
difference is reflected in the impact values. If we consider the same steel recycling
ratio for structural and rebar steel, the box-girder concrete alternatives are better than
the composite ones. If we consider a 98% steel recycling ratio, this being the value
in the USA, then the best alternative is the CBG.

The consideration of CO2 fixation by carbonation processes has an important impact
on the evaluation and comparison of the alternatives, because the composite struc-
tures use a smaller amount of concrete, which is reflected as lower CO2 emissions in
the environmental impact assessment. For concrete structures, the carbonation pro-
cesses, even though they are negative for the steel reinforcements, make concrete
solutions more competitive than the steel structures.

The most important LCA phase for all the alternatives is the manufacturing, and
for the concrete alternatives (PCSS, PCLS, and PCBG), the use and maintenance
phase has a great impact due to the greater surface of concrete that has to be main-
tained. In this study, the steel does not require maintenance because it is a weather-
ing steel. In further studies, the steel maintenance can be considered. The concrete
maintenance activities are an important factor in the impact; if the durability of the
material increases, then this maintenance will be reduced.

Every graph and result shown in this paper will help engineers, designers, and con-
structors to select cleaner alternatives, and if they consider their own countries’ ma-
terial production processes, they can choose the best environmental solution. For
countries where there is less steel recycling, concrete structures will be the best so-
lution, but in countries with cleaner steel production processes, composite and steel
solutions will be the best ones from the environmental point of view.
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Abstract

The definition of sustainability includes three fundamental pillars: economic, environ-
mental, and social. Studies of the economic impact on civil engineering infrastruc-
tures have been focused on cost reduction. It is not necessarily in line with economic
sustainability due to the lack of other economic factors. Moreover, the social pillar
assessment has been weakly developed compared to the economic and the environ-
mental ones. It is essential to focus on the social pillar and evaluate clear indicators
that allow researchers to compare alternatives. Furthermore, bridge life cycle as-
sessment studies have been focused on concrete options. This has resulted in a lack
of analysis of the impact of composite bridge alternatives. This study is conducted
in two stages. The first part of the study makes a cradle-to-grave social and environ-
mental sustainability evaluation with the SOCA v2 and ecoinvent v3.7.1 databases.
This assessment is carried out on four concrete and composite bridge alternatives
with span lengths between 15 and 40 m. The social impact weighting method and
recipe have been used to obtain the social and environmental indicators. The second
part of the study compares the results obtained from the social and environmental
assessment of the concrete and the composite alternatives varying the steel recy-
cling rate. The bridge alternatives are prestressed concrete solid slab, prestressed
concrete lightened slab, prestressed concrete box-girder, and steel–concrete com-
posite box-girder. The results show that composite options are the best for envi-
ronmental impact, but the concrete box girder solutions are better for social impact.
Furthermore, an increase in the steel recycling rate increases the social impact and
decreases the environmental one.

Keywords: sustainability; bridges; structures; LCA; recipe; soca

4.1 Introduction

Sustainability has grown since its definition by the World Commission on Environ-
ment and Development in 1987 [1]. This worry has been transmitted to developers
in some social sectors. However, Sustainable Development Goals were not defined
until 2015 as a response to the social demand related to environmental impact [210].

Three main pillars define this sustainability concept. The most studied is the eco-
nomic one. This pillar is related to the cost associated with one process, product,
or service and has been the traditional choice criterion for deciding between alterna-
tives. The second is the environmental pillar, related to the impact on the environ-
ment. Finally, the social pillar completes the sustainability profile. This part assesses
how the society stakeholders are affected by one process, product, or service.
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As stated before, the most studied sustainability criterion has been the economic im-
pact. Researchers have been carrying out different studies to reduce the economic
impact of their projects. The primary method of reducing the economic impact car-
ried out by researchers has been through optimization techniques. This method has
been applied extensively in construction sector elements, such as reinforced con-
crete bridge piers [211], concrete road vaults [212], buttressed walls [172], [173] or
facades [213], among others. Other authors have applied different techniques to
reach sustainable solutions considering other criteria besides the cost [94], [122].
To evaluate the environmental impact of construction processes, researchers have
been studying the life cycle assessment (LCA) of different construction activities [19],
[148], [169], [178] due to its contribution to the total carbon emissions to the environ-
ment [2], [3]. This industry’s high impact is due to its cement requirements, which
represent 5% of the global CO2 emissions contribution [161]. As a consequence,
construction substantially impacts environmental pollution [4]. Moreover, if the fo-
cus is on the sustainability assessment of the social pillar, there is a lack of study in
comparison with the economic or the environmental pillars [214], [215].

Researchers state that the lack of knowledge in the social assessment pillar is due
to the ambiguity in the definition of the sustainability criteria related to social im-
pact [214], [216]. Nevertheless, the United Nations have set aside 6 of its 17 sus-
tainable development goals for this part of sustainability. This marks a clear trend for
public agencies to consider the social pillar an essential part of the overall sustain-
ability analysis. As a response to this demand, there is a recent trend in studying
the social assessment to give it the same importance as the study of economic and
environmental sustainability [159], [215].

Construction projects’ social sustainability assessment has an additional complica-
tion due to its stakeholder’s situation [215]. Regarding social demands for the con-
struction sector, this must satisfy not only the clients or the employees, but also the
industry and community users’ needs [217]. Furthermore, the final product obtained
must consider the impact on future and present generations, considering the health
and safety of the implied agents in the process [218].

One of the most representative infrastructures of the constructions sector is bridges.
Because of this, researchers have been developing different studies to assess its
sustainability [219]. As stated in Martínez-Muñoz et al. [189] the central part of sus-
tainability studies is focused on concrete bridges. This study also advises a lack of
study in environmental and social LCA of composite bridges. A recent environmen-
tal LCA study focused the scope on the comparison of concrete and steel–concrete
composite bridge (SCCB) alternatives [220]. This study states that the percentage
of recycled steel is crucial for the feasibility of SCCBs from an environmental point
of view and presents SCCBs as an eco-friendly alternative for bridge design. De-
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spite this, no LCA has yet been carried out that considers the social impact of SCCB.
Some researchers have carried out different studies assessing different criteria for
social assessment, such as noise, dust, and time [221]–[223].

This study aims to assess the social feasibility of SCCBs compared with concrete
bridges, using the LCA methodology. To reach this goal, four alternatives of bridges
have been proposed for the comparison: prestressed concrete solid slab (PCSS),
prestressed concrete lightened slab (PCLS), prestressed concrete box-girder (PCBG),
and steel–concrete composite box-girder (CBG). A parametric study considered span
lengths between 15 and 40 m to allow a broader comparison. Both environmental
and social LCAs have been modeled for each span length to compare the results
between both evaluations. Different steel recycling rates have been proposed for
CBG alternatives to assess the relevance of the steel recycling process in SCCBs
social LCA. The steel recycling rate is contingent upon the process of manufactur-
ing the steel. The two main processes available to produce steel are basic oxygen
furnace (BOF) and electric arc furnace (EAF). This process combines the iron with
steel scrap obtained from the steel recycling process. The amount of steel scrap is
between 90% and 100% for EAF and 10% and 30% for BOF. Modifying the BOF and
EAF for steel production can model different manufacturing processes and, conse-
quently, different steel recycling amounts. This difference in manufacturing processes
is directly linked to the differences between countries’ steel production and techno-
logical development. This justifies the usefulness of this study to compare the impact
of different bridge alternatives and their feasibility considering several steel manu-
facturing processes. With all of the above, the objective of this study is to compare
different concrete and composite bridge solutions from the environmental and social
impact points of view and, in addition, how the steel recycling ratio variation modifies
the contribution of composite bridges to these impacts.

4.2 Materials and Methods

The life cycle analysis (LCA) methodology consists of modeling a process, product,
or service, and assessing the contribution of every activity to the environment or
the society, among others. All activities must be included since the raw material
is extracted until the product finishes its service life to model the principal activity.
This study conducted two assessments: the environmental life cycle assessment (E-
LCA) and the social life cycle assessment (S-LCA). The methodology applied in this
study follows the ISO 14040:2006 [145] that describes the process to carry out the
environmental analysis. It comprises four stages to obtain the assessment: goal and
scope definition, inventory analysis, impact assessment, and interpretation of the
results. For assessing the social impact, the most common guide is followed [224].
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The life cycle impact assessment (LCIA) chosen for this research is the recipe 2008
method [151] for E-LCA and the social impacts weighting method for S-LCA. The
selected databases for modeling are ecoinvent v3.7.1 and SOCA v2 to E-LCA and
S-LCA, respectively.

The LCA methodology allows converting the data introduced from the life cycle inven-
tory to impact and damage categories that help understand how the process affects
specific indicators. The life cycle impact assessment (LCIA) methods are responsible
for carrying out this transformation. With the information extracted from the models,
the actors involved in the decision process between solutions can compare them to
make their decision.

4.2.1 Goal and Scope Definition

This research poses two primary goals. The first one compares different bridge deck
alternatives from environmental and social points of view. The second is related
to the feasibility of these various alternatives between the environment and the so-
cial perspective. All bridge decks were considered as continuous beams so that the
span length represents the highest of every span. This research considered six span
lengths between 15 m and 40 m, increasing five meters from the initial to the final
distance. The LCA method allows quantifying the impact of every deck solution ob-
jectively and comparing them. As stated by the bridges of Pang et al. [191], the LCA
analysis is helpful for three main purposes: comparison between designs options,
comparison between different bridge materials alternatives, and assessment of new
materials compared with traditional ones. All the other options must be similar in
load, width, and location to compare accurately. This last criterion is crucial because
if not met, the geotechnical or seismic conditions could change and, therefore, the
design requirements of the bridge. The same location is considered for every bridge
deck alternative to compare bridge decks.

Bridge Deck Type Definition

The structural beam system is one of the most common bridge types due to its sim-
plicity and economic feasibility. The most crucial part of this type of bridge is the
deck since it is responsible for resisting all the stresses associated with the act-
ing loads. The choice of the deck type depends on different factors, such as con-
structability, aesthetics, or economy, among others. The bridge decks chosen are
the same as those in the work of Martínez-Muñoz et al. [220]: prestressed concrete
solid slab (PCSS), prestressed concrete lightened slab (PCLS), prestressed concrete
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box-girder (PCBG), and composite box-girder (CBG). In Figure 4.1, the standard ge-
ometry of these deck types is represented.

Its economic feasibility has defined traditional bridge deck type choosing. Consider-
ing this, PCSS and PCLS slabs have been applied in ranges between 15 m and 35
m. On the other hand, the box-girder bridges’ scope of use is defined between 25
m and 125 m, its regular use being from 35 m to 80 m. Concrete and steel are the
most common materials used for box-girder alternatives. In this case, PCBG is made
from prestressed concrete, such as slab-type alternatives. The primary material is
concrete and steel to solve concrete tensile strength problems in these alternatives.

PCSS PCLS

PCBG

CBG

Figure 4.1: Bridge deck cross sections.

On the contrary, the CBG alternative is mainly made of a rolled steel beam to which
a concrete slab is added on the upper part. This last alternative design concept is
to locate every material in the zones that are more resistant, i.e., concrete in the
areas with compressed fibers and steel in the areas with tensioned ones. As de-
scribed before, two slab and two box-girder decks were selected. This study aims to
provide several alternatives for environmental and social impact assessment to give
designers information on which option is better in terms of the span length.
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Phases of the Analysis

To consider a complete bridge LCA, it is defined in four stages. These stages con-
sider all the activities necessary from the starting design to the final structure service
life. These processes consider the manufacturing of the materials, the bridge con-
struction, its maintenance, and its demolition and transportation of the materials to
landfills. To view all this information, the structure of the LCA model considers the
following stages: manufacturing, construction, use and maintenance, and end of life.
This LCA follows the format of other bridge LCA studies [159], [220].

Manufacturing This stage includes all processes from the raw material extraction
to the final building materials on the construction site. The most used materials in
the construction industry are concrete and steel. Because of this, databases include
processes that allow the introduction of these materials to the model. In this study,
those processes are defined, adding the raw materials and determining the dosage.
This process is described in Figure 4.2.

Total solid = Cement+Gravel + Sand (per m3 of concrete) (4.1)

Total cement = Cement+

(
Cement

Totalsolid

)
·Waste concrete (per m3 of concrete) (4.2)

Primary gravel = Gravel +

(
Gravel

Totalsolid

)
·Waste concrete (per m3 of concrete) (4.3)

Primary sand = Sand+

(
Sand

Totalsolid

)
·Waste concrete (per m3 of concrete) (4.4)

Primary water = Water +Wastewater (per m3 of concrete) (4.5)

The concrete matrix is composed mainly of cement, sand, gravel, and water. In
addition, additives and additions can be added to the concrete matrix to give the
concrete specific properties. Furthermore, the distance between the extraction site of
every material must be added to the model. The final process includes the concrete
matrix and the energy, the mixing factory, and the activities necessary to make one
cubic meter of the modeled concrete to simulate the concrete mixing.
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Figure 4.2: Concrete and steel manufacturing processes.

Marceau et al. [192] state that for one cubic meter of concrete production, there is
24.5 kg of material waste, and the wastewater is 0.0348 m3. To consider both the
final concrete and the debris associated with the production, the exact amount of
each material is defined by Equations (4.2)–(4.5) [220].

The two main processes available to produce steel are basic oxygen furnace (BOF)
and electric arc furnace (EAF). This process combines the iron with steel scrap ob-
tained from the steel recycling process. The amount of steel scrap is between 90%
and 100% for EAF and 10% and 30% for BOF [147]. The use of recycled steel di-
rectly affects the sustainability of the alternative, and as a consequence, the EAF
and BOF impacts give different results. Modifying the BOF and EAF for steel pro-
duction can model other manufacturing processes and, consequently, different steel
recycling amounts. This difference in manufacturing processes is directly linked to
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the differences between countries’ steel production and technological development.
The BOF and EAF waste are considered in the database processes.

The percentage of recycled steel is essential for SCCBs due to the significant steel
needed for its construction. Slight variations in the recycling rate give substantial
differences in the SCCBs impact. From this point of view, it is essential to distinguish
between hot rolled and rebar steel. Consequently, a percentage of 71% is considered
for reinforcement bars, and 98% for hot rolled steel [193]. This difference rate is due
to the difficulty separating reinforcement bars steel from the concrete. Consequently,
the steel scrap obtained from the reinforcement bars steel is lower.

Construction The construction stage considers all the necessary processes to
make the deck, considering the auxiliary elements and machinery, which depend
on the bridge placement and type of construction. These processes are included in
this LCA phase. In the SCCB case, welding processes are introduced. The con-
struction method is modeled by considering the diesel consumption of the machinery
obtained from the manufacturers’ data, the literature, or other databases.

Use and Maintenance This stage encompasses all the processes necessary through-
out the bridge life. These processes can be classified into three different categories:
maintenance activities, CO2 fixation, and traffic detour. To make this maintenance
work, sometimes bridge closure is needed. In this case, it implies a traffic detour,
and as a consequence, an increase in the distance required to reach the same loca-
tion generates a higher impact. This impact is affected by different factors, such as
the location of the traffic type.

The maintenance phase can be managed in two different ways. Researchers have
been reviewing different maintenance possibilities [148], [178], [194]. In other stud-
ies, different scenarios have been assessed to evaluate its sustainability [191]. If
the bridge’s closure is needed, the closure time is defined. Processes required for
maintenance depend on the bridge material. For example, if the steel selected is not
corrosion-resistant in steel bridges, the maintenance operations must be repeated
many times. These activities include removing the external layer and replacing them
with a reparation mortar for concrete bridges. In this study, maintenance operations,
including auxiliary machinery, materials, diesel consumption, and emissions due to
traffic detours, are considered.

Some studies state that concrete fixes CO2 during its carbonation process [164],
[176], [195]. Carbonation significantly affects reinforced concrete bridges, and three
main factors determine it [177]: thew/b ratio, the concentration of CO2 in the environ-
ment, the climate conditions, and the steel depth. Carbonation produces passivation
loss of reinforcement bars, reducing the impact on the environment. Lagerblad et

65



Chapter 4. Social impact assessment comparison of composite and concrete bridge alternatives

al. [196] researched CO2 fixed by carbonation during the life cycle based on Fick’s
first law. Equation (4.6) allows to calculate the fixed CO2 in which k is the carbona-
tion coefficient, t is the service life, A is the exposed area of concrete, r is the ratio
of CaO that is going to become carbonated, C is the content of cement in one cubic
meter of concrete, k is the content of clinker in the cement, L is the content of CaO
in the clinker, and ϵ is the molecular weight ratio of CO2/CaO. This equation is
simplified by grouping the constants. Lagerblad et al. [196] consider that r takes the
value of 0.75, L of 0.65 and assume that ϵ takes the value of 0.7857. Clearing out the
equation with these constants, the expression changes to (4.7). Concrete structures
can fix CO2 along its service life [177].

CO2fixed (kg) =
k
(

mm√
year

)
·
√

t(year)

1000
·A(m2) · r ·C

(
kg

m3

)
·k(%) ·L(%) · ϵ (per m2) (4.6)

CO2fixed (kg) = 0.383 ·
k
(

mm√
year

)
·
√

t(year)

1000
·A(m2) · C

(
kg

m3

)
· k(%) (per m2) (4.7)

End of Life This phase includes all processes needed to dismantle the bridge. The
principal method is demolishing the system, landfill transport, and waste treatment.
Consequently, these processes are modeled by transportation distances and specific
machinery. There are three main possibilities for materials waste: reuse, recycle or
transportation to a landfill. In this research, concrete and steel are the most com-
monly used materials. This waste processing will depend on the needs of society in
every case.

Many researchers have studied the steel recycling ratio. Hammervold et al. [194]
considered a 100% steel recycling ratio, and other authors such as Du et al. [178] and
Hettinguer et al. [179] considered a lower value. Penadés-Plà et al. [19] considered
the Spanish average steel recycling ratio, 71%. The steel recycling ratio is associated
with the construction location. It is possible to adjust the evaluation of the steel by
controlling the recycling ratio in the LCA model.

The Spanish concrete regulation allows using 20% of concrete recycled coarse ag-
gregates in new concretes [197]. Different concrete recycling rates are defined [148],
[178], [179]. As described before, the concrete carbonation process always occurs.
If all the concrete is crushed, the full concrete carbonation is produced due to the
accessible surface increase [177]. The concrete carbonation coefficient depends on
the concrete’s strength [196]. In this study, two concrete strengths, 30 and 40 MPa,
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are considered. The carbonation coefficients (k) are 1.5 mm/year0.5, 4 mm/year0.5,
6 mm/year0.5, 0.75 mm/year0.5 and 1 mm/year0.5, depending on whether the con-
crete is exposed, sheltered, indoors, wet or buried for 30 MPa concrete strength, and
1 mm/year0.5, 2.5 mm/ year0.5, 3.5 mm/year0.5, 0.5 mm/year0.5 and 0.75 mm/year0.5

for 40 MPa concrete strength. The crushed concrete maximum aggregate size is
assumed to have a 10 mm diameter.

Functional Unit

This research considered a square meter as the functional unit to compare bridge
deck alternatives. Different bridge locations can produce other impacts due to the
placement conditions regarding geotechnical properties and seismicity. Moreover,
the material’s production processes can be different.

4.2.2 Inventory Analysis

The inventory analysis consists of collecting data on materials and energy consump-
tion to model the processes of the bridge life cycle. This study case takes the square
meter of the bridge as a functional unit. These processes produce output in terms of
emissions to the environment. The consideration of the production of every process
gives the environmental impact associated with the product that is being assessed.

Software

The software used to model the bridge’s life cycle is OpenLCA from GreenDelta. This
is an open-source program that allows LCA models to create and run. This was used
extensively by the researcher’s community [198].

This study has used two databases. The first one is the ecoinvent database [199],
version 3.7.1. This database is constantly updating and very reliable from the sci-
entific point of view [200]. Data given by the ecoinvent database are related to the
environmental impact of processes. On the other hand, the social database used
for this research is SOCA, version 2. This database takes data from PSILCA social
database and assigns the processes in the ecoinvent 3.7.1 database their corre-
sponding social impact. This allows researchers to use the ecoinvent database to
model the social implications of their studies efficiently. The life cycle impact assess-
ment (LCIA) chosen for this research is the recipe 2008 method [151] for E-LCA and
the social impacts weighting method for S-LCA. The selected databases for mod-
eling are ecoinvent v3.7.1 and SOCA v2 to E-LCA and S-LCA, respectively. Table
4.1 encompasses all the information about the databases, the LCIA methods used,
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the impact categories, and the damage categories. The impact categories give a
more detailed view of various specific indicators. However, the damage categories
group these indicators and show a more widespread impact. In this study, damage
categories are used to compare the different alternatives to conclude. In Table 4.1,
the environmental assessment gives a result of three damage categories related to
the impact on the ecosystems, the human health, and resources, while the social
evaluation shows the implications associated with four different stakeholders: local
community, society, value chain actors, and workers.

Table 4.1: Environmental and social life cycle assessment categories.

Database LCIA Impact Categories Damage Categories

ecoinvent
ReCiPe
(E-LCIA)

Agricultural land occupation
Climate Change
Fossil depletion
Freshwater ecotoxicity
Freshwater eutrophication
Human toxicity
Ionizing radiation
Marine eutrophication
Metal depletion
Natural land transformation
Ozone depletion
Particulate matter formation
Photochemical oxidant formation
Terrestrial acidification
Terrestrial ecotoxicity
Urban land occupation
Water depletion

Ecosystems
Human Health
Resources

SOCA
Social Impacts Weighting Method
(S-LCIA)

Access to material resources
Environmental Footprints
GHG Footprints
Local employment
Migration
Respect of indigenous rights
Safe and healthy living conditions
Contribution to economic development
Health and Safety
Corruption
Fair competition
Promoting social resposibility
Child labor
Discrimination
Fair Salary
Forced labour
Freedom of association and collective bargaining
Health and Safety
Social benefits, legal issues
Working time

Local Community
Society
Value Chain Actors
Workers
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4.2.3 Bridge Deck Design

Table 4.2 shows the amounts of materials determined by each deck type and span
length. These amounts were taken from the study of Martínez-Muñoz et al. [220]. In
this study, the quantity of materials was obtained from Yepes et al. [204] for PCSS
and PCLS alternatives. In contrast, for PCBG and CBG ones, the data were taken by
applying the criteria defined in the Spanish Ministry of Public Works named “Obras
de paso de nueva construcción” [205].

Table 4.3 shows the material amount for the concretes considered in this research.
The concrete decks are designed with C40/50 prestressed concrete, while for the
CBG bridge deck, C30/37 reinforced concrete is considered. The most significant is
the CBG alternative, where the structural steel beam that supports the slab is added.

Table 4.2: Amount of materials per square meter of deck.

Unit 15 20 25 30 35 40

PCSS
Concrete C40/50 m³ 0.473 0.561 0.649 0.738 0.826 0.914
Reinforcement Steel kg 51.728 61.380 71.033 80.686 90.339 99.992
Prestressed Reinforcement Steel kg 9.223 17.133 25.043 32.953 40.863 48.773
Formwork m² 1.500 1.500 1.500 1.500 1.500 1.500
PCLS
Concrete C40/50 m³ 0.509 0.557 0.605 0.654 0.702 0.750
Reinforcement Steel kg 52.165 57.109 62.052 66.996 71.939 76.883
Prestressed Reinforcement Steel kg 5.069 10.914 16.759 22.604 28.449 34.294
Formwork m² 1.700 1.700 1.700 1.700 1.700 1.700
PCBG
Concrete C40/50 m³ 0.441 0.461 0.482 0.503 0.523 0.544
Reinforcement Steel kg 28.790 32.601 36.632 40.884 45.356 50.048
Prestressed Reinforcement Steel kg 3.042 4.917 6.792 8.667 10.542 12.417
Formwork m² 1.900 1.900 1.900 1.900 1.900 1.900
CBG
Concrete C30/37 m³ 0.220 0.230 0.240 0.250 0.261 0.272
Reinforcement Steel kg 20.976 22.250 23.603 25.037 26.559 28.173
Structural Steel kg 59.400 63.700 68.175 81.000 80.600 88.375
Shear Connector Steel kg 0.310 0.346 0.381 0.423 0.437 0.494
Formwork m² 1.000 1.000 1.000 1.000 1.000 1.000

As usual in bridge LCA modeling, four stages are considered for the life cycle model.
The processes considered for the E-LCA modeling were collected from the ecoinvent
database. The diesel consumption of machinery generated those processes that are
not included in the database. For S-LCA, the database chosen is SOCA due to the
ecoinvent processes PSILCA database social assessment addition.

69



Chapter 4. Social impact assessment comparison of composite and concrete bridge alternatives

Table 4.3: Concrete dosage considered for bridge decks.

Material Unit C30/37 C40/50

Gravel kg 1110.00 829.00
Sand kg 730.00 1102.00
Cement kg 300.00 320.00
Water kg 201.00 160.00
Superplasticizer kg 0.27 5.00

Manufacturing All the activities needed to manufacture materials are considered
in the production phase. In addition, the transport is included, considering 30 km
for concrete and 150 km for steel. The original ecoinvent database process consid-
ered concrete of the 30 MPa process. The 40 MPa concrete process is introduced
following the description in Figure 4.2.

Steel manufacturing is produced differently for modeling reinforcement bar and hot
rolled steel. Ecoinvent database considers 19% of steel scrap for the BOF process
and 100% for the EAF. Modifying these processes, a specific steel recycling ratio can
be considered. Consequently, a 71% steel recycling ratio is modeled for reinforce-
ment bars, while for hot rolled steel, two different recycling ratios are determined.
Those ratios are 71% (CBG_71) and 98% (CBG_98). This rate difference is modeled
to consider different countries’ materials reuse. In countries with lower developments,
the reuse policies are less strict [206].

Furthermore, the SCCB deck welding of the steel sheets is modeled. This is consid-
ered by using the ecoinvent database’s process.

Construction Bridges building is modeled as on-site. The processes contemplated
in this phase are concrete pouring, vibration and assembling of the different parts of
SCCB alternatives and, furthermore, in concrete solutions, the tension of the active
reinforcement steel. The auxiliary elements are modeled by introducing the diesel
consumption data from the Bedec database [207]. The diesel consumption is 123.42
MJ of energy per cubic meter of concrete and 10.2 MJ per kg of active reinforcement
steel [220]. The CO2 emissions are 32.24 kg and 2.62 kg, respectively. The concrete
selected does not have unique curation processes.
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Use and Maintenance Traffic detours are not considered necessary at this stage.
Only the concrete needs repairs on activities because the steel chosen does not re-
quire maintenance activities. The machinery for the upkeep is estimated considering
two different periods of actuation. The machinery consumption contemplated in this
life cycle phase is 584.28 MJ, and the CO2 emissions are 46.58 kg of CO2 per square
meter repaired [220].

End of Life In this stage, all demolition and transport to landfill processes are
considered in the LCA model. The machinery needed for the deconstruction is con-
sidered for the concrete elements. In addition, the crushing process is considered
to assume the full carbonation of concrete. On the other hand, only landfill trans-
portation is modeled. The recycling process of steel is reflected in the manufacturing
process. For SCCBs alternatives, steel sheet cutting is introduced.

4.2.4 Impact Assessment

The impact assessment results depend on the LCIA method chosen. LCIA methods
transform from specific resources consumption and emissions to indicators. This
transformation allows designers and researchers to understand the impact of activ-
ities better. As described in Section 4.2.2, two LCIA methods are chosen for both
E-LCA and S-LCA evaluations. As described in Table 4.1, the technique selected
for E-LCA is recipe. This method gives, as a result, 18 indicators related to different
environmental impacts. These indicators can be grouped into three main damage
categories that focus on more general effects. Consequently, the interpretation of re-
sults is straightforward due to the lowest amount of information. Similarly, the social
impact weighting method gives specific indicators and four damage categories. In
Figure 4.3, a schema of the relations between databases and methods used in this
study is defined.

This research aims to compare the feasibility of different decks from the environmen-
tal and social points of view and the difference between those results. Accordingly,
only the damage categories are considered for the study to understand the results
quickly.

71



Chapter 4. Social impact assessment comparison of composite and concrete bridge alternatives
SU

ST
AI

N
AB

IL
IT

Y

ECONOMIC

ENVIRONMENTAL

SOCIAL

ecoinvent

PSILCA soca

Processes

Databases

Social Impact 
Weighting method
med risk hours (mrh)

ReCiPe
endpoint
points (p)

Methods

Figure 4.3: Databases and methods flowchart.

4.2.5 Interpretation

At this phase, the comparison of the different bridge alternatives is carried out. All
processes and activity’s impact results are analyzed and compared. This interpreta-
tion depends on the research goal defined.

4.3 Lyfe Cycle Assessment

This research carried out the complete LCA of four different bridge decks. It is a
cradle-to-grave analysis. This type of analysis considers all bridge processes, start-
ing with the raw material extraction and ending with the demolition of the structure
and the transportation of the materials obtained to landfills. Only the damage cat-
egories results are exposed in all graphs and tables to ease the comparison of al-
ternatives. In Figure 4.4, the processes considered for modeling the complete life
cycle of every deck option are summarized. This processes follows the proposal in
Martínez-Muñoz et al. [220].
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4.3.1 Environmental LCA

The LCIA method used to carry out the environmental assessment is recipe. As men-
tioned before, this LCIA method gives two alternatives of obtaining results. This study
chooses the endpoint approach to obtain more easily comparable results. The results
of the E-LCA show three damage categories: ecosystems impact, human health
impact, and resources impact. The units of this damage category are species.yr,
disability-adjusted life years (DALYs), and dollar ($), respectively. As the three dam-
age categories give their results in different units, a normalization and weighting
method is required to compare them. The Europe recipe H/A person/year is set
as the weighting method in this research.

In this work, four bridge deck alternatives are proposed for its comparison: PCSS,
PCLS, PCBG, and CBG. Two steel recycling ratios to consider different steel man-
ufacturing processes for CBG alternatives are 71% (CBG_71) and 98% (CBG_98).
These steel recycling rates correspond to those of reinforcement bars in Spain and
the maximum recycling rate for hot rolling steel according to the World Steel Associ-
ation [147].

Results for the environmental analysis are represented in Figure 4.5. As can be
seen from the ecological point of view, PCSS is the best solution between 15 m
and 18 m. PCLS becomes the best alternative up to 25 m, where box solutions are
used from this point on. In span lengths between 25 m and 40 m, it can be seen
in Figure 4.5 that solutions with lower environmental impact are the best compared
to others. For concrete solutions, the best alternative is the PCBG. In this case, the
comparison between damage categories makes no sense due to the similarity of
every damage category. The three damage categories are normalized and summed
to give the same importance to total impact. From the results obtained for each
damage category, the most ecofriendly solution is CBG_98. Furthermore, the more
recycled steel is used, the more environmentally friendly the alternative is.

4.3.2 Social LCA

Social evaluation of bridge deck alternatives is carried out using the social impact
weighting method as the LCIA method. This method, in a similar way to recipe,
gives a series of indicators related to specific impact categories, as can be seen in
Table 4.1. For this case study, the indicators are collected in four categories related
to the leading social stakeholders following the method in Penadés-Plà et al. [159].
This impact categories grouping allows us to understand better the social impact
of the alternatives and their comparison. The social stakeholders chosen are local
community, value chain actors, society, and workers as defined in Table 4.1.
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Life-cycle assessment stages

Manufacturing Construction Use and Maintenance End of Life

Activities: Activities:

Bridge Impact
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Figure 4.4: Life cycle of the bridge decks.

Results from S-LCA give precise results regarding the feasibility of alternatives for
each span length. From 15 m to 25 m, the best option is the PCLS. From this length,
the PCBG is the best alternative from a social point of view. Regarding the CBG alter-
natives, it can be seen that its social feasibility is very low compared to PCBG, even
below the PCLS solution with higher recycling rates (CBG_98). It can be observed
that solutions with higher steel recycling ratios give higher social impact values for
social damage categories, as can be seen in Figure 4.6. If the analysis is focused
on the slopes of the obtained lines, it can be seen that the impact on resources in-
creases to a greater extent than the impact on human health, and this, in turn, is
greater than the impact on the ecosystems.
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Figure 4.5: Development of environmental impacts regarding the span length.

4.4 Discussion

This research carried out a social and environmental impact assessment of four
bridge deck alternatives. As it can be seen in Section 4.3, results from both eval-
uations give opposite results. Regarding the feasibility of E-LCA options, the most
suitable alternative for 25 m to 40 m span lengths is the CBG. Moreover, the increase
in the steel scrap used for the steel manufacturing process reduces the impact of the
CBG alternatives, with the CBG_98 alternatives being the best from the environmen-
tal point of view. On the contrary, for social assessment, this is a worse alternative
than PCBG, and in addition, a higher steel recycling ratio gives, as a consequence,
a higher social impact.

To get an idea of the cause of this contrast between LCA criteria, a more detailed
study was carried out regarding the importance of stages for global analysis. In Table
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Figure 4.6: Development of social impacts regarding the span length.

4.4, the total assessments for both social and environmental criteria are summarized
for a 35 m solution. It can be observed that the solution with the most impact for both
ecological and social assessments is the PCSS. However, the feasibility of solutions
changes drastically between criteria. The CBG with 98% of recycled steel is the best,
eco-friendly solution. It should be remembered that this is the usual steel recycling
rate for hot rolled steel according to the World Steel Association [147]. For social
impact assessment, this changes, and the most socially sustainable solution is the
PCBG, with the 98% of recycled steel CBG solution lagging behind the PCLS one.

The difference between these two assessments is produced by the importance of
steel to the total impact in both environmental and social assessments. In Figure 4.7,
the importance of every process is defined according to the results obtained from the
LCA models. As can be seen, steel is the process that has the most significant im-
pact on the total for both assessments. However, for social impact, this importance
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Table 4.4: Sustainability assessment for 35 m span length solutions.

Deck Alternative Assessment Unit Manufacturing Construction Use and Maintenance EoL Total

PCSS
Environmental p 57.03 7.68 11.86 −0.33 76.24

Social mrh 91,346.24 2062.11 2242.40 1197.07 96,847.81

PCLS
Environmental p 46.11 5.83 13.44 −0.29 65.09

Social mrh 71,340.94 1799.18 2544.54 1002.49 76,687.16

PCBG
Environmental p 30.33 3.12 15.02 −0.23 48.24

Social mrh 42,442.18 1377.60 2853.89 721.98 47,395.64

CBG_98
Environmental p 28.04 1.25 7.96 −0.24 37.01

Social mrh 75,914.48 575.45 1479.21 635.76 78,604.89

grows from 51.1% to 80.8% in the case of the CBG_98 alternative. Furthermore,
regarding the steel manufacturing process in the environmental assessment, the im-
pacts of one kg of steel considering 71% and 98% of steel scrap are 0.152 and 0.104
points. If the same analysis is carried out from the social perspective, the results are
1941.08 and 2066.51 med risk hours for one kg of steel considering 71% and 98%
of steel scrap, respectively. Suppose we add that the importance of steel is more
remarkable for the social analysis and that considering a higher percentage of steel
recycling generates a more significant impact. In that case, we find the cause of
these differences in effects. Suppose the analysis is focused on the slopes of the
obtained lines. In that case, it can be seen that the impact growing the most is the
impact on society, followed by the effect on workers, local community, and value chain
actors.
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Figure 4.7: Importance of materials processes to total environmental and social impact models.
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Finally, the importance of every bridge deck LCA stage of this study is defined in
Figure 4.8. Regarding the similarities of both assessments, it can be stated that
manufacturing is the most critical stage for both social and environmental impacts.
The next order by importance is the use and maintenance phase, followed by the
construction and the end of life. One difference is observed between these two sus-
tainability assessment criteria. The carbonation process reduces the use and main-
tenance and end-of-life stages for environmental assessment. In contrast, the car-
bonation reduction does not affect the total impact of the social evaluation. Another
difference is observed between alternatives in the construction stage. For E-LCA,
the PSCC alternative is the most impacting, while for the S-LCA, it is the PCBG.
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Figure 4.8: Importance of the LCA stages for environmental and social impact models for 35 m
span length solutions.

4.5 Conclusions

This research compared the environmental and social impacts of different bridge
deck alternatives. Usually, in span lengths between 15 m and 25 m, the options
used are the PCSS and PCLS, taking economic feasibility as the criterion. In these
studies, PCSS and PCLS are compared from the social and environmental points
of view. This comparison gave the result taht the PCLS is a better alternative. In
the span, the length ranges from 15 m to 18 m; PCSS is better than PCLS for the
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environmental assessment, but PCLS overcomes the PCSS in all length ranges for
social impact.

The steel recycling ratio variation modifies the impact of alternatives. Still, in contrast
with other studies made with older versions of this database, it is not crucial to define
the feasibility of the options. From the environmental point of view, the more steel is
recycled, the lower the ecological impact. On the contrary, for the social sustainability
of deck alternatives, lower amounts of steel scrap reduce the global impact of the
structure.

CO2 fixation by carbonation processes only impacts the environmental analysis, re-
ducing the impact of the structure in use and maintenance and end of life stages.
This reduction is less critical in composite solutions because the amount of concrete
in this board type is minor to concrete alternatives. Regarding the social sustainabil-
ity of the alternatives, carbonation, and consequently, the CO2 fixation produced in
this process, does not affect the total assessment of the structure. This leads to the
fact that the end-of-life phase, where the concrete is crushed, positively impacts the
environmental analysis. At the same time, it does not positively impact the social
analysis.

Regarding the material importance in the assessment, the steel impact is higher
in environmental and social aspects. Finally, we assume higher values concerning
other material contributions. Finally, the manufacturing stage has the most significant
life cycle impact of all the alternatives, as found in other research studies with the
same scope.

This research compares different bridge deck alternatives from the environmental
and social sustainability points of view. In the main conclusion, the composite box
girder alternatives are the most sustainable from the ecological point of view. How-
ever, the most suitable for social impact is the prestressed concrete box-girder so-
lution. Consequently, the most sustainable choice of alternatives for bridge decks
is mainly a multi-criteria decision-making problem that will depend on the weights
assigned to every economic, environmental, and social pillar.

As a result of this study, researchers and designers can obtain information about
the feasibility of concrete and composite alternatives proposed for analysis. The
information regarding this feasibility is limited to the defined cross-section types of
slab and box-girder bridges, their assessment from environmental and social points
of view, and the span lengths between 15 m and 40 m. In future research studies,
other composite bridge cross-section alternatives can be studied, such as twin I-
girder bridges or plate girders, to examine if they improve the feasibility of composite
options for social impact. Furthermore, optimization techniques can be applied to
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cross sections to obtain new designs, considering the social and environmental LCA
impacts as objective functions.
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Abstract

Bridge optimization can be complex because of the large number of variables in-
volved in the problem. In this paper, two box-girder steel–concrete composite bridge
single objective optimizations have been carried out considering cost and CO2 emis-
sions as objective functions. Taking CO2 emissions as an objective function allows
to add sustainable criteria to compare the results with cost. SAMO2, SCA, and Jaya
metaheuristics have been applied to reach this goal. Transfer functions have been
implemented to fit SCA and Jaya to the discontinuous nature of the bridge optimiza-
tion problem. Furthermore, a Design of Experiments has been carried out to tune the
algorithm to set its parameters. Consequently, it has been observed that SCA shows
similar values for objective cost function as SAMO2 but improves computational time
by 18% while also getting lower values for the objective function result deviation.
From a cost and CO2 optimization analysis, it has been observed that a reduction
of 2.51 kg CO2 is obtained by each euro reduced using metaheuristic techniques.
Moreover, for both optimization objectives, it is observed that adding cells to bridge
cross-sections improves not only the section behavior but also the optimization re-
sults. Finally, it is observed that the proposed design of double composite action in
the supports allows to remove continuous longitudinal stiffeners in the bottom flange
in this study.

Keywords: Swarm intelligence; Steel–concrete composite structures; Bridges; Op-
timization; Metaheuristics; Sustainability

5.1 Introduction

Traditionally, structural design processes depend on methods based on common
practice. Once the analysis of this first design is done, the geometry of the sections
and the grade of the materials are modified based on the experience of the technician
[174]. Researchers have implemented optimization methods to obtain structural de-
signs through automated processes to reduce this need for expertise. Optimization
techniques can be classified into two large groups, the first of complete techniques
and the second of approximate or incomplete methods. The exact or complete ap-
proaches are the ones that produce the best result regardless of the processing time.
The most commonly used strategies in integer programming are branch-and-cut and
branch-and-bound. Many combinatorial optimization problems can be expressed as
mixed-integer linear programming problems [225]. These exact algorithms have had
good results solving complex problems, however, when the type of constraints does
not meet certain conditions or the size of the problem is very large, these algorithms
do not necessarily work well. On the other hand, Incomplete techniques are those
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that find a suitable solution that is not always the best but does so in a reasonable
amount of time. Among these incomplete techniques are heuristic and metaheuristic
algorithms.

These methods use heuristic or metaheuristic algorithms that allows to explore the
space of possible solutions while considering both rules and randomness. A peculiar-
ity of structural design problems is that the variables on which the problem depends
are discrete, making the optimization problem more complex. Optimization methods
have been used extensively in structural problems, as can be seen in some of the
literature reviews [226]–[228]. These structures include Reinforced Concrete (RC)
building frames [229], wind turbine foundations [230] or bridge decks [231]. These
methods have also been applied to beam [165], [232] and cable-stayed [16] bridges
among others.

In bridges, some very complex structural optimization problems can arise due to
the high number of variables. This complexity can be even greater in composite
bridges, where the number of possible solutions increases due to a large number of
variables [14]. Furthermore, Steel-Concrete Composite Bridges (SCCB) can be di-
vided into three groups according to the cross-section: plate-girder, twin-girders, and
box-girder [25], and its behavior differs between these types. Consequently, literature
review have collected the techniques used in SCCBs’ optimization [189]. In simplified
problems, an Excel solver [13] or the fmincom Matlab® function [104] have been ap-
plied. Meanwhile, other methods have been used for more complex SCCBs, such as
set-based parametric design [106], Harmony Search (HS) [109], Genetic Algorithm
(GA), or the Imperialist competitive algorithm [103]. In the optimization algorithms,
there is a family that uses swarm intelligence methods. These algorithms have also
been applied to SCCB, such as Cuckoo Search (CS), Particle Swarm Optimization
(PSO) [109], Colliding Bodies Optimization (CBO), Enhanced Colliding Bodies Opti-
mization (ECBO), or Vibration Particle System (VPS) [110]. Methods such as GA or
Simulated Annealing (SA) have been widely used in structural optimization problems
due to their easy adaptation to discrete optimization problems. On the other hand,
swarm intelligence methods are usually built to optimize on continuous spaces, such
as the sine cosine algorithm (SCA) [233] or Jaya [234]. Recent optimization research
has applied transfer functions to these algorithms to adapt them to binary [235], [236]
problems, which is common in engineering optimization problems. These latest al-
gorithms, under certain conditions, have made it possible to exceed the results of
algorithms such as GA or SA.

To get an optimum, it is first necessary to define one objective function. In bridges,
this objective function has traditionally been related to the cost or weight reduction.
In SCCB optimization, the research objective function has cost in all studies [189].
Considering only cost as an optimization objective function means that other criteria,
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such as the environmental or social impact, have not been considered. In concrete
bridges, many authors have applied objective functions to get more sustainable so-
lutions, such as embodied energy [124] or the bridge lifetime reliability [165].

In this study, as a first contribution, a bridge composed of steel and concrete with
three sections and a single box girder of 60-100-60 meters has been modeled and
optimization of costs and emissions CO2 has been carried out. Both optimization cri-
teria have been considered as single-goal optimizations to compare the results. By
incorporating CO2emissions, the impact has been analyzed from the point of view
of economic resources and the sustainability of the infrastructure. Additionally, three
optimization algorithms have been considered: Simulated Annealing with a Mutation
Operator (SAMO2), Sinus Cosinus Algorithm (SCA) and Jaya. The first is a traditional
trajectory-based algorithm that has efficiently solved structural optimization problems
[14]. The other two algorithms implemented in this study are SCA and Jaya, these
correspond to swarm intelligence algorithms and naturally work in continuous search
spaces. As a second contribution, a discretization method based on transfer func-
tions (used to solve binary problems) has been proposed to adapt SCA and Jaya
algorithms in order to solve the discrete optimization problem of the bridge. To eval-
uate the results of the discretizations, they were compared with SAMO2, which has
efficiently solved structural design problems. We should also point out that this dis-
cretization method can be extended to solve other types of discrete problems. Finally,
to perform the cost and emissions analysis, the SCA is used, which was the one that
obtained the best result.

5.2 Optimization: problem description

Optimization maximizes or minimizes one objective function. This search can be
done by considering the objective functions separately or together; if the criteria are
considered separate, the process is called single objective optimization. On the con-
trary, if all criteria are considered together is known as multi-objective optimization.
In this research, the optimization objective functions are cost and CO2 emissions
considered as two different single objective optimizations. In equation 5.1, the cost
objective function is defined by multiplying the unit cost of every material in the bridge
by its measurement. The CO2 emissions target function is formulated in equation 5.2.
The data for CO2 emissions considers cradle-to-gate analysis. Thus, it is necessary
to consider the emissions of every process to get bridge materials on-site and exe-
cute the project. The data of prices and CO2 emissions that are shown in Table 5.1
have been obtained from the Construction Technology Institute from Catalonia by
the BEDEC database [207]. Both optimization expressions need to fulfill, throughout
the entire process, the constraints imposed by the regulations or recommendations
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Table 5.1: Cost and CO2 emission values

Unit Cost (e) Emissions (kg of CO2)
m3 of concrete C25/30 88.86 256.66
m3 of concrete C30/37 97.80 277.72
m3 of concrete C35/45 101.03 278.04
m3 of concrete C40/50 104.08 278.04
m2 of precast pre-slab 27.10 54.98

kg of steel B400S 1.40 0.70
kg of steel B500S 1.42 0.70

kg of rolled steel S275 1.72 4.33
kg of rolled steel S355 1.85 4.33
kg of rolled steel S460 2.01 4.33

kg of shear-connector steel 1.70 2.8

represented by equation 5.3 in a general manner. The specific constraints for this
optimization problem are defined in section 5.2.3 and more concretely by equation
5.5 and Table 5.4 of the aforementioned section.

C(x⃗) =
n∑

i=1

pi ·mi(x⃗) (5.1)

E(x⃗) =
n∑

i=1

ei ·mi(x⃗) (5.2)

G(x⃗) ≥ 1 (5.3)

5.2.1 Variables

A 220 m continuous steel-concrete composite box-girder three-span bridge is pro-
posed for optimization. The problem variables correspond to each bridge element’s
geometry, reinforcement, and concrete and steel grades. To reach a buildable solu-
tion, all of these variables have been discretized, configuring a discrete optimization
problem. The variables discretization has been defined in Table 5.2. Considering
this variable discretization, the number of combinations for the optimization problem
corresponds to 1.38·1046. Due to many possible combinations, metaheuristic tech-
niques are justified to obtain the optimum. In total, 34 variables are considered for
the global definition of this bridge optimization problem. These bridge variables have
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been represented in Figure 5.1. According to the nature of the variables, they can
be grouped into six categories. The first correspond to cross-section geometric vari-
ables, which are: upper distance between wings (b), wings and cells angle (αw),
top slab thickness (hs), beam depth (hb), floor beam minimum high (hfb), top flange
thickness (tf1 ), top flange width (bf1 ), top cells high (hc1 ) and thickness (tc1 ), wing
thickness (tw), bottom cells high (hc2 ), thickness (tc2 ), and width (bc2 ) and bottom
slab thickness (hs2 ). Beam depth bounds correspond to L/40 and L/25, being L, the
largest span length.

sf₂

tf₂

b

hs

hb

hfb

hfb

tf₁, bf₁

hc₁ tc₁ tw

hc₂

bc₂

tc₂
nsf₂ hs₂

st, dst

sw

sf₂nsf₂

sw

dsd
bfb, tffb, twfb

Øsc, hsc

bfb
tffb

twfb

αw

Figure 5.1: Cross-section variables for SCC bridge

SCCB can take advantage of materials to a greater extent because each material
that makes it up is subjected to the stresses that best resist. This would be true in an
SCCB working as an statically determinate girder. In this case, the upper concrete
slab would be compressed along the entire length of the bridge. This upper slab is
connected to the top flanges by shear connectors. This would also stiffen the flanges
plate, which avoids buckling. Moreover, in the isostatics case, the lower flanges
would be subjected to tensile stress, avoiding buckling instability phenomena. How-
ever, in the present case and with the usual loads to which the bridges are subjected
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(mostly gravitational), negative bending stresses will occur in supported areas. This
will result in reversing the forces and tensile stresses in the upper concrete slab and
the compression in the lower flange. In this case, to improve the behavior of the
bridge cross-section, it has been decided to materialize a concrete bottom slab in
these areas in addition to the usual increase of the top slab reinforcement. To opti-
mize the top slab reinforcement, it has been divided into a base reinforcement that is
the minimum required by regulations [26], [237], [238] and two more areas, in neg-
ative bending sections, where the reinforcement is increased. The bottom slab and
reinforcement increasing area lengths are described in section 5.2.2. Accordingly,
the second group of variables corresponds to base reinforcement, first reinforcement
and second reinforcement bar diameters (ϕbase, ϕr1 , ϕr2 ), and the corresponding bar
number of the reinforcement areas (nr1 , nr2 ).

The next variable group correspond to stiffeners. The elements considered in these
work as stiffeners are half IPE profiles for wings (sw), bottom flange(sf2 ) and the
transverse ones (st). For bottom flange stiffeners, the number of stiffeners (nsf2

) has
also been considered as a variable. As can been seen in Figure 5.1, there are two
more variables that define the distance between diaphragms (dsd) and transverse
stiffeners (dst).

The last categories correspond to floor beam variables geometry, the shear connec-
tor’s characteristics, and the materials’ grades. Floor beam variables are defined by
the floor beam width (bfb), and the flanges (tffb

) and wing (twfb
) thicknesses. The

shear connectors have been defined by their height(hsc) and diameter (ϕsc). Finally,
the yield stress from rolled steel (fyk), concrete strength (fck) and reinforcement steel
bars yield stress (fsk) complete the variable definition. The variables are the same
for all the spans of the bridge.

5.2.2 Parameters

To narrow down the problem, some variables or properties need to be fixed in every
optimization problem. These fixed variables are named parameters, and they remain
invariant during the whole optimization process. In this case, these parameters cor-
respond to boundaries defined to some bridge elements, including dimension, thick-
nesses, reinforcement distributions, external ambient conditions, or density (among
others). The values of these parameters are summarized in Table 5.3.

The bridge deck width (B) corresponds to 16 meters, and the depth does not vary
over the entire length of the bridge. In the cross-section, it has been defined by
four cells: two on the upper side of the wings and two more on the bottom, as can
be seen in Figure 5.1. These cells allow these parts of the wing to be stiffened,
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Table 5.2: Design variables and boundaries

Variables Unit Lower Bound Increment Upper Bound Values number
b m 7 0.01 10 301
αw deg 45 1 90 46
hs mm 200 10 400 21
hb cm 250 (L/40) 1 400 (L/25) 151
hfb mm 400 100 700 31
tf1 mm 25 1 80 56
bf1 mm 300 10 1000 71
hc1 mm 0 1 1000 101
tc1 mm 16 1 25 10
tw mm 16 1 25 10
hc2 mm 0 10 1000 101
tc2 mm 16 1 25 10
bc2 mm 300 10 1000 71
tf2 mm 25 1 80 56
hs2 mm 150 10 400 26
nsf2

u 0 1 10 11
dst m 1 0.1 5 41
dsd m 4 0.1 10 61
bfb mm 200 100 1000 9
tffb

mm 25 1 35 11
twfb

mm 25 1 35 11
nr1 u 200 1 500 301
nr2 u 200 1 500 301
ϕbase mm 6, 8, 10, 12, 16, 20, 25, 32 8
ϕr1 mm 6, 8, 10, 12, 16, 20, 25, 32 8
ϕr2 mm 6, 8, 10, 12, 16, 20, 25, 32 8
sf2 mm From IPE 200 to IPE 600* 12
sw mm From IPE 200 to IPE 600* 12
st mm From IPE 200 to IPE 600* 12
hsc mm 100, 150, 175, 200 4
ϕsc mm 16, 19, 22 3
fck MPa 25, 30, 35, 40 4
fyk MPa 275, 355, 460 3
fsk MPa 400, 500 2

*Following the standard series of IPE profiles [239].

creating a sheet of class one to three that does not need to be reduced according
to Eurocodes [26], [238]. To allow the optimization process to define if these cells
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Table 5.3: Optimization problem main parameters

Geometrical parameters
Bridge deck width (W ) 16 m
Span number 3
Central span length 100 m
External span length 60 m
Minimum web thickness (twmin

) 15 mm
Minimum flange thickness (tf2min) 25 mm
Reinforcement cover 45 mm

Material parameters
Maximum aggregate size 20 mm
Concrete longitudinal strain modulus (Ecm) 22 · ((fck + 8)/10)3 MPa
Concrete transverse strain modulus (Gcm) Ecm/(2 · (1 + 0.2)) MPa
Steel longitudinal strain modulus (Es) 210000 MPa
Steel transverse strain modulus (Gs) 80769 MPa

Regulation requirement parameters
Regulations Eurocodes[26], [237], [238], [240], IAP-11[241]
Exposure environment XD2
Structural class S5
Service life 100 years

Loading parameters
Reinforced concrete density 25 kN/m3

Steel density 78.5 kN/m3

Asphalt density 24 kN/m3

Asphalt layer thickness 100 mm
Bridge traffic protections 5.6 kN/m

improve the structural behavior of the cross-section (and consequently are relevant
to obtain a minimum of the objective function), the minimum height of these cells is
fixed to zero. The boundaries of all of the variables, including the cells heights (hc1 ,
hc2 ), can be seen in Table 5.2. The variable’s boundaries have been defined following
Monleón bridge design publication [242]. The cell height(hc1 , hc2 ) defines the floor
beam depth in the zone of contact with the wings. If the cell height is smaller than the
floor beam minimum depth (hfb), then it takes that minimum value for beam depth
in that zone. Profiles placed to materialize the diaphragm sections are 2L 150x15.
Furthermore, pre-slabs have been considered for use as a formwork. It should be
noted that this element is designed to be part of the resistant section. Therefore, the
measurement module of the software subtracts it from the total amount of concrete.
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Base reinforcement for both the upper and the lower concrete slabs is obtained ac-
cording to the minimum need for reinforcement defined in Eurocode 2 [238]. The
connection between the steel beam and concrete slab is designed to resist the whole
stress of the concrete slab considering the effective width that is given by Eurocode
4 [26] due to shear lag. Because the only width considered as resistant (both in the
concrete slab and in the lower flange) is effective, the defined steel bar reinforcement
is placed only in that width.
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Figure 5.2: Longitudinal distribution of thicknesses and steel bar reinforcements
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To optimize some materials in SCCB, it is usual to modify the thicknesses of webs and
flanges to reduce their amount. In this work, the variation of thicknesses has been
programmed by considering a theoretical bending and shear law for a distributed
load over the entire surface of the bridge. In Figure 5.1, the lower flange thickness is
modified along the bridge, varying from a minimum value tf2min to the one defined as
tf2 . This variation corresponds to the theoretical bending law. In contrast, the wing’s
thickness varies according to the shear law from twmin

to tw. The minimum value
of these thicknesses has been defined according to recommendations in Monleón
[242].

Finally, steel bar reinforcements and lower slab areas are defined. The lower slab
is placed in negative bending sections to mobilize the composite dual-action. To de-
fine lengths where negative bending can be produced, it has been considered the
distance defined by Eurocode 4 [26] for shear lag stresses that correspond with one-
third of the span length. It is necessary to increase the upper slab reinforcement
to resist the tension stresses produced. In this case study, it has been considered
two reinforcement areas. The first is placed in zones where the section can be sub-
jected to negative bending, and base reinforcement cannot resist the stresses. The
second is placed on top of supports, corresponding to one-third of the distance be-
tween the support and the point of change of sign of the bending of the theoretical
law. This decision is related to the position of the center of gravity of the parabola,
which is at one-third of its total length. Figure 5.2 shows the top slab’s reinforcement
distributions.

5.2.3 Constraints

As mentioned in section 5.2, optimization procedures must comply about the con-
straints imposed on the problem. In bridge optimization, these constraints are set by
the regulations [26], [237], [238] and recommendations [25], [242].

Constraints imposed by regulations can be divided into two main groups: the Ultimate
Limit States (ULS) and Serviceability Limit States (SLS). All of the loads applied
and their combination are defined in regulations [240]. Table 5.3 summarizes the
structural checks and load values that have been considered.

To check ULS for all bridge elements, it has been considered both global and local
analysis. The checks considered for global analysis include flexure, shear, torsion,
and flexure-shear interaction as defined in Table 5.4. A linear elastic analysis has
been used to obtain the deflections and stresses. To get section resistance, the ef-
fective area has been considered by applying both reductions due to shear lag [26]
and section reduction of the steel plates classified as class 4 [237]. This last re-

92



5.2 Optimization: problem description

duction is carried out by an iterative process. This procedure produces a variation
of the neutral fiber of the section due to the area reduction. This process must be
repeated until the difference between the neutral fiber obtained between iterations
is null or negligible. To attain this, a difference of 10-6 meters has been imposed as
termination criteria for the iterative process. To obtain the value of the mechanical
characteristics of the homogenized section, the relationship (n) between the modu-
lus of longitudinal deformation of concrete (Ecm) and steel (Es) has been obtained
according to equation 5.4. Concrete creep and shrinkage have been considered ac-
cording to regulations [26], [238]. The procedure used for the time-dependent effects
evaluation of concrete is the Ageing coefficient method defined in the annex KK of EN
1992-2:2013 [238]. Furthermore, a local model has been considered to check ULS
in-floor beams, stiffeners, and diaphragms by considering flexure, shear, buckling,
and minimum mechanical characteristics checks.

n =
Es

Ecm

(5.4)

The SLS considered for the analysis are the stress limit for materials, fatigue, and de-
flection as defined in Table 5.4. There is no explicit limit for deflection in Eurocodes.
Still, the IAP-11 Spanish road bridges regulation [241] gives a maximum of L/1000
for the frequent value of live loads deflection value, with L representing the span
length. This frequent value is defined in the IAP-11 as ψ1Qk, where ψ1 is the simul-
taneity factor and Qk are the values of each live load. This loads value corresponds
to the actions associated with a one-week return period. The values of this ψ1 coef-
ficients are: 0.75 for the concentrated traffic load 0.40 for the distributed traffic load,
0.2 for wind load and 0.6 for the thermal loads [241]. This has been considered
as the maximum value of the deflection. In addition geometrical and constructibility
requirements have been deemed.

A numerical model has been implemented in the Python [243] programming lan-
guage to get the stresses and carry out all ULS, SLS, and geometrical and con-
structibility checks defined in regulations [26], [237], [238], [240] and recommenda-
tions [25], [242] as defined in Table 5.4. To calculate the deflections and stresses, this
software applies the displacement method considering the vertical displacements
(Uz) and the spins in y and x-axes (θy, θx), taking as input data the 34 bridge vari-
ables defined in section 5.2.1 and the loads specified in regulations. To obtain the
effects due to the moving loads, all possible load combinations have been consid-
ered to get their envelope as defined in section 5.2.3. This software divides every
bridge span into a defined number of bars. In this case, the total number of bars
is 44, distributed in 12-20-12 corresponding to the three spans of the bridge; thus,
discretizing the bridge into 5-meter length bars. Once the stresses have been ob-

93



Chapter 5. Optimal design of steel-concrete composite bridge based on a transfer function discrete swarm

intelligence algorithm

Table 5.4: Structural checks and load values

Checkings
ULS Flexure MEd ≤MRd =

Wel,minfy
1.05

Shear VEd ≤ VRd =
Av(fy/

√
3)

1.05

Torsion MT,Ed ≤MT,Rd =
AT (fy/

√
3)

1.05

Flexure-shear interaction MEd ≤MRd =
Wel,min

(
1−

(
2VEd
Vpl,Rd

−1
)2

)
fy

1.05

Stiffeners Ist ≥ σm

E

(
b
π

)4 (
1 + w0

300
b
u
)

SLS Stress limitation σy ≤ fyk
σc ≤ 0.6fck
σs ≤ 0.8fsk

Fatigue γFf ∆σE,2

∆σC/γMf
≤ 1

γFf ∆τE,2

∆τC/γMf
≤ 1

Deflection L/1000
Loads
Dead Self Weight Depends on the geometry

Dead Loads 46.72 kN/m
Live Traffic concentrated (300, 200, 100) kN

Traffic distributed (9, 2.5, 2.5) kN/m2

Thermal heating 18°C
Thermal cooling -10°C
Wind Fwz = 60.84 kN/m

Fwy = 10.78 kN/m
Fwx = 43.12 kN/m

tained, the program performs structural checks and returns the measurements, cost,
CO2 emissions, and checking coefficients. These checking coefficients correspond
to the quotient between the design values of the effects of actions (Ed) and its corre-
sponding resistance value (Rd), as shown in equation 5.5. If these coefficient values
are greater or equal to one, then the section complies with the imposed restriction
defined in Table 5.4.

Rd

Ed

≥ 1 (5.5)
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Computational model description

The procedure used to obtain the deflections and stresses has been the displace-
ment method. This method consists in solving the equation 5.6.

f = K · d+ f0 (5.6)

In this equation, f0 correspond to the perfect embedding forces vector. These forces
would be obtained if each of the system bars had all the degrees of freedom con-
strained. K is the stiffness matrix of the system, generated by assembling the stiff-
ness matrices of all bar elements. To get the stiffness matrix of each element, the
average between both frontal and dorsal nodes’ mechanical properties has been cal-
culated. The complete section without considering the shear lag and panel reduction
has been considered to obtain these mechanical properties. Finally, d and f are
the deflections and stress vectors, respectively. The computational model process
flowchart for stresses obtaining have been defined in figure 5.3.

Nodal forces obtention Sum of nodal forces                                  + 

Forces vector (𝒇𝟎) obtaining

Vector reduction               Uz = 0

Stiffness matrix (𝑲) obtaining

Sections inertia obtention Bars stiffness matrix obtention (𝑲 ) Sum of local stiffness matrices (𝑲) Matrix reduction              Uz = 0

Displacements vector (𝒅) obtaining

Equation system:     𝒇 − 𝒇𝟎 = 𝑲 · 𝒅 Solve the equation to get the reduced displacement vector:     𝒅 = 𝑲 · (−𝒇𝟎) Add the degrees of freedom withdrawn

Forces vector (𝒇) obtaining

Solve the equation to get the forces vector:   𝒇 = 𝑲 · 𝒅 + 𝒇𝟎

Figure 5.3: Computational model process flowchart

This procedure is repeated with all load cases defined in Table 5.4. The following
load cases have been considered loading the entire bridge length as a single load
case: Self Weight, Dead Loads, Thermal Heating, Thermal Cooling, and Wind. In
order to consider the different positions of traffic loads, every 5-meter bar has been
loaded separately, considering two separated loading cases, the concentrated load
and the distributed. This gives, as a result, 88 load cases for traffic load and a total of
93 if all load cases are considered. The results obtained from loading each bar have
been combined to consider all loading possibilities regarding traffic load. After this,
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the load case envelope has been calculated to consider each section’s maximum
and minimum results.

Regarding combinations and envelopes, the envelope of all persistent and transitory
situations combinations have been obtained for ULS. These combinations have been
considered dominant action all live loads in different combinations. The envelope of
all characteristic combinations has been considered for SLS regarding stress limita-
tion.

5.3 Methodology

In this section, the algorithms used are detailed. SAMO2 and a discrete version of
the Sine Cosine and Jaya Algorithms were used to develop the experiments. The
algorithms were chosen due to the differences in their movement methods and the
ease of parameterization in the case of Jaya and SCA.

5.3.1 Trajectory-based algorithm: SAMO2

Simulated Annealing was developed by [244]. This algorithm is an analogy based on
the thermodynamic behavior of a group of atoms forming a crystal. "Annealing" refers
to the chemical process of heating and cooling materials in a controlled manner.
This study has chosen a variant to carry out the optimization, which includes the
benefits of genetic algorithms. The genetic algorithm seeks the best solution through
selection, crossover, and mutation operators. To include these strategies, it has been
used the SAMO2. This metaheuristic introduces the probabilistic acceptance of the
poorer quality solutions to flee from local optimums and directs the search towards
better objective function values. For this reason, it accepts inadequate solutions
with probability Pa. The expression is given by the expression of Glauber (5.7),
where T is a parameter that decreases with time. Consequently, the probability
of accepting a poor solution is reduced from the initial value, T0. Furthermore, it
includes a mutation operator that allows the algorithm to change some variables to
explore the optimization process.

Pa =
1

1 + e
−∆E

T

(5.7)

The initial temperature is set according to the method proposed by Medina [245].
This algorithm depends on several parameters: Markov Chain Length (MCL), which
defines the number of iterations before temperature decreases, and the Cooling Co-
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efficient (CC), which is always less than one and represents the temperature vari-
ation. Furthermore, the mutation operator depends on the Variables Number (VN)
and the Standard Deviation (SD). To fix the end of the optimization, two termination
criteria have been defined for this metaheuristic: the first is the Unimproved Chains
(UC) that limit the number of Markov Chains allowed without any improvement be-
fore finishing the optimization, and the second ends the process if the temperature
reaches 5% of the initial (T0). This algorithm has been chosen as it has achieved
good results in other bridge optimization problems [124].

5.3.2 Swarm intelligence algorithms: SCA and Jaya

Sine Cosine Algorithm (SCA)

Sine Cosine Algorithm (SCA) was proposed in [233] and corresponded to a swarm
intelligence algorithm that considers the sine and cosine functions to carry out the
process of exploring and exploiting the search space. To carry out the movement
of the solutions, P t

j is additionally used, which corresponds to the position of the
destination solution for iteration t and dimension j, and typically uses the best solution
obtained so far. In addition to P t

j , the algorithm uses three random numbers r1, r2, r3,
which take values between 0 and 1. The update method used is shown in Equations
5.8 and 5.9.

xt+1
i,j = xt

i,j + r1 × sin(r2)× | r3P t
j − xt

i,j | (5.8)

xt+1
i,j = xt

i,j + r1 × cos(r2)× | r3P t
j − xt

i,j | (5.9)

Jaya

Jaya is a swarm intelligence algorithm that allows to tackle continuous optimization
problems, with and without constraints naturally. Jaya was proposed in [246] to solve
benchmark problems. However, it has been used to solve complex optimization prob-
lems in different areas. The peculiar distinctive feature of Jaya from the other swarm
intelligence algorithms is that it updates agents’ positions in the population by con-
sidering the best and worst individuals. Additionally, binary versions of Jaya have
been developed. For example, in [247] an XOR operator was integrated to be able
to tackle binary problems. Another attractive quality of Jaya is that it does not have
specific control parameters, and only the size of the population and the number of
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generations need to be defined. In Figure 5.4 and Equation 5.10, the flowchart and
the movement of Jaya are shown, respectively.

Begin

End

Initialize the 
population

Are the 
stopping 
criteria 

satisfied?

Identify the best 
and the worst 

solutions.

N
o

Update the solutions 
using the best and the 

worst candidate.

Is the 
modified 
solution 
better?

replace with  the 
new solution

Keep the 
previous solution

Ye
s

N
o

Yes

Figure 5.4: The standard Jaya algorithm flowchart.

xt+1
i,j = xt

i,j + r1(x
t
best,j− | xt

i,j | −r2(x
t
worst,j− | xt

i,j |)) (5.10)

Discretization algorithm

The discretization algorithm is applied in the case of swarm intelligence metaheuris-
tics because both metaheuristics work naturally in continuous spaces. As input pa-
rameters, it uses the metaheuristic, MH , and the list of discrete solutions obtained
in the previous iteration, lSol. As an output, it returns a new list of discrete solutions,
lSol. As the first case, the discretization algorithm obtains the velocities of the MH .
This specifically corresponds to the component that modifies xt

i,j in Equations 5.8 to
5.10 . For example, in the case of Jaya, it corresponds to what is obtained from the
operation r1(xt

best,j− | xt
i,j | −r2(xt

worst,j− | xt
i,j |)).

Subsequently, a transfer function is applied that aims to bring the velocity values,
which can take values in R, to values between [0, 1). A v-shape transfer function have
been used in this study case, | tanh(v) |. With the obtained values lSolProbability,
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when applying the transfer function, each solution and dimension are considered,
and the value is compared with a random number r1 between [0,1). If the value
of lSolProbability is greater than the random number, an update occurs in that
dimension; otherwise, it is not modified. The update procedure has two possibilities:
a β value is considered, and a random number r2 is generated. If this r2 is less than
β, the value is replaced by the value of the best obtained so far for that dimension.
Otherwise, a random update is performed. This last option is intended to improve the
exploration of the search space.

Algorithm 1 Discretization algorithm

1: Function Discretization(lSol, MH)

2: Input lSol

3: Output lSol

4: vlSol← getVelocities(Lsol, MH)

5: lSolProbability ← appliedTransferFunction(vlSol)

6: for (each SolProbability in lSolProbability) do

7: for (each dimSolProbability in SolProbability) do

8: if dimSolProbability > r1 then

9: if beta > r2 then

10: Update lSoli,j considering the best.

11: else

12: Update lSoli,j with a random value allowed.

13: end if

14: else

15: Don’t update the element in lSoli,j
16: end if

17: end for

18: end for

19: return lSol
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5.3.3 Parameter tuning

The results obtained from the metaheuristics depend on their parameter values. Con-
sequently, a parameter selection process is needed to choose those that give the
best results for the objective function. This depends strongly on the optimization
problem. Therefore, different optimization problems will result in different parameter
values. The search for parameters that best fit the optimization problem is called
parameter tuning.

SAMO2 tuning

Depending on the metaheuristic, the parameter number varies. There are algorithms
with more parameters, such as SAMO2 than others with a smaller number. First,
searching for the best fitting ones can become a complex problem. Consequently,
existing procedures allow the researcher to get the most statistically significant pa-
rameters to focus the search on the variation of these. These procedures are called
Design of Experiments (DoE). In this case, a 2k fractional factorial design has been
carried out to get the SAMO2 parameter tuning.

In factorial designs, each factor level’s possible combinations are studied in each
trial or replication. This makes it possible to evaluate the change in response when
the level of the factor is varied. This variation is called the effect of the factor and
is related to its statistical significance [248]. Two levels need to be assigned to the
studied algorithm parameters to carry out this procedure. The studied parameters
and the levels are chosen are shown in Table 5.5.

Table 5.5: SAMO2 variables bound for DoE

Parameter Lower Bound (-) Upper bound (+)
MCL 100 1000
SD 0% 30%
VN 1 5
CC 0.80 0.95
UC 1 5

Because two levels are defined for each variable, 32 (25) runs are needed to get
a complete factorial design. Furthermore, five replications need to be considered
to get the average and the deviation for each experiment, obtaining 160 runs. To
reduce the number of runs, it has been decided to carry out a fractional factorial
DoE of resolution V. This reduces the number of runs to 80 because of the reduction
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of combinations to 16. A summary of the parameter value combinations is given in
Table 5.6.

Term

AD

CD

BC

AB

CE

E

AC

B

AE

BD

C

DE

BE

D

A

876543210

A MCL
B SD
C VN
D CC
E UC

Factor Name

Standardized Effect

1,998

Figure 5.5: Pareto chart of the standardized effects

DoE Minitab [249] software has been used to carry out the statistical analysis. For the
statistical analysis, the first-order interaction has also been considered. Accordingly,
in Figure 5.5, it can be seen that the parameters with more effect are MCL and CC. In
addition, the interaction between UC with SD and UC is also significant. The average
results of the five replicates for each of the 16 experiments are shown in Table 5.6.
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Table 5.6: Parameter values combination and results for DoE

MCL SD VN CC UC Cost (e) Time (s) %Desv %Min
1 - - - - + 4620844,60 1055,93 5,80% 20,61%
2 + - - - - 4033264,82 9833,70 7,46% 5,27%
3 - + - - - 5109179,62 989,63 3,37% 33,35%
4 + + - - + 3831318,29 9810,90 0,10% 0,00%
5 - - + - - 4609783,20 804,36 13,33% 20,32%
6 + - + - + 4088143,85 7819,85 7,90% 6,70%
7 - + + - + 4694176,90 787,77 11,78% 22,52%
8 + + + - - 4622308,95 7846,10 6,32% 20,65%
9 - - - + - 4164394,64 3043,06 11,89% 8,69%

10 + - - + + 3831268,79 28688,65 0,11% 0,00%
11 - + - + + 4430917,82 3252,46 10,75% 15,65%
12 + + - + - 3831788,82 28818,08 0,07% 0,01%
13 - - + + + 4743449,44 3182,93 9,49% 23,81%
14 + - + + - 3851070,22 30519,37 0,50% 0,52%
15 - + + + - 4463121,26 2977,47 13,46% 16,49%
16 + + + + + 3839681,73 26664,77 0,11% 0,22%

As can be seen in Table 5.6, the best results correspond to experiment number 10.
However, considering the cost and the optimization time, it can be observed that with
a worsening of 0.001% in the objective function, it can be got the result in 34.28%
less time if the parameters of experiment four are used. Furthermore, the deviation
between experiments ten and four is similar, 0.11% and 0.10%, respectively. Due to
the improvement in computation time and slight difference in deviation and objective
function value, the parameters chosen for the SAMO2 optimization correspond to
experiment four, as shown in Table 5.7.

Table 5.7: Parameter chosen for SAMO2 algorithm

MCL SD VN CC UC
1000 30% 1 0,8 5
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Swarm intelligence metaheuristics tuning

The methodology proposed in [250] was used in the selection of the parameters. To
obtain an adequate selection of the parameters, this methodology uses four mea-
sures defined by the Equations (5.11) to (5.14). GBestV alue corresponds to the
best value obtained from all executions considering all of the parameter settings.
BestV alue and WorstV alue correspond to the best and the worst value obtained
for a given parameter setting. The parameters and explored values are shown in Ta-
ble 5.8. In the Range column, the explored values are displayed for each parameter.
The Value column corresponds to the selected value. For the generation of values,
each combination of parameters was executed five times. For the calculation of the
best performance, each of the indicators is constructed to have values between 0 and
1. The closer to 1, the better the performance. These values are plotted on a radar
chart, and the area under the curve is calculated. The set of indicators that takes
the largest area corresponds to the best performance. To determine the number of
iterations, 600 and 800 iterations were considered. In the latter case, there were no
significant differences in the optimal, but it did have an important impact on the time
used.

1. The percentage deviation of the best value obtained compared to the best
known value:

bSolution = 1− abs(GBestV alue−BestV alue
GBestV alue

) (5.11)

2. The percentage deviation of the worst value obtained compared to the best
known value:

wSolution = 1− abs(GBestV alue−WorstV alue

GBestV alue
) (5.12)

3. The percentage deviation of the average value obtained compared to the best
known value:

aSolution = 1− abs(GBestV alue)−AverageV alue
GBestV alue

(5.13)

4. The convergence time for the best value:

nTime = 1− abs(convergenceT ime−minTime
maxTime−minTime

) (5.14)
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Table 5.8: Scanned parameters for swarm metaheuristics

Parameters Description Value Range
N Number of solutions 10 [10, 20]

Iteration Number Maximum iterations 600 [600, 800]
β Exploration-exploitation 0.8 [0.7, 0.8]

5.4 Results

5.4.1 Parameter tuning

In this section, the results obtained from the parameterization of the metaheuristics
are shown. It should be noted that SCA and Jaya have no necessary parameters
for their movements. In Figure 5.6, the results of the first four configurations are
shown. Of the four configurations, chart 2 and chart 3 have considerably worse
nTime indicators than the other two configurations. Graphs 1, 2, and 3 have similar
values for aSolution, wSolution, and bSolution. Therefore 1 has a better performance
than the other two. When comparing 1 with 4, we see that nTime is similar, however,
1 is superior in the other indicators, with which the configuration N = 10, iteration =
600, and β = 0.8 was chosen.

5.4.2 Cost minimization metaheuristic comparison

This section aims to describe and analyze the results obtained by the SAMO2, dis-
crete Jaya, and discrete SCA algorithms. For an adequate analysis, descriptive
statistics are used together with boxplot visualizations. Additionally, the Kolmogorov-
Smirnov-Lilliefors and the signed-rank Wilcoxon statistical tests are used to deter-
mine the statistical significance of the results. These tests were chosen according to
the statistical methodology shown in Figure 5.7, [251], [252].

In this research work, 30 executions were used. The choice of 30 cases is related
to the conditions for the statistical methods to be reliably applicable. Particularly
according to [253], in the case of the parametric statistical test n > 30 is suggested.
On the other hand, in the case of the Wilcoxon test, the minimum value is 15, [254].
However, the value of 30, in the case of non-parametric tests, is widely used in cases
of comparison of algorithms in the area of computer science and operations research.

The results of the 30 executions of each of the algorithms are shown in Table 5.9,
with the settings selected for the problem of minimizing the cost of the structure. The
Cost column corresponds to the minimum value obtained in the execution. Column
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Figure 5.6: Adjustment of swarm parameters by means of radar chart

CO2 corresponds to the value of emissions of CO2 for the minimum cost structure
obtained. The time corresponds to the time required to obtain the minimum.

When analyzing the table, it can be observed that the best value was obtained with
the SAMO2 algorithm with a cost of 3826142 e, followed by the minimum obtained
by SCA of 3829666 e. However, on average, SCA is systematically higher than
SAMO2, obtaining an average value for the 30 executions of 3850445 e, whereas
SAMO2 got 3870302 e. The Jaya algorithm was quite a bit further away with an av-
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Figure 5.7: Statistical methodology

erage of 4175991 e. When applying the Kolmogorov-Smirnov-Lillefors test and later
the Wilcoxon test, it can be seen that the difference between SCA and SAMO2 is sig-
nificant. In Figure 5.8, it has been compared the cost minimization boxplots obtained
by the different algorithms. It has been observed that in the case of SAMO2 and
SCA, the interquartile range is very similar; however, SAMO2 has a significant num-
ber of outliers. The latter observation reinforces the robustness of SCA concerning
SAMO2.
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Table 5.9: Cost minimization results for 30 executions of SAMO2, discrete Jaya and discrete SCA
algorithms

SAMO2 Discrete Jaya Discrete SCA
Run Cost (e) CO2 (kg) Time(s) Cost (e) CO2 (kg) Time(s) Cost (e) CO2 (kg) Time(s)

1 3829112 9393007 9196 4143961 10114677 7842 3854631 9441993 7497
2 3845663 9422139 7590 4768396 11451567 7010 3841685 9423182 7822
3 3829828 9390570 9687 4274386 9681541 5682 3868348 9487298 7890
4 3834439 9395042 9719 4167039 9494257 7700 3837468 9411814 7635
5 3836721 9393995 9431 4296276 9832819 7863 3863494 9467940 7786
6 3832833 9394394 9198 3966049 9664702 6634 3838032 9396761 7795
7 3837599 9398873 9291 3867355 9439086 6690 3835377 9395270 7318
8 3841418 9408629 9271 3923888 9536557 7945 3839078 9400419 7876
9 3826260 9391263 9226 3942003 9495904 7704 3844805 9422679 7832
10 3837246 9398956 9691 3862458 9465666 5887 3867325 9485202 7880
11 3838964 9399137 9507 4193812 9480247 6545 3833502 9406118 7557
12 3844258 9420046 9669 4507870 10273813 7231 3840298 9419024 7904
13 3840202 9408438 9557 3900545 9469228 6024 3844078 9432582 7509
14 4701903 11582022 9857 3919121 9538184 7932 3848079 9419256 7790
15 4004603 9837622 9957 4191451 10219877 7916 3920211 9618810 7821
16 3837030 9407815 9504 4426445 10272926 7568 3840156 9402993 7886
17 3838077 9398395 9706 3988854 9625319 7738 3851332 9451619 7740
18 3826143 9389610 9794 4628723 10388171 7639 3829666 9398361 7905
19 3836306 9393541 9326 3884798 9425667 7015 3844407 9425169 7902
20 3829965 9397333 9913 4260373 9525527 7995 3853756 9458527 7736
21 3834064 9395196 9591 4704005 11472333 6842 3846266 9424806 7922
22 3838869 9397516 9535 3953660 9626126 7902 3856002 9455145 7502
23 3840493 9410517 9239 4363499 9990653 7275 3858728 9455868 7583
24 3836563 9399930 9618 4589899 10380952 7753 3839780 9410778 7904
25 3833027 9394227 9495 4025218 9846483 3307 3866162 9481381 7730
26 3834233 9397504 9413 4133015 9433096 7848 3853062 9444842 7790
27 3845712 9417868 9566 3889122 9532552 7550 3867166 9474659 7781
28 3832970 9403292 9985 4116324 9418032 7931 3847715 9447151 7552
29 3829559 9389435 8800 4482044 10843764 7022 3844695 9425683 7660
30 3834992 9398076 9775 3909149 9511426 6425 3838057 9417710 7891

average 3870302 9487480 9470 4175991 9881705 7147 3850445 9440101 7747
Wilcoxon 0.012 0.0012 1.92e-06 4.29e-06
p-value
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Figure 5.8: Cost boxplots for SAMO2, Jaya, and SCA Algorithms

The computational time required by each algorithm to find the minimum is another
interesting variable to analyze. In this case, the best time was obtained by Jaya with
a value of 3306, but with very bad values (probably due to the fast convergence of
the algorithm). In a comparison between SAMO2 and SCA, it is seen that it con-
sistently performs better in all SCA executions. SCA gets an average time of 7747
seconds and SAMO2 9470 seconds. Additionally, Figure 5.9 shows the histograms
of the convergence times for the three algorithms. The SAMO2 histogram is shifted
towards higher values, getting the worst performance. In the case of Jaya, a much
more dispersed histogram reinforces the possibility of a fast convergence that implies
bad results in the optimization. In the case of SCA, a much less dispersed histogram
is obtained than the previous ones, with values mainly between 7500 and 7900. Fi-
nally, when the emission values associated to cost optimization results are analyzed,
a clear correlation is founded between cost and CO2 optimization. Therefore, the de-
signs minimized by SCA also obtain minimum emission values of CO2. On average,
SCA got emissions of 9440101 and SAMO2 of 9487480 kg of CO2.
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Figure 5.9: Time histogram for SAMO2, Jaya, and SCA Algorithms

The results obtained from cost optimization show that SCA gets the best results in
cost and computation time compared with Jaya and SAMO2. Accordingly, SCA re-
sults have been considered for the cost optimization analysis. Furthermore, the cor-
relation between cost and CO2 optimization in these algorithms is consistent with the
results obtained in other bridge optimization works. Because of this relationship be-
tween both targets, the same algorithm parameters have been chosen to get results
for CO2 optimization.

5.4.3 Insight into the discrete algorithm

This section aims to investigate some features of the procedure given in Algorithm
1. The first attribute to investigate relates to the transfer function application in
line 5 of the algorithm. Particularly, it is desired to determine whether the trans-
fer function contributes to the discretization procedure. This is accomplished by
replacing the transfer function with a uniform random operator that generates val-
ues between 0 and 1. In addition, line 8 of the algorithm configures two values for
dimSolProbability. The first value is set to 0.5 (Random0.5), corresponding to a
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50% chance of executing a transition. The second value is set to 0.7 (Random0.3),
corresponding to a 30% chance of executing a transition. The results are presented
in Table 5.10. The table shows that, on average, the values obtained by Discrete
SCA are higher than those obtained by the random operator for its different param-
eters. In particular, it was 0.75% higher than Random 0.3 and 0.86% higher than
Random 0.5. The same situation occurs when analyzing the maximums; in the case
of the Random operator, these are greater than in the case of SCA. The standard
deviation also shows a considerable difference, where the dispersion of the random
operator has values close to 55,000, and in the case of SCA, it is 17,048. Finally, the
execution times are quite similar in all cases.

A second experiment involves the parameter beta used in line 9 of the Algorithm 1.
This parameter has to do with exploration and exploitation. If the criterion is met,
the update considers the best solution; otherwise, a random update is carried out.
In addition to the value used (0.8), the values 0.5 and 0.3 were also investigated.
The outcomes are shown in Table 5.11. According to the averages, the parameter
with the best outcome was 0.8. This holds true when examining the maximum. In
the event of the minimum, SCA 0.3 earned the best value, but SCA 0.8 was not
far behind. Another notable result is the value of the standard deviation, which is
significantly lower for SCA 0.8, indicating higher stability in locating the optimal ones.
This is also associated with the convergence times. In the case of SCA 0.5 and 0.3
are considerably less than 0.8, but their dispersion is greater. All of the above points
to a decrease in the stability of the algorithm when using these parameters.
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Table 5.10: Cost minimization results for 30 executions of Random 0.3, Random 0.5 and discrete
SCA algorithms

Random 0.5 Random 0.3 Discrete SCA
Run Cost Time (s) Cost Time (s) Cost Time (s)
1 3841686 7545 3854631 7435 3854631 7497
2 3838057 8121 3841686 7893 3841685 7822
3 3856002 6979 3868348 7113 3868348 7890
4 4004604 7985 4041118 8001 3837468 7635
5 3837585 6922 3863494 6893 3863494 7786
6 3920211 8021 4009757 8021 3838032 7795
7 3863494 7215 3835377 7325 3835377 7318
8 4004604 7498 3973917 7568 3839078 7876
9 3920211 8210 3844806 7901 3844805 7832
10 3867325 7646 3938024 7924 3867325 7880
11 3920211 7645 3912499 7235 3833502 7557
12 3847798 8024 3840298 8024 3840298 7904
13 3844078 7644 3847990 7701 3844078 7509
14 3848079 7891 3844078 7903 3848079 7790
15 3927551 7798 3920211 7923 3920211 7821
16 3853756 7234 3847713 8002 3840156 7886
17 3854631 8102 3851332 8115 3851332 7740
18 4004604 7744 3829666 6903 3829666 7905
19 3844695 7894 3844407 7745 3844407 7902
20 3840156 7745 3853756 7801 3853756 7736
21 3858728 7875 3846266 7932 3846266 7922
22 3846266 7534 3856002 7345 3856002 7502
23 3868348 7655 3858728 7792 3858728 7583
24 3853062 7943 3930520 8002 3839780 7904
25 4004604 7653 3866162 7755 3866162 7730
26 3920211 7897 3853062 7932 3853062 7790
27 3844407 7746 3867166 7743 3867166 7781
28 3847874 7653 3847715 7510 3847715 7552
29 3851332 7695 3844695 7655 3844695 7660
30 3867166 7894 3938024 8032 3838057 7891
Average 3883378 7714 3879048 7704 3850445 7747
Max 4004604 8210 4041118 8115 3920211 7922
Min 3837585 6922 3829666 6893 3829666 7318
std 55639 312 54164 340 17048 159
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Table 5.11: Cost minimization results for 30 executions of Discrete SCA 0.8, Discrete SCA 0.5 and
Discrete SCA 0.3 algorithms

Discrete SCA 0.8 Discrete SCA 0.5 Discrete SCA 0.3
Run Cost Time (s) Cost Time(s) Cost Time(s)
1 3854631 7497 3843524 5676 3852498 5621
2 3841685 7822 3845599 5894 3851261 4947
3 3868348 7890 3832283 6109 3859721 5076
4 3837468 7635 3829373 5964 3854194 5938
5 3863494 7786 3840952 5826 3870990 5367
6 3838032 7795 3839057 6028 3849196 3840
7 3835377 7318 3849643 5444 3839412 4984
8 3839078 7876 3839271 5470 3850429 3134
9 3844805 7832 3839664 6062 3857432 5189
10 3867325 7880 3840787 5122 3847051 5963
11 3833502 7557 3845540 2349 3851258 5992
12 3840298 7904 3844938 5631 3876165 5515
13 3844078 7509 3834878 5901 3861690 5767
14 3848079 7790 3846365 5554 3852585 4235
15 3920211 7821 3833527 4493 3859730 3051
16 3840156 7886 3827056 5701 4056478 4554
17 3851332 7740 4029735 6070 3840542 6077
18 3829666 7905 3846775 5445 3855213 5681
19 3844407 7902 3834013 5946 3859171 5079
20 3853756 7736 3838546 5027 3841768 5056
21 3846266 7922 3838290 5659 3853698 4084
22 3856002 7502 3833359 4896 3875181 4084
23 3858728 7583 3846665 5643 3844489 2744
24 3839780 7904 3849429 5611 3858573 5245
25 3866162 7730 3841566 5998 3845703 6115
26 3853062 7790 3830238 6047 3842629 4220
27 3867166 7781 3856881 6057 3840573 5631
28 3847715 7552 4158713 6045 3862079 5616
29 3844695 7660 3832127 5833 3843622 3737
30 3838057 7891 3848890 4531 3864325 4549
Average 3850445 7747 3862589 5834 3865589 5170
Max 3920211 7922 4158713 6109 4056478 6115
Min 3829666 7318 3827056 2349 3839412 2744
std 17048 159 66973 746 38284 997
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5.4.4 Optimization results

This work has compared both cost and CO2 single objective optimizations of a contin-
uous box-girder steel-concrete composite bridge of 220 m with three spans divided
in 60, 100 and 60 m length. As stated earlier, and backed by data obtained from
the algorithm comparison, the results correspond to SCA optimization. In total, 30
algorithm runs have been carried out to perform a statistical analysis of the results
obtained. To get results from CO2 emission, the same procedure as in cost opti-
mization has been used while considering CO2 emissions as the objective function.
Because the optimization problem is similar, the same algorithm parameters have
been applied for the CO2 target.

This section gives the bridge variables values obtained considering cost and CO2 as
two single objective optimizations while briefly comparing both results. Furthermore,
cost and CO2 relation for both optimizations is shown in Figure 5.16, while in Figures
5.14 structural and reinforcement steel amounts have been shown for both cost and
CO2 optimizations best results. In section 5.5, a more extensive discussion of these
results is provided.

The first results are related to the material’s resistance, reinforcement, and shear
connector diameter. For cost optimization results, concrete compressive strength
(fck) and yield stress for structural steel (fyk) correspond to 25 and 275 MPa for
all individuals. However, for CO2 optimization, the value of steel yield (fyk) shows
greater dispersion. The best individual has a 355 MPa value, as can be seen in Ta-
ble 5.12. Reinforcement diameters (ϕbase, ϕr1 and ϕr2 ) obtained from optimization
correspond to 6 mm for both base and reinforcement layers. Consequently, optimiza-
tion gets three reinforcement layers on the top slab. Regarding shear connectors, as
in reinforcement bars, the optimization gets both lowest diameter (ϕsc) and connector
length (hsc). For CO2 the optimization results show the same results.

Once the materials have been defined, the results from the geometrical variables are
obtained. Steel beam depth (hb), web angle (αw) and distances between transverse
stiffeners (dst) and diaphragms (dsd) are shown in Figure 5.10. It should be empha-
sized that the thickness of the upper (hs) and lower (hs2 ) concrete slabs gives the
same result for both optimizations and takes the minimum possible value of 0.20 and
0.15 m, respectively. Meanwhile, CO2 optimization gets higher beam depths (hb),
and stiffener (dst) and diaphragm (dsd) distance values than cost. The next variable
values are related to the webs and flanges of the cross section. As can be seen
in Figure 5.11, CO2 takes a higher range of values than cost for both width (bf1 )
and thickness (tf1 ) of the upper flanges; while for webs (tw) and lower flange (tf2 ),
thickness gets lower values.
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Figure 5.10: Cross section geometrical variables for cost and CO2 optimization
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Figure 5.11: Flanges and web variables for cost and CO2 optimization
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As stated in Section 5.2.2, and in accordance with Figure 5.1, the cross-section of
this optimization problem involves the inclusion of four cells: two uppers and two
lower. The aim of these cells is to improve structural cross-section behavior, which
allows better values of the objective function to be obtained. Figure 5.12 shows the
results obtained for cell variables (hc1 , tc1 , hc2 , tc2 , bc2 ). It should be noted that
the algorithm is left to eliminate these cells by allowing them to take a null value in
variables that define its geometry. As can be seen in Figure 5.12, both optimization
objectives get values larger than zero for cell variables. It can be observed that CO2

optimization gives in average lower values for upper cell height (hc1 ) and thickness
(tc1 ). Meanwhile, for lower cells, although the average value of the results obtained
is similar, the cost optimization gives a wider range of values for variables of this
element (hc2 , tc2 , bc2 ).
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Figure 5.12: Cell variables results for cost and CO2 optimization

Figure 5.13 gives the floor beam variables results. As can be seen in this figure,
and consequently with results in Figure 5.10, CO2 optimization gives higher values
of depths (hfb) and widths (bfb) due to the higher distances between diaphragm
sections, where these floor beams are materialized. Against that, thicknesses (tffb

,
twfb

) values are similar in both optimizations.
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Figure 5.13: Floor beam variables results for cost and CO2 optimization

Finally, the results from material amounts and cost are represented in Figures 5.14
and 5.16, respectively. The first figure shows that the cost target function gives higher
values for rolled steel and lower values for reinforcement steel in slabs. However, CO2

optimization gives the opposite result. The first part of Figure 5.14 gives boxplots
that show the values reached by the 30 individuals obtained from the algorithm runs.
In the second part, the trajectory of steel amounts has been represented for the
best individuals obtained from cost and CO2 optimization. Regarding the relationship
between cost and CO2 obtained in Figure 5.16, it can be seen that there is a clear
relationship between both criteria for cost optimization. For this case, a straight line
with equationCO2 = 2.5144·Cost−241, 642 with aR2 = 0.98 expresses a good fit
of the straight line. By applying cost optimization for each euro reduced, a reduction
of 2.5144 kg of CO2 is obtained by applying heuristic optimization techniques. In
contrast, for CO2 optimization for the same cost, there is a large dispersion between
the CO2 values obtained. This difference between cost and CO2 objective functions
optimization is shown in figure 5.15. In this figure, cost and CO2 trajectories have
been plotted for the best individual of both optimization objectives. It can be seen
that when optimizing cost, both cost and CO2 amounts decreases following the same
trend. However, when the objective function is CO2 , cost have a high variation during
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the optimization getting a clear difference in terms of cost at the end. Furthermore,
in Table 5.13 the lowest values for ULS and SLS constraints have been shown.
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Figure 5.14: Reinforcement bars and structural steel amounts for both optimization objectives
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Figure 5.15: Cost and CO2 variation during the optimization process for both optimization objective
functions
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Table 5.12: Design variables results for best individual and minimum and maximum values

Cost optimization CO2 optimization
Variables Unit Best Min Max Best Min Max

b m 7 7 7.16 7 7 7
αw deg 63 46 86 65 45 84
hs mm 200 200 200 200 200 200
hb cm 312 250 388 298 255 384
hfb mm 430 400 610 400 400 610
tf1 mm 70 25 74 34 25 79
bf1 mm 780 300 780 350 300 780
hc1 mm 440 70 820 420 0 800
tc1 mm 21 16 23 16 16 24
tw mm 16 16 25 16 16 28
hc2 mm 80 0 860 630 10 800
tc2 mm 16 16 25 20 16 25
bc2 mm 310 300 700 300 300 610
tf2 mm 25 25 70 27 25 60
hs2 mm 150 150 180 150 150 240
nsf2

u 0 0 0 0 0 0
dst m 1 1 4.3 1.6 1 5
dsd m 4.3 4 9.3 4.7 4 9.5
bfb mm 300 200 900 200 200 1000
tffb

mm 28 25 35 28 25 34
twfb

mm 27 25 35 31 25 34
nr1 u 200 200 439 259 200 446
nr2 u 337 200 431 403 200 424
ϕbase mm 6 6 8 6 6 6
ϕr1 mm 6 6 6 6 6 6
ϕr2 mm 6 6 6 6 6 6
sf2* mm 270 200 600 330 200 600
sw* mm 400 200 600 200 200 550
st* mm 360 200 550 500 200 600
hsc mm 100 100 100 100 100 100
ϕsc mm 16 16 22 16 16 22
fck MPa 25 25 25 25 25 25
fyk MPa 275 275 275 355 275 460
fsk MPa 500 500 500 500 500 500

* Values of the standard series of IPE profiles [239]
Note: Min and Max correspond to the maximum and minimum values
obtained. Best correspond to the value obtained for the best individ-
ual.
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Table 5.13: Lower checking coefficients values obtained from for both cost and CO2 optimization
best individuals

Contraints Cost CO2

ULS
Flexure 1.132 1.476
Flexure-shear interaction 1.155 -

SLS
Stress in steel 1.768 1.831
Stress in concrete 1.817 1.793
Note: This checking coefficients correspond to the ex-
pression that compares the design stresses and the re-
sistant ones defined in equation 5.3

5.5 Discussion

In this section, the results shown in section 5.4.4 will be discussed. These results
have been compared with earlier optimization studies of [97] and [109], where box-
girder SCCB has been optimized. As can be seen in Table 5.12, the concrete strength
(fck) obtained from both cost, and CO2 optimizations is 25 MPa. This concrete
strength value is a result of the high inertia of the resistant section in compressed
zones that make the concrete compression lower than the strength limit defined by
regulations [26], [238]. For steel, the value obtained by cost optimization is unusual.
For structural steel in bridges, the expected value is 355 MPa, as in [97]. This reduc-
tion in yield stress (fyk) makes a difference between a traditional design between a
cost optimization design. Meanwhile, [109] used 275 MPa steel for the bridge solu-
tion. Moreover, if the CO2 optimization is analyzed, it can be observed that the best
individual takes a 355 MPa value for yield stress (fyk). This is produced because
there is no difference in CO2 emissions between different yield stress; consequently,
taking higher resistance steel does not increase the value of the objective function.
This higher value allows to use less material due to the higher steel resistance. Re-
garding reinforcing bars steel, it can be seen that the results given for both optimiza-
tion objectives are yield stress (fsk) of 500 MPa, which is the usual value for concrete
structures [25], [242]. Continuing with reinforcing bar analysis, it can be seen that the
optimization always gets a 6 mm diameter. The program can add up to three layers
of reinforcement to the top slab. The optimization algorithm uses this possibility to
adjust as far as possible the reinforcing needs, decreasing the bar diameter as a con-
sequence. For shear connectors, it can be seen that the program takes the lowest

120



5.5 Discussion

boundary values for both heights (hsc) and diameter (ϕsc) in cost and CO2 emissions
optimization of best individuals.

Next is the analysis of the main cross-section variables. It can be seen in Section
5.4.4 that cost optimization, in general, gets lower deck depth values compared with
CO2 optimization. Moreover, the CO2 best optimization individual gets a greater
web angle (αw), which leads to a higher value of the bottom flange, obtaining a
higher value of steel amount. Regarding top flanges, the results in Figure 5.11 are
confirmed in Table 5.12. CO2 obtains lower values of width (bf1 ), and it is observed
that this plate thickness (tf1 ) also takes a lower value than cost.

Table 5.14: Cost and emissions for the best individual of both optimization objectives

Cost optimizatión CO2 optimization
Material Unit Measurement Cost (C) CO2 (kg) Measurement Cost CO2

Concrete m3 528 46918 (1.2%) 135516 (1.4%) 528 46918 (1.1%) 135516 (1.4%)
Structural Steel kg 2064029 3550130 (92.7%) 8937246 (95.1%) 2061655 3814062 (93.1%) 8926966 (95.1%)
Reinforcement Steel kg 57328 80259 (2.1%) 40130 (0.4%) 59668 83535 (2.0%) 41768 (0.4%)

Total 3829666 9398360 Total 4096922 9389721

One of the aims of this study has been to analyze if cells added to the cross-section
help reduce costs and emissions. It can be stated that this is true. The values from
the cell variables show that their values are not zero in every case. Therefore, cells
improve the structural behavior of the cross-section because they allow buckling of
the plates to be controlled by reducing the distances between elements without stiff-
ening. These elements allows to add a more resistant section and become longitudi-
nal stiffening elements. The opposite occurs for bottom flange longitudinal stiffeners.
If the values shown in Table 5.12 are observed, then, in every case the value of this
element’s number (nsf2

) takes the value of zero. This may lead to a contradiction
because these elements prevent the lower flange from buckling when compressed
(i.e., in the support areas on piles). But if the results of this research are compared
with [109], then it can be seen that in his study, he obtains the same result. In this
optimization case, it is logical to obtain this result because, in sections subjected to
sagging, a lower slab materializes that works in compression and do not allow the
plate’s buckling. Furthermore, in hogging sections (i.e., in span centers), this plate’s
main effort is tension and, therefore, buckling will not occur. Moreover, the center
part of the bottom flanges is not taken into account for the strength calculation of
the section due to the shear lag reductions imposed by the standards [26] used for
the calculation. In [97], where a topological optimization is carried out, the material
in these bottom flange areas is removed because it exceeds the maximum working
stress.

Finally, material amounts and objective function values obtained have been ana-
lyzed. The material summary results are shown in Table 5.15, while cost and CO2
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emissions are in Table 5.14. The relation between both objective functions have been
represented in Figure 5.16. As stated in Section 5.4, there is a clear relationship be-
tween cost and CO2 optimization when choosing cost as the objective function, while
on the contrary, it is not. This is due to the equality between different steel grade
emissions in data obtained from BEDEC database [207]. This allows the CO2 op-
timization process to obtain different yield stress values for structural steel without
producing major variations in its target function, but on the higher ones in terms of
cost. This contrast with related traditional concrete bridges optimization works [166],
[175] where it is found that both cost and CO2 optimization leads to the optimization
of the other.

Table 5.15: Material amount summary for both optimization objectives

Cost optimization CO2 optimization
Material Unit Best Min Max Best Min Max
Concrete m3 528 528 528 528 528 528

Structural Steel kg 2064029 2062333 2114520 2061655 2061656 2083789
Reinforcement Steel kg 57328 56161 66184 59668 56566 72530

Cost e 3829666 3829666 3920211 4096922 3828450 4443057
CO2 kg 9398360 9395269 9618810 9389721 9389721 9489469

Note: Min and Max correspond to the maximum and minimum values obtained. Best correspond to the value obtained
for the best individual.

5.6 Conclusions

In this article, the design of a Steel-Concrete Composite Bridge has been consid-
ered. This design has considered the analysis of costs and emissions of CO2 . The
proposed bridge considers 34 discrete variables that correspond to 1.38·1046 combi-
nations. A discretization method was proposed through the use of transfer functions,
which was applied to the SCA and Jaya metaheuristics. To evaluate the method,
they were compared with SAMO2, which has previously solved structural problems
efficiently. The results showed that discrete SCA was the one that obtained the best
results both in the optimization values and in the execution times. SCA was 24.5%
faster than SAMO2 and in the case of cost optimization, considering the average,
SCA obtained 0.5% lower values than SAMO2.

Subsequently, SCA was used to compare cost and CO2 optimizations. Regarding the
results obtained, it was observed that in both optimizations bottom flange stiffeners
has been removed due to the double composite action of concrete slabs on supports.
Furthermore, the use of inner cells in the bridge cross-section has been considered.
These cells improve the section stress resistances and reduce the distance between
non-stiffened areas in steel plates. In addition, there is a clear relationship between
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cost and CO2 optimization. In this case, it can be observed that one euro decrease in
cost translates into 2.5144 kg of CO2 reduction when applying heuristic optimization
techniques.
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Abstract

Composite bridge optimization might be challenging because of the significant num-
ber of variables involved in the problem. The optimization of a box-girder steel–concrete
composite bridge was done in this study with cost and CO2 emissions as objective
functions. Given this challenge, this study proposes a hybrid algorithm that integrates
the unsupervised learning technique of k-means with continuous swarm intelligence
metaheuristics to strengthen the latter’s performance. In particular, the metaheuris-
tics sine-cosine and cuckoo search are discretized. The contribution of the k-means
operator regarding the quality of the solutions obtained is studied. First, random op-
erators are designed to use transfer functions later to evaluate and compare the per-
formances. Additionally, to have another point of comparison, a version of simulated
annealing was adapted, which has solved related optimization problems efficiently.
The results show that our hybrid proposal outperforms the different algorithms de-
signed.

Keywords: combinatorial optimization; bridge; metaheuristics; composite structures;
k-means

6.1 Introduction

Bridge optimization is an interesting problem to address both because of the techni-
cal challenges that the problem presents and because of the potential applications in
reducing costs, CO2 emissions, and energy consumption. The technical difficulties
are related to the large number of discrete variables required in its design and the
complex objective functions and restrictions that these must satisfy [94]. Due to the
more significant number of variables necessary for their design, Steel-Concrete Com-
posite Bridges (SCCB) present a considerable challenge. According to the SCCB
literature, they can be classified into three groups according to their cross-section:
Plate-beam, Twin-Girders, and Box-Girder [25], and their behavior are different be-
tween these types.

Due to the type of objective function and the constraints used in structural design
problems, metaheuristics (MH) have had good results in optimizing structures. These
techniques have been applied in steel structures [255], arch bridges [256], [257] or
reinforced concrete columns [258] among others. In some studies, metaheuristic has
been applied as first optimization step for topological optimization [259] due to the
computational cost of this last method [97]. In particular, metaheuristic techniques
have performed well in addressing complex SCCBs optimization [189]. For example,
in [109] a discrete harmony search algorithm was proposed and applied to the design
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of multi-span composite box girder bridges. In the article, the authors obtained a 15
% reduction of materials when compared to a traditional design. In [103], a two-stage
based optimization methodology is developed for the design of simply supported
steel-concrete composite I-girder bridges. In the first stage, a simplified structural
model based on expert criteria is developed and used with the aim of providing a
starting point for the local search. In the second stage, a search group algorithm is
chosen based on statistical analysis. The proposed method was shown to reduce
the structural cost by up to 9.17%. Three metaheuristic algorithms were studied in
[110] and used for reaching the optimal design of steel-concrete composite i-girder
bridges. The algorithms used were Collision Bodies (CBO), Collision Body Enhanced
Optimization (ECBO), and Vibration Particle System (VPS). Among the results, it was
obtained that the final optimized design does not need longitudinal stiffeners.

Despite the excellent performance of metaheuristics and the large size of many com-
binatorial problems, the strengthening of metaheuristics is also necessary. Among
the different strategies to strengthen the metaheuristics, the hybrid methods have
stood out. Several of the most frequently utilized hybridization techniques, include
hybrid heuristic, [260], where different metaheuristic algorithms are combined to en-
hance their capabilities. Mateheuristics, [261], where mathematical programming
methods are integrated with metaheuristics techniques. Simheuristics, [262], which
encompass a combination of simulations with metaheuristic modeling.

Metaheuristics generate important ancillary data in the solution search process, which
can be exploited by machine learning methods. This opens a line of research in
which machine learning techniques can be integrated into metaheuristic algorithms
to strengthen the performance of the latter.

When searching for integration types in which machine learning techniques improve
the performance of metaheuristic algorithms, three main categories are found. Low-
level integrations, high-level integrations, and optimization problems [263], [264]. In
the case of the hybrid algorithm proposed in this article, the type of integration de-
signed is a low-level integration. The low-level integrations involve local search oper-
ators, population initiation, binarization, parameter control, in which ML approaches
improve particular operators of the MH algorithm. For example in parameter tuning,
in [265], an iterated racing method was employed; a reset mechanism was combined
with an elitist procedure (to assure the optimal configuration), and the use of a trun-
cated sampling distribution to allow for automated parameter setting. Decision trees
were utilized in [266] to modify particular parameters in the traveling salesman prob-
lem. Compared to fixed parameter values, the decision tree technique improved the
quality of the solutions and the computing time. Another case of low-level integration
is used to initialize solutions. For the shop scheduling problem [267], decision trees
were utilized to produce early solutions for new instances, in conjunction with Op-
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position Based Learning (OBL), to begin complementary solutions. Reinforcement
Learning (RL) and other approaches can also be utilized to create solutions. In these
situations, the solution building may be thought of as a series of additions of deci-
sions, for which an RL algorithm can be trained. For example, a Deep Q-network
was constructed and utilized for the optimization of the Job-Shop Scheduling Prob-
lem [268]. Similarly, in [269], transfer learning approaches were utilized to generate
initial solutions using three evolutionary multi-objective algorithms and applied to 12
benchmark functions. Finally, another successful application of low-level integration
has been used to generate binary versions of algorithms that work on continuous
spaces.

Another essential field of study is the creation of binary versions of algorithms that
function in continuous areas naturally. There are some examples of ML and meta-
heuristics working together in this field. The K-means approach was utilized to build
binary versions of the cuckoo search algorithm (CS) and used to the matrix cover-
ing problem in [270]. For the multidimensional knapsack problem, in [271] a hybrid
algorithm using k-means as the binarization method and KNN as the local search
operator is proposed. The hybridization between metaheuristic techniques with the
aim of improving the convergence or quality of the solutions is another interesting line
of low-level integration. In [272], the hybridization of hybrid metaheuristic algorithms
was proposed with the aim of addressing the optimal dimensioning of steel beam
structures with numerous discrete variables. The numerical results indicate that the
hybrid algorithm of adaptive dimensional search and exponential big bang-big crunch
is the most promising of the techniques investigated. In [273], it is integrated the
convergence curve of each subsequent execution of the algorithm in relation to the
information gained from prior executions. It is monitored at specified times during
each subsequent execution, referred to as the solution monitoring period. The solu-
tion monitoring period is chosen in such a way that each run allows the algorithm to
explore the search space in order to increase the quality of the solution, while also
periodically forcing the algorithm to return to the most promising prior visit. If it is
unable to improve the solution after a specified number of iterations, it will terminate.
Numerical investigations with tough test examples containing up to 354 design vari-
ables reveal that, in general, the proposed approach improves the solution quality
and the robustness or stability of the outcomes in metaheuristic structure optimiza-
tion.

Following this last line of generating binary versions to efficiently solve binary opti-
mization problems. In this article, the integration method has been adapted to ad-
dress discrete problems. In particular, a discrete hybrid algorithm is proposed. This
algorithm incorporates the k-means technique into the discretization solution phase
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of continuous swarm intelligence metaheuristics. The contribution of this work in-
cludes:

• In this study, a cost, and CO2 emissions optimization of a 60-100-60 three-span
single box-girder steel-concrete composite bridge has been performed.

• It should be noted that it considers 35 design variables on average 55 possible
choices for each variable, which implies a computationally demanding struc-
ture.

• A discrete hybrid k-means swarm intelligence algorithm is proposed, and the
contribution of the k-means technique to the robustness of the algorithm is
studied. In particular, it should be noted that in previous works [250], [271],
k-means has been used to solve binary optimization problems, that is, whether
the variable is present or not. In the optimization developed in this article, the
technique was adapted to allow more than two states for each of the variables.

• The results of the hybrid algorithm are compared with discrete simulated an-
nealing that has been efficient in solving related problems [173], in addition to
considering the comparison with algorithms that perform discretization through
transfer functions that are frequently used to binarize or discretize solutions
[274].

A brief content structure of the following sections: In Section 6.2, the box-girder steel-
concrete composite bridge problem is detailed. Later, in Section 6.3, the discrete
k-means swarm intelligence algorithm is developed. Our numerical experiments and
comparisons are detailed in Section 6.4. Finally, in Section 6.5, the conclusions and
future lines of research are discussed.

6.2 The Optimization problem and computational model

This section aims to define and detail the optimization problem. In the case of
bridges, there are different objective functions to be minimized, among which there is
a particular interest in the costs of the bridge and the CO2 emissions released in the
manufacture of its materials. In this work, two mono-objective functions are defined.
The first shows the bridge’s overall cost, which is formalized in Equation 6.1 and
is calculated by multiplying the unit cost of each material ci, multiplied by the units
used, mi. In the case of CO2 emissions, the calculation is similar to the previous
one, with the difference that instead of considering cost, the emissions ei considers
cradle-to-gate analysis for each unit of material i multiplied by the amount of ma-
terial i used. The emissions calculation is formalized in Equation 6.2. For the cost
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Table 6.1: Cost and CO2 emission values

Unit Cost (e) Emissions (kg of CO2)
m3 of concrete C25/30 88.86 256.66
m3 of concrete C30/37 97.80 277.72
m3 of concrete C35/45 101.03 278.04
m3 of concrete C40/50 104.08 278.04
m2 of precast pre-slab 27.10 54.98

kg of steel B400S 1.40 0.70
kg of steel B500S 1.42 0.70

kg of rolled steel S275 1.72 4.33
kg of rolled steel S355 1.85 4.33
kg of rolled steel S460 2.01 4.33

kg of shear-connector steel 1.70 2.8

function, the values from Table 6.1 are used, which were obtained from the Construc-
tion Technology Institute from Catalonia by the BEDEC database [207]. Finally, the
bridge design process is subject to constraints imposed by expert recommendations
and regulations related to the standard. Generically, these are shown in Equation
6.3.

C(x⃗) =
n∑

i=1

ci ·mi(x⃗) (6.1)

E(x⃗) =
n∑

i=1

ei ·mi(x⃗) (6.2)

G(x⃗) ≤ 0 (6.3)

For the description of the problem, the variables, parameters, and constraints of the
problem will be considered. In the case of variables, they correspond to the values
modified in the optimization procedure to achieve the optimum. In the case of param-
eters, they are values that are considered fixed in the optimization, and that usually
represent boundary conditions. Finally, the constraints are imposed by regulations
[26], [237], [238] and recommendations of specialists [25], [242].
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6.2.1 Variables of the problem

Our optimization problem is a Steel-Concrete Composite Bridge (SCCB) with a box-
girder cross section divided in three spans of 60-100-60 meters. The problem vari-
ables can be grouped into two groups. The first group correspond to the geometric
variables of the bridge and the second group with grades of steel and concrete. In
order to design bridges that are feasible to build, these variables cannot take any
value, but only allowed values, with which our search space corresponds to a dis-
crete space. Variables are shown in Table 6.2. These variables, depending on their
characteristics, are grouped into five categories. The first category correspond to
geometric variables of the transverse section. Upper distance between wings (b),
wings and cells angle (αw), top slab thickness (hs), beam high (hb), floor beam mini-
mum high (hfb) , top flange thickness (tf1 ), top flange width (bf1 ), top cells high (hc1 )
and thickness (tc1 ), wing thickness (tw), bottom cells high (hc2 ), thickness (tc2 ), and
width (bc2 ) and bottom slab thickness (hs2 ). For clarity, these variables are outlined
in Figure 6.1.

sf₂

tf₂
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hb

hfb

hfb

tf₁, bf₁

hc₁ tc₁ tw

hc₂
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Figure 6.1: Transverse section variables for SCC bridge
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Table 6.2: Design variables and boundaries

Variables Unit Lower Bound Increment Upper Bound Values number
b m 7 0.01 10 301
αw deg 45 1 90 46
hs mm 200 10 400 21
hb cm 250 1 400 151
hfb mm 400 100 700 31
tf1 mm 25 1 80 56
bf1 mm 300 10 1000 71
hc1 mm 0 1 1000 101
tc1 mm 16 1 25 10
tw mm 16 1 25 10
hc2 mm 0 10 1000 101
tc2 mm 16 1 25 10
bc2 mm 300 10 1000 71
tf2 mm 25 1 80 56
hs2 mm 150 10 400 26
nsf2

u 0 1 10 11
dst m 1 0.1 5 41
dsd m 4 0.1 10 61
bfb mm 200 100 1000 9
tffb

mm 25 1 35 11
twfb

mm 25 1 35 11
nr1 u 200 1 500 301
nr2 u 200 1 500 301
ϕbase mm 6, 8, 10, 12, 16, 20, 25, 32 8
ϕr1 mm 6, 8, 10, 12, 16, 20, 25, 32 8
ϕr2 mm 6, 8, 10, 12, 16, 20, 25, 32 8
sf2 mm From IPE 200 to IPE 600* 12
sw mm From IPE 200 to IPE 600* 12
st mm From IPE 200 to IPE 600* 12
hsc mm 100, 150, 175, 200 4
ϕsc mm 16, 19, 22 3
fck MPa 25, 30, 35, 40 4
fyk MPa 275, 355, 460 3
fsk MPa 400, 500 2

* Following the standard series of IPE profiles.

The second category of variables corresponds to the diameters of the base reinforce-
ment, first reinforcement and second reinforcement bar diameters (ϕbase, ϕr1 , ϕr2 ),
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and the corresponding bar number of the reinforcement areas (nr1 , nr2 ). These vari-
ables are intended to improve the bridge transverse section. To optimize the top slab
reinforcement, it has been divided into a base reinforcement that is the minimum
required by regulations [26], [237], [238] and two more areas, in negative bending
sections, where the reinforcement is increased. The lower slab and the lengths of
the increasing area of reinforcement will be described in section 6.2.2.

The stiffeners correspond to the third category of variables. In this design, half IPE
profiles for wings (sw), bottom flange (sf2 ) and the transverse ones (st) are consid-
ered variable stiffeners. For bottom flange stiffeners, the number of stiffeners (nsf2

)
has also been considered as a variable. As can be seen in Figure 6.1, there are two
more variables that define the distance between diaphragms (dsd) and transverse
stiffeners (dst).

The last two categories correspond to the geometry of the shear connector’s char-
acteristics, and the floor beam variables. The floor beam variables are defined by
the width of the floor beam (bfb) and the thicknesses of the flanges (tffb

) and webs
(twfb

). Shear connectors have been defined by their height (hsc) and diameter (ϕsc).
Finally, the elastic limit of rolled steel (fyk), the strength of concrete (fck) and the
elastic limit of reinforcing steel bars (fsk) complete the definition of the variables.

6.2.2 Parameters of the problem

In each optimization problem, it is necessary to set some variables, typical of the
conditions to which the structure will be subjected, defined by some regulation, en-
vironmental conditions, or some geometric definition that has no need or the pos-
sibility of changing. These fixed attributes are called parameters and remain un-
changed throughout the optimization process. The parameters and values defined in
the bridge design are summarized in Table 6.3.

Considering the Eurocode regulations [26], [237], that our bridge is a 60-100-60 me-
ters three-span box-girder steel-concrete composite bridge with a deck width (B) of
16 meters without height variation, for cells have been defined in the transverse sec-
tion for improving the resistant behaviour. These cells are shown in Figure 6.1. Two
cells are at the upper side of the wings, and the other two are at the bottom. The
minimum height of these cells, (hc1 , hc2 ), has been set to zero in order to identify if
they contribute to the reduction of costs or emissions of CO2 additionally for set the
upper limit of these, the bridge design rules defined in [242] has been considered.

The base reinforcement for the upper and lower concrete slab is set according to
the minimum need for reinforcement defined in Eurocode 2 [238]. The connection
between the concrete slab and the steel beam is dimensioned to resist the shear lag
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Table 6.3: Optimization problem parameters

Geometrical parameters
Bridge deck width (W ) 16 m
Span number 3
Central span length 100 m
External span length 60 m
Minimum web thickness (twmin

) 15 mm
Minimum flange thickness (tf2min) 25 mm
Reinforcement cover 45 mm

Material parameters
Maximum aggregate size 20 mm
Concrete longitudinal strain modulus (Ecm) 22 · ((fck + 8)/10)3 MPa
Concrete transverse strain modulus (Gcm) Ecm/(2 · (1 + 0.2)) MPa
Steel longitudinal strain modulus (Es) 210000 MPa
Steel transverse strain modulus (Gs) 80769 MPa

Regulation requirement parameters
Regulations Eurocodes[26], [237], [238], [240], IAP-11[241]
Exposure environment XD2
Structural class S5
Service life 100 years

Loading parameters
Reinforced concrete density 25 kN/m3

Steel density 78.5 kN/m3

Asphalt density 24 kN/m3

Asphalt layer thickness 100 mm
Bridge traffic protections 5.6 kN/m
Traffic load According to the codes
Thermal load According to the codes
Wind load According to the codes

stresses produced in the top flanges. For bending resistance the effective width given
by Eurocode 4 [26] have been considered. Also, because the only width considered
resistant is effective, the defined steel bar reinforcements are placed only in that
width.

Finally, steel bar reinforcement increase and lower slab areas are defined. The lower
slab is placed in negative bending sections to mobilize the composite dual-action.
To define lengths where negative bending can be produced, we have considered
the distance defined by Eurocode 4 [26] for shear lag stresses that correspond with
one-third of the span length. As stated earlier, it is necessary to increase the upper
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slab reinforcement to resist the tension stresses produced. In this case study, we
have considered two reinforcement areas. The first is placed in zones where the
section can be subjected to negative bending, and base reinforcement cannot resist
the stresses. The second is placed on top of supports, corresponding to one-third of
the distance between the support and the point of change of sign of the bending of
the theoretical law.

6.2.3 Constraints of the problem

In designing a structure, the constraints imposed by regulations and specific con-
ditions to the structure, such as safety factors, must be considered. Mainly, in the
optimization of this bridge, the necessary constraints to consider are defined in the
regulations, [26], [237], [238] and additionally, recommendations defined in, [25],
[242] have been incorporated.

When analyzing the regulations, it is found that the constraints imposed make up two
groups: The first one corresponds to the Ultimate Limit States (ULS) and the second
group, to the Service Limit States (SLS). In the case of ULS, the restrictions are
related to the structural resistance of the bridge elements subjected to the stresses
caused by the acting loads. In the case of SLS, the restrictions are intended to
ensure the serviceability of the structure during its useful life. All applied loads and
their combination are defined in the [240] regulation. The table 6.3 summarizes the
load cases considered.

In order to verify the ULS restrictions in all the elements of the bridge, both the global
and the local analyses have been considered. In the case of the global analysis,
the checks consider shear, flexure, torsion, and flexure-shear interaction. To obtain
stresses and deflections, a linear elastic analysis has been considered. When con-
sidering [237] and [26], these indicate that the resistance of the section must be
included, in our design, the effective section has been selected and applying it both
the shear lag reductions and the reduction of the section of steel plates classified
as class 4. To achieve the above, a precision of 10-6 meters has been considered
for the iterative process. To obtain the value of the mechanical characteristics of
the homogenized section, the relationship (n) between the longitudinal deformation
modulus of concrete (Ecm) and steel (Es) has been obtained according to Equation
6.4. For the case of concrete creep and shrinkage, they were defined following the
[26], [238] standard. Likewise, a local model was developed to verify the beams, rein-
forcements, and diaphragms in the ULS floor, considering controls for shear, flexure,
buckling, and minimum mechanical characteristics.
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n =
Es

Ecm

(6.4)

The SLS considered for the analysis is the tension limit for materials, fatigue, and
deflection. There is no apparent limit for deflection in Eurocodes, but the IAP-11
Spanish regulation [241] gives a maximum of L/1000 for the frequent combination
of live loads deflection value, with L representing the span length. This has been
considered as the maximum value of the deflection. In addition, we have considered
geometrical and constructibility requirements.

Additionally, a numerical model has been implemented to obtain the stresses and
carry out all the ULS, SLS, and geometric and constructibility checks. In the case
of deflections and stresses, the model applies the perfect embedding forces method,
taking the 34 bridge variables we selected as input data. The model divides each
span of bridge into a defined number of bars. In this case, the total number of bars
is 44, distributed in 12-20-12 corresponding to the three spans of the bridge; thus,
discretize the bridge into bars of 5 meters in length. Once the stresses have been
obtained, the program performs structural checks and returns the measurement re-
sults, cost, emissions, and verification coefficients. These verification coefficients
correspond to the quotient between the design values of the effects of the actions
(Ed) and their corresponding resistance value (Rd), as shown in the equation 6.5. If
these coefficient values are greater than or equal to one, then the Section complies
with the imposed restriction.

Rd

Ed

≥ 1 (6.5)

6.2.4 Structure computational model description

The procedure used to obtain the deflections and stresses has been the perfect
embedding forces method. This method consists in solving equation 6.6.

f = K · d+ f0 (6.6)

In this equation, f0 correspond to the perfect embedding forces vector. These forces
would be obtained if each of the system bars had all the degrees of freedom con-
strained. K is the stiffness matrix of the system, generated by assembling the stiff-
ness matrices of all bar elements. To get the stiffness matrix of each element, the
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average between both frontal and dorsal nodes’ mechanical properties has been cal-
culated. The complete section without considering the shear lag and panel reduction
has been considered to obtain these mechanical properties. Finally, d and f are the
deflections and stress vectors, respectively.

This procedure is repeated with all load cases. The following load cases have been
considered loading the entire bridge length as a single load case: Self Weight, Dead
Loads, Thermal Heating, Thermal Cooling, and Wind. In order to consider the differ-
ent positions of traffic loads, every 5-meter bar has been loaded separately, consid-
ering two separated loading cases, the punctual load and the distributed. This gives,
as a result, 88 load cases for traffic load and a total of 93 if all load cases are consid-
ered. The results obtained from loading each bar have been combined to consider
all loading possibilities regarding traffic load. After this, the load case envelope has
been calculated to consider each section’s maximum and minimum results.

Regarding combinations and envelopes, the envelope of all persistent and transitory
situations combinations have been obtained for ULS. These combinations have been
considered dominant action all live loads in different combinations. The envelope of
all characteristic combinations has been considered for SLS regarding stress limita-
tion.

6.3 Optimization algorithms

The detail of the discretization algorithms will be explained in this Section. First,
the metaheuristics used to perform the optimization will be detailed in Section 6.3.1.
Then the proposed hybrid algorithm, Section 6.3.2, which uses k-means as the dis-
cretization method will be explained. Later in Section 6.3.3, the algorithm that uses
a transfer function as a discretization method is detailed. The following reference
is recommended for a greater depth of transfer functions and their applications in
combinatorial optimization [274]. We must emphasize that the k-means discretiza-
tion method takes all the solutions, groups them, and later assigns the probabilities.
In the case of transfer functions, each probability is assigned individually, without
looking at the other solutions.

Figure 6.2 shows the flowchart used to perform the optimization using cuckoo search
and the sine cosine algorithms (SCA). As a starting point, the set of solutions is
initialized, this set corresponds to a valid set, that is, it complies with the constraints
imposed by the problem. Once the solutions have been initialized, it is asked whether
the stopping criteria of the algorithm are met. In this case, the stopping criterion
of the algorithm corresponds to the maximum number of defined iterations. In the
event that the maximum number of iterations has not been met, the hybrid algorithm
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is executed. As a first stage of the hybrid algorithm, the set of velocities for the
different generated solutions is obtained. Subsequently to the set of solutions, the
k-means clustering technique is applied in order to group the solutions and assign
a transition probability to each group in the transition probabilities stage. The detail
of these three stages will be explained in Section 6.3.2. Finally, a solution update
criterion is established, in which it is evaluated if each of the variables or dimensions
associated with a solution is updated. This is intended to balance the exploitation and
exploitation of the search space. Solutions with good values of the fitness function
will have few updates to be able to exploit the space. The detail of this update will
also be made in Section 6.3.2

6.3.1 Swarm intelligence algorithms: SCA and CS

This section details the swarm intelligence algorithms used to address optimization.
Specifically, the cuckoo search was chosen as it has successfully solved a large num-
ber of optimization problems, particularly in the area of civil engineering. Additionally,
the parameterization of the original algorithm is quite simple. In the case of the sine
cosine algorithm, the type of move it executes is based on the sin and cosine func-
tions and is completely different from the move of cuckoo search. On the other hand,
this last metaheuristic does not require proper parameter tuning.

Sine Cosine Algorithm (SCA)

Sine Cosine Algorithm (SCA) was proposed in [233] and corresponded to a swarm
intelligence algorithm that considers the sine and cosine functions to carry out the
process of exploring and exploiting the search space. To carry out the movement of
the solutions, P t

j is additionally used, which corresponds to the position of the desti-
nation solution for iteration t and dimension j, and typically uses the best solution ob-
tained so far. In addition to P t

j , the algorithm uses four random numbers r1, r2, r3, r4.
As the algorithm starts to iterate, r1 decreases. It starts at 2 and converges to 0 at
the end of the optimization. On the other hand, r2 takes values between 0 , 2π. r3
considers values between 0 and 2, and finally r4 is used to select Equations 6.7 and
6.8 taking values between 0 and 1 and a threshold of 0.5.

The update method used is shown in Equations 6.7 and 6.8.

xt+1
i,j = xt

i,j + r1 × sin(r2)× | r3P t
j − xt

i,j | (6.7)

xt+1
i,j = xt

i,j + r1 × cos(r2)× | r3P t
j − xt

i,j | (6.8)
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Figure 6.2: Discrete hybrid k-means algorithm flow chart.
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Cuckoo Search Algorithm (SC)

The reproductive strategy phenomena observed in cuckoo species, which lay their
eggs in the nests of other bird species, has inspired the CS algorithm. Such is
the level of sophistication of cuckoo birds that in some cases even the colors and
patterns of the eggs of the chosen host species are mimicked. In the analogy, an
egg corresponds to a solution. The concept behind the analogy is to use the best
solutions (cuckoos) to replace those that do not perform well. The CS algorithm uses
three basic rules:

1. Each cuckoo lays one egg at a time and deposits its egg in a randomly chosen
nest.

2. The nests with the best results, that is, with high-quality eggs, will be considered
in the next generation.

3. The number of nests available is a fixed parameter. The egg laid by a cuckoo
can be discovered by the host bird with a probability pa ∈ (0, 1)

In Equation 6.9 the movement of CS is defined. The symbol ⊕, denotes entry-wise
multiplication, whereas α > 0 denotes the step size. This step size specifies the
maximum distance that a particle can travel in a random walk over a set number
of iterations. The Lévy distribution modulates the transition probability of the Lévy
flights in Equation 6.10.

xt+1
i,j = xt

i,jα⊕ levy(λ) (6.9)

levy(λ) ∼ g−λ, (1 < λ < 3) (6.10)

6.3.2 K-means discrete algorithm

In this subsection, the detail of the algorithm that allows discretizing the SCA and CS
metaheuristics is explained, these MH, naturally work in continuous search spaces.
The k-means discrete algorithm (KMDA), uses the unsupervised learning technique
k-means to cluster the solutions. As input parameters, KMDA considers the list of
solutions lSol, the metaheuristic MH to be discretized, and the list of transition
probabilities transitionProbs, where each group obtained by applying k-means is
associated with a value of transition probability. In line 4, KMDA uses the meta-
heuristic that is being discretized, for this case, SCA or CS, however, it can be any
continuous swarm intelligence metaheuristic, and together with the list of solutions
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lSol obtained in the previous iteration, the movement of the metaheuristic is applied,
obtaining the velocity for each solution in the list of solutions. The calculation of the
velocity for each dimension of the solution vector is done using the equations 6.7 and
6.9. The velocity in the metaheuristics is considered by lSoli,j = |xt+1

i,j −xt
i,j|. vlSol

identifies the list of velocities associated with the list of solutions lSol.

Once the list of solutions vlSol has been obtained, the next step corresponds to
grouping the velocities using the k-means technique for a numberK of clusters. This
applies in line 5 of the algorithm. The objective of applying k-means is to generate
groups where the elements of each group have similar characteristics. In this case
the groups that have velocities with small values and that therefore in continuous
space would move very little, will be related to small transition values in our discrete
space. As a result of clustering, lSolClustered is obtained, where the cluster is
stored for each of the components of each speed associated with the list of solutions
lSol.

Subsequently, each component’s dimSol cluster is considered for each solution,
and a transition probability is assigned. For the case studied here, a K = 5 was
used and with transition probabilities [0.1, 0.2, 0.4, 0.8, 0.9]. The smallest value
of the transition probability is assigned to the cluster with the lowest average veloc-
ity, and in that order, the probabilities are assigned. The assignment of the transition
probabilities was established intuitively and supported by previous experiences when
solving binary problems. Following the idea that the first two clusters have the small-
est velocities, small transition probabilities are assigned, with the aim of favoring the
exploitation of space. The last two clusters that have the highest velocities, are as-
signed high probabilities to favor exploration of the search space, and the middle
cluster has a probability of 0.4.

Finally, using a random number r1 it is determined if the component lSoli,j , is up-
dated or stays the same. The higher the probability of transition, the greater the
probability of change. Additionally, it is used a random number r2, making the up-
date be considering the best value or randomly. In our case β = 0.8. The KMDA
pseudocode is shown in algorithm 2.
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Algorithm 2 k-means discrete algorithm (KMDA)
1: Function KMDA(lSol, MH ,transitionProbs)

2: Input lSol, MH , transitionProbs

3: Output lSol

4: vlSol← getVelocities(lSol, MH)

5: lSolClustered← appliedKmeansClustering(vlSol, K)

6: for (each Soli in lSolClustered) do

7: for (each dimSoli,j l in Soli) do

8: dimSolProbi,j = getClusterProbability(dimSol, transitionProbs)

9: if dimSolProbi,j > r1 then

10: if beta > r2 then

11: Update lSoli,j considering the best.

12: else

13: Update lSoli,j with a random value allowed.

14: end if

15: else

16: Don’t update the element in lSoli,j

17: end if

18: end for

19: end for
20: return lSol

6.3.3 Transfer function discrete algorithm

In the case of the algorithm that uses transfer functions, the structure is very similar
to KMDA. Specifically, a transfer function is applied that aims to bring the velocity
values, which can take values in R, to values between [0, 1). In this case, a v-shape
transfer function, | tanh(v) |=| ex−e−x

ex+e−x |, was used. The fundamental difference
is that KMDA calculates the speeds and then applies clustering by analyzing all the
values of the solutions. This can be seen in lines 4 and 5 of algorithm2. In the case
of transfer functions, this is done individually within the for loops on lines 6 and 7 of
algorithm 3.
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Algorithm 3 Transfer function discrete algorithm
1: Function Discretization(lSol, MH)

2: Input lSol

3: Output lSol

4: for (each Sol in lSol) do

5: for (each dimSol in Sol) do

6: vdimSol← getVelocity(dimSol, MH)

7: dimSolProb← appliedTransferFunction(vdimSol)

8: if dimSolProb > r1 then

9: if beta > r2 then

10: Update lSoli,j considering the best.

11: else

12: Update lSoli,j with a random value allowed.

13: end if

14: else

15: Don’t update the element in lSoli,j

16: end if

17: end for

18: end for
19: return lSol

6.4 Results

In this Section, the experiments developed to evaluate the behavior of the discrete
hybrid algorithm are detailed, in addition to analyzing the findings found when op-
timizing the bridge. The results are divided into four subsections. In Section 6.4.1
it is explained how the selection of the hyperparameters used by the algorithm was
made. Later in Section6.4.2, the results of the experiments that identify the contribu-
tion of the algorithm in the optimization result are detailed. Later in Section6.4.3, the
results are compared with other implementations.

Python 3.6 was used to create the algorithm, along with a PC running Windows 10, a
core i7 processor, and 32GB of RAM. To see if the difference is statistically significant,
the Wilcoxon signed-rank [275]method was used. The 0.05 p-value was chosen. The
methods described in [251] was used to choose the test. The Shapiro–Wilk normality
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test is used initially in this process. The Wilcoxon signed-rank is recommended to
check the difference if one of the populations is not normal and has the same number
of points.

6.4.1 Parameter setting

The methodology used to select the correct parameters was adapted from the pro-
cedure defined [250]. To obtain an adequate selection of the parameters, we used
three measures defined by the Equations (6.11) to (6.13). For the generation of val-
ues, each combination of parameters was executed five times. The set of parameters
explored and selected for CS is shown in Table 6.4. For the calculation of the best
performance, each of the indicators is constructed to have values between 0 and 1.
The closer to 1, the better the performance. These values are plotted on a radar
chart and the area under the curve is calculated. The set of indicators that takes the
largest area, corresponds to the best performance.

1. The percentage deviation of the best value obtained in the specific execution,
compared to the best value obtained of all the runs:

bSolution = 1− BestTotalV alue−BestV alue
BestTotalV alue

(6.11)

2. The percentage deviation of the worst value obtained in the specific execution,
compared to the best value obtained of all the runs:

wSolution = 1− BestTotalV alue−WorstV alue

BestTotalV alue
(6.12)

3. The percentage deviation of the average value obtained in the specific execu-
tion, compared to the best value obtained of all the runs:

aSolution = 1− BestTotalV alue−AverageV alue
BestTotalV alue

(6.13)
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Table 6.4: Parameter setting for the hybrid cuckoo search algorithm

Parameters Description Value Scanned range

N Number of Nest 10 [5, 10, 20]
γ Step Length 0.01 0.01
κ Levy distribution parameter 1.5 1.5
K Number of clusters 5 [4, 5]

Iteration Number Maximum iterations 600 [200,400,600]

6.4.2 Insight into discrete algorithm

This Section aims to evaluate the contribution of the KMDA operator in the result of
the optimization of the bridge. Two random discretization operators were designed,
Random0.5 and Random0.3. Specifically, these operators do not execute the clus-
tering in line 5 of the algorithm 2or the probability assignment in line 8. The value
of dimSolProbi,j is replaced by 0.5 in the case of Random0.5 and 0.7 in the case
of Random0.3 (30% probability of transition). The rest of the code remains un-
changed. These operators were applied to the SCA metaheuristics and the bridge
cost optimization problem. The results are shown in Table 6.5 and Figure 6.3.

In Table 6.5, the result of 30 executions for each of the operators mentioned above,
together with the descriptive statistics, are shown. In this experiment, the objective
function corresponds to cost optimization. From each of the optimizations, the bridge
that obtained the best cost is registered, the emissions obtained for that bridge, and
the time it took for the optimization. In the case of the cost results, we see that Hybrid
SCA obtains the best values and smaller dispersion of the results. When emissions
are analyzed, we see that the Hybrid SCA case is more robust in all indicators. Ad-
ditionally, the latter suggests an essential correlation between optimizing the cost of
the bridge and reducing its emissions. The Wilcoxon test shows that the results are
statistically significant. When the execution times are analyzed, the results are simi-
lar in the three evaluated operators. When comparing the cost boxplots, Figure 6.3,
we visually observe the robustness of Hybrid SCA against random operators.

6.4.3 Algorithm comparisons

This Section will evaluate KMDA’s performance against other implementations that
have effectively solved combinatorial problems. The first algorithm used was an im-
plementation of simulated annealing (SA) proposed in [276] and used to optimize
prestressed concrete precast road bridges and later applied to other structural de-
sign problems [14], [173]. For the second comparison, the algorithm detailed in Sec-
tion 6.3.3 is used, which performs the discretization procedure using the v-shape
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Table 6.5: Cost minimization results for 30 executions of Random 0.5, Random 0.3, and discrete
hybrid SCA algorithms

Random 0.5 Random 0.3 Hybrid SCA
Run Cost (e) CO2(kg) Time(s) Cost (e) CO2(kg) Time(s) Cost (e) CO2(kg) Time(s)

1 3841685.5 9423182.3 7545.1 3854631.0 9441992.7 7434.5 3830092.8 9390104.1 7835.5
2 3838056.5 9417710.5 8121.4 3841685.5 9423182.3 7892.6 3864886.9 9480536.6 7945.0
3 3856001.6 9455145.0 6978.9 3868347.8 9487298.0 7112.7 3826395.0 9388407.3 7873.4
4 4004603.5 9837622.5 7984.7 4041117.6 9915536.1 8001.2 3825919.0 9385589.0 7929.9
5 3837584.6 9406572.5 6921.5 3863494.3 9467939.5 6893.2 3823801.1 9385004.6 7916.1
6 3920211.2 9618810.5 8021.3 4009757.4 9837067.3 8021.3 3835442.1 9391386.1 7911.4
7 3863494.3 9467939.5 7214.8 3835377.4 9395269.5 7324.6 3826324.6 9389542.7 7920.3
8 4004603.5 9837622.5 7498.1 3973917.2 9747159.4 7568.3 3826206.4 9385730.7 7935.5
9 3920211.2 9618810.5 8210.4 3844805.5 9422679.4 7901.4 3830234.3 9387716.3 7858.2

10 3867325.2 9485202.2 7645.7 3938023.8 9657116.7 7923.5 3825188.7 9385235.2 7931.7
11 3920211.2 9618810.5 7645.2 3912499.4 9593267.2 7234.8 3828878.5 9387047.9 7748.9
12 3847797.6 9432071.6 8024.1 3840298.2 9419023.8 8024.1 3831864.4 9388519.9 7719.6
13 3844078.0 9432582.0 7643.7 3847990.2 9432380.4 7701.4 3823462.5 9384378.1 7637.7
14 3848079.2 9419256.1 7891.4 3844078.0 9432582.0 7903.2 3828178.8 9386856.2 7819.4
15 3927551.4 9631163.6 7798.4 3920211.2 9618810.5 7923.2 3826847.5 9386123.4 7933.9
16 3853756.2 9458527.3 7234.1 3847713.1 9431886.6 8001.5 3824311.6 9384796.6 7687.4
17 3854631.0 9441992.7 8102.3 3851331.6 9451618.9 8114.7 3822723.1 9384013.6 6165.3
18 4004603.5 9837622.5 7743.6 3829666.1 9398360.6 6902.6 3824024.1 9384655.0 7767.6
19 3844695.3 9425683.0 7893.9 3844407.2 9425168.7 7745.2 3824115.0 9384852.9 7918.0
20 3840156.4 9402992.6 7745.1 3853756.2 9458527.3 7801.4 3829979.1 9387820.3 7891.1
21 3858728.1 9455868.2 7874.5 3846266.3 9424806.5 7931.6 3823245.0 9384270.9 7870.4
22 3846266.3 9424806.5 7534.2 3856001.6 9455145.0 7345.2 3828654.6 9388464.0 7945.4
23 3868347.8 9487298.0 7654.9 3858728.1 9455868.2 7791.5 3827333.5 9386286.3 7895.7
24 3853062.4 9444842.4 7943.4 3930520.1 9638238.9 8002.3 3824394.8 9384837.7 7876.2
25 4004603.5 9481380.6 7653.2 3866161.5 9481380.6 7754.8 3830913.2 9388051.0 7855.7
26 3920211.2 9618810.5 7896.7 3853062.4 9444842.4 7931.9 3829366.5 9387824.7 7668.7
27 3844407.2 9425168.7 7745.7 3867165.6 9474659.0 7742.5 3833463.0 9391767.1 7731.3
28 3847873.6 9432179.5 7653.3 3847714.8 9447150.9 7509.8 3824394.8 9384837.7 7845.4
29 3851331.6 9451618.9 7694.9 3844695.3 9425683.0 7654.7 3823562.7 9384427.5 7696.0
30 3867165.6 9474659.0 7893.5 3938023.8 9657116.7 8032.4 3830124.4 9388127.9 7947.6

Average 3883377.8 9512198.4 7713.6 3879048.3 9512058.6 7704.1 3828477.6 9389907.0 7789.3
Max 4004603.5 9837622.5 8210.4 4041117.6 9915536.1 8114.7 3864886.9 9480536.6 7947.6
Min 3837584.6 9402992.6 6921.5 3829666.1 9395269.5 6893.2 3822723.1 9384013.6 6165.3
Std 55639.3 130762.0 312.2 54164.3 134417.5 340.2 7622.2 17251.2 320.7

Wilcoxon 4.1 e-4 1.7 e-4
p-value
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Figure 6.3: Cost boxplots for Random 0.5, Random 0.3, and SCA Algorithms.

|tanh(v)| function. To make the comparison, all the algorithms are executed 30
times to optimize costs and 30 times to optimize CO2 emissions. The results are
recorded in Tables 6.6, and 6.7. Additionally, the results are shown through box
diagrams in Figures 6.4, and 6.5.

In Table 6.6, the cost optimization for SA, transfer SCA, hybrid SCA, and hybrid CS
is shown. When analyzing the descriptive statistics, we see that the cost results
obtained by the hybrid algorithms are very similar and superior to those for SA and
transfer CSA in the minimum, maximum, average, and deviation obtained. When
applying the Wilcoxon test, it indicates that the difference is not significant between
the hybrid algorithms and if it is significant between hybrid SCA with respect to SA
and transfer SCA. When applying the Wilcoxon test, it indicates that the difference
is not significant between the hybrid algorithms and if it is significant between hybrid
SCA with respect to SA, transfer SCA and transfer CS. In the case of the emissions
obtained in cost optimization, we observe that both hybrid algorithms consistently
obtain very similar results and are more robust than SA and transfer SCA. Again,
the strong relationship between optimizing costs and reducing emissions of CO2 is
observed in the hybrid algorithms. When analyzing the times, we see that SA is
21.5% slower than Hybrid SCA, being this very similar to transfer SCA and hybrid
CS. When comparing the boxplots, Figure 6.4, the similarity of the hybrid methods is
visually observed, and the robustness of the results concerning the other methods.
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Table 6.6: Cost minimization comparison for 30 executions of SA, discrete transfer function SCA
and CS, discrete hybrid SCA, and CS algorithms. Time is measured in seconds.

SA Transfer SCA Transfer CS Hybrid SCA Hybrid CS
Run Cost (e) CO2(kg) Time Cost (e) CO2(kg) Time Cost (e) CO2(kg) Time Cost (e) CO2(kg) Time Cost (e) CO2(kg) Time

1 3829112 9393007 9196 3854631 9441992 7497 3853274 9447811 7621 3830092 9390104 7835 3825644 9385453 7975
2 3845663 9442138 7589 3841685 9423182 7822 3853926 9449454 7741 3864886 9480536 7945 3825115 9385192 7976
3 3829827 9390569 9687 3868347 9487298 7889 3861618 9468696 7812 3826395 9388407 7873 3825644 9385453 7891
4 3834439 9395041 9719 3837467 9411814 7635 3837015 9413229 7635 3825919 9385589 7929 3830529 9387861 7959
5 3836720 9393995 9430 3863494 9467939 7786 3859823 9464319 7653 3823801 9385004 7916 3822875 9384095 7930
6 3832832 9394394 9198 3838032 9396760 7795 3933952 9636170 7563 3835442 9391386 7911 3827681 9386457 7983
7 3837598 9398873 9291 3835377 9395269 7317 3844299 9425351 7752 3826324 9389542 7920 3824141 9384712 8008
8 3841417 9408629 9271 3839077 9400419 7876 3832605 9397118 7976 3826206 9385730 7935 3827522 9386379 7971
9 3826259 9391263 9225 3844805 9422679 7832 3853274 9447811 7698 3830234 9387716 7858 3827541 9386388 7949

10 3837246 9398956 9691 3867325 9485202 7880 3857615 9458840 8043 3825188 9385235 7931 3825756 9387883 8055
11 3838964 9399136 9507 3833501 9406118 7556 3829202 9389102 7467 3828878 9387047 7748 3824519 9384899 8267
12 3844258 9420045 9668 3840298 9419023 7903 3861618 9468696 7894 3831864 9388519 7719 3831847 9388511 8292
13 3840202 9408438 9557 3844078 9432582 7509 3854516 9450954 7735 3823462 9384378 7637 3827980 9386681 8291
14 4701903 11582022 9856 3848079 9419256 7789 3836478 9406458 7642 3828178 9386856 7819 3823891 9384589 8267
15 4004603 9837622 9956 3920211 9618810 7820 3853274 9447811 7756 3826847 9386123 7933 3825444 9385765 8148
16 3837030 9407814 9504 3840156 9402992 7886 3860073 9450935 7985 3824311 9384796 7687 3823063 9384870 8210
17 3838077 9398394 9705 3851331 9451618 7740 3851195 9427987 7463 3822723 9384013 6165 3832782 9401328 8308
18 3826142 9389610 9793 3829666 9398360 7905 3848626 9422617 7683 3824024 9384655 7767 3828246 9386736 8370
19 3836306 9393541 9326 3844407 9425168 7902 3839130 9400681 7843 3824115 9384852 7918 3831724 9388450 8249
20 3829965 9397333 9912 3853756 9458527 7736 3839701 9402112 7722 3829979 9387820 7891 3824459 9384869 8236
21 3834063 9395196 9590 3846266 9424806 7921 3851195 9427987 7463 3823245 9384270 7870 3830466 9387831 7897
22 3838868 9397515 9535 3856001 9455145 7502 3879874 9500752 7985 3828654 9388464 7945 3825593 9385428 7645
23 3840493 9410516 9238 3858728 9455868 7583 3861537 9457936 7583 3827333 9386286 7895 3826446 9385925 7912
24 3836563 9399930 9617 3839779 9410778 7903 3881525 9505995 7793 3824394 9384837 7876 3827796 9386514 7914
25 3833027 9394227 9494 3866161 9481380 7729 3849452 9428558 7642 3830913 9388051 7855 3822766 9384035 7896
26 3834233 9397503 9412 3853062 9444842 7790 3841782 9409898 7856 3829366 9387824 7668 3822723 9384013 7024
27 3845712 9417868 9565 3867165 9474659 7781 3854384 9440750 7843 3833463 9391767 7731 3822723 9384013 5218
28 3832969 9403292 9984 3847714 9447150 7552 3858984 9467252 7748 3824394 9384837 7845 3825907 9385583 7943
29 3829559 9389435 8800 3844695 9425683 7660 3851331 9448449 7654 3823562 9384427 7696 3823593 9384442 7923
30 3834992 9398075 9775 3838056 9417710 7891 3841344 9423805 7962 3830124 9388127 7947 3830083 9388051 7914

Average 3870301 9487479 9470 3850445 9440101 7746 3854421 9446251 7740 3828477 9389907 7789 3826483 9386414 7921
Max 4701903 11582022 9984 3920211 9618810 7921 3933952 9636170 8043 3864886 9480536 7947 3832782 9401328 8370
Min 3826142 9389435 7589 3829666 9395269 7317 3829202 9389102 7463 3822723 9384013 6165 3822723 9384013 5218
Std 160135 403661 443 17047 43542 159 19179 45846 158 7622 17251 320 2954 3137 570

Wilcoxon 3.6 e-4 1.4 e-4
p-value
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Figure 6.4: Cost boxplots for SA, discrete transfer SCA, discrete hybrid SCA, and discrete hybrid
CS Algorithms.

Table 6.7 shows the comparison between discrete algorithms that use k-means (Sec-
tion 6.3.2), SA, and transfer functions (Section 6.3.3), optimizing CO2 emissions.
When analyzing the amount of CO2produced during the emissions optimization pro-
cess, we see that the results of the hybrid method are better than the one that uses
transfer functions and SA in all indicators. This is also visually verified by comparing
the different boxplots in Figure 6.5. However, when analyzing the costs obtained in
the optimization of emissions, it does not behave equivalent to the optimization of
costs. In this case, a significant dispersion is observed in all algorithms. The range
between Max and Min is significant in all five algorithms. This correlation between
cost optimization and emission reduction of CO2 identified in Table 6.5, is related to
the fact that the different grades of steel obtained from the BEDEC [207] database
have the same amount of emissions. In the case of the CO2 optimization, differ-
ent elastic limit values are obtained for structural steel without producing essential
variations in its objective emission function, but the highest in terms of cost.

In Table 6.8 the design variables results have been shown for cost and CO2 opti-
mization objectives. As it can be seen, there are some differences between cost and
CO2 optimization design results. The first one is the yield stress (fyk) obtained for
the best individual. It is observed that cost optimization results from this variable
275 MPa while CO2 optimization gets 460 MPa. This difference is due to the differ-
ence in structural steel’s cost and emission values. As shown in Table 6.1 as the
cost increase, as the value of the yield stress increases, the value is the same for
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Table 6.7: CO2 minimization comparison for 30 executions of the discrete transfer function and
discrete hybrid SCA and CS algorithms.

SA Transfer SCA Transfer CS Hybrid SCA Hybrid CS
Run Cost (e) CO2(kg) Cost (e) CO2(kg) Cost (e) CO2(kg) Cost (e) CO2(kg) Cost (e) CO2(kg)

1 4103199.1 9394472.7 3826062.4 9388245.3 4531487.4 10115112.3 4420699.5 9384170.2 4421107.9 9384371.6
2 4104830.5 9393422.6 4107363.5 9398200 4931000.7 10230565.0 3828339.5 9386782.2 4091626.2 9384500.2
3 4095750.7 9386615.5 4106480.8 9419624.4 4789317.2 10033694.7 4092720.6 9385866.9 4093543.7 9385445.5
4 4101735.1 9390010.9 3830420.8 9390027.3 4607448.4 9710063.3 4092681.4 9385020.4 4421714.6 9384676.8
5 4431949.9 9390386.3 4423829.8 9388224.6 4724373.8 9870644.4 4428155.9 9387845.9 3823916.4 9384601.8
6 4428021.6 9387786.7 4104429.3 9413019.9 4735134.9 9912923.2 3829500.6 9387354.6 3823680 9384485.3
7 4428243.3 9393282.6 4444861.3 9427586 4730550.6 9924267.8 4427399.4 9387473 4091769.9 9384571.1
8 4424257.7 9387914.4 3845183.8 9417923.6 4503658.7 9765664.9 4093430.2 9385389.5 3823245 9384270.9
9 4099351.4 9395896.2 3828004.3 9391991.1 4212280.9 10052411.1 3831646.9 9388412.7 4421527.7 9384578.5

10 3836602.7 9407896.6 4434043.8 9399596.9 4666593.6 9725656.3 3827295.3 9386273.6 4093543.7 9385445.5
11 4436583.5 9399830.4 4440365 9405285.5 4841631.0 10686873.0 4091126.9 9384254.1 3824016.6 9384651.2
12 4099070.8 9391395.7 4098731.9 9398154.5 5058456.2 10525430.7 3824275.7 9384778.9 3823245 9384270.9
13 3837692.9 9394543.3 4097483.5 9395141.9 4257869.8 9838989.8 4093666.6 9385506.1 3826336.9 9385795.0
14 4098859.5 9394851.7 4447519.4 9406304.8 4957796.6 10944461.4 4091859.4 9385667.9 3827656.8 9386445.7
15 4092562.3 9385573.4 4149564.8 9501199.2 4721028.2 9992277.7 3828232.5 9386739.1 4426817 9387185.9
16 4437303.8 9398323.1 4111137.6 9411014.2 4925090.5 10312531.2 4091796.4 9384584.1 4096921.1 9387110.4
17 4100494.5 9392570.7 4103984.7 9401026.2 4977891.6 10121176.4 3829720 9387462.8 4101662 9389447.4
18 4424307.7 9386325.9 3852755.9 9455679.3 4552468.0 10031915.7 4090883.3 9384585.2 3824016.6 9384651.2
19 4102823.5 9396581.4 3831846.9 9398755 4611778.6 10355530.8 4100425.2 9388837.8 4093460.5 9385404.4
20 4428702.7 9390314.8 3853687 9444022.8 4928246.3 10324582.5 3823782.1 9384535.6 4423239.1 9385422.2
21 4430019.3 9392768.3 3834232.5 9393079.5 4894711.7 10129787.8 3825979.5 9385618.9 3825050.6 9385167.1
22 4102389.5 9391525.7 3843360.9 9430497.2 4878828.2 10058610.4 4096206.3 9386758 4568165.1 9384308.4
23 3829423.6 9390490.5 4132163.3 9459204.2 4891768.4 10229330.1 4094423 9385878.9 3823948.5 9384617.7
24 4106712.4 9395756.6 4111394.3 9413642.1 4598949.9 10406844.4 3826340.7 9385796.9 4092556.6 9384958.9
25 3833087.7 9391660.1 3835567.5 9409985.7 4763740.6 9977672.0 4095292.9 9386307.8 3826660.3 9385954.4
26 3823206.8 9384338.0 4109800.5 9405586.3 4614532.1 9738456.8 3828734.7 9386977.1 3823948.5 9384617.7
27 4428242.5 9392728.7 4442164.1 9424594.9 5249949.1 10943039.5 3823782.1 9384535.6 3832507.4 9388836.8
28 3832154.7 9388663.3 4108189.4 9406482.7 4371744.8 9740572.8 4100432.8 9388841.5 3825740.1 9388369.9
29 4428372.5 9397013.8 4445608.5 9410269.7 4872910.1 10028070.8 3828738.5 9386978.9 4090843.3 9384114.8
30 4096391.3 9387611.7 3837284.5 9401492.1 4576118.0 9997514.0 3832291.8 9388730.6 4092556.6 9384958.9

Average 4167411 9392617.2 4087917.4 9413528.6 4732578.5 10124155.7 4002995.3 9386265.5 4039167.5 9385469.5
Max 4437303 9407896.6 4447519.4 9501199.2 5249949.1 10944461.4 4428155.9 9388841.5 4568165.1 9389447.4
Min 3823206 9384338.0 3826062.4 9388224.6 4212280.9 9710063.3 3823782.1 9384170.2 3823245.0 9384114.8
Std 226692 4878 232227.7 24665.3 231256.6 328416.3 192413.8 1423.3 241158.4 1414.8.9

Wilcoxon 2.7 e-4 1.2 e-4 2.7 e-6
p-value
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Figure 6.5: Emissions boxplots for SA, discrete transfer SCA, discrete transfer CS, discrete hybrid
SCA, and discrete hybrid CS Algorithms.

emissions for all yield stress values. Thus, the CO2 optimization takes a higher yield
stress value because the strength capacity of these steels is higher and is capable
of resisting more stresses with less material. Regarding cells dimensions it can be
seen that CO2 best design gets higher values for both upper (hc1 ) an lower (hc1 )
cells heights. In the case of the cost objective function, the best individual gives a
null value to the height of the upper cell. The objective of these cells is to reduce
the distance between stiffened zones to reduce the web plate’s reduction. For cost
optimization, the upper cell does not accomplish this function or is almost not enough
to be relevant for the design, while for CO2 emissions objective function, it allows a
better cross-section behavior and takes a positive value. Regarding bottom flange
stiffeners (nsf2

), both optimization objectives remove this elements for the optimum
design. This is because, in negative bending moments, sections exist a concrete
slab in the bottom flanges that do not allow the instability of the bottom flange plate,
while in positive bending moment sections, this plate is in tension and, consequently,
cannot buckle, and these elements are not necessary. Regarding the other variables,
both optimization designs give a similar value being the higher difference in the beam
height value (hb), where CO2 optimization takes a lower value due to the increase
in the yield stress (fyk) that allow reducing the Section by increasing the structural
steel resistance.
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Table 6.8: Design variables results for best, mean, minimum, maximum, and standard deviation
values

Cost optimization CO2 optimization
Variables Unit Best Mean Min Max Best Mean Min Max

b m 7 7 7 7 7 7 7 7
alphaw deg 55 63 45 87 71 62.3 45 90

hs mm 200 200 200 200 200 200 200 200
hb cm 298 304 250 381 286 311 250 388
hfb mm 410 438 400 610 620 480 400 680
tf1 mm 25 27 25 57 25 26 25 39
bf1 mm 300 309 300 480 300 300 300 300
hc1 mm 0 264 0 960 9 333 0 830
tc1 mm 16 16 16 17 16 16 16 16
tw mm 16 16 16 16 16 16 16 16
hc2 mm 33 38.8 00 90 41 32.8 0 86
tc2 mm 18 19 16 25 18 19 16 25
bc2 mm 300 302 300 370 300 300 300 300
tf2 mm 25 25 25 29 25 25 25 25
hs2 mm 150 150 150 150 150 150 150 150
ϕbase mm 6 6 6 6 6 6 6 6
ϕr1 mm 6 6 6 6 6 6 6 6
ϕr2 mm 6 6 6 6 6 6 6 6
nr1 u 200 278.4 200 436 200 282 200 425
nr2 u 200 280 200 403 228 270.8 200 418
sf2 mm 300 322.1 200 550 200 328 200 550
nsf2

u 0 0 0 0 0 0 0 0
sw mm 450 327.5 200 600 200 347.6 200 600
st mm 240 306 200 600 200 322.6 200 600
dst m 3.3 2.407 1 4.2 2.52 1.2 1 5
dsd cm 6 6.5 4.1 9.7 4.8 6.3 4 9.9
bfb mm 1000 450 200 1000 200 430 200 1000
tffb

mm 33 29 25 35 29 29 25 34
twfb mm 27 28 25 35 26 29 25 35
fck MPa 25 25 25 25 25 25 25 25
fyk MPa 275 275 275 275 460 328 275 460
fsk Mpa 500 500 500 500 500 500 500 500
hsc mm 100 100 100 100 100 100 100 100
ϕsc mm 16 17 16 22 16 16.3 16 22
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6.5 Conclusions

The present work proposes a discrete hybrid KMDA method that uses the k-means
unsupervised learning technique in conjunction with SCA and SC to solve a discrete
optimization issue. It was specifically applied in this work to the design of a Steel-
Concrete Composite Bridge. Two experiments were designed to demonstrate the
superiority of KMDA in bridge optimization. The first experiment aims to compare
the proposed approach to a baseline algorithm in which the discretization stage is
executed by a random operator with fixed transition probabilities. Random0.3 and
Random0.5. The results showed that the incorporation of the k-means operator
allows obtaining better results, as well as the reduction of the dispersion of the ob-
jective values. In the comparison, it was obtained for cost optimization that Hybrid
SCA reduced the value by 1.4% compared to Random0.5 and by 1.3% compared
to Random0.3. In the comparison of the emissions of CO2, considering cost op-
timization, the hybrid SCA managed to reduce emissions by 1.3% in both cases.
The Wilcoxon statistical test showed that the difference is significant. Regarding the
execution times, these were similar in the different algorithms.

In the second experiment, the result of the proposed hybrid technique was compared
with another frequently used method to discretize algorithms, transfer functions. Ad-
ditionally, a version of SA adapted to solve civil engineering optimization problems
was included. In the case of transfer functions, the solution only uses its information
to discretize, unlike k-means which first analyzes the group of solutions and then
discretizes. From the results of the experiments, it is once again observed that the
proposed hybrid technique is superior in the results obtained. Particularly in the case
of cost optimization, it is observed that Hybrid SCA reduced costs on average com-
pared to SA by 1.1 % and compared to transfer SCA by 0.57 %. In the case of
Hybrid CS, the result was very similar to that of Hybrid SCA, the latter being 0.05%
higher on average. In the case of CO2optimization, we again observed that the hy-
brid algorithms were superior to those using transfer function and SA. Hybrid CS
outperformed Transfer CS by 7.8%, and up to 0.07% compared to SA. In the case of
Hybrid CSA, it outperforms Transfer CSA by 0.3% and SA by 0.07 %.

Finally, an analysis of the optimum obtained was conducted, observing that outstand-
ing results are also obtained for CO2 emissions when costs are optimized. However,
the reciprocal, that is, when emissions are optimized, does not imply that costs are
optimized. This was related to the fact that different steel grades have different costs
but generate the same emissions.

As a new line of research, we identified that optimization consumes a significant
amount of time, near to 8000(s), with which developing algorithms that allow reduc-
ing optimization times allows exploring a more significant number of configurations
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and more complex situations. When an analysis of the execution times is carried out,
we observe that the primary time is consumed to evaluate the constraints. It is hy-
pothesized that by incorporating a deep learning model that does not have essential
execution times, the constraints could be modeled and replaced, thereby improving
the times used in optimization. Along the same lines, to try to reduce the number of
calculations, another idea to explore is to use upper bound strategies (UBS) [277] to
reduce the total number of structural analyzes in design optimization.
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bridges

Abstract

Bridge optimization is a significant challenge, given the huge number of possible
configurations of the problem. Embodied energy and cost were taken as objective
functions for a box-girder steel–concrete optimization problem considering both as
single-objective. Embodied energy was chosen as a sustainable criterion to com-
pare the results with cost. The stochastic global search TAMO algorithm, the swarm
intelligence cuckoo search (CS), and sine cosine algorithms (SCA) were used to
achieve this goal. To allow the SCA and SC techniques to solve the discrete bridge
optimization problem, the discretization technique applying the k-means clustering
technique was used. As a result, SC was found to produce objective energy func-
tion values comparable to TAMO while reducing the computation time by 25.79%.
In addition, the cost optimization and embodied energy analysis revealed that each
euro saved using metaheuristic methodologies decreased the energy consumption
for this optimization problem by 0.584 kW·h. Additionally, by including cells in the up-
per and lower parts of the webs, the behavior of the section was improved, as were
the optimization outcomes for the two optimization objectives. This study concludes
that double composite action design on supports makes the continuous longitudinal
stiffeners in the bottom flange unnecessary.

Keywords: swarm intelligence; steel–concrete composite structures; bridges; opti-
mization; metaheuristics; sustainability

7.1 Introduction

Structural engineering has been traditionally based on materialized safety solutions
reducing the investment to the minimum. However, the current search for solutions
that fall within the definition of sustainable development makes that criterion insuffi-
cient. Regarding this, other criteria have arisen to add the concept of sustainability
to structures [221]. Introducing new design criteria in structural problems increases
complexity, moving this problem to the decision-making field of knowledge. In order
to assess the sustainability of solutions, life cycle assessment has become one of the
most widely used tools to evaluate the social and environmental profile of a solution
[278], [279]. Nevertheless, in order to approximate an environmental assessment,
one representative criterion can be chosen as an alternative. The most used criteria
in these cases are the CO2 emissions and the energy consumption [280], [281]. Re-
garding this, structural optimization research in recent years has focused on applying
different techniques to obtain optimal designs considering CO2 emissions and em-
bodied energy as well as cost as optimization objectives. In conclusion, in concrete
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structures, many research studies have shown a clear relation between the three
criteria [124], [173].

The energy required to build a structure, like CO2 emissions, is an indicator of sus-
tainability [282]. However, there are different definitions of the energy required in
the case of a structure. Each definition implies a different method of calculation.
Therefore, there has yet to be a consensus in the scientific community regarding a
single definition and calculation methodology [283], [284]. Heuristic steel or com-
posite structures were optimized in works such as Whitworth and Tsavdaridis [285].
In structures made of reinforced concrete, the reduction of the required energy can
be accomplished optimizing the use of materials instead of directly changing tradi-
tional to new construction materials. Some authors have used energy as an objective
function in structural optimization [286]–[288].

To address civil engineering optimization problems, particularly in the design of struc-
tures, heuristic methods have had interesting results [289]. One of the most repre-
sentative structures of civil engineering is bridges because they can connect different
geographical locations. This type of structure also stands out for its complexity in ob-
taining optimal solutions due to the high number of design possibilities. In order
to obtain optimum designs, heuristic optimization techniques are put forth as an al-
ternative to traditional experience-based design. These methods allow for reaching
optimum designs ensuring compliance with the restrictions imposed by regulations,
adding these as problem constraints. These methods were extensively applied in
many types of structures, such as road vaults [212] or walls [172], among others.

Regarding bridge energy optimization, Penadés-Plà et al. [124] proposed a Kriging-
based optimization approach that cut computing time by 99.06% and produced re-
sults that differed from heuristic optimization’s use of simulated annealing by just
2.54%. This research work was applied to optimize the embodied energy of a three-
span 40–50–40 m continuous box-section footbridge.

However, recent review works highlight a lack of knowledge in applying heuristic and
metaheuristic techniques to steel–concrete composite bridges (SCCB) [189] com-
pared to concrete bridges. The techniques applied to that type of structure are: set-
based parametric design [106], harmony search (HS) [109], genetic algorithm (GA),
and imperialist competitive algorithm [103], among others. In addition, some particle
swarm algorithms were applied to carry out SCCB optimizations [109]. However, in
those studies, the unique criterion taken as an objective function is the cost. Thus,
researchers have only considered the economic pillar of sustainability in some iso-
lated studies. This shows a lack in SCCB sustainable designs research, which is not
in line with the current policy of countries that seek economically viable solutions and
are environmentally and socially friendly.
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Therefore, this study proposes to optimize a composite steel and concrete bridge us-
ing embodied energy as the objective function. The main purpose of this research is
to obtain an energy-embodied optimum design. For this, two types of metaheuristics
were applied in order to use the one that reaches the best behavior for this opti-
mization problem. Due to the large number of variables that the bridge presents, it
is an important challenge for optimization algorithms. Since this energy optimiza-
tion problem has not been solved before and there is no comparison baseline, it
has been proposed to use and compare two groups of techniques. The first one is
based on a global stochastic search (threshold accepting with a mutation operator
algorithm) and was used before in solving similar problems with good results. The
second is based on hybrid methods that integrate machine learning algorithms in
the discretization process of continuous swarm intelligence methods. This technique
has been used to solve combinatorial problems with a binary representation [290].
The current work proposes a variation to address the discrete problem. In this work,
first, an analysis of the contribution of the hybrid method to the optimization result is
carried out through the comparison with random discretization methods. Additionally,
the main parameter (β) used in the hybrid method is analyzed in order to identify its
contribution to the optimization result. Subsequently, the hybrid method is compared
with the threshold accepting with a mutation operator algorithm. The comparison is
made through the minimization of the embodied energy and of the costs. Finally, the
different solutions found in both optimizations are analyzed and compared. For this,
in Section 7.2, the optimization problem variables, parameters, and constraints were
defined. Section 7.3 describes the different optimization algorithms used and their
tuning. Subsequently, Sections 7.4 and 7.5 show the results and the comparison
with previous studies. As it can be seen in Section 7.6, results of the study show that
the cost and the embodied energy are clearly related when optimizing cost; however,
optimizing embodied energy does ot necessarily result in a cost-optimal solution.

In conclusion, it should be mentioned that other types of particle swarm optimiza-
tion algorithms [291], [292] and other methods, such as differential evolution ones
[293], [294], can be applied in future research to study their behavior for this opti-
mization problem. Moreover, in the new studies, new sustainability criteria, such as
the complete life cycle assessment, will be chosen for carrying out multi-objective op-
timization. As the calculation of more and higher complexity objective functions can
increase the computational time, the use of metamodels generated with machine
learning techniques will be taken into account.
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7.2 Optimization Problem Description

The problem posed in this study is the minimization of the objective function that
evaluates the embodied energy and the cost of a steel–concrete composite bridge
(SCCB). To deal with this problem, the bridge was parameterized. In this case, cost
and embodied energy criteria were considered as a single objective in order to com-
pare the designs obtained from both optimizations. In Equation (7.1), the embodied
energy target function was defined. Data for embodied energy considers cradle-to-
gate analysis; thus, it considers all processes necessary from obtaining raw materials
, their conversion into those elements that will allow performing the bridge resistant
section, and their final placement on-site. Data of embodied energy and costs in
Table 7.1 were obtained from the Construction Technology Institute of Catalonia by
the BEDEC database [207]. Furthermore, the cost objective function is formulated in
Equation (7.2). Both objective functions must meet the regulation and recommenda-
tion constraints’ represented by Equation (7.3). Meeting these constraints will ensure
the feasibility of the obtained solution from the optimization procedure. Expressions
(7.1) and (7.2) represent the multiplication of each material measurement multiplied
by the embedded energy (ei) and price (pi), respectively.

E(x⃗) =
n∑

i=1

ei ·mi(x⃗) (7.1)

C(x⃗) =
n∑

i=1

pi ·mi(x⃗) (7.2)

G(x⃗) ≤ 0 (7.3)
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Table 7.1: Embodied energy and cost values for materials.

Material Unit Energy (kW·h) Cost (e)

Concrete C25/30 m3 402.44 88.86
Concrete C30/37 m3 428.29 97.80
Concrete C35/45 m3 429.95 101.03
Concrete C40/50 m3 429.95 101.03
Precast pre-slab m2 175.87 27.10

Steel B400S m2 3.38 1.40
Steel B500S m2 3.38 1.42

Rolled steel S275 m2 12.23 1.72
Rolled steel S355 m2 12.23 1.85
Rolled steel S460 m2 12.23 2.01

Shear-connector steel m2 13.52 1.70

7.2.1 Variables and Parameters

A 220 m continuous three-span box-girder steel and concrete composite bridge was
defined as the optimization problem. According to the variables, these correspond
to each bridge element’s geometry, reinforcement, concrete, and steel grades. All
of these variables were discretized in order to arrive at a real constructible solution,
hence constituting a discrete optimization problem. The discretization of variables
is defined in Table 7.2. The number of feasible optimization solutions is equal to
1.38×1046

when this variable discretization is considered. Metaheuristic methods are appro-
priate for locating the best answer when so many combinations are possible. This
bridge optimization problem’s global formulation considers 34 different variables in
total. These bridge variables are illustrated in Figure 7.1. The variables nature can
be classified into six categories. First are the geometric variables of the transverse
section, which are: distance between wings on top (b), angle between wings and
flanges (αw), thickness of the upper slab (hs), depth of the steel section (hb), floor
beam lower value (hfb), upper flange thickness (tf1 ), upper flange width (bf1 ), up-
per cells height (hc1 ) and thickness (tc1 ), wings thickness (tw), low cells height (hc2 ),
thickness (tc2 ), and width (bc2 ), and low slab thickness (hs2 ). Beam depth limits are
defined as L/40 and L/25, L being the longest length of the spans.
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Figure 7.1: Transverse section variables for the optimization problem.

SCCBs can utilize materials more effectively, profiting from the material location. This
is true in statically determined girders. In this case, the upper concrete slab is ma-
terialized along the whole length of the bridge. This upper slab is attached to the
upper flanges by shear connectors. This reinforces the flange plate, preventing it
from buckling. Moreover, in the case of isostatics, the lower flanges would be sub-
jected to tensile stress, avoiding buckling instability problems. In this problem, nega-
tive bending stresses will arise in supported portions under the typical loads (mostly
gravitational) to which road bridges are subjected. This will cause a reversal of forces
and tensile strains in the upper concrete slab and compression in the lower flange.
In this instance, to improve the behavior of the bridge’s cross section, it was decided
to realize a concrete bottom slab in this zone in addition to the reinforcement of the
top slab. In order to optimize the reinforcement of the top slab, it was separated
into a base reinforcement that is the least necessary by regulations [26], [237], [238]
and two additional layers in negative bending sections, where the reinforcement is
enhanced. Accordingly, the second group of variables corresponds to base rein-
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forcement, first reinforcement and second reinforcement bar diameters (ϕbase, ϕr1 ,
ϕr2 ), and the corresponding bar number of the reinforcement areas (nr1 , nr2 ).

In order to avoid buckling of steel plates, stiffeners were defined as the third category
of the problem variables considering half IPE profiles for wings, bottom flange, and
the transverse stiffeners (sw, sf2 , st). In order to allow the optimization procedure
to define the number of stiffeners of the bottom flange (nsf2

), this is considered as a
variable placing them evenly distributed over the width.

To finalize the geometrical variables definition, the shear connectors and floor beam
geometry were defined through the width of the floor beam (bfb), thicknesses of the
flanges (tffb

) and webs (twfb
), and the shear connectors height (hsc) and diameter

(ϕsc). To determine the materials strength, the rolled steel tensile stress (fyk), con-
crete strength (fck), and reinforcement steel tensile stress (fsk) were also defined as
variables.
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Table 7.2: Optimization problem variables and boundaries.

Variables Unit Lower Limit Upper Limit Step Size Possibilities

Geometrical variables

b m 7 10 0.01 301
αw deg 45 90 1 46
hs mm 200 400 10 21
hb cm 250 (L/40) 400 (L/25) 1 151
hfb mm 400 700 100 31
tf1 mm 25 80 1 56
bf1 mm 300 1000 10 71
hc1 mm 0 1000 1 101
tc1 mm 16 25 1 10
tw mm 16 25 1 10
hc2 mm 0 1000 10 101
tc2 mm 16 25 1 10
bc2 mm 300 1000 10 71
tf2 mm 25 80 1 56
hs2 mm 150 400 10 26

Stiffeners

nsf2
u 0 10 1 11

dst m 1 5 0.1 41
dsd m 4 10 0.1 61
sf2 mm IPE 200-IPE 600 * 12
sw mm IPE 200-IPE 600 * 12
st mm IPE 200-IPE 600 * 12

Floor beams

bfb mm 200 1000 100 9
tffb

mm 25 35 1 11
twfb mm 25 35 1 11

Reinforcement

nr1 u 200 500 1 301
nr2 u 200 500 1 301
ϕbase mm 6, 8, 10, 12, 16, 20, 25, 32 8
ϕr1 mm 6, 8, 10, 12, 16, 20, 25, 32 8
ϕr2 mm 6, 8, 10, 12, 16, 20, 25, 32 8

Shear Connectors

hsc mm 100, 150, 175, 200 4
ϕsc mm 16, 19, 22 3

Material strength

fck MPa 25, 30, 35, 40 4
fyk MPa 275, 355, 460 3
fsk MPa 400, 500 2

*Following the standard series of IPE profiles [239].
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Table 7.3 defines the parameters used for the bridge optimization problem. These
parameters consider the Eurocode structural checks [26], [237], [238], the bridge
spans length that corresponds to 60–100–60 m as can be seen in Figure 7.2, the
deck width (B) of 16 m, and the upper and lower bound for the variables considering
regulations [26], [237], [238] and design guides [25], [242].

Table 7.3: Parameters of the SCCB optimization problem.

Geometrical parameters

Bridge deck width (W ) 16 m
Span number 3
Central span length 100 m
External span length 60 m
Minimum web thickness (twmin

) 15 mm
Minimum flange thickness (tf2min) 25 mm
Reinforcement cover 45 mm

Material parameters

Maximum aggregate size 20 mm
Concrete longitudinal strain modulus (Ecm) 22 · ((fck + 8)/10)3 MPa
Concrete transverse strain modulus (Gcm) Ecm/(2 · (1 + 0.2)) MPa
Steel longitudinal strain modulus (Es) 210,000 MPa
Steel transverse strain modulus (Gs) 80,769 MPa

Regulation requirement parameters

Regulations Eurocodes [26], [237], [238], [240], IAP-11 [241]
Exposure environment XD2
Structural class S5
Service life 100 years

Loading parameters

Reinforced concrete density 25 kN/m3

Steel density 78.5 kN/m3

Asphalt density 24 kN/m3

Asphalt layer thickness 100 mm
Bridge traffic protections 5.6 kN/m
Traffic load Eurocode 1 [240]
Thermal load Eurocode 1 [240]
Wind load Eurocode 1 [240]

Upper and lower slab reinforcements were set with the minimum amount required
for reinforcement in Eurocode 2 [238]. The connection was obtained considering the
concrete slab stresses. Effective widths due to shear lag are calculated considering
Eurocode 4 [26] as only this part is considered as resistant. The steel bar reinforce-
ments (ϕr1 , ϕr2 ) were placed only in the effective width. Lower slabs defined on
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supports are placed on the first and last third of every span corresponding to the
shear lag negative bending areas defined in Eurocode 4 [26].

60.00 100.00 60.00

Figure 7.2: Bridge spans length of the SCCB bridge.

7.2.2 Structural Analysis and Constraints

The constraints of the optimization problem correspond to the structural safety and
serviceability checks defined by the regulations [26], [237], [238]. Furthermore addi-
tional constraints were incorporated following some design guides [25], [242].

Constraints defined by Eurocodes correspond to ultimate limit states (ULS) and ser-
viceability limit states (SLS). ULS correspond to the structural resistance of bridge
sections, while SLS correspond to the defined materials stresses and deflection lim-
its. The loads and combination defined correspond to those imposed by Eurocode 1
[240] and are summarized in Table 7.3.

For ULS checks, both local and global analyses were performed. For global analysis,
the checks corresponded to: shear, flexure, torsion, and flexure–shear interaction. To
obtain the sections resistance, the reductions due to shear lag [26] and slenderness
of Class 4 sections [238] were considered. The precision of the Class 4 reduction
iterative process was defined in 10−6. Sections were homogenized considering the
coefficient (n) between the longitudinal deflection modulus of concrete (Ecm) and
steel (Es) as defined in Equation (7.4). Concrete creep and shrinkage were defined
following the Eurocodes [26], [237], [238] standard. For developing the floor beams
and diaphragm behavior to ULS, local modeling was performed.

n =
Es

Ecm

(7.4)

Deflection, material’s tension limit, and fatigue were defined as SLS constraints. The
deflection limit was defined following Spanish regulation IAP-11 [241], fixing L/1000
as the maximum deflection value for live loads’ frequent combination. In this case, L l
represents each span length. Furthermore, restrictions for construction and geomet-
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rical requirements were defined. All structural checks were defined using a numerical
model programmed with Python language.

7.3 Optimization Algorithms

7.3.1 Trajectory-Based Algorithm: Threshold Accepting with a Mutation
Operator (TAMO)

Duec and Scheuer [295] developed threshold accepting (TA), as an alternative to Kir-
patricks’ simulated annealing (SA) [244]. Both metaheuristics are within the trajectory-
based group . These algorithms vary the problem variables and compare the objec-
tive functions obtained. The rejection or acceptance of the new solution depends on
the criteria chosen. SA applies an acceptation criteria formula that gives the new
solution a probability of being chosen, even worsening the objective function value.
TA applies a more specific criterion by applying a threshold where the solution is
directly accepted if its objective function value is inside. Accepting bad solutions en-
hances the optimization process and allows for avoiding local optimums. While the
optimization process is performed, the threshold is reduced to exploit the optimum
neighborhood. This study has applied threshold accepting with a mutation operator
(TAMO) [296]. As the original TA, this algorithm starts with a random solution and
an initial threshold. According to Medina’s criterion [245], the initial threshold (U0) is
raised or lowered until the acceptability range is between 20% and 40%. The differ-
ence lies in the fact that in each iteration, the new solution can be modified, simulating
the mutations of genetic algorithms. This modification allows adding exploration to
the optimization process.

The TAMO algorithm has specific parameters that adjust it to the problem being
solved. These parameters are variables number (V N ), chain length (CL), stan-
dard deviation for mutation operator (SD), cooling coefficient (CC), and unimproved
chains (UC). V N limits the number of variables changed in each iteration. CL de-
fines the number of iterations run for each threshold. SD is related to the mutation
operator’s probability of mutation of the solution. CC defines the threshold reduc-
tion when the CL is reached. Finally, the UC defines the number of chains without
improvement allowed before the optimization process is ended. In addition to UC,
if the threshold arrives at 0.05% of the initial, then the optimization process is also
finished. The parameters chosen for this optimization problem are those described
in Section 7.3.5.
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7.3.2 Sine Cosine Algorithm (SCA)

In [233], the sine cosine algorithm (SCA) was proposed. When exploring and using
the search space, the swarm intelligence algorithm considers the sine and cosine
functions. The procedure additionally employs P t

j to relocate the solutions. It is the
location of the final solution for iteration t and dimension j and is often the finest re-
sult thus far. Along with P t

j , the technique uses three random numbers, r1, r2, andr3,
with values ranging from zero to one. Equations (7.5) and (7.6) illustrate the update
method employed.

xt+1
i,j = xt

i,j + r1 × sin(r2)× |r3P t
j − xt

i,j| (7.5)

xt+1
i,j = xt

i,j + r1 × cos(r2)× |r3P t
j − xt

i,j| (7.6)

7.3.3 Cuckoo Search Algorithm

The cuckoo species is distinguished by depositing their eggs in other bird species
nests; this way of behaving inspired the CS algorithm. Cuckoos are so sophisticated
that they can imitate the colors and patterns of their chosen host species’ eggs in
some situations. An egg, in this instance, represents a solution. The analogy’s
premise is that the best solutions (cuckoos) should be used to replace those that do
not function adequately. The CS algorithm is based on three fundamental rules:

1. One egg is laid by each cuckoo at a time, and it is placed in a nest that is
chosen at random.

2. The best nests, or those that produce eggs of a high caliber, will be taken into
consideration for the succeeding generation.

3. The number of available nests is a fixed value. With a chance of pa ∈ (0, 1),
the cuckoo’s egg will be found by the host bird.

xt+1
i,j = xt

i,j + α
⊕

Lévy(λ) (7.7)

where α > 0 is the step size that should be proportional to the problem’s scales. The
product

⊕
refers to entry-level multiplications. Through the use of a Lévy distribu-

tion to determine the random step length, the Lévy flight replicates a random walk,
Lévy ∼ t−λ, 1 < λ ≤ 3 .
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7.3.4 Hybrid Swarm Intelligence: SCA and CS

Because both metaheuristics perform naturally in continuous domains, the hybrid
method is used in the case of swarm intelligence metaheuristics. It takes the meta-
heuristic, MH , the list of discrete solutions acquired in the previous iteration, lSol,
and a list of transition probabilities transitionProbs as input parameters. It returns
a new list of discrete solutions, lSol, as an output. In the first stage, the discretization
method determines the MH ’s velocities. These velocities in the case of CSA and
CS correspond to the component obtained by the difference between |xt+1

i,j − xt
i,j| in

Equations (7.5) to (7.7).

Following that, a k-means clustering technique is applied to convert the velocity val-
ues, which can take on values in R, to transition probabilities values which take values
in [0,1). The k-means technique clustering the velocities generating clusters in this
specific case were five clusters. The clusters were sorted from the smallest to larger
centroids. In the case of the smallest centroid, the smallest transition probability was
assigned to all cluster velocities. The largest transition probability is assigned to all
cluster points in the case of the largest centroid. Figure 7.3 shows a diagram with the
k-means procedure. The values of transition probabilities used for this article were
[0.1, 0.2, 0.4, 0.8, 0.9].

Continuos 
space

Discrete 
space

Figure 7.3: K-means discretization technique chart.

Then, for each dimension of each solution, a transition probability DimSol Probi,j
is obtained. If this probability is more significant than a random number, r1, and
a β parameter is greater than a random number, r2, this dimension of the solution
is updated with the value of the best solution obtained,until now. The procedure is
updated with a random permitted value if the β condition is not fulfilled. In the case
neither transition probability nor β condition is fulfilled, the dimension of the solution is
not updated. This final option is intended to enhance the search space’s exploration.
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7.3.5 Parameter Tuning

The metaheuristics’ results are dependent on the values of its parameters. As a
result, a process of parameter selection is required to determine which parameters
produce the greatest results for the goal function. This is highly dependent on the op-
timization problem. As a result, various optimization problems will provide a range of
parameter values. Parameter tuning is the process of determining which parameters
best fit the optimization problem.

TAMO Tuning

The number of parameters changes according to the metaheuristic. There are algo-
rithms with more parameters than others, such as TAMO. Locating the most suitable
ones might become a pretty hard job. As a result, current approaches enable the re-
searcher to obtain the most statistically significant factors and concentrate the search
on their variation. These are referred to as Design of Experiments (DoE). To obtain
the TAMO parameter adjustment in this scenario, a 2k fractional factorial design was
used.

In factorial designs, each trial or replication examines all potential combinations of the
factor levels. This enables the evaluation of the response’s change as the factor level
varies. This change is referred to as the factor’s effect, and it is proportional to the
factor’s statistical significance [248]. Two levels must be allocated to the investigated
algorithm parameters to carry out this operation. The parameters tested and the
levels chosen are 100 and 100 for every step length, 0% and 30% for the standard
deviation, 1 and 5 for the variable number change, 0.80 and 0.95 for the cooling
coefficient, and 1 and 5 for the steps without improving.

Since each variable has two levels defined, 32 (25) runs are required to obtain a com-
plete factorial design. Additionally, 5 replications are required to obtain the average
and deviation for each experiment, resulting in a total of 160 runs. A fractional fac-
torial DoE of resolution V was chosen to minimize the number of runs. This reduces
the number of runs to 80 as the number of combinations is reduced to 16. Table 7.4,
summarizes the parameter value combinations.
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Table 7.4: Results for each parameter combination of the DoE.

CL SD VN CC UC Cost (C) %Desv Time (s) %Desv

1 - - - - + 4,479,632.69 11.60% 1,066.43 7.42%
2 + - - - - 3,822,939.15 0.01% 8,945.34 1.66%
3 - + - - - 4,323,458.35 11.19% 1,074.43 3.73%
4 + + - - + 3,822,726.91 0.00% 8,707.18 2.27%
5 - - + - - 4,157,630.63 2.36% 373.77 8.33%
6 + - + - + 3,829,609.10 0.08% 2,776.87 10.37%
7 - + + - + 4,483,512.89 5.27% 376.63 11.12%
8 + + + - - 3,833,429.00 0.07% 2,768.47 2.72%
9 - - - + - 3,953,288.27 7.13% 2,668.19 5.68%

10 + - - + + 3,822,727.51 0.00% 23,570.64 0.88%
11 - + - + + 4,075,329.14 4.63% 2,743.15 5.30%
12 + + - + - 3,822,729.18 0.00% 23,265.95 0.76%
13 - - + + + 4,003,714.99 6.53% 1,180.30 2.97%
14 + - + + - 3,831,006.92 0.11% 10,347.75 5.33%
15 - + + + - 4,058,998.41 5.05% 1,295.28 16.48%
16 + + + + + 3,826,230.52 0.08% 10,059.03 2.73%

As shown in Table 7.4, the best results in terms of cost are obtained with Experiment
4. Furthermore, the deviation in cost is negligible. For these reasons, the parameters
chosen for the TAMO algorithm correspond to those used in Experiment 4.

Hybrid Swarm Intelligence Methods Tuning

The process for choosing parameters employs four metrics to make an appropriate
parameter selection: the best, the average, the worst value, and the time obtained in
the different runs executed. Table 7.5 summarizes the parameters and their explored
values. The Range column displays the values that were explored for each of the
parameters. The Value column contains the currently selected value. We scanned
eight parameter settings and repeated each setting five times.
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Table 7.5: Scanned parameters for the cuckoo search algorithm.

Parameters Description Value Range

N Number of solutions 10 [10, 20]
Iteration Number Maximum iterations 600 [600, 800]

β Exploration–exploitation 0.8 [0.3, 0.5, 0.7, 0.8]
α Step Length 0.01 0.01
λ Levy distribution parameter 1.5 1.5

Transition probability Transition probability [0.1, 0.2, 0.4, 0.8, 0.9] [0.1, 0.2,[0.4, 0.5],0.8, 0.9]

7.4 Results

This section details the results of the experiments carried out. Section 7.4.1 stud-
ies the contribution of the hybridization method to the final result of the optimization
in addition to the value configured for the values of β. In addition to the tables,
descriptive statistical analyzes are considered. In particular, descriptive statistics are
combined with violin plot visualizations for a comprehensive study. The statistical sig-
nificance of the results is also determined using the Kolmogorov–Smirnov–Lilliefors
and Wilcoxon signed-rank statistical tests. The statistical methods described in Fig-
ure 7.4 [252] were used to select these tests. Later, in Section 7.4.2, the proposed
hybrid algorithms CS and SCA are compared with TA; the latter was successfully
used to solve other related optimization problems. Finally, Section 7.4.3 analyzes the
results of the best value obtained.
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Figure 7.4: Statistical method.

7.4.1 Parameters Exploration of the Hybrid Algorithm

This section aims to identify the contribution of the k-means technique in the dis-
cretization process as well as to explore the importance of the β operator in the
optimization result. To achieve the objective, two experiments were developed. The
first corresponds to a comparison between the hybrid versions for SCA and CS with
random discretization methods. The second involves comparing the results of using
different values of the β parameter. For the construction of the random operator, in
Algorithm 4, the getClusterProbability function was replaced by a uniform random
number generator in Line 8 . This operation produces values ranging from zero to
one. Line 9 of the method also sets up 2 values for dimSolProb; it sets the initial
value in (Random 0.5), which corresponds with a probability of transition of 50%.
For the second value, the value is set to 0.7 (Random 0.3), corresponding to a prob-
ability transition of 30%. For this experiment, the value of β used was 0.8. The result
is displayed in Table 7.6.

Table 7.6 shows that for both CS and SCA the hybrid version is superior to both
random versions. In the specific case of CS, which was the one that obtained the
best result, when comparing it to its random versions, the average indicator in the
hybrid version was 0.59% higher than CS − Random 0.5 and 0.6% for the case
of CS − Random 0.3. The Wilcoxon statistical test indicates that the difference is
significant in all cases. The experiment’s main objective was to evaluate the impact
of the clustering function (getClusterProbability); the experiment showed that the im-

172



7.4 Results

pact on the optimization results is significant for the CS and SCA cases. The second
experiment, which is detailed in Table 7.7, evaluates the impact of the parameter β
used in Line 10 of Algorithm 4. Three conditions, β = {0.3, 0.5, 0.8}, were verified.
Both metaheuristics were again evaluated. The parameter β determines if the move-
ment is going to follow the best solution (Line 11) or considers a random movement
(Line 13); the latter has the sense of developing an exploration of the search space.
The higher the value is, the more limited the exploration will be. According to the
results, the value that obtained the best results was 0.8. The differences were not
as large as in the previous case; however, according to the Wilcoxon test, they were
significant in all cases.

Algorithm 4 Hybrid algorithm.
1: Function Discretization(lSol, MH ,transitionProbs)

2: Input lSol, MH , transitionProbs

3: Output lSol

4: vlSol← getVelocities(lSol, MH)

5: lSolClustered← appliedKmnsClust(vlSol, K)

6: for (each Soli in lSolClustered) do

7: for (each dimSoli,j l in Soli) do

8: dimSolProbi,j = getClustProb(dimSol, transitionProbs)

9: if dimSolProbi,j > r1 then

10: if beta > r2 then

11: Update lSoli,j using the best.

12: else

13: Update lSoli,j using a random value allowed.

14: end if

15: else

16: Don’t update the item in lSoli,j

17: end if

18: end for

19: end for
20: return lSol
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Table 7.6: Comparison of random with hybrid discretization algorithms in the embodied optimiza-
tion problem.

CS-Hybrid CS-Random 0.5 CS-Random 0.3 SCA-Hybrid SCA-Random 0.5 SCA-Random 0.3
Run Cost (e) Energy (kW·h) Cost (e) Energy (kW·h) Cost (e) Energy (kW·h) Cost (e) Energy (kW·h) Cost (e) Energy (kW·h) Cost (e) Energy kW·h

1 4,096,945.7 26,685,288.4 4,144,609.5 26,924,597.2 3,901,827.4 27,054,482.8 4,093,040.7 26,675,993.4 3,893,662.8 26,993,377.1 3,960,137.9 27,344,487.5
2 3,825,898.2 26,677,834.4 4,128,651.0 26,827,502.2 4,158,129.4 27,012,480.6 3,833,087.9 26,694,948.0 3,922,221.6 27,158,981.4 3,894,003.8 26,994,996.4
3 4,094,985.4 26,680,668.9 3,848,284.2 26,782,468.4 4,488,718.2 26,920,032.6 4,093,055.8 26,676,029.4 3,939,000.7 27,237,960.1 3,902,733.6 27,041,432.2
4 4,092,167.0 26,673,913.8 4,128,797.8 26,825,120.9 4,158,129.4 27,012,480.6 4,431,425.5 26,696,563.9 3,896,661.8 27,081,425.9 3,882,735.9 26,890,936.9
5 4,090,639.1 26,670,276.8 4,099,424.2 26,706,958.3 3,847,222.5 26,744,603.2 3,832,058.8 26,692,528.2 3,882,294.8 27,047,746.5 3,872,531.6 26,870,535.1
6 4,428,019.7 26,688,457.2 4,457,224.7 26,803,634.0 3,848,295.5 26,782,495.4 3,827,006.3 26,680,472.1 3,870,409.1 26,896,521.3 3,853,870.1 26,865,455.3
7 4,092,030.9 26,673,589.7 4,512,757.8 27,010,214.1 3,901,410.8 27,051,726.7 4,097,544.0 26,686,759.0 3,856,030.7 26,794,705.4 3,895,172.4 27,033,901.0
8 4,090,639.1 26,670,276.8 4,429,502.6 26,708,460.1 3,888,138.1 26,923,550.4 3,824,911.8 26,676,124.8 3,841,775.5 26,763,858.5 3,882,310.3 26,973,266.3
9 3,828,638.3 26,684,356.6 3,828,880.8 26,699,699.6 4,511,638.5 26,992,955.9 4,420,381.8 26,670,276.8 3,871,312.6 26,935,825.3 3,859,508.9 26,891,452.3

10 4,098,046.3 26,687,908.1 3,900,002.1 27,088,694.5 4,534,699.3 27,057,884.7 3,831,043.8 26,691,335.4 3,866,380.4 26,912,272.5 3,867,904.2 26,868,955.3
11 3,822,723.1 26,670,276.8 4,108,676.9 26,746,543.2 4,478,184.2 26,862,464.8 4,424,708.5 26,680,575.6 3,900,122.2 27,021,209.4 3,896,980.1 27,049,283.8
12 3,822,723.1 26,670,276.8 4,118,910.4 26,771,292.7 4,473,260.4 26,857,346.9 4,094,550.7 26,679,759.9 3,869,631.8 26,854,424.5 3,893,663.9 26,913,646.3
13 4,428,645.6 26,689,947.1 4,098,320.3 26,703,158.2 4,469,122.9 26,832,577.3 3,829,345.5 26,686,040.1 3,945,317.9 27,483,275.5 3,847,065.1 26,784,215.9
14 3,822,723.1 26,670,276.8 4,490,894.9 26,969,332.4 447,8421.1 26,862,181.6 4,422,860.9 26,676,177.9 3,847,634.6 26,796,203.7 3,847,065.1 26,784,215.9
15 4,098,144.6 26,688,142.1 4,457,422.2 26,808,045.1 4,117,687.8 26,764,481.3 4,098,585.6 26,689,191.9 3,884,650.8 26,986,971.4 3,915,411.6 27,174,939.5
16 4,422,083.7 26,674,327.9 3,854,295.6 26,788,264.6 3,847,812.4 26,759,388.3 4,092,465.8 26,674,625.0 3,895,513.5 27,054,362.7 3,907,472.4 27,075,044.5
17 3,824,886.5 26,675,426.2 3,854,295.6 26,788,264.6 4,443,136.5 26,745,155.0 4,095,168.1 26,681,057.2 3,858,451.9 26,840,052.0 3,899,246.9 27,039,139.2
18 3,822,723.1 26,670,276.8 3,852,081.5 26,774,783.3 4,447,647.7 26,795,306.0 3,828,464.3 26,683,942.5 3,903,872.8 27,016,029.5 3,886,928.7 26,991,286.3
19 4,420,381.8 26,670,276.8 4,506,898.1 27,038,234.2 4,434,209.6 26,713,701.8 3,827,046.0 26,680,566.6 3,857,355.7 26,808,143.3 3,880,757.4 26,948,312.1
20 4,094,744.5 26,680,049.0 4,145,753.5 26,907,828.9 4,433,091.4 26,708,831.5 4099,757.7 26,691,981.7 3,866,415.5 26,856,837.2 3914,838.9 27,195,185.8
21 4,090,639.1 26,670,276.8 4,125,813.1 26,841,024.4 4,428,324.5 26,701,767.9 3,823,789.7 26,672,815.5 3,937,042.1 27,276,778.9 3,908,855.7 27,119,308.0
22 3,822,984.1 26,670,898.0 3,848,295.5 26,782,495.4 4,184,216.4 26,933,919.9 3,822,723.1 26,670,276.8 3,918,734.3 27,083,247.5 3,865,973.2 26,927,294.5
23 4,096,497.5 26,684,221.6 4,137,720.7 26,889,362.7 4,452,906.4 26,792,502.2 4,091,739.6 26,672,896.5 3,876,224.8 26,881,663.2 3,849,356.8 26,818,040.5
24 4,098,033.0 26,687,876.6 4,514,684.8 27,030,757.5 4,439,421.1 26,721,222.5 4,421,414.3 26,672,734.5 3,937,528.5 27,300,880.0 3,917,215.2 27129984.4
25 4,093,116.3 26,676,173.4 4,161,558.4 27,016,043.2 4,438,689.1 26,718,169.7 4,098,861.3 26,689,848.1 3,951,207.8 27,413,471.1 3,873,218.3 26,935,141.4
26 3,823,551.4 26,672,248.3 4,130,300.8 26,811,521.9 4,121,244.8 26,797,247.8 4,099,084.5 26,690,379.3 3,865,317.3 26,936,470.2 3,873,046.8 26,934,942.9
27 3,831,521.8 26,691,249.9 4,115,651.2 26,781,258.7 4,117,653.3 26,788,641.6 4,420,517.6 26,670,629.8 3,858,401.9 26,832,917.2 3,886,928.7 26,991,286.3
28 4,092,987.7 26,675,867.3 4,443,221.2 26,762,283.9 4,113,513.6 26,762,101.5 4,095,858.3 26,682,700.2 3,926,973.5 27,207,587.1 3,907,472.4 27,075,044.5
29 4,095,396.9 26,681,601.9 3,845,329.1 26,753,352.3 4,112,140.7 26,753,018.7 3,833,165.5 26,695,132.5 3,863,678.8 26,860,034.3 3,899,246.9 27,039,139.2
30 4,093,532.4 26,677,163.7 4,107,444.6 26,729,705.3 4,440,909.3 26,747,263.8 4,093,031.2 26,675,970.9 3,951,842.9 27,424,806.2 3,909,674.6 27,134,621.5

min 3,822,723.1 26,670,276.8 3,828,880.8 26,699,699.6 3,847,222.5 26,701,767.9 3,822,723.1 26,670,276.8 3,841,775.5 26,763,858.5 3,844,960.2 26,784,215.9
average 4,048,535 26,677,980.8 4,146,523.4 26,835,696.7 4,999,441.5 26,838,999.4 4,063,223.2 26,681,944.5 3,891,855.6 27,025,268 3,882,252.4 26,962,208.7

max 4,428,645.6 26,691,249.9 4,514,684.8 27,088,694.5 26,701,767.9 27,057,884.7 4,431,425.5 26,696,563.9 3,951,842.9 27,483,275.5 3,960,137.9 27,344,487.5
p-value 1.87× 10−5 2.32× 10−5 2.67× 10−6 5.21× 10−5

Table 7.7: Analysis of the β parameter for hybrid CS and hybrid SCA algorithms in the embodied
optimization problem.

CS-Hybrid 0.8 CS-Hybrid 0.5 CS-Hybrid 0.3 SCA-Hybrid 0.8 SCA-Hybrid 0.5 SCA-Hybrid 0.3
Run Cost (e) Energy (kW·h) Cost (e) Energy (kW·h) Cost (e) Energy (kW·h) Cost (e) Energy (kW·h) Cost (e) Energy (kW·h) Cost (e) Energy (kW·h)

1 4,096,945.7 26,685,288.4 4,421,629.9 26,673,247.6 3,825,599.6 26,678,976.2 4,093,040.7 26,675,993.4 3,829,662.7 26,716,239.3 3,852,063.5 26,776,349.4
2 3,825,898.2 26,677,834.4 3,824,833.5 26,675,300.2 4,094,438.0 26,780,240.7 3,833,087.9 26,694,948.0 3,836,538.4 26,724,014.0 3,838,388.3 26,748,317.1
3 4,094,985.4 26,680,668.9 4,092,352.3 26,674,354.9 4,422,601.9 26,675,561.2 4,093,055.8 26,676,029.4 3,840,611.1 26,741,452.6 3,840,663.8 26,742,739.2
4 4,092,167.0 26,673,913.8 3,822,847.9 26,770,573.9 4,421,670.5 26,673,846.7 4,431,425.5 26,696,563.9 3,841,151.8 26,744,025.5 3,847,634.6 26,796,203.7
5 4,090,639.1 26,670,276.8 3,822,723.1 26,670,276.8 4,095,234.4 26,681,559.3 3,832,058.8 26,692,528.2 3,835,346.5 26,712,877.4 3,845,385.7 26,765,875.6
6 4,428,019.7 26,688,457.2 3,822,723.1 26,670,276.8 3,829,906.8 26,687,555.0 3,827,006.3 26,680,472.1 3,838,241.8 26,725,296.9 3,839,844.8 26,745,147.7
7 4,092,030.9 26,673,589.7 4,094,610.3 26,679,729.4 4,097,484.9 26,686,879.0 4,097,544.0 26,686,759.0 3,830,021.3 26,689,322.1 3,837,570.3 26,738,778.4
8 4,090,639.1 26,670,276.8 4,094,466.5 26,679,387.3 4,094,968.4 26,680,888.9 3,824,911.8 26,676,124.8 3,840,141.1 26,773,580.5 3,979,915.8 27,694,901.1
9 3,828,638.3 26,684,356.6 4,421,264.9 26,672,378.9 4,095,281.1 26,681,498.3 4,420,381.8 26,670,276.8 3,831,809.5 26,714,597.9 3,837,811.0 26,715,356.9

10 4,098,046.3 26,687,908.1 4,422,378.7 26,675,030.1 4,427,962.4 26,688,613.0 3,831,043.8 26,691,335.4 3,834,422.1 26,712,377.7 3,844,114.5 26,749,794.7
11 3,822,723.1 26,670,276.8 3,822,723.1 26,670,276.8 4,090,840.2 26,670,957.4 4,424,708.5 26,680,575.6 3,838,997.9 26,749,285.6 3,860,551.2 26,812,438.0
12 3,822,723.1 26,670,276.8 4,090,639.1 26,670,276.8 4,421,846.9 26,673,764.3 4,094,550.7 26,679,759.9 3,832,276.8 26,708,331.7 3,832,242.2 26,734,012.5
13 4,428,645.6 26,689,947.1 4,420,760.4 26,671,178.1 3,833,836.5 26,697,654.5 3,829,345.5 26,686,040.1 3,822,878.2 26,671,004.0 3,837,078.2 26,722,390.6
14 3,822,723.1 26,670,276.8 4,093,831.1 26,677,874.9 4,099,807.9 26,692,617.8 4,422,860.9 26,676,177.9 3,833,610.5 26,732,750.5 3,880,757.4 26,948,312.1
15 4,098,144.6 26,688,142.1 3,831,013.4 26,690,010.2 4,101,920.0 26,698,535.8 4,098,585.6 26,689,191.9 3,831,631.1 26,720,405.2 3,915,723.6 27,289,381.2
16 4,422,083.7 26,674,327.9 3,822,938.7 26770790.0 3,830,424.7 26,788,928.1 4,092,465.8 26,674,625.0 3,838,434.6 26,741,872.9 3,849,356.8 26,818,040.5
17 3,824,886.5 26,675,426.2 3,828,880.8 26,684,933.8 4,421,068.2 26,672,104.2 4,095,168.1 26,681,057.2 3,830,766.1 26,710,390.1 3,843,137.6 26,777,082.8
18 3,822,723.1 26,670,276.8 4,422,163.1 26,674,517.0 3,829,894.7 26,694,327.8 3,828,464.3 26,683,942.5 3,842,429.7 26,755,365.9 3,827,737.8 26,701,775.3
19 4,420,381.8 26,670,276.8 4,421,096.6 26,671,978.3 4,094,847.7 26,780,908.6 3,827,046.0 26,680,566.6 3,832,170.7 26,707,620.9 3,854,353.3 26,779,597.7
20 4,094,744.5 26,680,049.0 4,420,381.8 26,670,276.8 3,828,383.1 26,684,286.1 4,099,757.7 26,691,981.7 3,826,311.6 26,692,093.6 3,846,577.9 26,819,795.3
21 4,090,639.1 26,670,276.8 4,091,717.0 26,672,842.5 4,091,181.4 26,672,974.8 3,823,789.7 26,672,815.5 3,857,112.2 26,818,332.1 3,845,166.9 26,786,016.9
22 3,822,984.1 26,670,898.0 4,091,035.8 26,671,251.0 4,422,529.3 26,676,586.8 3,822,723.1 26,670,276.8 3,832,154.6 26,716,933.8 3,846,331.7 26,806,453.6
23 4,096,497.5 26,684,221.6 4,422,781.5 26,675,988.9 4,091,923.9 26,674,600.6 4,091,739.6 26,672,896.5 3,830,030.8 26,702,518.8 3,841,512.6 26,788,509.8
24 4,098,033.0 26,687,876.6 4,421,425.6 26,672,761.5 4,092,847.1 26,676,393.4 4,421,414.3 26,672,734.5 4,175,468.7 29,169,891.1 3,832,590.9 26,713,656.9
25 4,093,116.3 26,676,173.4 4,092,652.7 26,675,099.5 4,425,736.9 26,686,155.0 4,098,861.3 26,689,848.1 3,829,702.6 26,709,870.0 3,862,680.1 26,851,899.7
26 3,823,551.4 26,672,248.3 4,427,045.8 26,786,139.1 4,422,166.5 26,674,525.0 4,099,084.5 26,690,379.3 3,832,923.7 26,714,515.0 3,847,190.0 26,747,850.2
27 3,831,521.8 26,691,249.9 4,091,183.7 26,671,573.2 4,429,755.7 26,694,284.9 4,420,517.6 26,670,629.8 3,834,191.9 26,702,712.9 3,872,021.5 26,806,869.8
28 4,092,987.7 26,675,867.3 4,091,251.8 26,671,735.2 4,095,770.6 26,683,352.3 4,095,858.3 26,682,700.2 3,829,805.4 26,703,590.3 3,844,960.2 26,799,370.1
29 4,095,396.9 26,681,601.9 3,822,723.1 26,770,276.8 3,823,680.0 26,672,733.5 3,833,165.5 26,695,132.5 3,832,418.3 26,724,789.7 3,853,668.0 26,877,301.7
30 4,093,532.4 26,677,163.7 4,092,443.1 26,674,571.0 3,833,038.7 26,705,152.8 4,093,031.2 26,675,970.9 3,842,743.9 26,761,566.9 3,848,918.1 26,787,319.3

min 3,822,723.1 26,670,276.8 3,822,723.1 26,670,276.8 3,823,680.0 26,670,957.4 3,822,723.1 26,670,276.8 3,822,878.2 26,671,004.0 3,827,737.8 26,701,775.3
average 4,048,535.0 26,677,980.8 4,121,950.6 26,687,830.2 4,122,888.3 26,692,882.1 4,063,223.2 26,681,944.5 3,846,133.5 26,805,587.5 3,853,531.6 26,828,051.3

max 4,428,645.6 26,691,249.9 4,427,045.8 26,786,139.1 4,429,755.7 26,788,928.1 4,431,425.5 26,696,563.9 4,175,468.7 29,169,891.1 3,979,915.8 27,694,901.1
Wilcoxon p-value 0.014 1.1× 10−4 3.4× 10−5 7.2× 10−4
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7.4 Results

7.4.2 Embodied Energy and Cost Optimization Methods Comparison

This section describes and analyzes the energy minimization results achieved by the
TAMO, discrete CS, and discrete SCA algorithms. Table 7.8 shows the outcomes of
the 30 executions of each of the algorithms. The results correspond to the minimiza-
tion of the steel–concrete embodied energy of the structure. The minimum value of
embodied energy obtained throughout the execution is represented in the Energy
column. The Cost column represents the structure’s cost that was minimized. The
Time corresponds to the amount of time it takes to achieve the minimum in seconds.

When analyzing the table, it is observed that concerning the best value obtained, all
three algorithms obtain the same value, 26,670,276.8 kW·h. In the case of the aver-
age indicator, TAMO obtained a slight superiority, with a value of 26,671,471.6 kW·h,
followed by CS with a value of 26,677,980.8 kW·h, and finally SCA with 26,681,944.4
kW·h. In the case of the worst value obtained, TAMO again obtained the best value,
followed by CS and finally SCA. The Wilcoxon test compared TAMO-CS and TAMO-
SCA to determine whether this difference is significant. The result indicates that the
difference is not significant since it delivers values greater than 0.05 in the p-value.
When the times are analyzed, the situation changes. A notable difference is ob-
served where CS obtains the best result with an average of 7305 s, CSA with an
average of 7960 s, and TAMO with an average of 9399 s. In addition, in the table, we
must highlight the dispersion of the results obtained for the costs in the three algo-
rithms. For example, in the case of TAMO, some energy optimizations obtain costs
of 3,822,723 and, in other cases, values of 4,422,594.
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Table 7.8: Embodied energy minimization results for 30 executions of TAMO, hybrid CS, and hybrid
SCA algorithms.

TAMO Hybrid CS Hybrid SCA
Run Cost (e) Energy (kW·h) Time(s) Cost (e) Energy (kW·h) Time(s) Cost (e) Energy (kW·h) Time(s)

1 3,823,571.1 26,672,341.6 10,279.2 4,096,945.7 26,685,288.4 7,879.9 4,093,040.7 26,675,993.4 8,082.0
2 4,421,229.7 26,672,341.6 10,300.6 3,825,898.2 26,677,834.4 7,935.3 3,833,087.9 26,694,948.0 8,071.9
3 3,822,723.1 26,670,276.8 8,491.2 4,094,985.4 26,680,668.9 7,954.9 4,093,055.8 26,676,029.4 8,049.9
4 4,420,387.1 26,670,319.2 8,401.6 4,092,167.0 26,673,913.8 7,943.6 4,431,425.5 26,696,563.9 8,083.9
5 4,093,735.5 26,677,693.6 9,413.9 4,090,639.1 26,670,276.8 6,210.6 3,832,058.8 26,692,528.2 8,068.3
6 4,420,381.8 26,670,276.8 9,673.1 4,428,019.7 26,688,457.2 7,931.1 3,827,006.3 26,680,472.1 7,982.8
7 4,421,453.6 26,672,857.9 10,329.4 4,092,030.9 26,673,589.7 7,943.5 4,097,544.0 26,686,759.0 7,920.5
8 3,822,723.1 26,670,276.8 7,197.4 4,090,639.1 26,670,276.8 5,819.4 3,824,911.8 26,676,124.8 8,040.6
9 4,420,387.1 26,670,319.2 9,833.4 3,828,638.3 26,684,356.6 7,936.6 4,420,381.8 26,670,276.8 6,843.4

10 4,420,390.1 26,670,343.1 10,301.9 4,098,046.3 26,687,908.1 7,938.0 3,831,043.8 26,691,335.4 8,041.0
11 3,822,728.4 26,670,319.2 8,970.8 3,822,723.1 26,670,276.8 4,391.3 4,424,708.5 26,680,575.6 7,816.5
12 4,091,044.5 26,671,288.4 10,190.0 3,822,723.1 26,670,276.8 7,432.1 4,094,550.7 26,679,759.9 7,970.6
13 3,822,728.4 26,670,319.2 8,764.4 4,428,645.6 26,689,947.1 7,947.4 3,829,345.5 26,686,040.1 7,943.1
14 4,090,814.6 26,670,724.3 9,583.6 3,822,723.1 26,670,276.8 3,696.5 4,422,860.9 26,676,177.9 8,058.6
15 4,090,644.4 26,670,319.2 8,901.5 4,098,144.6 26,688,142.1 7,851.8 4,098,585.6 26,689,191.9 7,998.2
16 3,822,728.4 26,670,319.2 8,943.7 4,422,083.7 26,674,327.9 7,878.0 4,092,465.8 26,674,625.0 7,877.0
17 4,090,647.4 26,670,343.1 9,023.6 3,824,886.5 26,675,426.2 7,956.7 4,095,168.1 26,681,057.2 7,955.3
18 4,420,897.7 26,671,534.5 9,810.1 3,822,723.1 26,670,276.8 4,146.4 3,828,464.3 26,683,942.5 8,033.3
19 3,825,015.1 26,675,732.3 9,418.1 4,420,381.8 26,670,276.8 6,630.4 3,827,046.0 26,680,566.6 7,989.0
20 4,421,340.2 26,672,587.8 9,636.9 4,094,744.5 26,680,049.0 7,928.1 4,099,757.7 26,691,981.7 8,085.7
21 4,090,639.1 26,670,276.8 9,307.2 4,090,639.1 26,670,276.8 6,688.8 3,823,789.7 26,672,815.5 8,069.1
22 4,422,594.3 26,675,543.2 9,135.0 3,822,984.1 26,670,898.0 7,869.7 3,822,723.1 26,670,276.8 7,700.6
23 3,822,731.4 26,670,343.1 10,188.8 4,096,497.5 26,684,221.6 7,899.5 4,091,739.6 26,672,896.5 7,954.8
24 3,822,751.1 26,670,373.2 10,339.3 4,098,033.0 26,687,876.6 7,922.8 4,421,414.3 26,672,734.5 8,083.7
25 4,090,639.1 26,670,276.8 8,644.7 4,093,116.3 26,676,173.4 7,878.3 4,098,861.3 26,689,848.1 8,008.9
26 4,420,381.8 26,670,276.8 8,094.5 3,823,551.4 26,672,248.3 7,897.7 4,099,084.5 26,690,379.3 8,066.2
27 4,092,119.4 26,673,830.1 9,663.9 3,831,521.8 26,691,249.9 7,858.2 4,420,517.6 26,670,629.8 8,043.6
28 4,420,381.8 26,670,276.8 8,717.0 4,092,987.7 26,675,867.3 7,902.9 4,095,858.3 26,682,700.2 7,941.9
29 3,823,185.3 26,671,423.4 10,032.6 4,095,396.9 26,681,601.9 7,935.4 3,833,165.5 26,695,132.5 7,970.4
30 3,823,012.1 26,670,994.4 10,402.4 4,093,532.4 26,677,163.7 7,952.5 4,093,031.2 26,675,970.9 8,059.3

min 3,822,723.1 26,670,276.8 7,197.4 3,822,723.1 26,670,276.8 3,696.5 3,822,723.1 26,670,276.8 7,700.6
average 4,113,800.2 26,671,471.6 9,399.6 4,048,535.0 26,677,980.8 7,305.2 4,063,223.2 26,681,944.4 7,960.3

max 4,422,594.3 26,677,693.6 10,402.4 4,428,645.6 26,691,249.9 7,956.7 4,431,425.5 26,696,563.9 8,085.7
Wilcoxon p-value 0.087 0.064

In Figure 7.5, the results of Table 7.8 are complemented with violin charts. The
chart on the left shows the results of embodied energy, and the graph on the right
shows the cost in euros for each configuration obtained. In the chart on the left, it
can be seen that in the case of TAMO, the dispersion is less than that of CS and
CSA; it should be noted that the scale is in the fourth digit. CS and SCA have
similar distributions; however, according to the shape of the distribution obtained
and the interquartile range, CS consistently produces better results than SCA. When
analyzing the costs resulting from the configurations obtained by minimizing energy,
we see that the dispersion of values is substantial and similar in the three algorithms.
However, TAMO generates more sparse configurations than CS and SCA. In the
case of CS and SCA, the distributions are similar.

In Table 7.9, the results of the cost optimization are shown. Regarding the algorithms
and their results, something similar to the previous experiment occurs. In the best
value, which corresponds to the minimum, they all obtain the value 3,822,723.1.
Later in the average and the worst value, TA obtains the best results, closely followed
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by CS and then SCA. The statistical test indicates that the difference is not significant
in the TAMO-CS and TAMO-SCA comparison. When analyzing the convergence
times, the result is a little different since the best times in the minimum, average,
and maximum are for the SCA, followed by the CS and at the end, TAMO. Another
interesting point that marks a difference concerning the previous results is that in this
case, the energy results for cost optima are good and very similar to those obtained
in energy minimization. In this case, TAMO obtained the best values, but the values
obtained by CS and SCA were very close. This effect will be analyzed in the next
section.

Table 7.9: Cost minimization results for 30 executions of TAMO, hybrid CS and hybrid SCA algo-
rithms.

TAMO Hybrid CS Hybrid SCA
Run Cost (e) Energy (kW·h) Time(s) Cost (e) Energy (kW·h) Time(s) Cost (e) Energy (kW·h) Time(s)

1 3,822,774,9 26,670,446.6 9,283 3,825,644.2 26,626,556.8 7,975 3,830,092.8 26,693,576.1 7,836
2 3,822,728.4 26,670,319.2 8,803 3,825,115.3 26,675,970.9 7,976 3,864,892.6 26,947,434.0 7,932
3 3,822,878.9 26,670,694.2 8,936 3,825,644.8 26,677,231.2 7,892 3,826,395.0 26,685,077.6 7,873
4 3,823,185.3 26,671,423.4 8,989 3,830,529.3 26,688,857.8 7,959 3,825,919.0 26,677,883.9 7,930
5 3,822,731.4 26,670,343.1 7,685 3,822,875.9 26,670,670.3 7,930 3,823,801.1 26,673,916.7 7,916
6 3,822,728.4 26,670,319.2 6,602 3,827,681.4 26,682,079.0 7,984 3,835,442.1 26,703,151.7 7,911
7 3,822,984.1 26,670,898.0 8,983 3,824,141.4 26,673,652.7 8,008 3,826,324.6 26,687,619.9 7,920
8 3,824,088.1 26,673,555.6 9,202 3,827,522.6 26,681,700.9 7,972 3,826,206.4 26,678,568.1 7,936
9 3,823,937.2 26,673,166.6 8,475 3,827,541.5 26,681,745.9 7,949 3,830,234.3 26,688,155.7 7,858

10 3,825,711.7 26,677,437.0 9,073 3,825,756.9 26,683,046.9 8,056 3,825,188.7 26,676,175.3 7,932
11 3,822,887.3 26,670,697.3 8,951 3,824,519.6 26,674,553.0 8,267 3,828,878.5 26,684,928.3 7,749
12 3,822,723.1 26,670,276.8 6,477 3,831,847.4 26,691,995.2 8,293 3,831,864.4 26,692,035.7 7,720
13 3,822,723.1 26,670,276.8 7,330 3,828,029.4 26,682,907.2 8,167 3,823,462.5 26,672,036.8 7,638
14 3,823,619.5 26,672,410.4 9,412 3,823,891.8 26,673,058.6 8,268 3,828,178.8 26,683,620.9 7,819
15 3,822,984.1 26,670,898.0 9,305 3,825,444.4 26,677,712.0 8,149 3,826,902.0 26,680,253.4 7,762
16 3,822,731.4 26,670,343.1 8,173 3,823,063.7 26,672,698.4 8,210 3,824,311.6 26,674,057.8 7,687
17 3,823,598.3 26,672,389.8 9,244 3,832,782.3 26,723,089.8 8,308 3,822,723.1 26,670,276.8 6,165
18 3,823,676.2 26,672,545.4 8,499 3,828,246.8 26,683,424.9 8,370 3,824,024.1 26,673,373.7 7,768
19 3,822,728.4 26,670,319.2 7,017 3,831,724.5 26,691,702.6 8,250 3,824,115.0 26,673,947.8 7,918
20 3,822,728.4 26,670,319.2 9,366 3,824,459.1 26,674,408.9 8,236 3,829,979.1 26,688,085.1 7,891
21 3,822,723.1 26,670,276.8 8,797 3,830,466.9 26,688,709.3 7,898 3,823,245.0 26,671,519.2 7,870
22 3,824,379.7 26,674,219.9 8,614 3,825,593.7 26,677,109.7 7,645 3,828,654.6 26,687,985.8 7,945
23 3,823,525.7 26,672,233.6 8,612 3,826,446.6 26,679,318.8 7,912 3,827,333.5 26,681,250.8 7,896
24 3,823,981.4 26,673,318.4 9,302 3,827,796.8 26,682,353.6 7,915 3,824,394.2 26,669,105.1 7,876
25 3,823,079.4 26,671,171.3 9,420 3,822,766.6 26,670,380.3 7,897 3,830,913.2 26,689,771.6 7,856
26 3,822,723.1 26,670,276.8 7,891 3,822,723.1 26,670,276.8 7,024 3,829,366.5 26,687,342.8 7,669
27 3,822,728.4 26,670,319.2 8,318 3,822,723.1 26,670,276.8 5,219 3,833,463.0 26,701,586.6 7,731
28 3,822,728.4 26,670,319.2 7,088 3,825,907.6 26,677,856.9 7,943 3,824,394.8 26,674,255.9 7,845
29 3,822,731.4 26,670,343.1 8,513 3,823,593.0 26,672,347.4 7,924 3,823,562.7 26,672,275.4 7,696
30 3,823,015.1 26,671,018.3 8,802 3,830,083.2 26,688,753.5 7,914 3,830,124.4 26,688,997.7 7,948

Min 3,822,723.1 26,670,276.8 6,477 3,822,723.1 26,670,276.8 5,219 3,822,723.1 26,669,105.1 6,165
Average 3,823,192.1 26,671,419.2 8,505 3,826,485.4 26,678,814.9 7,917 3,828,479.6 26,690,942.2 7,783

Max 3,825,711.7 26,677,437.0 9,420 3,832,782.3 26,723,089.8 8,370 3,864,892.6 26,947,434.0 7,948
Wilcoxon p-value 0.091 0.093
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Figure 7.5: Embodied energy and cost result violin plots.

7.4.3 Optimization Results

The objective of this section is to compare the results obtained for embodied energy
and cost optimizations. As it can be seen in Tables 7.8 and 7.9, the three algorithms
obtain the same best result. If the average results are compared, TAMO obtains the
lower cost and energy values. However, if the computation time is taken into ac-
count, it can be seen that for cost optimization, SCA is 14.27% faster than TAMO,
while CS results in a 25.79% faster energy optimization with little increase in the
objective function. These variations correspond to 0.21% and 0.02% if SCA is con-
sidered for cost optimization and CS for energy optimization, respectively. For these
reasons, SCA and CS were chosen to compare their optimization results. Results of
the optimization problem variables are shown in Table 7.10.

The first finding is related to the number of optimums found by both algorithms. Table
7.8 shows that CS found the same minimum value of energy several times but with
different results in terms of costs. This is in line with Figure 7.6 that shows that the
same results in energy can yield different cost values. This is because the embodied
energy of steel does not depend on the yield stress. On the contrary, as the yield
stress of steel rises , the cost increases. This comparison can be observed in Table
7.1. This allows the energy optimization to increase the yield stress without penaliz-
ing the objective function and, consequently, to obtain an optimum design with higher
yield stress. On the contrary, the cost optimization searches for solutions with lower
yield stresses to reduce the overall structure cost. Nevertheless, if we consider the
relation between the cost and energy optimization obtained in the regression plots of
Figure 7.6 we see that by reducing the cost by one EUR, the energy is reduced by
0.584 kW·h in this optimization problem.
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Comparing the variables obtained from both optimizations, it can be observed that
the upper part of the steel beam trends in every case to 7 m, matching the lower
bound defined for this variable. Regarding the angle of the webs, it can be observed
that the embodied energy profits more from the inertia of these elements obtain-
ing, as a result, angles closer to 90 degrees which imply a greater perpendicularity
between webs and flanges. Regarding the cells, the central part of the optimum de-
signs gives a positive value for both upper and lower cells, which implies that these
elements improve the cross section’s behavior. As can be seen, the optimum de-
signs obtained by the two algorithms are pretty similar. The differences are mainly in
the transverse beams and in the thicknesses of some elements. Finally, it is worth
noting that the optimization removes the stiffeners of the lower wing. This is due to
the double composite action of the slabs in the support zones.
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Figure 7.6: Optimization results from both cost and energy optimization criteria.
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Table 7.10: Design variables minimum and maximum values for best cost and energy optimization
results.

Cost Optimization Energy Optimization

Variables Unit Best Min Max Mean Mode Min Max

b m 7 7 7 7 7 7 7
αw deg 55 45 87 64 79 45 90
hs mm 200 200 200 200 200 200 200
hb cm 298 250 381 312 - 255 397
hfb mm 410 400 610 460 450 400 660
tf1 mm 25 25 57 25 25 25 25
bf1 mm 300 300 620 300 300 300 300
hc1 mm 330 0 960 420 - 0 980
tc1 mm 18 16 17 16 16 16 16
tw mm 16 16 16 16 16 16 16
hc2 mm 330 0 900 610 640 80 900
tc2 mm 18 16 25 17 16 16 24
bc2 mm 300 300 370 300 300 300 300
tf2 mm 25 25 29 25 25 25 25
hs2 mm 150 150 150 150 150 150 150
nsf2

u 0 0 0 0 0 0 0
dst m 3.3 1 4.9 2.86 - 1 4.8
dsd m 6 4.1 9.9 6.43 7.6 4 9.6
bfb mm 1000 200 1000 540 500 200 1000
tffb

mm 33 25 35 30 29 25 35
twfb

mm 27 25 35 28 26 25 35
nr1 u 200 200 436 200 200 200 390
nr2 u 200 200 403 200 200 200 367
ϕbase mm 6 6 10 6 6 6 6
ϕr1 mm 6 6 6 6 6 6 6
ϕr2 mm 6 6 6 6 6 6 6
sf2 * mm 300 200 550 335 220 200 600
sw * mm 450 200 600 295 200 200 450
st * mm 240 200 600 279 200 200 500
hsc mm 100 100 100 100 100 100 100
ϕsc mm 16 16 22 16 16 16 22
fck MPa 25 25 25 25 25 25 25
fyk MPa 275 275 275 328 275 275 460
fsk MPa 500 500 500 500 500 500 500

* Values of the standard series of IPE profiles [239]. Note: Min and Max correspond to the maximum and

minimum values obtained. Best corresponds to the value obtained for the best individual for cost, and Mean

and Mode refers to the statistics of the best values obtained from energy optimization. The cost optimization

data were obtained from Hybrid SinCos, while the energy optimization ones were obtained from the Hybrid CS.
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7.5 Discussion

In the literature, three studies have optimized steel–concrete composite box-girder
bridges. These studies are [97], [109]. This section will compare the results obtained
in Section 7.4 with those found in previous optimization studies. The value of con-
crete strength (fck) obtained from both cost and energy optimizations were 25 MPa.
The high inertia of the section produces this due to its height. In negative bend-
ing moment zones, the concrete is not considered in the calculation, following the
method proposed by Eurocode 4 [26], while in positive bending moments, the high
inertia of the cross section produces a reduction in the stresses. Because of this,
higher concrete strength is not necessary.

In the comparison focused on steel yield stress (fyk), it can be seen that in [109] the
results give a design value for steel yield stress of 275 MPa when optimizing cost.
This is in line with the results of this optimization problem when optimizing cost. In
contrast, if the energy optimization steel stress results are compared, it can be seen
that there is some disparity between the yield stress results. This is because the
energy and the emissions produced for manufacturing different yield stress steels
are the same. Optimizing energy has the same result as optimizing cost, depending
on the yield stress chosen by the optimization procedure. Comparing the results
with [97], it can be seen that the tensile stress chosen is a parameter and does not
vary in this study. This yield stress corresponds with 355 MPa, the expected value
for steel bridges.

Finally, a variable comparison was made with [109]. Regarding the lower flange
stiffeners, these studies’ results align with the ones obtained in this study. In all
cases, these elements are eliminated from the cross section. By comparing the
different results, a compromise solution can be found that optimizes the costs and
energy criteria by applying multi-objective optimization techniques.

7.6 Conclusions

There is a clear trend in bridge design to consider criteria other than cost to obtain
new alternatives for structural design. Consequently, many studies consider different
techniques and objectives in concrete bridge optimization to obtain more sustainable
alternative bridges. In contrast, the optimization studies of steel–concrete composite
bridges were focused on weight and cost reduction, leaving aside other pillars of sus-
tainability (e.g., the environmental pillar). There are few studies of SCCB optimiza-
tion. Three optimization algorithms were proposed to compare its results in terms of
computation time and minimization results. One of these algorithms was a threshold
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accepting with a mutation operator (TAMO), which belongs to trajectory-based algo-
rithms. The other two metaheuristics fit in the swarm intelligence algorithms family,
the sine cosine algorithm (SCA) and the cuckoo search (CS). A hybridization machine
learning strategy was applied to swarm algorithms to improve their performance.

This study shows a box-girder steel–concrete composite bridge optimization con-
sidering cost and embodied energy as single optimization objectives. The first part
of the study compares the performance of the three algorithms proposed using the
best tuning obtained for each algorithm. As a result of this part of the study, the
SCA algorithm obtained similar results as TAMO, but on average, the computation
time for cost optimization was higher. For energy optimization, the same occurs with
CS compared with TAMO. Consequently, these algorithms were chosen to carry out
both cost and energy single objective optimization. In both optimizations, the num-
ber of stiffeners defined at the end of the optimization process achieved the value
of 0 due to the structural behavior produced by the double composite action design.
Furthermore, in steel plates, upper and lower cells shorten the distance between
non-stiffened zones and increase section stress resistances. Additionally, as demon-
strated by past research on bridges, there is a direct connection between cost and
energy optimization. In this case, 0.584 kW·h of energy reduction can be obtained for
every EUR optimized when applying heuristic optimization techniques. This relation
is only produced in the way of cost optimization. If embodied energy is optimized, it
is not possible to ensure that an optimal solution will be found in relation to cost.

This work allows the structural researcher to enlarge their knowledge of SCCB opti-
mization by considering new methods and target functions. It opens the door to using
those elements to obtain new design criteria for more sustainable and efficient steel–
concrete composite bridge alternatives. In future research, other machine learning
techniques will be applied to study its performance and accelerate the computation
time. Furthermore, this proposed study will consolidate or discard the addition of
cells in the cross section and eliminate stiffeners in the bottom flange in this type of
box-girder SCCB bridge.

Regarding the study of the algorithm, it is interesting to carry out a time complex-
ity analysis. We must consider that the hybrid algorithm has a complexity of the
metaheuristic O(MH) plus O(K-means), which is O(n2), plus the discretization
process, which is also O(n2). The preceding suggests carrying out a time analysis
study where, on the one hand, the structure can be varied by increasing its com-
plexity to analyze how the different algorithms behave in convergence times. On
the other hand, we can vary the analysis by maintaining the same design, but mak-
ing the search space more complex, for example, increasing the number of discrete
elements to evaluate the different algorithms at convergence times.
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Abstract

Being able to carry out life cycle analysis of complex structures is of vital environ-
mental and social importance. Calculating and comparing optimal structures under
these criteria allows to understand the critical points of the design and make better
decisions when faced with a problem of this type. On the other hand, by including the
life cycle, the objective functions of the optimization problem become more complex.
This results in longer computation times. Therefore, the above is an interesting chal-
lenge for machine learning and optimization techniques to speed up computations.
This article proposes a methodology to build deep learning models to speed up the
calculations of the structural constraints when solving an optimization problem con-
sidering the structure’s life cycle. Different hyperparameters are analyzed to obtain
the most robust model that speeds up a concrete and steel composite bridge cal-
culations. Subsequently, the best model integrates with three different metaheuris-
tics. The Old Bachelor Acceptance with a Mutation Operator (OBAMO) algorithm,
the Cuckoo search algorithm (CS), and the sine cosine algorithms (SCA) have been
used. The results show that, in the best case, using the deep learning model allows
one to speed up the calculations 50 times. Finally, the best obtained deep learning
model performs an optimal comparison based on costs and environmental and so-
cial life cycle assessment. The results regarding the life cycle assessment show an
increase in steel yield strength for optimal solutions for both environmental and social
objective functions.

Keywords: neural networks; sustainability; optimization; bridges; machine learning;
composite structures.

8.1 Introduction

Most countries’ economic viability and social growth are closely related to their in-
frastructure’s development, reliability, and durability [297]. Infrastructure is critical
because it significantly impacts economic activity, growth, and employment. How-
ever, these activities can have a tremendous environmental and social impact, have
irreversible consequences, and potentially endanger the present and future of soci-
ety. Because construction is a carbon-intensive [3] business, much of the research
has focused on minimizing emissions, as it is increasingly crucial to minimize the
environmental effect of construction projects. In a search for state-of-the-art, studies
have been carried out on sustainable building [167], [169], optimization of energy
consumption [298], in addition to the analysis of the life cycle of CO2 emissions from
concrete structures [282], [299], [300].
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However, we must note that regardless of the criteria that researchers consider to
represent the sustainability of structures, it is widely agreed that a complete evalua-
tion of sustainability must cover the entire life cycle of the structure [185], [206], [278],
[301]. This means, on the one hand, considering the three sustainability pillars: eco-
nomic, environmental and social. Therefore, in defining the objective function that
guides this optimization, the complete life cycle analysis must be considered divid-
ing the life cycle in four stages. This stages are: Manufacturing, Construction, Use
and Maintenance, and End of Life [145]. Furthermore, all structural designs involve
variability and uncertainty [302], [303]. This implies that the optimization process
becomes more complicated due to the increase on the complexity of the objective
functions, therefore, a crucial point is to be able to speed up the calculations.

One way to speed up these calculations is to use machine learning techniques. For
example, dimensionality reduction techniques can be used to simplify the search
space’s dimensionality or objective function. Another way is to replace the objective
function or the constraints with some model that emulates them. For example, in
the case of replacing the objective function in [124], the kriging technique was used
to reduce the computing times of a concrete box-girder bridge. In [304], neural net-
works were used to model viscosity and conductivity values and further integrated
into NSGA-II (nondominated sorting genetic algorithm II) to perform optimization.

Structural field studies have used neural networks to predict the transfer length in
prestressed concrete [305]. Similarly, neural networks were applied to predict the
energy consumption for building heating, ventilation, and air conditioning systems.
Then, a multi-objective genetic algorithm was used to find the optimal consumption
conditions [306]. As a result, the multi-objective optimization shows better results
regarding thermal comfort and energy consumption when compared to the base case
design.

Considering the research lines presented in the previous paragraphs, this article
proposes a model based on deep learning techniques to replace the restrictions
defined in the design of a steel-concrete composite bridge (SCCB) and accelerate
the optimization calculations. Subsequently, once the model is adjusted for simple
objective functions, an environmental and social life cycle analysis is applied, which
implies more complex objective functions.

Specifically, the contribution of this article includes:

• A methodology for the construction and tuning of the deep learning model.

• The model is integrated into different metaheuristic algorithms, evaluating their
performance in terms of time and quality of the solutions obtained.
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• An environmental and social life cycle analysis is carried out.

The results show that the deep learning model is capable of speeding up calculations
by a factor of 50 when using swarm-type algorithms and by a factor of 37 when using
trajectory algorithms. Furthermore, the results regarding life cycle assessment show
an increase in steel yield stress for optimum solutions for both environmental and
social objective functions. This is because the increase in yield strength does not
result in an increase in impact. Conversely, for cost optimization results, an increase
in the steel resistance is translated directly as an increase in cost, and optimum
solutions get lower yield stress values.

A brief structure of contents is as follows: In Section 8.2, the deep learning tech-
niques used, the optimization techniques applied, the objective functions considered
as well as the definition of the optimization problem are detailed. The results obtained
are described in Section 8.3, first, the different experiments developed to achieve the
appropriate model that accelerates the calculations are detailed, and later the re-
sults obtained in the analysis of the life cycle of the structure are detailed. Finally, in
Section 8.4, the main conclusions and the suggested next steps are stated.

8.2 Deep Learning metamodel assisted optimization

Structural problems are often characterized by high complexity, which results in high
computational costs. The model is often of such complexity that the high compu-
tational cost implies eliminating some constraints of the initial model or simplifying
the associated objective functions. Additionally, multiple runs of these complex struc-
tural models are required during optimization processes to obtain the optimal result.
To reduce computation time, this research proposes a Deep Neural Network (DNN)
metamodel, explained in Section 8.2.1, to predict the feasibility of structural solu-
tions for a steel-concrete composite bridge (SCCB) deck. This metamodel has been
applied to various metaheuristics described in Section 8.2.2 to compare the results
obtained. Moreover, this study considers three objective functions, defined in Section
8.2.3, to compare the results regarding the three pillars of sustainability, treated as
single objective optimizations.
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8.2.1 Deep neural networks model

This section explains the proposed methodology to train the deep neural network
model that will speed up the optimization calculations. It should be noted that the
built model solves the problem of whether or not the bridge to be optimized complies
with the imposed constraints. In this sense, the model will solve a binary classifica-
tion problem. The essential components of the developed methodology for the con-
struction of the classification model comprise Deep learning-based methods. Mainly
there are three points to develop. The first point corresponds to the construction of
the training dataset; the second point corresponds to the network topology definition
and the hyperparameters used. Finally, the third point is defining the metrics and
evaluating the best configuration. The above points will be developed in this section.

Methodology used for the construction of the training data set

This section explains the construction of the dataset used for training different deep
neural network models. Various data sets were built for the calibration of the networks
to evaluate the best way to carry out the training. Because different optimization tech-
niques were used, a complete execution was considered for OBAMO and SCA. In
each of the optimizations developed, the data was recorded, identifying whether or
not they complied with the standard established for the structure. Due to the fact that
there was an imbalance between the conditions that were met and those that did not,
it was decided to test cases where the data were not balanced vs. cases where the
training data sets were balanced with the synthetic minority over-sampling technique
(SMOTE). Additionally, performing independent training for OBAMO, SCA, and a hy-
brid one where both data sets were integrated was compared. Data integration is
tested for both the unbalanced and SMOTE-balanced cases. The sampling strategy
parameter in the case of SMOTE was set to one.

Topology network definition, hyper-parameters explored and metrics used

For the definition of the network topology, multilayer perceptron neural networks with
the TensorFlow framework were considered. For the definition of the topology, ini-
tially, a one-layer network with different numbers of nodes was tested; specifically,
64, 128, and 256 nodes were tested. Once the first layer was established, the case
of a second layer was evaluated by the number of nodes in the first layer divided by
two. In the event that the second layer generates improvements in the metrics defined
with respect to the network of one layer, a third layer is explored where the number
of nodes corresponds to n

4
of the number of nodes of the first layer. On the other

hand, the explored hyperparameters corresponded to the optimization algorithm, the
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batch size, and the number of epochs. In the case of optimization algorithms, three
techniques were explored, SGD, RMSprop, and Adam. For the case of batch size,
three configurations, 32, 64, and 128, were explored. Finally, in the epochs, 100 and
an early stopping were used as the maximum value, with the rule that if the test set
does not improve after 10 cases, the process ends with the training. In the case of the
metrics used, both false positives and false negatives were significant to minimize;
therefore, it was decided to use the F1-score metric, which generates the harmonic
average between precision and recall.

8.2.2 Hybrid metaheuristics

This section describes the metaheuristics used in this study, which can be divided
into two main groups: trajectory-based and swarm intelligence. All algorithms in this
study have been hybridized. Trajectory-based techniques involve minor changes to
the variable vector to modify the solution and search for the optimum. Mutation op-
erators have been added to these algorithms as part of the hybridization process to
improve the exploration of the optimization process. Swarm intelligence techniques
involve varying the solution by moving the variables to search for a specific charac-
teristic of the best individual in the population. In this case, hybridization has been
achieved through a k-means clustering technique. It is worth noting that all algo-
rithms have been modified to accommodate the discrete nature of the optimization
problem.

In addition, all structural optimization methods require a structural check module to
verify the feasibility of the solution, which typically consumes approximately 80%
of the computation time for each iteration of the optimization problem. To reduce
computation time, a DNN model has been trained to predict the feasibility of the
solution. Details of the DNN model are provided in Section 8.2.1. While it is possible
that the model may fail, after the optimization is complete, the constraints of the
structural problem are checked using software developed in Python [243].

Trajectory-based: Old Bachelor Acceptance with a Mutation Operator

The searching strategy employed by such algorithms involves making small changes
to the variable vector and assessing the resulting changes in the objective function.
These metaheuristics accept inferior solutions in certain stages of the optimization
process to prevent getting stuck in local optima and promote exploration. A thresh-
old must be defined to limit the acceptance of solutions that fall outside acceptable
boundaries. In this study, the threshold was modified dynamically during optimiza-
tion, increasing or decreasing based on the acceptance rate of solutions. The Old
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Bachelor Acceptance with a Mutation Operator (OBAMO2) is an adaptive thresh-
old algorithm used in other structural optimization problems [307]. In this study, the
OBAMO2 method was hybridized with a characteristic of Genetic Algorithms, specifi-
cally, the mutation operator, which allows certain mutations to occur during optimiza-
tion to promote exploration.

The Old Bachelor Acceptance (OBA) algorithm is an iterative heuristic optimization
method proposed by Hu et al. [308]. These procedures start with an initial solution
and modify it by moving. If the new solution is inside the defined threshold, it is ac-
cepted even if its objective function is worse. In contrast to Simulated Annealing (SA)
[244], which uses a monotonically decreasing acceptance scheme with decreasing
temperature, the acceptance criterion employed by OBA is based on a dynamically
changing threshold that follows the principle of "decreasing expectations". After each
failure to improve the solution, the threshold is increased to allow switching to some-
what worse solutions. Conversely, with successive improvements in the solutions,
the threshold is lowered. Hu et al. [308] highlight some benefits of OBA over SA,
such as the non-monotonic acceptance scheme, the self-adjusting growth and decay
of the thresholds, and the adaptation to a preset calculation time.

The OBA algorithm was chosen for this study because it has been previously applied
to other structural optimization problems [309]. In order to enhance exploration dur-
ing the optimization process, a mutation operator was incorporated, following recent
research [307]. OBAMO is a hybrid algorithm that combines the algorithm presented
in Algorithm 5 with a mutation operator. The algorithm is dependent on five param-
eters, namely, the number of iterations (N ), the threshold updating parameter (∆),
the limit of movements without improvement (δ), the standard deviation (SD), and
the number of variables (V N ) allowed to change between iterations. The best com-
bination of these parameters was obtained using a Design of Experiments method
[248], resulting in values of 20,000, 0.3, 1, 100, and 9 for N , SD, V N , ∆, and δ,
respectively.

Swarm intelligence: SCA and CS

Swarm intelligence methods mimic the behavior of natural systems to search for op-
timal solutions. These methods create populations of individuals that interact with
each other, imitating the behavior of certain species. Two such algorithms that have
been proposed are the Sine Cosine Algorithm (SCA), which uses sine and cosine
functions to simulate the movements of individuals, and Cuckoo Search (CS), which
models the behavior of natural cuckoo populations. Moreover, recent structural opti-
mization studies have shown that adding a hybridization technique, such as K-means
clustering, can improve the behavior of these metaheuristics [310], [311].

191



Chapter 8. Deep learning approach for life cycle optimization of steel-concrete composite bridges

Algorithm 5 Old Bachelor Acceptance 2 [308]
1: M = Maximum iteration number

2: ∆ = Threshold updating parameter

3: δ = Limit of movements without improvement

4: count = Counter of consecutive movements accepted

5: T0 = 0; prev_age = M

6: Choose of random solution s0

7: for i=0 to M-1 do

8: Choose a random neighboring solution s′

9: if f(s′) < f(si) + Ti then

10: si+1 = s′

11: age = 0

12: if prev_age < δ then

13: count = count + 1

14: else

15: count = 1

16: end if

17: Ti+1 = Ti − count ·∆ · (1− i/M)

18: else

19: si+1 = si

20: age = age + 1

21: Ti+1 = Ti +∆/δ · (1− i/M)

22: end if

23: prev_age = age

24: end for
25: si = si corresponding with minimum f(si) with 0 ≤ i ≤M

Sine Cosine Algorithm (SCA) The SCA is a swarm intelligence method devel-
oped by Mirjalili [233] that employs sine and cosine functions to explore the solution
space. The movement of individuals is controlled by P t

j , which typically uses the
best solution found at the location of the best solution for iteration t and dimension
j. Additionally, the algorithm uses three random numbers r1, r2, and r3. The values
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of these numbers determine whether the movement of the solutions is executed by a
sine or a cosine function, as shown in Equations 8.1 and 8.2, respectively.

xt+1
i,j = xt

i,j + r1 × sin(r2)× | r3P t
j − xt

i,j | (8.1)

xt+1
i,j = xt

i,j + r1 × cos(r2)× | r3P t
j − xt

i,j | (8.2)

Cuckoo Search (CS) The CS algorithm is inspired by the cuckoo bird species,
which lays its eggs in the nests of other bird species and sometimes mimics the
hues and patterns of the host species’ eggs. In this algorithm, an egg represents
a solution, and the basic idea is to replace inadequate solutions with better ones,
analogous to cuckoos replacing the host bird’s eggs. The CS algorithm is based on
three essential principles:

1. Each cuckoo lays one egg at a time, which is randomly placed in a nest.

2. Only the best nests, which produce high-quality eggs, are considered for the
next generation.

3. The number of available nests is fixed, and the host bird has a probability pa ∈
(0, 1) of discovering the cuckoo’s egg.

xt+1
i,j = xt

i,j + α
⊕

Lévy(λ) (8.3)

The step size α > 0 should be chosen proportionally to the scales of the problem.
The operator

⊕
denotes element-wise multiplication. To simulate a random walk,

the Lévy flight draws the step length from a Lévy distribution Lévy ∼ t−λ, where
1 < λ ≤ 3.

Hybridization technique: K-means clustering The hybrid method is utilized for
swarm intelligence metaheuristics since both methods are naturally suited for contin-
uous domains. The hybrid method takes the metaheuristic MH , the list of discrete
solutions obtained in the previous iteration lSol, and a list of transition probabilities
transitionProbs as input parameters, and returns a new list of discrete solutions
lSol as an output. In the first stage, the discretization method calculates the velocity
of MH . For CSA and CS, this velocity corresponds to the component obtained by
the difference between |xt+1

i,j − xt
i,j| in Equations 8.1 to 8.3.

Next, a transfer function is applied to convert the velocity values, ranging from R, to
values between [0, 1). A v-shape transfer function, | tanh(v)|, is used in this case.
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Then, for each solution and dimension, the value of lSolProbability obtained by
applying the transfer function is compared with a random number r1 between [0,1). If
the value of lSolProbability is greater than the random number, an update occurs
in that dimension; otherwise, it is not modified.

The update procedure has two possibilities: a β value is considered, and a random
number r2 is generated. If r2 is less than β, the value is replaced by the value of the
best solution obtained for that dimension. Otherwise, a random update is performed
to enhance the exploration of the search space.

After that, a k-means clustering technique is used to convert the velocity values,
ranging from R, to transition probabilities values that take values in [0,1). The k-
means technique generates clusters, in this case, five clusters, and sorts them from
the smallest to the largest centroids. The most negligible transition probability is
assigned to all cluster velocities in the case of the smallest centroid. In contrast, the
most considerable transition probability is assigned to all cluster points in the case
of the largest centroid. Figure 8.1 illustrates the k-means procedure. The transition
probability values used for this article were [0.1, 0.2, 0.4, 0.8, 0.9].

Continuos 
Solutions Discrete Solutions

Each cluster is 
associated with a 

transition probability.

Figure 8.1: K-means discretization techniques diagram.

For each dimension of every solution, the transition probability DimSolProbi,j is
computed. Suppose the probability is higher than a random number r1, and β is more
significant than a random number r2. In that case, the solution’s dimension value is
updated with the best solution found until that point. If the condition for β is not
satisfied, the procedure updates the dimension with a randomly permissible value. If
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neither the transition probability nor the β condition is satisfied, the dimension of the
solution is not updated. This final option is included to increase the exploration of the
search space.

Algorithm 6 Hybrid algorithm
1: Function Discretization(lSol, MH ,transitionProbs)

2: Input lSol, MH , transitionProbs

3: Output lSol

4: vlSol← getVelocities(lSol, MH)

5: lSolClustered← appliedKmeansClustering(vlSol, K)

6: for (each Soli in lSolClustered) do

7: for (each dimSoli,j l in Soli) do

8: dimSolProbi,j = getClusterProbability(dimSol, transitionProbs)

9: if dimSolProbi,j > r1 then

10: if beta > r2 then

11: Update lSoli,j considering the best.

12: else

13: Update lSoli,j with a random value allowed.

14: end if

15: else

16: Don’t update the element in lSoli,j

17: end if

18: end for

19: end for
20: return lSol

8.2.3 Objective functions

The optimization problem at hand involves finding the optimal design of an SCCB
while ensuring sustainability through the use of objective functions that represent the
pillars of sustainability. Specifically, we evaluate the economic cost, as well as the
environmental and social life cycle assessments of the SCCB’s deck, using equations
8.4, 8.5, and 8.6, respectively.
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Table 8.1: Cost values of every construction unit for SCCB

Construction unit Unit Cost (e)
Concrete C25/30 m3 88.86
Concrete C30/37 m3 97.80
Concrete C35/45 m3 101.03
Concrete C40/50 m3 104.08
Precast pre-slab m3 27.10
Reinforcement steel B400S kg 1.40
Reinforcement steel B500S kg 1.42
Rolled steel S275 kg 1.72
Rolled steel S355 kg 1.85
Rolled steel S460 kg 2.01
Shear-connector steel kg 1.70

C(x⃗) =
n∑

i=1

pi ·mi(x⃗) (8.4)

The objective cost function calculates the total cost of constructing the bridge by mul-
tiplying the unit cost of each required activity with its corresponding measurement.
Table 8.1 contains a comprehensive list of all construction units and their respective
costs obtained from the BEDEC database [207]. In equation 8.4, pi refers to the
price of each construction unit, and mi represents its measurement.

ELCA(x⃗) =
n∑

i=1

p∑
j=1

elcaj ·mj(x⃗) (8.5)

SLCA(x⃗) =
n∑

i=1

p∑
j=1

slcaj ·mj(x⃗) (8.6)

The primary objective of the life cycle assessment (LCA) is to evaluate the envi-
ronmental (ELCA) and social impact (SLCA) of the structure, taking into account all
processes involved, from raw material extraction to demolition and transportation to
a landfill site. In equations 8.5 and 8.6, i represents each life cycle stage, elcaj and
slcaj correspond to the environmental and social impact of each process within a
given stage, respectively, and mj indicates the corresponding measurement of each
process. Each process’s environmental and social impact and their corresponding
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measurement are detailed in Table 8.2. The LCA methodology has been described
in section 8.2.3.

Table 8.2: Ecoinvent processes LCA environmental and social impact values

Process Unit elcai (points) slcai (mrh)
concrete production 25MPa m³ 2.037E+01 1.254E+05
concrete production 30MPa m³ 2.631E+01 1.668E+05
concrete production 35MPa m³ 2.478E+01 1.554E+05
concrete production 40MPa m³ 2.585E+01 1.623E+05
steel production 71% of recycling rate kg 1.523E-01 1.941E+03
steel production 98% of recycling rate kg 1.036E-01 2.067E+03
transport, freight, lorry 16-32 metric ton, EURO6 t·km 2.502E-02 4.116E+01
transport, freight, lorry 3.5-7.5 metric ton, EURO6 t·km 7.755E-02 1.655E+02
welding, arc, steel m 2.350E-02 2.535E+02
welding, gas, steel m 2.303E-02 2.429E+02
diesel, burned in building machine MJ 1.361E-02 8.764E+00
carbon dioxide kg 4.369E-02 0.000E+00
rock crushing kg 7.223E-05 8.305E-01

Life cycle assessment method

The life cycle assessment (LCA) evaluates the environmental and social impact of the
processes involved in an activity or product, covering all stages necessary to com-
plete it. For bridges, the ISO 14040:2006 [145] regulation is used to carry out the en-
vironmental LCA, while the Guidelines for Social Life Cycle Assessment of Products
[224] guide the assessment of the social impact. Impact information from databases
is required, along with a chosen life cycle impact assessment (LCIA) method to model
the life cycle of a structure. This research uses the ReCiPe 2008 method [151] for en-
vironmental LCA and the social impacts weighting method (SIWM) for social impact.
The ecoinvent v3.7.1 [199] and soca v2 [312] databases are used for environmen-
tal and social LCA, respectively, as they are reliable and frequently updated [200].
Moreover, the soca database allows for the association of ecoinvent processes with
the PSILCA [313] database social impacts, making it useful for scientists [279].

In this research, four stages are defined: manufacturing, construction, use, and end-
of-life to assess the impact of an SCCB, which are similar to those in previous LCA
studies on bridges [279]. The manufacturing phase involves transforming raw ma-
terials into products needed for construction and transporting them to the building
site while considering waste generated during these activities. The impact of recy-
cled steel on the SCCB’s global environmental impact is significant, particularly in
producing steel products [279]. It is essential to distinguish between structural and
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reinforcement steel, as the recycling percentages differ. For instance, the recycling
rate of reinforcement steel is 71%, while that of structural steel is 98% in developed
countries such as the US [193].

The construction phase includes actions required to build the bridge, such as equip-
ment and building style, and location. Formwork, scaffolding, vibrators, and concrete
pouring must be considered, and procedures for welding the steel sections should be
established for steel and steel-concrete composite bridges. The diesel consumption
of machinery during construction, based on manufacturer information, literature, or
other sources, is included in the LCA model for modeling construction activities.

The use and maintenance stage encompasses all the activities required throughout
the structure’s lifetime. Recent research has investigated the potential for concrete
carbonation to sequester CO2 [164], [176]. García-Segura et al. [177] developed an
expression for concrete carbonation, given by equation 8.7. This equation considers
the service life t and carbonation coefficient k, the exposed area A and the amount
of cement C in one cubic meter of concrete. Additionally, the amount of clinker in the
cement is represented by k.

CO2fixed (kg) = 0.383 ·
k
(

mm√
year

)
·
√
t(year)

1000
·A(m2) ·C

(
kg

m3

)
· k(%) (8.7)

The end-of-life stage includes the procedures that occur after the structure’s lifetime,
specifically the dismantling of the structure. This stage involves using machinery to
demolish the structure and transporting and treating the waste generated during this
process. The distances between the building site and the landfill or waste treatment
facilities must be specified as part of the analysis. Depending on the properties of the
waste materials, there are three primary options for their disposal: reuse, recycling,
or landfilling. Concrete and steel are the most commonly used materials in bridge
construction, and waste treatment options depend on the region and population’s
needs.

The inventory analysis involves collecting data on all the materials and energy con-
sumed during the bridge life cycle. Considering these processes’ outputs allows for
determining the product’s environmental impact. Figure 8.2 shows the processes
involved in each stage.

The LCA impact was assessed using a Python script incorporating data from Ecoin-
vent version 3.7.1 [199] and soca version 2 [312]. One unit of each product was
modeled using GreenDelta’s OpenLCA software, an open-source tool widely used in
the scientific community for LCA [198].
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Stages of bridge LCA model
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Figure 8.2: Bridge life cycle model stages and activities

8.2.4 Problem definition

This study aims to optimize the structure of a 60-100-60 meter SCCB deck with
a box-girder geometry. Prior research has defined the optimization problem and
employed single-objective metaheuristic optimization methods to evaluate cost, CO2

emissions, and embodied energy [298], [310], [311]. In this paper, we present a
metamodel-assisted strategy that utilizes deep neural networks (DNN) to conduct
environmental and social life cycle assessment (LCA) optimization. Our approach
enables us to compare the computational costs and design changes associated with
considering a complete social and environmental impact profile.

Variables and parameters

The structural problem for this research involves a 60-100-60 meter SCCB deck
with a box-girder geometry. The problem includes 34 design variables consider-
ing the bridge’s cross-section, stiffeners geometry, slab reinforcement, and material
strength. The variables are grouped into four categories: cross-section geometry
variables (b, αw, hs, hb, hfb, tf1 , bf1 , hc1 , tc1 , tw, hc2 , tc2 , bc2 , tf2 , hs2 ); stiffener and
floor beam variables (nsf2

, dst, dsd, sf2 , sw, st, hfb, bfb, tffb
, twfb

), which define the
stiffeners’ and transverse elements’ position and geometry; reinforcement and shear
connector variables (nr1 , nr2 , ϕbase, ϕr1 , ϕr2 , hsc, ϕsc); and material strength vari-

199



Chapter 8. Deep learning approach for life cycle optimization of steel-concrete composite bridges

sf₂

tf₂

b

hs

hb

tf
₁, bf₁

hc₁tc₁
tw

hc₂

bc₂

tc₂
nsf₂

hs₂

sw

αw

Figure 8.3: SCCB structural optimization problem cross-section variables
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Figure 8.4: SCCB structural optimization stiffeners and floor beam variables

ables (fck, fyk, fsk). The geometric variables’ position in the cross-section is shown
in Figure 8.3, while the floor beams and stiffeners variables are presented in Figure
8.5. The optimization problem is discrete, as previously reported in related research
on this optimization problem [311]. Lower and upper bounds and step sizes have
been defined for all SCCB variables, and the discretization of the variables is sum-
marized in Table 8.3. Considering all possible combinations, the number of designs
is equal to 1.38×1046.

Additionally, the optimization problem includes parameters that remain constant through-
out the optimization process and are referred to as fixed parameters. These param-
eters are the same as those defined in the original problem [279]. The first fixed
parameters are the bridge length and width. The bridge spans a total length of 200
m, with two lateral spans of 60 m and one central span of 100 m, and has a width (W )
of 16 m. The bounds of the variables defined in Table 8.3 are also considered fixed
parameters. Moreover, other parameters define the position and minimum values for
specific elements, such as the reinforcement areas, lower flange, web thicknesses,
and lower slab distributions shown in Figure 8.5. The minimum values of the web and
bottom flange thicknesses (twmin

, tf2min) are determined to be 15 mm and 25 mm,
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Table 8.3: Optimization problem variables and boundaries

.

Variables Unit Lower Limit Upper Limit Step Size Possibilities
Geometrical variables

b m 7 10 0.01 301
αw deg 45 90 1 46
hs mm 200 400 10 21
hb cm 250 (L/40) 400 (L/25) 1 151
tf1 mm 25 80 1 56
bf1 mm 300 1000 10 71
hc1 mm 0 1000 1 101
tc1 mm 16 25 1 10
tw mm 16 25 1 10
hc2 mm 0 1000 10 101
tc2 mm 16 25 1 10
bc2 mm 300 1000 10 71
tf2 mm 25 80 1 56
hs2 mm 150 400 10 26

Stiffeners and floor beams
nsf2

u 0 10 1 11
dst m 1 5 0.1 41
dsd m 4 10 0.1 61
sf2 mm IPE 200 – IPE 600 * 12
sw mm IPE 200 – IPE 600 * 12
st mm IPE 200 – IPE 600 * 12
hfb mm 400 700 100 31
bfb mm 200 1000 100 9
tffb

mm 25 35 1 11
twfb mm 25 35 1 11

Reinforcement and shear connectors
nr1 u 200 500 1 301
nr2 u 200 500 1 301
ϕbase mm 6, 8, 10, 12, 16, 20, 25, 32 8
ϕr1 mm 6, 8, 10, 12, 16, 20, 25, 32 8
ϕr2 mm 6, 8, 10, 12, 16, 20, 25, 32 8
hsc mm 100, 150, 175, 200 4
ϕsc mm 16, 19, 22 3

Material strength
fck MPa 25, 30, 35, 40 4
fyk MPa 275, 355, 460 3
fsk MPa 400, 500 2

* Following the series of IPE profiles defined in [239].
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Figure 8.5: Reinforcement, thicknesses and lower slabs distribution in bridge spans

respectively, according to specific design guidelines [25], [242]. The last geometrical
parameter is the reinforcement coating, which is set to 45 mm by Eurocode 2 [238]
for an XD2 environment.

In addition, the following parameters define the characteristics of the concrete ac-
cording to Eurocode 2 [238] regulations. These parameters include the maximum
aggregate size, fixed at 20 mm, and the steel and concrete Young’s longitudinal and
transverse moduli. The parameter values for steel are fixed at 210,000 MPa and
80,769 MPa, respectively, while for concrete, they depend on the strength, with the
expressions 22 · ((fck + 8)/10)3 and Ecm/(2 · (1 + 0.2)).

Finally, the last set of parameters defines the bridge service life, structural class, and
loading parameters. The service life for this type of structure is set at 100 years,
while the structural class is determined to be S5 following Eurocodes [240]. The
loads considered in the bridge include self-weight, dead loads, traffic, temperature
variation, and wind, with all loads defined per Eurocode 1 [240].

Constraints

The optimization problem is subject to constraints that ensure structural safety (ULS)
and serviceability (SLS), as prescribed by Eurocodes [26], [237], [238]. Specific
design guidelines [25], [242] were also considered to establish additional constraints.

Structural resistance of the bridge sections falls under ULS constraints, while SLS
constraints relate to prescribed stresses and deflection limitations of materials and
the structure. Load and combination prescriptions were taken from Eurocode 1.

Both local and global structural models were utilized to perform ULS checking. The
global analysis evaluated shear, flexure, torsion, and flexure-shear interaction, check-
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ing for solution feasibility. Shear lag [26] and Class 4 section slenderness [238] were
taken into account when determining section resistance. A 10-6 accuracy was spec-
ified for the iterative Class 4 reduction method. Homogenization of sections was
done by considering the coefficient (n) between the longitudinal deflection modulus
of steel (Es) and concrete (Ecm) according to Equation 8.8. Concrete creep and
shrinkage was determined according to Eurocodes [26], [237], [238]. Local modeling
was employed to assess floor beam and diaphragm response to ULS.

n =
Es

Ecm
(8.8)

Regarding SLS constraints, the deflection limit was determined according to Span-
ish regulation IAP-11 [241], which stipulates a maximum deflection value of L/1000
for frequent combinations of live loads, where L denotes the length of each span.
Structural and geometrical constraints were also specified. All structural tests were
performed using a Python-programmed numerical model [243].

The ULS and SLS checking coefficients were determined based on the difference
between the design values of the effects of actions (Ed) and their corresponding
resistance values (Rd), as illustrated by Equation 8.9. The section satisfies the con-
straints if these coefficients are greater than or equal to one.

Rd

Ed

≥ 1 (8.9)

8.3 Results and discussion

This section details the main experiments carried out when integrating the deep
learning model within the optimization algorithms described above. This results sec-
tion has been divided into two sub-sections for a better understanding. The first,
section 8.3.1, details the central experiments that make it possible to build the deep
learning model and later, with the best model obtained, describes the results of the
times and minimums obtained by applying the deep learning model to the different
optimization algorithms. Once the best configurations have been identified, in the
second sub-section, the algorithms are applied to environmental and social life cycle
analysis. The comparison and discussion of these results are detailed in sub-section
8.3.2.
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8.3.1 Algorithm Analysis

This section aims to detail the methodology used to achieve the deep learning model.
The primary hyperparameters and techniques used to achieve the model are de-
scribed. Subsequently, a comparison of different metaheuristics that solve the opti-
mization problem with and without the deep learning model is made.

Neural Network models comparison

For the construction of the classification model, multilayer perceptron networks, [314],
were considered. As input variables, the value of the 34 variables was considered
(Table 8.3), that define the design of a bridge. Multilayer perceptron networks have a
series of parameters that need to be explored for proper tuning. Among the relevant
parameters, the number of layers and the optimization method used to perform the
learning of the network stand out. Additionally, because there is an imbalance be-
tween the classes, SMOTE, [315] was used as an oversampling method. Additionally,
an essential point for constructing the model corresponds to the data set used for the
training. This type of problem is not trivial to build a good data set. There are several
difficulties, such as the imbalance of classes and the fact that values close to the min-
imum of the objective functions usually have fewer points. In this sense, experiments
were carried out in the way the training set was constructed. Two types of heuristic
techniques were used to generate the data set, one based on trajectory, OBAMO,
and another swarm class, SCA. Three scenarios were tested: a dataset generated
by OBAMO, one generated by SCA, and one that integrates both datasets.

The data set hybrid used has approximately 20,000 bridges that satisfy the con-
straints of the structural problem and 7,000 points that do not meet the conditions.
Table 8.4 shows the results of the 5-fold cross-validation considering 1, 2, and 3 hid-
den layers and using oversampling with SMOTE. The test set was generated prior to
performing the oversampling process. It is also important to consider that the Batch
Size parameter, the optimization method, and the type of dataset used (hybrid) re-
mained fixed in the experiment. When looking at the F1-score, it is clear from the
table that using three hidden layers performs better when using the original data set
or the oversampled dataset. We also observe that the oversampling case is higher
than the standard model in the four indicators analyzed.
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Models Data

Training Testing

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

1 hidden layer (128) 0.62 0.61 0.75 0.67 0.61 0.60 0.74 0.67
2 hidden layer (128-64) 0.79 0.73 0.93 0.82 0.78 0.84 0.72 0.78
3 hidden layer (128-64-32) 0.85 0.94 0.76 0.84 0.85 0.94 0.76 0.85
1 hidden layer-SMOTE 0.84 0.94 0.75 0.83 0.84 0.94 0.75 0.83
2 hidden layer-SMOTE 0.83 0.79 0.93 0.85 0.83 0.79 0.93 0.85
3 hidden layer-SMOTE 0.93 0.93 0.94 0.93 0.92 0.92 0.93 0.92

Table 8.4: Neural network configurations explored. The parameters used in the structure of the
networks were ADAM as optimization algorithm, 128 as batch size, and integrated data set.

Another relevant experiment aims to quantify whether the hybrid dataset obtains bet-
ter metrics than the other datasets. Table 8.5 summarizes the results using a batch
size of 128, ADAM, and a three-layer network topology. The table shows that the hy-
brid case is more robust than each of the datasets separately in the four indicators.
Finally, in Table 8.6, three techniques are evaluated to carry out the learning process,
keeping the rest of the parameters constant. From the table, it can be seen that the
ADAM method works better than Rmsprop and SGD. From the above, it is observed
that the training set, the number of layers, and the oversampling are essential to ob-
tain a model with good metrics. From now on, the model with three layers, Adam,
batch size 128, will continue to be used.

Models Data

Training Testing

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

OBAMO dataset 0.87 0.90 0.85 0.87 0.87 0.90 0.85 0.87
SCA dataset 0.86 0.80 0.97 0.88 0.86 0.80 0.97 0.88
Hybrid dataset 0.93 0.93 0.94 0.93 0.92 0.92 0.93 0.92

Table 8.5: Exploration of different data sets. The network configuration was ADAM, with three
hidden layers and a batch size of 128 and SMOTE oversampling.
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Models Data

Training Testing

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

SGD 0.88 0.82 0.93 0.87 0.87 0.81 0.92 0.86
RmsProp 0.90 0.90 0.91 0.90 0.90 0.89 0.90 0.89
ADAM 0.93 0.93 0.94 0.93 0.92 0.92 0.93 0.92

Table 8.6: Exploration of different optimization algorithms. The network configuration was three hidden layers
and a batch size of 128, SMOTE oversampling and integrated data set.

Time and optimization values analysis

Once the model that classifies whether the bridge complies with the constraints has
been defined, we proceed to integrate it into the different algorithms described in
section 8.2.2. The fundamental objective of the classification model is to speed up
the calculations. This section’s objective is to evaluate the effectiveness in the accel-
eration of the calculations through the times that the executions of the optimization
last. For the evaluation to be fair, a correction factor must be incorporated in the case
of the algorithm that uses the classification model. The above is because the model
can be wrong, and the final result could be invalid. Each algorithm must generate 30
valid executions; in the case of the models that incorporate the DNN model, the times
of all the executions will be added and divided by the times of the valid executions.
That gives us a factor greater than one, which will be applied to the time of each valid
execution made by the algorithm. The results with the application of the correction
factor are shown in table 8.7, the objective function used in this case was the cost.
From the table, it can be seen that the execution times are significantly reduced. In
the case of OBAMO, the algorithm with DNN is 37 times faster; in the case of CS
and SCA, it was 50 times faster. In absolute terms, CS was the fastest, followed by
SCA. Another relevant point is that the optimization values are improved; on average,
all the models with DNN obtain better values, and the dispersion of the values also
decreases. The next step is to use the algorithms with DNN but with more complex
objective functions.

OBAMO OBAMO_DNN CS_Hybrid CS_Hybrid_DNN SCA_Hybrid SCA_Hybrid_DNN

Min value 3826142.7 3822723.1 3822723.1 3822723.1 3822723.1 3822723.1
Mean value 3829815.0 3822726.0 3831446.3 3824305.2 3831247.4 3825153.7
Std 101135.9 2.7 27182.9 1309.7 16274.2 1715.3
Min Time (s) 8716.4 240.3 7911.0 158.4 7924.6 158.1
Mean Time (s) 9112.4 244.5 8083.6 159.1 7939.1 159.5

Table 8.7: Comparison of results with and without deep learning model for cost optimization.
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8.3.2 Objective functions results comparison

One of the goals of this research is to obtain a sustainable and optimal design for
an SCCB. For this purpose, the effects of different variables and material amounts
have been analyzed. To compare the outcomes of three distinct single-objective op-
timization sets that consider cost, ELCA, and SLCA, 100 iterations were carried out.
However, as the number of feasible solutions varied for each optimization objective,
only the top 30 results were chosen for comparison to guarantee a fair and consis-
tent assessment of solutions across all objectives. Additionally, this section includes
a comparison with recent studies on SCCB optimization.

Initially, we studied the primary parameters of the cross-section and transverse stiff-
eners. As shown in Figure 8.6, the results were similar in terms of the distance of
stiffeners and diaphragms (dst, dsd), with values ranging from 2 to 3.5 m for the three
objectives for transverse stiffeners and 5.5 to 8 m for diaphragms. The most signifi-
cant difference was observed in the web angle αw, where ELCA had values ranging
from 60 to 75 degrees, while both cost and SLCA resulted in higher ranges, ranging
from 60 to 85 degrees. The height of the steel beam tended to have lower values for
ELCA and SLCA objective functions. Upon analyzing the distribution of values, it was
found that for SLCA and ELCA, higher groupings had lower heights. This is because
the design of the cost objective looked for solutions with lower yield strength, which
necessitated an increase in the cross-section height to avoid exceeding the tension
limit.

207



Chapter 8. Deep learning approach for life cycle optimization of steel-concrete composite bridges
C

os
t

hb (m) w (deg)

EL
C

A

2.0 2.5 3.0 3.5 4.0 4.5

SL
C

A

30 40 50 60 70 80 90 100

C
os

t

dst (m) dsd (m)

EL
C

A

0 1 2 3 4 5 6

SL
C

A

3 4 5 6 7 8 9 10 11

Figure 8.6: Cross-section main variables results for Cost, ELCA and SLCA objective functions

The following variables analyzed in this study pertain to the proposed cell values for
the design. As shown in Figure 8.7, the height variables (hc1 , hc2 ) for both upper and
lower cells exhibited positive values, affirming the effectiveness of these elements in
reducing the distance between steel plate webs without stiffening. Additionally, the
thickness of these elements was minimal for the upper cell tc1 , while for the bottom
one, values ranged from 17 to 22. These elements aided in improving the flexural
behavior of the cross-section, reducing the section reduction that is often classified
as class 4 [237].

This study compares the amounts of main materials and objective function values
reached by each optimization function. The results are summarized in Figures 8.8
and 8.9. It is observed that all optimization functions produced the same amount of
structural steel, while the amount of reinforcing steel was higher for SLCA and ELCA.
However, the increase in these amounts was not significant enough to indicate a clear
difference between the functions. When focusing on the speed of material reduction,
it was found that ELCA and Cost optimizations decreased the amount of structural
steel at a slower rate than SLCA. This decrease was caused by the amount of re-
cycled steel (steel scrap) considered in the manufacturing process. Recent studies
[279] have shown that the trend in steel production is to increase the use of steel
scrap to reuse the maximum amount of material possible. However, this generates
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Figure 8.7: Cross-section cells geometry and thicknesses results for Cost, ELCA and SLCA ob-
jective functions

a higher impact on the social pillar of sustainability, resulting in an overall increase
in impact. Considering that structural steel has the most significant impact on the
objective functions, social optimization reduces the quantity of steel to minimize its
impact. Another consequence of the amount of steel scrap used in the steel manu-
facturing process is shown in Figure 8.9. Recent studies that solve this optimization
problem while considering CO2 and embodied energy as sustainable criteria [298],
[310], [311], and the LCA of SCCB [279], indicate that the environmental and social
impact of steel is independent of the yield stress; it only depends on the amount of
steel scrap used in the manufacturing process. In contrast, cost depends strongly on
the yield strength. This is due to the usual yield stress of commercial profiles being
275 MPa, and the demand for higher yield strength steels being lower, resulting in
lower production and higher cost. This clear difference is shown in Figure 8.9, where
it can be seen that cost reduction gives an ELCA and SLCA reduction, but not neces-
sarily the opposite. This results are in line with the ones obtained by Martínez-Muñoz
et al. [298], [311] this confirms that the CO2 emissions and the embodied energy can
be a good approximation to environmental sustainability. The best individual results
comparison have been show that ELCA and SLCA reach solutions with higher yield
stress than cost, and obtaining a compromise solution can only be done by applying
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a multi-objective optimization strategy, which will be interesting to consider in future
studies.
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Figure 8.9: Cost, ELCA and SLCA variation for every objective function

Table 8.8 displays the results of the best individuals obtained through metamodel-
assisted optimizations. These are the best feasible individuals selected from 100
algorithm runs. The table shows that the primary difference lies in the yield stress
values. The best individuals for ELCA and SLCA exhibit higher values since there
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is no penalty for increasing resistance in the objective function. Although the steel
distribution across the cross-section differs, the total material amount remains un-
changed. These results are comparable to those obtained in previous studies by
Martínez-Muñoz et al. [298], [311] that consider CO2 and embodied energy as envi-
ronmental impact indicators. Moreover, a comparison with recent SCCB optimization
studies indicates that the number of stiffeners in the lower flange is reduced to zero
in this optimization problem. However, this outcome depends heavily on the chosen
construction method.
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Table 8.8: Best solutions obtained for cost, ELCA and SLCA objective functions

Variables Unit Cost ELCA SLCA
b m 7 7 7
αw deg 64 71 73
hs mm 200 200 200
hb cm 255 262 363
hfb mm 400 590 530
tf1 mm 25 25 25
bf1 mm 300 300 300
hc1 mm 690 430 370
tc1 mm 16 16 16
tw mm 16 16 16
hc2 mm 840 0 0
tc2 mm 18 22 19
bc2 mm 300 300 300
tf2 mm 25 25 25
hs2 mm 150 150 150
nsf2

u 0 0 0
dst m 3.7 2.6 1
dsd m 5.7 6.3 4
bfb mm 500 900 500
tffb

mm 29 26 30
twfb

mm 27 31 25
nr1 u 200 200 200
nr2 u 204 200 200
ϕbase mm 6 6 6
ϕr1 mm 6 6 6
ϕr2 mm 6 6 6
sf2* mm 300 500 450
sw* mm 300 360 240
st* mm 360 600 400
hsc mm 100 100 100
ϕsc mm 19 22 16
fck MPa 25 25 25
fyk MPa 275 460 355
fsk MPa 500 500 500

Structural steel kg 2,060,892 2,060,892 2,060,892
Reinforcement steel kg 56,271 56,239 56,239

Concrete m³ 528 528 528
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8.4 Conclusions

This research have used a deep neural network metamodel for accelerating the op-
timization of a SCCB. This metamodel has been applied to SCA, CS and OBAMO
algorithms to carry out the optimization and comparing the perfomance. The neural
network model used in this study has demonstrated significant improvements in op-
timization speed, with a range of 37 to 50 times faster than traditional optimization
methods. While the neural network model may lead to non-feasible solutions, the
calculation speed increases so that such errors can be tolerated.

Furthermore, the optimization process using the validation model yielded more feasi-
ble results for ELCA and SLCA due to the increase in the steel yield stress. However,
since the environmental and social impact of the design is not dependent on the
yield stress, solutions that consider these as objective functions resulted in higher
yield stress.

Overall, the solutions obtained using different objective functions consistently in-
volved the use of cells in the cross-section of the bridge. This study suggests that
deep learning models have great potential in optimizing complex engineering de-
signs, particularly in reducing the computational time required for optimization. How-
ever, the trade-off between speed and accuracy must be carefully considered in prac-
tical applications. Future work will apply this DL acceleration to multi-objective and
robust optimization techniques in order to get compromise solutions designs. On the
other hand, it is also interesting to consider the methodology and apply it to other
types of structural design problems to analyze the generality of this methodology.
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Abstract

The design of bridges must balance sustainability and construction simplicity. A
game theory-based optimization method was applied in this research to find a sus-
tainable steel-concrete composite bridge design. The sustainability was evaluated
through cost and environmental and social impact using the Life Cycle Assessment
method. The optimization process considered four criteria simultaneously, using a
discrete version of the SCA algorithm and a transfer function for discretization. The
preferred solutions were selected using the Minkowski distances approach. Results
showed a decrease in slab reinforcement and an increase in the amount of steel
in the cross-section, leading to only an 8.2‰ increase in cost compared to similar
studies. Regarding the cross-section, the geometry obtained considers cells in the
upper and lower parts of the webs to improve the bending resistance. The proposed
method allows for the simultaneous optimization of multiple criteria and provides a
sustainable yet simple bridge design solution.

Keywords: game theory; multi-objective optimization; steel-concrete composite struc-
tures; bridges; metaheuristics; sustainability.

9.1 Introduction

Engineering problems involve selecting the optimal solution based on various criteria,
such as cost, environmental and social impact, and construction simplicity. Balancing
these criteria adds complexity to the decision-making process, requiring the use of
techniques and tools to achieve practical solutions [316], [317]. To reach a compro-
mise solution that considers the decision-making process and educates stakehold-
ers, multi-objective optimization (MOO) techniques are applied [318]–[320]. MOO
techniques allow for balancing all criteria and considering the relative importance of
each in the decision-making process.

The civil engineering industry is known for considering multiple criteria in finding the
best solution. Projects often have a significant economic impact and concerns re-
garding their environmental and social impact, given the large scale of these projects.
One example is structure design problems, where researchers have been using
multi-objective strategies to find optimal solutions [321]. Ghasemof et al. [322] have
applied multi-objective optimization (MOO) to achieve a performance-based design
for buildings. The same method has also been used to optimize seismic performance
in structures, as demonstrated in the study by Rastegaran et al. [323], resulting in
effective risk-based designs.
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Furthermore, several other studies have focused on optimizing the geometric design
of various structural components, including wind turbine foundations [230], reinforced
concrete (RF) frames in bridges [324], and cable-stayed bridge tendons [325], among
others. In the case of cable-stayed bridges, the optimization criteria considered in-
clude the structure’s cost, sustainability, ease of construction, and safety. These
studies often incorporate CO2 emissions as a criterion for sustainability, resulting in
a design that optimizes cost and environmental impact.

Recent research in steel-concrete composite structures has shown that a single-
objective optimization (SOO) approach, using either CO2 emissions or embodied
energy as the criteria, may not necessarily lead to an optimal cost solution. This is
because increasing the yield stress of structural steel does not affect its emissions or
embodied energy [298], [310].

Current studies in steel-concrete composite bridge (SCCB) optimization need to gain
comprehensive knowledge from various fields. One limitation is using only one in-
dicator for sustainability, such as CO2 emissions or embodied energy [298], [310].
More advanced methods, such as the structure’s Life Cycle Assessment (LCA), can
provide a more comprehensive evaluation of the environmental impact profile. Ad-
ditionally, existing studies have only considered sustainability’s economic and envi-
ronmental aspects, ignoring the social impact. Moreover, the optimization of SCCB
has primarily been performed using SOO criteria, as demonstrated in the study by
Briseghella [97] and noted in review articles [189].

This research presents a MOO strategy, utilizing a game theory approach, for de-
signing a three-span Steel-Concrete Composite Bridge (SCCB) with a box-girder
cross-section. The design includes adding four cells at the flange-web contact zone
to reduce the distance between stiffened zones and minimize material usage.

The optimization problem is defined in section 9.2.3 to obtain a sustainable design
that enhances construction ease. The MOO method, described in section 9.2, in-
cludes the use of a game theory-based approach and an objective function that con-
siders the environmental and social impact, as well as cost, through a Life Cycle
Assessment (LCA) of the structure, as outlined in section 9.2.2.

The optimization procedure involves using the Sine Cosine Algorithm (SCA), ad-
justed to the discrete nature of the problem through a transfer function discretization
technique, as discussed in section 9.2.4. The final step of selecting the best solution
among the obtained results is using a Minkowski family distances-based approach,
described in section 9.2.5.

This research aims to improve the knowledge and understanding of SCCB design by
proposing a MOO strategy that balances sustainability and construction ease.
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9.2 Multi-objective optimization

As a general definition, a multi-objective minimization problem can be defined as
choosing a solution vector X⃗ with n variables that minimizes the k objective function
chosen subject to m certain constraints as defined in equations 9.1 to 9.3.

X⃗ = x1, x2, . . . , xn (9.1)

min(fi(X⃗)) = min(f1(X⃗), f2(X⃗), . . . , fk(X⃗)) (9.2)

gj(X) ≥ 1 (9.3)

In this study, the optimization problem consists of an SCCB deck. The structure has
three spans, of which the lateral ones have a length of 60 m while the central span
is 100 m. The structural optimization problem variables, parameters, and constraints
have been defined in section 9.2.3. The objective functions chosen for the MOO
have been the three pillars of sustainability, represented by the cost (economy), the
environmental (environment) and the social (society) LCA, and the constructive ease
of the RC slabs. All the objective functions have been defined in section 9.2.2. A
game theory-based procedure has been selected to reach the optimal compromise
solutions. This method has been described in section 9.2.1. Figure 9.1 summarizes
the complete MOO process carried out in this research.

9.2.1 Game theory approach

Game theory is a brand of applied mathematics that allows studying the interaction
in formalized incentive structures. The name given to this structure corresponds to
games. The players represent the objective functions fi(X⃗) in this problem. Play-
ers can change problem variables vector X⃗ for changing the value of the objective
function. The goal of every player is to minimize the objective function. However, the
value of every player’s objective function can also be influenced by the decisions of
other players regarding the variables vector.

Considering the above, it can be concluded that a game theory problem encom-
passes interest among players. Thus, it gives two possibilities for problem resolution.
In the first one, players are guided by selfishness and, consequently, try to decrease
their objective function without considering the consequences for the rest of the play-
ers. This, in game theory, is named a non-cooperative game. The point where the
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Figure 9.1: Game theory optimization process flowchart

players cannot modify the solution unilaterally to improve its corresponding criterion
is called Nash equilibrium [326]. This equilibrium can be mathematically defined as
given in equation 9.4 for n design variables and k criteria. This Nash equilibrium can
be more than one point in the solution space and, in this case, fi(X⃗) have different
values for each Nash equilibrium point. If this situation is produced, the player that
declares the moving of first place forces the others to move to the equilibrium point.

f1(x
∗
1, . . . , x

∗
n) ≤ f1(x1, x2, . . . , x

∗
n)

f2(x
∗
1, . . . , x

∗
n) ≤ f1(x∗

1, x2, . . . , x
∗
n)

...

fk(x
∗
1, . . . , x

∗
n) ≤ fk(x∗

1, x
∗
2 . . . , xn)

(9.4)

The other option arises in which the players cooperate to find a better solution than
the one reached in the Nash equilibrium. If the deciders take this strategy, this is
defined as a cooperative game. As a consequence, this provides a space for so-
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lutions. In order to allow the reduction of solutions, the Pareto-optimal concept can
be applied. A multi-objective Pareto-optimal feasible solution Y⃗ accomplish that no
exist another feasible solution Z⃗ which fi(Y⃗ ) ≤ fi(Z⃗) for i = 1, 2, . . . , k with al-
most one j that accomplish fj(Y⃗ ) < fi(Z⃗) [327]. The next step in the procedure is
to choose the solution vector contained in the Pareto-optimal set that represents a
compromise solution that benefits all players or at least is acceptable. This is made
by defining specific negotiation rules between players that allow them to formulate
a super-criterion. This super-criterion allows reformulating the MOO problem into a
SOO that allows a compromise solution between players.

Game theory based optimization strategy

In this work, a game theory-based MOO has been applied to SCCB structural op-
timization. The methodology followed is the one proposed by Annamdas and Rao
[328]. This method uses a cooperative game strategy in which the super-criterion
maximizes the deviation between every objective function and its worst value. It
should be noted that the method does not need the criteria introduced to be contrary
to each other. It has taken good results in other engineering problems and consists
of the following steps:

1. Minimize and maximize of the kobjectives to get the best fi(X⃗∗
i ) and the worst

Fwi
value.

2. Normalize the current value of the kobjective function fi(X⃗) with respect to the
best and worst value by means of equation 9.5.

fni(X⃗) =
fi(X⃗)− fi(X⃗∗

i )

Fwi
− fi(X⃗∗

i )
(9.5)

This normalization avoids favoring any criteria by making the values of all crite-
ria lie between zero and one when minimizing the objective function defined in
9.6.

3. Minimize an objective function F (Y⃗ ), defined in 9.6, that takes into account the
compromise solution rules.

F (Y⃗ ) = FC − S (9.6)
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In this expression FC, defined in 9.7, represents a weighted objective function
that includes the Pareto-optimal set.

FC = C1fn1(X⃗) + . . . + Ck−1fn(k−1)(X⃗) + (1− C1 − . . .− Ck−1)fnk(X⃗) (9.7)

with 0 ≤ Ci ≤ 1 and
∑n

i=1Ci = 1

The super-criterion S, defined in 9.8, maximizes the deviation between every
objective function and its worst.

S =
n∏

i=1

[1− fni(X⃗)] (9.8)

The method proposed by Annamdas and Rao proposes to minimize FC for all possi-
ble combinations of weightsCi. This study has modified this method, assigning those
weights to the values obtained through the entropy theory [329]. These weight val-
ues have been obtained by comparing the individuals generated in each population
by the selected metaheuristic. The algorithm chosen is a discrete version of the sine
cosine algorithm (SCA) which has been previously applied to this optimization prob-
lem considering different criteria as SOO [311]. This algorithm and its discretization
technique have been defined in section 9.2.4.

9.2.2 Objective functions

The problem chosen for the MOO consists in reaching the optimum design of an
SCCB involving four criteria as objective functions. Equations 9.9, 9.10, 9.11 and
9.12 assess the economic cost, the constructive simplicity of the slab, and the envi-
ronmental and social life cycle assessment of the structure respectively.

C(x⃗) =
n∑

i=1

pi ·mi(x⃗) (9.9)

The objective cost function multiplies the unit cost of every activity needed for con-
structing the bridge by its measurement. Table 9.1 includes all the construction units
and their corresponding costs obtained from the BEDEC database [207]. In equation
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Table 9.1: Cost values of every construction unit for SCCB

Construction unit Unit Cost (e)
Ccncrete C25/30 m3 88.86
Concrete C30/37 m3 97.80
Concrete C35/45 m3 101.03
Concrete C40/50 m3 104.08
Precast pre-slab m3 27.10
Reinforcement steel B400S kg 1.40
Reinforcement steel B500S kg 1.42
Rolled steel S275 kg 1.72
Rolled steel S355 kg 1.85
Rolled steel S460 kg 2.01
Shear-connector steel kg 1.70

9.9, pi corresponds with the price of every construction unit andmi with its measure-
ment.

CS(x⃗) = nlayers · nbars (9.10)

The following objective function, defined in equation 9.10 considers the construc-
tion’s simplicity of the RC slabs of the bridge. In this expression, nlayers and nbars

correspond to the number of reinforcement layers and bars. This criterion consid-
ers that a lower amount of both bars and reinforcement layers is simpler to carry
out during construction. The number of bars has been considered in the support
sections of the bridge. In this section, the bridge is subjected to negative bending
moments and, consequently, traction in the upper slab. Furthermore, the structural
resistant model defined in EN 1994-1-1 [26] only considers reinforcement to obtain
the ultimate moment of the section, which favors the placement of a more significant
amount of reinforcement.

ELCA(x⃗) =
n∑

i=1

p∑
j=1

elcaj ·mj(x⃗) (9.11)

SLCA(x⃗) =
n∑

i=1

p∑
j=1

slcaj ·mj(x⃗) (9.12)
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LCA’s objective is to assess the structure’s environmental (ELCA) and social impact
(SLCA), considering the processes needed, from the extraction of the raw material
to the demolition of the structure and its transport to the landfill site. In equations
9.11 and 9.12, i represent every life cycle stage, elcaj and slcaj the environmental
and social impact of every process needed in every stage respectively, and mj the
measurement of every process. The processes considered and their corresponding
environmental and social impact are defined in Table 9.2. The LCA method has been
described in detail in section 9.2.2.

Table 9.2: Ecoinvent processes LCA environmental and social impact values

Process Unit elcai (points) slcai (mrh)
concrete production 25MPa m³ 2.037E+01 1.254E+05
concrete production 30MPa m³ 2.631E+01 1.668E+05
concrete production 35MPa m³ 2.478E+01 1.554E+05
concrete production 40MPa m³ 2.585E+01 1.623E+05
steel production 71% of recycling rate kg 1.523E-01 1.941E+03
steel production 98% of recycling rate kg 1.036E-01 2.067E+03
transport, freight, lorry 16-32 metric ton, EURO6 t·km 2.502E-02 4.116E+01
transport, freight, lorry 3.5-7.5 metric ton, EURO6 t·km 7.755E-02 1.655E+02
welding, arc, steel m 2.350E-02 2.535E+02
welding, gas, steel m 2.303E-02 2.429E+02
diesel, burned in building machine MJ 1.361E-02 8.764E+00
carbon dioxide kg 4.369E-02 0.000E+00
rock crushing kg 7.223E-05 8.305E-01

Life cycle assessment method

The life cycle assessment is the evaluation of the contribution of the processes of
one activity or product to its global impact. Together, these procedures cover all the
steps needed to complete this product or activity. Depending on the scope of the
LCA, the processes considered begin with the raw material extraction and finish in
the different stages of the product’s service life. In the case of bridges, the regulation
that defines the procedure to carry out the environmental LCA is the ISO 14040:2006
[145]. In addition, the guide to follow to assess the social impact is the Guidelines for
Social Life Cycle Assessment of Products [224]. To model the structure’s life cycle,
it is necessary to obtain the impacts from databases and choose a life cycle impact
assessment (LCIA) method. The method chosen for this research is the ReCiPe
2008 method [151] for ELCA and the social impacts weighting method (SIWM) for
SLCA. The databases contain information about the impact of processes. In this re-
search, ecoinvent v3.7.1. [199] and soca v2 [312] have been chosen for ELCA and
SLCA respectively. These databases are frequently upgraded and are very reliable
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for the scientific community [200]. Furthermore, the soca database allows associ-
ating ecoinvent processes with the PSILCA [313] database social impacts, being a
useful tool for scientists [279].

In order to assess the impact of the SCCB, four stages have been defined for ob-
taining the full impact of the bridge. These phases correspond to manufacturing,
construction, use, maintenance, and end of life, which are similar to those defined in
previous bridge LCA studies [279].

Manufacturing encompasses transforming the raw material into the products needed
for construction and their transportation to the building site, considering the wastes
generated during these activities. In the case of steel products production, recycled
steel radically impacts the bridge global environmental impact in SCCB [279]. It is
critical to distinguish between structural and rebar steel since, according to some
studies, the reinforcement steel recycling percentage is 71%. In contrast, the struc-
tural steel recycling ratio is 98% in developed countries such as EEUU [193].

Construction includes the actions required to build the bridge, considering the equip-
ment, depending on the building style and location of the structure, which is all in-
cluded in the construction phase. Formwork, scaffolding, vibrators, and concrete
pouring must be considered. Additionally, the procedures for welding the steel sec-
tions that were overlooked during the manufacturing phase must be established for
steel and steel-concrete composite bridges. The diesel consumption of the machin-
ery, which is based on information from the manufacturer, the literature, or other
sources, is included in the LCA model for modeling construction activities.

All the tasks required throughout the structure’s lifetime are included in the use and
maintenance stage. Research has found that concrete can be carbonated to fix CO2

[164], [176]. According to the study of García-Segura et al. [177], the expression
of concrete carbonation is represented in equation 9.13. In this equation, t is the
service life, and k is the carbonation coefficient. Concrete’s exposed area is denoted
byA, whileC is the amount of cement contained in one concrete cubic meter. Finally,
the amount of clinker in the cement is k.

CO2fixed (kg) = 0.383 ·
k
(

mm√
year

)
·
√
t(year)

1000
·A(m2) ·C

(
kg

m3

)
·k(%) (9.13)

The dismantling of the structure, or the procedures that take place after the struc-
ture’s life, is included in the end-of-life stage. The main operation is the machinery
necessary to carry out the structure’s demolition and the transportation and treat-
ment of the waste products produced during that stage. As a result, the distances
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between the building’s site and the landfill or waste treatment facilities must be spec-
ified. Depending on the properties of the waste materials, there are three primary
options for their disposal: reuse, recycling, or landfilling. Concrete and steel are the
most common materials used in bridge construction. Waste treatment options are
based on the population’s needs and the region under consideration.

The inventory analysis constitutes the data gathering for all the materials and en-
ergy consumption required to develop all the processes involved in the bridge life
cycle. When these processes’ outputs are considered, the environmental impact of
the product being evaluated can be determined. The processes used in every stage
are shown in figure 9.2

SCCB LCA model

Manufacturing Construction Use and Maintenance End of Life

Activities:

• Concrete production
• Reinforcement steel

production
• Hot rolled steel

production
• Bridge sections

welding
• Concrete transport
• Reinforcement

transport
• Bridge sections

transport

Activities:

• Pre‐slab production
(used as formwork)

• Pre‐slab transport
• On site welding
• Concrete pouring

Activities:

• Concrete repair
• Concrete carbonation

Activities:

• Concrete dismantling
and crushing

• Steel cutting and
dismantling

• Concrete transport to
landfill

• Steel transport to
landfill

• Concrete carbonation

Figure 9.2: Bridge life cycle model stages and activities

The LCA impact was evaluated using a Python script created using information from
Ecoinvent [199] in version 3.7.1. and soca in version 2 [312]. Data have been ob-
tained modeling one unit of every product with GreenDelta’s OpenLCA software. This
tool, which is open source, enables the LCA, particularly for the scientific community
[198].

225



Chapter 9. Game theory approach for environmental and social LCA multi-objective optimization of

steel-concrete composite bridges

sf₂

tf₂

b

hs

hb

tf
₁, bf₁

hc₁tc₁
tw

hc₂

bc₂

tc₂
nsf₂

hs₂

sw

αw

Figure 9.3: SCCB structural optimization problem cross-section variables

9.2.3 Problem definition

The structural optimization problem chosen for this research has been a 60-100-
60 meter SCCB deck. The geometry of this deck is box-girder. The optimization
problem has been defined previously in recent studies where SOO procedures have
been applied [310]. This research applies a MOO game theory-based procedure to
this existing optimization problem.

Variables and parameters

The structural problem considers a total of 34 design variables. These variables con-
sider the bridge cross-section and stiffener geometry, the slabs’ reinforcement, and
the materials’ strength. The variables are grouped in four groups corresponding to
the cross-section geometry variables (b, αw, hs, hb, hfb, tf1 , bf1 , hc1 , tc1 , tw, hc2 , tc2 ,
bc2 , tf2 , hs2 ), the stiffeners and floor beam variables (nsf2

, dst, dsd, sf2 , sw, st, hfb,
bfb, tffb

, twfb
) which define the stiffeners and transverse elements position and ge-

ometry, the reinforcement and shear connectors variables (nr1 , nr2 , ϕbase, ϕr1 , ϕr2 ,
hsc, ϕsc) and the materials strenght variables (fck, fyk, fsk). Figure 9.3 shows the
geometrical variables’ position in the cross-section while 9.5 shows the floor beams
and stiffeners variables. The optimization problem nature is discrete, as stated in
previous research on this optimization problem [311]. All SCCB variables have been
defined considering a lower, an upper bound, and step size. The discretization of the
variables has been summarized in table 9.3. Considering all combination possibili-
ties, the number of designs is equal to 1.38×1046

Furthermore, the optimization problem is defined by some conditions that do not vary
during the optimization problem. These conditions without variation are named pa-
rameters. This optimization problem considers the same parameters defined in the
original problem [279]. The first parameters defined are bridge length and width. The
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Table 9.3: Optimization problem variables and boundaries

.

Variables Unit Lower Limit Upper Limit Step Size Possibilities
Geometrical variables

b m 7 10 0.01 301
αw deg 45 90 1 46
hs mm 200 400 10 21
hb cm 250 (L/40) 400 (L/25) 1 151
tf1 mm 25 80 1 56
bf1 mm 300 1000 10 71
hc1 mm 0 1000 1 101
tc1 mm 16 25 1 10
tw mm 16 25 1 10
hc2 mm 0 1000 10 101
tc2 mm 16 25 1 10
bc2 mm 300 1000 10 71
tf2 mm 25 80 1 56
hs2 mm 150 400 10 26

Stiffeners and floor beams
nsf2

u 0 10 1 11
dst m 1 5 0.1 41
dsd m 4 10 0.1 61
sf2 mm IPE 200 – IPE 600 * 12
sw mm IPE 200 – IPE 600 * 12
st mm IPE 200 – IPE 600 * 12
hfb mm 400 700 100 31
bfb mm 200 1000 100 9
tffb

mm 25 35 1 11
twfb mm 25 35 1 11

Reinforcement and shear connectors
nr1 u 200 500 1 301
nr2 u 200 500 1 301
ϕbase mm 6, 8, 10, 12, 16, 20, 25, 32 8
ϕr1 mm 6, 8, 10, 12, 16, 20, 25, 32 8
ϕr2 mm 6, 8, 10, 12, 16, 20, 25, 32 8
hsc mm 100, 150, 175, 200 4
ϕsc mm 16, 19, 22 3

Material strength
fck MPa 25, 30, 35, 40 4
fyk MPa 275, 355, 460 3
fsk MPa 400, 500 2

* Following the series of IPE profiles defined in [239].
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Figure 9.4: SCCB structural optimization stiffeners and floor beam variables

entire length of the bridge is 200 m, divided into two lateral spans of 60 and one
central of 100, and its width (W ) is 16 m. The following parameters are the variables’
bounds defined in table 9.3. In addition, in this problem exist other parameters that
define the position and the minimum values for some elements. This is the case of
the reinforcement areas, lower flange, web thicknesses, and lower slab distributions
represented in Figure 9.5. The minimum value of the web and bottom flange thick-
nesses (twmin

, tf2min) are defined in 15 a and 25 mm respectively by specific design
guidelines [25], [242]. The last geometrical parameter is the reinforcement coating
which is the one defined in Eurocode 2 [238] for an XD2 environment being 45 mm.

The following parameters define the characteristics of concrete following Eurocode 2
[238] regulation. These parameters are the maximum aggregate size, fixed in 20 mm,
and the steel and concrete Young longitudinal and transverse modulus. For steel,
these parameter values are fixed in 210,000 MPa and 80,769 MPa, respectively,
while for concrete depend on the strength being the expressions 22 · ((fck +8)/10)3

and Ecm/(2 · (1 + 0.2)).

Finally, the last parameters define the bridge service life, structural class, and loading
parameters. Service life defined for this kind of structure is 100 years, while the struc-
tural class corresponds to S5 according to Eurocodes [240]. The loads considered
in the bridge are self-weight, dead loads, traffic, temperature variation, and wind. All
these loads have been defined following the Eurocode 1 [240].
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Figure 9.5: Reinforcement, thicknesses and lower slabs distribution in bridge spans

Constraints

The optimization problem’s restrictions are related to the structural safety (ULS), and
serviceability (SLS) constraints specified by the rules [26], [237], [238]. In addition,
limitations were included by specific design guidelines [25], [242].

The ULS relates to the structural resistance of bridge sections, whereas the SLS
corresponds to the prescribed stresses of the materials and structure deflection lim-
itations. The prescribed loads and combinations correspond to those imposed by
Eurocode 1.

Local and global structural models were undertaken for ULS checking. The feasibility
of solutions is related to shear, flexure, torsion, and flexure-shear interaction check-
ing in the case of global analysis. To determine the section’s resistance, the shear
lag [26] and slenderness of Class 4 sections [238] were taken into account. The
accuracy of the iterative Class 4 reduction method was specified at 10-6. Sections
were homogenized by taking into account the coefficient (n) between the longitudinal
deflection modulus of concrete (Ecm) and steel (Es), as described by Equation 9.14.
Creep and shrinkage of concrete were determined by the Eurocodes [26], [237],
[238] standard. Local modeling was done to establish the floor beam and diaphragm
response to ULS.

n =
Es

Ecm
(9.14)

As SLS limitations, deflection, the material’s tension limit, and fatigue were deter-
mined. The deflection limit was established by Spanish regulation IAP-11 [241], es-
tablishing L/1000 as the maximum deflection value for frequent combinations of live
loads. In this instance, L denotes the length of each span. In addition, structural
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limits and geometrical constraints were specified. All structural tests were specified
using a Python-programmed [243] numerical model.

Both ULS and SLS checking coefficients relate to the difference between the design
values of the effects of actions (Ed) and its associated resistance value (Rd), as
shown by the equation 9.15. If these coefficient values are higher than or equal to
one, the section satisfies the constraints defined in equation 9.3.

Rd

Ed

≥ 1 (9.15)

9.2.4 Sine cosine algorithm

The original Sine Cosine Algorithm (SCA) was proposed in 2016 by Mirjalili [233] and
corresponds to a swarm intelligence class metaheuristic that uses sine and cosine
functions to explore and utilize the search space. In addition, using P t

j , which corre-
sponds to the location of the target solution for iteration t and dimension j, to shift the
solutions, the best solution so far is often employed. In addition, the method employs
three numbers between 0 and 1 (r1, r2, and r3). Equations 9.16 and 9.17 illustrate
the updating mechanism used.

xt+1
i,j = xt

i,j + r1 × sin(r2)× | r3P t
j − xt

i,j | (9.16)

xt+1
i,j = xt

i,j + r1 × cos(r2)× | r3P t
j − xt

i,j | (9.17)

As the nature of the SCA algorithm is continuous, a discrete version of this algo-
rithm has been used in this research. This discrete version has been proposed by
Martínez-Muñoz et al. [310] and recently applied to this optimization problem with
a SOO approach. This discrete version uses the velocities obtained for the second
term of the equations 9.16 and 9.17, which is the one that controls the variables’
vector change. It applies a v-shape transfer function | tanh(v) | to it as proposed
by Hussien et al. [330]. The value obtained is compared with a random number be-
tween [0, 1). If the value of the random number is higher than the one obtained by
the transfer function, the variable remains without changes; otherwise, a β value is
defined and compared with a new random number to define if the variable takes the
best value variable or change it to a near value. This β value has been tuned for this
optimization problem in Martínez-Muñoz et al. [310] setting it in 0.8.
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It should be noted that some individual solutions can be unfeasible due to the con-
straints applied to the optimization problem defined in section 9.2.3. When it occurs,
a penalty function is applied to the objective function to increase its value proportion-
ally to how far it is from meeting the constraint as defined in equation 9.18.

fi(X⃗) =
fi(X⃗)

Rd/Ed

(9.18)

9.2.5 Multi-objective preferred solutions selection

As the execution of the algorithm is repeated 30 times, different solutions are ob-
tained. In SOO, the best is defined by the one that gets the lower objective function
value. In this case, a method for the best individual selection must be followed, as
four objective functions have been chosen for the MOO. The procedure applied for
reaching the preferred solutions is proposed by Yepes et al. [331]. This strategy uses
the three Minkowski metrics to choose the solution closest to the ideal point. This
method applies the Manhattan (L1), Euclidean (L2), and Tchebycheff (L∞). Equa-
tion 9.19 shows how the distance from any point z(x) ∈ Z ⊂ Rq is evaluated in the
p norm.

Lp = d(z(x), z∗, p) =

[
q∑

j=1

λp
j

∣∣z∗j − zj(x)∣∣p
]1/p

, p = 1, 2, . . .

L∞ = lim
p→+∞

Lp = max(λj

∣∣z∗j − zj(x)∣∣), j = 1, . . . , q

(9.19)

In this expression (9.19) zj(x), j = 1, . . . , q are the criteria chosen, z∗ = (z∗1 , . . . , z
∗
q )

is the best values vector, and λj , j = 1, . . . , q the criteria weights defined in equa-
tion 9.20. These are composed of two components. The first corresponds to the
values obtained from a multi-criteria decision-making process (wj) and can contain
a subjective component. The second component (δj) normalizes the criteria values.
In Yepes et al. [331], the weights (wj) are obtained by applying the analytic hierar-
chy process. In this case, the entropy theory [329] has been chosen to obtain the
weights as this method does not require decision-makers and gives greater weight
to the criterion that is better able to discriminate between alternatives. Furthermore,
as all the objective functions are quantitative, no subjectivity is added to the process.

λj =
wj

δj
=

wj

max |zj(x)|
, x ∈ X (9.20)
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9.3 Results and discussion

This section analyzes and compares the results obtained for the game theory MOO
approach strategy with a cost SOO procedure. Furthermore, the results obtained
have been compared with recent SCCB optimization research. For this purpose, 100
runs of the algorithm have been done to reach optimum designs. The Minkowski
distance methodology has been applied to these 100 optimal individuals to obtain
the best for each distance.

As defined in section 9.2.1 the first step corresponds with the minimization and max-
imization of every objective function considered for the MOO problem. In this case,
four objective functions have been considered whose expressions are defined in
Equations 9.9 to 9.12. Five iterations have been carried out for every maximization
and minimization to get the worst and best values, respectively. Table 9.4 shows the
results obtained from the algorithm’s runs for obtaining the maximum and minimum.
The values chosen as best and worst correspond to the minimum and maximum of
every five iterations. The algorithm used for the optimization process is the discrete
SCA defined in section 9.2.4.

Table 9.4: Maximum and minimum values obtained from SOO of every objective function

Minimization Maximization
Iteration C ELCA SLCA CS C ELCA SLCA CS

1 3.847E+06 4.387E+05 5.118E+09 4.221E+02 4.292E+07 4.690E+06 1.578E+10 1.063E+04
2 3.827E+06 4.404E+05 5.140E+09 4.140E+02 3.387E+07 1.071E+06 5.564E+10 8.327E+03
3 3.858E+06 4.396E+05 5.108E+09 4.140E+02 4.418E+07 1.700E+06 5.216E+10 1.065E+04
4 3.826E+06 4.423E+05 5.109E+09 4.341E+02 2.451E+07 4.389E+06 5.091E+10 4.181E+03
5 3.846E+06 4.413E+05 5.133E+09 4.542E+02 2.566E+07 3.604E+06 4.653E+10 1.020E+04

Min 3.826E+06 4.387E+05 5.108E+09 4.140E+02 Max 4.418E+07 4.690E+06 5.564E+10 1.065E+04

Results shown in table 9.4 correspond to the best fi(X⃗∗
i ) and worst Fwi

values used
in equation 9.5 for normalizing the objective functions’ results. Once these values
have been obtained, the game theory objective function is used for carrying out the
MOO process using the discrete SCA algorithm. This procedure produces 100 opti-
mum individuals. The Minkowski distance method has resulted in three best design
solutions corresponding with the Manhattan (L1), Euclidean (L2), and Tchebycheff
(L∞) distances to the ideal point. This ideal point is defined by every of the lower
values of every objective function shown in Table 9.4. For obtaining the values of the
Minkowski distances, the weights associated have been calculated using the entropy
theory [329]. The objective metrics preferred solution, weights, and the associated
results of objective functions considered are shown in Table 9.5.

First, a comparison has been made for the variation of the objective function during
the optimization problem comparing the MOO designs with a cost SOO procedure
obtained following the method described in [311]. In Figure 9.6 it can be seen the
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Table 9.5: Objective function and metrics values for preferred solutions

Best metric Cost ELCA SLCA CS L1 L2 L∞
L1 3,829,816 438,661 5,103,214,053 434 0.0069 0.0064 0.0064
L2 3,871,234 442,250 5,154,756,687 422 0.0087 0.0044 0.0026
L∞ 3,871,234 442,250 5,154,756,687 422 0.0087 0.0044 0.0026
Cost 3,830,396 439,182 5,105,214,208 882 0.1063 0.1057 0.1057

Weights 0.2479 0.2477 0.2479 0.2565

comparison of the trajectories obtained. It should be noted that the best design
obtained from L2 and L∞ is the same, and consequently, only one representation
has been made. As seen, apparent differences can be observed in how the algorithm
moves through the solution space to obtain the optimum. In cost optimization, the
algorithm decreases costs and reduces ELCA and SLCA due to the cost reduction
of the used material.
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Figure 9.6: Objective functions variation during the optimization process for both MOO and cost
SOO best individuals
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Conversely, the value of the CS of the upper slab does not have a clear trend reach-
ing the end of the process, a significant difference compared to the MOO design
solutions. If the MOO design is obtained, it can be seen that from 500 iterations,
all objective functions are stabilized. This validates the number of iterations used for
the proposed method. Furthermore, it can be seen that the MOO procedure L1 best
individual decreases at the beginning of the process the cost, ELCA, and SLCA cri-
teria in a more straightforward way. From 325 iterations, the value of these objective
functions is stabilized. From that point, continues the CS of the RC slab reduction.
The reasons for this can be observed in Figure 9.7. The essential material and, con-
sequently, the most impacting is the rolled steel that materializes the steel beam in
the bridge’s cross-section is reduced drastically. On the contrary, the L2 and L∞
solutions reduce at the same time all criteria. The differences observed regarding
the amounts of the materials can be seen in the box plot of Figure 9.7. In contrast
to SOO, MOO produces a lower amount of reinforcing steel and increases the rolled
steel amount to obtain a similar cross-section design strength.

234



9.3 Results and discussion

C
os

t

586 588 590 592 594 596 598 600 602
Structural steel (kg/m2)

M
O

O

16 17 18 19 20
Reinforcement bar steel (kg/m2)

0 100 200 300 400 500 600
Iterations

580

600

620

640

660

680

700

St
ru

ct
ur

al
 s

te
el

 (k
g/

m
2 )

0 100 200 300 400 500 600
Iterations

15

20

25

30

35

40

45

50

R
ei

nf
or

ce
m

en
t b

ar
 s

te
el

 (k
g/

m
2 )

Cost optimization L2 & L  MOO optimization L1 MOO optimization

Figure 9.7: Reinforcements and rolled steel amounts data obtained from both MOO and SOO
procedures

As shown in table 9.5, depending on the solution chosen, the MOO optimization
can become even better in terms of cost than the SOO. If the L1 metric solution
is compared with the SOO, it can be seen that a reduction of 580 e is produced.
Furthermore, suppose this is compared with the study of Martínez-Muñoz et al. [311]
that applied SCA for both cost and CO2 emissions SOOs to this structural problem.
In that case, the cost SOO best individual takes the value of 3,829,666 e, compared
with the best individual of MOO strategy applied in this research is lower in only 150
e (8.2 h of the best cost individual). Furthermore, if the result is compared to the
CO2 emissions best design in the same study of Martínez-Muñoz et al. [311] it can be
observed that it takes the cost value of 4,096,922 e increasing the best cost founded
in a 6,98 %. The MOO strategy proposed is capable of finding sustainable and better
constructive simplicity solutions that do not increase the cost for this optimization
problem.
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Table 9.6: Best solutions obtained for cost SOO and MOO L1, L2 and L∞

Variables Unit Cost L1 L2, L∞
b m 7 7 7
αw deg 49 70 87
hs mm 200 200 200
hb cm 315 252 381
hfb mm 420 440 610
tf1 mm 58 51 57
bf1 mm 560 480 620
hc1 mm 130 170 960
tc1 mm 21 18 17
tw mm 16 27 16
hc2 mm 490 270 900
tc2 mm 24 24 25
bc2 mm 300 710 370
tf2 mm 25 25 29
hs2 mm 150 150 150
nsf2

u 0 0 0
dst m 1.1 2.9 2.4
dsd m 4.3 4.0 7.2
bfb mm 400 200 400
tffb

mm 27 30 30
twfb

mm 32 30 31
nr1 u 303 200 200
nr2 u 200 200 200
ϕbase mm 6 25 20
ϕr1 mm 6 6 6
ϕr2 mm 6 6 6
sf2 mm 400 220 300
sw mm 270 450 200
st mm 600 550 600
hsc mm 100 100 100
ϕsc mm 16 16 19
fck MPa 25 25 25
fyk MPa 275 275 275
fsk MPa 500 500 500

Structural steel kg 2,062,748 2,088,751 2,064,727
Reinforcement steel kg 59,394 56,657 56,584

Concrete m³ 528 528 528
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The results from a cost SOO and the best Minkowski metrics individuals of the MOO
structural problem variables have been shown in Table 9.6. As described before, the
difference in material amounts is an increase in the amount of structural steel to allow
for the reduction of reinforcing steel. Focusing the analysis on the slab reinforcement,
it can be observed that the base reinforcement bars’ diameter takes a higher value
allowing for reducing the number of bars. This reduction is produced to improve the
constructive simplicity of the upper slab. Two principal reasons justify this. The first
one is that the distance between bars increases, and consequently, the concrete’s
vibration can be done more efficiently. Moreover, reducing bars reduces the time of
placement of these bars.

Consequently, this steel amounts variation directly impacts the values of the design
variables of the problem, as shown in figures 9.8 to 9.10. First, the transverse section
main variables have been compared in Figure 9.8. The main difference found is an
increase in the depth of the steel beam hb and the distance between transverse
stiffeners dst while the diaphragms dsd, which control the torsional resistance of the
bridge, increase. The results between SOO and MOO are similar concerning the
angle of the webs (αw).
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Figure 9.8: SOO and MOO strategies design cross-section variables values

The following analysis focuses on the thicknesses and widths of the bridge flanges.
It can be seen in Figure 9.9 that the width of the top flange (bf1 ) increases while
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its thickness (tf1 ) remains constant. This allows adding more inertia to resist the
negative bending moments in supported zones and compensate for the loss due to
the reduction of reinforcing steel. The bottom flange and web thicknesses (tf2 , tw)
increase in the case of MOO design. Regarding the heights and thicknesses of the
cells proposed for this design in section 9.2.3, it can be seen that the results shown
in Figure 9.10 give positive values for the heights. This result is similar to the one
obtained for SOO designs in this structural optimization problem [298], [310], [311].
It is observed an increase in the thicknesses (tc1 , tc2 ) of these elements and an
increase in the bottom cells’ height (hc2 ) while the upper cell remains similar in terms
of height.
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The variables that define the strength of the materials are the same for all designs
obtained in this study. Concrete characteristic strength takes 25 MPa, corresponding
with the lower value allowed by the concrete European regulation [238]. Regarding
the reinforcement yield stress, the results are the same for all design alternatives
taking 500 MPa as the value. Finally, a comparison of the structural steel yield stress
has been made. When optimizing cost as SOO, the yield stress obtained is 275
MPa as the design reached by the MOO strategy. Conversely, in CO2 [310], [311]
and embodied energy [298] SOO studies that solve this structural problem, the yield
stress increase. This is produced because the CO2 and embodied energy associated
with an increase in yield stress are null. This is also the case of ELCA and SLCA,
where the impact does not increase for modeling higher-strength steels. The only
thing that modifies the steel’s impact is its recycling ratio for both environmental and
social impacts [279].
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9.4 Conclusions

This research has utilized a game theory approach to perform MOO on a steel-
concrete composite bridge deck. The cooperative game strategy allows for finding
a balance between various objectives. The structural problem defined involves 34
variables and 1.38 × 1046 combinations. The optimization algorithm employed is a
discretized version of the Sine Cosine Algorithm (SCA), which was adjusted for dis-
crete optimization by using a v-shape transfer function. The preferred solutions were
then selected using a Minkowski distance method based on entropy theory to assign
weights to the objectives, which included cost, environmental life cycle assessment
(ELCA), social life cycle assessment (SLCA), and the ease of construction of the
upper slab.

The results indicate that the MOO approach leads to similar cost increases of 8.2 ‰
compared to the single-objective optimization (SOO) approach based on cost. The
most significant difference between the SOO and MOO designs is an increase in the
amount of structural steel and a reduction in the reinforcement of the upper slab. This
reduction was achieved by increasing the diameter of the bars, which improves the
constructability of the slab and reduces the need for concrete vibration. The values
of the steel beam variables were increased to compensate for the negative bending
strength in the support zones.

In conclusion, the MOO approach can result in a sustainable design that also con-
siders the ease of construction, as evidenced by the decreased reinforcement of the
slab and the use of lower yield stress of the structural steel (275 MPa). This research
demonstrates that the proposed method can be applied to complex structural prob-
lems to obtain sustainable designs, and in this case, without increasing cost. Future
research can explore incorporating hybrid optimization algorithms or metamodels to
improve performance and reduce computation time.

240



Chapter 10

Discussion

241



Chapter 10. Discussion

The dissertation presents several research inquiries regarding composite bridges’
optimum sustainable design. The proposed methodology considers the complete
life cycle assessment profile. To face these questions, this approach employs a
metamodel-assisted, multi-objective strategy founded on Game and Entropy Theory.
Figure 10.1 summarizes relation between the chapters and the research questions
posed in this dissertation for reaching the SCCB study case sustainable design.
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Figure 10.1: Dissertation research questions and chapter relations flowchart

10.1 Research Question Q1

Are steel-concrete composite bridges a viable alternative in terms of their
environmental and social impact and how the steel recycling affect in the
assessment?

The doctoral thesis aims to address the research question by utilizing the life cycle
analysis methodology. Specifically, the study compares a box-girder steel-concrete
composite solution with slab and box-girder concrete alternatives, focusing on bridge
spans ranging from 25 to 40 meters. Chapter 3 presents an Environmental Life Cycle
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Assessment (ELCA) conducted following the ISO 14040 [145] methodology, consist-
ing of four phases: goal and scope definition, inventory analysis, impact assessment,
and result interpretation. For impact assessment, the ReCiPe 2008 [151] method is
chosen, and the Ecoinvent v3.3 database is used to collect environmental impact
data.

In addition, Chapter 4 applies both ELCA and Social Life Cycle Assessment (SLCA)
to the bridge structures. The guidelines established in the Guidelines for Social Life
Cycle Assessment of Products [224] are followed for SLCA. This chapter uses the
Ecoinvent v3.7.1 and SOCA v2 databases for ELCA and SLCA, respectively.

Traditionally, the choice of bridge deck types has been driven by their economic fea-
sibility [205]. For example, prestressed concrete solid and lightened slabs are com-
monly used for spans between 15 and 35 meters. Box-girder bridges are preferred
for spans between 25 and 125 meters. The research in Chapters 3 and 4 faces the
challenge of comparing bridge solutions’ environmental and social impacts within the
range of 25 to 40 meters for both concrete and steel-concrete alternatives.

The study reveals lightened slab solutions are the most environmentally sustainable
for short bridge spans. However, as the span distance increases, the sustainabil-
ity assessment results change significantly depending on the analyzed aspect. If a
purely environmental approach is taken, composite solutions emerge as the most
sustainable option for spans ranging from 25 to 40 meters. On the other hand, a
purely social approach indicates that the impact of composite alternatives is higher
than that of concrete box-girder solutions, even surpassing the concrete slab alterna-
tives, which would be economically unfeasible. Another important observation is that
updating the database to a current version leads to lower environmental impacts, in-
dicating that the environmental impact improves as the technology of the processes
improves.

One key difference in the study is related to the bridge structures’ use and mainte-
nance, and end-of-life phases. The environmental analysis shows a negative impact
due to the effects of concrete carbonation, which is a process that occurs naturally
and needs the environment to occur. This translates into an improvement in the en-
vironmental impact. However, from a social point of view, this phenomenon has no
effect, and therefore, all impacts are positive.

Another main point of the analysis is the amount of recycled steel used in composite
bridges as presented in Chapters 3 and 4, different steel recycling percentages have
been taken into account for comparing the results regarding the span lengths of the
study. These rates depend on the manufacturing process, such as BOF, EAF, and
hot rolling processes. The trend in developed countries [147] is to manufacture steels
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with an increasing amount of steel scrap, leading to higher recycling percentages.
From an environmental point of view, this is a positive strategy. However, it may not
be beneficial from a social perspective. The study results show that increasing the
amount of recycled steel leads to a higher social impact.

The answer to the research question is clear. If we consider a purely environmen-
tal approach, the composite solution is the best, however, if the approach is social,
a concrete solution should be chosen. However, the current trend is to obtain sus-
tainable designs, i.e. solutions that integrate all dimensions of sustainability in the
design. Therefore, the choice of solution becomes a multi-criteria decision making
problem, where the solution chosen will depend on the weight assigned to each of
the criteria being evaluated.

10.2 Research Question Q2

Can optimization techniques be aligned with sustainable development
goals in the design of steel-concrete composite bridges?

As previously mentioned, structures that consider all aspects of sustainability can be
challenging. Therefore, this doctoral thesis proposes several strategies to tackle this
problem. Chapters 5, 6, and 7 present a mono-objective optimization approach that
considers both economic and environmental aspects to obtain an optimal design.

Discrete optimization techniques must be used to accommodate the discrete nature
of the problem o achieve a feasible solution that can be implemented. The discretiza-
tion of variables is based on construction feasibility. Some variables have fixed val-
ues according to design standards such as Eurocode2, Eurocode3, and Eurocode4,
which specify the concrete resistance (fck), the elastic limit of steel reinforcement
(fsk) or structural steel (fyk). This thesis proposes a strategy that uses transfer func-
tions of the v-shape type, specifically a hyperbolic tangent (| tanh(v) |), to adapt
algorithms for discrete problems. This method is applied to swarm algorithms such
as Jaya, Sine Cosine Algorithm (SCA), and Cuckoo Search (CS). Chapters 5, 6,
and 7 show that these methods produce good results, outperforming traditional opti-
mization methods for bridges such as Simulated Annealing with a Mutation Operator
(SAMO) and Threshold Accepting with a Mutation Operator (TAMO).

Because the optimization problem is complex, hybridization techniques have been
applied to enhance exploration and exploitation in certain optimization phases to find
better solutions. This thesis uses the K-means technique, which groups solutions
and assigns probabilities to choose the best alternatives. These techniques yield
better results than classical alternatives such as TAMO and SAMO and with Jaya,
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SCA, and CS algorithms without hybridization. Analyses of the results demonstrate
that the solutions obtained are close to the global optimum in terms of cost since the
best individual results are repeated several times.

Various approaches have been undertaken to achieve a sustainable solution. In
chapters 5, 6, and 7, economic and environmental indicators such as cost, carbon
emissions, and embedded energy were selected, resulting in differences in design
when considering only one of the dimensions. It is noted that designs that con-
sider economic factors and utilize automatic design processes lead to low emissions
and embedded energy. However, low-cost values are not always achieved when
emissions or energy are the optimization functions. Thus, it can be concluded that
a mono-objective approach does not necessarily integrate all sustainability dimen-
sions.

As a result, this thesis proposes a theory-based game strategy for addressing the
structural optimization problem, as described in chapter 9. This approach employs
the concept of cooperative games to search for a compromise solution that may
worsen some criteria but ultimately leads to global sustainability improvement. The
process involves a multi-criteria decision-making problem that necessitates weighing
the importance of each criterion. As decision-makers cannot be involved in each
iteration of the procedure, and alternatives proposed by Penadés-Plà et al. [332]
would considerably increase computation time, weights are determined using the
Entropy Theory. This method yields satisfactory results for all sustainability pillars,
with a negligible increase in solution cost.

Therefore, it can be concluded that the proposed game theory-based method pro-
vides a comprehensive solution to the structural optimization problem of SCCBs,
encompassing all sustainability dimensions.

10.3 Research Question Q3

Is there a direct relationship between the cost and environmental and
social impact in the design of steel-concrete composite bridges?

In the design of composite bridges, the material that has the most significant impact
on the structure’s life cycle is structural steel for both ELCA and SLCA, as explained
in Chapters 3 and 4. Therefore, optimization techniques aim to reduce the use of
this material. However, one crucial factor to consider is not just the material itself but
its strength. The economic impact of steel increases as its yield strength increases.
However, for the environmental and social aspects of sustainability, an increase in
steel yield strength does not necessarily imply a change in its impact since the im-
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pact depends on the percentage of recycled steel used for production. The same
applies to the reinforcement rebars. These differences make the design of SCCBs
significantly distinct from concrete bridges.

In concrete bridges, the most commonly used material is concrete itself. Increasing
the bridge’s strength requires increasing the amount of cement used in the concrete.
As cement is the material that has the most significant impact on concrete manu-
facturing, increasing the strength of a concrete bridge directly leads to an increase
in social and environmental impact. In contrast, for SCCBs, steel becomes the pri-
mary material, and the analysis of its impact becomes the primary objective. This
distinction can be applied to all other composite or concrete structures. In optimizing
an SCCB for cost, the solutions obtained would have lower steel yield strength. In
comparison, solutions optimized for environmental and social impact require a higher
steel yield strength. This concept is well-demonstrated in the results of Chapters 5
to 8.

In Chapter 8, we assess the ELCA and SCLA as objective functions that represent
the environmental and social pillars, respectively. We observe that the results are
similar when comparing the design obtained using the ELCA as an objective function
to those obtained using emissions and embedded energy as objective functions. This
indicates that more specific objective functions, such as emissions and energy, can
provide an excellent approximation to the optimal environmental design of solutions.
However, it is worth noting that the approach of these objective functions differs.
The objective functions for emissions and energy take a cradle-to-gate approach,
covering the earlier stages of the life cycle.

In contrast, the ELCA target function covers the cradle-to-grave approach, including
the structure’s demolition. As such, these more specific functions can be a good
indicator of the environmental impact, especially given that maintenance and con-
struction phases significantly impact the structure’s life cycle. However, they do not
take into account the maintenance phase.

Overall, it is clear that considering cost optimization leads directly to the optimization
of emissions and embedded energy for the problem posed. Thus, these functions are
good indicators of the performance of objective functions that evaluate the complete
environmental life cycle. However, optimizing functions that represent sustainabil-
ity’s environmental and social dimensions only sometimes leads to directly optimiz-
ing the economic dimension. Nonetheless, compatible solutions address all three
dimensions, as shown in Chapter 9. These solutions can be found by applying the
methodology proposed in this doctoral thesis based on Game Theory.
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10.4 Research Question Q4

Do the design results, encompassing the three dimensions of sustain-
ability, affect the ease of construction for certain elements of the solution
obtained?

The structural design results indicate that reducing the number of materials used can
help minimize environmental impact, as higher consumption typically leads to a more
significant impact. This observation is supported by the findings presented in chap-
ters 3 and 4, which show the percentage impact of each phase of the life cycle. In
particular, manufacturing materials, whether for concrete or composite solutions, is
the most significant contributor to environmental impact, with the processes involved
in material manufacturing having the most significant consumption. Therefore, re-
ducing material consumption during this phase can help to minimize environmental
impact.

With this in mind, two approaches can be taken to optimize the design of composite
bridges. Firstly, it is possible to consider the arrangement of cross-section elements,
as described in chapters 5 to 8. The optimization problem for SCCB raises the possi-
bility of placing cells inside the box, which can increase the plates that do not require
a reduction in the section for the resistant calculation of the assembly. In other words,
the distribution of plates that make up the cross-section can be optimized to avoid in-
stability and maximize the cross-section for resistance. This optimization not only
impacts the service phase of the structure but also improves the behavior of the
structure during construction, making better use of materials. Therefore, optimizing
the cross-section of the trough can improve the construction process by minimizing
material consumption.

Turning our attention to the design results for the number and diameter of the top
slab bars, it is worth noting that single-objective design methods tend to reduce the
diameter of the bars to a minimum and increase the number of bars to optimize the
amount of reinforcing steel used. However, this can lead to difficulties during exe-
cution, as a large number of bars requires either the use of concrete with smaller
aggregates or the placement of bars in successive layers, both of which can make
the execution of the slab more challenging. Therefore, focusing solely on sustainabil-
ity objectives in the design process can lead to complex and challenging executed
designs.

This research proposes a solution based on a multi-objective optimization approach
that includes a constructability function, as discussed in chapter 9 to address this
problem. By incorporating this additional objective function alongside the sustain-
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ability objectives, the proposed methodology generates sustainable designs that are
easier to execute. This increases the complexity of the problem, as there are now
three dimensions of sustainability and one dimension of constructive ease to con-
sider. However, it also facilitates the evaluation of the best solution. The Minkowski
distances are applied to obtain the optimal solution, resulting in two viable options.
Using this methodology, the evaluation of the solutions with the method of Minkowski
distances yields an optimal sustainable solution with better constructability that only
incurs an 8.2h increase in cost compared to the solution obtained using the same
algorithm.

10.5 Research Question Q5

How can advances in artificial intelligence and predictive modeling be
leveraged to improve designs and reduce computational time for bridge
optimization?

The optimization of structures, as previously substantiated, poses a complex dis-
crete optimization problem. Due to its complexity, using structural models to verify
the structures poses a computational cost issue. Coupled with the high number of
iterations required to reach an optimal solution, this presents a challenge. Compu-
tation time is a variable that depends on algorithmic characteristics. Upon analyzing
computation times for different algorithms used, it is evident that algorithms based
on trajectories are more costly than swarm algorithms. At the same time, the latter
produces even better results. Thus, the algorithm’s behavior in addressing the prob-
lem is the first consideration for algorithm selection. For this optimization problem,
swarm algorithms generally produce better results than trajectory algorithms, with
only a negligible difference when the optimal solution found is worse.

Additionally, it must be taken into account that one or several objective functions are
necessary for any optimization. In sustainable bridge design, at least one function
for each of the three dimensions is required to obtain a solution that integrates them.
This is because, as substantiated in Chapters 3 and 4, the environmental and social
pillars, particularly in the percentage of recycled steel, are contradictory. Conversely,
comparing the results obtained from the single-objective optimization of Chapters 5
to 8, it is clear that optimizing the environmental and social pillars does not neces-
sarily lead to cost optimization. This justifies using multi-objective techniques, such
as those proposed in this doctoral thesis, and computational methods of artificial
intelligence.
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One approach to accelerate these computations is by leveraging machine learn-
ing techniques. For instance, dimensionality reduction techniques may simplify the
search space’s dimensionality or objective function. Another approach is substituting
the objective function or constraints with a model that mimics them. For instance,
in [124], the kriging technique was applied to diminish the computational time of a
concrete box-girder bridge by replacing the objective function. In [304], neural net-
works were employed to simulate viscosity and conductivity values. These were then
integrated into NSGA-II (nondominated sorting genetic algorithm II) for optimization.

Structural field studies have employed neural networks to anticipate the transfer
length in prestressed concrete [305]. Similarly, neural networks were employed to
forecast the energy usage of buildings’ heating, ventilation, and air conditioning sys-
tems. Afterward, a multi-objective genetic algorithm was employed to identify the
optimal consumption parameters [306]. The multi-objective optimization approach
yielded superior thermal comfort and energy consumption outcomes compared to
the base case design.

This research utilized a deep neural network metamodel to expedite the optimization
of an SCCB. The metamodel was employed in SCA, CS, and OBAMO algorithms
to execute the optimization and compare performance. The neural network model
employed in this study exhibited remarkable improvements in optimization speed,
clocking in at 37 to 50 times faster than traditional optimization methods. Though
the neural network model may lead to infeasible solutions, the calculation speed ac-
celeration is significant enough to tolerate such errors. The optimal solutions across
various objective functions consistently featured cells in the bridge’s cross-section.
This study highlights the substantial potential of deep learning models in optimizing
intricate engineering designs, particularly in reducing the computational time required
for optimization.
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Chapter 11. Conclusions and future work

This chapter can be divided into three parts: general conclusions, specific conclu-
sions, and future lines of research. The general conclusions aim to encompass and
unify all the work conducted in this dissertation. In contrast, the specific conclusions
provide detailed information from each journal article. Additionally, potential avenues
for future work are proposed.

11.1 General Conclusions

This dissertation is divided into two parts. The first part aims to assess the feasibility
of SCCBs compared to other concrete alternatives. Chapter 3 focuses on conducting
a complete environmental impact assessment using the Ecoinvent database and the
ReCiPe method. The study considers four types of bridge alternatives: prestressed
concrete solid slab, prestressed concrete lightened slab, prestressed concrete box-
girder, and composite box-girder. These alternatives have been evaluated for span
lengths ranging from 15 to 40 meters.

Additionally, the study evaluates the significance of the amount of steel scrap in the
steel manufacturing process for both environmental impact and sustainability. In
chapter 4, the social impact of these bridge alternatives is evaluated using the SOCA
add-on and the social impact weighting method. The results indicate a clear differ-
ence between environmental and social impact results for the feasibility of bridge
types. From an environmental perspective, the best alternative is the SCCB, while
the concrete box-girder is the most socially impactful. Regarding the steel recycling
ratio, a social approach shows that a higher amount of steel scrap in manufacturing
leads to a higher social impact. In contrast, the environmental impact decreases with
increasing steel scrap. The manufacturing stage incurs the highest impact in the life
cycle assessment, indicating that reducing the number of materials can reduce the
overall impact.

The second part of the study aims to achieve a sustainable design for an SCCB
by utilizing metaheuristic optimization techniques. An SCCB with a box-girder cross
section is considered a case study to accomplish this objective. The proposed al-
gorithms are categorized into two main branches: trajectory-based and swarm in-
telligence. The trajectory-based branch employs Simulated Annealing, Threshold
Accepting, and Old Bachelor Acceptance. The Swarm Intelligence branch, on the
other hand, utilizes the Sine Cosine Algorithm, Jaya, and Cuckoo Search. The lat-
ter algorithms are specifically designed for solving continuous problems. However,
a V-shape transfer function has been implemented to adapt them to the discrete na-
ture of the structural optimization problem. Two hybridization techniques have been
employed to improve the solutions, one for each algorithm branch. Firstly, mutation
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operators have been incorporated into the trajectory-based algorithms to allow mu-
tations in individuals during the optimization process, which increases exploration.
Secondly, the K-means clustering technique has been applied to the swarm intelli-
gence algorithms. This clustering technique facilitates the grouping of solutions. It
assigns a higher acceptance probability to those closer to the best objective function
values.

To model, the economic, environmental, and social dimensions of sustainability, cost,
ELCA, and SLCA functions were selected, respectively. However, due to the com-
plexity of LCA functions, emissions, and embedded energy were used as proxies for
the environmental impact objective function to assess their suitability as indicators.
The addition of these more complex functions, combined with the inherent complexity
of the optimization problem, has presented a challenge in terms of the computational
cost of solving the problem. To address this issue, a deep neural network model was
trained to predict the feasibility of solutions without the need to obtain precise values.
Data from different iterations of the optimization algorithms were used to train the
deep neural network model, which employed multilayer perceptron networks to con-
struct the classification model. The input variables comprised the 34 variables defin-
ing the SCCB design for the case study. The hybrid dataset included approximately
20,000 bridges satisfying the structural constraints and 7,000 points not meeting the
conditions. A correction factor was incorporated into the algorithm that utilized the
classification model to ensure a fair evaluation of computation time since the model
could produce incorrect results. Each algorithm had to generate 30 feasible execu-
tions. The computation time for the models incorporating the deep neural network
model was calculated by adding the times of all executions and dividing them by the
times of the feasible executions. The results showed that deep neural network model
optimization algorithms was between 37 and 50 times faster than the originals.

A multi-objective optimization using a game theory approach has been proposed
to address the issue of unclear relationships between the objective functions of the
environmental and social pillars and the cost function in single-objective optimization.
This approach can be performed as either cooperative or non-cooperative games.
In this case, a cooperative game has been chosen to find a compromise solution
between the three dimensions of sustainability. An optimization problem has been
formulated to define an objective function expressed as an aggregate function of the
impact value for each criterion weighted by their importance. The entropy theory has
been used to determine these weights, as it does not require decision-makers for
their assignment. The method also utilizes the concept of super-criterion to search
for a compromise solution.

Optimal design results that consider sustainability target functions are characterized
by many bars in the top slab, which can impede its constructability. This is because
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more bars increase placement time and complicate concrete vibration. A slab con-
structability function has been added to the optimization problem to address this
issue. After applying the method, designs that do not compromise any sustainability
pillars and improve constructability with only an 8.2

11.2 Specific conclusions

• All three dimensions of sustainability must be considered together using a multi-
objective optimization approach.

• From an environmental perspective, composite bridges are better than con-
crete bridges for spans between 20 and 40 meters. However, from a social
perspective, concrete bridges are more suitable.

• The amount of recycled steel used in composite bridges affects their environ-
mental and social impact. Increasing the percentage of recycled steel reduces
the environmental impact but increases the social impact.

• Optimizing the economic pillar can reduce composite bridges’ environmental
and social impact. However, there is no clear relationship between optimizing
the environmental, social, and economic pillars when the latter is the target
function.

• The optimal designs of composite bridges depend on the optimization objec-
tive. Designs with lower yield strength steel are favored when the cost is the
criterion. However, when environmental or social criteria are the objectives,
designs with higher yield strength steel are preferred.

• The characteristic strength of the concrete (fck) used in the bridge is always the
minimum value specified by standards for optimum design, which is 25 MPa.

• The optimal designs for the bridge propose solutions that eliminate the need
for longitudinal stiffening in the bottom flange of the deck. This finding aligns
with previous optimization studies conducted on composite box girder bridges.
However, the necessity of bottom flange stiffeners will vary based on the type
and stage of the construction process. Further research is required in this field
to gain a deeper understanding.

• The proposed cross-section design with interior cells in the web and flange
contact zones enhances the stress resistance of the bridge by reducing the
distances between panels and cross-section areas in class 4.
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• More straightforward objective functions such as emissions and embedded en-
ergy are good environmental life cycle analysis approximations. However, com-
plex functions considering all life cycle phases are necessary for a more com-
prehensive evaluation of the bridge’s impact.

• Deep neural network models can significantly reduce computation time by 37
to 50 times, depending on the algorithm used.

• The proposed multi-objective optimization method enables the identification of
compromise solutions that consider all three dimensions of sustainability in an
aggregate objective function.

• The optimal design solutions generated by the proposed optimization problem
feature many members in the top concrete slab to minimize material usage.
However, this may affect the constructive ease of the element.

• Swarm intelligence algorithms perform better than trajectory algorithms in terms
of computational time. Furthermore, hybridization and discretization techniques
can enhance the optimal design results.

11.3 Future lines of research

The thesis employed a methodological approach that successfully achieved optimal
sustainable designs, which effectively integrated all aspects of sustainability while
considering the constructive simplicity of certain bridge elements. Additionally, the
introduction of life cycle analysis as an objective function enabled a more compre-
hensive evaluation of the impact concerning the social and environmental dimensions
for optimization. While this method was only applied to box-girder composite bridges,
it could be used for designing other types of composite bridges, including slab and
I-beam bridges and other structures. However, future research work could explore
the performance of this methodology against traditional multi-objective optimization
algorithms.

Currently, machine learning techniques are gaining popularity for improving compu-
tation times and predicting optimal designs. Although the current study used a model
only to predict the feasibility of proposed solutions, a future research direction could
be training artificial intelligence models that predict optimal designs directly as a func-
tion of the imposed boundary conditions. Additionally, while neural networks were
used as the metamodel in this research, exploring other techniques could improve
results.
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In the proposed optimization strategy, the maintenance strategy of the structure could
be included as an objective function in the optimization itself. Using the life cycle anal-
ysis methodology, the impact on each dimension of sustainability could be evaluated
for each phase, and optimal maintenance could be generated along with an optimal
design.

Although the results obtained from this study suggest that the global optimum of
the problem has been reached or is close to it, the problem was posed with a fixed
box shape for the edge of the structure. Further optimization could involve obtaining
the cross-section’s shape along the bridge’s entire distance and exploring topological
optimization to eliminate unnecessary steel sections. Finally, given the time reduction
made possible by metamodels, searching for robust optimal solutions considering the
reliability of various parameters could be considered.
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