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Abstract

Synthetic Biology allows the construction of genetic circuits with a desired behaviour by mod-
ifying and combining different genetic elements that exist in nature. The characterization of
these circuits, taking into account their genetic parts and the microorganism where they are
implemented, plays an essential role when trying to build genetic circuits with more complex
behaviour.

The design and implementation of digital twins of genetic circuits allows their characterization
taking into account mechanistic and systems engineering principles. Each digital twin represents
by means of a dynamic model the temporal behaviour in silico of a genetic circuit built in vivo
in the laboratory.

Therefore, in the present project, the characterization of the basic parts of inducible genetic
circuits built in the laboratory is sought. To this end, semi-empirical, partly first-principles based,
dynamic model structures for these parts are devised. Then the experimental identification of its
associated parameters, and the validation of experimental data for each bio-part with the results
obtained from computational simulations of their corresponding digital twins is carried out.

The characterization was developed in a systematic way following the Design-Build-Test-Learn
(DBTL) synthetic biology cycle. Ten genetic circuits were designed and constructed that combine
different DNA sequences (promoter, ribosome binding site, and copy number) that produce a
fluorescent protein as an indicator. This protein can later be exchanged for any other protein of
practical interest.

With these ten circuits, several experiments were performed to analyse how their fluorescence
level changes when an activation signal (Acyl-homoserine lactones, AHL) is induced. The genetic
circuits were implemented in Escherichia coli bacteria as self-replicating biofactories that work
24 hours a day, 365 days a year. The genetic circuits require optimal functioning, which in turn
demands more accurate models to meet the optimal cell and circuit demands.

In the learning phase, the estimation of the parameters of these models was carried out, minimis-
ing the difference between the experimental data of the measured fluorescent protein and that
calculated by the dynamic model (the digital twin) designed for each of the genetic circuits. The
estimation of the parameters allowed us to explain up to approximately 80% of the behaviour
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observed in the laboratory, which is a good initial approximation considering that we are working
with living systems.

Through the process of characterising parts of a genetic circuit, a deeper understanding of the
behaviour and performance of individual parts and in combination with other parts can be
obtained. With this knowledge, researchers can save valuable time in designing new and more
sophisticated genetic devices that have a reproducible and reliable desired behaviour in any
biotechnological application.

Keywords: Dynamic modeling, digital twin, parameter estimation, synthetic biology, experi-
ment design.
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Resumen

La Biología Sintética permite la construcción de circuitos genéticos con un comportamiento
deseado, modificando y combinando diferentes elementos genéticos que existen en la naturaleza.
La caracterización de estos circuitos teniendo en cuenta sus partes genéticas y el microorganismo
donde se implementan, juega un papel esencial cuando se intenta construir circuitos genéticos
con comportamientos más complejos.

El diseño e implementación de gemelos digitales de circuitos genéticos permite su caracterización
teniendo en cuenta principios mecaninicistas y de ingeniería de sistemas. Cada gemelo digital
representa mediante un modelo dinámico el comportamiento temporal in silico de un circuito
genético construido in vivo dentro del laboratorio.

En el presente proyecto se busca la caracterización de las partes básicas de circuitos genéticos
inducibles construidos en el laboratorio, a través de el planteamiento de estructuras adecuadas
de modelos dinámicos semi-empíricos parcialmente basados en primeros principios biológicos.
Posteriormente se lleva a cabo la identificación experimental de los parámetros asociados, y la
validación de datos experimentales de cada parte con los resultados obtenidos de las simulaciones
computacionales de sus correspondientes gemelos digitales.

La caracterización se desarrolló de forma sistemática siguiendo el ciclo de la Biología Sintética
Diseño-Construcción-Prueba-Aprendizaje (DBTL). Se diseñaron y construyeron diez circuitos
genéticos que combinan distintas secuencias de ADN (promotor, lugar de unión de ribosomas, y
número de copias) que producen una proteína fluorescente a manera de indicador. Esta proteína
puede ser intercambiada a posteriori por otra de interés práctico.

Con estos diez circuitos se realizaron experimentos para analizar cómo cambia el nivel de fluo-
rescencia cuando se induce una señal de activación (moléculas de comunicación entre bacterias
Acyl-homoserine lactones AHL). Los circuitos genéticos fueron implementados en bacterias Es-
cherichia coli como biofábricas que se auto-replican y trabajan 24 horas, los 365 días del año.
Para su desempeño adecuado en el contexto celular, los circuitos genéticos requieren un fun-
cionamiento óptimo, lo que a su vez demanda modelos más exactos que permitan adecuar las
condiciones óptimas de desempeño.

En la fase de aprendizaje se llevó a cabo la estimación de los parámetros de los modelos, min-
imizando la diferencia entre los datos experimentales de la proteína fluorescente medida, y la
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calculada por el modelo (gemelo) digital diseñado para cada uno de los circuitos genéticos. La
estimación de los parámetros permitió explicar aproximadamente el 80% del comportamiento
observado en el laboratorio, lo que supone una buena aproximación inicial teniendo en cuenta
que estamos trabajando con sistemas vivos.

Gracias al proceso de caracterización de partes de un circuito genético se puede obtener una
comprensión más profunda del comportamiento y el desempeño de las partes individuales y en
combinación con otras.Este conocimiento puede ahorrar un tiempo valioso en el diseño de nuevos
y más sofisticados dispositivos genéticos que tengan un comportamiento deseado reproducible y
fidedigno en cualquier aplicación biotecnológica.

Palabras Clave: Modelado dinámico, gemelo digital, estimación de parámetros, biología sin-
tética, diseño de experimentos.
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Resum

La Biologia Sintètica permet la construcció de circuits genètics amb un comportament desitjat,
modificant i combinant diferents elements genètics que existeixen a la natura. La caracterització
d’aquests circuits tenint en compte les seves parts genètiques i el microorganisme en el qual
s’implementen, juga un paper essencial quan s’intenta construir circuits genètics amb comporta-
ments més complexos.

El disseny i implementació de bessons digitals de circuits genètics permet la seva caracterització
tenint en compte principis mecanicistes i d’enginyeria de sistemes. Cada bessó digital representa
mitjançant un model dinàmic un comportament temporal in silico d’un circuit genètic construït
in vivo al laboratori.

En aquest projecte se cerca la caracterització de les parts bàsiques de circuits genètics induïbles
construïts al laboratori, a través del plantejament d’estructures adequades de models dinàmics
semi-empírics parcialment basats en primers principis biològics. Posteriorment es duu a terme
la identificació experimental dels paràmetres associats, i la validació de dades experimentals de
cada part amb els resultats obtinguts de les simulacions computacionals dels seus corresponents
bessons digitals.

La caracterització es va desenvolupar de forma sistemàtica seguint el cicle de la Biologia Sin-
tètica Disseny-Construcció-Prova-Aprenentatge (DBTL). Es dissenyaren i construïren deu cir-
cuits genètics que combinen diferents seqüències d’ADN (promotor, lloc d’unió de ribosomes,
i número de còpies) que produeixen una proteïna fluorescent a manera d’indicador. Aquesta
proteïna pot ser intercanviada a posteriori per altra d’interès pràctic.

Amb aquests deu circuïts es realitzaren experiments per analitzar com canvia el nivell de fluo-
rescència quan s’indueix una senyal d’activació (molècules de comunicació entre bactèries, Acyl-
homoserine lactones o AHL). Els circuïts genètics foren implementats en bactèries Escherichia
coli com biofàbriques que s’auto-repliquen i treballen 24 hores, els 365 dies de l’any. Pel seu
adequat desenvolupament en el context cel·lular, els circuits genètics requereixen un funciona-
ment òptim, el qual a la vegada demana models més exactes que permetin adequar les condicions
òptimes de desenvolupament.

En la fase d’aprenentatge es va dur a terme la estimació dels paràmetres dels models, minimitzant
la diferència entre dades experimentals de la proteïna fluorescent mesurada, i calculada pel model
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(bessó) digital dissenyat per a cada un dels circuits genètics. La estimació dels paràmetres va
permetre explicar aproximadament el 80% del comportament observat en el laboratori, el qual
suposa una bona aproximació inicial tenint en compte que estam treballant amb sistemes vius.

Gràcies al procés de caracterització de parts d’un circuit genètic se pot obtenir una comprensió
més profunda del comportament i desenvolupament de les parts individuals i en combinació amb
altres. Aquest coneixement pot estalviar un temps valuós en el disseny de nous i més sofisticats
dispositius genètics que tinguin un comportament desitjat reproduïble i fidedigne en qualsevol
aplicació biotecnològica.

Paraules Clau: Modelatge dinàmic, bessó digital, estimació de paràmetres, biologia sintètica,
disseny d’experiments.
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Chapter 1

Introduction

1.1 Background
Synthetic biology is a rapidly growing interdisciplinary field that combines principles from
both biology and engineering. At its core, the aim is to engineer living cells and organisms to
perform specific functions or carry out a desired behaviour that may not exist in nature. To
achieve this, it is possible to introduce new genetic material, modify the existing one, or even
design new biological systems from scratch.

The term synthetic biology was used for the first time by Barbara Hobom, referring to genetically
modified bacteria through recombinant DNA technology (Hobom, 1980). In this sense, it is said
that it is biology because it uses biological systems and synthetic because, after all, they are
altered through human intervention.

Synthetic biology applications are broad, ranging from medicine, food and agriculture, climate
change, and manufacturing (Benner and Sismour, 2005). For example, the manufacture of new
drugs or vaccines, the application of new therapies to improve health and well-being, the devel-
opment of new methods for environmental monitoring and pollution remediation, and even the
design of novel biosensors in medicine.

In recent years, the field of synthetic biology has made significant strides in understanding and
engineering gene expression pathways. By engineering gene expression, it is possible to manip-
ulate the timing, magnitude, and duration of a specific gene’s activity, which can profoundly
affect the cell’s function. This has led to the development of synthetic gene circuits, which are
networks of genes designed to perform specific functions in living cells and can be used for various
applications, such as the ones mentioned above (Xie and Fussenegger, 2018).

The element that distinguishes synthetic biology from traditional molecular and cellular biology
is the focus on the design and construction of core components (e.g., DNA gene sequences,
proteins properties, genetic circuits, or metabolic pathways) that can be modelled, understood,
and tuned to meet specific performance criteria.
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This is known as the DBTL cycle of synthetic biology (Design, Build, Test, and Learn) that
enables scientists to assemble these smaller parts and devices into larger integrated systems to
solve specific problems. Ultimately, albeit it relies strongly on biology, it can not be forgotten
that it is also an engineering field. Therefore, it must also be approached as such, and just
like traditional engineering disciplines, synthetic biology relies on the systematic application
of mathematical modelling, computer simulations, and experimental techniques to engineering
living organisms with desired functions and traits (Cheng and Lu, 2012).

1.2 Motivation
Just like electrical circuits, genetic circuits in the realm of synthetic biology are engineered by
combining different biological components called BioBricks or bioparts (mainly: promoters,
coding sequences, and terminators, which will be further explained in Section 3), which lead to
the possibility of controlling and manipulating cellular processes in a wide range of ways (Brown,
2007). Depending on the used parts, the function of a circuit can change drastically, varying
from producing biofuels and biodegradable materials to pharmaceutic components – just like the
design of machines that perform one task or another depending on the elements that comprise
it.

Nevertheless, just like happens with, for example, electrical resistances, BioBricks have their
specifics and responses depending on their type, DNA sequence, interaction with other bioparts,
and so on. Therefore, to construct circuits successfully, it is crucial to know how these parts work,
and thus their characterization is needed so their mathematical modelling can be as accurate as
possible before being developed in a laboratory.

Understanding just how these bioparts work is especially relevant in the current state of synthetic
biology. Despite the rapid progress in this field, the existing libraries of BioBricks are still under
development, and many parts have not undergone thorough analysis. This lack of comprehensive
understanding poses a challenge for researchers in designing new genetic circuits efficiently.

However, thanks to characterization, it is possible to gain a deeper understanding of the be-
haviour and performance of individual bioparts on a quantitative basis (Hirst, 2014). With this
knowledge, researchers can save valuable time by skipping unnecessary iterations and focusing
on identifying the optimal combination of parts to achieve the desired output.

1.3 Summary
The characterization process involves studying the BioBricks experimentally under different
conditions and obtaining a series of performance metrics, which will be then used to adjust the
parameters of the mathematical model representing the biopart(s) of interest. For example, a
possible metric could be the production rate of a specific protein or the response to external
stimuli.

In this project, the main biopart of interest is the inducible promoter Plux. The promoter
regulates the expression rate of a particular gene (thus, protein expression) – in this case, since it
is inducible, this regulation is dependant on an external molecule that acts as an activator-type
Transcription factor (TF), the N-Acyl homoserine lactone (AHL).
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A total of five Ribosome binding sites of varying strengths will also be studied in parallel
to the promoter. Specifically, each of the RBSs will be combined in a single synthetic circuit
with the promoter to analyze the effect of changing the strengths and their interaction with the
promoter. Additionally, the Copy Numbers (CN ) of two destination vectors will be evaluated
too.

To achieve this, the first step will be the mathematical modelling of a genetic circuit in which
a constitutive and an inducible part are combined (these concepts will be further developed
in Chapter 3) using ordinary differential equations (ODEs). This initial prediction will help
understand the behaviour of the actual circuit constructed in the laboratory.

Once the mathematical modeling is completed, the five circuits will be constructed using molec-
ular and synthetic biology techniques. The correct synthesis of these circuits will be verified
using techniques such as colony PCR. Furthermore, these circuits will be placed in two different
destination vectors (see Chapter 3), resulting in two variations for each circuit, totalling ten
constructions.

After the assembly phase, these circuits will be incorporated into E. coli cells through cell
transformation techniques to generate bacterial cultures, and a series of experiments will be
conducted to collect experimental data. These experiments will involve a 16-hour growth process,
during which the molecule N-Acyl homoserine lactone (AHL) will be added to the cultures at
different concentrations during the first hour to induce the production of Green fluorescent protein
(GFP). This will allow studying the effect of different concentrations in combination with the
changes of biological parts among constructions using various metrics, providing insights into
the behaviour of the studied circuit.

The intention behind conducting these experiments is to extrapolate the obtained laboratory
data to fine-tune the mathematical model. The ultimate goal is to adjust the parameters as
accurately as possible, creating a digital twin of the assembled biological parts. The central
relevance of such twins lies in their ability to provide accurate predictions of the outputs when
specific inputs are introduced into the system. This enables scientists to harness the potential
offered by the constructed circuits fully.

In summary, this project involves a combination of experimental and computational work. Be-
ginning with an initial mathematical model of a circuit, it is then tested in the laboratory, and
based on the obtained results, the model is refined to increase its resemblance to the experimental
data as much as possible.
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Chapter 2

Objectives

2.1 General objectives
The general objectives of this thesis are the following:

1. Characterization of gene circuits. This allows to deeply understand the behaviour and
performance of individual bioparts on a quantitative basis in the laboratory.

2. Use the Design, Build, Test, and Learn cycle to achieve the successful design of a biological
system. This enables the design and implementation of core components (e.g., DNA parts,
gene circuits, metabolic pathways) that can be modeled, understood and tuned to meet
specific performance criteria.

3. Design, assemble and test basic DNA parts. Also, incorporate them into larger integrated
biological systems to solve a specific problem.

4. Design a digital twin or mathematic model of gene circuits that will represent their in vivo
behaviour by applying engineering principles.

5. Identify the digital twin’s parameters by means of experimental data and optimization tech-
niques. These parameters will serve as key inputs to mathematical models that represent
said circuits.

6. Simulate and predict the system’s behaviour under different conditions. Compare the digital
twin’s performance to the one observed in the laboratory experimentally.
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2.2 Specific objectives
The specific objective is to characterize some of the basic parts of a gene circuit by estimating
the values of the following parameters:

• Inducible promoter Plux. This will include three main parameters:

◦ Half-concentration (kdlux). This is the AHL concentration at which half of the pro-
moter’s binding sites are occupied.

◦ Cooperativity coefficient (n). It is an estimator of the affinity between the promoter
and the Transcription factor.

◦ Basal expression (α) for high-copy and low-copy circuits. It represents how much GFP
is produced when there is no induction with AHL.

• Five Ribosome binding sites (RBS). The binding site is the mRNA region to which
ribosomes bind to begin the translation process. Specifically, the focus will be set on
determining their strength, which is the affinity between the ribosome and the site.

◦ RBS B0030

◦ RBS B0031

◦ RBS B0034

◦ RBS J61100

◦ RBS J61101

• Two Copy Numbers (CN). This number is an estimator of the amount of plasmids
contained in a single cell.

◦ High-copy vector pRMS_Omega1

◦ Low-copy vector pIASO1S471 (Alarcón López, 2019)

In order to do this, the following specific goals were set:

1. Design five genetic circuits, one per each combination of Plux promoter - RBS pair.

2. Develop an initial mathematical model to predict the behaviour of said circuits.

3. Build the five genetic circuits and incorporate each of them in two different backbones
(high-copy and low-copy).

4. Test the circuits in a laboratory environment through experiments with AHL induction and
gather experimental data.

5. Adjust the parameters of the mathematical model to fit the obtained data.

6. Characterize the biological elements with the obtained adjusted parameters.
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Chapter 3

State of the Art

3.1 Gene expression
Protein production or gene expression can be defined as the process by which the information
encoded in a gene is turned into a function (“Synthetic Biology”, 2022). This can be manifested,
for example, through protein production.

The Central Dogma of Molecular Biology, proposed by Francis Crick in 1970, comprises the
flow of genetic information within a biological system. According to the Central Dogma, genetic
information is transferred via transcription from Deoxyribonucleic acid (DNA) to Messenger
ribonucleic acid (mRNA), and then via translation from mRNA to protein. In simple terms,
this means that the information is stored in the DNA and has to be retrieved through the two
mentioned processes to be interpreted in the form of a function, which is the protein encoded in
its sequence (see Figure 3.1).

Transcription starts with the binding (or union) of the RNA polymerase (RNApol) to the
Coding sequence (CDS), which is the DNA region called promoter to generate molecules of
Messenger ribonucleic acid (mRNA). The mRNA carries protein information from a gene Coding
sequence (CDS) that would be translated into a protein afterwards.

It is essential to mention that transcription can be either constitutive or inducible. Constitutive
transcription occurs without requiring additional proteins to intervene in the process. Inducible
transcription, on the other hand, requires the presence of additional proteins called Transcription
factors (TF). Said factors can either activate or repress the transformation from DNA to mRNA.

The next step is translation, through which mRNA is decoded and translated into a protein. In
this case, the binding of ribosomes, which function as the builders of the proteins, to the Ribosome
binding site (RBS), results in the successive addition of peptides, which are the building blocks
of proteins. These blocks make a polypeptidic chain that will then fold itself through a series of
different chemical reactions, resulting in the end in a functional protein.

10



Design and implementation of digital twins of synthetic inducible gene expression circuits

Figure 3.1: Description of the gene expression process. The RNApol transcribes the DNA into mRNA, and
finally the RBS translates it into an amino acid sequence (the protein). (Figure taken from Boada Acosta, 2018)

3.2 Bioparts
To produce a protein inside a cell, there are four basic elements, which, as introduced in Chapter
1, are the BioBricks or bioparts.

1. Promoter

The promoter plays a fundamental role in initiating the transcription process by recruiting
the RNA polymerase (RNApol), and it can be constitutive or inducible. In the case of a
constitutive promoter, the binding rate between the RNApol and the promoter remains
constant, ensuring a continual transcription of a gene. Roughly, this means that the speed
at which these two elements bind and transcript DNA does not change over time.

However, in the case of an inducible promoter, the binding will depend on the presence of
the Transcription factor, as well as its type. If this factor is an activator, its interaction with
the promoter will favour the binding of the RNApol, so the transcription will be triggered.
Conversely, if the factor is a repressor, this interaction will stop the RNApol from binding
to the promoter, thus inhibiting the transcription process.

2. Ribosome binding site (RBS)

Similar to the promoter, the RBS is a region in the mRNA where ribosomes are bound to
start the translation process. It is relevant to point out that, depending on the RBS type,
the binding affinity of ribosomes to RBS might be changed. This property is known as RBS
strength. Therefore, the stronger the RBS, the more protein is expressed.

3. Coding sequence (CDS)

The CDS is the DNA sequence that codes for the exact succession of amino acids or peptides
that form the protein. Therefore, it is first transcribed from DNA to mRNA, and then
translated from mRNA to a specific functional protein.
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4. Terminator

During transcription, the terminator is another DNA sequence that stops the process by
disassociating the RNApol from the promoter.

When a promoter, RBS, CDS and terminator are in a vector, we have a basic Transcription Unit
(TU) to produce a protein. However, this circuit by itself cannot be incorporated properly into
the cell, so it must be done in the form of a plasmid – which is the union between the TU and a
specific vector.

A vector or backbone serves as the ’carrier’ of one or more of the previous parts. Just like the
TU, it is a DNA sequence, from which two specific regions can be highlighted:

• Origin of replication. This is a region in a plasmid that defines the initial amount of
DNA to be transcribed, and it can be mathematically represented by the Copy Number
(CN ).

This site also allows for the division of vectors in two main groups: high-copy and low-copy.
As can be deduced by the name, in the first case the CN will be higher.

• Antibiotic resistance. This site in the plasmid provides the cell and the gene circuit
with resistance to a specific antibiotic. This way, it is possible to avoid contamination and
ensure that only the cells that carry the desired gene circuit will survive.

Assembling together these different parts, or several transcriptional units, is what allows to
implement a genetic circuit. In order to accomplish this, we will be set on the Golden Braid
(GB) assembly, which was the method used to construct all the circuits.

3.3 The Golden Braid Assembly
Assembling DNA means to unite separate parts of it to construct a larger sequence with a
particular function derived from the combination of said pieces. To accomplish this, specific
enzymes are needed to ’cut’ the DNA, called the endonucleases or restriction enzymes; then
these DNA fragments need to be ’glued’ together, by other enzymes called ligases.

The Golden Braid assembly is based on the type IIS restriction enzymes, which interact with
the DNA in two different sites: the recognition site, to which they bind, and the cleavage site,
where they cut the DNA (Szybalski et al., 1991; Sarrion-Perdigones et al., 2011).

Now, it is relevant to mention that using this assembling technique, it is possible to construct
circuits with different levels of complexity. Inferior levels can be combined into higher ones to
obtain more complex circuits.

• Level 0 is the most basic level, where each part (promoter, RBS, CDS, terminator, and
backbone) is separated in different plasmids. As mentioned above, it cannot be incorporated
directly into the cell yet, since a vector is needed.

• The Level 1 construction is the first assemble between Levels 0, for example to constitute
a TU incorporated into a backbone. In this case, since only one circuit with one CDS is
present, this level allows for the production of a single protein.
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• The Level 2 assembly, which results by joining two Level 1 constructs, makes it possible
to trigger the production of two proteins, one per each CDS.

As pictured in Figure 3.2, for levels one and two the antibiotic resistance always remains the
same. Level 1 constructs are always created using vectors that are resistant to kanamycin, and
to spectinomycin in the case of Level 2. This allows for the correct selection of colonies once
the assembly is conducted and cells are transformed (see the corresponding protocols in Section
4.4.2).

Figure 3.2: Level 0, 1, and 2 assemblies.

Finally, it is important to describe how each Level operates vector-wise. Since Level 0 is exclu-
sively the TU, it does not require a vector to be constructed. However, Levels 1 and 2 do need
backbones, and these are chosen depending on whether it is desired to combine them afterwards
with other circuits.

This way, for Level 1 constructs, α-type vectors are needed, which can be subdivided into α1 or
α2. This difference is necessary because if the intention is to further combine them into a Level 2
construction, the backbones necessarily need to be of two different sub-types. The same applies
to ω-type vectors, although this escapes the scope of this project and thus will not be discussed
further.

Additionally, the chosen vector will define the restriction enzymes to be used in the assembly. The
BsaI is needed for the construction of assemblies using the type α backbone, and the BsmBI
for Ω vectors. The ligase used is the T4, and in this case is independent from the levels.
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3.4 Mathematical modeling of synthetic circuits
Any system can be described as a black box that produces a certain output under an external
stimulus (Karplus, 1977). Therefore, this same description can be applied to biological systems
– in this case, the cell or group of cells would be the black box, working together in a gene circuit
that has a specific function.

For biological systems, mathematical models are important because they allow to explore diverse
scenarios and combination of parts before creating a genetic circuit in the laboratory. This way,
instead of conducting experiments and basing decisions on trial-and-error, it is possible to predict
the behaviour of a gene circuit in a computational environment, which makes the design and
building processes more efficient, cost-effective, and time-saving.

Dynamic models are particularly interesting in this context, since they allow us to analyze the
evolution of a system in a customized temporal window.

In this context, two types of models exist: stochastic and deterministic. In the first case, the
reactions are modeled taking into account the probability of their occurrence, therefore making
them more realistic. However, this consideration often supposes a greater challenge in terms of
solving the mathematical equations that compose the model, which translates into an increase
in computational demand.

In deterministic models it is assumed that the concentration of the biological species that in-
tervene in the system are large enough and vary continuously over time (Boada Acosta, 2018).
For this reason, they are often easier to interpret and analyze – although they are still able to
accurately describe the system.

In fact, there are many cases in which the use of deterministic models provides a very good
approximation of the real-world behaviour of the studied system, such as modeling growth factor-
induced angiogenesis (Sun et al., 2005) or restriction point control in animal cells (Novák and
Tyson, 2004). Therefore, considering the potential offered by these types of models, their use
has been chosen for this project.

3.5 Performance metrics
The goal of conducting the experiments is observing the response of the system in the form
of different performance metrics to external stimuli and incorporating that information into
the mathematical model. In this case, the external stimulus will be the addition of AHL to the
bacterial culture, and the metrics obtained to evaluate the system’s response will be absorbance
and fluorescence.
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3.5.1 Absorbance
Absorbance, or Optical Density (OD), is a commonly used parameter to indirectly quantify the
amount of cells present in a bacterial culture, and is based on the physical principle of light
absorbance. By means of a spectrophotometer, light of a specific wavelength (usually 600 nm)
is passed through a sample and absorption is measured on the other side. Logically, the greater
the concentration of bacteria is, the more light will be absorbed (Sutton, 2006).

More specifically, this metric is based on the Beer-Lambert law, which states, as shown in
Equation 3.1, that the absorbance of a sample is proportional to its concentration (c), the optical
path length or width of the cuvette where the sample is contained (l), and a constant ϵ, which
is the molar absorption and depends on the analyzed compound (Clark, 2013).

A = ϵ · c · l (3.1)

While it is possible to calculate the concentration of a culture using the Beer-Lambert law, there
is a scattering problem when its concentration increases to a certain level, causing Equation 3.1
to deviate from linearity and become parabolic in relation to the number of cells (Boada et al.,
2019). That is why, although it is a good metric for initial normalization of cultures and tracking
of their growth during experiments, when the intention is to estimate the approximate number
of cells, it is more useful to calculate it in terms of particles.

Particles

To determine the equivalence between absorbance and particles, it is necessary to apply Equation
3.2 to the measured value (Boada et al., 2019).

particles = p0 · (Abs600)p1

where p0 = 108.062 and p1 = 1.185
(3.2)

Thus, the equivalence between OD and particles can be established as a linear relationship (see
Figure 3.3), as long as the absorbance values are above 0.025 and slightly below 1.

Figure 3.3: Equivalence between measured absorbance and the amount of particles (cells) in the studied medium.
Graph taken from Boada et al., 2019.
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3.5.2 Fluorescence
This parameter is based on the photoluminiscence phenomenon, in which a specific compound
(the fluorophor) emits light after absorbing it (“Fluorescence Intensity Measurements | BMG
LABTECH”, n.d.). Since the wavelengths at which said light is absorbed and then emitted are
different, it is possible to use this property for sample analysis.

Thus, fluorescence intensity can be measured by exciting the fluorophore at a specific wavelength
and then measuring the light emitted at a different wavelength. Said intensity is usually defined
in terms of Relative Fluorescent Units (RFU), and it presents a linear correlation with the
concentration of fluorophore.

This is a useful parameter for gene expression quantification when the produced protein of
interest presents fluorescence. Specifically, the Green fluorescent protein (GFP) is a commonly
used protein thanks to its stable and species-independent production, and therefore can be
highly useful for this application (Zhang et al., 1996). Specifically, its excitation and emission
wavelengths are 500 and 513 nm, respectively (Lambert, n.d.).

However, similarly to what happens with absorbance, albeit it is a helpful way to visualize protein
production for cells, it is difficult to quantify in an exact way the amount of produced protein
per cell. This is because the result, presented in RFUs, only gives an idea of the protein quantity
in the entire medium, but not how much each individual cell is producing.

Therefore, an alternative metric derived from fluorescence that can be used is the Molecules of
equivalent fluorescein (MEFL).

Molecules of equivalent fluorescein (MEFL)

The equivalence from fluorescence to MEFL can be obtained by applying Equation 3.3 (Boada
et al., 2019). In this case, the metric used to normalize these units is not directly the fluorescence,
but the Normalized Fluorescent Radiance (NFR), which is derived from fluorescence.

MEFL = q0 · (NFR)q1

where q0 = 1012.28 and q1 = 1.038
(3.3)

As for the particles, a linear relationship can be established between the NFR and the number
of fluorescent molecules (Figure 3.4).

3.5.3 Molecules of equivalent fluorescein per particle
Now, a performance metric that derives from both of the previously mentioned (particles and
MEFL) is the MEFL/particle.

Since the MEFL allows to estimate the amount of fluorescein molecules in a certain culture, it
means that it only gives an idea of how much fluorescent protein is produced globally – however,
it might be interesting to quantify how many protein each cell is producing individually. For this
reason, this metric can be obtained as a fraction between MEFL and particles (Equation 3.4).

MEFL per particle =
q0
p0
· (NFR)q1

(Abs600)p1
(3.4)
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Figure 3.4: Equivalence between NFR and the amount of fluorescein molecules in the studied medium. Graph
taken from Boada et al., 2019.

3.6 Identification of systems
Broadly speaking, the characterization of genetic circuits consists in the adjustment of parameters
that define mathematical models using experimental data. Ideally, the model is then used to
predict the behavior of the biological system for which it was created. This allows for the process
of constructing genetic circuits to be based on informed decision-making through computational
simulations instead of trial and error.

However, this is not an easy task, primarily due to the fact that it involves working with living
cells whose behavior is not easily predictable, and the reproducibility of these systems is not as
straightforward as, for example, that of electrical systems.

On the one hand, it is important to consider that introducing a synthetic circuit that triggers
the production of a non-native protein into a cell forces said organism to utilize its resources
(especially for transcription and translation processes) for purposes that are not inherent to
it. This can impose a significant metabolic burden that needs to be taken into account when
mathematically modeling the system.

Nevertheless, this can be incorporated into mathematical models in a relatively easy way by
considering the cell’s growth rate, which can be obtained from experimental data and calculated
by means of the metrics described in Section 3.5.

On the other hand, it is crucial to take into account the context of the system and how the model
parameters are being obtained. While the most common approach is the isolated characterization
of specific BioBricks through their steady-state responses, this approach is not effective for models
where their behavior is integrated into more complex circuits, as it is necessary to consider their
interaction with the rest of the components (Boada et al., 2019).

It is for this reason that in this project it was decided to characterize the basic parts described
in Chapter 2 in a global manner. In other words, the process of obtaining the final model will
focus on characterizing all the parameters simultaneously, instead of attempting to find every
parameter by adapting it to each specific part. Ultimately, the aim is to ensure that the resulting
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model is consistent with the experimental data and cohesive with the rest of the species in the
system.

Thus, the system identification requires an optimization process, as shown in Figure 3.5, which
can be summarized in three fundamental steps:

1. Problem definition. The context is defined and a cost function is selected.

2. Optimization. The cost function is minimized, which allows to refine the model’s param-
eters.

3. Decision making process. Based on the results, the mathematical model is completed.

Figure 3.5: Schematic representation of the system identification process.

This sets the grounds for the characterization process, and allows for the successful obtainment
of a digital twin that will accurately describe the real-world system’s behaviour.
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Chapter 4

Materials and Methods

4.1 Workflow: the DBTL cycle
The workflow that will be followed during this project will be the Design, Build, Test, and
Learn (DBTL) cycle, which aims to streamline and optimize the design-build-test-learn of
gene circuits in synthetic biology.

The iterative nature of this cycle allows for continuous refinement and improvement, as in-
sights gained from experimental data inform the subsequent design iterations. This iterative
approach not only promotes better understanding of the system’s behavior but also facilitates
the identification and fine-tuning of the parameters necessary for accurate modeling and practical
implementation in synthetic biology.

The cycle involves four key steps, as shown in Figure 4.1.

• Design. In this first step, the aims of the project are established. The genetic constructs
and the resulting synthetic gene circutis are computationally designed. Also, a mathemat-
ical model is developed in order to predict its behaviour and anticipate its response to
different stimuli.

• Build. In the building phase, the designed synthetic gene circuits are assembled in the
laboratory, and introduced into host organisms through cellular transformation (see Section
4.4.2).

• Test. Once the gene circuit is assembled, it has to be tested in the laboratory through the
conduction of experiments to probe if it is properly working.

• Learn. The results of the Test phase are analyzed and compared with the results from the
Design phase. The insights learned from the in-vivo experiments can help us improve the
design of the initial version of the gene circuit. In this context, we can re-configurate the
design, changing some of the biological parts, or tune the parameters of the mathematical
model. Then, the DBTL cycle starts again.
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Figure 4.1: Depiction of the Design, Build, Test, and Learn cycle steps. (Taken from “Ecuador iGEM Team”,
2021).

4.2 Mathematical approach
As proposed by Rolf Johansson in 1993, modeling and parameter identification of a system can
be decomposed into a series of processes. This also can be associated with the Design, Build,
Test, and Learn cycle, as shown in Figure 4.2.

Figure 4.2: Steps of a system identification process. Diagram inspired from Johansson, 1993.

This way, we work with three central steps: structure determination, parameter estimation, and
validation.

1. Structure determination refers to the fact that, once the model is generated and the
experiments are conducted, it is important to establish the algorithms and software that
will be used to perform the system identification – meaning, the environment in which this
will take place and the techniques that will be employed for it.
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2. Parameter estimation is the actual system identification process, in which some of the
parameters that are unknown can be computed.

3. Validation allows to compare the mathematical model with experimental behaviour to
assess the success of the model.

4.2.1 Law of Mass Action (LAM)
In this subsection, several key aspects of the mathematical approach of this project will be
discussed: the principles for generating the model equations and how, ultimately, the presented
results have been achieved.

The law of mass action states that in a chemical reaction, the rate at which this reaction occurs
can be described as the product of the concentrations of the reactants, taking into account
their stoichiometry (Érdi and Tóth, 1989). While the LAM is generally used to define the
overall behavior of a reaction, it can also be applied to determine the temporal variation of the
concentration of a specific species involved in the process (Picó Marco, 2021).

For this project, this will be the approach taken since the interest lies in understanding and
modeling the behaviour of specific species to later combine these equations.

Reaction 4.1 shows a chemical reaction in which the biochemical species n1 and n2 are trans-
formed into n3 at a rate of r1. By applying the LAM, Equation 4.2 is obtained.

n1 + n2
r2←→
r1

n3 (4.1)

ṅ3 = r1 · n1 · n2 − r2 · n3 (4.2)

In a general case, this can be expressed mathematically as shown in the set of Equations 4.3.

aA+ bB
ry←→
rx

cC

d[A]

dt
= −rx · [A]a · [B]b + ry · [C]c

(4.3)

Therefore, for any chemical reaction, it is possible to describe the behaviour of the species
involved by applying the LAM.

4.2.2 Hill equation
The Hill equation, proposed by Archibald Hill in 1910, is a widely used function in the field of
biochemistry to describe the interaction between a ligand and its receptor. It provides insight
into the affinity between these biochemical species. Similarly, a ligand can be a species known
as a Transcription Factor (TF), and a receptor corresponds to an inducible promoter that starts
the transcription process.

Reaction 4.4 represents the binding-unbinding process among the TF, a protein (M) and an
inducer (Ind). As observed, it is taken into account that these molecules can exist in various
forms (monomer, dimer, etc.) – meaning, they may not necessarily be present individually.
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nm ·M+ Ind
kβ←→
kα

TF (4.4)

By applying the Law of Mass Action, Equation 4.5 is obtained, which represents the temporal
variation of the concentration of the TF.

˙TF = kα ·Mnm · Ind− kβ · TF (4.5)

It is worth noting that this process occurs so rapidly that it can be assumed that the concentration
of the TF is constant over time, and therefore its temporal variation is practically negligible
(Fraile López, 2020). Reducing the derivative to zero is commonly referred to as a Quasi-Steady-
State Approximation. Thus, by setting TF = 0 and isolating TF, Equation 4.6 is obtained. It is
important to highlight the substitution of the fraction between the coefficients kα and kβ with
the constant kdis, known as the dissociation constant of the TF complex.

TF =
Mnm · Ind

kdis

where kdis =
kβ
kα

(4.6)

Now, Equation 4.7 is the actual Hill equation (Hill, 1910), which represents the behaviour of the
complex that results from the binding between the TF to the promoter (P.TF). In this case, the
factor n is an estimator of the cooperativity between the TF and the promoter (Goutelle et al.,
2008).

P.TF =
TFn

(kd)n + TFn
(4.7)

It is important to highlight the difference between constants kdis and kd. While kdis represents
the affinity between the elements that form the TF (roughly, the rate at which they associate
and dissociate), kd provides the concentration of inducer molecules needed to achieve half of the
binding sites being occupied (Gesztelyi et al., 2012).

Another aspect to highlight is that the number of binding sites relies on the number of plasmids
(or amount of DNA) present in the cell, which is determined by the Copy Number (CN ) as
described in previous sections. Therefore, this should also be reflected in the equation, resulting
in Expression 4.8 (Trabelsi et al., 2018).

P.TF =
TFn

(kd · CN )n + TFn
(4.8)

Finally, by substituting Equation 4.5 into the P.TF expression, the modified Hill equation is
obtained (see Equation 4.9), to accurately model an inducible promoter.

P.TF =
Indn

(kdis·kd·CN

Mnm )n + Indn
(4.9)
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4.2.3 Optimization
A common approach for parameter identification and characterization in mathematical models
is the use of optimization methods, where the objective is usually minimizing a cost function.
This cost function represents the error between the predictions made by the mathematical model
and experimental data.

It is crucial to emphasize the importance of selecting an appropriate cost function, as there can
be different error metrics depending on the nature of the experimental data. It is essential for it
to closely fit the data in order to effectively minimize the error.

Therefore, it is important to carefully analyze the data before optimization. For example, if it
is known that the set is significantly noisy, it may be necessary to prioritize a function that is
robust to outliers.

In this project, we chose the Root Mean Logarithmic Squared Error (RMLSE) as an error metric
for three main reasons (M, 2021):

• Robustness to outliers. When collecting data from cell cultures, there may be anomalous
data points due to cross-contamination between cultures or values that fall outside the range
for certain metrics due to equipment limitations.

• Scale independence. Errors are normalized, so an error of 100 units between 1000 and
900 is interpreted in the same way as an error of 10 units between 100 and 90. This is
important in this case because fluorescence measurements are initially very low but grow
dramatically after induction. Thus, it is necessary to consider this fact to avoid dismissing
these cases incorrectly.

• Greater penalty for underestimation. While in the literature this may be presented as
a disadvantage, in this case it is considered an advantage. Protein production is a process
where the transition between a low production level and a higher one occurs suddenly.
Thus, it is necessary to penalize underestimation so that this ’jump’ in production is not
overlooked.

Thus, for the calculus of the cost function, Expression 4.10 was used, where yi represents the
true value and ŷi the predicted one.

RMLSE =

√√√√ N∑
i=1

(log10 (yi + 1)− log10 (ŷi + 1))2 (4.10)

On the other hand, it is relevant to discuss the optimization method, which is selected using the
same criteria as the cost function. In this case, the genetic algorithm (GA) will be used, which
is inspired in the concept of Darwinian evolution.

Roughly, the steps followed during this optimization are:

1. Population Initialization. It begins with an initial population of individuals, where each
individual represents a possible solution to the system to be solved.
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2. Fitness Value Assignment. A fitness value is calculated to evaluate the accuracy of the
solution for each individual and is then transformed into expectation values.

3. "Parent" Selection. Individuals with higher expectation values are selected to produce
new individuals.

4. "Children" Production from Parents. Selected individuals are combined through
crossover or altered through mutation with a certain probability p. This results in new
individuals with solutions that slightly differ from the ones obtained in the first step.

5. Repetition of Steps. Steps 2, 3, and 4 are iteratively repeated until a termination
criterion is met.

6. Termination Criterion. This criterion can be a maximum number of iterations (or
generations), a time limit for optimization, the reaching of an error below a certain tolerance,
among others.

These steps together constitute the genetic algorithm, which aims to find an optimal solution by
iteratively evolving a population of individuals through selection, reproduction, and variation of
solutions (“How the Genetic Algorithm Works - MATLAB & Simulink”, n.d.; Yang, 2021).

4.3 Computational environment
The computational environment played a critical role in the development of this project, as every
phase of the Design, Build, Test, and Learn cycle was conducted by a computational approach.

4.3.1 Hardware
To conduct the simulations, a computer with the characteristics specified in Table 4.1 was used.

Component Characteristics

Processor AMD Ryzen™ 7
RAM 16.00 GB

Operative System Windows 11 Home
Hard drive storage 500 GB

Table 4.1: Description of the components of the computer used to conduct the simulations.

4.3.2 Software
Several tools were employed for different purposes. Below, a brief description will be provided
for these computational programs and their specific function in this project.

MATLAB

Version R2022a of the MATLAB programming environment was used for conducting of simula-
tions and code editing of the mathematical model of each gene circuit.
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Figure 4.3: Screenshot of the MATLAB environment.

Benchling

Benchling is a an online platform designed primarily for use in Research and Development labo-
ratories, providing a wide range of useful functions for experiment planning and development of
the DNA assembly (“Cloud-based platform for biotech R&D | Benchling”, n.d.). Specifically, it
was used for the following purposes:

• Experiment planning and management

• Gene circuits and plasmids construction

• Primer design for PCRs

• Recording experimental result data

Figure 4.4: Screenshot of the Benchling environment.

BioTek Gen5
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BioTek Gen5 is the software of the Cytation instrument described in Section 4.4.1. It allows
data processing and preliminary visualization of the experimental readings obtained from the
Cytation (such as OD and fluorescence).

Figure 4.5: Screenshot of the BioTek Gen5 environment.

4.4 Experimental environment
For the development of the project, several pieces of equipment to build the gene circuits, manip-
ulation of the cell cultures containing the gene circuits, and monitoring their behaviour during
the conducted experiments were used.

4.4.1 Equipment
The equipment listed was used to conduct the experimental protocols that will be explained in
the following subsection.

Thermocycler

The model employed is the TECHNÉ 3Prime Thermal Cycler by Jeulin (“TECHNÉ 3Prime
Thermal Cycler”, n.d.). It was mainly used to conduct the Golden Braid (GB) Assembly protocol.
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Figure 4.6: TECHNÉ 3Prime Thermal Cycler (thermocycler).

Opentrons OT-2 Robot

Developed by Opentrons Labwork Inc., it is a robot that enables automation of pipetting pro-
cesses in the laboratory (“OT-2 Liquid Handler | Opentrons Lab Automation | Opentrons”, n.d.).
In the context of this project, specific protocols designed in the lab were used to perform the
initial dilutions required for cell culture preparation, as well as to carry out inductions with a
proper inducer during the appropriate phase of the experiment.

Figure 4.7: Opentrons OT-2 by Opentrons Labwork Inc.

BioTek Cytation™3 Imaging Reader

Developed by Agilent Technologies, this device was primarily used for its integrated spectropho-
tometer to perform readings of optical density (OD) as well as green fluorescence of culture plates
during experiments.
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Figure 4.8: Cytation 3 Imaging Reader by Agilent Technologies.

Orbital shaker incubator

The used model is the Stuart SI500. It was used for the growth of E. coli cell cultures in liquid
medium. The set temperature for it was of 37ºC, at 230 revolutions per minute (rpm).

Figure 4.9: Stuart SI500 orbital shaker incubator.

Incubator

The used model is the Memmert IN110 incubator. It incubator was used for the growth of solid
cell cultures of E. coli in Petri dishes. The set temperature for it was of 37ºC.
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Figure 4.10: Memmert IN110 incubator.

4.4.2 Protocols
The experimental protocols employed in this project played a crucial role in the precise manip-
ulation and assembly of genetic elements, as well as their integration into living cells. Moreover,
additional techniques were used for the analysis and verification of the genetic circuits, ensuring
the validity of the constructed designs.

Golden Braid Assembly

Aim: bring together fragments of DNA, resulting in Level 0, Level 1, or Level 2 assemblies,
depending on the components and restriction enzymes employed (Sarrion-Perdigones et al., 2011).

The necessary components to conduct the GB Assembly are listed in Table 4.2. Notice how two
different types of endonucleases can be used – when constructing assemblies where the destination
vector is of type α, the used enzyme will be BsaI; however, for destination vectors of type Ω,
BsmBI will be used.

Another key point is that the DNA component refers to every part to use. For example, a Level
2 assembly is built using two Level 1 assemblies and an Ω destination vector – therefore, 75 ng
of each component are needed. Since these are suspended in water, it is necessary to know its
concentration, and add the according amount (which also explains why the amount of water is
not fixed).

Now, all elements must be combined in a single PCR tube (one per construction). When the
tubes are ready, put them in the Thermocycler and run a program with the steps described in
Table 4.3. After finishing, the plasmids will be ready to be incorporated into E. coli bacteria by
means of cellular transformation (see Protocol Transformation of chemo-competent Escherichia
coli cells).

Transformation of chemo-competent Escherichia coli cells

Aim: incorporate the created plasmid into E. coli cells.

The necessary materials are:
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Component Amount (µL)

T4 Ligase Buffer (10X) 1.50
BSA Buffer (10X) 1.50
T4 Ligase 0.75
BsaI or BsmBI Endonuclease 0.75
DNA (2 or more) 75 ng of each part used
H2O up to 15 µL
Total Volume 15

Table 4.2: Components for a GB assembly of genetic circuits.

Temperature (ºC) Time (min) Number of cycles

37 10 1
37 3

30
16 4
50 10 1
80 10 1

Table 4.3: Thermocycler steps for the Golden Braid Assembly.

• Chemically competent cells

• Room temperature SOC medium

• Falcon tubes

• Tubes cooler

• Incubator

• Thermocycler

Start by setting up the necessary program on the Thermocycler. Turn off the lid pre-heating
option and set the following steps:

1. Heat-shock: set the temperature at 50ºC for 25 seconds.

2. Post-incubation: set the temperature at 4ºC for 5 minutes.

Now, add between 2 and 3 uL of the assembled DNA directly into the tubes with the chemo-
competent cells, and mix by pipetting up and down. Incubate them at 4ºC for 30 minutes in
the fridge.

Once the time passes, put the tubes in the Thermocycler and run the program. When finished,
add 450 uL of the SOC medium to each tube, mix by pipetting up and down, and transfer to a
Falcon tube. Incubate at 37ºC for 1 hour (plasmids in high-copy vectors) or 2 hours (plasmids
in low-copy vectors).

Preparation of a cell culture
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Aim: grow cellular colonies derived from an overnight cell culture suspended in liquid medium
in a Petri dish for further study and analysis.

The necessary materials are:

• Overnight cell culture suspended in liquid medium

• Petri dish with solid LB medium and antibiotic

• Agar beads

• Incubator

Start by choosing a Petri dish with solid LB medium and the adequate antibiotic based on
the plasmid that the cell culture contains. For cells with α backbones, this will be kanamycin,
whereas for Ω backbones it will be spectinomycin. This selection allows to make sure that only
those cells that have incorporated the plasmid during cellular transformation will grow.

Add the desired amount of cell culture to the plate. For this project, 100 µL were added to
each one. Now, throw a couple of agar beads into the plate and cover it. Shake gently until the
culture is distributed across the entire plate.

Remove the beads and put the plate in the incubator at 37ºC overnight (approximately 16
hours). Note that if the used backbones are α or Ω, the colonies derived from cells that did not
incorporate a plasmid with the desired Transcription Unit will appear as red.

Figure 4.11: Example of cell cultures observed in an UV transilluminator.

Agarose gel electrophoresis

Aim: validation of DNA sequences according to size.

The necessary materials are:

• Agarose

• SB Buffer

• Purple Loading Dye (6X) by New England BioLabs

• Thermo Scientific™1 kb DNA GeneRuler

• DNA samples
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• Erlenmeyer flask

• Electrophoresis apparatus

• Electrophoresis combs

• Microwave

• UV Transilluminator

To prepare 80 mL of gel with a 1% porosity, start by adding 0.8 g of agarose and 80 mL of SB
buffer to an Erlenmeyer flask. Now, put the flask in the microwave at medium power and heat
the mix until the solution becomes clear. Keep in mind that during heating the mix may come
to a boil, so stopping the microwave periodically in order to avoid the liquid from evaporating is
recommended.

Once the solution is clear, let it cool down to 50ºC. Put the necessary combs in the gel tray and
add the entirety of the flask to it. Wait until the texture goes from liquid to gel-like and remove
the combs. This will leave small wells in the gel (the amount depends on the comb size). Add
SB buffer to the electrophoresis tank until the gel wells are no longer visible from above.

Load 6 µL of the GeneRuler into the first and (optionally) last well. Then, mix 8 µL of DNA
sample with 2 µL of the Purple Loading Dye and load it into the following well. Repeat this
second step until all samples are loaded in the gel.

Once loaded, connect the electrophoresis apparatus to the current and run at 230 V for 30
minutes.

When finished, grab the gel using latex gloves and put it on the transilluminator. Turn on the
UV light and evaluate the results taking into account the desired size of the insert by comparing
it to the ladder equivalences as shown in Figure 4.12.

Figure 4.12: Example of the result of an electrophoresis gel and the reference ladder.

Colony PCR (cPCR)

Aim: amplify a region of interest delimited by primers in a DNA sequence to check the right
size of a genetic circuit.
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Primers are short DNA sequences designed to define the region of interest that will be amplified
during the PCR process.

The necessary components and their amounts for a single colony reaction are listed in Table 4.4.
Additionally, a thermocycler and PCR tubes are needed.

Component Amount (µL)

10X Standard Taq Buffer 2
dNTPs (10 mM) 2
Forward Primer (10 µM) 0.4
Reverse Primer (10 µM) 0.4
Taq DNA Polymerase 0.1
Colony inoculated in water 5
ddH2O 10.1
Total Volume 20

Table 4.4: Necessary components for the cPCR (for one colony).

Once all the components are united in PCR tubes (one per each colony to analyze), put them
in the Thermocycler and run a program with the steps listed in Table 4.5. When finished, use
an agarose gel to analyze results (see Protocol Agarose gel electrophoresis).

Step Temperature (ºC) Time Number of cycles

Initial denaturation 95 2 min 1
Denaturation 95 20 sec

Annealing 56 1 min 30
Extension 68 1 min per kb

Final extension 68 5 min 1

Table 4.5: cPCR Thermocycler program steps.

Glycerol stock preparation

Aim: prepare a bacterial colony to be stored in a -80ºC freezer for future uses.

The materials needed are:

• 2 mL cryovial

• Glycerol 80%

• Overnight cell culture

• Vortex mixer

Start by adding 1440 µL of the overnight cell culture to the cryovial. Then, add 360 µL of the
80% glycerol. Vortex the tube and store in the freezer at -80ºC.
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Chapter 5

Phase I: Design

5.1 Mathematical model
The aim is to design a digital twin or mathematical twin, which will be a set of ODEs that depict
the behaviour of the gene circuit of interest.

In this case, the circuit of interest produces two proteins: LuxR (constitutively) and the Green
fluorescent protein (GFP) (regulated by a Transcription factor). Figure 5.1 shows this process,
which has two steps:

1. Production of LuxR

The first step is the constitutive production of the LuxR protein, under the promoter
J23106. The amount of LuxR protein depends on the combination of the promoter and
RBS.

2. AHL induction

When the N-Acyl homoserine lactone (AHL) molecule is induced in the liquid medium, it
will be able to get through the membrane of the cell to interact with LuxR. The binding
between these molecules (AHL and LuxR) forms the LuxR·AHL Transcription factor. Once
this TF joins the Plux promoter, the transcription process of GFP will begin.

Therefore, in this case the amount of produced protein will be regulated by the strength
of the promoter Plux and the RBS, as well as by the AHL concentration inside the cell.
Furthermore, the RBS will vary depending on the gene circuit, this is, five different levels
of GFP produced since there are five different RBSs.

36



Design and implementation of digital twins of synthetic inducible gene expression circuits

Figure 5.1: Behaviour of the genetic circuit built in the lab. LuxR is produced constitutively and GFP depends
on the TF LuxR·AHL. Note how there are five different circuits depending on the RBS used.

5.1.1 Constitutive production
The set of biochemical Reactions 5.1 to 5.5 represent the constitutive synthesis of LuxR. As seen
in Reaction 5.1, the promoter J23106 (pJ), allows the transcription of the DNA sequence into
Messenger ribonucleic acid (mLuxR). The transcription rate is k1 (min−1), and the mLuxR is
then translated into the protein LuxR by the ribosomes at the translation rate k2 (min−1).

However, it is also important to consider the degradation and dilution of both the mRNA and
protein (Reactions 5.2 to 5.5). The degradation of the biological happens naturally at a rate of
d1 (min−1) for mLuxR, and d2 (min−1) for LuxR. On the other hand, dilution is caused in the
cell by cell division (cell growth) at a rate of µ (min−1).

pJ
k1−−→ mLuxR

k2−−→ LuxR +mLuxR (5.1)

mLuxR
d1−−→ ∅ (5.2)

mLuxR
µ−−→ ∅ (5.3)

LuxR
d2−−→ ∅ (5.4)

LuxR
µ−−→ ∅ (5.5)

Now, by applying the Law of Mass Action (LAM), the Model 5.6 is obtained. It represents the
biochemical reactions in terms of ODEs. Note that this is a representation of the variation in
time of the concentration of the three main biological species that participate in the constitutive
expression of LuxR.

[ ˙pJ ] = k1 · [pJ ]
[ ˙mLuxR] = k1 · [pJ ]− (d1 + µ) · [mLuxR]

[ ˙LuxR] = k2 · [mLuxR]− (d2 + µ) · [LuxR]

(5.6)
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Now, notice how the variation of the promoter concentration depends only on the concentration
of the promoter itself, and is regulated by its transcription rate k1.

On the other hand, the variation of the mRNA coding for LuxR also depends on the concentration
of the DNA pJ, as well as on the degradation (d1) and dilution (µ) rates of the mRNA itself.
The same happens with protein LuxR, although in this case it is dependant on the rate at which
it is translated (k2), and on its degradation (d2) and dilution (µ) rates.

5.1.2 Inducible production
Unlike LuxR, the transcription of the Green fluorescent protein (GFP) is regulated by an in-
ducible promoter, and requires the presence of a TF to activate it. Therefore, the reactions that
represent the GFP’s production will be slightly different than the ones above, since it is necessary
to consider additional reactions regarding the TF.

2LuxR + 2AHL
kα←→
kβ

(RA)2 (5.7)

Plux + (RA)2
kon←−→
koff

(Plux · (RA)2) (5.8)

(Plux · (RA)2)
k3−−→ mGFP+ (Plux · (RA)2) (5.9)

mGFP
k4−−→ GFP +mGFP (5.10)

The initial step is the Reaction 5.7, that involves the binding of two LuxR proteins with two
molecules of AHL. This interaction leads to the formation of the transcription factor (TF),
denoted as (RA)2. It is worth noting that this process is reversible, because these species are
continuously binding and unbinding at rates kα (min−1) and kβ (min−1) respectively.

Reaction 5.8 denotes the interaction between the promoter Plux and the TF, in which the binding
and unbinding of both parts occurs at constant rates kon (min−1) and koff (min−1).

In regards to transcription (Reaction 5.9) and translation (Reaction 5.10), it is considered that
they happen at rates k3 (min−1) and k4 (min−1), and both processes are irreversible as in the
case of constitutive production.

By applying the LAM, Model 5.11 is obtained.

[ ˙Plux] = −kon · [Plux] · [(RA)2] + koff · [(Plux · (RA)2)]

[ ˙(RA)2] = −kon · [Plux] · [(RA)2 + koff ] · [(Plux · (RA)2)]

[ ˙(Plux · (RA)2)] = kon · [Plux] · [(RA)2]− koff · [(Plux · (RA)2)]

[ ˙(Plux · (RA)2)] = −k3 · [(Plux · (RA)2)]

[ ˙mGFP ] = k3 · [(Plux · (RA)2)]− (d3 + µ) · [mGFP ]

[ ˙GFP ] = k4 · [mGFP ]− (d4 + µ) · [GFP ]

(5.11)
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5.1.3 Complete model
Considering Sections 5.1.1 and 5.1.2, the complete model of the gene circuit can be defined.
However, in order to simplify the expressions, the species names were simplified as shown in
Table 5.1.

Symbol Species Description

x1 pJ Constitutive promoter J23106
x2 mLuxR LuxR protein mRNA
x3 LuxR LuxR protein
x4 Plux Inducible promoter Plux
x5 (RA)2 Transcription factor (TF)
x6 (Plux·(RA)2) Binding between Plux and TF
x7 mGFP GFP protein mRNA
x8 GFP GFP protein

Table 5.1: Species equivalence.

The result is Model 5.12. However, the problem now is that, albeit accurate, this ODE model is
overparameterized, and many of these parameters are unknown. Furthermore, there are several
species which are difficult to measure in an experimental environment (e.g., the amount of any
form of mRNA or the binding between promoter and TF).

For this reason, a model reduction is needed in order to simplify the equations.

ẋ1 = k1 · x1
ẋ2 = k1 · x1 − (d1 + µ) · x2
ẋ3 = k2 · x2 − (d2 + µ) · x3
ẋ4 = −kon · x4 · x5 + koff · x6
ẋ5 = −kon · x4 · x5 + koff · x6
ẋ6 = kon · x4 · x5 − koff · x6
ẋ6 = −k3 · x6
ẋ7 = k3 · x6 − (d3 + µ) · x7
ẋ8 = k4 · x7 − (d4 + µ) · x8

(5.12)

5.1.4 Model reduction
When taking into account all reactions involved, the resulting models obtained are often over-
parametrized, thus increasing the number of states in which the system can be. This makes the
identification of its parameters more difficult.

For this reason, model reduction supposes an important aspect when developing a mathematical
model. Thus, there are two main assumptions that may allow to reduce a model:

1. System invariants
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System invariants exist because, in certain biological situations, it can be assumed that
the concentration of a particular species remains constant (therefore, ẋ ≃ 0). This means
that, when certain species have constant concentrations, it is implied that their production
and degradation rates are balanced, resulting in no net change over time. By considering
these species as constants, we can eliminate their time derivatives from the equations, thus
simplifying the model.

2. Quasi-Steady-State Approximation (QSSA)

In the quasi-steady-state approximation (QSSA), it is assumed that certain species in the
system undergo rapid reactions and reach a steady-state concentration much faster com-
pared to other species. This steady-state condition implies that their production and degra-
dation rates are in equilibrium, resulting in no significant net change over time. This sim-
plification allows us to focus on the dynamics of the slower-reacting species and analyze the
system’s behavior under this approximation (Segel and Slemrod, 1989).

The first system invariants to be noticed in the system are the constitutive promoter J23106 (x1)
and inducible promoter Plux (x4).

As seen in Section 3, a backbone’s Copy Number establishes the initial amount of DNA to
be transcribed. Since the Transcription Unit of the backbone contains both promoters, their
concentration can be considered equivalent to the CN (Boada Acosta, 2018).

This way, it is possible to express these relations by the set of Equations 5.13. Notice how, in
the inducible case, the promoter is considered in both its forms: free LuxR promoter and bound
to the TF.

ẋ1 ≃ 0

x1 ≃ CN

ẋ4 + ẋ6 = 0

x4 + x6 ≃ CN

(5.13)

An additional assumption can be made regarding the Plux and TF binging ẋ6. The process of
the binding and unbinding of the promoter and its TF takes place in terms of seconds, in contra-
position to transcription and translation, which can take up to minutes and hours, respectively.
Therefore, the QSSA can be applied, assuming that ẋ6 ≃ 0.

This expression can be combined with the last equation of the previous set, and by isolating x6,
Equations 5.14 are obtained.

ẋ6 = kon · (CN − x6) · x5 = 0

x6 =
kon · CN · x5
kon · x5 + koff

(5.14)

Moreover, the kon and koff parameters can be simplified by dividing both numerator and de-
nominator by kon, which results the dissociation constant kd (Najafpour, 2007). The result is
a Hill-like function (Equation 5.15), that relates the transcription process with the TF (x5) that
activates it.
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x6 = CN ·
x5

kd + x5

where kd =
koff
kon

(5.15)

However, as described in the Equation 4.9 from Chapter 4, several additional considerations need
to be taken into account to accurately model this interaction. This way, the inducer will be the
AHL molecule, inside the cell, while M will be LuxR in this case. Now, the n and nm exponents
need to be defined as well.

For this system, the cooperativity index (n) is unknown, and therefore will be one of the param-
eters to estimate.

FOr nm, Reaction 5.7 is considered. As seen in Chapter 4, this parameter can be interpreted as
the amount of LuxR needed in relation to the amount of AHL inside the cell (AHLint). Since
both elements have the same stoichiometric coefficient, nm = 1.

Thus, the new Hill equation for this system is Equation 5.16. Note that AHL is expressed in
terms of concentration. Furthermore, it is worth noting that kdlux, which could be considered as
a parameter derived from kd, is not equal to the dissociation constant. In this case, it represents
the half-concentration, which is the concentration of inducer molecules required to ensure half
of the binding sites are occupied to start the transcription process.

x6 = CN ·
[AHLint]

n

(kdis·kdlux·CN

LuxR )n + [AHLint]n
(5.16)

Now, the QSSA can be applied to the equations representing transcription. Albeit occurring at
a much slower pace in comparison to the binding and unbinding of the promoter and TF, it still
is very fast when compared to the hours it takes for the translation process to be completed.
For this reason, it can be considered that this process is also quasi-steady, and therefore, the
variation of the concentration of both mLuxR and mGFP is assumed negligible.

This way, applying the QSSA to these species, Equations 5.17 are obtained.

ẋ2 = k1 · CN − (d1 + µ) · x2 = 0

x2 =
k1 · CN

d1 + µ

ẋ7 = k3 · CN ·
[AHLint]

n

(kdis·kd·CN

LuxR )n + [AHLint]n
− (d3 + µ) · x7 = 0

x7 = CN ·
k3

d3 + µ
· [AHLint]

n

(kdis·kdlux·CN

LuxR )n + [AHLint]n

(5.17)

Now, by substituting the expressions obtained above into the equations for the protein species
ẋ3 and ẋ8 from Model 5.12, Model 5.18 is obtained. This is a reduced version of the complete
model presented in Section 5.1.3. Note that an additional term was added for ẋ8, which allows
us to consider the basal production (α) of GFP when there is no TF.
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ẋ3 = CN ·
k1 · k2
d1 + µ

− (d2 + µ) · x3

ẋ8 = CN ·
k3 · k4
d3 + µ

· (α+ (1− α) · [AHLint]
n

(kdlux·ki·CN

x3
)n + [AHLint]n

)− (d4 + µ) · x8
(5.18)

From Model 5.18, the measurable species are the AHL concentration, which is externally induced
in each experiment; and the concentration of GFP (x8), which is the measured MEFL/OD600 as
expained in Section 3.5.2.

Now, it must be highlighted that the growth rate µ actually changes over time. Therefore,
it is not actually a fixed parameter, but a time function µ(t). Thus, in Model 5.18 its value
will be calculated from the Absorbance experimental data by means of the MATLAB function
Mu_estimate (see Appendix).

Regarding the parameters, it must be highlighted that some of them depend on the gene circuit.
Specifically:

1. Copy Number (CN)

Since this is defined as the vector, two Copy Numbers must be estimated: One for the
high-copy version, and One for the low-copy.

2. GFP translation rate (k4)

This rate is defined by the RBS, and therefore there will be five different values for this
parameter.

3. Half-concentration (kdlux)

The AHL concentration at which half of the binding sites are occupied is dependant on
whether the circuit is high-copy or low-copy. This is due to the fact that said factor will
determine the amount of DNA in the cell, and thus of the initial free promoter binding
sites.

4. mRNA for GFP degradation rate (d3)

This parameter is also dependant on which version is analyzed: high-copy or low-copy.

5. GFP protein degradation rate (d4)

Since the degradation rate also depends on the amount of protein produced, it will also
depend on whether the circuit is high-copy or low-copy.

6. Cooperativity index (n)

This index, as mentioned previously, defines the affinity between the promoter and the TF.
Thus, it will also depend on the amount of available promoters, and therefore again on the
circuit being high-copy or low-copy.
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5.1.5 AHL production
For this model, it is also important to consider the equations for the internal (inside the cell)
and the external molecules of AHL (AHLint and AHLext, respectively).

These species react according to Reactions 5.19 and 5.20, where D is the kinetic rate at which
AHL is transported outside the cell, DVc is the rate at which it diffuses inside the cell, and
dA and dAe is the degradation rate of the internal (AHLint) and external (AHLext) amount of
molecules.

AHLint
D←−→

DVc

AHLext (5.19)

AHLint
dA−−→ ∅ (5.20)

AHLext
dAe−−→ ∅ (5.21)

Thus, by applying the LAM to Reactions 5.19, 5.20, and 5.21, the set of Equations 5.22 is
obtained to represent the dynamics of these species (Boada Acosta, 2018). Note that x9 and x10
are AHLint and AHLext, respectively.

ẋ9 = D · Vcell

Vext
· x10 − (D + dA + µ) · x9

˙x10 = −D · ncell ·
Vcell

Vext
· x10 +D ·

x11∑
i=1

x9

(5.22)

This introduces a series of new parameters, which are:

• E. coli cell volume (Vcell)

• Culture medium volume (Vext)

The number of cells ncell, on the other hand, is another equation which models how the cell
population grows.

5.1.6 Cell population growth
Cell growth can be approximated through the logarithmic growth Model 5.23 (Lipkin and Smith,
2005), in which P represents the population, r is the growth rate, and k is the population at
which the growth rate becomes close to zero.

Ṗ = r · P · (1− P

K
) (5.23)

Thus, by applying this reasoning to cells, we obtain Equation 5.24, where x11 is the number of
cells. Here, the growth rate is µ(t), whereas the stabilized population is µmax, which is obtained
experimentally thanks to the absorbance values.

˙x11 = µ(t) · x11 · (1−
x11
µmax

) (5.24)
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5.1.7 Gene circuit digital twin
Now, by combining the sets of Equations 5.18, 5.22, and 5.24, the ODE model 5.25 is obtained,
and thus the digital twin of the gene circuit.

ẋ3 = CN · k1·k2

d1+µ − (d2 + µ) · x3

ẋ8 = CN · k3·k4

d3+µ · (α+ (1− α) · (x9)n

(
kdlux·ki·CN

x3
)n+(x9)n

)− (d4 + µ) · x8

ẋ9 = D · Vcell

Vext
· x10 − (D + dA + µ) · x9

˙x10 = −D · x11 · Vcell

Vext
· x10 +D ·

∑x11

i=1 x9

˙x11 = µ(t) · x11 · (1− x11

µmax
)

(5.25)

Thus, the final ODE model represents the change over time of the main species of our gene
circuit, built in the laboratory.

5.2 MATLAB implementation
For the computational simulations of Model 5.25, MATLAB code was used (see Figure 5.2).

A set of fixed variables will stay at the same value throughout the model refinement (see Table
5.2). On the other hand, the parameters that will be estimated in the optimization process are
listed in Table 5.3.� �

1 %x1 = LuxR
2 dxdt(m,1) = p.pR(k)*p.CN(k)*p.kR(k)./(p.dmR(k)+p.mu) - (p.dR(k)+p.mu)*x(m);
3

4 %x2 = GFP
5 c6 = p.pg(k)*p.CN(k)*p.kg(k)./( p.dmg(k)+p.mu );
6 Plux = x(m+2)^2./( (p.kdlux(k)*p.kd2(k)*p.CN(k)./x(m))^2 + x(m+2)^2);
7 dxdt(m+1,1) = c6*( p.alpha(k) + (1-p.alpha(k))*Plux )-(p.dg(k)+p.mu)*x(m+1);
8

9 %x3 = AHLint
10 dxdt(m+2,1) = p.D*p.Vcell./p.Vext*x(Size*Ncell+1)-p.D*x(m+2)-(p.dA(k)+ p.mu)*x(m+2);
11

12 %x4 = Number of cells
13 dxdt(m+3,1) = p.mu*x(m+3)*(1-x(m+3)/p.cellmax);
14

15 %AHLext
16 dxdt((Size*Ncell+1),1) = -p.D*x(m+3)*p.Vcell/p.Vext*x(Size*Ncell+1) +...
17 p.D*x(m+3)*sum(x(m+2:Size:Size*Ncell)) -...
18 p.dAe*x(Size*Ncell+1);� �

Figure 5.2: MATLAB implementation of the final reduced model.
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Symbol Parameter Description Initial value Source

p.CN CN Copy Number High-copy: 40 “Synthetic Biology and Biosystems
Control Lab – SB2CL”, n.d.

Low-copy: 5 “Synthetic Biology and Biosystems
Control Lab – SB2CL”, n.d.

p.kR k1 mLuxR transcription rate 2.9 min−1 Rates calculator
p.pR k2 LuxR translation rate 4.44 min−1 “Synthetic Biology and Biosystems

Control Lab – SB2CL”, n.d.
p.kg k3 mGFP transcription rate 2 · p.kR min−1 “Synthetic Biology and Biosystems

Control Lab – SB2CL”, n.d.
p.pG k4 GFP translation rate 0.24 min−1 “Synthetic Biology and Biosystems

Control Lab – SB2CL”, n.d.
p.kdlux kdlux Half-concentration 65,000 nM · min−1 Buchler et al., 2005
p.k2 ki LuxR-AHL dissociation rate 0.0833 min−1 “Synthetic Biology and Biosystems

Control Lab – SB2CL”, n.d.
p.dmR d1 mLuxR degradation rate 0.23104 min−1 “Synthetic Biology and Biosystems

Control Lab – SB2CL”, n.d.
p.dR d2 LuxR degradation rate 1.1552× 10−3 min−1 “Synthetic Biology and Biosystems

Control Lab – SB2CL”, n.d.
p.dmg d3 mGFP degradation rate 0.23104 min−1 “Synthetic Biology and Biosystems

Control Lab – SB2CL”, n.d.
p.dg d4 GFP degradation rate 1.1552× 10−3 “Synthetic Biology and Biosystems

Control Lab – SB2CL”, n.d.
p.mu µ Dilution rate 8.6643× 10−3 min−1 “Synthetic Biology and Biosystems

Control Lab – SB2CL”, n.d.
p.alpha α Basal production of GFP 0.01 min−1 “Synthetic Biology and Biosystems

Control Lab – SB2CL”, n.d.
p.D D Kinetic rate of internal AHL transport 2 min−1 “Synthetic Biology and Biosystems

Control Lab – SB2CL”, n.d.
p.Vcell Vcell Typical volume of an E. coli cell 2× 10−15 liters Kubitschek and Friske, 1986
p.Vext Vext Culture medium volume 2× 10−4 liters N/A
p.dA dA Internal AHL degradation rate 4× 10−5 min−1 Pai and You, 2009
p.dAe dAe External AHL degradation rate 4.81× 10−5 min−1 Kaufmann et al., 2005
p.cellmax µmax Maximum cell number Dependant on maximum measured OD600 N/A

Table 5.2: Script to parameter equivalences.

Parameter Description

p.CNL,H Low-copy is estimated and high-copy is obtained as a relative number to low-copy.
p.pG1,2,3,4,5 Five-element array for the five RBSs
p.kdluxL,H
p.dmgL,H
p.dgL,H Two possible values depending on vector (high-copy or low-copy)
nL,H

alphaL,H

Table 5.3: Parameters to be estimated by optimization.
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Chapter 6

Phase II: Build

6.1 Introduction
All genetic circuits in this project were named according to a specific naming convention of the
Synthetic Biology and BioSystems Control Lab (“Synthetic Biology and Biosystems Control Lab
– SB2CL”, n.d.). This is based on the creator’s full name, the antibiotic resistance of the vector,
and Level of each construct. In this specific case, a fourth additional element was added to the
name to allow differentiation between constructions. This way, the plasmids are named based
on the following structure: pXX1X2XX3XX4.

• XX1: Initials (name and surname) of the creator.

• X2: Letter representing the antibiotic resistance (C for chloramphenicol, K for kanamycin,
and S for spectinomycin).

• XX3: Letter representing the Level (A for α, O for Ω) and number type (1 or 2).

• XX4: Vector type (origin of replication): L for low-copy and otherwise high-copy, and the
RBS identifier, a number between 1 and 5.

Therefore, the plasmids created for this project are referred to as pASSO1XX4 (Anna Sergeevna,
Spectinomycin, and Ω1). The identifier refers to the RBS used, according to the numbering
convention specified in Table 6.1.

Identifier Ribosome binding site

1 B0030
2 B0032
3 B0034
4 J61100
5 J61101

Table 6.1: Identifiers of the and RBS in the lab.
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The main objective of this project is to characterize the promoter Plux, five different RBSs, and
the CN of two types of vectors. Thus, the first step is to incorporate all necessary parts in a
single cell in order to test it in an experimental environment and study its behaviour.

6.2 Construction of the genetic circuit
Dealing with inducible circuits, it is important to have a good understanding on how they work.
To induce a gene circuit, we need a signal for induction. In our case, the AHL molecules bounf
to LuxR protein were used to activate the promoter Plux (Lade et al., 2014)). After that, the
production of the Green fluorescent protein (GFP) is started.

Now, these biological systems can be constructed in two different ways. One option is to incor-
porate two types of circuits into the same cell: one producing the LuxR protein needed for the
Transcription factor, and another with the inducible circuit. The second possible approach is to
incorporate both gene circuits in a single circuit into the cell.

There are two main reasons why the second option provides greater advantages. Firstly, by
correctly selecting colonies, it can be ensured that the cells will express all the genes of interest.

Secondly, there is no need for multiple reactions to introduce both plasmids into cells, but a
single step by incorporating a single plasmid that already expresses all the desired proteins (Kriz
et al., 2010).

For this reason, it was decided to combine both parts (constitutive and inducible) in the same
construct, resulting in a genetic circuit that expresses two different proteins in two different ways.

This circuit was constructed using six already-existing Level 1 assemblies which were combined
into a vector to create a Level 2 plasmid containing both constitutive and inducible parts.

6.2.1 Constitutive circuit
For the constitutive circuit, only one Level 1 construct was designed. Synthetic Biology im-
plies modularity, therefore the constitutive circuit was taken from a previous module named
pARKA21 (Requena Gutiérrez, 2019). The parts of this circuit are listed in Table 6.2.

Name Type Description Source

J23106 Promoter Constitutive promoter Requena Gutiérrez and Ropero, 2018a
B0030 RBS Strong RBS Requena Gutiérrez and Ropero, 2018c
LuxR CDS LuxR protein coding sequence Requena Gutiérrez, 2018b
B0015 Terminator Transcriptional terminator Requena Gutiérrez, 2018c

Table 6.2: Basic parts of Level 1 pARKA21 construction.

This construct, originally incorporated into an α2-type plasmid, enables the constitutive produc-
tion of the LuxR protein, which will induce the production of GFP together with external AHL
molecules as a TF. The result is the circuit shown in Figure 6.1.
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Figure 6.1: Constitutive gene circuit. LuxR is produced thanks to constitutive promoter J23106.

6.2.2 Inducible circuits for different levels of a protein
Five Level 1 constructs belonging to the pIAKA1 collection were used (Alarcón López, 2019).
The parts are listed in Table 6.3.

Name Type Description Source

Plux Promoter Inducible promoter Requena Gutiérrez, 2018a
B0030 RBS Very strong RBS Requena Gutiérrez and Ropero, 2018c
B0032 RBS Strong RBS Requena Gutiérrez and Ropero, 2018e
B0034 RBS Medium strength RBS Requena Gutiérrez and Ropero, 2018d
J61100 RBS Weak RBS Requena Gutiérrez and Ropero, 2018b
J61101 RBS Very weak RBS Requena Gutiérrez and Ropero, 2018f
GFPmut3b CDS GFP protein coding sequence Requena Gutiérrez and Ropero, 2018g
B0015 Terminator Transcriptional terminator Requena Gutiérrez, 2018c

Table 6.3: Basic parts of Level 1 pIAKA1 constructions.

Thus, the Plux promoter combined with five different RBS sequences results in five distinct
constructs. These are denoted by the common name pIAKA1_3X1, where X is a value between
1 and 5, following the same convention as the one shown in Table 6.1. Therefore, all these
constructs share the same promoter, CDS (which codes for GFP), and terminator, where the
only variable is a different sequence of RBS (Figure 6.2).

Figure 6.2: The five inducible pIAKA gene circuits. GFP is produced depending on the amount of AHL available,
which binds to LuxR and induces the transcription process. The five different RBSs regulate the translation rate
of each circuit.

These constructs were incorporated into an α1-type vector. It is worth noting that each RBS
has a different strength, so the translation rate will vary among the constructs, being higher in
those where the RBS is stronger.
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6.2.3 Vector selection for final circuits
Once the parts of the final circuits in this work have been defined, it is also important to discuss
the vectors into which the gene circuits are going to be incorporated.

Since the goal is to obtain a Level 2 genetic circuit, the destination vectors used were Ω type sub-
type 1. As one of the objectives includes the characterization of two Copy Numbers, high-copy
and low-copy vectors were used. Therefore, each construct was cloned twice, once per backbone.

Thus, the destination vectors used were the ones listed in Table 6.4.

Name Description Source Origin of replication

pRMS1 ω1 High-copy ω1 vector Source pUCOri
pIASO1S471 Low-copy ω1 vector Alarcón López, 2019 pSC101

Table 6.4: Backbones used for the assembly of Level 2 constructs.

6.3 Final circuits
The final circuits were built by combining the pARKA21 construct with each of the constructs
from the pIAKA1 collection, resulting in a total of five assemblies. However, considering that
each assembly was cloned into two different destination vectors, there are 10 different circuits.

Therefore, this plasmid collection is named pASSO1, consisting of the five high-copy constructs
shown in Figure 6.3, and the five low-copy constructs shown in Figure 6.4.

Figure 6.3: High-copy pASSO1 plasmids.

Finally, these gene circuits were transformed into E. coli cells as in Section 4.4.2).
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Figure 6.4: Low-copy pASSO1 plasmids.

6.3.1 Transforming final circuits into bacteria
The cells were transformed using the procotol Transformation of chemo-competent Escherichia
coli cells, amd then seeded onto Petri as described in the Preparation of a cell culture protocol.
After the necessary incubation period, the plates were inspected under a transilluminator with
ultraviolet light.

As discussed in Section 4.4.2, the key aspect to consider is that red colonies indicate the absence
of correct inserts. Additionally, it is crucial to keep in mind the expected appearance of the
correct colonies based on the BioBricks that form part of their genetic circuit.

In this case, it is known that if the Golden Braid Assembly was successful and the cell incor-
porated the required plasmid, it should appear mostly colourless. This can be justified by the
fact that the complete genetic circuit presents constitutive production of LuxR, which is color-
less, and inducible production of GFP, which exhibits green fluorescence, as the name suggests.
However, the production of fluorescent protein does not occur without the presence of the AHL
molecule, which is necessary for induction.

By focusing on the presence of red colonies, it can be observed that in the case of high-copy con-
structions (Figure 6.5), some assemblies were more successful than others. Specifically, pASSO14
and pASSO15 exhibited less successful outcomes during the process. On the other hand, the low-
copy circuits (see Figure 6.6) did not display a single red colony, indicating that the constructions
were carried out correctly.

Now, regarding the remaining colonies, the first notable observation is that in the high-copy case,
constructions pASSO11 and pASSO13 exhibit green colonies, despite the fact that, as mentioned
above, these should not be producing fluorescent protein yet. However, it is also important
to consider that this could be attributed to a basal production of GFP that is independent
of the LuxR-AHL complex, which would make sense considering that these constructions have
the strongest RBSs. Nevertheless, it is true that this result can be slightly disconcerting since
pASSO12, which should have a higher translation rate than pASSO13, does not display such a
high basal production.

In fact, this phenomenon is observed even in the low-copy versions of these constructions. Once
again, colonies derived from both pASSO1L1 and pASSO1L3 exhibit some degree of green fluo-
rescence, albeit to a lesser extent. This leads to consider that perhaps the theoretical assumption
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that RBS B0032 has a higher translation rate than B0034 is not correct, although this will be
determined once the mathematical parameters derived from the experimental data are obtained.

In any case, to confirm the correctness of the colonies before initiating any experiments, an initial
preselection of four colonies per plate was performed, followed by a colony PCR (see Colony PCRs
protocol in Section 4.4.2) of these colonies to make the final selection.

Figure 6.5: Petri dishes with grown high-copy colonies.

Figure 6.6: Petri dishes with grown low-copy colonies.
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6.3.2 Selecting the correct bacterial colonies
For the initial preselection, three main criteria were used:

1. The colony must not be red.

2. The colony must be transparent or, alternatively, show faint green coloration.

3. The four colonies must have different morphologies in terms of colour and size.

This way, four colonies per plate were preselected and subjected to a colony PCR, which was
later analyzed on an agarose gel. In this case, primers were used that delimit the Transcription
Unit of the plasmids, which has a length of 2000 base pairs.

Therefore, only two colonies per gene circuit were selected based on the results obtained from the
electrophoresis process, by checking the inserts that matched the expected length (see Section
4.4.2). Thus, the green-marked high-copy colonies shown in Figure 6.7 (H) and the equally
marked low-copy colonies in Figure 6.7 (L) were selected.

Figure 6.7: 1% Agarose electrophoresis gel showing the results of the colony PCR conducted for the fourty
selected high-copy (H) and low-copy (L) colonies.

Afterwards, 5 µL of each selected colony were inoculated in 4.5 mL of LB medium with specti-
nomycin and grown overnight. These were then stored in glycerol following the Glycerol stock
preparation protocol (see Section 4.4.2).
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Chapter 7

Phase III: Test

7.1 Experiment set up
Once the gene circuits were transformed into the cells, they were studied by conducting several
experiments using the BioTek Cytation™3 Imaging Reader (see Section 4.4.1).

The main goal of these experiments was to collect experimental data for each of the 10 gene
circuits that in turn, were used to estimate some of the parameters from the Model 5.25 of the
gene circuit.

More specifically, the purpose was to monitor cell growth by measuring OD600, and GFP pro-
duction by measuring green fluorescence in cell population.

Specifically, each experiment had a total duration of 16 hours, where at the end of the first hour,
induction with AHL at different concentrations was performed.

Although an experiment lasts 16 hours, the total time required to carry each of them out is 3
days, since it is divided in four essential steps:

1. Culture preparation

2. Experimental measurements

3. AHL plate preparation and induction

4. Experimental data collection
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7.1.1 Cell culture preparation
To measure OD600 and fluorescence, every gene circuit is growing in a liquid cell culture. This
step serves the purpose of standardizing the OD600 of each culture, so that the experiment can
begin with all the samples at the same starting point and conditions.

Thus, the steps are:

1. Select the colonies that will be used.

In each experiment both high-copy and low-copy versions of the same construct were used,
as well as an additional colony as a negative control, pAFSO21 (Fraile López, 2020). This
control construction does not produce fluorescent protein and does not respond to AHL,
allowing monitoring the proper cell growth.

2. Growing colonies in liquid medium.

Once the colonies are selected, they were inoculated into 3 mL of lysogeny broth medium
with spectinomycin (LB+Sp) and grown in an orbital incubator for 16 hours (overnight
culture).

3. Refresh of the colonies.

The next day, a refresh step is performed by taking 75 µL from each culture and inoculating
them into 3 mL of M9 minimal medium with spectinomycin (M9+Sp). These cultures were
incubated again in the orbital incubator and grown for another 3 hours (low-copy colonies)
or 4 hours (high-copy colonies).

To ensure they finish growing at the same time, the refresh is performed with a one-hour
time difference between the two types of gene circuits (the one in high-copy and the other
in low-copy). The colonies from the LB medium are now discarded.

4. OD600 normalization.

The Bacterial normalization protocol was conducted by the OT-2 robot using a protocol
designed in the SB2C Lab to dilute the colonies in liquid medium to an initial OD600 of
0.05.

This is done to start the experiment with the same initial optical density (OD600) for all
cell cultures.

7.1.2 Experimental measurements
Once the cultures are diluted to the desired OD600, they were distributed in a 96-well plate,
filling each well with 200 µL of culture.

In each experiment, the chosen colonies are derived from the same parent construction, that is
the same gene circuit in two versions: high-copy and low-copy (e.g., pASSO11 with pASSO1L1,
which are high-copy and low-copy respectively).

Each sample has three replicas in rows of the 96-well plate, as shown in Figure 7.1. The first and
last rows are used for M9 medium (which served as the blank) and negative control, respectively.
Since the last column is used during the normalization protocol for calculating the initial OD, it
is left empty.
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Figure 7.1: Schematic representation of the sample disposition in the 96-well plate. The colors represent the
following samples: light blue: M9 medium; dark green: high-copy samples; light green: low-copy samples;
lilac: negative control pAFSO21. (Template taken from Carson, 2020).

Now, it is placed in the Cytation and the protocol Charact_Plux_AHL.prt is executed. The
temperature is kept constant at 37ºC. The protocol steps are:

1. First step.

The duration is 1 hour, with continuous shaking of the plate to stimulate cell growth.

OD600 and fluorescence measurements are performed every 5 minutes.

2. Second step. (AHL induction)

The plate is taken out of the Cytation to allow the AHL induction.

3. Third step.

The duration is 16 hours, with continuous shaking of the plate to stimulate cell growth.

OD600 and fluorescence measurements were taken every 5 minutes.

7.1.3 AHL induction
During the first growth phase of the cell cultures, the AHL plate is prepared to conduct the
inductions as shown in Figure 7.2.

Figure 7.2: The 96-well plate with the induction concentrations in nanomolars. For each column, all wells are
induced with AHL at the concentration described below it.
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The purpose of performing inductions at different concentrations is to obtain a wide range of
responses that will correspond to the behaviour described by the Hill function as in Chapter 5.
Furthermore, it will allow the characterization of some biological parts of the gene circuits during
the identification process.

Additionally, it is important to define them in a way so that the final volume added to each
well does not exceed a 5% of its total volume. This is done to avoid disturbing the growing cell
culture. Considering that each well has a volume of 200 µL, this means that this amount should
not be greater than 10 µL.

Once the cell growth period is over, the 96-well plate will be released by the Cytation, and
induction is performed by pipetting using the OT-2 robot.

When finished, the plate is put back into the Cytation and the running program is resumed,
moving onto the third phase.

7.1.4 Experimental data collection
The Cytation now enters the third step. The cells will now grow for 16 hours and the OD600

and green fluorescence will be recorded throughout this process.

Once the experiment is completed, the plate will be released again. The data collected during
experiments is stored in the Gen5 software, and thus needs to be exported to a format readable
by MATLAB for further analysis (in this case, .xlsx has been chosen).

This resulted in the collection of a data set as described in Table 7.1.

Construction Collected data

pASSO11
pASSO1L1
pASSO12
pASSO1L2 Three (3) replicas with eleven (11) levels of AHL
pASSO13 concentration induction. OD600 and fluorescence
pASSO1L3 measurements done every five minutes over
pASSO14 a time-period of sixteen hours.
pASSO1L4
pASSO15
pASSO1L5

Table 7.1: Description of the collected experimental data.

7.2 Experimental data analysis
To represent the experimental data obtained during the test phase, the script Experimen-
tal_Data_Analysis.mlx (available in the Appendix), with which data is imported and analyzed
from the software integrated in the Cytation to MATLAB.

Despite having data for a total of 16 hours, and after a tidying data process, it was decided to
work with the first 8 hours of each experiment. The reason for this is that cell growth shows a
stabilization at this time-point, from which the system enters in a stationary state.
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Now, a preliminary visualization of the experimental data was conducted. The analyzed pa-
rameters will be the OD600 and MEFL evolution. Although generally it is preferable to analyze
the MEFL per particle because it shows the fluorescein production per protein, in this case it is
visually equivalent since all inductions for each circuit showed similar growth.

7.2.1 Gene circuits pASSO11 and pASSO1L1
Beginning with circuit pASSO11, it did not exhibit the expected behaviour. For the high-copy
construction, the fluorescence (Figure 7.3 B) showed abnormal results, which, when working with
the Cytation, is usually due to irregular fluorescence reads.

On the other hand, its low-copy circuit (Figure 7.3, D) does appear to have grown properly,
although further analysis is needed.

Figure 7.3: Experimental results of pASSO11, both in its high-copy and low-copy versions. The absorbance
(OD600) and Molecules of equivalent fluorescein (MEFL) is graphed over a period of 8 hours, which visually
represents cell growth and GFP production, respectively. The discontinuous line represents the moment at which
the induction with AHL was performed, which was at hour one for all experiments. Each curve is color-coded
according to the AHL induction concentration used.
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7.2.2 Gene circuits pASSO12 and pASSO1L2
The results for pASSO12 are shown in Figure 7.4. For this circuit, it can be seen how the initial
results are consistent with the expected outcomes:

1. A practically identical growth is observed regardless of the AHL induction concentration
(Figure 7.4 (A) and (C)). This is reasonable since it is known that AHL triggers the pro-
duction of GFP but does not affect cell reproduction directly.

2. In contrast, when comparing the growth between the high-copy and low-copy colonies,
a slightly greater dispersion is observed for the high-copy case (Figure 7.4 (A)). This is
related to the fact that using high-copy plasmids is associated with higher metabolic burden.
Therefore, slight differences may arise between inductions due to the higher production
demand and, consequently, higher burden.

3. The Molecules of equivalent fluorescein (MEFL) show a clear relationship with the concen-
tration of AHL. The higher the concentration is, the larger number of equivalent molecules
is (Figure 7.4 (B) and (D)).

4. In the steady state, the low-copy colony exhibits lower production of GFP (Figure 7.4 (D))
in comparison to the high-copy one (Figure 7.4 (B)). This is related to the lower plasmid
copy number per cell in this construction, where the replication origin has a lower Copy
Number (CN ) compared to the high-copy plasmid.

Figure 7.4: Experimental results for pASSO12, both in its high-copy and low-copy versions. The results are
graphed in the same way as for circuit pASSO11.
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7.2.3 Gene circuits pASSO13 and pASSO1L3
Circuit pASSO13 shows an unexpected result for the higher concentrations of induction, in which
it seems like an induction at 500 nM results in a lower GFP production than at 300 nM (Figure
7.5 (B) and (D)). However, the possibility of this being due to a different cell growth can be
discarded, since it can be seen how the high inductions showed almost identical growth (Figure
7.5 (A) and (C)).

Therefore, it might be due to an incorrect induction process, or to cross-contamination, which
will be corroborated by checking the control colony’s results in the following sections.

Figure 7.5: Experimental results for pASSO13, both in its high-copy and low-copy versions. The results are
graphed in the same way as for circuit pASSO11.

7.2.4 Gene circuits pASSO14 and pASSO1L4
The pASSO14 (Figure 7.6) showed similar results, although the separation between the induction
group of concentrations below 75 nM and those above 112.5 nM is greater than for pASSO12.
This could indicate that this genetic circuit is more sensitive to drastic changes in AHL con-
centration when reached a certain threshold, which would also mean that the RBS is also more
sensible to said variations.
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7.2.5 Gene circuits pASSO15 and pASSO1L5
The high-copy pASSO15 circuit shows a similar phenomenon to pASSO13 for GFP production
at 300 and 500 nM of AHL, which seem to be switched, albeit as seen in Figure 7.7 (A), it is
clear that this might be due to differences in cell growth. Thus, in this case it is necessary to
analyze individual protein production (MEFL/Part).

Figure 7.6: Experimental results for pASSO14, both in its high-copy and low-copy versions. The results are
graphed in the same way as for circuit pASSO11.
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Figure 7.7: Experimental results for pASSO15, both in its high-copy and low-copy versions. The results are
graphed in the same way as for circuit pASSO11.

7.3 Experimental Hill functions
From the experimental data at steady-state (end of experiment), a Hill function for each circuit
was obtained.

Since pASSO11 appeared to be particularly problematic circuit, it is relevant to individually
analyze its result (Figure 7.8).

On the other hand, the rest of the circuits (Figure 7.9) have demonstrated the expected behaviour.
In general, there are two aspects to highlight:

1. Higher protein production per cell in high-copy circuits.

The curves for both types of circuits (high-copy and low-copy) are clearly separated, being
the high-copy curve above in almost every case. Thus, it is clear that these circuits present
a higher protein production.

This is expected since high-copy circuits begin with a higher DNA amount in the cell, and
thus more promoters are available to be bind to.

2. Transition in MEFL/Particles for low-copy circuits.
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The change from lower to higher production is more drastic for low-copy circuits, whereas
in the high-copy case the function appears smoother.

This can be due to differences in sensibility to AHL induction. Since low-copy circuits have
a lower DNA amount, it is possible that greater concentrations of AHL are required to
trigger the initiation of a significant production of GFP protein.

7.3.1 Gene circuits pASSO11 and pASSO1L1
As seen in Figure 7.8, indeed the high-copy version of the pASSO11 gene circuit (high-copy
version) did not respond to induction.

On the other hand, the pASSO1L1 that is thelow-copy version does seem to have a good response
to the induction, but only for the 300 and 500 nM of AHL concentration. Despite this, the rest
of the induction do not seem to have caused any effect, since the response levels are close to the
pAFSO21 circuit, which is non-responsive to AHL.

Figure 7.8: Experimental Hill function obtained for circuit pASSO11. As seen in the legend, the curve marked
by the circular points corresponds to the high-copy version, the square points represent the low-copy version,
and the triangular points – the control circuit. Note that the vertical axis is log10.
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7.3.2 Gene circuits pASSO12 and pASSO1L2
As seen in Figure 7.9 (Left top), in circuit pASSO12 the lower concentration inductions appear
very close to pAFSO21, similarly to what happens with circuit pASSO11. Nonetheless, the dif-
ference with pASSO11 resides in the fact that most AHL inductions in their higher concentration
showed the expected response.

Therefore, it can not be considered with as much certainty that the inductions were not successful,
but rather that the response is low to the AHL inductions for the low-copy circuits.

Figure 7.9: Hill functions for circuits pASSO12, pASSO13, pASSO14, and pASSO15 obtained from the collected
experimental data. As seen in the legend, the curve marked by the circular points corresponds to the high-copy
version, the square points represent the low-copy version, and the triangular points – the control circuit. Note
that the vertical axis is log10.

7.3.3 Gene circuits pASSO13 and pASSO1L3
Circuit pASSO13 shows a slight decrease in production for higher AHL concentrations, for both
high-copy and low-copy versions. Specifically, as seen in Figure 7.9 (Right top), once the AHL
reaches 300 nM, the MEFL/Particle ratio starts to descend.

This may be due to a saturation because of a competition over the cellular resources. This means
that when the cell reaches a certain intracellular AHL concentration, all resources are already
occupied for the production of GFP, and this burden causes a decrease of GFP production.
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It can also be noted how the equivalent MELF/Particle for these higher AHL concentrations
slightly overlap, which could possibly indicate that, beginning from a certain concentration, the
saturation point is the same independently of the Copy Number of the cell.

7.3.4 Gene circuits pASSO14 and pASSO1L4
Regarding pASSO14 in Figure 7.9 (Left bottom), a similar phenomenon to pASSO13 is noted,
albeit in this case this is also observed for lower induction concentrations.

Nevertheless, it is important to point out how in both circuits circuit pAFSO21 responded to
AHL, which could indicate possible cross-contamination in both experiments.

7.3.5 Gene circuits pASSO15 and pASSO1L5
In Figure 7.9 (Right bottom), this circuit shows a similar behaviour to circuit pASSO12, where
the low-copy version shows very little response to induction, being practically at the same level as
control colony pAFSO21. However, as mentioned above, most of the responses to AHL inductions
are the expected.

Ultimately, it appears that, in general, the circuits that did perform well in experiments do appear
to have exhibited an expected response to AHL as seen in the experimental Hill functions.

7.3.6 Normalized Hill functions
Now, an important parameter is the half-concentration, at which it is considered that GFP
production begins. Roughly, it is the middle point of the part of the curve that separates the
lower and higher levels of productions in the Hill function.

However, in this case the aim is not to estimate this exact concentration experimentally, but
rather obtain an approximation. Thus, the preliminary experimental Hill functions were normal-
ized for every circuit, which also allows to compare the results across circuits.

These are represented in Figure 7.10. As observed, it can be seen that for most of the cases, the
half-concentration ranges between AHL at 112.5 and 135 nM.

7.4 RBS Strengths
Now, it is possible to estimate the arrangement according to the strength for the four RBSs
discussed. Albeit more experimental data would be needed to determine if said order is correct,
we performed a preliminary estimation.

Thus, by taking into account the maximum levels of MEFL per particle produced by each circuit,
the Tables 7.2 and 7.3 were obtained, for the high-copy and low-copy circuits respectively.

Construction High-copy (MEFL/particle)

pASSO15 5× 105

pASSO13 4× 105

pASSO12 2× 105

pASSO14 2× 104

Table 7.2: Order of RBS strength based on the maximum MEFL/Particle levels produced by the high-copy
circuits.
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Construction Low-copy (MEFL/Particle)

pASSO13 3× 105

pASSO15 1.3× 105

pASSO12 5× 104

pASSO14 1.5× 104

Table 7.3: Order of RBS strength based on the maximum MEFL/Particle levels produced by the low-copy
circuits.
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(a) Normalized Hill functions for the high-copy circuits.

(b) Normalized Hill functions for the low-copy circuits.

Figure 7.10: Normalized Hill functions for high-copy and low-copy circuits. Zero represents very low or null pro-
moter activity, one represents maximum activity in relation to the rest of RBSs. The expected half-concentration
is marked with a red dotted line.
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Chapter 8

Phase IV: Learn

8.1 Identification of model parameters
Initially, the aim was to identify all five gene circuits, and thus use all the experimental data
collected during the optimization. However, due to the invalid experimental results obtained for
circuit pASSO11, it was decided not to include it in this process.

As discussed in Section 3.6, the identification process can be resumed in the steps shown in
Figure 8.1.

Figure 8.1: Steps for the identification of a gene circuit.

The optimization was designed in two parts: one for the high-copy circuits and another one for
the low-copy. This allowed to reduce the model error, as well as better adjust model parameters
representing both groups of genetic circuits.

Furthermore, it is relevant to perform this separation since it will define most of the parameters
in the system (basal production, RBS behaviour, cooperativity index, GFP production rate, and
degradation rates). This is due to the fact that the Copy Number defines the initial amount of
DNA in the cell, and thus the initial conditions are modified as well.
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8.1.1 Optimization set-up
To estimate the parameters from above, we have designed a model that will represent the Hill
function, which is shown in Equation 8.1.

ŷk(θ, i) =

pi
g·CN ·kg

dmg+µmax
· (α+ (1− α) · AHLn

k

(
kdlux·kd2

LuxR
)n+AHLn

k )

dg + µmax
(8.1)

Here, ŷk(θ, i) is the estimated value of the parameters in θ, which is the vector containing said
values. On the other hand, i is a value from 1 to 5, depending on the RBS as in Table 6.1. This
estimation will be compared with the experimental value yk(i), where k is an identifier for the
AHL induction level (as described in Figure 7.2).

Note how pGi is the translation rate of the GFP protein, and thus it will be dependant on the
used RBS. Therefore, it will have four distinct values thanks to the four sets of experimental
data available.

(θ, i) =



kg
kdlux
α

n
(pG)i

CN

dmg
dg


Ultimately, the goal is to minimize cost function J, which, as described in Section 4.2.3, is the
Root Mean Logarithmic Square Error (RMLSE) between experimental data and the estimated
values of GFP protein. Since the interest relies on minimizing the error globally for all the
parameters in each group, this error will be calculated by minimizing the RMLSE.

Thus, the resulting expression will be Equation 8.2. Notice how the error is be weighted based
on the RBSs used (i, from 1 to 4) and also AHL inductions (k, from 1 up to l = 10).

min
θ

J(θ) =
1

4

4∑
i=1

√√√√1

l

l∑
k=1

(log10(yk(i) + 1)− log10(ŷk(θ, i) + 1))2 (8.2)

This cost function was implemented in MATLAB in a script named cost_function_pLux.m
(available in the Appendix).

Now, since two separate optimization processes were conducted, the resulting parameters were
analyzed separately
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8.2 Optimization results for high-copy circuits
After conducting the optimization process, the resulting parameters are listed in Table 8.1.

Parameter Estimated value Theoretical value Absolute Error RMLSE J(Θ)
kg 9.1317 5.800 3.3317

17.09%

kdlux 71549 65000 6549
alpha HC 0.0500

0.0100
0.0400

alpha LC 0.0567 0.0464
n HC 3.2382

- -
n LC 17.9392
pR2 0.8285

4.44

3.6115
pR3 1.8789 2.5611
pR4 0.0800 4.3600
pR5 4.9980 0.5580
CNh 52.1724 40 12.1724
dmg 0.23350 0.23104 0.0025
dg 4× 10−3 1.1552× 10−3 0.0024

Table 8.1: Comparison between the estimated and theoretical parameters for the high-copy circuits.

Most of the parameters differ from their initial theoretical estimation. Albeit these previous
estimations come from the literature, it must be considered the way these were originally obtained
(experiments in other environments or specific scenarios, different than ours).

8.3 Optimization results for low-copy circuits
Regarding the low-copy circuits, the obtained simulated parameters for the model are listed in
Table 8.2.

Similarly to the previous case, most of them slightly differ from their theoretical value.

Parameter Estimated value Theoretical value Absolute Error RMLSE J(Θ)
kg 3.7748 5.800 2.0252

27.64%

kdlux 56822 65000 8178
α HC 0.0903

0.0100
0.0803

α LC 0.0154 0.054
n HC 6.9436

- -
n LC 13.5746
pR2 2.2754

4.44

2.1646
pR3 8.1141 3.6741
pR4 1.1105 3.3295
pR5 4.1261 0.3139
CNh 8.6886 8 0.6886
dmg 0.25670 0.23104 0.0257
dg 5.2339× 10−4 1.1552× 10−3 6.3181× 10−4

Table 8.2: Comparison between the estimated and theoretical parameters for the low-copy circuits.
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8.4 Simulating Hill functions with the estimated parameters
Once the optimized parameters were obtained, these were used to simulate the new Hill functions
for each high-copy (Figure 8.2a) and low-copy (Figure 8.2b) circuits.

(a) Comparison for the high-copy circuits.

(b) Comparison for the low-copy circuits.

Figure 8.2: Simulated Hill functions (continuous line) and the experimental results (square boxes).

The results show that the experimental data (marked as squared boxes in Figures 8.2a and 8.2b)
are close to the estimations, there are small deviations between both experimental and simulated
data, particularly for the low-copy circuits (Figure 8.2b),
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Specifically, the global error of the cost function for the high-copy circuits model is a 17.09%,
whereas for the low-copy ones it is a 27.64%.

Despite these being seemingly high error values, in reality it is a good initial result. After all,
several factors must be taken into account:

• The parameters are obtained globally. This means that, except for the GFP trans-
lation rate pG, the rest of the values are fixed for all circuits. They were not adapted or
fitted to each specific circuit, but rather to their group (high-copy or low-copy) as a whole.

• This is a living cell. The behaviour of living organisms is not always easily predictable.
Even if all experiments are conducted under the same conditions, small changes in the
environment can trigger anomalous behaviours, resulting in discrepant outcomes.

• The model or digital twin is deterministic. In this type of models, it is assumed that
the same input always produces the same output because there are no random components
in the system. However, this is not always the case for living systems, where biochemical
reactions are inherently random and there are many of fluctuations from the expected
biological process. In our case, some of these effects have not been considered.
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Chapter 9

Conclusions and Future Perspectives

9.1 Conclusions and Future Perspectives
The conclusions resulted from this project, which in turn fulfil the general objectives proposed
are:

1. Firstly, the Design-Build-Test-Learn (DBTL) cycle was successfully employed to develop
inducible gene circuits. At the end of each phase we can conclude:

• Design. Computational design of the genetic circuits of interest was carried out to ob-
tain a preliminary digital twin represented by the corresponding mathematical model.

• Build. The ten (10) designed gene circuits were assembled in the laboratory using
molecular biology techniques, and transformed into bacteria Escherichia coli (E. coli)
for testing.

• Test. Experiments were performed with the ten gene circuits to collect measurements
of number of cells (Absorbance) and amount of protein produced by every circuit
(Fluorescence).

• Learn. The experimental data were used for the identification process to estimate the
parameters of the digital twin or model of every gene circuit.

2. The basic parts of every inducible genetic circuit were designed, assembled and verified by
colony PCRs. These parts were included in the laboratory’s Biological Parts Library,
so that they can be reused by other members in the design of new genetic circuits.

3. A digital twin of every gene circuit was designed to analyse its behaviour along a time
window. This digital twin is a set of ordinary differential equations (ODE) that represent
the biochemical reactions among the biochemical species (DNA, messenger RNA, proteins,
enzymes, etc.) produced in a gene circuit.
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4. The estimation of the model parameters computed the experimental data of fluorescence
under different conditions of AHL induction, with the predicted data coming from the
digital twin. The parameters improve the initial digital twin or model, and they explain
almost the 80% of the experimental behaviour of the 10 gene circuits.

With regard to the specific objectives, all the initial target parameters were identified, i.e. those
that allow characterization of the three biological parts of interest in this project:

• The inducible promoter Plux (this is, the DNA sequence responsible for the transcription
process).

• The five ribosomal binding sites (RBS), which is the DNA site responsible for the translation
process of a protein.

• The two vectors that define the amount of DNA (the Copy number). One vector was
High-copy, and the other one Low-copy.

9.1.1 Future Perspectives
There is still work to be done to fully characterise a gene circuit. Some of the future lines derived
from this project are:

1. Re-initiation of the DBTL cycle. Starting with a fine-tuning of the mathematical
model by taking into account additional considerations such as type of nutrients added to
the cell culture, or larger time periods of cell incubation. This way, we would open the
possibility of starting the next iteration of the DBTL cycle.

2. Conducting further experiments. Conducting more number of experiments, and us-
ing a different range of induction signal (other concentrations of Acyl-homoserine-lactones
AHL), would generate a more complete experimental data set. In turn, these would improve
the estimation of the parameters from the digital twin.

3. DNA Sequencing of all gene circuits. The reason why the gene circuit pASSO11
presents unexpected behaviour might be because of mutations in the sequence. Therefore,
sequencing this or even all gene circuit will provide new insights and guidelines to improve
them.
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Chapter 10

Budget

10.1 Introduction
As an engineering project in which many computational and experimental tools and devices were
used, it is important to quantify the economic value of conducting it.

The duration of this project was roughly six months, and thus this is the time-frame in which
all calculations will be made.

10.2 Detailed budget

10.2.1 Labour costs
The manual laboratory work was mainly carried out by the author, who in this case is a junior
engineer. A salary of €6/hour will be considered for her.

Furthermore, it is necessary to consider the positions of the supervisor and co-supervisor, both
of whom are senior engineers. A salary of €12.5/hour will be considered for them.

Although laboratory technicians can also be present in this type of environment, this position
will not be included since these tasks were also performed by the junior engineer, thanks to her
training in molecular biology techniques.

Now, it is considered that the project had a total duration of six months, during which ap-
proximately 15 days of joint work between the supervisors and the student were necessary for
instruction and learning. Thus, a total of 1,056 hours is allocated to the student, and 120 hours
each to the supervisors.

In this way, the costs associated with labor are obtained as shown in Table 10.1. The total labour
cost of this project amounts to nine thousand three hundred thirty-six euros.
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Position Unit cost (€/hour) Amount (h) Total cost (€)

Junior Engineer 6 1,056 6,336
Senior Engineer 12.5 240 3,000

Total 9,336

Table 10.1: Labour costs.

10.2.2 Hardware and software costs
The costs associated with hardware and software licenses used were not considered by means
of their market price, but rather measured in terms of the amortization factor (A.F) over the
project’s duration time (6 months).

In this way, the hardware and software used are described in Table 10.2, along with their cor-
responding prices and amortization factors. It is considered that the laptop has a lifespan of
approximately 7 years (84 months), while the licenses are amortized over a period of 12 months.

Thus, these components amount to a total of one hundred eighty-four euros and fourteen
cents.

Component Cost (€) Amount (u) A.F Total cost (€)

Dell Laptop 800.00 1 6/84 57.14
MATLAB R2022a 250.00 1 6/12 125.00

Overleaf 0.00 1 6/12 0.00
Benchling 0.00 1 6/12 0.00

BioTek Gen5 Included with Cytation 1 6/12 N/A
Total 184.14

Table 10.2: Hardware and software costs.

10.2.3 Materials and instruments costs
The budget associated with materials and instrumentation will be considered in the same way
as the used hardware, albeit considering a lifespan of 10 years (120 months). Additionally, an
initial material purchase (pipette tips, Eppendorf tubes, etc.) with a value of €600 has been
considered, and it is assumed that the entirety of it has been used throughout the project.

Therefore, the costs associated with the materials described in Section 4.4.1 are presented in
Table 10.3, amounting to a total of five thousand six hundred seventy-four euros and
one cent.
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Instrument Cost (€) Amount (u) A.F Total cost (€)

Initial Material stock 600.00 1 N/A 600.00
TECHNÉ 3Prime Thermal Cycler 3,425.68 1 6/120 171.28

Opentrons OT-2 Robot 15,569.96 1 6/120 778.49
BioTek Cytation 3 Imaging Reader 75,000.00 1 6/120 3750.00

Stuart SI500 Orbital Shaker Incubator 4,980.62 1 6/120 249.03
Memmert IN110 Incubator 2,504.00 1 6/120 125.20

Total 5,674.01

Table 10.3: Materials and instruments cost.

10.2.4 Reaction costs
Now, it is also important to include the cost of the GB Assembly, as well as of the colony PCRs.
In the first case, 10 gene circuits were assembled, and thus that is the amount of GB reactions
conducted. Regarding the colony PCRs, four colonies per gene circuit were selected to conduct
this reaction, and therefore 40 PCRs are considered.

The cost of said reactions was calculated based on the reactants used to conduct them, as detailed
in Section 4.4.2, obtaining Table 10.4. This way, the reaction costs amount to a total of eight
hundred ninety-four euros.

Reaction Cost (€) Amount (u) Total cost (€)

Golden Braid Assembly 28.60 10 286.00
Colony PCR 15.20 40 608.00

Total 894.00

Table 10.4: Reaction costs

10.3 Total budget

10.3.1 Material execution budget
Considering all previous sections, the total material execution budget amounts to sixteen thou-
sand eighty-eight euros and fifteen cents.

10.3.2 Contracted operation budget
According to the General Regulations of the Law on Public Administration Contracts, approved
by the Royal Decree 1098/2001 (Ministerio de Hacienda, 2001), additional costs associated to
the indirect costs and industrial benefit must be added to obtain the total budget. These are
calculated by taking a 13% and a 6% of the material execution budget, respectively. An additional
21% in terms of Value Added Tax (VAT) must be added as well.

Thus, the resulting budget ascends to twenty-three thousand one hundred sixty-five euros
and thirty-three cents, as per Table 10.5.

78



Design and implementation of digital twins of synthetic inducible gene expression circuits

Denomination Cost (€)
Material execution budget 16,088.15

Indirect costs 2,091.46
Industrial benefit 965,29

Total before VAT 19,144.90
VAT 4,020.43

Contracted operation budget 23,165.33

Table 10.5: Total budget, including before and after VAT.
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Conference papers derived from this
work
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Resumen

El ciclo Diseño-Construcción-Prueba-Aprendizaje (DBTL) es un marco crucial en Biologı́a Sintética para el desarrollo y
optimización de sistemas biológicos. Sin embargo, la naturaleza manual del ciclo plantea limitaciones en términos de tiempo y
mano de obra. Este artı́culo se centra en la aplicación de técnicas de automatización al ciclo DBTL, concretamente en el ensayo
y caracterización de biopartes estándar, que son componentes esenciales de los circuitos genéticos. La automatización del proceso
de ensayo puede mejorar significativamente el rendimiento, la fiabilidad y la reproducibilidad. En este artı́culo se analizan los
retos asociados a los métodos de ensayo manuales y se exploran diversas estrategias y tecnologı́as de automatización que pueden
resolverlos. Los métodos de cribado de alto rendimiento, la robótica de laboratorio y los algoritmos de análisis de datos son
elementos clave en el proceso de automatización. Se examinan estudios de casos y avances recientes en la automatización del ciclo
DBTL para pruebas de biopartes. La integración de la automatización en el ciclo DBTL ofrece numerosas ventajas, como una
mayor eficacia, estandarización y control de calidad de las biopartes. También permite la exploración de espacios de diseño más
amplios y la creación rápida de prototipos de sistemas genéticos complejos. Este artı́culo ofrece una revisión exhaustiva del estado
actual de la técnica y las perspectivas de futuro en la automatización del ciclo DBTL para el ensayo y la caracterización de biopartes
estándar.

Palabras clave: Automatización, Diseño-Construcción-Prueba-Aprendizaje, Estimación de parámetros, Opentrons, Circuitos
genéticos.

Hacia la automatización del ciclo de bioingenierı́a Diseño-Construcción-Prueba-Aprendizaje (DBTL): Aplicación al ensayo
y caracterización de biopartes estándar.

Abstract

The Design-Build-Test-Learn (DBTL) cycle is a crucial framework in Synthetic Biology for the development and optimization
of biological systems. However, the manual nature of the cycle poses limitations in terms of time and labor. This paper focuses on
the application of automation techniques to the DBTL cycle, specifically in the testing and characterization of standard bioparts,
which are essential components of genetic circuits. By automating the testing process, throughput, reliability, and reproducibility
can be significantly improved. This paper discusses the challenges associated with manual testing methods and explores various
automation strategies and technologies that can address these challenges. High-throughput screening methods, laboratory robotics,
and data analysis algorithms are key elements in the automation process. Case studies and recent advancements in automating
the DBTL cycle for biopart testing are examined. The integration of automation in the DBTL cycle offers numerous advantages,
including increased efficiency, standardization, and quality control of bioparts. It also enables the exploration of larger design spaces
and rapid prototyping of complex genetic systems. This paper provides a comprehensive review of the current state-of-the-art and
future prospects in automating the DBTL cycle for testing and characterizing standard bioparts.

Keywords: Automation, Design-Build-Test-Learn, Parameter estimation, Opentrons, Genetic circuits.
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1. Introduction

In the field of Synthetic Biology, the Design-Build-Test-
Learn (DBTL) cycle (Figure 1) serves as a fundamental
framework for the development and optimization of biological
systems (Cummins et al., 2023). This iterative process involves
designing genetic constructs, building them through molecular
biology techniques, testing their functionality, and learning
from the obtained results to refine future designs. The DBTL
cycle has been pivotal in advancing synthetic biology and
enabling the engineering of living organisms with desired traits
and functions (Tellechea-Luzardo et al., 2022; Carbonell et al.,
2020).

Figure 1: Design, Build, Test and Learn bioengineering cycle used in Synthetic
Biology.

While the DBTL cycle has proven its effectiveness in the
design and construction of biological systems (Gurdo et al.,
2023), it is a labor-intensive and time-consuming process
that often requires significant manual intervention. As the
complexity of bioengineering projects continues to increase,
there is a growing need to streamline and automate the DBTL
cycle to accelerate the development of biological solutions
(Cummins et al., 2023).

There is work being done towards a fully automated DBTL
cycle tackling one of the steps at the time; mainly for the
automation of the design step (Buecherl and Myers, 2022;
Radivojević et al., 2020; Vidal et al., 2022b; Boada et al.,
2021, 2022a,b), build step (Ko et al., 2022; Kang et al., 2022;
Bryant Jr et al., 2023), for the test step there are advances in the
calibration of the measurements (Beal et al., 2022; González-
Cebrián et al., 2023), and in the automation of wetlab protocols
in general(Vidal-Peña, 2023). Finally for the learn step (Vidal
et al., 2022a; Yanez Feliu et al., 2020; Boada et al., 2019b).
However, there are not many examples of automation of the
test and learn steps combined. This paper aims to explore
the application of automation techniques to the DBTL cycle
steps Test and Learn, specifically focusing on the testing and
characterization of standard bioparts. Standard bioparts, such
as promoters, terminators, and coding sequences, form the
building blocks of genetic circuits and are widely used in
bioengineering projects. Efficiently testing and characterizing
these bioparts is crucial for their reliable integration into larger

genetic systems and the predictable behavior of engineered
organisms (Boada et al., 2019a).

Automation has the potential to revolutionize the testing and
characterization of standard bioparts by improving throughput,
reliability, and reproducibility (Cummins et al., 2023). By
leveraging advanced laboratory robotics, high-throughput
screening methods, and data analysis algorithms, automation
can significantly accelerate the iterative testing process and
provide valuable insights for bioengineers. Furthermore,
automation can enhance the standardization and quality control
of bioparts (Buecherl and Myers, 2022), ensuring their
compatibility and reliability across different projects and
laboratories (Beal et al., 2020).

This paper will discuss the current challenges and
limitations of manual testing and characterization methods for
standard bioparts. It will then explore various automation
strategies and technologies that can be employed to address
these challenges. Additionally, we will examine with a case
study the proposed advancements in the automation of the
DBTL cycle for the testing and characterization of standard
bioparts.

2. Automation of the Test step

This work is focused on the Test and Learn steps of the
DBTL cycle, so the starting situation is where there exist several
genetic constructs in the lab, and we need to test them and learn
from these experiment to improve the models and characterize
the used bioparts. First we deal with the Automation of the Test
step. For this we implemented a automated protocol combining
the Agilent Biotek plate reader (Figure 2) with the Opentrons
OT-2 (Figure 3).

Figure 2: Agilent Biotek Cytation 3 plate reader. This plate reader allows
us for incubation at 37ºC, agitation and measurement of both absorbance and
fluorescence.

This workflow implements the protocol for the
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normalization of initial concentrations of 7 bacterial culture
samples for a 16 hour incubation/measurement experiment.
Specifically, the protocol is divided into two parts, the first is
a 1:4 dilution of the culture in the culture medium Minimal
Media M9 salts plus 20 % of glucose (blank), this dilution will
be measured and the optical density (OD) of the 7 samples will
be taken so that in the second part of the protocol all the culture
are normalized to an OD of 0.1. Later on, this dilutions are
distributed into the measurement 96 well plate. To carry out this
whole process it is necessary to have a specific configuration of
the OT2 and OT-2 deck (Figure 4), to make use of the Agilent
Biotek Cytation measurement program and to use the Jupyter
notebook linked to the OT2 to run the protocol.

Figure 3: Opentrons OT-2 liquid-handling robot. The OT-2 already prepared to
execute the protocol with all the labware in the right position. Pipettes used are
the Multichannel P300 in the right mount, and the Single Channel P1000 in the
left mount.

2.1. Procedure

1. Set up the OT2 as shown in the Figure 3. Pipettes used
are the Multichannel P300 in the right mount, and the
Single Channel P1000 in the left mount.

2. Set up the deck as follows (also shown in Figure 4):
SLOT 1: Opentrons 15 tube rack with falcon 14 ml round
SLOT 2: Porvair 96 deep well plate 2ml conical
SLOT 3: Genier bio coldblock 96 well plate 400ul
SLOT 4: Opentrons 6 tube rackwith falcon 50 ml conical
SLOT 8: Opentrons 96 tip rack 1000ul
SLOT 11: Opentrons 96 tip rack 300ul

3. In the third step the different liquids that the OT2 will
handle will be added. The order in which the samples are
placed is of great importance for the correct functioning
of the protocol, in this case we have chosen the sequence
A1, A2, A3, A4, A5, B1 and B2 (Figure 4).

4. The fourth step is the calibration and adjustment of the
offsets. Calibration is performed by loading a python
script with a small protocol in the OT2 APP with the
necessary labware previously loaded. Once this protocol
is selected the user has only to run the Labware Position
Check to start the manual calibration. Once the offsets
are obtained, do not close the window with the data,
because they have to be copied to each of the protocols
to be executed in Jupyter (Figure 5).

Figure 4: Deck of the Opentrons OT-2 liquid-handling robot prepared for the
protocol.

5. Execution of the first part of the protocol from Jupyter.
For this it is necessary to change the variable action to
2 of the protocol, to start executing the code and then
launch the code by pressing Ctrl+Enter.

6. Once the whole process has been completed, the SLOT
3 plate will carry the samples in the 12 column, and
it must be transfered to the plate reader to perform
the Absorbance measurement. The OD measurements
obtained should be saved into the provided Template
Spreadsheet as a comma separated values files. This
template calculates the desired dilutions and volumes to
be used later by the OT-2.

7. Upload the Template csv files with the measured values
to the OT-2 Jupyter environment.

8. Execution of the second part of the protocol as done in
the fourth step by putting back the 96 well plate to SLOT
3 without the lid, and adding the offsets and changing the
action variable to 2 of the protocol to start executing the
code and then launch the code by pressing Ctrl+Etner.
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Figure 5: Using a simple protocol with the OT-2 APP allows us to get the
calibration values for each SLOT.

Figure 6: Deck of the Opentrons OT-2 liquid-handling robot after the
completion of the two protocols. The sample 96 well-plate is prepared for
growth/measurement experiment.

The use of this protocol establishes the systematic
preparation of the 96 well-plate for the growth/measurement
experiment, by ensuring a constant initial concentration of
cultures across the plate.

Once the experiment is done, we have a big dataset of
absorbance and fluorescent measurements from the selected
sample.

3. Using data in the Learn step

Using the previously explained workflow for the Test step
of the DBTL cycle, we obtain a dataset of measurements for the
two genetic circuits shown in Figure 7.

We have 10 technical replicates in 4 experiments performed
on different days for each one of the devices. While incubating
at 37oC and 230 rpm in a high-speed double orbital shaking,
the absorbance was recorded at 600nm, and the fluorescence
was measured at 530nm with an excitation of 488nm for 16
hours. The calibration of both absorbance and fluorescence
was done using our calibration protocol (Beal et al., 2022;
González-Cebrián et al., 2023). In Figure 8, the replicate-
averaged data show: the number of bacteria (Particles), the
number of molecules (MEFL), the number of molecules per cell
(MEFL/Part), and the growth rate calculated with an anti-causal
filter in Matlab (filtfilt command).

Figure 7: A constitutively expressed GFPmut3b in a high copy plasmid
(ColE1 ori) and a low copy plasmid (pSC101 ori) both with the same RBS
(BBa B0030) and Promoter (BBa J23106).

Figure 8: Experimental data for the two devices obtained using the automated
workflow for the Test step. From up to bottom: Number of bacteria (Particles),
Number of molecules (MEFL), number of molecules per cell (MEFL/Part), and
growth rate. Left, low copy number device, right: high copy number device.

With this dataset, we perform a parameter identification by
taking a simple growth-independent protein production model:

dN
dt
= µ(t)N (1)

dG
dt
=

CN kG pG

dmG + µmax
− dGG − µmaxG (2)

where µ(t) is the growth rate, N is the number of particles, CN is
the copy number, kG is the transcription rate of the protein, pG
is the translation rate of the protein, dmG is the dilution rate
of mRNA, dG is the dilution rate of the protein, µmax is the
maximal growth rate, and G is the protein concentration. In
the first place, we assume as five the value for the low copy
number construct (CN = 5), then we perform the identification
obtaining the parametric values shown in the first row of Table
1 using the Genetic Algorithm of MathWorks (2023). After
that, we just evaluate the same cost function assuming that the
only change from the low copy number device to the high copy
number one is precisely the copy number, from 5 in the case of
the low copy to 35 in the case of the high copy (Morgan, 2023).
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In particular from the dataset, we take a µmax = 0.02321 [min−1]
for both low and high copy. By doing this, we can use the same
identified parameter values from the low copy number device to
predict the protein production of the high copy number device.
As shown in Table 2, we obtain a similar error in prediction and
optimization.

Table 1: Estimated parameters for Low copy number device.
kG pG dmG dG CN

Low copy 9.91 2.18 0.36 0.0021 5
High copy 9.91 2.18 0.36 0.0021 35

In Figure 9, the experimental data for each device is shown
together with the optimized model for the low copy number
device, which was used to obtain values for the parameter.
In addition, the figure shows the predicted protein production
for the high copy number device (using the low copy number
parameters with a change in the copy number).

Figure 9: Optimized and predicted protein production for the low copy number
device and high copy number device respectively.

Table 2: Prediction errors
MS E RS E

Low copy (optimization) 3.5005e+08 4.0695
High copy (prediction) 3.4719e+08 3.1733

4. Conclusions

This paper proposes an automation of the Test step of
the DBTL and using the experimental data obtained for
characterization of standard bioparts. With a simple model
of protein production and the experimental data we can
obtain parameter values that allows us to accurately predict
the protein production level of another device only using
the maximal growth rate of that construct. This paves
the road for modeling complex devices and using these
models to obtain sensible prediction of their outputs. The

integration of automation into the DBTL cycle holds great
promise for advancing the field of bioengineering and synthetic
biology. It not only increases the efficiency and reliability
of biopart testing but also enables the exploration of larger
design spaces and the rapid prototyping of complex genetic
systems. Ultimately, automation can facilitate the development
of novel bioengineered solutions with enhanced functionality
and applicability in areas such as healthcare, biomanufacturing,
and environmental sustainability. By embracing automation,
we can overcome the limitations of manual approaches and
unlock the full potential of bioengineering to address pressing
societal challenges and pave the way for innovative biological
solutions.
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of a ”Práctica de Empresa - Plan de ayudas ai2 a la I+D+i
2022”. A.P. is a recipient of a ”Práctica de Empresa - Plan
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Appendix B

MATLAB scripts

Estimation of cell growth rate (µ).� �
1 function [estimated_mu] = Mu_estimate(Input_time_series,sampling_time)
2 %Estimates the specific growth rate
3 % We obtain the derivative as
4 % dy(k)/dt = (-y(k+2) + 8*y(k+1)-8*y(k-1) + y(k-2))/12/dt
5 % and then apply a Butterworth filter:
6 % [b,a] = butter(2,4/33);
7 % data_ff = filtfilt(b,a,data);
8 % Input_time_series is the sampled data of absorbance or Particles
9 % Sampling is assumed to be in minutes

10 % estimated_mu gives the estimate of the specific growth rate in hours^{-1}
11 %
12 % We first extend the vector on the left and right extremes:
13 x0_value = Input_time_series(1);
14 xf_value= Input_time_series(end);
15 temp_data= [x0_value;x0_value;Input_time_series;xf_value;xf_value];
16 der_temp_data = (-temp_data(5:end,:)+8*temp_data(4:end-1,:)-8*temp_data(2:end-3,:)+ ...
17 temp_data(1:end-4,:))./(12*sampling_time);
18 raw_estimated_mu = der_temp_data./Input_time_series;
19 %[b,a] = butter(2,8/33); %wn=4/33
20 b=[0.0928, 0.1857, 0.0928];
21 a=[1, -0.9728, 0.3441];
22 mu=filtfilt(b,a,raw_estimated_mu);
23 if mu<=0
24 estimated_mu=1e-4;
25 else
26 estimated_mu=mu;
27 end
28 end� �
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Function to analyze experimental results.� �
1 load pLux_pASSO14.mat;
2 startpoint=3;
3 ControlStrain=[]; %1 IF ANY
4 user_end_time =[8];
5 Font_size=12;
6

7 %SETTNGS CONTROL STRAIN
8 strain=char(evol.medios.strains.Id);
9 stepTime = evol.time_OD(2)-evol.time_OD(1); %every X minutos

10 timePRE = evol.npre*stepTime/60-startpoint*stepTime/60;
11 timeEXP = (evol.time_OD(startpoint:end)-evol.time_OD(startpoint))./60; %in hours
12 if isempty(user_end_time)
13 tEnd=timeEXP(end);
14 fpoint = length(timeEXP);
15 else
16 tEnd =user_end_time;
17 [fpoint,v]=find(timeEXP>=tEnd & timeEXP<=tEnd+stepTime/60);
18 timeEXP=timeEXP(startpoint:fpoint)-timeEXP(startpoint);
19 end
20

21 %Control strain to correct background
22 if isempty(ControlStrain)
23 ControlSt=0; Rcontrol=zeros(length(timeEXP),1);
24 else
25 ControlSt=size(strain,1);
26 CSt_AHL=char(evol.medios.strains(ControlSt).data.Inducc);
27 if CSt_AHL > 1
28 ODcontrol = evol.medios.strains(ControlSt).data(size(CSt_AHL,1)).OD_media(startpoint:end,:)- ...
29 evol.medios.OD_medio(startpoint:end);
30 Fcontrol = evol.medios.strains(ControlSt).data(size(CSt_AHL,1)).F_media(startpoint:end,:)- ...
31 evol.medios.F_medio(startpoint:end);
32 [Rcontrol, Rlog, Particles, MEF] = Calibrate_MEFL_GFPmut3b(ODcontrol,Fcontrol);
33 end
34 end
35

36 mypal = [’00adff’, ’4fbee4’, ’58cfe4’, ’5cdfea’, ’5deff3’, ’5cffff’, ’ede12a’, ’eec14b’, ’f19d6a’,
’f2738d’, ’f033b4’];

37 map = hex2rgb(mypal);� �
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� �
1 %MEAN AND TEMPORAL FIGURE
2 %Main programm
3 strain=char(evol.medios.strains.Id);
4

5 stepTime = evol.time_OD(2)-evol.time_OD(1); %every X minutos
6 timePRE = evol.npre*stepTime/60-startpoint*stepTime/60;
7 timeEXP = (evol.time_OD(startpoint:end)-evol.time_OD(startpoint))./60; %in hours
8 if isempty(user_end_time)
9 tEnd=timeEXP(end);

10 else
11 tEnd =user_end_time;
12 end
13

14 %Control strain to correct background
15 if isempty(ControlStrain)
16 ControlSt=0; Rcontrol=zeros(length(timeEXP),1);
17 else
18 ControlSt=size(strain,1);
19 CSt_AHL=char(evol.medios.strains(ControlSt).data.Inducc);
20 if CSt_AHL > 1
21 ODcontrol = evol.medios.strains(ControlSt).data(size(CSt_AHL,1)).OD_media(startpoint:end,:)- ...
22 evol.medios.OD_medio(startpoint:end);
23 Fcontrol = evol.medios.strains(ControlSt).data(size(CSt_AHL,1)).F_media(startpoint:end,:)- ...
24 evol.medios.F_medio(startpoint:end);
25 [Rcontrol, Rlog, Particles, MEF] = Calibrate_MEFL_GFPmut3b(ODcontrol,Fcontrol);
26 end
27 end
28

29 mypal = [’00adff’, ’4fbee4’, ’58cfe4’, ’5cdfea’, ’5deff3’, ’5cffff’, ’ede12a’, ’eec14b’, ’f19d6a’,
’f2738d’, ’f033b4’];

30 map = hex2rgb(mypal);� �
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� �
1 for m=1:size(strain,1)
2 figure(’Name’,strain(m,:));
3 AHL=char(evol.medios.strains(m).data.Inducc);
4 total_ax=3;
5 for j=1:size(AHL,1)
6 ODblank = evol.medios.strains(m).data(j).OD_media(startpoint:end,:)- ...
7 evol.medios.OD_medio(startpoint:end);
8 Fblank = evol.medios.strains(m).data(j).F_media(startpoint:end,:)- ...
9 evol.medios.F_medio(startpoint:end);

10 [R, Rlog, Particles, MEF] = Calibrate_MEFL_GFPmut3b(ODblank,Fblank);
11 for n=1:total_ax
12 hs=subplot(total_ax,1,n,’xlim’,[0 tEnd]);
13 if n==1
14 plot(timeEXP, ODblank,’Color’,map(j,:),’LineWidth’,1);
15 hold on;
16 if j==size(AHL,1)
17 xlabel(’Time (h)’);
18 ylabel(’ OD_{600}’); title(strain(m,:));
19 grid on;
20 pos=get(hs, ’position’);
21 annotation("line",(pos(1)+timePRE/timeEXP(end)*(pos(3))).*[1 1],...
22 [pos(2) pos(2)+pos(4)],’LineWidth’,1,’LineStyle’,"--");
23 end
24

25 elseif n==2
26 plot(timeEXP, MEF,’Color’,map(j,:),’LineWidth’,1)
27 hold on;
28 if j==size(AHL,1)
29 lgd=legend(AHL,’Position’,[0.874 0.363 0.112 0.29]);
30 title(lgd,’AHL (nM)’);
31 xlabel(’Time (h)’);
32 ylabel(’MEFL’);
33 grid on;
34 pos=get(hs, ’position’);
35 annotation("line",(pos(1)+timePRE/timeEXP(end)*(pos(3))).*[1 1],...
36 [pos(2) pos(2)+pos(4)],’LineWidth’,1,’LineStyle’,"--");
37 end
38

39 else
40 if m==ControlSt
41 Rcorrected=R;
42 else
43 Rcorrected=R-Rcontrol;
44 end
45 semilogy(timeEXP,Rcorrected,’Color’,map(j,:),’LineWidth’,1)
46 hold on;
47 if j==size(AHL,1)
48 xlabel(’Time (h)’);
49 ylabel(’FOD (MEFL/Particles)’);
50 grid on;
51 pos=get(hs, ’position’);
52 annotation("line",(pos(1)+timePRE/timeEXP(end)*(pos(3))).*[1 1],...
53 [pos(2) pos(2)+pos(4)],’LineWidth’,1,’LineStyle’,"--");
54 end
55 end
56 end
57 end
58 end� �
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1 %HILL FUNCTION
2 t1=5; t2=6; %Times for Hill Function
3 setime = round(t1*60/5);
4 endtime = round(t2*60/5);
5 hf=figure(’Name’,’Hill function’);
6

7 for m=1:(size(strain,1)-1)
8 AHL=char(evol.medios.strains(m).data.Inducc);
9

10 if size(AHL,1)>1
11 expression=zeros(1,size(AHL,1));
12 R_std=zeros(1,size(AHL,1));
13

14 inductions=str2num(AHL(:,:));
15 inductions(1)=0.01;
16 for j=1:size(AHL,1)
17 ODblank=evol.medios.strains(m).data(j).ODblank(setime:endtime,:);
18 PARTICLES=evol.medios.strains(m).data(j).Particles(setime:endtime,:);
19 MEF=evol.medios.strains(m).data(j).MEFL(setime:endtime,:);
20 R=evol.medios.strains(m).data(j).LogMEFcell(setime:endtime,:); %Logaritmit FOD
21 expression(1,j) = mean(mean(R,2),1);
22 R_var = mean(var(R,0,1)) + var(mean(R,1)); %law of total variance
23 R_std(1,j) = sqrt(R_var);
24 if m==1
25 hp1=errorbar(inductions(j),expression(1,j),R_std(1,j),’o’,’MarkerSize’,5,...
26 ’MarkerFaceColor’,map(j,:),’Color’,map(j,:),’MarkerEdgeColor’,’k’,’LineWidth’,1);
27 elseif m==2
28 hp2=errorbar(inductions(j),expression(1,j),R_std(1,j),’s’,’MarkerSize’,5,...
29 ’MarkerFaceColor’,map(j,:),’Color’,map(j,:),’MarkerEdgeColor’,’k’,’LineWidth’,1);
30 else
31 hp3=errorbar(inductions(j),expression(1,j),R_std(1,j),’v’,’MarkerSize’,5,...
32 ’MarkerFaceColor’,map(j,:),’Color’,map(j,:),’MarkerEdgeColor’,’k’,’LineWidth’,1);
33 end
34 hold on;
35 end
36 loglog(inductions,expression,’--k’);
37 else
38 close(gcf);
39 end
40 end
41 colormap(hf,map);
42 colorbar(’southoutside’,’TickLabels’,cellstr(AHL));
43 xlabel(’AHL (nM)’); ylabel({’log(FOD)’,’(MEFL/Particles)’});
44 title(’Hill functions’)
45 if m==3
46 lgd=legend([hp1,hp2,hp3],strain(:,:),’Location’,’northwest’);
47 else
48 lgd=legend([hp1,hp2],strain(:,:),’Location’,’northwest’);
49 end
50 title(lgd,’Strain’);
51 grid on;� �
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1 %NORMALIZED HILL FUNCTION
2 total_ax=2;
3

4 for m=1:(size(strain,1)-1)
5 figure(’Name’,[’Hill-like’ strain(m,:)]);
6 AHL=char(evol.medios.strains(m).data.Inducc);
7

8 if size(AHL,1)>1
9 expression=zeros(1,size(AHL,1));

10 R_std=zeros(1,size(AHL,1));
11

12 for j=1:size(AHL,1)
13 ODblank=evol.medios.strains(m).data(j).ODblank(setime:endtime,:);
14 PARTICLES=evol.medios.strains(m).data(j).Particles(setime:endtime,:);
15 MEF=evol.medios.strains(m).data(j).MEFL(setime:endtime,:);
16 R=evol.medios.strains(m).data(j).MEFLcell(setime:endtime,:);
17 expression(1,j) = mean(mean(R,2),1);
18 R_var = mean(var(R,0,1)) + var(mean(R,1)); %law of total variance
19 R_std(1,j) = sqrt(R_var);
20 end
21 Maxvalue=max(expression);
22 Nexpression=expression./Maxvalue;
23

24 hs=subplot(1,2,1);
25 for k=1:size(expression,2)
26 errorbar(inductions(k),expression(1,k),R_std(1,k),’d’,’MarkerSize’,6,’MarkerFaceColor’, ...
27 map(k,:),’Color’,map(k,:),’MarkerEdgeColor’,’k’,’LineWidth’,1);
28 hold on;
29 end
30 plot(hs,inductions,expression,’--k’);
31 xlabel(’AHL (nM)’,’FontSize’,14); ylabel({’FOD’,’(MEFL/Particles)’},’FontSize’,14);
32 title(strain(m,:),’FontSize’,16);
33 lgd=legend(AHL,’Location’,’southeast’);
34 title(lgd,’AHL (nM)’);
35 grid on;
36

37 hs=subplot(1,2,2);
38 for k=1:size(expression,2)
39 aux=num2str(inductions);
40 X = categorical(cellstr(aux));
41 X = reordercats(X,cellstr(aux)); %ensure the re-ordering
42 hb=bar(X(k),Nexpression(1,k),’FaceColor’, map(k,:));
43 hold on;
44 end
45 title(strain(m,:),’FontSize’,16);
46 xlabel(’AHL (nM)’,’FontSize’,14); ylabel(’Promoter Activity (adim)’,’FontSize’,14)
47 grid on;
48 else
49 close(gcf);
50 end
51 end� �
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Definition of cost function.� �
1 function J=cost_function_pLux(params)
2 % Cost function to estimate parameters of Model for pLux Promoter
3 % Model: Contant PARAMETERS with Mu_max
4 % Parameters:
5 % kg pLux Promoter Strength
6 % kdlux pLux promoter dissosiation constant
7 % alpha promoter basal expression
8 % pG RBS Strength: depends on condition (5)
9 % CN: Copy number: depends on condition (2), We fix the low copy to 5 and

10 % the high copy will be unknown relative to that.
11 % dmG: mRNA degradation rate same for all the conditions
12 % dG: Protein degradation rate same for all the conditions
13 % dA: AHL degradation
14 % Mu_max -> From experimental data
15 %
16 % params = [kR kdlux alpha pG1 pG2 pG3 pG4 pG5 CNh dmG dG dA]
17 %
18 % Updated 10/06/2023 by AV and Yadira Boada
19 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20 % General parameters %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21 %Experimental data
22 load Data_struct.mat
23 J_parcial = 0;
24 J_RSE_parcial = 0;
25 dibujar = 1;
26 % pLux Promoter
27 p = parameters();
28 p.kg = params(1);
29 p.kdlux =params(2);
30 p.alpha = params(3);
31 % RBS
32 pg = params(4:8);
33 % Copy number
34 CNh = params(9);
35 CN = [5*CNh 5];
36 % mRNA degradation
37 p.dmg = params(10);
38 p.dmR = p.dmg;
39 % Protein degradation
40 p.dg = params(11);
41 p.dR = p.dg;
42 % AHL degradation
43 p.dA = params(12); % 0.00004
44 p.dAe = p.dA; % 0.0000481
45

46 % Loop to cover all the RBS
47 for ii = 1:5
48 p.pg = pg(ii);� �
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1 %Experiment details
2 strain=char(Data{ii}.medios.strains.Id);
3 % loop for Copy Numbers (high and low)
4 for m=1:2 % strain 1 is HIgh copy, 2 is low copy
5 p.CN = CN(m);
6 AHL = char(Data{ii}.medios.strains(m).data.Inducc);
7 Label_induction={};
8

9 %Experimental inductions
10 induction = str2num(AHL(:,:)); %Induction in the lab [nM]
11 %% Main
12 %Colormap
13 yel_purple12=[’ffb400’,’db9e17’,’b98725’,’99712f’,’795c38’,’463831’,’443f6c’,’585092’, ...
14 ’665bb3’,’7b6fce’,’9b90eb’,’ccc5ff’];
15 map = hex2rgb(yel_purple12);
16

17 %Create tables for saving data
18 Tmolec=table;
19 Tconc=table;
20

21 startpoint=1;
22 stepTime = Data{ii}.time_OD(2)-Data{ii}.time_OD(1); %every X minutos
23 DurationPRE= Data{ii}.npre*stepTime/60-startpoint*stepTime/60;
24 timeEXP=(Data{ii}.time_OD(startpoint:end)-Data{ii}.time_OD(startpoint)); %minutes
25 timeINDUC = timeEXP(Data{ii}.npre+1)-timeEXP(Data{ii}.npre)-stepTime;
26 if timeINDUC>stepTime
27 timeEXP=timeEXP-[zeros(Data{ii}.npre,1); timeINDUC.*ones(length(timeEXP)-Data{ii}.npre,1)];
28 end
29 t2=6;
30 time_hill = round(t2*60/5);
31

32 %Lab volumes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
33 Vext_0 = 3e-3; %mL
34 Vext_plate = 200e-6; %uL
35

36 %ODE
37 options = odeset(’AbsTol’,1e-8,’RelTol’,1e-6); % for ode function
38

39 %Average growth rate
40 mu_matrix=[];
41 for j=1:size(AHL,1)
42 mu_matrix(:,j) = Data{ii}.medios.strains(m).data(j).mu; %HIGH/Low copy
43 end
44 muEXP= mean(mu_matrix(:,1:8),2); %
45 mu_null = max(muEXP);
46

47 gfp_matrix=[];
48 od_matrix=[];
49 for j=1:size(AHL,1)
50 od_matrix(:,j) = mean(Data{ii}.medios.strains(m).data(j).Particles(2,:));
51 gfp_matrix(:,j) = mean(Data{ii}.medios.strains(m).data(j).MEFL(2,:));
52 od_matrix_i(:,j) = mean(Data{ii}.medios.strains(m).data(j).Particles(Data{ii}.npre,:));
53 gfp_matrix_i(:,j) = mean(Data{ii}.medios.strains(m).data(j).MEFL(Data{ii}.npre,:));
54 end
55 gfp_initial= mean(gfp_matrix)/mean(od_matrix);
56 gfp_initial_i= mean(gfp_matrix_i)/mean(od_matrix_i);
57 %%Simulation
58 Variance = 0; Stdeviation =0; Ncell = 1;� �
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1 %System size
2 promoters={’Plux’};
3 phi={’Phi’};
4 species={’LuxR’,’GFP’,’AHL’,’OD600’,’AHLe’};
5 [~,ODindex] = find(strcmp(’OD600’,species)==1);
6 [~,AHLindex] = find(strcmp(’AHLe’,species)==1);
7 [~,GFPindex] = find(strcmp(’GFP’,species)==1);
8 States = length(species);
9 for j=1:size(AHL,1)

10 Label_induction{j}=deblank(strrep(AHL(j,:), ’.’, ’_’));
11 ODblank = Data{ii}.medios.strains(m).data(j).OD_media(startpoint:end,:)- ...
12 Data{ii}.medios.OD_medio(startpoint:end);
13 ODinitial = ODblank(1);
14 ODmax = ODblank(end);
15 %muEXP= Data{ii}.medios.strains(m).data(j).mu;
16

17 %% 0 Null initial conditions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18 p.mu = mu_null; Cellinitial = 1;
19 Initial = [zeros(1,States-2) Cellinitial 0]; %ini conditions[species, cells, ahle]
20 tfin = 60*16; %simulation time
21 tspan = 0:tfin-stepTime;
22 Texp = tspan;
23 Gexp = p.mu.*ones(length(Texp),1);
24 [t0,x0] = ode23t(@(t,x) model_exp_pASSO1_mu_max(t,x,Texp,Gexp,p),tspan, Initial, options);
25

26 %% 1 PRE-INDUCTION & GROWTH %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
27 Cellinitial = ODinitial*p.Vext*p.OD_to_cells;
28 %Initial = x0(end,:)
29 Initial = [219089 gfp_initial x0(end,3) Cellinitial 0]; %Initial conditions
30 tfin = 60*DurationPRE; % Tiempo de simulacion (min)
31 tspan = timeEXP(1:Data{ii}.npre);
32 Texp = tspan;
33 Gexp = muEXP(1:length(tspan));
34 [t1,x1] = ode23t(@(t,x) model_exp_pASSO1_mu_max(t,x,Texp,Gexp,p),tspan, Initial, options);
35

36 %% 2 Adding ahle %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
37 ahle0 = induction(j).*p.ahl_to_molec; %AHLe vector
38 tfin = timeEXP(end); % Tiempo de simulacion (min)
39 tspan = timeEXP(Data{ii}.npre+1):stepTime:tfin;
40 tspan = timeEXP(Data{ii}.npre):stepTime:tfin;
41 Texp = timeEXP(length(t1)+1:length(timeEXP));
42 Gexp = muEXP(length(t1)+1:length(timeEXP));
43 Initial = [x1(end,1) gfp_initial_i x1(end,3:4) ahle0];
44 %Initial = [x1(end,1:end-1) ahle0]; %Initial conditions
45 [t2,x2] = ode23t(@(t,x) model_exp_pASSO1_mu_max(t,x,Texp,Gexp,p),tspan, Initial, options);
46 for k=1:length(species)
47 if k==ODindex
48 data = [x1(:,k); x2(:,k)]./(p.OD_to_cells*p.Vext);
49 data2= data;
50 elseif k==length(species)
51 data = [x1(:,k); x2(:,k)];
52 data2 = [x1(:,k); x2(:,k)].*p.ahlmolec_to_nM;
53 else
54 data = [x1(:,k); x2(:,k)];
55 data2 = data.*p.molec_to_nM;
56 end
57 Tmolec(:,k) =table(data);
58 Tconc(:,k) =table(data2);
59 end� �
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1 Tmolec.Properties.VariableNames = species;
2 Tconc.Properties.VariableNames = species;
3 field=[’AHL_’ Label_induction{j}];
4 out.(field).molec=table2struct(Tmolec,"ToScalar",true);
5 out.(field).conc=table2struct(Tconc,"ToScalar",true);
6 out.time=timeEXP./60;
7 % Experimental data for the ijk construction
8 part= mean(Data{ii}.medios.strains(m).data(j).Particles,2);
9 gfp= mean(Data{ii}.medios.strains(m).data(j).MEFL,2);

10 measured = gfp./part;
11 % Simulated data for the ijk construction
12 simulated = Tmolec.("GFP"); %del modelo constante, si quisieramos el modelo con Psi es

Data_model_molec{i,j,k}.("GFP mu exp")
13 is11 = (m==1) * (ii==1);
14 %J_parcial = J_parcial + sum((measured(Data{ii}.npre:end)-simulated(Data{ii}.npre:end)).^2)

./length(measured(Data{ii}.npre:end));
15 J_RSE_parcial = J_RSE_parcial + ~is11 * sum(

((measured(Data{ii}.npre:end)-simulated(Data{ii}.npre:end))./(measured(Data{ii}.npre:end))
) .^2 ) ;

16

17

18 end %For Induccion
19

20 if dibujar == 1
21 figure(’Name’,[’Comparison ’ strain(m,:)]);
22 for k=1:length(induction)
23 field=[’AHL_’ Label_induction{k}];
24 field2=char(species(GFPindex));
25 semilogy(out.time,log10(out.(field).molec.(field2)),’LineWidth’,1.5,’Color’,map(k,:));

%molecules or concentration
26 hold on;
27 Particles_avr=mean(Data{ii}.medios.strains(m).data(k).Particles,2);
28 MEFL_avr=mean(Data{ii}.medios.strains(m).data(k).MEFL,2);
29 semilogy(out.time,log10(MEFL_avr./Particles_avr),’:’,’LineWidth’,1.5,’Color’,map(k,:));
30 end
31 grid on;
32 xlabel(’time (hours)’); ylabel(’GFP (molec)’);
33 end
34 end % For copy number
35 end % For RBS
36 %J = J_parcial/(ii*m*j);
37 J = J_RSE_parcial/(ii*m*j);
38 end� �
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