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Resum

La tesi “Teoria Combinatòria de Nombres, Recurrència d’Operadors i Dinàmica Lineal” se situa
dins de l’estudi de la dinàmica d’operadors lineals, o simplement Dinàmica Lineal. L’objectiu
d’aquest treball és estudiar múltiples nocions de recurrència, que poden presentar els sistemes
dinàmics lineals, i que classificarem mitjançant la Teoria Combinatòria de Nombres.

La Dinàmica Lineal estudia les òrbites generades per les iteracions d’una transformació lineal.
Les propietats més estudiades en aquesta branca de les matemàtiques als darrers 30 anys han
estat la hiperciclicitat (existència d’òrbites denses) i el caos (amb les seves múltiples definicions),
sent aquesta una àrea de recerca molt activa i obtenint-se un considerable nombre de resultats
profunds i interessants (vegeu [10, 55]). Nosaltres ens centrarem en la recurrència, propietat
molt estudiada per a sistemes dinàmics clàssics no lineals (vegeu [41, 48]), però, pràcticament
nova en Dinàmica Lineal doncs no és fins al 2014, amb l’article [30] de Costakis, Manoussos
i Parissis titulat “Recurrent linear operators”, quan es comença a estudiar aquesta noció de
manera sistemàtica en el context d’operadors actuant en espais de Banach.

La situació bàsica de la qual parteix el nostre estudi és la següent: T : X −→ X serà un
operador lineal i continu actuant sobre un F-espai X (és a dir, un espai vectorial topològic que
admet una mètrica completa), encara que de vegades necessitarem que l’espai subjacent X siga
un espai de Fréchet, de Banach o de Hilbert. Llavors, donat un vector x ∈ X i un entorn U de
x estudiarem el conjunt de retorn NT (x, U) := {n ∈ N0 : T nx ∈ U} i depenent de la seva mida,
observada des del punt de vista de la Teoria Combinatòria de Nombres, direm que el vector x
presenta una o altra propietat de recurrència.

La memòria de la tesi s’ha realitzat per compendi d’articles i, seguint la normativa establerta
per l’Escola de Doctorat, l’estructura és la següent:
– Introducció. Es presenten les nocions i definicions bàsiques necessàries, junt amb la notació

utilitzada al llarg de la memòria i l’explicació de què conté cadascun dels capítols següents.
Aquest capítol pretén ser el fil conductor del treball.

1. Frequently recurrent operators. Adaptació de la “versió d’autor” revisada de l’article [21]:
Journal of Functional Analysis, 283 (12) (2022), article núm. 109713, 36 pàgines. En aquest
es defineixen per primera vegada les nocions de recurrència reiterada, U-freqüent i freqüent, i
les seves propietats bàsiques (com les similituds amb les respectives nocions d’hiperciclicitat,
les diferències entre els distints tipus de recurrència introduïts, la mida dels diversos conjunts
de vectors recurrents, la relació d’aquests fenòmens amb propietats espectrals dels operadors,
i els respectius teoremes del tipus “Ansari” i “León-Müller”) són estudiades. Finalment es
generalitza l’estudi mitjançant el concepte de F -recurrència, que es connecta amb la noció
de F -hiperciclicitat anteriorment estudiada en treballs com [6, 84, 16, 20].
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2. Recurrence properties: An approach via invariant measures. Adaptació al format
de la tesi de la “versió d’autor” revisada de l’article [50]: Journal de Mathématiques Pures
et Appliquées, 169 (2023), 155–188. Es relaciona la recurrència d’operadors, que s’havia
estudiat únicament des del punt de vista topològic, amb la Teoria Ergòdica i els sistemes
dinàmics que conserven la mesura. Restringint l’espai subjacent a espais de Banach reflexius
i espais de Hilbert s’obtenen fortes equivalències entre les diferents propietats de recurrència
establertes a [21]: a partir de vectors amb recurrència feble es construeixen mesures invariants,
i d’aquestes s’obtenen nocions de recurrència més fortes.

3. Questions in linear recurrence: From the T ⊕ T -problem to lineability. Adaptació
de la “versió d’autor” del preprint [51]. En aquest es resol un problema obert de l’any
2014 (vegeu [30, Question 9.6]): Siga T : X −→ X un operador recurrent. És cert que
l’operador T ⊕ T és recurrent en X ⊕ X? Per resoldre’l introduïm la quasi-rigidesa, que
serà, per a la recurrència, la noció anàloga a la propietat feble-barrejant (topològica) per a
la transitivitat/hiperciclicitat; i després construïm operadors recurrents però no quasi-rígids
en tot espai de Banach infinit-dimensional i separable. La quasi-rigidesa és posteriorment
emprada per a estudiar la lineabilitat dels conjunts de vectors F -recurrents.

4. Recurrent subspaces in Banach spaces. Adaptació de la “versió d’autor” del preprint [69].
S’inclou l’estudi de la propietat d’espaiabilitat (existència d’un subespai vectorial tancat i de
dimensió infinita) per al conjunt de vectors recurrents. Emprant la Teoria Espectral com als
treballs [66, 47] es caracteritzen els operadors quasi-rígids actuant en espais de Banach que
admeten subespais recurrents, i s’obté el curiós resultat: un operador feble-barrejant admet
un subespai hipercíclic si, i només si, admet un subespai recurrent.

– Discussió general dels resultats. Es discuteix la naturalesa dels diferents resultats que
hem aconseguit. També hem inclòs alguns comentaris i resultats extra relacionats amb cada
un dels capítols/articles que formen aquesta memòria.

– Conclusions. S’inclouen les conclusions del treball, analitzant l’impacte que pot tenir a la
Dinàmica Lineal, i recollint les principals línies de recerca i problemes que queden oberts.

– Apèndix. Per aconseguir un caràcter auto-contingut hem afegit un apèndix amb resultats
bàsics de Teoria Combinatòria de Nombres que es donen per suposats en els treballs que
componen la memòria. S’inclouen: alguns conceptes de mida per a conjunts de nombres
naturals relacionats amb les propietats de la compactació de Stone-Čech βN0; les definicions
i propietats bàsiques d’algunes nocions de densitat per a conjunts de nombres naturals; el
concepte de família de Furstenberg; i alguns exemples.
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Resumen

La tesis “Teoría Combinatoria de Números, Recurrencia de Operadores y Dinámica Lineal” se
sitúa dentro del estudio de la dinámica de operadores lineales, o Dinámica Lineal. El objetivo
de este trabajo es estudiar múltiples nociones de recurrencia, que pueden presentar los sistemas
dinámicos lineales, y que clasificaremos mediante la Teoría Combinatoria de Números.

La Dinámica Lineal estudia las órbitas generadas por las iteraciones de una transformación
lineal. Las propiedades más estudiadas en esta rama durante los últimos 30 años han sido la
hiperciclicidad (existencia de órbitas densas) y el caos (con sus múltiples definiciones), siendo
esta un área de investigación muy activa y obteniéndose un considerable número de resultados
profundos e interesantes (véase [10, 55]). Nosotros nos centraremos en la recurrencia, propiedad
muy estudiada para sistemas dinámicos clásicos no lineales (véase [41, 48]), pero prácticamente
nueva en Dinámica Lineal pues no es hasta 2014, con el artículo [30] de Costakis, Manoussos
y Parissis titulado “Recurrent linear operators”, cuando se empieza a estudiar esta noción de
manera sistemática en el contexto de operadores actuando en espacios de Banach.

La situación básica de la que parte nuestro estudio es la siguiente: T : X −→ X será
un operador lineal y continuo actuando sobre un F-espacio X (es decir, un espacio vectorial
topológico que admite una métrica completa), aunque a veces necesitaremos que el espacio
subyacente X sea un espacio de Fréchet, de Banach o de Hilbert. Dado un vector x ∈ X y
un entorno U de x estudiaremos el conjunto de retorno NT (x, U) := {n ∈ N0 : T nx ∈ U} y
dependiendo de su tamaño, observado mediante la Teoría Combinatoria de Números, diremos
que el vector x presenta una propiedad de recurrencia u otra.

La memoria de la tesis se ha realizado por compendio de artículos y, siguiendo la normativa
establecida por la Escuela de Doctorado, la estructura es la siguiente:
– Introducción. Se presentan las nociones y definiciones básicas necesarias, junto con la

notación utilizada a lo largo de la memoria y la explicación de qué contiene cada uno de los
capítulos siguientes. Este capítulo pretende ser el hilo conductor del trabajo.

1. Frequently recurrent operators. Adaptación de la “versión de autor” del artículo [21]:
Journal of Functional Analysis, 283 (12) (2022), artículo núm. 109713, 36 páginas. En
este se definen por primera vez las fuertes nociones de recurrencia reiterada, U-frecuente y
frecuente, y sus propiedades básicas (como las similitudes con las respectivas nociones de
hiperciclicidad, las diferencias entre los distintos tipos de recurrencia, el tamaño de los varios
conjuntos de vectores recurrentes, la relación de estos fenómenos con propiedades espectrales,
y los respectivos teoremas del tipo “Ansari” y “León-Müller”) son estudiadas. Finalmente se
generaliza el estudio mediante el concepto de F -recurrencia, que se conecta con la noción de
F -hiperciclicidad anteriormente estudiada en trabajos como [6, 84, 16, 20].
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2. Recurrence properties: An approach via invariant measures. Adaptación al formato
de la tesis de la “versión de autor” revisada del artículo [50]: Journal de Mathématiques Pures
et Appliquées, 169 (2023), 155–188. En este se relaciona la recurrencia de operadores, que se
había estudiado únicamente desde el punto de vista topológico, con la Teoría Ergódica y los
sistemas dinámicos que conservan la medida. Restringiendo el espacio subyacente a espacios
de Banach reflexivos y espacios de Hilbert se obtienen fuertes equivalencias entre las distintas
propiedades de recurrencia establecidas en [21]: a partir de vectores con recurrencia débil se
construyen medidas invariantes, y de estas se obtienen nociones de recurrencia más fuertes.

3. Questions in linear recurrence: From the T ⊕T -problem to lineability. Adaptación
de la “versión de autor” del preprint [51]. Se resuelve negativamente un problema abierto
de 2014 (véase [30, Question 9.6]): Sea T : X −→ X un operador recurrente. ¿Es cierto que
el operador T ⊕ T es recurrente en X ⊕X? Para resolverlo introducimos la casi-rigidez, que
será, para la recurrencia, la noción análoga a la propiedad débil-mezclante (topológica) para la
transitividad/hiperciclicidad; y luego construimos operadores recurrentes pero no casi-rígidos
en todo espacio de Banach infinito-dimensional y separable. La casi-rigidez es posteriormente
utilizada para estudiar la lineabilidad de los conjuntos de vectores F -recurrentes.

4. Recurrent subspaces in Banach spaces. Adaptación de la “versión de autor” revisada del
preprint [69]. En este se estudia la propiedad de espaciabilidad (existencia de un subespacio
vectorial cerrado y de dimensión infinita) para el conjunto de vectores recurrentes. Usando
la Teoría Espectral como en [66, 47] se caracterizan los operadores casi-rígidos que admiten
subespacios recurrentes, y se obtiene el curioso resultado: un operador débil-mezclante admite
un subespacio hipercíclico si, y solamente si, admite un subespacio recurrente.

– Discusión general de los resultados. Se discute la naturaleza de los diferentes resultados
conseguidos. También hemos incluido algunos comentarios y resultados extra relacionados
con cada uno de los capítulos/artículos que forman esta memoria.

– Conclusiones. Se incluyen las conclusiones del trabajo, analizando el impacto que puede
tener en el área de la Dinámica Lineal, y recogiendo las principales líneas de investigación y
problemas que quedan abiertos.

– Apéndice. Para conseguir un carácter auto-contenido hemos añadido un apéndice con los
resultados básicos de Teoría Combinatoria de Números que se han utilizado en los trabajos
que componen la memoria. Se incluyen: algunos conceptos de tamaño para conjuntos de
números naturales relacionados con las propiedades de la compactación de Stone-Čech βN0;
las definiciones y propiedades básicas de algunas nociones de densidad para conjuntos de
números naturales; el concepto de familia de Furstenberg; y algunos ejemplos.

X



Summary

The thesis “Combinatorial Number Theory, Recurrence of Operators and Linear Dynamics” is
part of the study of the dynamics of linear operators, simply called Linear Dynamics. The
objective of this work is to study multiple notions of recurrence, that linear dynamical systems
can present, and which will be classified through Combinatorial Number Theory.

Linear Dynamics studies the orbits generated by the iterations of a linear transformation.
The two most studied properties in this branch of mathematics during the last 30 years have
been hypercyclicity (existence of dense orbits) and chaos (with its multiple definitions), being
this a very active research area with a considerable number of exceptionally deep but also
interesting results (see [10, 55]). We will focus on recurrence, a property widely studied in the
classical setting of non-linear dynamical systems (see [41, 48]), but practically new with respect
to Linear Dynamics since it was not until 2014, with the article [30] by Costakis, Manoussos
and Parissis entitled “Recurrent linear operators”, when this notion started to be systematically
studied in the context of operators acting on Banach spaces.

The basic situation from which our study starts is the following: T : X −→ X will be a
continuous linear operator (sometimes simply called linear operator or just operator) acting on
an F-space X (that is, a completely metrizable topological vector space), although sometimes
we will need the underlying space X to be a Fréchet, Banach or Hilbert space. Given a vector
x ∈ X and a neighbourhood U of x we will study the return setNT (x, U) := {n ∈ N0 : T nx ∈ U}
and depending on its size, observed from the Combinatorial Number Theory point of view, we
will say that the vector x presents one property of recurrence or another.

The thesis memoir is a compendium of articles and, following the regulations established by
the Doctoral School, the structure is the following:
– Introduction. We present the basic notions, definitions and notation used throughout the

memoir, together with the explanation of what contains each of the following chapters. This
chapter is intended to be the common thread of the work.

1. Frequently recurrent operators. Adaptation of the revised “author version” of article [21]:
Journal of Functional Analysis, 283 (12) (2022), paper no. 109713, 36 pages. Here, the strong
notions of reiterative, U-frequent and frequent recurrence are defined for the first time, and
their basic properties (such as the similarities with the respective notions of hypercyclicity, the
differences between each type of recurrence, the size of the various sets of recurrent vectors,
the interplay between recurrence and spectral properties, and the respective “Ansari” and
“León-Müller” type theorems) are studied. The theory is finally generalized through the
concept of F -recurrence, which is connected to the notion of F -hypercyclicity previously
studied in many interesting works such as [6, 84, 16, 20].
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2. Recurrence properties: An approach via invariant measures. Adaptation of the
revised “author version” of article [50]: Journal de Mathématiques Pures et Appliquées,
169 (2023), 155–188. In this chapter the recurrence properties for linear operators, which
had been studied only from the topological point of view, are related to Ergodic Theory
and measure preserving systems. Considering reflexive Banach spaces and Hilbert spaces we
obtain strong equivalences between the different recurrence properties established in [21]: we
construct invariant measures from vectors with a rather weak recurrence property, and from
these measures we get stronger recurrence notions.

3. Questions in linear recurrence: From the T ⊕T -problem to lineability. Adaptation
of the revised “author version” of the preprint [51]. We solve in the negative an open problem
posed in 2014 (see [30, Question 9.6]): Let T : X −→ X be a recurrent operator. Is it true that
the operator T ⊕ T is recurrent on X ⊕ X? In order to do that we establish the analogous
notion, for recurrence, to that of (topological) weak-mixing for transitivity/hypercyclicity,
namely quasi-rigidity; and then we construct recurrent but not quasi-rigid operators on every
separable infinite-dimensional Banach space. The concept of quasi-rigidity is then used to
study some lineability properties for the sets of F -recurrent vectors.

4. Recurrent subspaces in Banach spaces. Adaptation of the revised “author version” of
the preprint [69]. In this chapter we study the spaceability (existence of an infinite-dimensional
closed subspace) for the set of recurrent vectors. Using Spectral Theory as in [66, 47] we
characterize the quasi-rigid operators acting on Banach spaces that admit recurrent subspaces,
and the following curious result is obtained: a weakly-mixing operator admits a hypercyclic
subspace if and only if it admits a recurrent subspace.

– General discussion of the results. We discuss the nature of the different results achieved.
We have also included some remarks and further results related to each of the chapters/articles
forming this memoir.

– Conclusions. The conclusions are included, analysing the impact that this work can have in
Linear Dynamics, and collecting the main lines of research and problems that remain open.

– Appendix. Looking for a self-contained text we have added an appendix with some of the
basic Combinatorial Number Theory results that are taken for granted along the different
chapters/articles forming this memoir. Included are: some size concepts for infinite sets
of natural numbers related to the properties of the Stone-Čech compactification βN0; the
definitions and basic properties of some notions of density for sets of natural numbers; the
concept of Furstenberg family; and some examples.
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Introduction

The Theory of Dynamical Systems is the branch of mathematics that studies the long-term
behaviour of a system, that is, the evolution of a “complex object” (the system) whose parts
or components “change” with the pass of time. Some examples would be: a population of an
animal species (we could measure its size, or the amount of individuals fulfilling some property);
an economic system (we may analyse its acceleration, stability or recession); or a physical system
(where the position and speed of some particles could be computed). See Figure 1.

In general, we consider a non-empty set X as the collection of all possible states of a system
(biological, economic, physical, ...), which is usually called the phase space, and we assume that
the evolution of the system is given by a transformation or an application T : X −→ X, so that
if xn ∈ X is the state of the system at time n ≥ 0 then

xn+1 := T (xn), n = 0, 1, 2, ...

The pair (X,T ) is usually called a (discrete) dynamical system, and given an initial state of the
system x0 ∈ X, observing its evolution is equivalent to studying the orbit of this point:

Orb(x0, T ) := {x0, T (x0), T 2(x0), ...} where T n := T ◦ ... ◦ T (n times).

x0 ∈ X x1 x2 = T 2(x0)
T (x0) ↦→ x1 T (x1) ↦→ x2

...

Figure 1: A physical system (particles moving in a box), initial state x0, and its evolution.

In order to analyse the behaviour of a system (X,T ) one usually requires the existence of
a structure on the set X and certain restrictions on the application T . As set out in [80], the
three most studied cases throughout history are when:

– X is a differentiable manifold and T is a diffeomorphism, the case of Differentiable Dynamics;

– X is a measure space and T is a measurable map, the case of Ergodic Theory;

– X is a topological space and T is a continuous map, the case of Topological Dynamics.
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Introduction

We will focus on Topological Dynamics, but the three branches overlap in many examples
giving different points of view to the same system via the interaction between both topological
and measurable hypothesis (see Section 3 of this Introduction or Chapter 2). From now on a
dynamical system will be a pair (X,T ) formed by a (usually Hausdorff) topological space X
and a continuous map T : X −→ X.

The study of a mathematical object is often simplified by decomposing it into smaller parts
to study them separately. If this is not possible, then the object is said to be irreducible. For us
this idea will be represented by the well-known notion of topological transitivity: a dynamical
system (X,T ) is said to be topologically transitive if for every pair U, V of non-empty open
subsets of X there exists a natural number n ≥ 0 such that T n(U) ∩ V ̸= ∅. See Figure 2.

X

U

V
T n

Figure 2: Topological transitivity.

Transitivity is a global property that implies the connection between all the non-trivial parts
of a dynamical system and, as mentioned by Kolyada and Snoha [63], it was already employed in
1920 by Birkhoff in the context of continuous applications acting on compact subsets of Rn. The
Birkhoff transitivity theorem states that the above property is equivalent to the existence of a
dense orbit when X is a complete metric space without isolated points (see [55, Theorem 1.16]):

Birkhoff Transitivity Theorem: Let T : X −→ X be a continuous map on a separable
complete metric space X without isolated points. The following statements are equivalent:

(i) the system (X,T ) is topologically transitive;

(ii) there exists some x ∈ X such that Orb(x, T ) = {T n(x) : n ≥ 0} is dense in X.

If one of these conditions holds then the set of points in X with dense orbit is a dense Gδ-set.

When X is a metric space we can measure distances between points and know how far
the predictions obtained (for example calculating an orbit) are from a certain fixed state of
the system x ∈ X. Thus, it is not surprising that the initial topological space X becomes a
(complete) metric space. In this work we treat Topological Dynamics from the Linear Dynamics
point of view and from now on a linear dynamical system will be a pair (X,T ) where:

– the space X is a separable (usually infinite-dimensional) F-space;

– and the map T is a continuous linear operator, also called linear operator or simply operator.

We denote by L(X) the set of continuous linear operators acting on such a space X, and we
will use the Operator Theory notation writing “Tx” instead of “T (x)” for each x ∈ X.
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Recall that a topological vector space X is a vector space over the field K = R or C, of real
or complex numbers, endowed with a topology such that the adding and scalar multiplication,

+ : X ×X −→ X, (x, y) ↦→ x+ y,

· : K ×X −→ X, (λ, x) ↦→ λx,

are continuous. Recall also that a non-negative functional ∥ · ∥ : X −→ [0,∞[ is called an
F-norm if for each x, y ∈ X and λ ∈ K the following properties hold:

(FN1) ∥x+ y∥ ≤ ∥x∥ + ∥y∥;

(FN2) ∥λx∥ ≤ ∥x∥ whenever |λ| ≤ 1;

(FN3) lim
λ→0

∥λx∥ = 0;

(FN4) ∥x∥ = 0 if and only if x = 0.

This functional defines a (translation invariant) metric in X via the formula d(x, y) = ∥x− y∥
for each x, y ∈ X. The properties above easily imply that (X, d) is a topological vector space,
which is called an F-space when the metric d is complete. Sometimes we will need X to be a
Fréchet, a Banach or a Hilbert space, which are the locally convex F-spaces that appear when
the topology is endowed by a family of semi-norms or a single norm. We refer the reader to
the textbooks [37, 60, 72] for any unexplained but standard notion related to this spaces.

Linear Dynamics connects Functional Analysis and Topological Dynamics. The origin of
this branch is found in hypercyclicity, and from there different lines of work have been derived
such as recurrence in hypercyclicity (topic that we cover in depth, see Section 2), mixing
properties, chaos, disjoint-hypercyclicity, etc. Let us recall that hypercyclicity is the study of
linear operators admitting a so-called hypercyclic vector, that is, a vector which has dense orbit.
See Figure 3.

x

X
U

T

T

Figure 3: The orbit of x ∈ X visits every non-empty open subset U of X, i.e. X = Orb(x, T ).

In our linear setting the Birkhoff transitivity theorem reads as follows (see [10, Theorem 1.2]):

Linear Transitivity Theorem: A continuous linear operator T ∈ L(X) acting on a separable
F-space X is hypercyclic if and only if it is topologically transitive. In that case, the set HC(T )
of hypercyclic vectors for T is a dense Gδ-set.
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Introduction

Birkhoff (in 1929 [19]), MacLane (in 1952 [70]) and Rolewicz (in 1969 [83]) found the first
examples of hypercyclic linear operators, but we can fix the birth of Linear Dynamics in 1982
with Kitai’s thesis [62] and the obtaining of Kitai’s criterion (see [55, Theorem 3.4]). Since
then many mathematicians have contributed to the development of this branch of Analysis,
and during the last 30 years Linear Dynamics has become a very active research area.

Researchers in Operator Theory became interested in hypercyclicity by the famous invariant
subspace problem (solved in Banach spaces by Enflo [35] with a counterexample proposed in
1975 but published in 1987 due to its complexity), and by the invariant subset problem: an
operator has no non-trivial invariant closed subset if every non-zero vector is hypercyclic. Read
showed in [82] that such an operator exists in classical Banach spaces such as ℓ1, leaving both
problems open for Hilbert spaces. The works of Kitai [62], Gethner and Shapiro [42], Godefroy
and Shapiro [46] and Herrero [56, 57] established the basis of the hypercyclicity theory.

The monographs of Bayart and Matheron [10], Grosse-Erdmann and Peris [55] and also the
recent survey of Gilmore [43] represent a good compendium of the latest advances in the theory
of hypercyclicity and linear chaos. The notion of chaos is basic in every theory of dynamical
systems and, among the existent alternative definitions, Devaney suggested in [33] the following:
a continuous map T : X −→ X acting on a metric space (X, d) is said to be Devaney chaotic
(for us simply chaotic) if the next conditions are satisfied

(DC1) Long term unpredictability: sometimes called the butterfly effect, and captured by
the notion of sensitive dependence on initial conditions, i.e. the property that there
exists some sensitivity constant δ > 0 such that for all ε > 0 and x ∈ X there exists
y ∈ X and n ∈ N fulfilling that d(x, y) < ε and d(T nx, T ny) > δ. See Figure 4.

(DC2) Irreducibility of the system: represented by the introduced topological transitivity.

(DC3) Some regularity: demanding the existence of a dense set of periodic points (a point
x ∈ X is called periodic if there exists some positive integer p ∈ N such that T px = x).

x

T nx

X

Bd(x, ε)

Bd(T nx, δ)

y

T ny

T n

T n

Figure 4: Sensitive dependence on initial conditions.

It was later shown by Banks, Brooks, Cairns, Davis and Stacey that if both (DC2) and
(DC3) hold they imply (DC1); see [5]. The notion of chaos is usually seen as a non-linear
phenomenon, although it is by now well established that many linear systems may present
linear chaos. Indeed, in the linear setting hypercyclicity, i.e. (DC2), is enough to obtain (DC1);
see [55, Proposition 2.30]. The concept of chaos introduced a new aspect in hypercyclicity and
followed by some more extensions, such as the study of hypercyclic semigroups or supercyclic
operators, the Theory of Linear Dynamical Systems was consolidated.
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The dynamical notion that we study in this memoir is that of recurrence: given a dynamical
system (X,T ) we say that a point x ∈ X is recurrent if x ∈ Orb(Tx, T ), that is, if x belongs
to the closure of its forward orbit. Equivalently, if for every neighbourhood U of x there exists
some natural number n ≥ 1 such that T nx ∈ U (see Figure 5). Moreover, when X is a metric
(or first-countable) space (as it happens for F-spaces), the previous definition can be rewritten
in terms of sequences: a point x ∈ X is recurrent if and only if there exists an increasing
sequence of positive integers (nk)k∈N such that T nkx → x as k → ∞.

We say that a dynamical system (X,T ) is (pointwise) recurrent if its set Rec(T ) of recurrent
points is dense in X. Since we will study linear systems, we would like to remark on the
necessity of this density assumption: if X is a vector space then the zero-vector 0 ∈ X is always
a fixed point (and hence recurrent) for every continuous linear operator T ∈ L(X). Therefore,
to say that a map T has a recurrent behaviour it is not enough to assume that Rec(T ) ̸= ∅ as
it is done in the hypercyclicity case with the set of hypercyclic vectors HC(T ).

x

X

U

T
T

Figure 5: The forward orbit of x ∈ X visits every neighbourhood U of x, i.e. x ∈ Orb(Tx, T ).

Even though the recurrence property is not equal to hypercyclicity, neither periodicity, we
have the following interesting relations between these notions:

– every dense orbit is recurrent, so that every hypercyclic vector/operator is indeed recurrent;

– the periodic points are recurrent, and in a really strong sense (see Chapter 3, Section 4.2).

This implies that, somehow, we will be looking at a dynamical phenomenon related with the
already introduced, well-known and interesting properties of hypercyclicity and linear chaos.

As it happened for chaos, recurrence has been historically studied for non-linear systems and
it is one of the fundamental, oldest and most investigated concepts in dynamics. We can date
the beginning of the theory at the end of the 19th century when Poincaré introduced the later
called Poincaré recurrence theorem in the context of Ergodic Theory (see Section 3). If we focus
on Topological Dynamics the appearance of recurrence goes back to the works of Gottschalk
and Hedlund in 1955 [48], and of Furstenberg in 1981 [41], together with some more recent
advances by many authors such as Banks [4], Glasner [45] and Oprocha and Zhang [79].

In spite of the great non-linear dynamical knowledge existing in this area, recurrence in
Linear Dynamics has only recently been systematically studied since 2014 with the fundamental
paper of Costakis, Manoussos and Parissis [30] (see also [31]). As one can naturally expect, lots
of questions in linear recurrence remain open. Our objective in this work has been to study
these problems together with various different linear recurrence-kind properties, with the aim
of following the natural evolution line of the Theory of Linear Dynamical Systems.
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Introduction

In the remainder of this Introduction we recall the main results from the Costakis, Manoussos
and Parissis work [30], together with the definitions and pertinent aspects of Linear Dynamics
that we need and treat along the different chapters/articles forming this memoir.

1 Linear recurrence: the state of the art

The work of Costakis, Manoussos and Parissis [30] will be the starting point of our study. In
this first section we include a sketch of the main results obtained there, which will be used in
future parts of this memoir to deepen the study of recurrence.

The first thing to note is that there is a recurrence version of the Birkhoff transitivity
theorem, which we call the Costakis-Manoussos-Parissis theorem (see [30, Proposition 2.1]). In
order to introduce this result, let us start by recalling the following definition: a dynamical
system (X,T ) is said to be topologically recurrent if for every non-empty open subset U of X
there exists a natural number n ≥ 1 such that T n(U) ∩ U ̸= ∅. Two things should be noted:

(1) there is a clear symmetry between the notions of topological recurrence and transitivity
(the only difference being the quantity of open sets involved in the definition);

(2) topologically recurrent systems have been called non-wandering in the classical literature
of non-linear dynamics (see [41, Chapter 1, Section 8]). This name comes from the fact
that the subsets U ⊂ X for which the collection {U, T (U), T 2(U), ...} is pairwise disjoint
have been called wandering sets.

We have the initial symmetry between hypercyclicity and recurrence: topological recurrence
is, for (pointwise) recurrence, the analogous notion to that of topological transitivity for the
concept of hypercyclicity:

Costakis-Manoussos-Parissis Theorem: Let T : X −→ X be a continuous map acting on
a complete metric space X. The following statements are equivalent:

(i) the dynamical system (X,T ) is topologically recurrent;

(ii) the set Rec(T ) =
{︂
x ∈ X : x ∈ Orb(Tx, T )

}︂
is dense in X.

If one of these conditions holds then the set Rec(T ) of recurrent points for T is a dense Gδ-set.

This result was already well-known in non-linear dynamics. However, the proof given by
Costakis et al. [30, Proof of Proposition 2.1] is really similar to that of the Birkhoff transitivity
theorem (intersecting countably many open dense subsets to achieve theGδ-set condition), while
the proof given by Furstenberg in [41, Theorem 1.27] considers the semi-continuous function

F (x) := inf
n≥1

d(x, T nx) for each x ∈ X,

(where d is the metric of X), it shows that the points of continuity for F are those where the
function vanishes, and then it uses the fact that every semi-continuous function possesses a
residual set of continuity points.
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1. Linear recurrence: the state of the art

After exhibiting this first equivalence between “pointwise” and topological recurrence in the
general context of non-linear dynamical systems, the linearity is used in [30] to establish the
recurrence version of the Ansari- and León-Müller-type theorems, showing a second parallelism
between hypercyclicity and recurrence. We recall that the Ansari and León-Müller theorems
state that powers and unimodular multiples of an operator still have the same set of hypercyclic
vectors (see [2] and [67]):

Ansari and León-Müller Theorems: Let T ∈ L(X). The following statements hold:

(a) For any p ∈ N we have the equality HC(T ) = HC(T p).

(b) For any λ ∈ K with |λ| = 1 we have the equality HC(T ) = HC(λT ).

The linearity is clearly needed in statement (b), but it is also completely necessary to prove
statement (a) since a connectedness argument is used (there exist transitive non-linear systems
with powers that are not topologically transitive, see [55, Exercise 1.2.11]). The next result
was then proved in [30, Proposition 2.3]:

Ansari-León-Müller Recurrence Theorem: Let T ∈ L(X). The following statements hold:

(a) For any p ∈ N we have the equality Rec(T ) = Rec(T p).

(b) For any λ ∈ K with |λ| = 1 we have the equality Rec(T ) = Rec(λT ).

It is worth mentioning that the recurrence version of statement (a) is still true for non-linear
dynamical systems. We have proved this rather general fact together with statement (b) in [51]
(see Chapter 3, Section 4.2) via a much easier proof than that given in [30, Proposition 2.3].

Another topic treated in [30], just related to linearity and that shows again a symmetry
between hypercyclicity and recurrence, is the study of spectral properties. In particular, they
showed that the following statements hold for any T ∈ L(X) on a complex Banach space X:

– if the spectral radius r(T ) = limn→∞ ∥T n∥ 1
n is less than 1, then T is not a recurrent operator;

– if T is a recurrent operator, then every component of the spectrum σ(T ) of T intersects the
unit circle T := {z ∈ C : |z| = 1};

– if T is a compact operator, then T is not a recurrent operator.

These properties are well-known to be possessed by hypercyclic operators so that hypercyclicity
was not the “exactly necessary dynamical condition” for an operator to present this behaviour
since recurrence is a weaker notion. A first difference between these two properties appears
when we look at the spectrum of the adjoint operator T ∗ for a given recurrent/hypercyclic
T ∈ L(X). Indeed the following can be found in [55, Lemma 2.53]:

– If T is hypercyclic, then T − λ has dense range for every λ ∈ C, hence σp(T ∗) = ∅.

In contrast, by [30, Proposition 2.14] we have that:

– If T is recurrent, then T − λ has dense range for every λ ∈ C \ T, hence σp(T ∗) ⊂ T.
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We have extended the dense range part to the context of recurrent continuous linear operators
acting on Hausdorff topological vector spaces in [51] (see Chapter 3, Section 2.2). An extreme
case of the previous result is when given any complex number λ ∈ T we consider the operator
T := λI : X −→ X (where I : X −→ X is the identity operator on X). Then we have the
equality X = Rec(T ) as we argue in the following paragraph, so that the operator T is recurrent
while T − λ is precisely the null operator, which clearly does not have dense range.

In the previous reasoning we are using the concept of unimodular eigenvector: a non-zero
vector x ∈ X \ {0} is called a unimodular eigenvector for an operator T ∈ L(X) precisely when
Tx = λx for some λ ∈ T. We will denote the set of unimodular eigenvectors by

E(T ) = {x ∈ X \ {0} : Tx = λx for some λ ∈ T} .

In [30, Lemma 2.16] it was proved that:

– If T ∈ L(X) fulfills that span(E(T )) is dense in X, then T is a recurrent operator.

We will see in future sections the importance of unimodular eigenvectors, not just in recurrence
studied from the Topological Dynamics point of view but also in Ergodic Theory, and we will
show in [21] and [50] (see Chapter 1, Section 7; and Chapter 2, Sections 1.3 and 4), that the
hypothesis “span(E(T )) is dense in X” (also called “having a discrete spectrum”) implies a
much stronger recurrence notion, which is close to periodicity: we will denote by Per(T ) the set
of periodic vectors for an operator T ∈ L(X). Recall that, when X is a complex space, the
following property holds (see [55, Proposition 2.33]):

Per(T ) = span{x ∈ X : Tx = eαπix for some α ∈ Q} ⊂ span(E(T )).

A really strong difference between recurrence and hypercyclicity is that one can consider
both power-bounded but also finite-dimensional recurrent operators, as the identity map is on
any (finite-dimensional) space. For the power-boundedness case [30, Lemma 3.1] shows that:

– If T ∈ L(X) is a power-bounded operator then Rec(T ) is a closed set. As a consequence, if
the operator T is power-bounded and recurrent then X = Rec(T ).

We extend this result to other recurrence notions in [21] (see Chapter 1, Section 3). If we turn
to operators acting on finite-dimensional spaces recall that these are matrices, and recurrence
is then reduced to the existence of a basis formed by unimodular eigenvectors:

– A complex matrix T : Cn −→ Cn is recurrent if and only if it is similar to a diagonal matrix
with unimodular entries.

A very similar result holds for real-valued matrices, and in the proof of both cases the Jordan
decomposition plays a fundamental role (see [30, Theorems 4.1 and 4.2]).

The rest of [30] is devoted to exhibit examples of recurrent operators (they focus on unilateral
and bilateral backward shifts, composition and multiplication operators) but also to study some
other properties such as rigidity and uniform rigidity. However, these last two notions are not
completely relevant for this memoir so we will not elaborate further on them here.
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2. Hypercyclicity, recurrence and Furstenberg families

They also state some open problems and, among them, the following was (due to the high
complexity presented by the respective hypercyclicity version) at least striking:

[30, Question 9.6]: Let T ∈ L(X) be a recurrent operator. Is it true that the direct sum
operator T ⊕ T is recurrent on the direct sum space X ⊕X?

We dedicate a complete section of this Introduction to talk about these T ⊕T -type problems
(see Section 4) and we solve this particular case in [51] (see Chapter 3, Section 3).

The results stated until now form the known theory of linear recurrence from which our study
started. From now on we will introduce the different concepts of Linear Dynamics needed and
used along the chapters/articles forming this memoir. Our objective is to summarize the work
presented by explaining what has been done in each chapter of this document.

2 Hypercyclicity, recurrence and Furstenberg families

The questions considered in this section relate to article [21] (see Chapter 1), even though the
main definitions and results that we are about to present have been also used in [50] and [51]
(see Chapters 2 and 3). We will restrict ourselves to the linear case of the theory, although in
some of the chapters/articles we have employed the same notation for non-linear dynamics.

In the last two decades hypercyclicity has been studied from the frequency of visits point of
view: instead of just studying the density of an orbit, one investigates “how often” the orbit of a
vector returns to every open subset of the space. In order to properly understand and introduce
this concept we will use the following notation: given an operator T ∈ L(X), a vector x ∈ X
and any non-empty subset U of X, the return set from x to U will be the set

NT (x, U) := {n ≥ 0 : T nx ∈ U},
which will be denoted by N(x, U) if no confusion with the map studied arises. It is then trivial
to check that a vector x ∈ X is hypercyclic for T if and only if for every non-empty open subset
U of X the return set N(x, U) is an infinite subset of the natural numbers N0 := N ∪ {0}.

Looking at the size of these return sets we can generalize the concept of hypercyclicity in
terms of “how often” a hypercyclic vector visits every open subset of the space (see Figure 6).
Note that, since the concept of “usual hypercyclicity” demands the return sets to be infinite,
we will need to measure and classify the size of infinite subsets of natural numbers. This will
be done by using the Combinatorial Number Theory: we have included an extensive Appendix
to cover different concepts of size that we use in the following lines and we recommend to look
at Section 2, of the mentioned Appendix, where we cover in detail the definitions and basic
properties of the different densities that are about to appear.

The first generalization of this type was the appearance of frequent hypercyclicity introduced
in 2006 by Bayart and Grivaux [6]: we say that a vector x ∈ X is frequently hypercyclic for
T ∈ L(X) if for every non-empty open subset U of X the return set N(x, U) has positive lower
density, i.e.

dens(N(x, U)) := lim inf
N→∞

#(N(x, U) ∩ [0, N ])
N + 1 > 0.

Moreover, the set of frequently hypercyclic vectors for T will be denoted by FHC(T ), and the
operator T is called frequently hypercyclic whenever it admits a frequently hypercyclic vector.
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As set out in [6, Proposition 3.12], [10, Proposition 6.23] and [55, Section 9.1], this concept
appears naturally from Ergodic Theory (see also Section 3 of this Introduction).

In 2009 Shkarin [84] introduced the concept of U-frequent hypercyclicity: a vector x ∈ X is
called U-frequently hypercyclic for T ∈ L(X) if for every non-empty open subset U of X the
return set N(x, U) has positive upper density, i.e.

dens(N(x, U)) := lim sup
N→∞

#(N(x, U) ∩ [0, N ])
N + 1 > 0.

We denote by UFHC(T ) the set of U -frequently hypercyclic vectors for T , and again the operator
is called U-frequently hypercyclic whenever it admits a U -frequently hypercyclic vector.

A final example before going through the general case is that of reiterative hypercyclicity
coined in 2016 by Bès et al. [16], which uses the Banach density (see Section 2 of the Appendix):
a vector x ∈ X is called reiteratively hypercyclic for T ∈ L(X) if for every non-empty open
subset U of X the return set N(x, U) has positive upper Banach density, i.e.

Bd(N(x, U)) := lim sup
N→∞

(︄
sup
m≥0

#(N(x, U) ∩ [m,m+N ])
N + 1

)︄
> 0.

We denote by RHC(T ) the set of reiteratively hypercyclic vectors for the operator T , and again
T is called reiteratively hypercyclic whenever RHC(T ) ̸= ∅. The relation between the densities
above imply that, for every operator T ∈ L(X), the following inclusions hold

FHC(T ) ⊂ UFHC(T ) ⊂ RHC(T ) ⊂ HC(T ).

In general we will work with the concept of F -hypercyclicity for a family F , which will
represent the frequency. Even though we have used a slightly different definition of Furstenberg
family in each chapter (see Chapter 1, Section 8; Chapter 2, Section 1.2; Chapter 3, Section 4)
we justify the consistency of this (alternative) choices in Section 3 of the Appendix. Here we
will use the most complete definition in order to avoid unnecessary difficulties: a collection of
sets F ⊂ P(N0) is said to be a Furstenberg family (a family for short) provided that: each set
A ∈ F is infinite; F is hereditarily upward (i.e. B ∈ F whenever A ∈ F and A ⊂ B); and also
that A ∩ [n,∞[∈ F for all A ∈ F and n ∈ N. Following [16, 20, 23, 24, 25] we now define:
Definition 2.1 (F-hypercyclicity). Consider T ∈ L(X) and let F be a Furstenberg family.
A vector x ∈ X is said to be F-hypercyclic for T if NT (x, U) ∈ F for every non-empty open
subset U of X. We will denote by FHC(T ) the set of F -hypercyclic vectors for T , and we will
say that the operator T is F-hypercyclic whenever the set FHC(T ) is non-empty.

x

X
U

T

T

Figure 6: The orbit of x ∈ X visits frequently every non-empty open set, i.e. NT (x, U) ∈ F .
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2. Hypercyclicity, recurrence and Furstenberg families

After having introduced in previous sections the historical evolution of Linear Dynamics,
starting from the appearance of hypercyclicity and arriving to (pointwise) recurrence, it is now
completely natural to define:

Definition 2.2 (F-recurrence). Consider T ∈ L(X) and let F be a Furstenberg family. A
vector x ∈ X is called F-recurrent for T if NT (x, U) ∈ F for every neighbourhood U of x. We
will denote by FRec(T ) the set of F -recurrent vectors for T , and we will say that the operator
T is F-recurrent whenever the set FRec(T ) is dense in X.

Choosing now the right Furstenberg family we can recover the previously introduced and
very well-known hypercyclicity notions. In particular:

– we recover the concepts of “usual” recurrence/hypercyclicity when we consider the notions
of F -recurrence/F -hypercyclicity for the family F = I formed by the infinite subsets of N0;

– for the family of sets with positive upper Banach density BD := {A ⊂ N0 : Bd(A) > 0}, the
notion of BD-hypercyclicity equals to reiterative hypercyclicity, the BD-recurrence will be
called reiterative recurrence and RRec(T ) will be the set of reiteratively recurrent vectors;

– for the family of sets with positive upper density D := {A ⊂ N0 : dens(A) > 0}, the notion of
D-hypercyclicity coincides with that of U -frequent hypercyclicity, the D-recurrence is called
U-frequent recurrence and UFRec(T ) will be the set of U -frequently recurrent vectors;

– and for the family of sets with positive lower density D := {A ⊂ N0 : dens(A) > 0}, the notion
of D-hypercyclicity coincides with that of frequent hypercyclicity, the notion of D-recurrence
is called frequent recurrence and FRec(T ) will denote the set of frequently recurrent vectors.

The families F for which there exist F -hypercyclic operators are by far less common than
those for which F -recurrence exists: having an orbit distributed around the whole space is
much more complicated than having it just around the initial point of the orbit. Some families
associated just to recurrence are the family of syndetic sets S (a set is syndetic if the differences
between its consecutive elements are bounded, see Section 1 of the Appendix); or the families
IP∗ and ∆∗ which are even filters. We will not elaborate further on the IP∗ and ∆∗-recurrence
notions here (see Chapter 1, Section 6; Chapter 2, Section 1.3; and Section 4 of the Appendix
for more on the role of the families IP , ∆, IP∗ and ∆∗ in dynamics).

However, we would like to mention here that the notion of S-recurrence is specially important
in both articles [21] and [50] (see Chapters 1 and 2). In the literature this notion has been
called uniform recurrence. We will denote by URec(T ) the set of uniformly recurrent vectors,
and an operator T ∈ L(X) is called uniformly recurrent if the set URec(T ) is dense in X.

The following inclusions are then checked along the chapters/articles and Appendix:

Per(T ) ⊂ span(E(T )) ⊂ URec(T ) ⊂ FRec(T ) ⊂ UFRec(T ) ⊂ RRec(T ) ⊂ Rec(T ).

In [21] (see Chapter 1) we have deeply studied the F -recurrence notions mentioned above.
Note that almost every result and question from Costakis et al. [30], obtained for and related to
“usual” recurrence, makes sense in this broader context of F -recurrence and, indeed, for each
different Furstenberg family F , we have addressed the following problems:

11
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(a) Which is the size of the set of F -recurrent vectors?

(b) How are the notions of F -hypercyclicity and F -recurrence related?

(c) Are there natural assumptions under which F -recurrence implies F -hypercyclicity?

(d) Are the Ansari- and León-Müller-type theorems true for F -recurrence?

(e) Which is the structure of the spectrum of an F -recurrent operator?

(f) Which kind of F -recurrence present the periodic and unimodular eigenvectors?

(g) How does power-boundedness interact with F -recurrence?

(h) Which kind of F -recurrence present the operators acting on finite-dimensional spaces?

(i) Are there known natural classes of F -recurrent operators?

(j) Can we distinguish the different notions of F -recurrence introduced above?

The interested reader is now invited to look through Chapter 1 (see [21]).

The answers are located in Chapter 1 as follows: questions (a), (b) and (c) are treated in
Section 2; questions (d) and (e) are treated in Section 4; question (f) is treated in Section 7
(see also Chapter 2, Sections 1.3 and 4; and Chapter 3, Sections 4.2 and 5.1); question (g) is
treated in Section 3; and questions (h), (i) and (j) are treated in Sections 5 and 7.

One of the most powerful tools and main ideas in the framework of Chapter 1 is that, under
some natural assumptions on the family F , the F-hypercyclicity behaviour of a vector can be
decomposed in two necessary ingredients:

(1) usual hypercyclicity, we have to require a dense orbit;

(2) F-recurrence, the vector is just assumed to return with frequency F to its neighbourhoods.

This allows us to prove results such as the Ansari- and León-Müller-F-hypercyclicity theorems,
by proving them for “usual hypercyclicity”, which are already well-known, and then proving
them for the respective F -recurrence notion (see Chapter 1, Sections 4 and 8).

We have also studied F -recurrence for other Furstenberg families F than those included
in this section (see Chapter 1, Sections 6 and 8; and Chapter 2, Section 1.3). In particular,
the list included in Chapter 3, Section 4, Example 4.2, together with the notions that have
been treated in other F -hypercyclicity works such as [20, 36], provides a considerable source of
interesting examples.

See Section 2.1 of the General discussion of the results for more on Chapter 1.
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3. Ergodicity and measure preserving systems

3 Ergodicity and measure preserving systems

The problems considered in this section relate to article [50] (see Chapter 2), although some of
the questions that we treat here were originally stated in article [21] (see Chapter 1).

Until now we have focused on Topological Dynamics: hypercyclicity and recurrence have
been described in terms of open sets and neighbourhoods. However, as we advanced at the
beginning of this Introduction, we can study dynamical systems from the Ergodic Theory point
of view, and our objective in Chapter 2 was to exhibit a symmetry between both topological
and measurable theories. The Ergodic Theory set up needs a measure space (X,A , µ) where:

– the collection of sets A ⊂ P(X) is a σ-algebra on the non-empty set X;

– and µ : A −→ [0,∞[ is a (usually probability or at least positive finite) measure.

If now we consider a map T : X −→ X, which is assumed to be A -measurable, then the tuple
(X,A , µ, T ) is called a measure dynamical system (see [29], [64] and [86] for more details).

The main property in this context is that of ergodicity but, in order to introduce it, we need
to start by the concept of invariance: a measure dynamical system (X,A , µ, T ) is called a
measure preserving system if for every A ∈ A the following holds

µ(A) = µ(T−1(A)).

Both the transformation T and the measure µ interact in this definition, and sometimes it is
said that T is a µ-invariant transformation or that µ is a T -invariant measure. We will simply
say indistinctly that the transformation or the measure is invariant. This property can be
compared with recurrence: in fact, as stated and proved in [41, Introduction, Section 4], the
following result is one of the first theorems studying a recurrence-kind property, which was
discussed by Poincaré in 1890 and proved by Carathéodory using Measure Theory in 1919:

Poincaré Recurrence Theorem: Let (X,A , µ, T ) be a measure preserving system and let
A ∈ A be a set with positive measure µ(A) > 0. Then we have that

Orb(Tx, T ) ∩ A ̸= ∅ for µ-a.e. point x ∈ A.

A measure preserving system (X,A , µ, T ) is called ergodic if for each A ∈ A fulfilling that
A = T−1(A) then µ(A) ∈ {0, 1}. This property can be compared with topological transitivity
since it is equivalent to the fact that for each pair of sets A,B ∈ A with µ(A), µ(B) > 0 there
exists a natural number n ≥ 0 such that µ (A ∩ T−n(B)) > 0; see [86, Theorem 1.5].

Let us also recall two well-known, important and crucial results regarding ergodicity. The
first one is the so-called Birkhoff pointwise ergodic theorem (see [44, Theorem 3.41]):

Birkhoff Pointwise Ergodic Theorem: Let (X,A , µ, T ) be an ergodic system and consider
any f ∈ L1(X,A , µ). Then we have that

lim
N→∞

1
N + 1

N∑︂
k=0

f(T kx) =
∫︂

X
f dµ for µ-a.e. point x ∈ X.
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The second important ergodic result, for this memoir, is the ergodic decomposition theorem,
which links invariance and ergodicity in a very strong sense (see [44, Theorem 3.42]):

Ergodic Decomposition Theorem: For each measure preserving system (X,A , µ, T ) there
exists an abstract probability measure space (M, τ) formed by measures on (X,A ) for which

µ(A) =
∫︂

M
ν(A) dτ(ν) for each A ∈ A ,

and such that for τ -a.e. measure ν ∈ M the system (X,A , ν, T ) is ergodic.

There exist many other ergodic results, such as the mean ergodic theorem (proved in 1932 by
von Neumann [77] and applicable to contractions on Hilbert spaces), but we will concentrate
on those stated here to connect the introduced measurable properties with Linear Dynamics.
Given a continuous linear operator T ∈ L(X) acting on an separable F-space X we will consider
B(X), the σ-algebra of Borel sets on X, and a Borel probability measure µ on (X,B(X)), which
will sometimes have full support (i.e. µ(U) > 0 for every non-empty open subset U of X). The
continuity of T implies its B(X)-measurability, and we will usually omit the word “Borel”.

For every operator T ∈ L(X) there always exists at least one invariant measure: the atomic
Dirac mass δ0 at 0X ∈ X (i.e. δ0(A) = 1 if 0X ∈ A and 0 otherwise, for each A ⊂ X) is
always invariant by linearity. However, this is not a really interesting case and we will say that
an invariant probability measure µ is non-trivial if it differs from δ0. There also exist natural
examples of ergodic linear systems: the study of Ergodic Theory in Linear Dynamics started
with the pioneering work of Flytzanis (see [39, 40]), and was then further developed in the
papers [6], [7], [52] and [11], among others (see also the textbooks [28, 34, 10]).

The first relation between Linear Dynamics and Ergodic Theory that we want to remark
on is the one introduced in 2006 by Bayart and Grivaux in [6, Proposition 3.12] for operators
acting on separable F-spaces (see also [10, Proposition 6.23] and [55, Section 9.1]):

– If T ∈ L(X) is µ-ergodic and µ has full support, then T is frequently hypercyclic.

This is a consequence of the Birkhoff pointwise ergodic theorem: if (X,B(X), µ, T ) is ergodic
and µ has full support, applying the ergodic theorem to each indicator function 1lUn for a
countable basis of the topology (Un)n∈N we obtain that µ-a.e. vector x ∈ X fulfills the equality

dens(N(x, Un)) = lim
N→∞

#(N(x, Un) ∩ [0, N ])
N + 1 = lim

N→∞

1
N + 1

N∑︂
k=0

1lUn(T kx) =
∫︂

X
1lUndµ = µ(Un),

i.e., for each n ∈ N we have dens(N(x, Un)) = dens(N(x, Un)) = dens(N(x, Un)) = µ(Un) > 0
for every x in a set An ⊂ X with µ(An) = 1. It follows that each x ∈ ⋂︁

n∈NAn is a frequently
hypercyclic vector for T , and this shows that ergodicity + full support ⇒ frequent hypercyclicity.
The second relation we want to recall here is the following well-known fact:

– If T ∈ L(X) is µ-invariant and µ has full support, then T is recurrent.

The Poincaré recurrence theorem implies that T is topologically recurrent, and hence recurrent
by the Costakis-Manoussos-Parissis theorem (in [41, Theorem 3.3] it is even shown that µ-a.e.
vector is recurrent for T ). We have checked that invariance + full support ⇒ recurrence.
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Ergodicity

Frequent hypercyclicity Frequent recurrence

U -frequent hypercyclicity U -frequent recurrence

Reiterative hypercyclicity Reiterative recurrence

Hypercyclicity Recurrence

Invariance

Figure 7: Previously known relations between Topological and Measurable Dynamics.

It is then natural to ask if the invariance property implies some stronger recurrence notion.
The answer is yes, and we have proved it in [50] (see Chapter 2, Section 3, Lemma 3.1). Indeed,
if given a probability measure µ on X we define its support, supp(µ), as the complementary of
the union of all null open sets (i.e. supp(µ) = X \ ⋃︁U open,µ(U)=0 U , which coincides with the
smallest closed set of full measure) then we have the following:

Chapter 2, Lemma 3.1: Let T ∈ L(X) be an operator acting on a separable F-space X and
suppose that µ is an invariant probability measure on (X,B(X)). Then

µ(FRec(T )) = 1 and hence supp(µ) ⊂ FRec(T ).

The proof uses in a crucial way the ergodic decomposition theorem previously stated, and then
the Birkhoff pointwise ergodic theorem as in the implication ergodicity ⇒ frequent recurrence.
The implications between Topological and Measurable Dynamics are now complete in Figure 8.

Ergodicity Invariance

Frequent hypercyclicity Frequent recurrence

U -frequent hypercyclicity U -frequent recurrence

Reiterative hypercyclicity Reiterative recurrence

Hypercyclicity Recurrence

Figure 8: Relations between topological and measurable dynamical properties.

Once we know that invariance implies frequent recurrence one may wonder: Under which
conditions can we guarantee the existence of a (non-trivial) invariant measure? Our main line
of thought in article [50] (see Chapter 2) was to connect various notions of F -recurrence from
those defined and introduced in [21] via invariant measures, and proceeding in two steps:

15



Introduction

(1) If T ∈ L(X) admits vectors with the “weak” reiterative recurrence property (much weaker,
at least formally, than frequent recurrence), prove that then T admits a non-trivial invariant
measure, perhaps with full support (see Chapter 2, Section 2, Theorem 2.3).

(2) If T ∈ L(X) admits a non-trivial invariant measure (perhaps with full support), prove that
then T admits vectors with some strong recurrence property such as frequent recurrence
(see Chapter 2, Section 3, Lemma 3.1 for the proof of invariance ⇒ frequent recurrence),
but also unimodular eigenvectors (which enjoy a much stronger recurrence property than
that of frequent recurrence) when T acts on a Hilbert space and the invariant measure
fulfills some extra good properties (see Chapter 2, Section 4, Lemma 4.4).

This approach in Linear Dynamics comes from the paper [52], which extends to the linear setting
some results in the context of compact dynamical systems (see [41, Chapter 3 and Lemma 3.17]).

The interested reader is now invited to look through Chapter 2 (see [50]).

It is completely necessary to remark that the theory developed in Chapter 2 has some
restrictions since it is not valid for all operators acting on arbitrary F-spaces. This is something
natural because the results sought in this work have a really general character: we always start
with a continuous linear operator T ∈ L(X) acting on an F-space, and we do not have any
other parameters or initial conditions more than the assumptions we make on the underlying
space X or on the operator T . Let us comment on the restrictions used in Chapter 2:

The existence of an invariant measure with full support implies frequent recurrence for every
operator (and even for non-linear systems acting on second-countable spaces), but constructing
invariant measures from reiteratively recurrent vectors is not that easy. The result that allows
us to find invariant measures in Chapter 2 adapted to the linear setting is the following:

Chapter 2, Theorem 2.3: Let T ∈ L(X) be an adjoint operator acting on a separable dual
Banach space X and let w∗ be the respective weak-star topology on X. Given x0 ∈ RRec(T )\{0}
one can find a (non-trivial) invariant probability measure µx0 on (X,B(X)) such that

x0 ∈ supp(µx0) ⊂ Orb(x0, T )w∗

.

Moreover, if RRec(T ) is dense then T admits an invariant probability measure with full support.

This result together with the implication invariance ⇒ frequent recurrence proves some
really surprising equivalences (see Chapter 2, Section 1.2, Theorem 1.3): for an adjoint operator
T ∈ L(X) acting on a dual Banach space X we have that FRec(T ) = UFRec(T ) = RRec(T ),
and hence the following statements are equivalent:

(i) T is frequently recurrent;

(ii) T is U-frequently recurrent;

(iii) T is reiteratively recurrent.

Note that the result is valid on reflexive spaces, so it applies for every operator acting on an
ℓp-space, with 1 < p < ∞. These equivalences do not hold outside the adjoint/dual/reflexive
setting in general, as we proved in article [21] (see Chapter 1, Section 5, Corollary 5.8).
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To obtain unimodular eigenvectors we have to impose more restrictions: the operator has to
act on a complex Hilbert space and we need the reiteratively recurrent vectors, from which we
construct the measures, to have bounded orbit (see Chapter 2, Section 1.3, Theorem 1.7). The
invariant measures are obtained by the “adjoint operator’s result” stated above since Hilbert
spaces are reflexive, while getting unimodular eigenvectors from the measures constructed
presents some difficulties as we discuss in article [50] (see Chapter 2, Section 4, Lemma 4.4):

Chapter 2, Lemma 4.4: Let T ∈ L(H) be an operator acting on a complex separable Hilbert
space H and suppose that µ is a (non-trivial) invariant probability measure on (H,B(H)) such
that

∫︁
H ∥z∥2dµ(z) < ∞. Then we have the inclusions

supp(µ) ⊂ span(supp(µ)) ⊂ span(E(T )).

This result is inspired by the work of Flytzanis [40]. The proof is based on interchanging the
original measure µ by a proper Gaussian measure: a Borel probability measure m on a complex
Banach space X is called a (centered) Gaussian measure if each continuous linear functional
x∗ ∈ X∗ has a complex (centered) Gaussian distribution when considered as a random variable
on (X,B(X),m). See Figure 9. We refer the reader to [28] and [34] for more about Gaussian
measures on Banach spaces, and to [10] and [11] for more on their role in Linear Dynamics.

0
m ◦ (x∗)−1 : B(C) −→ [0,∞[

Figure 9: Distribution of a functional x∗ ∈ X∗ with respect to a centered Gaussian measure m.

With the approach via invariant measures given in Chapter 2 we have been able to get
an easy positive answer, in our adjoint/dual/reflexive setting, for the following two questions
regarding inverse and product systems, which remain open in the general case:

[21, Question 2.14]: Let T ∈ L(X) be an invertible F-recurrent operator. Is it true that the
inverse operator T−1 is again F-recurrent?

For a positive answer in our adjoint/dual/reflexive setting see Section 6 of Chapter 2. The
second question has been already stated for “usual recurrence” in Section 1 of this Introduction,
and we dedicate the next pages to a discussion about these T ⊕ T -type problem:

[50, Question 8.7]: Let T ∈ L(X) be an F-recurrent operator. Is it true that the direct sum
operator T ⊕ T is F-recurrent on the direct sum space X ⊕X?

See Section 2.2 of the General discussion of the results for more on Chapter 2.
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4 The T ⊕ T -type problems

The questions considered in this section relate to article [51] (see Chapter 3), even though we
also recall some of the results obtained in article [50] (see Chapter 2). As in previous sections
we will restrict ourselves to the linear case of the theory although in Chapter 3 we have used
the same definitions and notation in the non-linear setting.

Given an operator T ∈ L(X) with some dynamical “property” (hypercyclicity, chaos, etc.),
it is natural to ask whether the direct sum operator T ⊕ T : X ⊕ X −→ X ⊕ X, acting as
T ⊕ T (x1, x2) := (Tx1, Tx2) on the direct sum space X ⊕ X, presents that “property”. This
question will be called the T ⊕ T -“property” problem. Studied cases in Linear Dynamics are:

– Hypercyclicity. The T ⊕ T -hypercyclicity problem was a really long-standing problem,
posed in 1992 by D. Herrero [56] and finally answered negatively in 2006 by De La Rosa and
Read [32] (see the rest of this section or Section 1 of Chapter 3 for more on this problem).

– Reiterative and U-frequent hypercyclicity. Both cases have been solved in the positive
by Ernst, Esser and Menet in a recent 2021 paper (see [36, Theorem 2.5]).

– Frequent hypercyclicity. As far as we know the T ⊕ T -frequent-hypercyclicity problem
remains open although the notion of frequently hypercyclic operator appeared in 2006, before
those of reiterative and U -frequent hypercyclicity (see [43, Question 5]).

– Devaney Chaos. The T ⊕T -chaos problem admits an even stronger solution since for every
(possibly different) couple of chaotic operators T1 ∈ L(X1) and T2 ∈ L(X2) acting on the
couple of F-spaces X1, X2, the direct sum operator T1 ⊕T2 is again chaotic on the direct sum
space X1 ⊕X2 (see for instance [55, Exercise 2.5.7]).

Once we have a (positive or negative) answer for a fixed T ⊕ T -type problem, it is then
natural to go a step further and look at the N-fold direct sum system

T ⊕ · · · ⊕ T⏞ ⏟⏟ ⏞
N

: X ⊕ · · · ⊕X⏞ ⏟⏟ ⏞
N

−→ X ⊕ · · · ⊕X⏞ ⏟⏟ ⏞
N

,

for each N ∈ N, which to shorten will be denoted by

T(N) := T ⊕ · · · ⊕ T⏞ ⏟⏟ ⏞
N

and XN = X ⊕ · · · ⊕X⏞ ⏟⏟ ⏞
N

,

and where

T(N)(x1, x2, ..., xN) := (Tx1, Tx2, ..., TxN) for each N -tuple (x1, x2, ..., xN) ∈ XN .

If the answer to the considered T ⊕ T -type problem is:

(a) Positive: then one asks if the studied property is also fulfilled by T(N) for every N ∈ N,
provided that T presents the property;

(b) Negative: then one asks if the studied property is also fulfilled by T(N) for every N ∈ N,
provided that the 2-fold direct sum operator T ⊕ T presents the property.
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With respect to the already mentioned cases:

– Hypercyclicity. Although the T ⊕ T -hypercyclicity problem has a negative answer, once
T ⊕ T is hypercyclic then so is T(N), for every N ∈ N, by a well-known Furstenberg theorem
(see for instance [55, Theorem 1.51]).

– Reiterative and U-frequent hypercyclicity. This has been also positively solved by
Ernst, Esser and Menet in 2021 (see [36, Corollaries 2.7 and 2.8]). We have given a shorter
proof for the reiteratively hypercyclic case in [51] (see Chapter 3, Section 5.3, Corollary 5.17).

– Frequent hypercyclicity. Even if the direct sum operator T ⊕T is frequently hypercyclic,
it is still open if T(N) is frequently hypercyclic or not for any N ≥ 3.

– Devaney Chaos. This case also admits a solution similar to that of the T⊕T -chaos problem:
for every N (possibly different) chaotic operators Tj ∈ L(Xj), j = 1, ..., N , acting on the
F-spaces Xj, j = 1, 2, ..., N , then the direct sum operator T1 ⊕ T2 ⊕ · · · ⊕ TN is chaotic on
the direct sum space X1 ⊕X2 ⊕ · · · ⊕XN (see again [55, Exercise 2.5.7]).

The T ⊕T -type problems are considered to be complicated at least for two reasons: to obtain
a negative answer one has to construct a (usually non-trivial) counterexample; but also famous
notions (such as frequent hypercyclicity) still have their respective T ⊕ T -problem open. It is
particularly important for us to remark the difficulty found on the T ⊕T -hypercyclicity problem
that, as we have already mentioned, was posed in 1992 by D. Herrero [56]:

The T ⊕ T -hypercyclicity problem: Let T ∈ L(X) be a hypercyclic operator acting on an
F-space X. Is the direct sum operator T ⊕ T , acting on X ⊕X, hypercyclic?

An operator T ∈ L(X) is called (topologically) weakly-mixing (from now on weakly-mixing)
whenever T ⊕T is topologically transitive, so the question above asks whether there exists any
hypercyclic but not weakly-mixing operator. In 1999 Bès and Peris [18] showed that:

– A continuous linear operator T ∈ L(X) is weakly-mixing if and only if it satisfies the so-called
Hypercyclicity Criterion.

In other words, T ⊕ T ∈ L(X ⊕ X) is a hypercyclic operator if and only if T satisfies the
hypothesis of the following really well-known and practical result (see [55, Chapter 3]):

Hypercyclicity Criterion: Let T ∈ L(X) be an operator acting on an F-space X. If there
exist two dense subsets X0, Y0 ⊂ X, an increasing sequence of positive integers (nk)k∈N, and a
family of (not necessarily continuous) mappings Snk

: Y0 −→ X such that

(i) T nkx → 0 for each x ∈ X0;

(ii) Snk
y → 0 for each y ∈ Y0;

(iii) T nkSnk
y → y for each y ∈ Y0;

then T is weakly mixing, and in particular hypercyclic.
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The T⊕T -hypercyclicity problem was finally answered negatively in 2006 by De La Rosa and
Read (see [32]). The techniques used there were later refined by Bayart and Matheron in order
to construct hypercyclic but not weakly-mixing operators on each Banach space admitting a
normalized unconditional basis whose associated forward shift is continuous, as for instance on
the classical c0(N) and ℓp(N) spaces with 1 ≤ p < ∞ (see [8, 9]).

Our main objective in article [51] (see Chapter 3) has been to study the previous problem,
and to develop the corresponding theory, for the notion of recurrence. As we mentioned at the
end of Section 1 of this Introduction, the T ⊕ T -recurrence problem was posed by Costakis,
Manoussos and Parissis in their 2014 fundamental recurrence paper (see [30, Question 9.6]):

The T ⊕T -recurrence problem: Let T ∈ L(X) be a recurrent operator on an F-space X. Is
the direct sum operator T ⊕ T , acting on X ⊕X, recurrent?

In order to properly study and answer this question, in article [51] (Chapter 3) we have
proceed in three steps:

(1) We first characterize the operators T ∈ L(X) such that T(N) is recurrent for every N ∈ N.
This characterization is given in terms of the (as far as we know) new notion of quasi-rigidity,
which will be for recurrence, the analogous property to that of weak-mixing/satisfying the
Hypercyclicity Criterion for hypercyclicity (see Chapter 3, Section 2, Theorem 2.5): an
operator T ∈ L(X) is said to be quasi-rigid with respect to the sequence (nk)k∈N if there
exists a dense subset Y of X such that T nkx → x, as k → ∞, for every x ∈ Y .

(2) We then solve the introduced T ⊕T -recurrence problem giving a negative answer: we show
that in every (real or complex) separable infinite-dimensional Banach space X there exists
a recurrent operator T ∈ L(X) such that T ⊕T is not recurrent in X⊕X. Note that these
operators are recurrent but not quasi-rigid.

(3) We finally look at the N -fold direct sum operator T(N) for every N ∈ N, which is the next
step after obtaining a positive/negative answer to a T ⊕ T -type problem as mentioned in
this section, and we also show that T(N) is not necessarily recurrent even if the 2-fold direct
sum operator T ⊕T is recurrent. This represents a huge difference between recurrence and
hypercyclicity and, moreover, we have proved the following stronger result:

Chapter 3, Theorem 3.2: Let X be any (real or complex) separable infinite-dimensional
Banach space. For each N ∈ N there exists an operator T ∈ L(X) such that

T(N) : XN −→ XN is recurrent, and even Rec(T(N)) = XN ,

but for which T(N+1) : XN+1 −→ XN+1 (and hence T(J) for all J > N) is not recurrent.

The interested reader is now invited to look through Chapter 3 (see [51]).

We have also studied the T ⊕ T -type problem for the main F -recurrence notions introduced
along the work. However, we have just obtained partially positive answers that we would like
to briefly summarize here:
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5. Lineability, dense lineability and spaceability

Starting by the adjoint/dual/reflexive Banach setting we used in article [50] (see Chapter 2)
we obtain positive results in a really strong sense (as it happens for Devaney chaos). Indeed,
the linear version of Chapter 2, Section 5, Theorem 5.1 reads as follows:

Chapter 2, Theorem 5.1: Let N ∈ N and suppose that for each 1 ≤ j ≤ N there exists
an adjoint operator Tj ∈ L(Xj) acting on a dual Banach space Xj. Then for the direct sum
operator T := T1 ⊕ T2 ⊕ · · · ⊕ TN , acting on the direct sum space X1 ⊕X2 ⊕ · · · ⊕XN , we have
the equality FRec(T ) = ⨁︁N

j=1 RRec(Tj). In particular, the following statements are equivalent:

(i) T is frequently recurrent;

(ii) T is U-frequently recurrent;

(iii) T is reiteratively recurrent;

(iv) Tj is reiteratively recurrent for every 1 ≤ j ≤ N .

This result has some implications on the respective F -hypercyclicity notions for operators
acting on reflexive Banach spaces (see Chapter 2, Section 5). Finally, when the F -recurrent
operator T ∈ L(X) acts on an arbitrary F-space we have just obtained some natural sufficient
conditions to ensure that the N -fold direct sum operator T(N) is again F -recurrent for every
number N ∈ N. See Chapter 3, Section 5.2, Proposition 5.10. In particular, the result holds
for every F -recurrent operator admitting a cyclic vector.

See Section 2.3 of the General discussion of the results, but also the following
section of this Introduction, for more on Chapter 3.

5 Lineability, dense lineability and spaceability

The questions considered in this section relate to articles [51] and [69] (see Chapters 3 and 4).

When we study a dynamical notion whose definition involves a set of vectors fulfilling some
kind of property, one of the things to look at is the structure of such a set. One way to do this
is by examinating the size of the sets in the Baire category sense, and for instance:

– The Birkhoff transitivity theorem states that the set of hypercyclic vectors HC(T ) is always
a dense Gδ (and hence a residual, also called co-meager) subset of X. The same happens for
the set of recurrent vectors Rec(T ) by the so-called Costakis-Manoussos-Parissis theorem.

– The sets of reiteratively and U -frequently hypercyclic vectors RHC(T ) and UFHC(T ) are
always residual when they are non-empty (see [12, 16, 20]), while the set FHC(T ) of frequently
hypercyclic vectors is always meager (also called of first category); see [76, 12].

– For the sets FRec(T ) we show in [21] (see Chapter 1, Section 2) that: when T is hypercyclic
then RRec(T ) is residual, UFRec(T ) can be either residual or meager (depending on if T is
U -frequently hypercyclic or not), and FRec(T ) is always meager. However, FRec(T ) is either
meager or co-meager when T is not hypercyclic (see Chapter 1, Section 2, Example 2.4).
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– In article [50] (see Chapter 2, Section 7) we have even looked at the “Baire category size”
for the set of reiteratively recurrent operators acting on a complex separable Hilbert
space with respect to the Strong and Strong∗ Operator Topologies.

In our linear setting other “largeness” notions can be used: Is the set Rec(T ) of recurrent
vectors for T ∈ L(X) a vector subspace of X? The dense Gδ condition implies the next fact:

Proposition 5.1 (Adaptation of [55, Proposition 2.52]). Let T ∈ L(X) be a recurrent
operator acting on an F-space X. Then

X = Rec(T ) + Rec(T ),

that is, every vector x ∈ X can be written as the sum of two recurrent vectors.

Proof. Given x ∈ X both Rec(T ) and x− Rec(T ) are dense Gδ-sets, so their intersection must
be non-empty by the Baire category theorem. The later implies that x ∈ Rec(T ) + Rec(T ).

As a consequence, the set Rec(T ) itself can only be a vector subspace if every single vector
is recurrent, that is if X = Rec(T ). This is the case for recurrent and power-bounded operators
(which includes the case of recurrent operators acting on finite-dimensional spaces) as showed
in [30, Lemma 3.1], but not just for “usual recurrence” since we have shown that X = FRec(T )
as soon as T is power-bounded and F -recurrent (see Chapter 1, Section 3, Theorem 3.1).

Weakening the requirement it is natural to ask if, for a general (not power-bounded and
hence acting on an infinite-dimensional space) F -recurrent operator T ∈ L(X), the set FRec(T )
contains a “large” vector subspace. We will interpret “largeness” in three different ways:

– Lineability: Given a subset of vectors Y ⊂ X we say that Y is lineable if there exists an
infinite-dimensional vector subspace Z ⊂ X such that Z \ {0} ⊂ Y .

– Dense lineability: Given a subset of vectors Y ⊂ X we say that Y is dense lineable if there
exists a dense infinite-dimensional vector subspace Z ⊂ X such that Z \ {0} ⊂ Y .

– Spaceability: Given a subset of vectors Y ⊂ X we say that Y is spaceable if there exists an
infinite-dimensional closed vector subspace Z ⊂ X such that Z \ {0} ⊂ Y .

Two things should be noted:

(1) the structural notions above turn stronger as one goes down. Studying lineability is easier
than dense lineability, which in its turn will be much easier than studying spaceability;

(2) in our case Y will be some set of F -recurrent vectors FRec(T ), and since we always have
that the zero-vector 0X ∈ X belongs to FRec(T ) for every Furstenberg family F , then the
possible infinite-dimensional vector subspace Z ⊂ X will be fully included in our set Y
without having to take out the zero-vector.

Let us start by the first two (lineability and dense lineability) properties: by the well-known
Herrero-Bourdon theorem (see [55, Theorem 2.55]), every hypercyclic operator admits a dense
vector subspace in which every non-zero element is hypercyclic, i.e. HC(T ) is dense lineable as
soon as T is hypercyclic. Our objective in article [51, Section 5] (see Chapter 3, Section 5) has
been to study these lineability properties for the sets of recurrent vectors:
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5. Lineability, dense lineability and spaceability

– We prove in [51] (see Chapter 3, Section 5) that the set Rec(T ) is always lineable when T
is recurrent. This easily extends to the set FRec(T ) under a very weak assumption on the
family F : we have to guarantee that unimodular eigenvectors present a stronger recurrence
notion than F -recurrence, i.e. we have to ensure that span(E(T )) ⊂ FRec(T ). This condition
is indeed satisfied by all the interesting F -recurrence notions considered in this memoir.

– On the other hand, we do not know if Rec(T ) is always dense lineable, and the problem is also
left open for the sets FRec(T ) of F -recurrent vectors when the Furstenberg family F is not
a filter. Nevertheless, we are able to give some natural sufficient conditions that guarantee
this dense lineability, one of them being the cyclicity of T (see Chapter 3, Section 5).

The notion of quasi-rigidity (mentioned in Section 4 of this Introduction, and analogous for
recurrence to the weak-mixing notion for hypercyclicity) can be expressed as a very particular
kind of F -recurrence (see Chapter 3, Section 4.1, Proposition 4.5), and this motivates those
sufficient conditions obtained for dense lineability: indeed, for every quasi-rigid operator the
set of recurrent vectors Rec(T ) is dense lineable (see Chapter 3, Section 2.2, Proposition 2.7).

The interested reader is now invited to look through Section 5 of Chapter 3.

Quasi-rigidity is even more important for spaceability. In article [69] (see Chapter 4) we
again justify why this property is, for recurrence, the analogous notion to that of weak-mixing
or satisfying the Hypercyclicity Criterion for hypercyclicity: the known Banach space theory
about the spaceability of the set of hypercyclic vectors can be fully rewritten and adapted to
the recurrence setting by exchanging the weak-mixing assumption by that of quasi-rigidity.

Our results hold for “usual recurrence” on Banach spaces. We show deep relations between
the well-known hypercyclic spaceability theory and the rather new recurrent spaceability theory,
characterizing those quasi-rigid operators T ∈ L(X) that present a so-called recurrent subspace
(i.e. an infinite-dimensional closed vector subspace of the set Rec(T )), and establishing the
curious equivalence, for weakly-mixing operators, between having a hypercyclic and a recurrent
subspace (see Chapter 4, Sections 2 and 3, and Corollary 3.5):

Chapter 4, Corollary 3.5: Let T ∈ L(X) be a weakly-mixing operator on a (real or complex)
separable Banach space X. Then the following statements are equivalent:

(i) T has a hypercyclic subspace;

(ii) T has a recurrent subspace.

The interested reader is now invited to look through Chapter 4 (see [69]).

Spectral Theory is our main tool when dealing with spaceability: many operators present
recurrent subspaces (such as quasi-rigid compact perturbations of the identity), but there are
also plenty of counterexamples (such as the Rolewicz operators). Moreover, using the developed
theory we have easily shown that every C-type operator, as defined in [73, 53], has a hypercyclic
subspace (see Chapter 4, Section 7, Example 7.5).

See Section 2.4 of the General discussion of the results for more on Chapter 4.
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We close here this introductory chapter. For some extra remarks, further results and open
problems we refer to the General discussion of the results and Conclusions chapters.
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Frequently recurrent operators

This chapter is an adaptation of the revised “author version” of the article:
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Adaptation: The general theoretic results included in the original version of the article were stated
for continuous linear operators acting on Fréchet spaces. Here we have stated them in the broader
context of continuous linear operators acting on F-spaces with the aim of pursuing the maximum
generality shown in other parts of this memoir such as the Introduction or Chapter 3. Moreover, the
notation has been slightly modified to use similar symbols in all chapters.

Abstract

Motivated by a recent investigation of Costakis et al. on the notion of recurrence in Linear Dynamics,
we study various stronger forms of recurrence for linear operators, in particular that of frequent
recurrence. We study, among other things, the relationship between each type of recurrence and the
corresponding notion of hypercyclicity, the influence of power-boundedness, and the interplay between
recurrence and spectral properties. We obtain, in particular, Ansari- and Léon-Müller-type theorems
for F-recurrence under very weak assumptions on the Furstenberg family F . This allows us, as a
by-product, to deduce Ansari- and Léon-Müller-type theorems for F-hypercyclicity.
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Chapter 1. Frequently recurrent operators

1 Introduction

The notion of recurrence for a dynamical system has a very long history, whose systematic study
goes back to the classical works of Gottschalk and Hedlund [GH55] and Furstenberg [Fur81]
(see also [Gla04] and [OZ13] for recent advances). In Linear Dynamics, however, recurrent
operators have only recently been studied systematically in a fundamental paper by Costakis,
Manoussos and Parissis [CMP14]; see also [CP12].

The literature on (non-linear) dynamical systems abounds with notions that are similar to
recurrence. Of course, periodicity is a very strong form of recurrence, and it is fundamental in
any dynamical theory. But some other forms of recurrence have also recently been looked at in
Linear Dynamics, see [GMJPO15], [YW18], [HHY18], [GMM21], [CM22a].

The aim of this paper is to study various recurrence notions in Linear Dynamics. The
appropriate framework is that of F -recurrence for arbitrary Furstenberg families F . However,
for better readability we will mainly concentrate on those types of recurrence that deserve the
greatest interest from the point of view of Linear Dynamics. We will discuss the general notion
of F -recurrence in Section 8.

Throughout Sections 1 to 7, X will denote a (separable) F-space (i.e. X is a completely
metrizable topological vector space), that in some particular cases we will assume to be a
Fréchet, Banach or Hilbert space, and T : X −→ X will be a (continuous, linear) operator,
briefly T ∈ L(X). A vector x ∈ X is called recurrent for T if there exists a strictly increasing
sequence (nk)k∈N of positive integers such that

T nkx → x as k → ∞.

We will denote by Rec(T ) the set of recurrent vectors for T , and T is called recurrent if Rec(T )
is dense in X. The latter differs from, but is equivalent to the definition of recurrence given by
Costakis et al., see [CMP14, Proposition 2.1 with Remark 2.2] and Remark 8.2 below.

A vector x is called periodic for T if there is some p ≥ 1 such that T px = x. The set of
periodic points of T will be denoted by Per(T ). The vector x is called uniformly recurrent for
T if, for any neighbourhood U of x, the return set

N(x, U) = {n ≥ 0 : T nx ∈ U}

is syndetic, that is, has bounded gaps. The set of uniformly recurrent vectors will be denoted
by URec(T ), and again, the operator T is called uniformly recurrent if this set is dense in X.
Uniformly recurrent vectors are often called almost periodic in the literature, see [GH55], but
also syndetically recurrent or strongly recurrent, see [BK04], [KS09].

In addition, we fix the following terminology as suggested by recent work in Linear Dynamics:

Definition 1.1. Let T ∈ L(X). A vector x ∈ X is frequently (U-frequently or reiteratively)
recurrent for T if, for any neighbourhood U of x, the return set

N(x, U) = {n ≥ 0 : T nx ∈ U}

has positive lower density (upper density or upper Banach density, respectively). The set of
such vectors is denoted by FRec(T ) (UFRec(T ) or RRec(T ), respectively). If this set is dense
in X then the operator T is called frequently (U-frequently or reiteratively) recurrent.
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1. Introduction

We recall that, for a subset A of N0, its lower density is defined as

dens(A) = lim inf
N→∞

#(A ∩ [0, N ])
N + 1 ,

its upper density as
dens(A) = lim sup

N→∞

#(A ∩ [0, N ])
N + 1 ,

and its upper Banach density as

Bd(A) = lim
N→∞

(︄
sup
m≥0

#(A ∩ [m,m+N ])
N + 1

)︄
;

see [GTT10] for other, equivalent definitions of the upper Banach density; see also [BGE18].
The notion of U -frequent recurrence was first introduced by Costakis and Parissis [CP12],

while Grivaux and Matheron [GM14] have introduced a concept of frequent recurrence that is
(at least formally) weaker than oursA.

In non-linear dynamics, frequently recurrent points have been called weakly almost periodic,
U -frequently recurrent points have been called quasi-weakly almost periodic, and reiteratively
recurrent points have been called positive Banach upper density points, Banach recurrent
points, or essentially recurrent points, see [HYZ13], [Li12], [YZ12], [HW18], [BD08].

As pointed out by the referee, there exists the notion of (topological) multiple recurrence
studied for linear operators in [CP12]. It was observed in the recent article [CM22b] that it is
equivalent to AP-recurrence, where AP is the Furstenberg family consisting of those subsets
of natural numbers containing arbitrarily long arithmetic progressionsB. Let APRec(T ) be the
set of AP-recurrent vectors for an operator T . We have the following inclusions, which are
obvious, except RRec(T ) ⊂ APRec(T ), which was observed in [CM22b]C:

Per(T ) ⊂ URec(T ) ⊂ FRec(T ) ⊂ UFRec(T ) ⊂ RRec(T ) ⊂ APRec(T ) ⊂ Rec(T ). (1.1)

The paper is organized as follows. In Section 2 we compare the recurrence properties with
their corresponding notions of hypercyclicity. In Section 3 we study how power-boundedness
influences on recurrence. Section 4 is devoted to some structural properties of recurrence; in
particular, we solve a problem of Grivaux et al. [GMM21, Question 7.11]. Weighted backward
shifts are studied in Section 5, where we also show that the inclusions in (1.1) are strict, in a
rather strong sense. Further operators are considered in Section 7; a common feature of many
of these operators is a large supply of unimodular eigenvectors, which implies IP∗-recurrence,
an interesting strengthening of uniform recurrence. Thus, as a preparation, we briefly discuss
IP∗-recurrence in Section 6. In the final Section 8 we introduce and discuss the general notion
of F -recurrence for operators on general topological vector spaces. As a by-product of our work
we obtain Ansari- and León-Müller-type results for F -hypercyclicity, see Theorem 8.8.

We finish this introduction with two comments: our investigations have led to several open
problems, see Questions 2.9, 2.11, 2.13, 2.14, 4.10D, 5.3, and 6.3; and for any unexplained but
standard notions from Linear Dynamics we refer to the textbooks [BM09] and [GEP11].

ASee Sections 1.2 and 2.3 of Chapter 2 for more on this alternative frequent recurrence notion.
BSee Section 2.1 of the General discussion of the results for more on AP-recurrence.
CSee also statement (d) of Proposition 2.10 in Section 2 of the Appendix.
DQuestion 4.10 has recently been solved in the negative; see [CM].
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Chapter 1. Frequently recurrent operators

2 Recurrence, hypercyclicity, and size of recurrent sets

The central notion in Linear Dynamics is that of a hypercyclic vector, that is, a vector with
dense orbit. In a similar vein, a vector x ∈ X is called frequently (U-frequently or reiteratively)
hypercyclic for T if, for every non-empty open subset U of X, the return set N(x, U) has
positive lower density (positive upper density or positive upper Banach density, respectively).
An operator that possesses such a vector is called frequently (U-frequently or reiteratively)
hypercyclic, see [BG06], [Shk09], [BMPP16], [BGE18], and the textbooks [BM09], [GEP11].
Note that uniform recurrence admits no hypercyclic analogue, see [BMPP16, Proposition 2].

Trivially, every notion of hypercyclicity implies the corresponding notion of recurrence. The
converse, of course, is not true as seen by the identity operator. In this section we ask under
which additional assumptions on the operator the converse does become true.

Our first result elaborates on [BMPP16, Theorem 14].

Theorem 2.1. Let T ∈ L(X). Then the following assertions are equivalent:

(i) T is reiteratively hypercyclic;

(ii) T is hypercyclic, and RRec(T ) is a residual set;

(iii) T is hypercyclic, and RRec(T ) is of second category;

(iv) T admits a hypercyclic and reiteratively recurrent vector;

(v) T is hypercyclic and reiteratively recurrent;

(vi) T is hypercyclic, and every hypercyclic vector is reiteratively hypercyclic.

In that case the set of hypercyclic and reiteratively recurrent vectors is residual.

Proof. (i) ⇒ (ii): By [BMPP16, Theorem 14] every hypercyclic vector is also reiteratively
hypercyclic when T is reiteratively hypercyclic; and the set of hypercyclic vectors is always
residual. (ii) ⇒ (iii): This is trivial. (iii) ⇒ (iv): This follows from the fact that the set of
hypercyclic vectors is residual. (iv) ⇒ (v): Since T admits a hypercyclic reiteratively recurrent
vector x, then each element of the orbit of x is also a hypercyclic reiteratively recurrent vector.
Thus T is hypercyclic and reiteratively recurrent. (v) ⇒ (vi): This was essentially shown in
the proof of [BMPP16, Theorem 14]. We repeat the argument for the sake of completeness:

Let x be a hypercyclic vector and U a non-empty open set. By hypothesis there is a
reiteratively recurrent vector y ∈ U . Thus, N(y, U) = {n ≥ 0 : T ny ∈ U} has positive upper
Banach density. Now let n ≥ 0. Then Un = ⋂︁

j∈N(y,U)∩[0,n] T
−j(U) is a non-empty open set

containing y. By hypercyclicity of x there is then some kn ≥ 0 such that T knx ∈ Un, thus
T kn+jx ∈ U for every j ∈ N(y, U) ∩ [0, n]. In other words, for every n ≥ 0 there exists kn ≥ 0
such that

N(x, U) ⊃ kn + (N(y, U) ∩ [0, n]).
This easily implies that N(x, U) has positive upper Banach densityE. That is, x is reiteratively
hypercyclic so we get (vi). (vi) ⇒ (i): This is trivial.

ESee Lemma 2.12 in Section 2 of the Appendix.
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2. Recurrence, hypercyclicity, and the size of the set of recurrent vectors

Since periodic points are reiteratively recurrent, we have the following result of Menet:

Corollary 2.2 ([Men17]). Every chaotic operator is reiteratively hypercyclic.

In view of the theorem one might wonder if a single non-zero reiteratively recurrent vector,
for a hypercyclic operator, suffices to make it reiteratively hypercyclic. This is not the case:

Example 2.3. By [BMPP16, Theorem 13], there exists a mixing operator S on ℓ2(N) that is
not reiteratively hypercyclic. Let T be a mixing and chaotic operator on ℓ2(N), for example
twice the backward shift, 2B (see [GEP11, Example 3.2]). The operator S⊕T on ℓ2(N)⊕ℓ2(N)
is also mixing (see [GEP11, Proposition 1.42] for a standard argument), S ⊕ T cannot be
reiteratively hypercyclic because S is not, and (0, y) is periodic for S ⊕ T if y ∈ Per(T ). So we
even have a mixing operator with a non-zero periodic point that is not reiteratively hypercyclic.

If T is recurrent, the set of recurrent vectors for T is residual, see [CMP14]. Also, if T is a
reiteratively hypercyclic operator, then the set of reiteratively hypercyclic vectors is residual,
see [BMPP16]. However:

Example 2.4. There is a reiteratively recurrent operator for which the set of reiteratively
recurrent vectors is of first category. To see this, let X = ℓp(N), 1 ≤ p < ∞, or c0(N). We
consider the operator T : X −→ X that is defined by Te1 = e1 and

Tek =
⎧⎨⎩2ek+1 if 2j ≤ k < 2j+1 − 1,

1
2(2j −1) e2j if k = 2j+1 − 1

for j ≥ 1, where ek = (δk,n)n≥1 denotes the k-th canonical unit sequence. Each vector ek is
periodic for T , so that T admits a dense set of periodic points. In particular, T is reiteratively
recurrent. We now prove that RRec(T ) is of first category: it suffices to show that

G =
{︂
x = (xn)n≥1 ∈ X : |x2j | > 1

j
for infinitely many j ≥ 1

}︂
is a residual set that does not contain any reiteratively recurrent vector. It is easily checked
that G is dense, and since

G =
⋂︂

J≥1

⋃︂
j≥J

{︂
x ∈ X : |x2j | > 1

j

}︂
,

it is a dense Gδ-set, hence residual. Let now x = (xn)n≥1 ∈ G and U = {y ∈ X : ∥y− x∥ < 1
2}.

Since x ∈ X there is some N0 ≥ 0 such that |xn| < 1
2 for every n ≥ N0. Consequently we have

that if y ∈ U then |yn| < 1 for every n ≥ N0. Moreover, since x ∈ G there is an infinite set
A ⊂ N such that 2j > N0 and |x2j | > 1

j
for each j ∈ A. For each of such j ∈ A and each

n = ℓ2j + k with ℓ ≥ 0 and j ≤ k ≤ 2j − 1 we have that⃓⃓⃓
[T nx]2j+k

⃓⃓⃓
= 2k |x2j | > 2k

j
≥ 2j

j
> 1,

so that T nx /∈ U . This implies that, for any m ≥ 0, #(N(x, U) ∩ [m,m+ 2j − 1]) ≤ j, hence

Bd(N(x, U)) = lim
A∋j→∞

sup
m≥0

#(N(x, U) ∩ [m,m+ 2j − 1])
2j

≤ lim
A∋j→∞

j
2j = 0,

so x /∈ RRec(T ) and the set of reiteratively recurrent vectors is of first category.
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Chapter 1. Frequently recurrent operators

We will now see that for U -frequently recurrent operators the situation is a little different
from that for reiterative recurrence found in Theorem 2.1. We start with a partial analogue.

Theorem 2.5. Let T ∈ L(X). Then the following assertions are equivalent:

(i) T is U-frequently hypercyclic;

(ii) T is hypercyclic, and UFRec(T ) is a residual set;

(iii) T is hypercyclic, and UFRec(T ) is of second category;

(iv) T admits a hypercyclic and U-frequently recurrent vector.

In that case the set of hypercyclic and U-frequently recurrent vectors is residual. Moreover,
every hypercyclic and U-frequently recurrent vector is U-frequently hypercyclic.

Proof. (i) ⇒ (ii) ⇒ (iii) ⇒ (iv): These follow from the fact that the set of U -frequently
hypercyclic vectors is either empty or residual (see [BR15] or [BGE18]), and that the same is
true for the set of hypercyclic vectors. (iv) ⇒ (i): Let x be a hypercyclic and U -frequently
recurrent vector, and let U be a non-empty open set. By the hypercyclicity of x there is some
integer m ≥ 0 such that Tmx ∈ U . By the continuity of T there is some neighbourhood V of
x such that Tm(V ) ⊂ U . Since x is U -frequently recurrent, the set

N(x, V ) = {n ≥ 0 : T nx ∈ V }

has positive upper density, and so has N(x, V ) + m. But N(x, V ) + m ⊂ {n ≥ 0 : T nx ∈ U}.
This shows that x is U -frequently hypercyclic. This also proves the additional claim.

However, the analogue of Theorem 2.1, statement (v), breaks down for U -frequent recurrence:

Example 2.6. Menet has constructed, on c0(N) and on each ℓp(N) space with 1 ≤ p < ∞,
a chaotic operator T that is not U -frequently hypercyclic; see [Men17]. Since every periodic
point is U -frequently recurrent, the operator T is hypercyclic and U -frequently recurrent without
being U -frequently hypercyclic. Statement (iii) of Theorem 2.5 implies that the set UFRec(T )
must be of first category. This is in sharp contrast to the fact that the set of U -frequently
hypercyclic vectors is always either empty or residual, see [BR15].

In the case of frequent hypercyclicity we have even fewer equivalent conditions. The proof
is identical to that of the corresponding part in Theorems 2.1 or 2.5.

Theorem 2.7. Let T ∈ L(X). Then the following assertions are equivalent:

(i) T is frequently hypercyclic;

(ii) T admits a hypercyclic and frequently recurrent vector.

Moreover, every hypercyclic and frequently recurrent vector is frequently hypercyclic.
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2. Recurrence, hypercyclicity, and the size of the set of recurrent vectors

There is a striking difference in hypercyclicity when passing from lower to upper densities:
while the set of frequently hypercyclic vectors is always of first category ([Moo13], [BR15]),
the set of U -frequently hypercyclic vectors is residual unless empty ([BR15]). We have just
seen that we lose the latter property for U -frequent recurrence. For frequent recurrence we
collect here some cases where FRec(T ) is of first category (even though some of the statements
remain true for operators acting on F-spaces, we will state the result for Fréchet spaces to avoid
unnecessary complications). Let us first recall the following notions:

When X is a Fréchet space, the orbit of a vector x ∈ X for an operator T ∈ L(X) is said
to be distributionally near to zero (respectively distributionally unbounded) if there is a set
A ⊂ N0 with dens(A) = 1 such that T nx → 0 as A ∋ n → ∞ (respectively p(T nx) → ∞ as
A ∋ n → ∞ for some continuous semi-norm p(·) on X). These two properties, put together,
define the notion of a distributionally irregular vector, see [BBMP08].

Theorem 2.8. Let X be a Fréchet space and suppose that T ∈ L(X) fulfills any of the following:

(a) T is hypercyclic;

(b) T has a distributionally unbounded orbit;

(c) T has a dense set of vectors whose orbits are distributionally near to zero;

(d) T has a dense set of vectors x ∈ X such that T nx → 0 as n → ∞.

Then the set FRec(T ) is of first category.

Proof. (a): If T is hypercyclic and FRec(T ) is of second category then so is the set of hypercyclic
and frequently recurrent vectors, which are frequently hypercyclic by the previous theorem.
This is a contradiction with [Moo13, Theorem 1]. (b): By [BBMP08, Proposition 7], the
hypothesis implies that there exists a residual subset of vectors in X with distributionally
unbounded orbit. But none of these vectors can be frequently recurrent. (c): Argue as in (b)
but using [BBMP08, Proposition 9]. (d): This is a special case of (c).

The identity operator tells us that FRec(T ) can be all of X, so it is natural to ask:

Question 2.9. Do we always have that either FRec(T ) = X or FRec(T ) is of first category?

When we now try to look in the same way at uniformly recurrent vectors then we have gone
too far: such vectors can never be hypercyclic. This is obvious on Banach spaces but also valid
in general, as follows from a classical result of Furstenberg [Fur81, Theorem 1.17]: the closure
of the orbit of any uniformly recurrent vector is a minimal set (i.e. it does not contain any
proper closed invariant subset). Thus, no periodic point can be an accumulation point of the
orbit of a uniformly recurrent vector. We give here the proof of this conclusion for the sake of
completeness (recently used in [BMPP16, Proposition 2]):

Theorem 2.10. No periodic point for T ∈ L(X) is an accumulation point of the orbit of a
uniformly recurrent vector. In particular, no uniformly recurrent vector for T is hypercyclic.
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Proof. Suppose on the contrary that a periodic point y is an accumulation point of the orbit of
a uniformly recurrent vector x. Then x cannot belong to the (finite) orbit of y under T , so that
there are disjoint open sets U and V containing x and the orbit of y, respectively. Let m be
the maximum gap in the return set N(x, U). Then there is a neighbourhood W of y such that
T j(W ) ⊂ V for j = 0, . . . ,m. By assumption there is some n ≥ 0 such that T nx ∈ W . But
then T kx belongs to V and therefore not to U for the m+ 1 exponents k = n, . . . , n+m, which
is a contradiction. Since 0 is a periodic point of every operator, the final conclusion follows.

Theorem 2.10 only leaves the possibility to study hypercyclic operators that also have a
dense set of uniformly recurrent vectors (or, for that matter, a dense set of U -frequently or
frequently recurrent vectors). We will not pursue this here. Let us slightly modify Question 2.9
to ask the following:
Question 2.11. Do we always have that either URec(T ) = X or URec(T ) is of first category?

We will get a partial positive answer in Section 3. Note that, for periodic points, the
corresponding property holds. It is a simple consequence of the Baire category theorem that
either Per(T ) is of first category or else T n = I for some n ≥ 1 (and hence Per(T ) = X).

Our next result was motivated by [GMM21, Corollary 5.20]. The authors there show that
if an operator T is uniformly recurrent, and if there is a dense set of vectors x ∈ X such
that T nx → 0 as n → ∞, then T is U -frequently hypercyclic. They call this result somewhat
unexpected. We can give here a more natural (and improved) version of their finding.
Theorem 2.12. Let T ∈ L(X). Suppose that there is a dense set of vectors x ∈ X such that
T nx → 0 as n → ∞. Then we have the following:

(a) If T is recurrent then it is hypercyclic.

(b) If T is reiteratively recurrent then it is reiteratively hypercyclic.

(c) If T is U-frequently recurrent then it is U-frequently hypercyclic.

Proof. For U -frequent hypercyclicity, it suffices by [BGE18, Corollary 3.4] to show that, for any
non-empty open set V in X there is some δ > 0 such that, for any non-empty open set U in
X, there is some x ∈ U such that

dens{n ≥ 0 : T nx ∈ V } > δ. (1.2)

Such a set V contains a U -frequently recurrent vector v. Choose open neighbourhood V0 of
v and W of zero such that V0 +W ⊂ V . Then the set

A := {n ≥ 0 : T nv ∈ V0}

has positive upper density. Choose 0 < δ < dens(A). Now let U be a non-empty open set. By
hypothesis there is some y ∈ U − v such that T ny → 0 as n → ∞. Then the vector x := y + v
belongs to U , and we have that

T nx = T ny + T nv ∈ W + V0 ⊂ V

whenever n ∈ A is sufficiently large, which implies (1.2). The proof for reiterative recurrence and
recurrence is similar, and one can even obtain that T is weakly-mixing. See also Theorem 8.5
below and [BGE18, Theorem 3.1].
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The proof, however, breaks down for frequent hypercyclicity.

Question 2.13. Let T be a frequently recurrent operator (or even a chaotic operator) such
that T nx → 0 as n → ∞ for all x from a dense subset of X. Does it follow that T is frequently
hypercyclic? It seems to be even open whether every chaotic operator with a dense generalized
kernel (that is, ⋃︁n≥0 Ker(T n) = X) is frequently hypercyclic.

We include one more natural question. Does the dynamical properties of an invertible
operator T pass to its inverse? This is well-known to be the case for hypercyclicity, reiterative
hypercyclicity (see [BGE18]) and recurrence ([CMP14]). However, Menet [Men20], [Men22] has
recently shown that the corresponding results are false for (U -)frequent hypercyclicity.

Question 2.14. F Let T be an invertible operator. If T is reiteratively recurrent (U -frequently
recurrent, frequently recurrent, uniformly recurrent), does T−1 have the same property?

3 Recurrence and power-boundedness

Not surprisingly, power-boundedness influences strongly the dynamical properties of a linear
operator: we say that T ∈ L(X) is power-bounded if the sequence (T n)n≥0 is equicontinuous,
that is, if for any 0-neighbourhood W1 there is a 0-neighbourhood W2 such that, for any n ≥ 0,

T n(W2) ⊂ W1;

by the Banach-Steinhaus theorem, this is equivalent to saying that every orbit under T is
bounded, see [Rud91]. The following is then obvious; see also [CMP14, Lemma 3.1].

Theorem 3.1. Let T ∈ L(X). If T is power-bounded, then the sets URec(T ), FRec(T ),
UFRec(T ), RRec(T ) and Rec(T ) are closed.

Proof. We only consider uniform recurrence. Let x ∈ URec(T ) and W be a 0-neighbourhood.
Choose a 0-neighbourhood W1 such that W1 +W1 +W1 ⊂ W . By power-boundedness, there is
a 0-neighbourhood W2 ⊂ W1 such that T n(W2) ⊂ W1 for all n ≥ 1. There is some y ∈ URec(T )
such that x− y, y − x ∈ W2. The set A := {n ≥ 0 : T ny − y ∈ W1} is syndetic and

T nx− x = T n(x− y) + T ny − y + y − x ∈ W1 +W1 +W1 ⊂ W for each n ∈ A.

Since W is arbitrary, x is uniformly recurrent.

This shows that, for every power-bounded operator, recurrence of the operator implies that
every vector is recurrent; and similarly for the other notions of recurrence. On the other hand,
for an operator acting on a Banach space, every uniformly recurrent vector has a bounded orbit.
Thus we immediately obtain the following partial answer to Question 2.11:

Corollary 3.2. Let X be a Banach space and T ∈ L(X) a uniformly recurrent operator. Then
either URec(T ) is of first category, or URec(T ) = X.

FThis question has recently been partially solved in the positive; see Section 6 of Chapter 2.
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Proof. Suppose that the set URec(T ) is of second category. Then so is the set of vectors with
bounded orbit under T , which is then power-bounded by the Banach-Steinhaus theorem. By
the previous theorem URec(T ) is closed, and dense by hypothesis, so that URec(T ) = X.

For F-space and Fréchet space operators, a uniformly recurrent orbit is not necessarily
bounded, so that one cannot argue as in the proof of Corollary 3.2. An example is given by the
backward shift on the space KN of all (real or complex) sequences, see [GMJPO15, Example 1].
We give here an example on a Fréchet space with a continuous norm. The type of operator
considered in this example might also be of independent interest.
Example 3.3. Let X be the space of doubly indexed sequences x = (xk,j)k≥0,0≤j<2k such that

pn(x) :=
∞∑︂

k=0

1
2k

max
0≤j<2k

|xk,j| +
∞∑︂

k=2
k max

1≤m≤n
m<2k−1

|xk,2k−1+m| < ∞ for each n ≥ 1.

Figure 1.1 indicates the area of indices that is involved in the second sum. When endowed with
the increasing sequence of (semi-)norms (pn)n≥1, it obviously becomes a Fréchet space.

Figure 1.1: Indices for the semi-norms pn.
j

k

2k

2k−1

We consider the operator T on X given by
T (xk,j)k,j = (xk,j+1(mod 2k))k,j,

that is, a simple row-wise rotation. To see that T is continuous, fix n ≥ 1. Choose l ≥ 2 so
that 2l ≥ 2(n+ 2), which implies that n+ 1 < 2k−1 for all k ≥ l. Then we have for x ∈ X that

pn(Tx) =
∞∑︂

k=0

1
2k

max
0≤j<2k

|[Tx]k,j| +
∞∑︂

k=2
k max

1≤m≤n
m<2k−1

|[Tx]k,2k−1+m|

=
∞∑︂

k=0

1
2k

max
0≤j<2k

|xk,j| +
l−1∑︂
k=2

k max
1≤m≤n
m<2k−1

|[Tx]k,2k−1+m| +
∞∑︂

k=l

k max
1≤m≤n

|xk,2k−1+m+1|

≤
∞∑︂

k=0

1
2k

max
0≤j<2k

|xk,j| + (l − 1)2l−1
l−1∑︂
k=2

1
2k

max
0≤j<2k

|xk,j| +
∞∑︂

k=l

k max
1≤m≤n+1

|xk,2k−1+m|

≤ (1 + (l − 1)2l−1)pn+1(x),
which proves continuity.
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Now, consider the vector x = (xj,k) ∈ X given by xk,0 = 1 for k ≥ 0 and all other xk,j = 0.
Then x is uniformly recurrent for T . Indeed, let n ≥ 1 and ε > 0. Choose l ≥ 0 such that
2l > max(n, 1/ε). Let ν ≥ 0. First we observe that

[T ν2l

x]k,j = xk,j, k ≤ l, 0 ≤ j < 2k.

On the other hand, for k > l, the fact that xk,j = 0 for all j ̸= 0 implies that [T ν2l
x]k,j = 0

whenever j is not a multiple of 2l. Now since, for these k, 2k−1 is a multiple of 2l and n < 2l,
we have that

[T ν2l

x]k,2k−1+m = 0, k > l, 1 ≤ m ≤ n;

note that m < 2k−1 is automatic. Thus we have for any ν ≥ 0

pn(T νlx− x) =
∑︂
k>l

1
2k

= 1
2l
< ε.

This shows that x is uniformly recurrent. On the other hand, by construction, the orbit of x is
unbounded. It suffices to observe that for k ≥ 2

[T 2k−1+1x]k,2k−1+1 = 1,

so that p1(T 2k−1+1x) ≥ k.

The vector x considered above is not periodic, but for any neighbourhood U of x there is
some k ≥ 1 such that T nkx ∈ U for all n ≥ 0. Such points have been called regularly recurrent
(or regularly almost periodic) in non-linear dynamics, see [GH55], [BK04].

The examples show that, for Fréchet spaces, the proof for Corollary 3.2 breaks down at a
very early stage. One may wonder what kind of (weak) boundedness the orbit of a uniformly
recurrent vector possesses in the setting of Fréchet spaces, or even in F-spaces. On the other
hand, for power-bounded operators we have a strong form of boundedness:

Theorem 3.4. Let T ∈ L(X) be power-bounded. If x is a uniformly recurrent vector for T
then the closure of its orbit is compact.

Proof. We show that the orbit of x is totally bounded, that is, for any 0-neighbourhood W
there are finitely many points x0, . . . , xN such that the orbit is contained in ⋃︁N

n=0(xn + W ).
Thus let W be a 0-neighbourhood. By power-boundedness there is a 0-neighbourhood W0 such
that T n(W0) ⊂ W for all n ≥ 0. Let N be the maximum gap in the return set N(x, x + W0).
Then we have that

{T kx : k ≥ 0} ⊂
N⋃︂

n=0
T n(x+W0) ⊂

N⋃︂
n=0

(T nx+W ),

which implies the claim.

We already recalled Furstenberg’s result which says that the closure of the orbit of any
uniformly recurrent vector is a minimal set. The dynamics on minimal compact sets (like
irrational rotations on the torus) is a matter of study in non-linear dynamics.
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Chapter 1. Frequently recurrent operators

4 Recurrence, the unit circle, and the spectrum

In this section we study some properties of recurrence whose hypercyclic analogues belong
to the fundamental results in Linear Dynamics. Costakis et al. [CMP14] have obtained the
following: for any recurrent operator T ,

– T p is recurrent for any p ≥ 1; in fact, Rec(T p) = Rec(T );

– λT is recurrent whenever |λ| = 1; in fact, Rec(λT ) = Rec(T );

moreover, if X is a complex Banach space, then

– every component of the spectrum σ(T ) meets the unit circle;

– the point spectrum σp(T ∗) of its adjoint operator T ∗ is contained in the unit circle.

We start by looking at the first two properties for other notions of recurrence. Our approach
uses in a crucial way an idea of Bayart and Matheron [BM09, Section 6.3.3]. Let us say that a
family F of subsets of N0 has the Cut-Shift-and-Paste property (called CuSP for short) if for
any A ∈ F , any I1, . . . , Iq ⊂ N0 with A ⊂ ⋃︁q

j=1 Ij, and any n1, . . . , nq ∈ N0 (q ≥ 1), we have
that

q⋃︂
j=1

(nj + A ∩ Ij) ∈ F .

Then [BM09, Lemma 6.29] says that the family of positive lower density sets has the CuSP.

Lemma 4.1. The following families have the CuSP property: the syndetic subsets and the
infinite subsets of N0, and the sets of positive lower, upper and upper Banach density.

Proof. The positive lower density case is proved in [BM09, Lemma 6.29]; the same proof also
covers the positive upper density case. The result is obvious for the family of infinite subsets.
For the remaining cases, fix a set A ⊂ N0, fix some I1, . . . , Iq ⊂ N0 with A ⊂ ⋃︁q

j=1 Ij and let
n1, . . . , nq ∈ N0, where q ≥ 1. Set M = max(n1, . . . , nq).

Assume first that Bd(A) > δ > 0. Fix N0 ≥ 0. Then there is some N1 ≥ max(N0,M) such
that, for every N ≥ N1, there is some m ≥ 0 such that

#(A ∩ [m,m+N ])
N + 1 > δ.

Now, for some k, 1 ≤ k ≤ q, we have that

#(A ∩ Ik ∩ [m,m+N ]) ≥ 1
q

· #(A ∩ [m,m+N ]);

moreover, #
(︂
(nk +A∩ Ik) ∩ [m,m+N +M ]

)︂
≥ #(A∩ Ik ∩ [m,m+N ]). Then we obtain that

#
(︂(︂⋃︁q

j=1(nj + A ∩ Ij)
)︂

∩ [m,m+N +M ]
)︂

N +M + 1 ≥ 1
q

· N + 1
N +M + 1 · #(A ∩ [m,m+N ])

N + 1 ≥ 1
2q δ,

which shows that ⋃︁q
j=1(nj + A ∩ Ij) has positive upper Banach density.
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4. Recurrence, the unit circle, and the spectrum

Finally, assume that A is a syndetic set. Then there is some N ≥ 1 such that every integer
interval of length N contains some element of A. Let J = [m1,m2] be an integer interval of
length N+M . Then the interval [m1,m1+N ] contains an element m ∈ A. By assumption there
is some k, 1 ≤ k ≤ q, such that m ∈ A∩ Ik. But then m+nk is an element of ⋃︁q

j=1(nj +A∩ Ij)
that belongs to J . Thus the set ⋃︁q

j=1(nj + A ∩ Ij) is syndetic.

As a first application we deduce an Ansari-type result for various forms of recurrence. Recall
that Ansari proved that, for any p ≥ 1, the operators T and T p have the same hypercyclic
vectors [Ans95]. Her proof uses in an essential way a connectedness argument; for recurrence
the argument is simpler.

Theorem 4.2. Let T ∈ L(X) and consider any p ≥ 1. Then the operators T and T p have the
same uniformly (frequently, U-frequently or reiteratively) recurrent vectors. In particular, if T
is uniformly (frequently, U-frequently or reiteratively) recurrent, then so is T p.

Proof. Let p ≥ 1 be given. We will show that URec(T ) = URec(T p), where we only use two
properties of the family of syndetic sets: the CuSP and the fact that A ⊂ N0 is syndetic if and
only if pA = {pn : n ∈ A} is. The remaining assertions can be proved in the same way.

It suffices to show that URec(T ) ⊂ URec(T p). We may also suppose that p is a prime
number. Thus, let x be a uniformly recurrent vector for T . Let (Uk)k≥1 be a decreasing
sequence of neighbourhoods of x that forms a local base. For k ≥ 1, we define

Jk = {j ∈ {0, . . . , p− 1} : there exists n ≥ 0 with n = j (mod p) and T nx ∈ Uk} .

Then (Jk)k≥1 is a decreasing sequence of non-empty finite sets, which therefore stabilizes. That
is, there is a non-empty set J ⊂ {0, . . . , p − 1} and some k0 ≥ 1 such that Jk = J for all
k ≥ k0. We claim that J is a subgroup of Z/pZ. Indeed, let j, j′ ∈ J . First, there is some
n ≥ 0 with n = j (mod p) such that T nx ∈ Uk0 . By continuity there is some l ≥ k0 such
that T n(Ul) ⊂ Uk0 . Now, since j′ ∈ Jl, there is then some n′ ≥ 0 with n′ = j′ (mod p) such
that T n′

x ∈ Ul. Altogether we have that T n+n′
x = T n(T n′

x) ⊂ Uk0 , hence, by definition,
j + j′ (mod p) ∈ Jk0 = J . Since p is prime, Z/pZ only has two subgroups:

(a) We first assume that J = {0}. Then the sets

Ak := {n ≥ 0 : T nx ∈ Uk}, k ≥ k0

only consist of multiples of p, and they are syndetic by hypothesis. Thus the sets 1
p
Ak are

syndetic, and (T p)nx ∈ Uk for all n ∈ 1
p
Ak. This shows that x is uniformly recurrent for T p.

(b) Now assume that J = {0, . . . , p− 1}, hence Jk = {0, . . . , p− 1} for all k ≥ 1. Let k ≥ 1.
For any j ∈ J we can find some nj = p − j (mod p) such that T njx ∈ Uk. By continuity
there is some l ≥ 1 such that, for any j ∈ J , T nj (Ul) ⊂ Uk. By our hypothesis, the set
Al = {n ≥ 0 : T nx ∈ Ul} is syndetic. Set

Ij = {n ≥ 0 : n = j (mod p)} for each j ∈ J.

Note that given n ∈ Al ∩ Ij, for any j ∈ J , we have that T nj+nx = T nj (T nx) ∈ Uk. In other
words,

A :=
⋃︂
j∈J

(nj + Al ∩ Ij) ⊂ {n ≥ 0 : T nx ∈ Uk}.

Since {Ij : j ∈ J} is a covering of N0, we deduce that A is a syndetic set by Lemma 4.1.
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Moreover, if m ∈ A then there are j ∈ J and n ≥ 0, n = j (mod p) such that

m = nj + n = p− j + j (mod p) = 0 (mod p).

Thus the set 1
p
A is syndetic and (T p)nx ∈ Uk for all n ∈ 1

p
A. Since k ≥ 1 was arbitrary, we see

that x is uniformly recurrent for T p.

Remark 4.3. Theorem 4.2 holds for any continuous map on any topological space, and in
particular for operators acting on topological vector spaces. It is enough to replace the countable
local base (Uk)k≥1 by the filter of all neighbourhoods at x. See also [CMP14, Remark 2.4].

As usual, the λT -problem is closely related to the T p-problem: León and Müller [LSM04]
showed that, for any scalar λ of modulus 1, T and λT have the same hypercyclic vectors. As
it happens for hypercyclicity, the proof in the λT -case for recurrence requires somewhat more
work than in the T p-case showed in the previous theorem.

Theorem 4.4. Let T ∈ L(X), and let λ be a scalar with |λ| = 1. Then the operators T and
λT have the same uniformly (frequently, U-frequently or reiteratively) recurrent vectors. In
particular, if T is uniformly (frequently, U-frequently or reiteratively) recurrent, then so is λT .

Proof. This time we only use the CuSP property, so it again suffices to do the uniformly
recurrent case. The real scalar case already follows from Theorem 4.2 because (−T )2 = T 2.
Thus we need only consider complex scalars. Alternatively, one can also repeat the following
proof for R instead of C.

It obviously suffices to show that URec(T ) ⊂ URec(λT ) whenever |λ| = 1. Thus, let λ ∈ C
with |λ| = 1, and let x be a uniformly recurrent vector for T . Let (Uk)k≥1 be a decreasing
sequence of neighbourhoods of x that forms a local base. For k ≥ 1, we define

Λk = {µ ∈ T : there exists n ≥ 0 with λn = µ and T nx ∈ Uk},

where T = {z ∈ C : |z| = 1} denotes the unit circle. Then (Λk)k≥1 is a decreasing sequence of
non-empty subsets of T.

Let
Λ =

∞⋂︂
k=1

Λk.

Since Λ is the intersection of a decreasing sequence of non-empty closed sets, it is a non-empty
closed subset of T. We now claim that Λ is a subsemigroup of the multiplicative group T. To
see this, let µ, µ′ ∈ Λ. Let k ≥ 1 and ε > 0. Then there is some µk ∈ Λk such that |µ−µk| < ε.
This implies that there is some nk ≥ 0 such that λnk = µk and T nkx ∈ Uk. By continuity there
is some l ≥ 1 such that T nk(Ul) ⊂ Uk. We then find some µ′

l ∈ Λl such that |µ′ − µ′
l| < ε and

hence some n′
l ≥ 0 such that λn′

l = µ′
l and T n′

lx ∈ Ul. Altogether we get that

T nk+n′
lx ∈ T nk(Ul) ⊂ Uk.

Since λnk+n′
l = µkµ

′
l, we deduce that µkµ

′
l ∈ Λk. On the other hand,

|µµ′ − µkµ
′
l| ≤ |µ− µk| · |µ′| + |µk| · |µ′ − µ′

l| < 2ε.

Since k and ε > 0 were arbitrary, µµ′ ∈ Λk for all k ≥ 1. Thus µµ′ ∈ Λ, as had to be shown.
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4. Recurrence, the unit circle, and the spectrum

As a consequence, there are only two possibilities for Λ, see [GEP11, pages 170 and 171]:
(a) This time it is easier to start with the full group: Λ = T. Let U be a neighbourhood

of x. By continuity of scalar multiplication there is some ε > 0 and some k ≥ 1 such that
B(1, ε)Uk ⊂ U , where B(z0, ε) = {z ∈ C : |z − z0| < ε}. Since Λ = T, the set Λk is dense in T.
Using compactness there are N ≥ 1 and nj ≥ 0 with T njx ∈ Uk, j = 1, . . . , N , such that

T ⊂
N⋃︂

j=1
B(λnj , ε). (1.3)

By continuity there exists l ≥ 1 such that, for j = 1, . . . , N , T nj (Ul) ⊂ Uk, and we have that
the set Al := {n ≥ 0 : T nx ∈ Ul} is syndetic. Also, it follows from (1.3) that the sets

Ij := {n ≥ 0 : λnj+n ∈ B(1, ε)}, j = 1, . . . , N,

form a cover of N0. Now, if n ∈ Al ∩ Ij, j = 1, . . . , N , then

(λT )nj+nx = λnj+nT nj (T nx) ∈ B(1, ε)T nj (Ul) ⊂ B(1, ε)Uk ⊂ U.

This shows that
A :=

N⋃︂
j=1

(nj + Al ∩ Ij) ⊂ {n ≥ 0 : (λT )nx ∈ U},

and it follows from Lemma 4.1 that {n ≥ 0 : (λT )nx ∈ U} is syndetic. Thus x is uniformly
recurrent for λT .

(b) It remains the case when there is some N ≥ 1 such that Λ = {e2πi j
N : j = 1, . . . , N}. Let

U be a neighbourhood of x, and then ε > 0 and k′ ≥ 1 such that B(1, ε)Uk′ ⊂ U . It follows
from a simple compactness argument that there is some k ≥ k′ such that

Λk ⊂
N⋃︂

j=1
B
(︂
e2πi j

N , ε
2

)︂
.

Since e2πi −j
N ∈ Λ ⊂ Λk, j = 1, . . . , N , there are nj ≥ 0 with T njx ∈ Uk and |λnj − e2πi −j

N | < ε
2 .

As before there is some l ≥ k such that, for j = 1, . . . , N we have that T nj (Ul) ⊂ Uk, and the
set Al = {n ≥ 0 : T nx ∈ Ul} is syndetic. Now, let n ∈ Al. Then λn ∈ Λl ⊂ Λk, so that there is
some j ∈ {1, . . . , N} such that |λn − e2πi j

N | < ε
2 , and hence

|λnjλn − 1| ≤
⃓⃓⃓
λnj − e2πi −j

N

⃓⃓⃓
· |λn| +

⃓⃓⃓
e2πi −j

N λn − 1
⃓⃓⃓
< ε.

This shows that the sets Ij := {n ≥ 0 : λnj+n ∈ B(1, ε)}, j = 1, . . . , N , cover Al. From here
the proof can be finished as in case (a) by using Lemma 4.1 again.

Remark 4.5. Again, by considering the neighbourhood filter instead of the countable local
base (Uk)k≥1, Theorem 4.4 holds for any operator on any topological vector space.

Our proofs for the T p- and λT -problems work equally well for recurrent operators and
therefore provide alternative, if longer, proofs to those of Costakis et al. [CMP14]G.

GSee Chapter 3, Section 4.2, Proposition 4.7 for a shorter proof in the usual recurrence case.
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Chapter 1. Frequently recurrent operators

Combining Theorems 4.2 and 4.4 with Theorems 2.5 and 2.7 we obtain new proofs for
the “Ansari-” and “León-Müller-type” theorems with respect to the U -frequent hypercyclicity
and frequent hypercyclicity notions, that are originally due to Shkarin [Shk09] and Bayart,
Grivaux and Matheron [BG06], [BM09], respectively. The corresponding results for the notion
of reiterative hypercyclicity follow from Theorem 2.1 and seem to be new. Note, however, that
reiterative hypercyclicity passes directly to T p and λT since the sets of reiteratively hypercyclic
and hypercyclic vectors coincide for a reiteratively hypercyclic operator (see [BMPP16]).

Corollary 4.6. Let T ∈ L(X) be reiteratively hypercyclic.

(a) If p ≥ 1, then T p is reiteratively hypercyclic.

(b) If λ is a scalar with |λ| = 1, then λT is reiteratively hypercyclic.

We have another interesting application of Theorem 4.4. In [GMM21, Question 7.11], the
authors ask whether any Banach space operator with a dense set of uniformly recurrent vectors
must have a non-zero periodic point. Since the operator λI with λ ∈ T not a root of unity
provides a counterexample to this question, see also Remark 4.8 below, the authors probably
were only interested in hypercyclic operators. Still, a negative answer follows form the theorem
above and an important counterexample of Bayart and Bermúdez [BB09].

Corollary 4.7. There exists a hypercyclic operator on Hilbert space that admits a dense set of
uniformly recurrent vectors but no non-zero periodic points.

Proof. In [BB09, Theorem 3.1] it is proved that there exists a chaotic operator T on complex
Hilbert space such that λT is not chaotic for some λ ∈ T. Indeed, the proof even shows that
the point spectrum of λT contains no root of unity, so that λT has no non-zero periodic points,
see [GEP11, Proposition 2.33]. Now since periodic points are uniformly recurrent vectors, the
operator T is uniformly recurrent, and then so is λT by Theorem 4.4.

Remark 4.8. Let us mention that the corollary can be proved without Theorem 4.4. Indeed,
if x is a periodic point for an operator T , then it follows rather directly that x is uniformly
recurrent for λT for any λ ∈ T. To see this, suppose that TNx = x for some N ≥ 1, and let
λ ∈ T. Let ε > 0. It is well known (see also Lemma 7.1 below) that there is then a syndetic set
A ⊂ N0 such that |(λN)n − 1| < ε

∥x∥ for all n ∈ A; of course we may assume that x ̸= 0. Hence
|(λT )nNx− x| = |(λN)n − 1| · ∥x∥ < ε for all n ∈ A, and x is uniformly recurrent for λT .

We turn to the spectrum of recurrent operators when the underlying space is a complex
Banach space. By Costakis et al. [CMP14] we know that every component meets the unit
circle. We have additional information when T is U -frequently recurrent. Shkarin showed in
[Shk09, Theorem 1.2 and its proof] that the spectrum of a U -frequently hypercyclic operator
cannot have isolated points. His argument also serves to show the following:

Theorem 4.9. Let X be a complex Banach space and suppose that T ∈ L(X) is a U-frequently
recurrent operator.

(a) If σ(T ) = {λ} is a singleton, then |λ| = 1 and T = λI.

(b) If σ(T ) has an isolated point λ ∈ C, then |λ| = 1 and there are non-trivial T -invariant
closed subspaces M1 and M2 of X such that X = M1 ⊕M2 and T |M1 = λI|M1.
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5. Recurrence of weighted backward shift operators

In particular, in either case T cannot also be hypercyclic; indeed, in (b), a typical argument
(see [GEP11, Proposition 2.25]) would imply that T |M1 = λI|M1 was hypercyclic, which is
absurd. Note that this result also contains the well known fact that the spectrum of any
chaotic operator has no isolated points, see [BMGP01] and [BM09, Proposition 6.37].

Proof of Theorem 4.9. (a): By the result of Costakis et al. [CMP14] mentioned above we have
that |λ| = 1. Let S = λ−1T , which is also U -frequently recurrent by Theorem 4.4. On the
other hand, an analysis of Shkarin’s argument, see [BM09, Remark on page 153], shows that if
S ̸= I then one can find a non-empty open set U of X such that {n ≥ 0 : Snx ∈ U} has upper
density zero for all x ∈ X; in particular, no vector in U is U -frequently recurrent for S. Thus
S = I, hence T = λI. (b): This follows from (a) by the usual Riesz decomposition theorem and
quasi-conjugacy arguments (see [BM09, Proposition 6.37] or [GEP11, Proposition 5.7]).

It is not clear whether the result extends to reiterative recurrence. By a result of Salas [Sal95],
see also [GEP11, Example 8.4], there exist hypercyclic compact perturbations T = I + K of
the identity with σ(T ) = {1}.

Question 4.10. H Can the spectrum of a reiteratively hypercyclic operator be a singleton?
Does there exist a reiteratively hypercyclic compact perturbation of the identity?

5 Recurrence of weighted backward shift operators

Backward shifts are the best understood class of operators in Linear Dynamics. In particular
they will serve us here to distinguish five of the six types of recurrence considered in (1.1).

Apart from the proof of the latter fact, this section contains no proofs: the other results are
special cases of stronger results proved either in Section 2, or in a forthcoming paper by the
first two authors [BGE], or by other authors. We find it nonetheless instructive to highlight
the recurrence behaviour of weighted shifts. We will just focus on Fréchet sequence spaces:

A Fréchet sequence space (over N) is a Fréchet space that is a subspace of the space KN of
all (real or complex) sequences and such that each coordinate functional x = (xn)n≥1 ↦→ xk,
k ≥ 1, is continuous. The canonical unit sequences are denoted by ek = (δk,n)n≥1. A weight
sequence is a sequence w = (wn)n≥1 of non-zero scalars. The (unilateral) weighted backward
shift Bw is then defined by Bw(xn)n≥1 = (wn+1xn+1)n≥1. Fréchet sequence spaces over Z and
bilateral weighted backward shifts are defined analogously.

Now, Theorem 2.12 applies in particular to unilateral weighted backward shifts.

Corollary 5.1. Let X be a Fréchet sequence space over N in which (en)n≥1 is a basis. Suppose
that the weighted backward shift Bw is an operator on X. Then we have the following:

(a) If Bw is recurrent then it is hypercyclic.

(b) If Bw is reiteratively recurrent then it is reiteratively hypercyclic.

(c) If Bw is U-frequently recurrent then it is U-frequently hypercyclic.

HThe answer is negative; see [CM]. See also Section 2.1 of the General discussion of the results.
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Chapter 1. Frequently recurrent operators

Each hypercyclic property in the corollary have been characterized in terms of the weights,
at least if the basis is unconditional, see [GEP11, Theorem 4.8], [BGE18, Theorem 5.1].

There is a considerable strengthening of assertion (a). By a remarkable result of Chan and
Seceleanu [CS12], if a weighted shift on ℓp(N), 1 ≤ p < ∞, admits an orbit with a non-zero
limit point, then it is already a hypercyclic operator. Recently, this has been extended by
He et al. [HHY18, Lemma 5] to all Fréchet sequence spaces over N in which (en)n≥1 is an
unconditional basis; see also [BGE].

For bilateral weighted shifts we have the analogue of (a).

Theorem 5.2. Let X be a Fréchet sequence space over Z in which (en)n∈Z is a basis. Suppose
that the weighted backward shift Bw is an operator on X. If Bw is recurrent then it is hypercyclic.

This was proved by Costakis and Parissis [CP12, Proposition 5.1] for the space ℓ2(Z). For
the general case, i.e. for ℓp(Z) spaces, this can be shown by combining the proof of these authors
with the one of [GEP11, Theorem 4.12(a)], adding a standard conjugacy argument. But, again,
Chan and Seceleanu [CS12] have the stronger result that if a weighted shift on ℓp(Z), 1 ≤ p < ∞,
admits an orbit with a non-zero limit point, then it is hypercyclic. In [BGE], this is extended
to all Fréchet sequence spaces over Z in which (en)n∈Z is an unconditional basis.

Several questions remain (see also Question 2.13).

Question 5.3. Does the analogue of Corollary 5.1 hold for frequent recurrence? Does the
analogue of Theorem 5.2 hold for reiterative (U -frequent, frequent) recurrence?

The work by Chan and Seceleanu might suggest that the existence of a single non-zero vector
with some recurrence property implies some type of hypercyclicity, and indeed:

Theorem 5.4. Let X be a Fréchet sequence space (over N or Z) in which the sequence (en)n is
an unconditional basis. Suppose that the (unilateral or bilateral) weighted backward shift Bw is
an operator on X. If Bw admits a non-zero uniformly recurrent vector, then it is chaotic and
therefore frequently hypercyclic.

For unilateral shifts this result is due to Galán et al. [GMJPO15, Theorem 2, Corollary 1
and the following Remark]; indeed, their statement is more restrictive but they actually prove
the full result, which was also obtained in He et al. [HHY18, Corollary 4.2]. A special case is
due to Grivaux et al. [GMM21, Remark 5.21]. For bilateral shifts the result was obtained by
the first two authors of this paper [BGE].

The previous theorem can be considerably improved if the underlying space is ℓp. The
following is a consequence of [BGE], using an idea of Bès et al. [BMPP16]. Note that it does
not hold on c0(N) by [BR15, Theorem 5].

Theorem 5.5. Let Bw be a weighted backward shift on ℓp(N) or ℓp(Z), 1 ≤ p < ∞. If Bw admits
a non-zero reiteratively recurrent vector, then it is chaotic and therefore frequently hypercyclic.

As we said above we do not know if, for general Fréchet sequence spaces, the existence of a
single non-zero frequently recurrent vector, say, implies that the shift is frequently hypercyclic.
For the main result of this section we only need the following weaker implication:
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5. Recurrence of weighted backward shift operators

Lemma 5.6. Let X be a Fréchet sequence space over N in which (en)n is an unconditional
basis. Suppose that the weighted backward shift Bw is an operator on X. If there exists any
non-zero vector that is frequently (U-frequently or reiteratively) recurrent, then there is a set
A ⊂ N of positive lower (upper or upper Banach) density such that

∑︂
n∈A

1∏︁n
ν=1 wν

en converges in X.

This follows from He et al. [HHY18, Lemma 5]; see also [BGE]. This allows us to prove:

Theorem 5.7. The recurrence notions introduced in this paper can be strongly distinguished:

(a) There is a hypercyclic (mixing) operator without non-zero reiteratively recurrent vectors.

(b) There is a reiteratively hypercyclic operator without non-zero U-frequently recurrent vectors.

(c) There is a U-frequently hypercyclic operator without non-zero frequently recurrent vectors.

(d) There is a frequently hypercyclic operator without non-zero uniformly recurrent vectors.

In view of Corollary 4.7 we may complete this list by the following assertion; note that, by
Theorem 5.5, such an operator cannot be a weighted shift on ℓp(N) or ℓp(Z), 1 ≤ p < ∞.

(e) There is a hypercyclic uniformly recurrent operator without non-zero periodic points.

Proof of Theorem 5.7. (a): By [BMPP16, Theorem 13], the weighted backward shift on ℓ1(N)
with weight sequence w = (n+1

n
)n is mixing but not reiteratively hypercyclic. By Theorem 5.5

it cannot have a non-zero reiteratively recurrent vector. (b): By [BMPP16, Theorem 7] there
exists a reiteratively hypercyclic weighted backward shift Bw on c0(N) that is not U -frequently
hypercyclic (see also [BGE18, Theorem 7.1] for a simplified proof). In fact, the proofs show
that the weight even satisfies that there is no set A ⊂ N of positive upper density such that

n∏︂
ν=1

wν → ∞ as n → ∞, n ∈ A.

Thus, by the previous lemma, Bw does not admit any non-zero U -frequently recurrent vector.
(c): This follows exactly as in (b), using [BR15, Theorem 5] or [BGE18, Theorem 7.2] and their
proofs. (d): By [BG07, Corollary 5.2] (see also [BGE18, Theorem 7.3]) there exists a frequently
hypercyclic weighted backward shift on c0(N) that is not chaotic. In view of Theorem 5.4, this
operator cannot have non-zero uniformly recurrent vectors.

Corollary 5.8. The recurrence notions introduced in this paper can be distinguished:

(a) There is a recurrent operator without non-zero reiteratively recurrent vectors.

(b) There is a reiteratively recurrent operator without non-zero U-frequently recurrent vectors.

(c) There is a U-frequently recurrent operator without non-zero frequently recurrent vectors.

(d) There is a frequently recurrent operator without non-zero uniformly recurrent vectors.

(e) There is a uniformly recurrent operator without non-zero periodic points.
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Chapter 1. Frequently recurrent operators

6 IP∗-recurrence

In the next section we will discuss recurrence properties of further operators. As we will see,
a rich supply of eigenvectors to unimodular eigenvalues allows us not only to deduce uniform
recurrence for many of these operators, but even a stronger notion that is defined in terms of
the so-called IP∗-sets. Before turning to these examples we will therefore study IP∗-recurrence
in this section.

The starting point is the family IP of IP-sets. As mentioned in [Fur81, page 52], this family
arises naturally when one studies the structure of the sets of integers that can serve as the
set of return times for some point in the system. We recall that A ⊂ N0 is an IP-set if there
exists a strictly increasing sequence (kn)n∈N of positive integers such that kj1 + · · · + kjm ∈ A
whenever j1 < · · · < jm and m ∈ N. Then a vector x ∈ X is called IP-recurrent for an operator
T ∈ L(X) if, for any neighbourhood U of x, the return set N(x, U) is an IP-set. However, it
follows from [Fur81, Theorem 2.17] that every recurrent vector satisfies this propertyI, so that
the notions of recurrence and IP-recurrence coincide.

It is more interesting to study the dual family IP∗, that is, the family of all subsets of N0
that intersect every set in IP non-trivially. The elements of this family are called IP∗-sets.
A vector x ∈ X is called IP∗-recurrent for T ∈ L(X) if, for any neighbourhood U of x, the
return set N(x, U) is an IP∗-set, see [Fur81, Chapter 9]. The corresponding set of vectors is
denoted by IP∗Rec(T ). If this set is dense in X then the operator T is called IP∗-recurrent.
It is known that, for every p ∈ N, the set pN0 = {kn : n ∈ N0} is an IP∗-setJ, and that every
IP∗-set is syndetic, see [Fur81, Lemma 9.2]. This implies that

Per(T ) ⊂ IP∗Rec(T ) ⊂ URec(T ), (1.4)

and every IP∗-recurrent operator is uniformly recurrent. The notion of IP∗-recurrence in a
linear context has already been studied in [GMJPO15]. It was observed there that, thanks to
the classical result [Fur81, Theorem 9.11], the IP∗-recurrent vectors of an operator T ∈ L(X)
coincide with product recurrent vectors, that is, those vectors x ∈ X such that, for any operator
S ∈ L(Y ) on an F-space Y and for any recurrent vector y for S, the vector (x, y) is recurrent
for T ⊕ S. Note also that the vector x with unbounded orbit constructed in Example 3.3 or
the one in [GMJPO15, Example 1] are IP∗-recurrent since, for every neighbourhood U of x,
we have that kN0 ⊂ N(x, U) for some k ∈ N.

An important property of the family IP is that it is partition regular, that is, if A1∪A2 ∈ IP ,
then either A1 ∈ IP or A2 ∈ IP ; this implies have that IP∗ is a filter, see [Fur81, Lemma 9.5].
Theorem 6.1. Let T ∈ L(X). Then IP∗Rec(T ) is a vector subspace of X. In particular, if T
is IP∗-recurrent, then T admits a dense linear manifold of IP∗-recurrent vectors.

Proof. Let x1, x2 ∈ IP∗Rec(T ), and let λ1, λ2 be scalars. Given an arbitrary neighbourhood
U of x := λ1x1 + λ2x2, we fix neighbourhoods Uj of xj, j = 1, 2, such that λ1U1 + λ2U2 ⊂ U .
Therefore we conclude, by the filter property of IP∗, that

N(x, U) ⊃ N(x1, U1) ∩N(x2, U2) ∈ IP∗,

the second part being a consequence of the definition of IP∗-recurrence.

ISee Proposition 4.2 in Section 4 of the Appendix.
JSee Lemma 4.3 in Section 4 of the Appendix.
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We next obtain that, for power-bounded operators, uniform recurrence and IP∗-recurrence
coincide. To do this we need to recall the concept of proximality: given a dynamical system
(X,T ), where (X, d) is a metric space, we say that two points x, y ∈ X are proximal for T if
there exists an increasing sequence (nk)k∈N ∈ NN such that d(T nkx, T nky) → 0 as k → ∞.
Theorem 6.2. Let T ∈ L(X). If T is power-bounded, then

IP∗Rec(T ) = URec(T ).

Proof. We just need to show that every uniformly recurrent vector is IP∗-recurrent. Thus let
x ∈ X be uniformly recurrent for T . By Theorem 3.4 the closure K of its orbit is a compact
set, and it is T -invariant. Applying [Fur81, Theorem 9.11] to the dynamical system (K,T |K)
we see that x is IP∗-recurrent (for T ) provided that no point y ̸= x in K is proximal to x.

Thus, suppose that there is some y ∈ K with y ̸= x such that x and y are proximal for T . Let
(nk)k∈N be an increasing sequence of positive integers such that d(T nkx, T nky) → 0 as k → ∞.
Since we may assume that the metric d on X is translation-invariant, we get that

T nk(x− y) → 0 as k → ∞.
By equicontinuity of (T n)n∈N0 we then have that T n(x− y) → 0 as n → ∞.

Now, since x is recurrent there is an increasing sequence (mk)k∈N of positive integers so
that Tmkx → x as k → ∞. Thus, TmkT nx → T nx as k → ∞, for each n ∈ N0. Again by
equicontinuity of (T n)n∈N0 and the density of the orbit of x in K, we get that Tmkz → z as
k → ∞, for every z ∈ K. In particular,

0 = lim
k→∞

Tmk(x− y) = x− y ̸= 0,

which is the desired contradiction.

The above result suggests the following problem.
Question 6.3. K Is there an operator that is uniformly recurrent but not IP∗-recurrent?

Let us comment on this problem.
Remark 6.4. (a) The León-Müller theorem holds for IP∗-recurrence, that is, for any operator
T ∈ L(X) and any scalar λ with |λ| = 1 we have that IP∗Rec(λT ) = IP∗Rec(T ). This is an
easy consequence of the fact that a vector is IP∗-recurrent if and only if it is product recurrent,
and the fact that the León-Müller theorem holds for recurrence. It thus follows exactly as in
the proof of Corollary 4.7 that there exists a hypercyclic operator on a Hilbert space that has
a dense set of IP∗-recurrent vectors but no non-zero periodic points. In particular, the first
inclusion in (1.4) can be strict in a very strong sense, but we do not know the status of the
second inclusion. Incidentally, IP∗ does not have the CuSP, so that one cannot deduce the
“Ansari-León-Müller” properties for IP∗-recurrence as in the proofs of Theorems 4.2 and 4.4:
the set A = N0 can be partitioned into the even and odd numbers, the set of even numbers is
in IP∗, but the set of odd numbers is not (see [Fur81, page 178])L.

(b) For all of the operators considered in this paper, whenever we could show uniform
recurrence, we even obtained IP∗-recurrence. This will be a common pattern for the operators
considered in the next section. For weighted backward shift operators see Theorem 5.4.

KThis question has recently been solved in the negative for operator acting on Hilbert spaces; see Chapter 2.
LSee Proposition 4.7 of Chapter 3 for the IP∗ and ∆∗-recurrence “Ansari-León-Müller” properties.
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7 Recurrence and unimodular eigenvectors

As promised we now study recurrence properties of various classes of operators. We limit
ourselves to operators studied by Costakis et al. [CMP14]; our results strengthen several of
their results. In order to keep the paper short we refer to that paper for the definition of the
operators and the spaces involved. It turns out that for practically all of these operators their
unimodular eigenvectors play a crucial role. In the sequel we will only consider Fréchet spaces
over the complex field, and we recall that T denotes the unit circle in C.

The following result is the key point in this section.

Lemma 7.1. Let λ1, . . . , λk ∈ T, k ≥ 1. Then, for any ε > 0,{︄
n ≥ 0 : sup

j=1,...,k
|λn

j − 1| < ε

}︄
∈ IP∗;

in particular, it is a syndetic set.

Proof. Apply [Fur81, Proposition 9.8 with Lemma 9.2] to the Kronecker system consisting of
the compact group Tk and the (left) multiplication (z1, . . . , zk) ↦→ (λ1z1, . . . , λkzk).

We mention that if one is only interested in proving that the sets are syndetic, then one
finds a nice proof in [MT10, Lemma 3.1] based on Kronecker’s theorem.

For T ∈ L(X) we denote the set of unimodular eigenvectors for T by

E(T ) = {x ∈ X \ {0} : Tx = λx for some λ ∈ T} .

The following was obtained for uniform recurrence in [GMM21, Fact 5.6]:

Corollary 7.2. Let T ∈ L(X). Then

span(E(T )) ⊂ IP∗Rec(T )M.

Thus, if span(E(T )) is dense in X then T is IP∗-recurrent, and hence uniformly recurrent.

Proof. Let x ∈ span(E(T )), and let W be a 0-neighbourhood. We can write x = ∑︁k
j=1 ajxj

with aj ∈ C and xj ∈ X such that Txj = λjxj, λj ∈ T, for j = 1, . . . , k. Then there is some
ε > 0 such that ∑︁k

j=1 ηjajxj ∈ W whenever |ηj| < ε for j = 1, . . . , k. Now, by the lemma, there
is a set A ∈ IP∗ such that |λn

j − 1| < ε for all n ∈ A and j = 1, . . . , k. Thus we have for any
n ∈ A that

T nx− x =
k∑︂

j=1
(λn

j − 1)ajxj ∈ W,

which shows the claim.

The corollary reminds the following well-known fact: the set of periodic points fulfills that

Per(T ) = span{x ∈ X : Tx = λx for some root of unity λ},

see [GEP11, Proposition 2.33]. We will see in Remark 7.5 below that we do not necessarily
have equality in Corollary 7.2.

MSee Chapter 2, Section 4, Proposition 4.1 for a slight improvement in terms of the ∆∗ family.
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We start by looking at operators on finite-dimensional spaces.

Theorem 7.3. Let n ≥ 1. For a matrix T : Cn −→ Cn, the following assertions are equivalent:

(i) T is recurrent;

(ii) T is uniformly recurrent;

(iii) T is IP∗-recurrent;

(iv) T is similar to a diagonal matrix with unimodular diagonal entries.

In that case, every vector in Cn is IP∗-recurrent for T .

Proof. Costakis et al. [CMP14, Theorem 4.1] have shown that (i) and (iv) are equivalent. Thus
it suffices to show that (iv) implies (iii): let S be an invertible matrix such that S−1TS is a
diagonal matrix with unimodular diagonal entries. Then we have that Sek ∈ E(T ) for each
k = 1, . . . , n. Thus span(E(T )) = Cn, and we conclude with Corollary 7.2.

This result suggests to consider general multiplication operators.

Theorem 7.4. Let X be a complex Fréchet sequence space over N for which the vector space
span({en : n ∈ N}) is a dense subset. Let (λn)n be a sequence in C, and let Mλ be the
multiplication operator

Mλ(xn)n = (λnxn)n,

which we suppose to be an operator on X.

(a) The following assertions are equivalent:

(i) Mλ is recurrent;
(ii) Mλ is uniformly recurrent;
(iii) Mλ is IP∗-recurrent;
(iv) λn ∈ T for all n ≥ 1.

(b) If Mλ is a power-bounded operator and one of the conditions in (a) holds, then every vector
in X is IP∗-recurrent for Mλ.

Proof. (a): It obviously suffices to show that (iv) implies (iii). For this, we need only observe
that every sequence en, n ≥ 1, belongs to E(Mλ) since |λn| = 1, so that span(E(Mλ)) is dense
in the space X by hypothesis.

(b): This is a direct consequence of Theorems 3.1 and 6.2.

We note that if (en)n is an unconditional basis of X and if and one of the conditions in (a)
holds then Mλ is power-bounded, so that the conclusion of (b) holds in this case.

This result has an interesting consequence:
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Remark 7.5. Let us consider a multiplication operator Mλ on ℓ2(N), say, where the λn ∈ T,
n ≥ 1, are pairwise distinct. Then the non-zero multiples of the en, n ≥ 1, are the only
unimodular eigenvectors, so that span(E(T )) contains exactly the finite sequences. On the
other hand, by the previous result, every vector in ℓ2(N) is IP∗-recurrent. This shows that the
inclusion in Corollary 7.2 may be strict.

We turn, more generally, to multiplication operators on spaces of measurable functions. If
(Ω,A , µ) is a measure space, then we call a function ϕ : Ω −→ C essentially countably valued
in D ⊂ C if there is a countable subset C ⊂ D such that ϕ(t) ∈ C for µ-a.e. t ∈ Ω.

Theorem 7.6. Let (Ω,A , µ) be a measure space, ϕ a bounded measurable function on Ω, and
let Mϕ be the multiplication operator Mϕf = ϕf on Lp(Ω), 1 ≤ p < ∞.

(a) ([CMP14]) If Mϕ is recurrent then ϕ(t) ∈ T for µ-a.e. t ∈ Ω.

(b) If ϕ is essentially countably valued in T then Mϕ is IP∗-recurrent; in fact, every vector in
Lp(Ω) is IP∗-recurrent.

Proof. (a): was shown in the proof of [CMP14, Theorem 7.6]. (b): let ϕ(t) ∈ {λ1, λ2, . . .} ⊂ T
for almost every t ∈ Ω, and let Ek = {t ∈ Ω : ϕ(t) = λk}, k ≥ 1. Then µ(Ω \ ⋃︁k≥1 Ek) = 0.
Now let f ∈ Lp(Ω), f ̸= 0, and ε > 0. There exists some N ≥ 1 such that∫︂⋃︁

k>N
Ek

|f |p dµ < ε

2p+1 .

By Lemma 7.1 there exists a set A ∈ IP∗ such that |λn
k − 1|p < ε

2∥f∥p for any n ∈ A and
k = 1, . . . , N . Therefore we have for every n ∈ A that

∥Mn
ϕ f − f∥p =

N∑︂
k=1

∫︂
Ek

|ϕn − 1|p · |f |p dµ+
∫︂⋃︁

k>N
Ek

|ϕn − 1|p · |f |p dµ

≤ ε

2∥f∥p

N∑︂
k=1

∫︂
Ek

|f |p dµ+ 2p
∫︂⋃︁

k>N
Ek

|f |p dµ < ε.

Thus, f is IP∗-recurrent.

We note that in order to only get the IP∗-recurrence of the operator in (b) we could have
used Corollary 7.2. Indeed, any indicator function 1lE lies in E(T ) when E is a measurable
subset of some Ek, k ≥ 1. Then clearly span(E(T )) is dense in Lp(Ω).

Example 7.7. In [CMP14, Example 7.9] it is considered the case when Ω = [0, 1] with the
Lebesgue measure and ϕ : [0, 1] −→ T, ϕ(t) = e2πif(t), where f : [0, 1] −→ [0, 1] is the famous
Cantor-Lebesgue function. Then not only ϕ is essentially countably valued in T, but almost all
of its values are even roots of unity. Hence the operator Mϕ has a dense set of periodic points
by the previous argument.

We next turn to composition operators. We first look at operators on H(C) and H(D), the
Fréchet spaces of entire functions and of holomorphic functions on D := {z ∈ C : |z| < 1},
respectively, both endowed with the topology of uniform convergence on compact sets.
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7. Recurrence and unimodular eigenvectors

Theorem 7.8. Let ϕ : C −→ C be a holomorphic function, and let Cϕ be the composition
operator on H(C) given by Cϕf = f ◦ ϕ. Then the following assertions are equivalent:

(i) Cϕ is recurrent;

(ii) Cϕ is uniformly recurrent;

(iii) Cϕ is IP∗-recurrent;

(iv) ϕ(z) = az + b, z ∈ C, with a ∈ T and b ∈ C.

Moreover, every vector is IP∗-recurrent for Cϕ if and only if ϕ(z) = az + b, z ∈ C, with a = 1
and b = 0, or a ∈ T \ {1} and b ∈ C.

Proof. By [CMP14, Theorem 6.4] it suffices to show that (iv) implies (iii), and that the second
claim holds. Thus, let ϕ(z) = az + b, z ∈ C, with a ∈ T and b ∈ C. If a = 1 and b ̸= 0,
then Cϕ is well known to be chaotic, see [GEP11, Example 2.35]; in that case, IP∗Rec(Cϕ) is
dense in but not all of H(C). If a = 1 and b = 0 then clearly IP∗Rec(Cϕ) = H(C). Finally let
a ∈ T \ {1} and b ∈ C. Let f ∈ H(C), and fix R > 0 and ε > 0. It was shown in the proof of
[CMP14, Theorem 6.4] that there is an η > 0 such that if |an − 1| < η, n ≥ 0, then

sup
|z|≤R

|Cn
ϕf(z) − f(z)| < ε.

Now it follows from Lemma 7.1 that {n ≥ 0 : |an − 1| < η} ∈ IP∗. This implies that f is
IP∗-recurrent. Thus we have again that IP∗Rec(Cϕ) = H(C).

It is instructive to note that if, once more, one is only interested in obtaining IP∗-recurrence
of the operator then this can easily be done with Corollary 7.2. This is trivial if a = 1 and
b = 0, and well known if a = 1 and b ̸= 0, see [GEP11, Example 2.35]. Finally, if a ∈ T \ {1},
b ∈ C, then the functions fn(z) = (z + b

a−1)n, z ∈ C, n ≥ 0, are eigenvectors for Cϕ with
eigenvalue an ∈ T, and they span the set of polynomials, hence a dense subspace of H(C).

For the unit disk we have the following.

Theorem 7.9. Let ϕ : D −→ D be a holomorphic function, and let Cϕ be the composition
operator on H(D) given by Cϕf = f ◦ ϕ. Then the following assertions are equivalent:

(i) Cϕ is recurrent;

(ii) Cϕ is uniformly recurrent;

(iii) Cϕ is IP∗-recurrent;

(iv) either ϕ is univalent and has no fixed point, or ϕ is an elliptic automorphism.

Moreover, every vector is IP∗-recurrent for Cϕ if and only if ϕ is an elliptic automorphism.

Proof. By [CMP14, Theorem 6.9] it suffices to show that (iv) implies (iii), and that the second
claim holds. If ϕ is univalent and has no fixed point then Cϕ is chaotic by [Sha01, Section 4];
hence IP∗Rec(Cϕ) is dense in but not all of H(D). If ϕ is an elliptic automorphism then, by
the proof of [CMP14, Theorem 6.9], Cϕ is conjugate to Cϕλ

for some λ ∈ T, where ϕλ(z) = λz,
z ∈ D. It then follows easily from Lemma 7.1 that IP∗Rec(Cϕ) = H(D).
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Chapter 1. Frequently recurrent operators

We end the section by considering composition operators on the Hardy space H2(D).

Theorem 7.10. Let ϕ : D −→ D be a linear fractional map ϕ(z) = az+b
cz+d

, z ∈ D, with ad−bc ̸= 0.
For the composition operator Cϕ on H2(D) given by Cϕf = f ◦ ϕ, the following are equivalent:

(i) Cϕ is recurrent;

(ii) Cϕ is uniformly recurrent;

(iii) Cϕ is IP∗-recurrent;

(iv) ϕ is either hyperbolic with no fixed point in D, or a parabolic automorphism, or an elliptic
automorphism.

Moreover, every vector is IP∗-recurrent for Cϕ if and only if ϕ is an elliptic automorphism.

Proof. By [CMP14, Theorem 6.12] it suffices to show that (iv) implies (iii), and that the second
claim holds. If ϕ is hyperbolic with no fixed point in D, or a parabolic automorphism, then it
is chaotic by [Hos03, Corollary 7], hence IP∗Rec(Cϕ) is dense in but not all of H2(D). If ϕ is
an elliptic automorphism then we conclude as in the previous proof.

Recurrence properties of further operators can be deduced from [CMP14, Sections 6 and 7].

8 F-recurrence

In this paper we have concentrated on the most important types of recurrence in order to
highlight their differing behaviour. In this section we will briefly study the general notion of
F-recurrence, and we consider operators on arbitrary topological vector spaces. The concept
was introduced by Furstenberg [Fur81, Chapter 9] in a non-linear context.

Recall that a non-empty family F of subsets of N0 is called a Furstenberg family if A ∈ F
and B ⊃ A implies that B ∈ F ; we will assume throughout that F does not contain the empty
set. A Furstenberg family is called right-invariant (respectively left-invariant) if A ∈ F and
n ≥ 0 implies that A+ n := {k + n : k ∈ A} ∈ F (respectively (A− n) ∩ N0 ∈ F).

Definition 8.1. Let X be a topological vector space, T ∈ L(X), and let F be a Furstenberg
family. A vector x ∈ X is called F-recurrent if, for any neighbourhood U of x, the return set
N(x, U) belongs to F . The set of F -recurrent vectors is denoted by FRec(T ). If this set is
dense in X then the operator is called F-recurrent.

Remark 8.2. Costakis et al. [CMP14] have defined T to be recurrent if, for any non-empty
open subset U of X, the set

N(U,U) = {n ≥ 0 : T n(U) ∩ U ̸= ∅} is non-empty,

which amounts to demanding that it be in the family of infinite sets. This is equivalent to the
definition used in this paper, by [CMP14, Proposition 2.1 with Remark 2.2], provided that the
underlying space X is completely metrizable (as it happens for F-spaces).
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8. F -recurrence

More generally it might be interesting to study the operators T with the following property:
for any non-empty open subset U of X,

N(U,U) = {n ≥ 0 : T n(U) ∩ U ̸= ∅} ∈ F .

Motivated by [CP12] one might call these operators topologically F-recurrent. This notion is
naturally linked to the concept of F-transitive operators as introduced by Bès et al. [BMPP19].

We have preferred the pointwise definition adopted in this paper in order to be close to the
corresponding notion of F -hypercyclicity. Recall that an operator T ∈ L(X) is F-hypercyclic
if there is some x ∈ X such that, for any non-empty open set U in X, N(x, U) ∈ F , see
[BMPP16]. The vector x is then called F-hypercyclic.

We have the following generalizations of results in the first part of the paper. The proofs
follow as in the special cases, see Theorems 2.1, 2.5, 2.12, 3.1, 4.2 and 4.4, together with
Remarks 4.3 and 4.5.

Theorem 8.3. Let X be a topological vector space, T ∈ L(X), and let F be a right-invariant
Furstenberg family. Then a vector is F-hypercyclic if and only if it is both hypercyclic and
also F-recurrent at the same time. In particular, T is F-hypercyclic if and only it admits a
hypercyclic and F-recurrent vector.

For the following results we need the concept of an (u.f.i.) upper Furstenberg familyN; we
refer to [BGE18] and Theorem 3.1 there.

Theorem 8.4. Let X be an F-space, T ∈ L(X), and F a right-invariant upper Furstenberg
family. Then the following assertions are equivalent:

(i) T is F-hypercyclic;

(ii) T is hypercyclic, and FRec(T ) is a residual set;

(iii) T is hypercyclic, and FRec(T ) is of second category;

(iv) T admits a hypercyclic F-recurrent vector.

In that case the set of hypercyclic and F-recurrent vectors is residual.

Theorem 8.5. Let X be an F-space, T ∈ L(X), and let F be a u.f.i. upper Furstenberg family.
Suppose that there is a dense set of vectors x ∈ X such that T nx → 0 as n → ∞. Then T is
F-hypercyclic if and only if it is F-recurrent.

We can also generalize the paper of power-boundedness for general Furstenberg families:

Theorem 8.6. Let X be a topological vector space, T ∈ L(X), and let F be any Furstenberg
family. If T is power-bounded, then the set FRec(T ) is closed.

The CuSP property for a family of subsets of N0 was introduced in Section 4.

NSee Example 3.2 in Section 3 of the Appendix for more on u.f.i. upper Furstenberg families.
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Chapter 1. Frequently recurrent operators

Theorem 8.7. Let X be a topological vector space, T ∈ L(X), and F a Furstenberg family
with the CuSP property.

(a) Let p ≥ 1. Assume that, for any A ⊂ N0, A ∈ F if and only if pA ∈ F . Then T and T p

have the same F-recurrent vectors. In particular, if T is F-recurrent then so is T p.

(b) Let λ be a scalar with |λ| = 1. Then the operators T and λT have the same F-recurrent
vectors. In particular, if T is F-recurrent then so is λT .

Theorems 8.3 and 8.7 have an interesting application to F -hypercyclicity.

Theorem 8.8. Let X be a topological vector space, T ∈ L(X), and let F be a right-invariant
Furstenberg family with the CuSP property.

(a) Let p ≥ 1. Assume that, for any A ⊂ N0, A ∈ F if and only if pA ∈ F . Then T and T p

have the same F-hypercyclic vectors. In particular, if T is F-hypercyclic then so is T p.

(b) Let λ be a scalar with |λ| = 1. Then the operators T and λT have the same F-hypercyclic
vectors. In particular, if T is F-hypercyclic then so is λT .
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Abstract
We study different pointwise recurrence notions for linear dynamical systems from the Ergodic Theory
point of view. We show that from any reiteratively recurrent vector x0, for an adjoint operator T on a
separable dual Banach space X, one can construct a T -invariant probability measure which contains x0
in its support. This allows us to establish some equivalences, for these operators, between some strong
pointwise recurrence notions which in general are completely distinguished. In particular, we show
that (in our framework) reiterative recurrence coincides with frequent recurrence; for complex Hilbert
spaces uniform recurrence coincides with the property of having a spanning family of unimodular
eigenvectors; and the same happens for power-bounded operators on complex reflexive Banach spaces.
These (surprising) properties are easily generalized to product and inverse dynamical systems, which
implies some relations with the respective hypercyclicity notions. Finally, we study how typical is an
operator with a non-zero reiteratively recurrent vector in the sense of Baire category.
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Chapter 2. Recurrence properties: An approach via invariant measures

1 Introduction and main results

1.1 General background

This paper focuses on some aspects of the interplay between the theories of Topological and
Measurable Dynamics for linear dynamical systems, our main aim being to investigate the links
in this context between various notions of recurrence.

A (real or complex) linear dynamical system (X,T ) is given by the action of a bounded
linear operator T on a (real or complex) separable infinite-dimensional Banach space X, and
we will denote by L(X) the set of bounded linear operators acting on such a space X. A linear
dynamical system is a particular case of a Polish dynamical system (i.e. a system given by
the action of a continuous map on a separable completely metrizable space), and some of the
results obtained in the paper hold in this more general context. Given a dynamical system
T : X −→ X and a point x ∈ X we will denote by

Orb(x, T ) := {T nx : n ∈ N0},

the T -orbit of x, where N0 := N∪{0}. Examples of topological properties, for linear dynamical
systems, which will be of interest to us in this work are:

(a) recurrence: the operator T is said to be recurrent if the set

Rec(T ) :=
{︂
x ∈ X : x ∈ Orb(Tx, T )

}︂
,

is dense in X, where each vector x ∈ Rec(T ) is called a recurrent vector for T . By the (not
too much known) Costakis-Manoussos-Parissis theorem (see [CMP14, Proposition 2.1]),
this notion is equivalent to that of topological recurrence, i.e. for each non-empty open
subset U of X one can find n ∈ N such that T n(U) ∩ U ̸= ∅; and in this case, the set
Rec(T ) of recurrent vectors for T is a dense Gδ subset of X;

(b) hypercyclicity: we say that the operator T is hypercyclic if there exists a vector x ∈ X, called
a hypercyclic vector for T , whose orbit Orb(x, T ) is dense in X. By the Birkhoff transitivity
theorem (see [GEP11, Theorem 1.16]), this notion equals topological transitivity, i.e. for each
pair U, V of non-empty open subsets of X one can find n ∈ N0 such that T n(U) ∩ V ̸= ∅;
and in this case the set HC(T ), of hypercyclic vectors for T , is a dense Gδ subset of X.

If given a point x ∈ X and a set U ⊂ X we denote the return set from x to U as

NT (x, U) := {n ∈ N0 : T nx ∈ U},

which will be denoted by N(x, U) if no confusion with the map arises, we can reformulate the
above notions in the following terms: a vector x ∈ X is recurrent if and only if N(x, U) is an
infinite set for every neighbourhood U of x; and a vector x ∈ X is hypercyclic if and only if
N(x, U) is an infinite set for every non-empty open subset U of X. Historically, hypercyclicity
and its generalizations have been the most studied notions in Linear Dynamics while the study
of the linear dynamical recurrence-kind properties (in a systematic way) started recently in
2014 with the work [CMP14], in spite of the great non-linear dynamical knowledge already
existing in this area (see for instance [Fur81]).
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1. Introduction and main results

Direct relations between the previous topological properties and Ergodic Theory arise when
we are able to consider a probability (or a positive finite) Borel measure µ on the underlying
space X (i.e. defined on the σ-algebra of Borel sets B(X) of X), which will sometimes be
required to have full support (i.e. µ(U) > 0 for every non-empty open subset U of X). We will
only consider Borel measures in this work, and the word “Borel” will sometimes be omitted. If
such a measure µ exists, we can study the dynamical system (X,B(X), µ, T ) from the point
of view of Ergodic Theory and relevant properties are:

(a) invariance: the operator T is said to be µ-invariant, or equivalently, the measure µ is
called T -invariant, if for each A ∈ B(X) the equality µ(T−1(A)) = µ(A) holds. By the
Poincaré recurrence theorem (see [Wal82, Theorem 1.4]), this notion implies that for every
A ∈ B(X) with µ(A) > 0 there is n ∈ N such that T n(A) ∩ A ̸= ∅. The Dirac mass δ0
at 0 is always an invariant measure for any operator T , and we will say that a T -invariant
probability measure µ is non-trivial if it is different from δ0.

(b) ergodicity: the operator T is said to be ergodic with respect to µ, provided that the measure
µ is T -invariant, and for each A ∈ B(X) with T−1(A) = A we have that µ(A) ∈ {0, 1}.
It is well known that the last statement is equivalent to the fact that, for each pair of
sets A,B ∈ B(X) with µ(A), µ(B) > 0 there is n ∈ N0 such that µ

(︂
T−n(A) ∩ B

)︂
> 0

(see [Wal82, Theorem 1.5]).

When T is ergodic with respect to a measure with full support, it follows from the Birkhoff
pointwise ergodic theorem that T is not only hypercyclic, but even frequently hypercyclic: there
exists a vector x ∈ X such that for each non-empty open subset U of X the return set N(x, U)
has positive lower density; in other words:

dens(N(x, U)) = lim inf
N→∞

#(N(x, U) ∩ [0, N ])
N + 1 > 0.

Such a vector x is said to be a frequently hypercyclic vector for T , and the set of all frequently
hypercyclic vectors is denoted by FHC(T ). See [BM09, Corollary 5.5] for the details of this
argument, and for more on frequent hypercyclicity.

When T is only supposed to admit an invariant measure µ, it follows easily from the Poincaré
recurrence theorem that µ-almost every x ∈ X is recurrent for T (see [Fur81, Theorem 3.3]).
Our main line of thought in this work will be to connect various (stronger) notions of recurrence
via invariant measures, proceeding essentially in two steps:

– if T admits vectors with a certain (rather weak) recurrence property, prove that it admits a
non-trivial invariant measure, perhaps with full support (see Theorem 2.3);

– if T admits a non-trivial invariant measure (perhaps with full support), prove that it admits
vectors with a certain strong recurrence property (see Lemmas 3.1 and 4.4).

This approach in the context of linear dynamical systems comes from the paper [GM14], which
extends to the linear setting some well-known results in the context of compact dynamical
systems (see [Fur81, Chapter 3 and Lemma 3.17]). The various recurrence notions which we
will consider were introduced and studied in the work [BGELMP22], but the initial study
of recurrence in Linear Dynamics started in [CMP14]. In the next subsection, we recall the
relevant definitions and present the first main result of this paper.
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1.2 Furstenberg families: recurrence and hypercyclicity notions

The Banach spaces X considered in this subsection can be either real or complex. Let us first
recall the following definitions from [BGELMP22]:

Definition 1.1. Given a non-empty collection of sets F ⊂ P(N0) we say that it is a Furstenberg
family (called family for short) if for each A ∈ F we have

(i) A is infinite;

(ii) if A ⊂ B ⊂ N0 then B ∈ F (i.e. F is hereditarily upward).

The dual family of F is the collection of sets F∗ := {A ⊂ N0 infinite : A∩B ̸= ∅ for all B ∈ F}.

Definition 1.2. Let (X,T ) be a linear dynamical system and let F be a Furstenberg family.
A point x ∈ X is said to be F-recurrent (resp. F-hypercyclic) if N(x, U) ∈ F for every
neighbourhood U of x (resp. for every non-empty open subset U of X). We denote by FRec(T )
(resp. FHC(T )) the set of such points and we say that T is F-recurrent (resp. F-hypercyclic)
if FRec(T ) is dense in X (resp. if FHC(T ) ̸= ∅).

The families F for which there exist F -hypercyclic operators are by far less common than
those for which F -recurrence exists since having an orbit distributed around the whole space is
much more complicated than having it just around the initial point of the orbit. Furstenberg
families associated just to recurrence will be used in the following subsection, but let us now
focus on the most known cases for which both notions exist: a point x ∈ X is said to be

(a) frequently recurrent (resp. frequently hypercyclic) if dens(N(x, U)) > 0 for every single
neighbourhood U of x (resp. for every non-empty open subset U of X). We denote by
FRec(T ) (resp. FHC(T )) the set of such points and we say that T is frequently recurrent
(resp. frequently hypercyclic) if FRec(T ) is dense in X (resp. if FHC(T ) ̸= ∅);

(b) U-frequently recurrent (resp. U-frequently hypercyclic) if dens(N(x, U)) > 0 for every single
neighbourhood U of x (resp. for every non-empty open subset U of X). We denote by
UFRec(T ) (resp. UFHC(T )) the set of such points and T is called U-frequently recurrent
(resp. U-frequently hypercyclic) if UFRec(T ) is dense in X (resp. if UFHC(T ) ̸= ∅);

(c) reiteratively recurrent (resp. reiteratively hypercyclic) if we have Bd(N(x, U)) > 0 for every
neighbourhood U of x (resp. for every non-empty open subset U of X). We will denote by
RRec(T ) (resp. RHC(T )) the set of such points and we say that T is reiteratively recurrent
(resp. reiteratively hypercyclic) if RRec(T ) is dense in X (resp. if RHC(T ) ̸= ∅);

where for any A ⊂ N0 its:

(a) lower density is dens(A) := lim inf
N→∞

#(A ∩ [0, N ])
N + 1 ;

(b) upper density is dens(A) := lim sup
N→∞

#(A ∩ [0, N ])
N + 1 ;

(c) upper Banach density is Bd(A) := lim sup
N→∞

(︄
max
m≥0

#(A ∩ [m,m+N ])
N + 1

)︄
.
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The introduced notions follow Definition 1.2 applied to the respective families of positive
(lower, upper and upper Banach) density sets, and in fact, the inequalities between the respective
densities imply the inclusions FRec(T ) ⊂ UFRec(T ) ⊂ RRec(T ) ⊂ Rec(T ) and also their
hypercyclicity version FHC(T ) ⊂ UFHC(T ) ⊂ RHC(T ) ⊂ HC(T ). In particular, frequent,
U -frequent and reiterative recurrence are clearly stronger notions than “usual” recurrence as
defined in Subsection 1.1, and frequent recurrence is a stronger notion than that of U -frequent
recurrence, which is in its turn stronger than reiterative recurrence.

We point out that all these notions are not specific to the linear setting; we will actually
use them in the context of Polish dynamical systems in Sections 2, 3, 5 and 6. However, since
we are focused on linear dynamical systems, our first main result connects all of them in the
framework of adjoint operators on separable dual Banach spaces:

Theorem 1.3. Let T : X −→ X be an adjoint operator on a (real or complex) separable dual
Banach space X. Then we have the equality

FRec(T ) = RRec(T ).

Moreover:

(a) The following statements are equivalent:

(i) FRec(T ) \ {0} ≠ ∅;
(ii) UFRec(T ) \ {0} ≠ ∅;
(iii) RRec(T ) \ {0} ≠ ∅;
(iv) T admits a non-trivial invariant probability measure.

(b) The following statements are equivalent:

(i) T is frequently recurrent;
(ii) T is U-frequently recurrent;
(iii) T is reiteratively recurrent;
(iv) T admits an invariant probability measure with full support.

In particular, these results hold whenever T is an operator on a (real or complex) separable
reflexive Banach space X.

The above theorem is in spirit similar to [GM14, Theorem 1.3], where it is proved that every
(U -)frequently hypercyclic operator on a separable reflexive space admits an invariant measure
with full support. It is observed in [GM14, Remark 3.5] that the arguments extend to every
adjoint operator acting on a separable dual Banach space. In this same setting, it is also proved
in [GM14, Proposition 2.11] that operators admitting an invariant measure with full support
are exactly those which are frequently recurrent. However, the notion of frequent recurrence
used in [GM14] is rather different from the one given in Definition 1.2: in [GM14] an operator
T ∈ L(X) is called frequently recurrent if for every non-empty open subset U of X there exists
a vector xU ∈ U for which just the positive lower density of the return set N(xU , U) is required.
This notion is (at least formally) weaker than the one used here (see Remark 2.5).
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The proof of Theorem 1.3 relies on some modifications of the arguments of [GM14, Section 2],
which will be presented in Sections 2 and 3. We mention that it cannot be extended to all
operators acting on separable (infinite-dimensional) Banach spaces. Indeed, it is shown in
[BGELMP22, Theorem 5.7 and Corollary 5.8] that there even exist reiteratively hypercyclic
operators on the space c0(N) which do not admit any non-zero U -frequently recurrent vector.

1.3 Uniform, IP∗, ∆∗-recurrence and unimodular eigenvectors

In this subsection the underlying Banach spaces X are assumed to be complex. A vector x ∈ X
is a unimodular eigenvector for T provided that x ̸= 0 and Tx = λx for some unimodular
complex number λ ∈ T = {z ∈ C : |z| = 1}. We will denote the set of such vectors by

E(T ) = {x ∈ X \ {0} : Tx = λx for some λ ∈ T} .

Unimodular eigenvectors are clearly frequently recurrent vectors for T , but they enjoy some
stronger recurrence properties like uniform, IP∗ and even ∆∗-recurrence (see Definition 1.5).
Our general aim in this paper is to investigate some contexts in which these strong forms of
recurrence actually imply the existence of unimodular eigenvectors. We will see that it is indeed
the case in (at least) the following two situations:

– when T is an operator acting on a complex Hilbert space (see Theorem 1.7 below);

– when T is a power-bounded operator on a complex reflexive Banach space (see Theorem 1.9).

Let us now introduce these stronger recurrence notions which are defined by considering
Furstenberg families only relevant for the notion of recurrence, and, contrary to those used in
Subsection 1.2, having no hypercyclicity analogue:

Definition 1.4. Let A ⊂ N0. We say that A is

(a) a syndetic set, if there is m ∈ N such that for every x ∈ N0 we have [x, x + m] ∩ A ̸= ∅.
We will denote by S := {A ⊂ N0 : A is syndetic} the Furstenberg family of syndetic sets.

(b) an IP-set, if there is a sequence (xn)∞
n=1 ∈ NN

0 such that {∑︁n∈F xn : F ⊂ N finite} ⊂ A. We
will denote by IP := {A ⊂ N0 : A is an IP-set}, the Furstenberg family of IP-sets.

(c) a ∆-set, if there is an infinite set B ⊂ N0 such that (B − B) ∩ N ⊂ A. We will denote by
∆ := {A ⊂ N0 : A is a ∆-set}, the Furstenberg family of ∆-sets.

From Definition 1.2 and the dual families notation we have:

Definition 1.5. Let (X,T ) be a linear dynamical system. A point x ∈ X is said to be

(a) uniformly recurrent if N(x, U) ∈ S for every neighbourhood U of x. We will denote by
URec(T ) the set of such points and T is uniformly recurrent if URec(T ) is dense in X;

(b) IP∗-recurrent if N(x, U) ∈ IP∗ for every neighbourhood U of x. We will denote by
IP∗Rec(T ) the set of such points, and T is IP∗-recurrent if IP∗Rec(T ) is dense in X;

(c) ∆∗-recurrent if N(x, U) ∈ ∆∗ for every neighbourhood U of x. We will denote by ∆∗Rec(T )
the set of such points, and T is ∆∗-recurrent if ∆∗Rec(T ) is dense in X.
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It is shown in [BMPP16, Proposition 2] that the above Furstenberg families do not admit a
respective hypercyclicity counterpart. As in the previous subsection these recurrence notions
could be defined for (non-linear) Polish dynamical systems, but since the eigenvectors will play
a fundamental role in the connection between those concepts we will directly work with complex
linear maps. The relation ∆∗ ⊂ IP∗ ⊂ S between the families (see [BD08]), Proposition 4.1
and [BGELMP22] imply the inclusions

span(E(T )) ⊂ ∆∗Rec(T ) ⊂ IP∗Rec(T ) ⊂ URec(T ) ⊂ FRec(T ) ⊂ UFRec(T ) ⊂ RRec(T ).

From there the following question was proposed in [BGELMP22]:

Question 1.6 ([BGELMP22, Question 6.3]). Does there exist any uniformly recurrent but
not IP∗-recurrent operator?

The uniformly recurrent operators considered in [BGELMP22] were also IP∗-recurrent, and
in fact a partial negative answer to Question 1.6 was already given in [BGELMP22, Theorem 6.2]
for the particular case of power-bounded operators, condition which implies the equality of the
two sets IP∗Rec(T ) and URec(T ). The second main result of this paper provides a negative
answer to Question 1.6 for operators acting on a complex separable Hilbert space H, by showing
the following stronger statement: any uniformly recurrent operator T ∈ L(H) has a spanning
set of unimodular eigenvectors. More precisely, define the sets

FRecbo(T ) := FRec(T ) ∩ {x ∈ H with bounded T -orbit};

UFRecbo(T ) := UFRec(T ) ∩ {x ∈ H with bounded T -orbit};

RRecbo(T ) := RRec(T ) ∩ {x ∈ H with bounded T -orbit}.

We always have that URec(T ) ⊂ FRecbo(T ) ⊂ UFRecbo(T ) ⊂ RRecbo(T ) because the uniformly
recurrent vectors have bounded orbit. Furthermore:

Theorem 1.7. Let T ∈ L(H) where H is a complex separable Hilbert space. Then we have the
equalities

span(E(T )) = URec(T ) = RRecbo(T ).
Moreover:

(a) The following statements are equivalent:

(i) E(T ) ̸= ∅;
(ii) ∆∗Rec(T ) \ {0} ≠ ∅;
(iii) IP∗Rec(T ) \ {0} ≠ ∅;
(iv) URec(T ) \ {0} ≠ ∅;
(v) FRecbo(T ) \ {0} ≠ ∅;
(vi) UFRecbo(T ) \ {0} ≠ ∅;
(vii) RRecbo(T ) \ {0} ≠ ∅;

(viii) T admits a non-trivial invariant probability measure µ with
∫︂

H
∥z∥2dµ(z) < ∞.
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(b) The following statements are equivalent:

(i) the set span(E(T )) is dense in H;
(ii) T is ∆∗-recurrent;
(iii) T is IP∗-recurrent;
(iv) T is uniformly recurrent;
(v) the set FRecbo(T ) is dense in H;
(vi) the set UFRecbo(T ) is dense in H;
(vii) the set RRecbo(T ) is dense in H;

(viii) T admits an invariant probability measure µ with full support and
∫︂

H
∥z∥2dµ(z) < ∞.

The proof of Theorem 1.7 that we provide here is really specific to the Hilbertian setting in
a somewhat roundabout way. It relies on the following three main arguments:

– the existence of a non-trivial invariant measure with a finite second-order moment, under
the assumption of the existence of a reiteratively recurrent vector with bounded orbit; this
argument is the same as the one employed in the proof of Theorem 1.3 above;

– the fact that any operator on a space of type 2, admitting an invariant measure with a finite
second-order moment, admits in fact an invariant Gaussian measure whose support contains
that of the initial measure (see Remark 4.5);

– and lastly, the fact that on spaces of cotype 2, the existence of an invariant Gaussian measure
for an operator T implies that the unimodular eigenvectors of T span a dense subspace of
the support of the measure (see Step 3 of Lemma 4.4).

These last two “facts” are far from being trivial, and we refer the reader to [BM09, Chapter 5]
for a proof, as well as for an introduction to the role of Gaussian measures in Linear Dynamics.
Since the only spaces which are both of type 2 and of cotype 2 are those which are isomorphic
to a Hilbert space, our proof of Theorem 1.7 does not seem to admit any possible extension to
a non-Hilbertian setting. The following question remains widely open:

Question 1.8. Let X be a complex Banach space and suppose that T : X −→ X is a uniformly
recurrent operator acting on X:

(a) Is span(E(T )) a dense set in X?

(b) What about the cases where T is an adjoint operator on a separable dual Banach space or
where X is a reflexive Banach space?

A partial (but not completely satisfactory) answer is our third and last main result, which
only concerns the power-bounded operators on complex reflexive Banach spaces. It extends
the result [BGELMP22, Theorem 6.2] by showing that such an operator T ∈ L(X) is again
uniformly recurrent if and only if it has a spanning set of unimodular eigenvectors. More
precisely, we have that:

62



1. Introduction and main results

Theorem 1.9. Let T : X −→ X be a power-bounded operator on a complex reflexive Banach
space X. Then we have the equality

span(E(T )) = URec(T ).

In particular:

(a) The following statements are equivalent:

(i) E(T ) ̸= ∅;

(ii) ∆∗Rec(T ) \ {0} ≠ ∅;

(iii) IP∗Rec(T ) \ {0} ≠ ∅;

(iv) URec(T ) \ {0} ≠ ∅.

(b) The following statements are equivalent:

(i) the set span(E(T )) is dense in X;

(ii) T is ∆∗-recurrent;

(iii) T is IP∗-recurrent;

(iv) T is uniformly recurrent.

The proof of Theorem 1.9 relies on the classic splitting theorem of Jacobs-Deleeuw-Glicksberg
(see [Kre85, Section 2.4]). Here the unimodular eigenvectors are obtained in a very different
way than in the proof of Theorem 1.7 (via characters on a certain compact abelian group).

Although the arguments used in the proofs of the two theorems above still hold when the
underlying space is complex and finite-dimensional, in this situation one can directly use the
Jordan decomposition (see [CMP14, Theorem 4.1] and [BGELMP22, Theorem 7.3]) to obtain a
spanning set of unimodular eigenvectors even from the notion of “usual” recurrence as defined
in Subsection 1.1.

1.4 Organization of the paper

Section 2 is devoted to the statement and proof of a purely non-linear result (Theorem 2.3)
which allows to construct invariant measures from reiteratively recurrent points for a rather
general class of Polish dynamical systems (which includes the compact ones). Theorem 2.3 is a
modest improvement of [GM14, Theorem 1.5, Remarks 2.6 and 2.12] and its proof is based on a
modification of the construction given in [GM14, Section 2]. In Section 3, we prove some results
where frequent recurrence is deduced from reiterative recurrence, in particular Theorem 1.3.
Theorems 1.7 and 1.9, which provide links between strong forms of recurrence and the existence
of unimodular eigenvectors, are proved in Section 4. Sections 5 and 6 present some applications
of the above results in terms of product and inverse dynamical systems, while in Section 7 the
“typicality”, in the Baire category sense, of some recurrence properties is studied. We gather
in Section 8 some possibly interesting open questions and a few comments related to them.
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2 Invariant measures from reiterative recurrence

In this section, we present a modification of the construction of [GM14, Section 2] which allows
to construct invariant measures from reiteratively recurrent points for a rather general class of
Polish dynamical systems, including the compact ones (see Remark 2.4).

2.1 Topological assumptions and initial comments

We begin this section with some notation: whenever we consider a space of functions we will
use the symbol 1l to denote the function constantly equal to 1, and given a subset A of the
domain of the functions, we will write 1lA for the indicator function of A, i.e. 1lA(x) = 1 if x ∈ A
and 1lA(x) = 0 if x /∈ A. For instance, if we consider ℓ∞ = ℓ∞(N), the space of all bounded
sequences of real numbers, 1l ∈ ℓ∞ is the sequence with all its terms equal to 1, and for every
A ⊂ N, 1lA ∈ ℓ∞ will be the sequence in which the n-th coordinate is 1 if n ∈ A and 0 otherwise.

A Banach limit is a continuous functional m : ℓ∞ −→ R such that for every pair of sequences
ϕ = (ϕ(n))n≥1, ψ = (ψ(n))n≥1 ∈ ℓ∞, every α, β ∈ R and every a ∈ N:

(a) m(αϕ+ βψ) = αm(ϕ) + βm(ψ) (linearity);

(b) ϕ(n) ≥ 0 for every n ∈ N implies m(ϕ) ≥ 0 (positivity);

(c) m((ϕ(n+ a)n≥1) = m((ϕ(n))n≥1) (shift-invariance);

(d) if ϕ is a convergent sequence then m(ϕ) = limn→∞ ϕ(n) (which implies m(1l) = 1).

Following [GM14], each Banach limit m should be viewed as a finitely additive measure on
N. In fact we will write the result of the action of m on a “function” ϕ ∈ ℓ∞ as the integral:

m(ϕ) =
∫︂
N
ϕ(i) dm(i).

Given a topological space (X, τ) we will denote by B(X, τ) its σ-algebra of Borel sets. If
there is no confusion with the topology we will simply write B(X). All the measures considered
in this section will be non-negative finite Borel measures, i.e. they could be the null measure,
and since they will be defined on Polish spaces the finiteness condition will imply their regularity
(see for instance [Coh13, Proposition 8.1.12]). Given a (non-negative) finite Borel measure µ
on a topological space (X, τ) we will denote its support by

supp(µ) := X \
⋃︂

U∈τ,µ(U)=0
U.

When µ is positive and regular it is easy to show that supp(µ) is non-empty, and the smallest
τ -closed subset of X with full measure, i.e. µ(supp(µ)) = µ(X), the later being true even if µ
is not regular but X is second-countable (see [Koz18, Proposition 2.3]). Moreover, a point x
belongs to supp(µ) if and only if µ(U) > 0 for every neighbourhood U of x.

Before presenting the “measures’ constructing machine” that will be used in the rest of this
work, we give name to some properties that a Polish dynamical system (X,T ) may have. In
particular, let (X, τX) be the underlying Polish space, τ a Hausdorff topology in X and let Kτ

be the set of τ -compact subsets of X. We will consider the following properties:
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(I) T is a continuous self-map of (X, τ) (i.e. T : X −→ X is τ -continuous);

(II) τ ⊂ τX (i.e. τ is coarser than τX);

(III) B(X, τ) = B(X, τX) (i.e. both topologies have the same Borel sets);

(IV) every τ -compact set is τ -metrizable (i.e. every K ∈ Kτ is τ -metrizable);

(III*) every point of X has a neighbourhood basis for τX consisting of τ -compact sets.

In [GM14, Fact 2.1] it is shown easily how (II) and (III*) imply conditions (III) and (IV).
For the concrete recurrence results that we obtain, it is necessary to assume conditions (I),
(II) and (III*) in order to use the reiteratively recurrent points in a successful way. However,
without property (III*) and assuming just conditions (I), (II), (III) and (IV) we can carry out
the “construction” on which everything is based:

Lemma 2.1 (Modification of [GM14, Remarks 2.6 and 2.12]). Let (X,T ) be a Polish
dynamical system. Assume that X is endowed with a Hausdorff topology τ which fulfills (I),
(II), (III) and (IV). Then for each x0 ∈ X and each Banach limit m : ℓ∞ −→ R one can find a
(non-negative) T -invariant finite Borel measure µ on X for which µ(X) ≤ 1 and such that

µ(K) ≥ m(1lN(x0,K)) for every K ∈ Kτ .

Moreover, we have the inclusion supp(µ) ⊂ Orb(x0, T )τ .

Remark 2.2. Lemma 2.1 is a rather technical result which allows us to construct invariant
measures. Note that:

(a) Assumptions (I), (II), (III) and (IV) are fulfilled by the initial topology τX . However, if the
τX-compact sets are too small, given an arbitrary point x0 ∈ X (even with some kind of
recurrence property) we could have m(1lN(x0,K)) = 0 for every τX-compact set K ⊂ X and
hence the measure µ obtained could be the null measure on X. We will consider a strictly
coarser topology τ ⊊ τX in order to obtain “interesting measures” from Lemma 2.1.

(b) Following the previous comment, even if the τ -compact sets are big enough, the measure
µ could be the null measure on X if we choose a point x0 ∈ X for which the return
sets N(x0, K) are too small and hence m(1lN(x0,K)) = 0 for every K ∈ Kτ . We will get
“interesting measures” whenever we combine Lemma 2.1 together with the existence of a
point x0 ∈ X and a Banach limit m for which m(1lN(x0,K)) > 0 for some τ -compact subsets
K of X. Those conditions will come from property (III*) together with the existence of a
reiteratively recurrent point x0 ∈ RRec(T ), see Theorem 2.3.

(c) In the proof of [GM14, Theorem 1.5] it is shown that under conditions (I), (II) and (III*),
one can change the final statement of Lemma 2.1 into

– then for each x0 ∈ X one can find a T -invariant finite Borel measure µ on X such that
µ(K) ≥ dens(N(x0, K)) for every K ∈ Kτ ,

simply by choosing a non-principal ultrafilter U on N and considering the Banach limit

m(ϕ) := lim
U

1
n

n∑︂
i=1

ϕ(i) for every ϕ ∈ ℓ∞.
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Moreover, under the same assumptions it is also stated in [GM14, Remark 2.12] that

– for each x0 ∈ X and each K ∈ Kτ one can find a T -invariant finite Borel measure µ on
X such that µ(K) ≥ dens(N(x0, K)).

This just ensures that the above inequality holds true for only one fixed τ -compact subset
K of X. We will encounter the same problem when working with the upper Banach density,
and we will have to combine some more sophisticated Banach limits in order to cope with
several τ -compact sets at the same time, see Subsection 2.3.

Here is the main result of this section:

Theorem 2.3. Let (X,T ) be a Polish dynamical system. Assume that X is endowed with a
Hausdorff topology τ which fulfills (I), (II), and (III*). If x0 ∈ X is a reiteratively recurrent
point for T , then one can find a T -invariant probability measure µx0 on X such that

x0 ∈ supp(µx0) ⊂ Orb(x0, T )τ
.

Moreover, if T is reiteratively recurrent then one can find a T -invariant probability measure µ
on X with full support.

Remark 2.4. If the Polish dynamical system T : (X, τX) −→ (X, τX) is locally compact, its
initial topology τX already fulfills properties (I), (II) and (III*), and hence (III) and (IV). In
particular, the later is true whenever (X, τX) is a compact metrizable space.

2.2 Proof of Lemma 2.1

We modify the construction given in [GM14, Section 2.2]. Let (X,T ) be a Polish dynamical
system, denote by τX the initial topology of X and assume that it is also endowed with a
Hausdorff topology τ which fulfills (I), (II), (III) and (IV). Fix x0 ∈ X and let m : ℓ∞ −→ R be
a Banach limit. For each K ∈ Kτ denote by C (K, τ) the space of all τ -continuous real-valued
functions on K.

Fact 2.2.1 (Modification of [GM14, Fact 2.2]). For every K ∈ Kτ there is a unique
(non-negative) finite Borel regular measure µK on K such that∫︂

K
fdµK =

∫︂
N
(1lKf)(T ix0) dm(i) for every f ∈ C (K, τ).

The measure µK satisfies 0 ≤ µK(K) = m(1lN(x0,K)) ≤ 1.

Proof. The first part is obvious by the Riesz representation theorem since, as mentioned in
[GM14, Fact 2.2], the formula

L(f) :=
∫︂
N
(1lKf)(T ix0) dm(i) for every f ∈ C (K, τ),

defines a (non-negative) linear functional on C (K, τ). Moreover, the measure µK satisfies

0 ≤ µK(K) =
∫︂
N
(1lK)(T ix0) dm(i) = m(1lN(x0,K)) ≤ m(1l) = 1.
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By (III) we have the equality B(X, τ) = B(X, τX) and hence for each K ∈ Kτ we can
extend the measure µK into a Borel measure on the whole space X (still denoted by µK) using
the formula

µK(A) := µK(K ∩ A) for every Borel set A ∈ B(X).
Clearly µK(X) ≤ 1, which implies the regularity of these measures. However, since the compact
sets K ∈ Kτ are not necessarily T -invariant and we could have T−1(K) ∩K = ∅, the measures
µK are not necessarily T -invariant. As in [GM14] we will define the T -invariant measure we
are looking for by taking the supremum of the µK , which is possible due to the following fact:
Fact 2.2.2 ([GM14, Fact 2.3]). If K,F ∈ Kτ and if K ⊂ F , then µK ≤ µF .

Proof. The proof is exactly the same than that of [GM14, Fact 2.3] and it uses essentially
conditions (II), (IV) and the positivity of m.

Since a finite union of τ -compact subsets of X is still an element of Kτ , from Fact 2.2.2 we
deduce that the family (µK)K∈Kτ has the following property: for any pair K1, K2 ∈ Kτ one can
find F ∈ Kτ such that µF ≥ max{µK1 , µK2}. We continue as in [GM14, Section 2.2]:
Fact 2.2.3 (Modification of [GM14, Fact 2.4]). If we set

µ(A) := sup
K∈Kτ

µK(A) for every Borel set A ∈ B(X),

then µ is a (non-negative) Borel measure on X such that µ(X) ≤ 1.

Proof. The proof is exactly the same than that of [GM14, Fact 2.4] but with µ having the
possibility of being the null measure.
Fact 2.2.4 (Modification of [GM14, Fact 2.5]). The measure µ is T -invariant and we have
the inequality

µ(K) ≥ m(1lN(x0,K)) for every K ∈ Kτ .

Proof. The first part of the proof is exactly the same than that of [GM14, Fact 2.5] and it uses
essentially conditions (I), (IV), the positivity of m and the fact that it is shift-invariant. By
Fact 2.2.1, for each K ∈ Kτ we have that µ(K) ≥ µK(K) = m(1lN(x0,K)).

To finish the proof of Lemma 2.1 we include a property, not shown in [GM14, Section 2.2],
about the support of the measure constructed:
Fact 2.2.5. We have the inclusion supp(µ) ⊂ Orb(x0, T )τ .

Proof. Write O(x0) := Orb(x0, T )τ . First we show that for each K ∈ Kτ we have the inclusion
supp(µK) ⊂ K ∩O(x0): indeed, for any K ∈ Kτ and any point x ∈ K \O(x0), by compactness,
there exists a positive function f ∈ C (K, τ) such that

f = 0 on K ∩O(x0) and f(x) = 1.

If we suppose that x ∈ supp(µK) and if we take a τ -neighbourhood U of x in (K, τ) such that
f(U) ⊂ [1/2,∞[ then we have

0 < 1
2µK(U) ≤

∫︂
K
fdµK =

∫︂
N
(1lKf)(T ix0) dm(i) = m(0) = 0,

since f(T ix0) = 0 for every i ∈ N, which is a contradiction. Hence x /∈ supp(µK).
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Finally, given x /∈ O(x0) there is an τ -open neighbourhood U of x in (X, τ), which by
(II) is also a τX-neighbourhood of x in (X, τX), such that U ∩ O(x0) = ∅. Hence, since
supp(µK) ⊂ O(x0) for every K ∈ Kτ , we deduce that µK(U) = µK(K ∩ U) = 0 for every
K ∈ Kτ . By the definition of µ we get µ(U) = 0 and hence that x /∈ supp(µ).

2.3 Proof of Theorem 2.3

Let (X,T ) be a Polish dynamical system, denote by τX the initial topology of X and assume
that X is endowed with a Hausdorff topology τ which fulfills (I), (II) and (III*).

Fact 2.3.1. Given x0 ∈ X and U ∈ Kτ with Bd(N(x0, U)) > 0, there exists a T -invariant
probability measure µ on X such that µ(U) > 0. Moreover, we have the inclusion

supp(µ) ⊂ Orb(x0, T )τ
.

Fact 2.3.1 allows us to (slightly) extend Theorem 2.3 in terms of the recurrence notion
introduced in [GM14, Section 2.5] (see Remark 2.5 below for the explicit statement) which at
the end turns out to be equivalent to the recurrence notion used here (see Theorem 3.3).

Proof of Fact 2.3.1. Since

Bd(N(x0, U)) := lim sup
N→∞

(︄
max
m≥0

#(N(x0, U) ∩ [m,m+N ])
N + 1

)︄
> 0,

there exists an increasing sequence of natural numbers (Nk)k∈N ∈ NN and a sequence of intervals
Ik = [ik + 1, ik +Nk] ⊂ N such that

Bd(N(x0, U)) = lim
k→∞

#(N(x0, U) ∩ Ik)
Nk

. (2.1)

Then we fix the Banach limit m : ℓ∞ −→ R defined as

m(ϕ) := lim
U

1
Nk

∑︂
n∈Ik

ϕ(n) for every ϕ ∈ ℓ∞,

for some fixed non-principal ultrafilter U ⊂ P(N) on N. By (2.1) we have that

m(1lN(x0,U)) = Bd(N(x0, U)) > 0.

Since τ fulfills (I), (II) and (III*), by [GM14, Fact 2.1] it also has properties (III) and (IV) so we
can apply Lemma 2.1 to x0 and m obtaining a (non-negative) T -invariant finite Borel measure
µ on X for which µ(K) ≥ m(1lN(x0,K)) for each K ∈ Kτ and such that supp(µ) ⊂ Orb(x0, T )τ .
In particular we get µ(U) ≥ m(1lN(x0,U)) > 0 so µ is a positive T -invariant finite Borel measure.
Normalizing µ we get the desired measure.

Fact 2.3.2. Given x0 ∈ RRec(T ), there exists a T -invariant probability measure µx0 on X such
that

x0 ∈ supp(µx0) ⊂ Orb(x0, T )τ
.
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Proof. Set O(x0) := Orb(x0, T )τ . Using (III*), let (Un)n∈N be a basis of τX-neighbourhoods of
x0 consisting of τ -compact sets. Applying Fact 2.3.1 to each set Un we obtain a sequence (µn)n∈N
of T -invariant probability measures on X for which µn(Un) > 0 and such that supp(µn) ⊂ O(x0)
for each n ∈ N. Then the measure

µx0 :=
∑︂
n∈N

µn

2n

is a T -invariant probability measure on X. Moreover, for any τX-neighbourhood U of x0 there
is an integer n ∈ N with Un ⊂ U and hence

µx0(U) ≥ µx0(Un) ≥ µn(Un)
2n

> 0.

This implies that x0 ∈ supp(µx0). Also, given x /∈ O(x0) there is a τ -neighbourhood V of x,
which by (II) is also a τX-neighbourhood of x, such that V ∩O(x0) = ∅. Since supp(µn) ⊂ O(x0)
for every n ∈ N we deduce that µn(V ) = 0 for every n ∈ N and by the definition of µx0 we get
µx0(V ) = 0. This implies that x /∈ supp(µx0) and hence x0 ∈ supp(µx0) ⊂ O(x0).

To complete the proof of Theorem 2.3, let T be reiteratively recurrent. Since X is separable
there is a countable set {xn : n ∈ N} ⊂ RRec(T ) which is dense in X. Applying Fact 2.3.2
to each point xn we obtain a sequence (µxn)n∈N of T -invariant probability measures on X such
that xn ∈ supp(µxn) for each n ∈ N. Finally, the measure µ := ∑︁

n∈N
µxn

2n is a T -invariant
probability measure on X with full support.

Remark 2.5. Under the topological assumptions of Theorem 2.3, and in view of Fact 2.3.1,
a generalization in terms of the recurrence notion introduced in [GM14, Section 2.5]A, and
following the spirit of [GM14, Proposition 2.11], can be shown:

– If for each open subset U of X there is a point xU ∈ X such that Bd(N(xU , U)) > 0, then
one can find a T -invariant probability measure µ on X with full supportB.

Indeed, one just has to use (III*) to consider an appropriate countable family of τ -compact
sets whose τX-interiors form a base of the initial topology τX , to apply Fact 2.3.1 to those
τ -compact sets and then to take an infinite convex combination of the obtained measures.

3 From reiterative to frequent recurrence

Theorem 2.3 allows us to construct invariant measures starting from reiteratively recurrent
points. In this section, we will exploit this result in order to show that reiterative recurrence
for adjoint operators on separable dual Banach spaces actually implies the stronger notion of
frequent recurrence (see Theorem 1.3).

3.1 A key lemma

An important tool for the proof of Theorem 1.3 is the following lemma:

AThis has been called the PF property, see Section 2.2 of the General discussion of the results.
BThis result has been independently proved in the recent work [CM].
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Chapter 2. Recurrence properties: An approach via invariant measures

Lemma 3.1 (Frequent Recurrence from Invariant Measures). Let T : X −→ X be a
continuous map on a second-countable space X and let µ be a T -invariant probability measure
on X. Then µ(FRec(T )) = 1 and in particular we have the inclusion

supp(µ) ⊂ FRec(T ).

The above result is the recurrence version of [BM09, Corollary 5.5], and since recurrence is
a local property the measure is not required to be with full support, condition under which the
map T would clearly be frequently recurrent.

Proof of Lemma 3.1. Let B ∈ B(X) be an arbitrary but fixed Borel set with µ(B) > 0. By the
ergodic decomposition theorem (see [Gla03, Theorem 3.42]) there is a T -invariant probability
measure m on X for which T is an ergodic map and such that m(B) > 0. Let (Un)n∈N be
a countable basis of the topology and apply the Birkhoff pointwise ergodic theorem (see for
instance [Gla03, Theorem 3.41]) to each of the indicator functions 1lUn . This yields

dens(N(x, Un)) = lim
N→∞

#(N(x, Un) ∩ [0, N ])
N + 1 = lim

N→∞

1
N + 1

N∑︂
k=0

1lUn(T kx)

=
∫︂

X
1lUn dm = m(Un),

for m-a.e. point x ∈ X, that is, for each n ∈ N there is a set An ⊂ X with m(An) = 1 such
that dens(N(x, Un)) = m(Un) for every x ∈ An. Since a countable union of null sets is again
null, the set

A := supp(m) ∩

⎛⎝⋂︂
n∈N

An

⎞⎠
satisfies m(A) = 1. We claim that A ⊂ FRec(T ): given x ∈ A and a neighbourhood U of the
point x there is an integer n ∈ N such that x ∈ Un ⊂ U . Since A ⊂ supp(m) we have that
Un ∩ supp(m) ̸= ∅ and hence dens(N(x, U)) ≥ dens(N(x, Un)) = m(Un) > 0. The arbitrariness
of the neighbourhood U of x implies that x ∈ FRec(T ). Now, since m(A) = 1 and m(B) > 0
we obtain that A ∩B ̸= ∅ and hence

FRec(T ) ∩B ̸= ∅.

Since this is true for every set B ∈ B(X) with µ(B) > 0 we deduce that µ(FRec(T )) = 1.
Then µ(FRec(T )) = 1 and in particular, since supp(µ) is the smallest closed subset of X with
full µ-measure, we get that supp(µ) ⊂ FRec(T ).
Remark 3.2. Lemma 3.1 improves [Fur81, Theorem 3.3] in terms of frequent recurrence by
using the Birkhoff pointwise ergodic theorem. Indeed, [Fur81, Theorem 3.3] shows that, under
the assumptions of Lemma 3.1, µ-a.e. point is recurrent, i.e. µ(Rec(T )) = 1.

Combining Theorem 2.3 and Lemma 3.1 we deduce the following result:
Theorem 3.3 (From Reiterative to Frequent Recurrence). Let the pair (X,T ) be a
Polish dynamical system, denote by τX the initial topology of X and assume that X is endowed
with a Hausdorff topology τ which fulfills (I), (II), and (III*). Then we have the equality

FRec(T )τX = RRec(T )τX
.

Moreover:
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3. From reiterative to frequent recurrence

(a) The following statements are equivalent:

(i) FRec(T ) ̸= ∅;
(ii) UFRec(T ) ̸= ∅;
(iii) RRec(T ) ̸= ∅;
(iv) T admits an invariant probability measure.

(b) The following statements are equivalent:

(i) T is frequently recurrent;
(ii) T is U-frequently recurrent;
(iii) T is reiteratively recurrent;
(iv) T admits an invariant probability measure with full support.

Proof. By definition we always have FRec(T ) ⊂ UFRec(T ) ⊂ RRec(T ), so we just have to
show that

RRec(T ) ⊂ FRec(T )τX
.

Suppose that RRec(T ) ̸= ∅. Given any x0 ∈ RRec(T ), by Theorem 2.3 one can find a
T -invariant probability measure µx0 on X for which x0 ∈ supp(µx0). Since separable and
metrizable spaces are second-countable, Lemma 3.1 implies that x0 ∈ FRec(T )τX .

Moreover, in both cases (a) and (b) we have: (i) implies (ii) which implies (iii) by definition;
(iii) implies (iv) by Theorem 2.3; and (iv) implies (i) by Lemma 3.1.

As we already mentioned in the Introduction this result is false for general Polish dynamical
systems: there even exist reiteratively hypercyclic operators acting on the c0(N) space without
any non-zero U -frequently recurrent vector (see [BGELMP22, Theorem 5.7 and Corollary 5.8]).
Theorem 1.3 is the linear version of the previous result.

3.2 Proof of Theorem 1.3

Let T : X −→ X be an adjoint operator on a separable dual Banach space X. Denote by τ∥·∥
the norm topology, consider the weak-star topology w∗ and note that:

(I) since T is an adjoint operator, it is a continuous self-map of (X,w∗);

(II) by the definition of the topologies, we have w∗ ⊂ τ∥·∥;

(III*) by the Alaoglu-Bourbaki theorem, the translation of the family of closed balls centred at
0 is a τ∥·∥-neighbourhood basis consisting of w∗-compact sets.

If T : X −→ X is an operator on a separable reflexive Banach space X the same conditions
hold for the weak topology. From here one can apply the same arguments as those used in
the proof of Theorem 3.3. In particular, if we consider a point x0 ∈ RRec(T ) \ {0} then the
measure µx0 obtained by Theorem 2.3 is a non-trivial invariant probability measure.
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Chapter 2. Recurrence properties: An approach via invariant measures

Remark 3.4. The equality FRec(T ) = RRec(T ) and the equivalences (i) ⇔ (ii) ⇔ (iii) stated
in Theorem 1.3 are still true when the underlying space X is a non-separable reflexive Banach
space. Indeed, given an operator T : X −→ X on a non-separable reflexive Banach space X,
and given a point x0 ∈ RRec(T ) we can consider the separable closed T -invariant subspace

Z := span(Orb(x0, T )),

which is again reflexive. Then T |Z : Z −→ Z is an operator on a separable reflexive Banach
space. Moreover, recurrence is a local property, i.e. for each Furstenberg family F we have that

FRec(T |Z) = FRec(T ) ∩ Z.

Applying Theorem 1.3 to T |Z we get that

x0 ∈ RRec(T |Z) and hence x0 ∈ FRec(T |Z) ⊂ FRec(T ).

However, we cannot say the same about statement (iv) of Theorem 1.3 since separability is
essential to construct and extend the invariant measures onto the whole space. The above
arguments are also restricted to the reflexive case because closed subspaces of a dual Banach
space are not necessarily dual Banach spaces (consider c0(N) ⊂ ℓ∞(N)).

4 From uniform recurrence to unimodular eigenvectors

Now we will connect some recurrence properties (stronger than those from Sections 2 and 3),
for linear dynamical systems acting on complex Banach spaces, to the existence of unimodular
eigenvectors. This comes motivated by the fact that, given any complex linear map T : X −→ X
on a complex topological vector space X, the linear span of its unimodular eigenvectors E(T )
consists of ∆∗-recurrent vectors. It is shown in [BGELMP22, Lemma 7.1 and Corollary 7.2]
that they are IP∗-recurrent, and the same arguments hold by using [Fur81, Proposition 9.8]
applied to the Kronecker system formed by the compact group Tk and the (left) multiplication
(z1, ..., zk) ↦→ (λ1z1, ..., λkzk) for a fixed k-tuple (λ1, ..., λk) ∈ Tk. We give an alternative proof
via invariant measures:

Proposition 4.1. Let T : X −→ X be a complex linear map on a complex topological vector
space X. Every linear combination of unimodular eigenvectors E(T ) is a ∆∗-recurrent vector.

Proof. Given λ ∈ T let Rλ : T −→ T be the λ-rotation map where z ↦→ λz. Then given ε > 0,
since the Haar measure on T is a Rλ-invariant measure with full support, by the Poincaré
recurrence theorem (see [Fur81, Theorem 3.2 and page 177]) there is A ∈ ∆∗ such that for the
ball centred at 1 and of radius ε/2, B(1, ε/2) := {z ∈ T : |1 − z| < ε/2}, we have that

Rn
λ(B(1, ε/2)) ∩B(1, ε/2) ̸= ∅ for every n ∈ A.

By the triangular inequality we get |λn − 1| < ε for each n ∈ A and hence

∆∗ ∋ A ⊂ {n ∈ N : |λn − 1| < ε} so that {n ∈ N : |λn − 1| < ε} ∈ ∆∗.

Since the Furstenberg family ∆∗ is a filterC (see [BD08]) and λ ∈ T and ε > 0 were chosen
arbitrarily the proof is finished (see [BGELMP22, Corollary 7.2] for a detailed argument).

CSee Section 4 of the Appendix for more on the family ∆∗.
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Hence, given a complex linear dynamical system T : X −→ X we will always have that:

span(E(T )) ⊂ ∆∗Rec(T ) ⊂ IP∗Rec(T ) ⊂ URec(T ) ⊂ RRecbo(T ).

Our goal in this section is to prove Theorem 1.7, which states that, for any operator acting on a
complex Hilbert space, the existence of a non-zero reiteratively recurrent vector with bounded
orbit (and in particular the existence of a uniformly recurrent vector) implies the existence of
a unimodular eigenvector. The proof of Theorem 1.7 relies heavily on the Gaussian measures
machinery. We begin by recalling some basic facts concerning these measures, as well as some
deeper results pertaining to the Ergodic Theory of Gaussian linear dynamical systems. We
refer the reader to one of the references [CTV87] or [DJT95] for more about Gaussian measures
on Banach spaces, and to [BM09] and [BM16] for more on their role in Linear Dynamics.

4.1 Ergodic Theory and Gaussian measures in Linear Dynamics

The study of Ergodic Theory in the framework of Linear Dynamics started with the pioneering
work of Flytzanis (see [Fly95a, Fly95b]), and was then further developed in the papers [BG06],
[BG07] and [BM16], among others, focusing on the existence of invariant Gaussian measures
satisfying some further dynamical properties such as weak/strong-mixing.

Definition 4.2. A Borel probability measure m on a complex Banach space X is said to be
a Gaussian measure if every continuous linear functional x∗ ∈ X∗ has a complex Gaussian
distribution when considered as a random variable on (X,B(X),m).

It is now well understood that the dynamics of a linear dynamical system (X,T ) are closely
related to the properties of the unimodular eigenvectors of T . The situation is especially well
understood in the Hilbertian setting, since the existence of an invariant Gaussian measure
(with full support, or with respect to which T is ergodic or weakly/strongly-mixing) can be
fully characterized in terms of the properties of the set E(T ). See [BG06] and [BM09] for details.
These characterizations do not hold true, in general, in the Banach space setting, but still many
results are preserved allowing for a rather through understanding of Ergodic Theory of linear
dynamical systems in this Gaussian framework. See [BG07], [BM09] and [BM16] for details.

Even though Gaussian measures are essential for our proof of Theorem 1.7 (see Lemma 4.4),
the properties that such measures (may) have are properties that arbitrary probability measures
can have too. We introduce these properties following [CTV87]:

Definition 4.3. Let µ be a probability measure on a Banach space X:

(a) suppose that there exists an element x ∈ X such that∫︂
X

⟨x∗, z⟩dµ(z) = ⟨x∗, x⟩ for every x∗ ∈ X∗,

then x is called the expectation of the measure µ and we will write
∫︂

X
zdµ(z) := x;

(b) we say that µ is centered if its expectation exists and it is equal to 0 ∈ X;

(c) we say that µ has a finite second-order moment if
∫︂

X
∥z∥2dµ(z) < ∞.
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If µ has a finite second-order moment then its expectation (called the Pettis integral of µ)
exists (see [DU77, page 55]). Given a centered probability measure µ on X with a finite
second-order moment, following [CTV87, page 169] and [BM09, Theorem 5.9], we can define
the covariance operator of such a measure µ as the bounded linear operator

R : X∗ −→ X satisfying ⟨y∗, Rx∗⟩ =
∫︂

X
⟨y∗, z⟩⟨x∗, z⟩dµ(z)

for every pair of elements x∗ and y∗ of X∗. In other words,

Rx∗ :=
∫︂

X
⟨x∗, z⟩zdµ(z) for every x∗ ∈ X∗. (2.2)

Any Gaussian measure m on X has a finite second-order moment (see [BM09, Exercise 5.5]),
and since we will consider in this work only centered Gaussian measures, we will always have
an associated covariance operator for such a measure m.

When H is a complex separable Hilbert space, then the covariance operator of a centered
probability measure µ on H with a finite second-order moment is usually defined, in a slightly
different way, as the bounded linear operator S : H −→ H for which

⟨Sx, y⟩ =
∫︂

H
⟨x, z⟩⟨y, z⟩dµ(z) for every x, y ∈ H,

i.e.
Sx :=

∫︂
H

⟨x, z⟩zdµ(z) for every x ∈ H. (2.3)

Observe that, contrary to (2.2), in this case ⟨Sx, ·⟩ : H −→ C is an anti-linear functional
acting on H. Also, S is a self-adjoint positive trace-class operator on H. It is a well-known
and standard result (see for instance [BM09, Corollary 5.15]) that the Gaussian covariance
operators on H are exactly the positive trace-class operators on H, i.e. for such an operator S
there exists a Gaussian measure m on H for which we also have that

⟨Sx, y⟩ =
∫︂

H
⟨x, z⟩⟨y, z⟩dm(z) for every x, y ∈ H.

The possibility of constructing a Gaussian measure m with the same covariance operator as µ,
together with the fact that the support of a Gaussian measure m is precisely the subspace S(H)
(i.e. the closed linear span of its covariance operator range, see [BM09, Proposition 5.18]) is
the key to prove the following lemma, inspired from the pioneering work [Fly95b] of Flytzanis:

Lemma 4.4 (Unimodular Eigenvectors from Invariant Measures). Let T ∈ L(H),
where H is a complex separable Hilbert space, and let µ be a (non-trivial) T -invariant probability
measure on H such that

∫︁
H ∥z∥2dµ(z) < ∞. Then we have the inclusions

supp(µ) ⊂ span(supp(µ)) ⊂ span(E(T )).

Proof. Suppose first that µ is a centered measure on H. Then, since H is a Hilbert space, the
covariance operator S of µ defined as in (2.3) satisfies

⟨Sx, y⟩ =
∫︂

H
⟨x, z⟩⟨y, z⟩dµ(z) =

∫︂
supp(µ)

⟨x, z⟩⟨y, z⟩dµ(z) for every x, y ∈ H,

and by [BM09, Corollary 5.15] it is also the covariance operator of a certain Gaussian measure
m on H. From now on we split the proof in three steps:
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Step 1. The Gaussian measure m is T -invariant: Given x, y ∈ H we have that

⟨TST ∗x, y⟩ = ⟨ST ∗x, T ∗y⟩ =
∫︂

H
⟨T ∗x, z⟩⟨T ∗y, z⟩dµ(z) =

∫︂
H

⟨x, Tz⟩⟨y, Tz⟩dµ(z)

=
∫︂

H
⟨x, z⟩⟨y, z⟩d(µ ◦ T−1)(z) =

∫︂
H

⟨x, z⟩⟨y, z⟩dµ(z) = ⟨Sx, y⟩,

since µ is T -invariant. By [BM09, Proposition 5.22] we deduce that m is T -invariant.

Step 2. We have the equality span(supp(µ)) = supp(m): By [BM09, Proposition 5.18] we know
that supp(m) = Ker(S)⊥ = S(H). Moreover, the subspace span(supp(µ))⊥ is included
in {︄

y ∈ H : ⟨Sx, y⟩ =
∫︂

supp(µ)
⟨x, z⟩⟨y, z⟩dµ(z) = 0 for every x ∈ H

}︄
=

= S(H)⊥ ⊂
{︄
y ∈ H :

∫︂
supp(µ)

|⟨y, z⟩|2dµ(z) = 0
}︄

= {y ∈ H : ⟨y, z⟩ = 0 for µ-a.e. z ∈ H}

(∗)= {y ∈ H : ⟨y, z⟩ = 0 for every z ∈ supp(µ)} = span(supp(µ))⊥
,

where the equality (∗) follows from the continuity of the maps ⟨y, ·⟩ : H −→ C.

Step 3. We have the inclusion supp(µ) ⊂ span(E(T )): In [BM09, Theorem 5.46] it is stated that
if a Banach space X has cotype 2, then every operator in L(X) admitting an invariant
Gaussian measure with full support has a spanning set of unimodular eigenvectors. Since
m is T -invariant by Step 1, we have that supp(m) is a T -invariant closed subspace of
the Hilbert space H and then it has cotype 2. Hence, [BM09, Theorem 5.46] applied
to T |supp(m) : supp(m) −→ supp(m) and m, together with Step 2, implies that

supp(µ) ⊂ span(supp(µ)) = supp(m) ⊂ span(E(T )).

Suppose now that µ is not centered and define the measure

ν(A) :=
∫︂
T
µ(λA)dλ for every Borel set A ∈ B(H).

Then ν is a (non-trivial) probability measure on H and it is T -invariant since

ν(T−1(A)) =
∫︂
T
µ(λT−1(A))dλ =

∫︂
T
µ(T−1(λA))dλ = ν(A).

By the density of the simple functions in L1(H,B(H), ν) we have that ν is centered since∫︂
H
zdν(z) =

∫︂
T

(︃∫︂
H
λzdµ(z)

)︃
dλ =

∫︂
T
λ
(︃∫︂

H
zdµ(z)

)︃
dλ = 0,

and also that ν has a finite second-order moment since∫︂
H

∥z∥2dν(z) =
∫︂
T

(︃∫︂
H

∥λz∥2dµ(z)
)︃
dλ =

∫︂
H

∥z∥2dµ(z) < ∞.
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The first part of the proof implies that supp(ν) ⊂ span(supp(ν)) ⊂ span(E(T )) so we just have
to show that supp(µ) ⊂ supp(ν). In order to check this pick x0 ∈ supp(µ) and ε > 0. Then
let δ := µ(B(x0, ε/2)) > 0, where B(x0, ε/2) denotes the open ball of X centred at x0 and of
radius ε/2, and note that B(x0, ε/2) ⊂ λB(x0, ε) for any λ ∈ T with

|λ− 1| < ε

2(∥x0∥ + 1) .

Indeed, given x ∈ B(x0, ε/2) we have that ∥λx0 − x∥ ≤ ∥(λ− 1)x0∥ + ∥x0 − x∥ < ε. Since for
those λ ∈ T we have that µ(λB(x0, ε)) ≥ δ we deduce that ν(B(x0, ε)) > 0. The arbitrariness
of ε > 0 implies that x0 ∈ supp(ν).

Remark 4.5. If we start the proof of Lemma 4.4 with the underlying space being a Banach
space X which has type 2, then there exists a Gaussian measure m on X whose covariance
operator is R as defined in (2.2). Indeed, since R is a symmetric and positive operator it admits
a square root: there exist some separable Hilbert space H and an operator K : H −→ X such
that R = KK∗ (see [BM09, page 101]). Moreover, by the finite second-order moment condition
of µ, the operator K∗ is an absolutely 2-summing operator and hence such a Gaussian measure
m on X exists by [BM09, Corollary 5.20]. However, in Step 3 of the proof above the underlying
space needs to have cotype 2. The only spaces which are both of type 2 and of cotype 2 are
isomorphic to Hilbert spaces, so the proof does not extend outside the Hilbertian setting.

We are now ready to prove Theorem 1.7.

4.2 Proof of Theorem 1.7

Let T : H −→ H be an operator on a complex separable Hilbert space H. We already know
that span(E(T )) ⊂ URec(T ) ⊂ RRecbo(T ), so we just have to prove that

RRecbo(T ) ⊂ span(E(T )).

To see this pick x0 ∈ RRecbo(T ) \ {0} and let M > 0 be such that Orb(x0, T ) is contained in
MBH , the ∥ · ∥-closed ball of radius M centred at 0. If we now denote by w the weak topology
of the Hilbert space H, we have the inclusion

Orb(x0, T )w ⊂ MBH .

By Theorem 2.3 there is a (non-trivial, because x0 ̸= 0) T -invariant probability measure µx0

on X such that
x0 ∈ supp(µx0) ⊂ Orb(x0, T )w

,

and hence ∫︂
H

∥z∥2dµx0(z) =
∫︂

supp(µx0 )
∥z∥2dµx0(z) ≤ M2 < ∞.

By Lemma 4.4 we get that x0 ∈ supp(µx0) ⊂ span(E(T )) as we wanted to show.
Suppose now that there is a countable set {xn : n ∈ N} ⊂ RRecbo(T ) which is dense in H.

For each n ∈ N pick Mn > 0 and kn ∈ N such that

Orb(xn, T )w ⊂ MnBH and 2nM2
n ≤ 2kn .
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Applying Theorem 2.3 to each xn we obtain a sequence (µxn)n∈N of T -invariant probability
measures on H such that xn ∈ supp(µxn) ⊂ Orb(xn, T )w for each n ∈ N. Consider the measure

µ :=
∑︂
n∈N

µxn

2kn
,

which is a (positive) T -invariant finite Borel measure on H with full support such that∫︂
H

∥z∥2dµ(z) =
∑︂
n∈N

1
2kn

∫︂
H

∥z∥2dµxn(z) ≤
∑︂
n∈N

M2
n

2kn
≤ 1.

Normalizing the measure µ we get a T -invariant probability measure with full support and
finite second-order moment.

Finally, in both cases (a) and (b) we have: (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (v) ⇒ (vi) ⇒ (vii)
by definition; (vii) ⇒ (viii) using Theorem 2.3 as in the above arguments; and (viii) ⇒ (i) by
the already used Lemma 4.4.

Remark 4.6. The equalities span(E(T )) = URec(T ) = RRecbo(T ) and hence the equivalences
(i) ⇔ (ii) ⇔ (iii) ⇔ (iv) ⇔ (v) ⇔ (vi) ⇔ (vii) established in Theorem 1.7 are still true when
the underlying space H is a complex non-separable Hilbert space. Since the closed subspaces
of a Hilbert space are again Hilbert spaces, the same arguments as those used in Remark 3.4
apply. We loose again the measures equivalences, i.e. statement (viii).

As mentioned in the Introduction and in Remark 4.5, the proof of Lemma 4.4 and hence
that of Theorem 1.7 do not extend outside the Hilbertian setting.

We finish this section with the proof of Theorem 1.9, which concerns the power-bounded
operators on complex reflexive Banach spaces X. The proof relies on the splitting theorem of
Jacobs-Deleeuw-Glicksberg, and is really specific to the setting of power-bounded operators.
We follow the presentation and notation of [Kre85, Section 2.4]: if S is a semigroup of L(X),
we say that S is weakly almost periodic if for any x ∈ X the set S x = {Sx : S ∈ S } has a
w-compact closure.

4.3 Proof of Theorem 1.9

Given a power-bounded operator T : X −→ X on a complex reflexive Banach space X, we
already know that span(E(T )) ⊂ URec(T ) so we just have to show the inclusion

URec(T ) ⊂ span(E(T )).

We set O(x) := Orb(x, T )w for each x ∈ X.
Since T is power-bounded, every T -orbit is bounded and has a w-compact closure. Hence,

by the Jacobs-Deleeuw-Glicksberg theorem [Kre85, Section 2.4, Theorem 4.4] applied to the
(weakly almost periodic) abelian semigroup of operators {T n : n ∈ N0} ⊂ L(X), we obtain the
direct sum decomposition

X = Xrev ⊕Xfl,

where

Xrev := {x ∈ X : y ∈ O(x) ⇒ x ∈ O(y)} and Xfl := {x ∈ X : 0 ∈ O(x)}.
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Moreover, by the second part of this same theorem [Kre85, Section 2.4, Theorem 4.5] we also
get that

Xrev = span(E(T )).
Let us now show that URec(T ) ⊂ Xrev. Indeed, given x ∈ URec(T ) \ {0} we can consider the
map T |O(x) : (O(x), w) −→ (O(x), w) which is a w-compact dynamical system. Since the weak
topology is coarser than the norm topology we also have that x ∈ URec(T |O(x)) and hence
by [Fur81, Theorem 1.17] the system T |O(x) is minimal so every T |O(x)-orbit is dense in O(x).
Finally, given y ∈ O(x) we have that

O(y) = Orb(y, T )w = Orb(y, T |O(x))
w = O(x)

which implies that x ∈ O(y). The arbitrariness of y ∈ O(x) shows that x ∈ Xrev.

5 Product dynamical systems

Given a property of a dynamical system (X,T ) it is usual to ask whether the product dynamical
system T × T : X × X −→ X × X has the same property. Studied cases in Linear Dynamics
are transitivity or hypercyclicity (which gives us the concept of topological weak-mixing), and
in general F -transitivity or F -hypercyclicity (see [BMPP19] and [EEM21]). Here we show that
the above theorems still work for the product systems.

Theorem 5.1 (From Reiterative to N -Dim. Frequent Recurrence). Let N ∈ N and
suppose that for each 1 ≤ i ≤ N there is a Polish dynamical system (Xi, Ti) such that (Xi, τXi

)
can be endowed with a Hausdorff topology τi which fulfills (I), (II), and (III*) with respect to the
map Ti and the topology τXi

. Then for the product dynamical system T : (X, τX) −→ (X, τX),
where τX is the product topology of the N-th τXi

topologies, we have the equality

FRec(T )τX =
N∏︂

i=1
RRec(Ti)

τXi .

In particular:

(a) The following statements are equivalent:

(i) FRec(T ) ̸= ∅;
(ii) UFRec(T ) ̸= ∅;
(iii) RRec(T ) ̸= ∅;
(iv) RRec(Ti) ̸= ∅ for every 1 ≤ i ≤ N .

(b) The following statements are equivalent:

(i) T is frequently recurrent;
(ii) T is U-frequently recurrent;
(iii) T is reiteratively recurrent;
(iv) Ti is reiteratively recurrent for every 1 ≤ i ≤ N .
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Proof. We clearly have the inclusion

FRec(T ) ⊂
N∏︂

i=1
RRec(Ti).

Now given x0 = (x1, ..., xN) ∈ X such that xi ∈ RRec(Ti) for each 1 ≤ i ≤ N , let us show that
x0 ∈ FRec(T )τX . Applying Theorem 2.3 we obtain a Ti-invariant measure µxi

on Xi such that
xi ∈ supp(µxi

) for each 1 ≤ i ≤ N . Since

B(X, τX) =
N∏︂

i=1
B(X, τXi

),

we can consider the product measure µx0 := ∏︁N
i=1 µxi

on the product space X, which is a
T -invariant measure (see [Wal82, Theorem 1.1 and Definition 1.2]) for which x0 ∈ supp(µx0).
Applying now Lemma 3.1 we deduce that x0 ∈ FRec(T )τX .

The following immediate corollaries yield a product version of Theorem 1.3:

Corollary 5.2. Let N ∈ N and consider for each 1 ≤ i ≤ N an adjoint operator Ti : Xi −→ Xi

on a separable dual Banach space Xi. Then, for the direct sum operator T = T1 ⊕ · · · ⊕ TN

acting on the direct sum space X = X1 ⊕ · · · ⊕XN , we have the equality

FRec(T ) =
N∏︂

i=1
RRec(Ti).

In particular, the following statements are equivalent:

(i) T is frequently recurrent;

(ii) T is U-frequently recurrent;

(iii) T is reiteratively recurrent;

(iv) Ti is reiteratively recurrent for every 1 ≤ i ≤ N .

Moreover, the result holds whenever some of the Ti are operators acting on some reflexive
Banach spaces Xi.

In the statement above, and whenever we consider a direct sum space X1 ⊕ · · · ⊕ XN , one
can use any norm defining the usual product topology on X1 ⊕ · · · ⊕XN (see Theorem 5.8).

Definition 5.3. Let (X,T ) be a linear dynamical system and let N ∈ N. We will denote by
T(N) : XN −→ XN the N-fold direct sum of T with itself, i.e. the dynamical system

T(N) := T ⊕ · · · ⊕ T⏞ ⏟⏟ ⏞
N

: X ⊕ · · · ⊕X⏞ ⏟⏟ ⏞
N

−→ X ⊕ · · · ⊕X⏞ ⏟⏟ ⏞
N

,

where XN := X ⊕ · · · ⊕X⏞ ⏟⏟ ⏞
N

is the N-fold direct sum of X with itself.
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Corollary 5.4. Let T : X −→ X be an adjoint operator on a separable dual Banach space X.
Then the following statements are equivalent:

(i) T(N) is frequently recurrent for every N ∈ N;

(ii) T(N) is U-frequently recurrent for every N ∈ N;

(iii) T(N) is reiteratively recurrent for every N ∈ N;

(iv) T is reiteratively recurrent.

In particular, the result holds whenever T is an operator on a reflexive Banach space X.

As a consequence of the above fact we can prove some results related with hypercyclicity. We
start with an independent proof of [EEM21, Theorem 2.5 and Corollary 2.6] for the particular
case of the reiteratively hypercyclic (adjoint) operators:

Theorem 5.5. Let T : X −→ X be a reiteratively hypercyclic adjoint operator on a separable
dual Banach space X. Then T(N) is reiteratively hypercyclic and frequently recurrent for every
N ∈ N. The result holds if T is an operator on a separable reflexive Banach space X.

Proof. Let N ∈ N. Since T is reiteratively hypercyclic we know that:

(a) T is topologically weakly-mixing (see [BMPP16, page 548]), and hence T(N) is topologically
transitive, and in particular hypercyclic;

(b) T is reiteratively recurrent, and by the above results T(N) is frequently recurrent, and in
particular reiteratively recurrent.

By [BGELMP22, Theorem 2.1], reiterative recurrence plus hypercyclicity imply reiterative
hypercyclicity. We deduce that T(N) is reiteratively hypercyclic and frequently recurrent.

If we start just with reiterative recurrence, having a dense set of orbits converging to 0
implies a strong notion of hypercyclicity:

Theorem 5.6. Let T : X −→ X be an adjoint operator on a separable dual Banach space X.
Suppose that there is a dense set X0 ⊂ X such that T kx → 0 as k → ∞ for each x ∈ X0. The
following statements are equivalent:

(i) T(N) is U-frequently hypercyclic and frequently recurrent for every N ∈ N;

(ii) T is reiteratively recurrent.

In particular, the result holds if T is an operator on a separable reflexive Banach space X.

Proof. Clearly (i) implies (ii) even if T : X −→ X is not a linear map. If we suppose (ii) and
we fix N ∈ N, by the above results we get that T(N) is frequently recurrent and in particular
U -frequently recurrent. Let Y0 := X0 ⊕ · · · ⊕X0 be the N -fold direct sum of the set X0, which
is a dense subset of the N -fold direct sum XN whose orbits converge to (0, ..., 0) ∈ XN . Using
now [BGELMP22, Theorem 2.12], the existence of Y0 and the U -frequent recurrence imply that
the operator T(N) is U -frequently hypercyclic.
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It would be interesting to change the assumption of U-frequent hypercyclicity in the above
statement into that of frequent hypercyclicity, but as exposed in [BGELMP22, Question 2.13],
the following is an open problem:

Question 5.7 ([BGELMP22, Question 2.13]). Let T be a frequently recurrent operator
admitting a dense set of vectors whose orbits converge to 0. Is T frequently hypercyclic?

If now we focus on Theorems 1.7 and 1.9, their generalizations for product linear dynamical
systems follow in a much easier way, since any N -tuple formed by unimodular eigenvectors is
a linear combination of such vectors for the direct sum map:

Theorem 5.8. Let N ∈ N and suppose that for each 1 ≤ i ≤ N we have:

(a) an operator Ti : Hi −→ Hi on a complex Hilbert space Hi. Then, for the direct sum operator
T = T1 ⊕ · · · ⊕TN on the direct sum Hilbert space H = H1 ⊕ · · · ⊕HN , we have the equality

span(E(T )) =
N∏︂

i=1
RRecbo(Ti),

(b) a power-bounded operator Ti : Xi −→ Xi on a complex reflexive Banach space Xi. Then,
for the direct sum operator T = T1 ⊕ · · · ⊕ TN on the direct sum space X = X1 ⊕ · · · ⊕XN ,
we have the equality

span(E(T )) =
N∏︂

i=1
URec(Ti).

In particular, in both cases span(E(T )) is dense in the (corresponding) direct sum space if and
only if Ti is uniformly recurrent for every 1 ≤ i ≤ N .

Proof. The vector (0, ..., 0, xi, 0, ..., 0) belongs to E(T ) whenever xi ∈ E(Ti) for each 1 ≤ i ≤ N .
It is enough to apply Theorems 1.7 and 1.9 to each operator Ti.

Finally we get the desired generalization of Theorems 1.7 and 1.9:

Corollary 5.9. Let T ∈ L(H) where H is a complex Hilbert space. The following are equivalent:

(i) the set span(E(T(N))) is dense in HN for every N ∈ N;

(ii) T(N) is ∆∗-recurrent for every N ∈ N;

(iii) T(N) is IP∗-recurrent for every N ∈ N;

(iv) T(N) is uniformly recurrent for every N ∈ N;

(v) the set FRecbo(T(N)) is dense in HN for every N ∈ N;

(vi) the set UFRecbo(T(N)) is dense in HN for every N ∈ N;

(vii) the set RRecbo(T(N)) is dense in HN for every N ∈ N;

(viii) the set RRecbo(T ) is dense in H.
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Corollary 5.10. Let T : X −→ X be a power-bounded operator on a complex reflexive Banach
space X. The following statements are equivalent:

(i) the set span(E(T(N))) is dense in XN for every N ∈ N;

(ii) T(N) is ∆∗-recurrent for every N ∈ N;

(iii) T(N) is IP∗-recurrent for every N ∈ N;

(iv) T(N) is uniformly recurrent for every N ∈ N;

(v) T is uniformly recurrent.

6 Inverse dynamical systems

As in the case of products, given a dynamical system T : X −→ X with some property, it is
natural to ask if the inverse dynamical system T−1 : X −→ X (if it exists and is continuous) has
the same property. This is true for hypercyclicity and reiterative hypercyclicity (see [BGE18]),
but it fails for U -frequent hypercyclicity (see [Men20]) and frequent hypercyclicity (see [Men22]).
It is also known that the inverse of a frequently hypercyclic operator is U -frequently hypercyclic
(see [BR15, Proposition 20]).

If we focus on recurrence properties, the inverse of a recurrent operator is again recurrent as
[CMP14, Proposition 2.6] shows. A simpler proof (in a transitive style) of that fact would be:

Proposition 6.1 ([CMP14, Proposition 2.6]). Let T : X −→ X be an invertible operator.
Then T is recurrent if and only if so is T−1.

Proof. By [CMP14, Proposition 2.1] the result follows from the equivalence

T n(U) ∩ U ̸= ∅ if and only if U ∩ T−n(U) ̸= ∅,

valid for any non-empty open subset U of X.

However, it is also shown in [CMP14, Remark 2.7] that the sets Rec(T ) and Rec(T−1) may
not be equal in spite of the fact that their closures coincide. For general F -recurrence notions
the following problem was proposed in [BGELMP22]:

Question 6.2 ([BGELMP22, Question 2.14]). Let T be an invertible operator which is
reiteratively (U -frequently, frequently, uniformly) recurrent, does T−1 have the same property?

We can ask the same question for IP∗, ∆∗-recurrence and for the existence of unimodular
eigenvectors. However, for the latest, linearity is enough to verify this property since

Tx = λx for some λ ∈ T =⇒ T−1x = λ(T−1λx) = λx,

so clearly span(E(T )) = span(E(T−1)). To answer Question 6.2 in our dual/reflexive setting
we just have to recall the following trivial fact: given any homeomorphism T : X −→ X of a
Polish space X and any Borel measure µ on (X,B(X)), then the measure µ is T -invariant if
and only if it is T−1-invariant.
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Theorem 6.3 (From Reiterative to Inverse Frequent Recurrence). Let T : X −→ X be
a homeomorphism of the Polish space (X, τX), and assume that X is endowed with a Hausdorff
topology τ1 which fulfills (I) for T , (II), and (III*). Then we have

FRec(T )τX = RRec(T )τX ⊂ FRec(T−1)τX ⊂ RRec(T−1)τX
.

Moreover:

(a) If T is reiteratively recurrent then T−1 is frequently recurrent.

(b) If RRec(T ) ̸= ∅ then FRec(T ) ∩ FRec(T−1) ̸= ∅.

(c) If X can be endowed with a Hausdorff topology τ2 which fulfills (I) for T−1, (II), and
(III*), then the above inclusions are equalities and T is reiteratively (and hence frequently)
recurrent if and only if so is T−1.

Proof. The equality is shown in Theorem 3.3. The first inclusion follows from Lemma 3.1
applied to the measures constructed with Theorem 2.3 for each point of RRec(T ), using the fact
that they are T−1-invariant. The second inclusion follows by definition. Moreover, if there exists
a point x0 ∈ RRec(T ) and if we take the invariant probability measure µx0 on X constructed
with Theorem 2.3, then by Lemma 3.1 we have µx0(FRec(T )) = 1 = µx0(FRec(T−1)) which
implies that FRec(T ) ∩ FRec(T−1) ̸= ∅. Finally, if such a topology τ2 exists we can apply the
first part of the result to T−1 obtaining RRec(T−1)τX ⊂ FRec(T )τX .

As a corollary of the above theorem, and using the arguments from Theorem 1.3 we have:

Corollary 6.4. Let T : X −→ X be an invertible adjoint operator on a separable dual Banach
space X. Then we have the equalities

RRec(T ) = FRec(T ) = FRec(T−1) = RRec(T−1).

Moreover:

(a) T is reiteratively (and hence frequently) recurrent if and only if so is T−1.

(b) If RRec(T ) \ {0} ≠ ∅ then [FRec(T ) ∩ FRec(T−1)] \ {0} ≠ ∅.

In particular, the result holds whenever T is an operator on a reflexive Banach space X.

Proof. Let S : Y −→ Y be an operator on a Banach space Y such that Y ∗ = X and S∗ = T . It
is a known fact that T is invertible if and only if S is invertible, and in this case, T−1 = (S−1)∗, so
T−1 is also an adjoint operator on the separable Banach space X and hence it is w∗-continuous.
The above theorems can be now applied to T : X −→ X, (X, ∥ · ∥) and the topology w∗.

We can now give an alternative prove of [BGE18, Theorem 3.6] for adjoint operators:

Theorem 6.5. Let T : X −→ X be an invertible adjoint operator on a separable dual Banach
space. If T is reiteratively hypercyclic (and hence frequently recurrent) then so is T−1. In
particular, the result holds whenever T is an operator on a separable reflexive Banach space X.
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Proof. By the above theorem T−1 is frequently recurrent and hence reiteratively recurrent.
Since hypercyclicity is also preserved by taking the inverse system, [BGELMP22, Theorem 2.1]
implies that T−1 is reiteratively hypercyclic.

We cannot change the reiterative hypercyclicity in the statement of Theorem 6.5 above into
the assumption of U-frequent hypercyclicity since there are invertible U -frequently hypercyclic
operators on ℓp(N) (1 ≤ p < ∞) whose inverse is not U -frequently hypercyclic (see [Men20]).
However, it would be interesting to know whether it is possible to change the assumption
of reiterative hypercyclicity into that of frequent hypercyclicity: even though it is known that
there are invertible frequently hypercyclic operators on ℓ1(N) whose inverse is not frequently
hypercyclic (see [Men22]), one can check that these are not adjoint operators and, moreover,
the inverse of a frequently hypercyclic operator is always U -frequently hypercyclic as showed
in [BR15, Proposition 20].

All the counterexamples mentioned here are C-type operators, which were introduced for
the first time in [Men17] and further developed in [GMM21b, Men20, Men22], so a possible
counterexample for the frequent hypercyclicity case could arise from those operators. If, on the
other hand, one wishes to prove an analogue of Theorem 6.5 for the frequent hypercyclicity
case in our dual/reflexive framework, one cannot take a similar approach since there are chaotic
operators, which are in particular frequently recurrent and hypercyclic, but not U -frequently
hypercyclic (see [Men17] and [GMM21b]) and hence not frequently hypercyclic.

Theorems 1.7 and 1.9 and the equality span(E(T )) = span(E(T−1)) give us the following:

Corollary 6.6. Let T : H −→ H be an invertible operator on a complex Hilbert space H. Then
we have the equalities

RRecbo(T ) = span(E(T )) = span(E(T−1)) = RRecbo(T−1).

In particular, T is uniformly (and hence IP∗ and ∆∗) recurrent if and only if so is T−1.

Corollary 6.7. Let T : X −→ X be an invertible operator on a complex reflexive space X. If
T is power-bounded, then we have

URec(T ) = span(E(T )) = span(E(T−1)) ⊂ URec(T−1).

In particular, if T is uniformly recurrent then span(E(T−1)) is a dense set in X. Moreover,
if T−1 is also power-bounded then the above inclusion is an equality and the operator T is
uniformly (and hence IP∗ and ∆∗) recurrent if and only if so is T−1.

7 How typical is a reiteratively recurrent operator?

Let H be a complex separable Hilbert space. For any M > 0, denote by LM(H) the set
of bounded operators T ∈ L(H) such that ∥T∥ ≤ M . Our aim in this short section is to
present a result pertaining to the typicality of reiteratively recurrent operators of LM(H), with
M > 1, for one of the two (Polish) topologies SOT and SOT∗. The framework that we use
here is presented in detail in [GMM21b, Chapters 2 and 3], so we will be rather brief in our
presentation and refer the readers to the works [GM22], [GMM21b] or [GMM21a] for more on
typical properties of operators on Hilbert or Banach spaces.
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We recall that the Strong Operator Topology (SOT) on L(H) is defined as follows: any
T0 ∈ L(H) has a SOT-neighbourhood basis consisting of sets of the form

UT0,x1,...,xs,ε := {T ∈ L(H) : ∥(T − T0)xi∥ < ε for i = 1, ..., s},

where x1, ..., xs ∈ H and ε > 0. The Strong∗ Operator Topology (SOT∗) is the “self-adjoint”
version of the SOT: a basis of SOT∗-neighbourhoods of T0 ∈ L(H) is provided by the sets

VT0,x1,...,xs,ε := {T ∈ L(H) : ∥(T − T0)xi∥ < ε and ∥(T − T0)∗xi∥ < ε for i = 1, ..., s},

where x1, ..., xs ∈ H and ε > 0.
It is easily shown that (LM(H), SOT) and (LM(H), SOT∗) are Polish spaces for any M > 0

(see [Ped89, Section 4.6.2]), and hence, a property of operators T ∈ LM(H) will be called typical
if the set of operators fulfilling it is co-meager (i.e. contains a dense Gδ-set), and atypical if its
negation is typical. Following the notation used in [GMM21b] we can write

HC(H) := {T ∈ L(H) hypercyclic};

INV(H) := {T ∈ L(H) admitting a non-trivial invariant measure};

and for each M > 1 the set HCM(H) is defined as HC(H) ∩ LM(H). Following the spirit of
this study we introduce the following notation:

RHC(H) := {T ∈ L(H) reiteratively hypercyclic};

RRec(H) := {T ∈ L(H) reiteratively recurrent};

RRec̸=∅(H) := {T ∈ L(H) : RRec(T ) \ {0} ≠ ∅};

and as it was done previously for the set HC(H), for each M > 1, we will denote the respective
bounded versions of these sets of operators by RHCM(H), RRecM(H) and RRec ̸=∅

M (H).
Let us first recall that a SOT-typical operator in LM(H), for M > 1, has any form of

recurrence one can wish for: by [EM13] a typical T ∈ LM(H) is unitarily similar to MB∞,
where B∞ denotes the backward shift of infinite multiplicity on ℓ2(N, ℓ2(N)), and MB∞ is such
that the linear span of its unimodular eigenvectors is dense, see [EM13, Theorem 5.2].

With respect to the topology SOT∗, it is proved in [GMM21b, Theorem 2.29] that for every
M > 1 the set HCM(H) \ INV(H) is co-meager in the space (HCM(H), SOT∗). In other words,
a SOT∗-typical hypercyclic operator on H admits no non-trivial invariant measure. Combining
now Theorem 2.3 of the present work with [GMM21b, Theorem 2.29] we obtain:

Corollary 7.1. For every M > 1, the set RRec̸=∅
M (H) is meager in (LM(H), SOT∗). In other

words, a SOT∗-typical operator on H has no non-zero reiteratively recurrent point.

Since [BGELMP22, Theorem 2.1] shows that reiterative recurrence plus hypercyclicity equals
reiterative hypercyclicity, we have that RHC(H) = RRec(H) ∩ HC(H). Using Corollary 7.1 we
can improve [GMM21b, Corollary 2.36] in terms of reiterative recurrence:

Corollary 7.2. For every M > 1, the set RRec̸=∅
M (H)∩HCM(H) is meager in (HCM(H), SOT∗).

In particular, the set RHCM(H) is meager in (HCM(H), SOT∗). In other words, a SOT∗-typical
hypercyclic operator on H does not admit any non-zero reiteratively recurrent point, and, in
particular, is not reiteratively hypercyclic.
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8 Open problems

In this section we gather some possibly interesting open questions and a few comments related
to them. We start by Questions 1.6 and 1.8, already stated in Subsection 1.3, which we recall
here with some extra generality:
Question 8.1 (Question 1.8). Let T be a uniformly recurrent operator on a complex Fréchet
space X. Is span(E(T )) a dense set in X? What about the cases where T is an adjoint operator
on a separable dual Banach space or where X is a reflexive Banach space?
Question 8.2 ([BGELMP22, Question 6.3] and Question 1.6). Does there exist an
operator (possibly on a Fréchet space) which is uniformly recurrent but not ∆∗-recurrent?
What about distinguishing uniform recurrence from IP∗-recurrence?

Note that these two questions make sense in the more general context of complex Fréchet
spaces, and in fact both questions are still unsolved for that rather general class of spaces. It
is clear that, in every possible complex context, a positive answer to Question 8.1 implies a
negative one to Question 8.2. Moreover, it would even imply a negative answer for the real
case of Question 8.2: given any uniformly recurrent real linear dynamical system we could
consider its complexification, and by the product-arguments used for Theorem 5.8 we would
get unimodular eigenvectors and hence ∆∗-recurrence; the initial real dynamical system could
possibly not contain the obtained unimodular eigenvectors, but the real and complex parts of
such vectors would clearly be ∆∗-recurrent for the original real system.

It is worth mentioning that uniform and IP∗-recurrence can be completely distinguished
in the context of compact dynamical systems (see for instance the construction from [FL98],
its properties in [CLW06] and then use [Fur81, Theorems 1.15 and 9.12]), so that the question
here is if the linearity avoids that distinction.

The technique used in the proof of Theorem 1.7 (via Gaussian measures) is very different from
the one used in Theorem 1.9 (via the Jacobs-Deleeuw-Glicksberg theorem). Indeed we loose the
contact with measures and the unimodular eigenvectors are obtained from a totally different
construction (see [Kre85, Section 2.4]). It seems to us that a more general “eigenvectors’
constructing machine”, not restricted to the measures or power-bounded assumptions, should
be developed in order to provide a better answer to Question 8.1. What we know for the
moment, leaving apart the power-bounded case which seems very specific, is the following:
Proposition 8.3. Let T ∈ L(H) where H is a complex separable Hilbert space. Given a
T -invariant w-compact subset K of H for which 0 /∈ K, we have

span(E(T )) ∩K ̸= ∅ and in particular E(T ) ̸= ∅.

Proof. We have that T |K : (K,w) −→ (K,w) is a w-compact dynamical system, so it admits a
T |K-invariant probability measure µ on K (see [Fur81, page 62]). Since the norm topology and
the weak topology on H have the same Borel sets, we can extend the measure µ into a Borel
probability measure on the whole space H (still denoted by µ) using the formula

µ(A) := µ(K ∩ A) for every Borel set A ∈ B(H).

Note that µ is T -invariant. We deduce that: µ is non-trivial, since 0 /∈ K; and µ has a finite
second-order moment, since supp(µ) ⊂ K. Lemma 4.4 implies that span(E(T )) ∩ K ̸= ∅ and
in particular E(T ) ̸= ∅.
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Remark 8.4. Let H be a complex separable Hilbert space. Since the set Orb(x, T )w is a
T -invariant w-compact subset of H for any point x ∈ H with bounded T -orbit, the arguments
of the above proposition imply that for any M > 1, a SOT∗-typical operator T ∈ LM(H) has
the property that every bounded orbit of T contains 0 in its weak closure.

Proposition 8.5. Let T be an adjoint operator on a complex separable dual Banach space X.
Let n ∈ N and λ ∈ T. Given a [λT ]n-invariant w∗-compact and convex subset K of H for which
0 /∈ K, we have

E(T ) ∩ span(Orb(x, T )) ̸= ∅ for some x ∈ K,

and in particular E(T ) ̸= ∅.

Proof. By the Schauder fixed-point theorem there is x ∈ K for which the identity [λT ]nx = x
holds. Taking α = λ−n ∈ T we get that (α−T n)x = 0. If we split the polynomial (α−zn) ∈ C[z]
we have

(α− zn) =
n∏︂

i=1
(αi − z),

where the αi are distinct n-th roots of α in T. Considering the vectors

y0 := x and yj := (αj − T )yj−1 =
j∏︂

i=1
(αi − T )x for each 1 ≤ j ≤ n,

we have y0 ̸= 0 since 0 /∈ K, but yn = (α − T n)x = 0. Then for some 0 ≤ k ≤ n − 1 we have
that yk ∈ E(T ) ∩ span(Orb(x, T )). In particular E(T ) ̸= ∅.

Another natural question concerning Theorem 1.7 is the relevance, in assertions (v) to (vii)
of both parts (a) and (b), of the assumption that the vectors under consideration have bounded
orbit. This fact is used in order to ensure that the invariant measures, which by Theorem 2.3
can be constructed from each reiteratively recurrent vector, have a finite second-order moment.
To omit this boundedness assumption (or weak versions of it) seems to require new ideas. We
recall here the following open problem from [GMM21b]:

Question 8.6 ([GMM21b, Question 8.3]). Is there any operator on a complex separable
Hilbert space admitting a non-trivial invariant probability measure but no eigenvalues?

The following product and inverse questions also remain open:

Question 8.7. Let T be an linear operator acting on a Fréchet space X. If T is reiteratively
(U -frequently, frequently, uniformly) recurrent, does T(N) have the same property for N ≥ 2?

Question 8.8 ([BGELMP22, Question 2.14] and Question 6.2). Let T be an invertible
operator on a Fréchet space. If T is reiteratively (U -frequently, frequently, uniformly, IP∗, ∆∗)
recurrent, does T−1 have the same property?

Question 8.7 is also open for usual recurrence, as defined in Subsection 1.1, and it seems to
be a non-trivial questionD. For the IP∗ and ∆∗ cases, the fact that such families have the filter
property (see [BD08]) implies a positive answer.

DThe usual recurrence version of this question has recently been solved in the negative; see Chapter 3.
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As mentioned in [BGELMP22], the set of periodic points Per(T ) of an operator T has the
property that Per(T ) is either equal to X or is a meager set (by the Baire category theorem,
either Per(T ) is of first category or else T n = I for some n ∈ N). The same phenomenon happens
(at least when X is a Banach space) with the set of uniformly recurrent vectors URec(T ) since,
by [BGELMP22, Corollary 3.2], if URec(T ) is co-meager in X then T is a power-bounded
operator and URec(T ) = X. This motivates the following question:

Question 8.9 ([BGELMP22, Question 2.9]). Let T be an operator on a Fréchet space X.
Do we always have that either FRec(T ) = X or FRec(T ) is a meager set?

Even in the dual/reflexive setting we cannot say anything: the frequently recurrent points
obtained in our construction form a “big” set with respect to a certain invariant measure, and
usually this has nothing to do with the “bigness” from the Baire category point of view. In
fact, any (Devaney) chaotic operator T : X −→ X (i.e. hypercyclic with dense periodic vectors)
admits an invariant probability measure µ on X with full support (see [GE06, Corollary 3.6])
and hence µ(FRec(T )) = 1 by Lemma 3.1. However, since T is hypercyclic we have that the
set FRec(T ) is meager, otherwise by [BGELMP22, Theorem 2.7] the set

FHC(T ) = FRec(T ) ∩ HC(T )

would be co-meager contradicting [BR15, Corollary 19].
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Abstract
We study, for a continuous linear operator T on an F-space X, when the direct sum operator T ⊕ T
is recurrent on X ⊕ X. In particular: we establish the analogous notion, for recurrence, to that of
(topological) weak-mixing for transitivity/hypercyclicity, namely quasi-rigidity; and we construct a
recurrent but not quasi-rigid operator on each separable infinite-dimensional Banach space, solving
the T ⊕ T -recurrence problem in the negative way. The quasi-rigidity notion is closely related to the
dense lineability of the set of recurrent vectors, and using similar conditions we study the lineability
and dense lineability properties for the set of F-recurrent vectors, under very weak assumptions on
the Furstenberg family F .
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Chapter 3. Questions in linear recurrence: From the T ⊕ T -problem to lineability

1 Introduction

This paper focuses on some aspects of Linear Dynamics and the general setting is the following:
a (real or complex) linear dynamical system (X,T ) is a pair formed by a continuous linear
operator T : X −→ X acting on a (real or complex) separable infinite-dimensional F-space
(i.e. X is a completely metrizable topological vector space). We will denote by L(X) the set of
continuous linear operators acting on such a space X, and the symbol K will stand for either
the real or complex field, R or C.

Given a linear dynamical system (X,T ), the T -orbit of a vector x ∈ X is the set
Orb(x, T ) := {x, Tx, T 2x, T 3x, ...} = {T nx : n ∈ N0},

where N0 := N ∪ {0}. We say that a vector x ∈ X is hypercyclic for T if Orb(x, T ) is a dense
set in X; and that the operator T is hypercyclic if it admits a hypercyclic vector. The Birkhoff
transitivity theorem (see [BM09a, Theorem 1.2]) shows the equivalence between hypercyclicity
and topological transitivity: a system (X,T ) is called topologically transitive if for each pair of
non-empty open subsets U, V ⊂ X one can find some (and hence infinitely many) n ∈ N0 such
that T n(U) ∩ V ̸= ∅. It follows that the set HC(T ) of hypercyclic vectors for T is a dense Gδ

subset of X as soon as T is hypercyclic.
Hypercyclicity has been the main and most studied notion in Linear Dynamics. For instance,

the following long-standing problem, which we call the T ⊕T -hypercyclicity problem, was posed
in 1992 by D. Herrero [Her91]:
Question 1.1 (The T ⊕ T -hypercyclicity problem). Let T be a hypercyclic operator on
the F-space X. Is the operator T ⊕ T acting on the direct sum X ⊕X hypercyclic?

Recall that an operator T is said to be (topologically) weakly-mixing if and only if T ⊕ T
is transitive, so the question above asks if there exists any transitive but not weakly-mixing
operator. The active research on hypercyclicity yielded many equivalent reformulations of
Question 1.1, and the approach which will interest us most is the one taken in 1999 by Bès and
the third author of this paper. Here is the main result they obtained in [BP99]:

– A continuous linear operator T ∈ L(X) is (topologically) weakly-mixing if and only if it
satisfies the so-called Hypercyclicity Criterion.

In other words, T ⊕ T ∈ L(X ⊕X) is a hypercyclic operator if and only if the following holds:
there exist two dense subsets X0, Y0 ⊂ X, an increasing sequence of positive integers (nk)k∈N,
and a family of (not necessarily continuous) mappings Snk

: Y0 −→ X such that

(i) T nkx → 0 for each x ∈ X0;

(ii) Snk
y → 0 for each y ∈ Y0;

(iii) T nkSnk
y → y for each y ∈ Y0.

Question 1.1 was finally answered negatively in 2006 by De La Rosa and Read, when they
exhibited a hypercyclic operator on a particular Banach space whose direct sum with itself is
not hypercyclic (see [DLRR09]). The techniques used there were later refined by Bayart and
Matheron in order to construct hypercyclic but not weakly-mixing operators on each Banach
space admitting a normalized unconditional basis whose associated forward shift is continuous,
as for instance on the classical c0(N) and ℓp(N) spaces, 1 ≤ p < ∞ (see [BM07, BM09b]).
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1. Introduction

The aim of this paper is to study the previous problem, and to develop the corresponding
theory, for the notion of recurrence: we say that a vector x ∈ X is recurrent for T if x belongs
to the closure of its forward orbit Orb(Tx, T ); and that the operator T is recurrent if its set
Rec(T ) of recurrent vectors is dense in X. Note that, in order to say that an operator T has
a recurrent behaviour, it is not enough to assume that Rec(T ) ̸= ∅ since the zero-vector is
recurrent for every linear map.

It is shown in [CMP14, Proposition 2.1] that the notion of recurrence coincides with that of
topological recurrence, i.e. the property that for each non-empty open subset U ⊂ X one can
find some (and hence infinitely many) n ∈ N such that T n(U) ∩ U ̸= ∅. In addition, and as in
the hypercyclicity case, when T is recurrent its set Rec(T ) of recurrent vectors is a dense Gδ

subset of the underlying F-space X.
Recurrence is one of the oldest and most studied concepts in the Topological Dynamics area

of knowledge (see [Fur81, Ban99, KLOY17]), but in Linear Dynamics its systematic study
began with the 2014 paper of Costakis, Manoussos and Parissis [CMP14]. Many questions
in linear recurrence remain open and here we will be particularly interested in the so-called
T ⊕ T -recurrence problem, which was stated in [CMP14, Question 9.6]:

Question 1.2 (The T ⊕ T -recurrence problem). Let T be a recurrent operator on the
F-space X. Is the operator T ⊕ T acting on the direct sum X ⊕X recurrent?

This question has been recently restated as an open problem in [CKV21] for C0-semigroups of
operators. In the first part of this work we identify the systems (X,T ) for which the recurrence
property of T implies that of T ⊕ T . This characterization is given in terms of quasi-rigidity
(see Definition 2.2), which will be for recurrence the analogous property to that of weak-mixing
for hypercyclicity/transitivity (see Theorem 2.5). Then we answer Question 1.2 negatively, by
constructing some recurrent but not quasi-rigid operators (see Section 3).

The second part of this paper is dedicated to the study of some properties related to the
notion of lineability: recall that a subset Y of an F-space X is called (dense) lineable if Y ∪ {0}
contains a (dense) infinite-dimensional vector space. A well-known result, due to Herrero and
Bourdon, states that the set HC(T ) is always dense lineable for every hypercyclic operator T
(see [GEP11, Theorem 2.55]); moreover, one easily observes that if T is a quasi-rigid operator,
then Rec(T ) is also dense lineable (see Proposition 2.7). Here we generalize these results to
a rather general class of Furstenberg families F : first we show that it makes sense to study
quasi-rigidity from the F -recurrence point of view (see Proposition 4.5); and then we check
that, for an F -recurrent operator T , the set FRec(T ) of F -recurrent vectors is always lineable
and usually even dense lineable (see Theorems 5.5 and 5.8). As a consequence we obtain the
Herrero-Bourdon theorem for F -hypercyclicity (see Subsection 5.3).

The paper is organized as follows. Section 2 is devoted to define and study quasi-rigidity,
which is the analogous property, for recurrence, to that of weak-mixing for hypercyclicity. In
Section 3 we construct recurrent but not quasi-rigid operators, answering Question 1.2 in a
negative way and solving the T⊕T -recurrence problem. We recall the definition of F -recurrence
in Section 4, showing that quasi-rigidity is a particular case of such a concept, and studying both
the weakest and strongest possible F -recurrence notions. The lineability and dense lineability
properties, for the set FRec(T ) of F -recurrent vectors, are studied in Section 5. We finally
gather, in Section 6, some left open problems.
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We refer the reader to the textbooks [BM09a, GEP11] for any unexplained but standard
notion about hypercyclicity, or more generally, about Linear Dynamics. Along the paper we
use the environment “Question” to state the different problems that we solve, and we use
“Problem(s)” to state the left open problems.

2 Quasi-rigid dynamical systems

In this section we introduce and study the concept of quasi-rigidity, which is naturally defined in
the broader framework of Topological Dynamics (i.e. without assuming linearity): a pair (X,T )
is called a dynamical system if T is a continuous self-map on a Hausdorff topological space X.
An important class of dynamical systems, which we will repeatedly use, is the family of Polish
systems: a pair (X,T ) is said to be a Polish dynamical system whenever T is a continuous
self-map of a separable completely metrizable space X.

Definition 2.1. For a dynamical system (X,T ) and N ∈ N we denote by T(N) : XN −→ XN

the N-fold direct product of T with itself, i.e. (XN , T(N)) is the dynamical system

T(N) := T × · · · × T⏞ ⏟⏟ ⏞
N

: X × · · · ×X⏞ ⏟⏟ ⏞
N

−→ X × · · · ×X⏞ ⏟⏟ ⏞
N

.

where XN := X × · · · ×X⏞ ⏟⏟ ⏞
N

is the N-fold product of X and T(N)(x1, ..., xN) := (Tx1, ..., TxN).

If (X,T ) is linear, then (XN , T(N)) will refer to the N-fold direct sum linear dynamical system

T(N) := T ⊕ · · · ⊕ T⏞ ⏟⏟ ⏞
N

: X ⊕ · · · ⊕X⏞ ⏟⏟ ⏞
N

−→ X ⊕ · · · ⊕X⏞ ⏟⏟ ⏞
N

,

and in this case XN := X ⊕ · · · ⊕X⏞ ⏟⏟ ⏞
N

is the N-fold direct sum of X.

2.1 Quasi-rigidity: definition and equivalences

By a well-known theorem of Furstenberg, once a dynamical system (X,T ) is weakly-mixing
(that is, once T × T is topologically transitive) then so is every N -fold direct product system
(XN , T(N)); see [GEP11, Theorem 1.51]. Hence, in order to completely answer Question 1.2
we should first study the recurrent dynamical systems (X,T ) for which every N -fold direct
product is again recurrent. A first attempt would be to rely on the notion of rigidity:

– A dynamical system (X,T ) is said to be rigid if there exists an increasing sequence of natural
numbers (nk)k∈N such that T nkx → x for every x ∈ X.

Rigidity has been studied in different contexts such as measure theoretic recurrence [FW77],
dynamical systems on topological spaces [GM89] and also for linear systems [EG11, CMP14].
This is a really strong form of recurrence, as it implies that XN = Rec(T(N)) for all N ∈ N,
so that it is not the exact property we are looking for. Nonetheless, the concept of rigidity
motivates the definition of the following (as far as we know) new notion:
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Definition 2.2 (Quasi-rigidity). Let (X,T ) be a dynamical system and let (nk)k∈N be a
strictly increasing sequence of positive integers. We say that T is:

– quasi-rigid with respect to the sequence (nk)k∈N, if there exists a dense subset Y of X such
that T nkx → x, as k → ∞, for every x ∈ Y .

– topologically quasi-rigid with respect to (nk)k∈N, if for every non-empty open subset U ⊂ X
there exists some kU ∈ N such that T nk(U) ∩ U ̸= ∅ for every k ≥ kU .

Our aim in this section is proving that, given a dynamical system (X,T ), the previous
notions characterize the recurrent behaviour of every N -fold direct product system (XN , T(N))
under very weak assumptions (dynamically speaking) on the underlying space X. Let us start
by showing that topological quasi-rigidity is for recurrence the analogous property to that of
weak-mixing for transitivity, when the underlying space X is second-countable:

Lemma 2.3. Let (X,T ) be a dynamical system on a second-countable space X. Then the
following statements are equivalent:

(i) T is topologically quasi-rigid;

(ii) T(N) is topologically recurrent for every N ∈ N.

Proof. (i) ⇒ (ii): suppose that T is topologically quasi-rigid with respect to (nk)k∈N, let N ∈ N
and consider any finite sequence of non-empty open sets U1, ..., UN ⊂ X. Using now the
topological quasi-rigidity assumption we can find k0 ∈ N such that

T nk(Uj) ∩ Uj ̸= ∅ for every 1 ≤ j ≤ N and all k ≥ k0.

Then, for the open set U = U1 × · · · ×UN ⊂ XN we have that T nk

(N)(U) ∩U ̸= ∅ for all k ≥ k0,
so (XN , T(N)) is topologically recurrent.

(ii) ⇒ (i): assume that T(N) is topologically recurrent for every N ∈ N and let (Us)s∈N be
a countable base of (non-empty) open sets for X. We can construct recursively an increasing
sequence of positive integers (nk)k∈N such that T nk(Us) ∩ Us ̸= ∅ for every s, k ∈ N with
1 ≤ s ≤ k: given any k ∈ N, the set U := U1 × · · · × Uk is a non-empty open subset of Xk and
by the topological recurrence of the map T(k) we can pick nk ∈ N sufficiently large with

T nk

(k)(U) ∩ U ̸= ∅ and hence T nk(Us) ∩ Us ̸= ∅ for all 1 ≤ s ≤ k.

It is easy to check that T is topologically quasi-rigid with respect to (nk)k∈N.

As one would expect, if the underlying space is completely metrizable, we can identify the
“pointwise” quasi-rigidity notion with that of topological quasi-rigidity:

Proposition 2.4. Let (X,T ) be a Polish dynamical system. The following are equivalent:

(i) T is quasi-rigid;

(ii) T is topologically quasi-rigid.
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Proof. The implication (i) ⇒ (ii) is straightforward: assume that there is a dense subset Y ⊂ X
and an increasing sequence (nk)k∈N such that T nkx → x for every x ∈ Y . For each non-empty
open subset U ⊂ X we can select x ∈ U ∩ Y , and then

T nkx ∈ T nk(U) ∩ U for every sufficiently large k ∈ N.

Hence T is topologically quasi-rigid with respect to (nk)k∈N. Let us prove (ii) ⇒ (i): assume
that d(·, ·) is a metric defining the complete topology of X, let (Us)s∈N be a countable base of
open sets for X and set Vs,s := Us for each s ∈ N. By (ii) we can find n1 ∈ N such that

T n1(U1) ∩ U1 = T n1(V1,1) ∩ V1,1 ̸= ∅.

The continuity of T ensures the existence of a non-empty open subset V1,2 ⊂ X of diameter
(with respect to d) less than 1

22 for which V1,2 ⊂ V1,1 and T n1
(︂
V1,2

)︂
⊂ V1,1. Suppose now that

for some k ∈ N we have already constructed:

– finite sequences (Vs,j)s≤j≤k of open subsets of X, for each 1 ≤ s ≤ k − 1;

– and a finite increasing sequence of positive integers (nj)1≤j≤k−1;

with the properties that Vs,j has d-diameter less than 1
2j when s < j, and also that

Vs,j ⊂ Vs,j−1 and T nj−1
(︂
Vs,j

)︂
⊂ Vs,j−1 for all 1 ≤ s < j ≤ k.

Then, considering the open subsets V1,k, V2,k, ..., Vk,k ⊂ X and using again (ii) we can select a
positive integer nk ∈ N with nk > nk−1 for which T nk(Vs,k) ∩ Vs,k ̸= ∅ for all 1 ≤ s ≤ k. Again
the continuity ot T ensures the existence, for each 1 ≤ s ≤ k, of a non-empty open subset
Vs,k+1 ⊂ X of d-diameter less than 1

2k+1 and such that

Vs,k+1 ⊂ Vs,k and T nk

(︂
Vs,k+1

)︂
⊂ Vs,k for all 1 ≤ s ≤ k.

A recursive argument gives us an increasing sequence of positive integers (nk)k∈N and, for
each s ∈ N, a sequence of non-empty open sets (Vs,k)∞

k=s such that each set Vs,k has d-diameter
less than 1

2k when s < k, but also satisfying

Vs,k+1 ⊂ Vs,k and T nk

(︂
Vs,k+1

)︂
⊂ Vs,k for all s, k ∈ N with s ≤ k.

By the Cantor intersection theorem, for each s ∈ N there is a unique vector ys ∈ X such that

{ys} =
⋂︂
k≥s

Vs,k ⊂ Vs,s = Us.

We deduce that Y := {ys : s ∈ N} is a dense subset of X. Since for each s ∈ N we have that
T nkys ∈ T nk

(︂
Vs,k+1

)︂
⊂ Vs,k for all k > s, we get that

lim sup
k→∞

d(T nkys, ys) ≤ lim sup
k→∞

(diamd(Vs,k)) ≤ lim sup
k→∞

1
2k

= 0,

and hence T is quasi-rigid with respect to the sequence (nk)k∈N.
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The proof of the implication (i) ⇒ (ii) in Proposition 2.4 shows that every quasi-rigid map
is topologically quasi-rigid even if X is not a metrizable space. The converse fails in general
(consider for instance [GEP11, Example 12.9]). Combining the previous results we get:

Theorem 2.5. Let (X,T ) be a Polish dynamical system. The following are equivalent:

(i) T is quasi-rigid;

(ii) T is topologically quasi-rigid;

(iii) T(N) is topologically recurrent for every N ∈ N;

(iv) T(N) is recurrent for every N ∈ N.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) (and also (i) ⇒ (iv) ⇒ (iii)) are trivial even if the
space X is not second-countable neither complete. When X is second-countable we get the
equivalence (ii) ⇔ (iii) by Lemma 2.3. If we just assume the completeness of X, then we
have the equivalence between the last two statements (iii) ⇔ (iv) by [CMP14, Proposition 2.1].
Finally, using the Polish hypothesis we get the equivalence (i) ⇔ (ii) by Proposition 2.4.

Remark 2.6. Even though we have worked in the general setting of Polish dynamical systems,
it is worth mentioning that Theorem 2.5 holds true for every:

– compact dynamical system, i.e. when T is a continuous self-map of a compact metrizable
space X (many of references just study this class of systems, see [Fur81, Ban99, KLOY17]);

– continuous linear operator T acting on any separable F-space X. In other words, the previous
result holds true for linear dynamical systems as defined in the Introduction.

In the linear setting we have got the following relations between the already exposed concepts:

satisfying the HC Theorem 2.5−−−−−−−→ quasi-rigidity⏐⏐⏐↓ ⏐⏐⏐↓
hypercyclicity already known−−−−−−−−→ recurrence

i.e. the quasi-rigidity notion is for recurrence, the analogous property to that of satisfying the
Hypercyclicity Criterion (and hence to that of weak-mixing) for hypercyclicity; see [BP99].

2.2 Quasi-rigid operators

It is now time to discuss how the quasi-rigidity notion influences the structure of the set of
recurrent vectors for a linear dynamical system (X,T ). We start by showing that quasi-rigidity
implies the dense lineability of the set of recurrent vectors:

Proposition 2.7. If T : X −→ X is a quasi-rigid operator, then Rec(T ) is dense lineable.

Proof. Assume that Y ⊂ X is a dense subset such that there exists a sequence (nk)k∈N of
integers with T nkx → x for all x ∈ Y . Then any z ∈ Z := span(Y ) satisfies that T nkz → z, so
Z ⊂ X is an infinite-dimensional dense vector space contained in Rec(T ).
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Remark 2.8. Let T : X −→ X be a quasi-rigid operator with respect to a sequence (nk)k∈N
and consider Y := {x ∈ X : T nkx → x as k → ∞}. This is a dense subset of X which can be
either of first or second Baire category, depending on the operator T :

(a) If T is a rigid operator, then Y = X. This is the case of the identity operator, but there
also exist examples of rigid systems which are even (Devaney) chaotic (see [EG11]).

(b) If X is a Banach space and Y is a second category set, then supk∈N ∥T nk∥ < ∞ by the
Banach-Steinhaus theorem. Consider the operator T := λB with |λ| > 1, where B is the
(unilateral) backward shift on c0(N) or any ℓp(N) (1 ≤ p < ∞). This is a weakly-mixing
and hence quasi-rigid operator, but the set Y as defined before has to be of first category
since x = ( 1

n2 )n∈N ∈ X has the property that ∥T nx∥ → ∞ as n → ∞.

Now we are going to give some (usually fulfilled) sufficient conditions for a dynamical system
to be quasi-rigid. Recall that a vector x ∈ X is called cyclic for an operator T : X −→ X if

span(Orb(x, T )) = span{T nx : n ∈ N0} = {p(T )x : p polynomial} ,

is a dense set in X; and an operator T is called cyclic as soon as it admits a cyclic vector.
Moreover, a point x ∈ X is called periodic for a map T whenever T px = x for some positive
integer p ∈ N. See [BM09a, GEP11] for more on cyclicity and periodicity.

Proposition 2.9. Let (X,T ) be a dynamical system for which any of the following holds:

(a) the set Per(T ) of periodic points for T is dense in X;

(b) T admits a recurrent vector x ∈ Rec(T ) for which the following set is dense

{Sx : ST = TS, S : X −→ X continuous mapping};

then T is quasi-rigid. In particular, a continuous linear operator T acting on a Hausdorff
topological vector space X is quasi-rigid whenever any of the following holds:

– T has dense periodic vectors;

– T admits a recurrent and cyclic vector;

– T admits a hypercyclic vector.

Proof. To check (a) consider Y = Per(T ) and (nk)k∈N = (k!)k∈N. For (b) consider

Y = {Sx : ST = TS, S : X −→ X continuous mapping}.

Indeed, since x is recurrent there exists (nk)k∈N such that T nkx → x, but then, given any point
y = Sx ∈ Y we get that T nk(Sx) = S(T nkx) → Sx. Finally, recall that every recurrent and
cyclic (and hence every hypercyclic) vector fulfills condition (b).

Proposition 2.9 together with [CMP14, Corollary 9.2] show that recurrence plus cyclicity
imply quasi-rigidity when X is a complex Banach space. This extends to (real and complex)
linear dynamical systems as defined in the Introduction via the following lemma, in which the
concept of complexification is used (see Remark 5.2). We will write T = {z ∈ C : |z| = 1}.
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Lemma 2.10. Let T : X −→ X be a topologically recurrent continuous linear operator acting
on a (real or complex) Hausdorff topological vector space X. The following statements hold:

(a) For every (real or complex) number λ ∈ K \ T the operator (T − λ) has dense range.

(b) If X is a real space, then for every λ ∈ C \ T the complexified operator ( ˜︁T − λ), acting on
the complexification ˜︂X of X, has dense range.

As a consequence, for any (real or complex) polynomial p without unimodular roots, the operator
p(T ) has dense range on the (real or complex) space X.

The proof of this lemma is based on [GEP11, Lemma 12.13], which is a well-known result of
Wengenroth for topologically transitive operators acting on Hausdorff topological vector spaces.
Here we will just show statement (a), since (b) follows exactly as in [GEP11, Exercise 12.2.6]
(Hint: whenX is a real space define the complexification ˜︁T : ˜︂X −→ ˜︂X as it is done in Remark 5.2
for operators on F-spaces, and use the fact that for each non-empty open subset U ⊂ X there
are infinitely many natural numbers n ∈ N fulfilling that ˜︁T n(U + iU) ∩ (U + iU) ̸= ∅).

Proof of Lemma 2.10. Given λ ∈ K \ T let E := (T − λ)(X), which is a closed subspace of
X, and suppose that E ̸= X. The quotient space X/E is then a (real or complex) Hausdorff
topological vector space (since E is closed). If q : X −→ X/E is the quotient map we have
that q((T −λ)x) = 0 and hence q(Tx) = λq(x) for every x ∈ X. The operator S on X/E given
by S[x] = λ[x] is easily seen to be topologically recurrent since so is T .

However, if |λ| < 1 we can choose [x] ∈ X/E \ {0} and a balanced 0-neighbourhood W
such that [x] /∈ W . Since λn[x] → 0 and λW ⊂ W there exists a neighbourhood U of [x]
and a natural number N ∈ N for which U ∩ W = ∅ and λnU ⊂ W for every n ≥ N . Hence
Sn(U) ∩ U = ∅ for all n ≥ N so S is not topologically recurrent, which is a contradiction.
If |λ| > 1 we can consider the map S−1 : X/E −→ X/E for which S−1[x] = λ−1[x]. By the
previous argument S−1 is not topologically recurrent, but then S is not topologically recurrent
(see [GLM23, Section 6]), which is again a contradiction.

Let now p be any (real or complex) polynomial without unimodular roots: if X is a complex
space then p(T ) has dense range since, splitting the polynomial, p(T ) can be written as a
composition of dense range operators by (a); and if X is a real space then p( ˜︁T ) also has dense
range in ˜︂X via the same argument as above but using (b). Finally, if p has real coefficients,
then p( ˜︁T ) = p(T ) + ip(T ) and p(T ) has dense range in the real space X.

The proof of [CMP14, Corollary 9.2] is highly based on the following result of D. Herrero:

– Given an operator T on a complex Banach space X, if σp(T ∗) has empty interior then the
set of cyclic vectors for T is dense, and hence it is a dense Gδ-set (see [Her79]).

By using Lemma 2.10 we obtain this density result, for recurrent operators, in the more general
setting of operators acting on arbitrary F-spaces:

Corollary 2.11 (Extension of [CMP14, Corollary 9.2]). Let (X,T ) be a (real or complex)
linear dynamical system. If T is recurrent and cyclic then the set of cyclic vectors for T is a
dense Gδ-set. In particular, if T is recurrent and cyclic, then it is quasi-rigid.
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Proof. The set of cyclic vectors is always a Gδ-set. To check its density let x ∈ X be a
cyclic vector for T and pick a non-empty open set U ⊂ X. Then there is a (real or complex)
polynomial p such that p(T )x ∈ U . Splitting p we have that:

p(T ) =
N∏︂

j=1
(T − λj) for some (λj)N

j=1 ⊂ C.

Choose a small perturbation (µj)N
j=1 ⊂ C \ T of (λj)N

j=1 ⊂ C with the property that the
polynomial

ˆ︁p(T ) :=
N∏︂

j=1
(T − µj) is still such that ˆ︁p(T )x ∈ U.

Note that if p has real coefficients, then (µi)N
i=1 ⊂ C \T can be chosen such that ˆ︁p has still real

coefficients. Finally, ˆ︁p(T )x is a cyclic vector for T since

ˆ︁p(T ) ({q(T )x : q polynomial}) = {q(T )(ˆ︁p(T )x) : q polynomial}

is a dense set by Lemma 2.10. Then Rec(T ) and the set of cyclic vectors for T are both residual,
so T admits a recurrent and cyclic vector. Proposition 2.9 ends the proof.

3 Existence of recurrent but not quasi-rigid operators

After having studied in Section 2 the dynamical systems (X,T ) for which all their N -fold direct
sums (XN , T(N)) are recurrent, we are now ready to answer negatively Question 1.2 showing
that there exist recurrent but not quasi-rigid operators. If for the moment we continue working
in the (not necessarily linear) dynamical systems setting, the following are natural questions in
view of the theory already developed here:

Question 3.1. Let (X,T ) be a recurrent dynamical system:

(a) Is (X ×X,T × T ) again a recurrent dynamical system?

(b) Assume that (X ×X,T ×X) is recurrent. Is then (X,T ) quasi-rigid?

If we change the “recurrence” assumption into that of “topological transitivity” the respective
answers are:

(a) No, and in particular:

– for non-linear systems consider any irrational rotation, see [GEP11, Example 1.43];
– for linear maps we already mentioned the references [DLRR09, BM07, BM09b].

(b) Yes, in both linear and non-linear cases (XN , T(N)) is transitive for every N ∈ N if and
only if T × T is transitive (see for instance [GEP11, Theorem 1.51]).
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However, the answer to both questions is no in the recurrence setting, and indeed, it is
shown in [Ban99, Lemma 9 and Example 4] that for each N ∈ N there exists a non-linear
dynamical system f : X −→ X on a compact metric space X for which

(XN , f(N)) is recurrent while (XN+1, f(N+1)) is not recurrent.

This construction is highly non-linear since each of these compact spaces X is the disjoint
union of N + 1 sub-shifts of the well-known shift on two symbols. It turns out that the answer
to Question 3.1 in the framework of Linear Dynamics is also negative. Let us state the main
result of this section:

Theorem 3.2. A Let X be any (real or complex) separable infinite-dimensional Banach space.
For each N ∈ N there exists an operator T ∈ L(X) such that

T(N) : XN −→ XN is recurrent, and even Rec(T(N)) = XN ,

but for which the operator T(N+1) : XN+1 −→ XN+1 is not recurrent any more.

Considering N = 1 we obtain examples of recurrent operators T ∈ L(X) for which T ⊕ T is
not recurrent. Thus we get a negative answer to the T ⊕ T -recurrence problem, i.e. we answer
Question 1.2 and hence [CMP14, Question 9.6] in the negative.

Our proof of Theorem 3.2 relies heavily on a construction of Augé in [Aug12] of operators
T on (infinite-dimensional, separable) Banach spaces X with wild dynamics: the two sets

AT =
{︃
x ∈ X : lim

n→∞
∥T nx∥ = ∞

}︃
and BT =

{︃
x ∈ X : lim inf

n→∞
∥T nx− x∥ = 0

}︃
have non-empty interior and form a partition of X. Since BT = Rec(T ), these operators have
plenty (but not a dense set) of recurrent vectors. The remainder of this section is devoted to
prove the complex version of Theorem 3.2 by modifying the construction of [Aug12]. The real
case follows in a really similar way by using the same arguments as in [Aug12, Section 3.2].

3.1 Necessary prerequisites

Assume that X is a complex separable infinite-dimensional Banach space. We will denote by
X∗ its topological dual space and by BX∗ the unit ball of X∗. Moreover, given (x, x∗) ∈ X ×X∗

we will denote by ⟨x∗, x⟩ = x∗(x) the dual evaluation. As in [Aug12], our operator will be built
using a bounded biorthogonal system of X. The following is a really well-known and useful
result (see [LT77, Vol I, Section 1.f] or [Oc75]):

– Given a separable Banach space X one can find (en, e
∗
n)n∈N ⊂ X ×X∗ such that:

• span{en : n ∈ N} is dense in X;
• ⟨e∗

n, em⟩ = δn,m where δn,m = 0 if n ̸= m and 1 if n = m;
• for each n ∈ N we have that ∥en∥ = 1, and K := supn∈N ∥e∗

n∥ < ∞.

ASee Section 2.3 of the General discussion of the results for a slight improvement in terms of AP-recurrence.
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Once we have fixed a sequence (en, e
∗
n)n∈N ⊂ X ×X∗ with the previous properties we set

c00 := span{en : n ∈ N}.

Given x ∈ X we will write xk := ⟨e∗
k, x⟩ for each k ∈ N, and we will repeatedly use that

∥xkek∥ ≤ K∥x∥ for each k ∈ N, (3.1)

since
∥x∥ := sup

x∗∈BX∗
|⟨x∗, x⟩| ≥ |⟨e∗

k, x⟩|
∥e∗

k∥
= |xk|

∥e∗
k∥

= ∥xkek∥
∥e∗

k∥
≥ ∥xkek∥

K
,

for each k ∈ N, and hence that

∥x− y∥ < ε implies |xk − yk| < Kε for all x, y ∈ X and k ∈ N. (3.2)

Remark 3.3. If (en)n∈N is not a Schauder basis of X, the above inequalities are still true but
a vector x ∈ X cannot in general be written as a convergent series x = ∑︁

k∈N xkek. However,
for the vectors in c00 = span{en : n ∈ N} this equality will be true: for each x ∈ c00 there is
some n ∈ N such that

x =
n∑︂

k=1
⟨e∗

k, x⟩ek =
n∑︂

k=1
xkek.

From now on we fix a natural number N ∈ N. We are going to construct

– a projection P from X into itself;

– a sequence of functionals (w∗
k)k≥N+2 ⊂ X∗;

– two sequences (mk)k∈N ∈ NN and (λk)k∈N ∈ TN;

– and two operators R and T on X;

in such a way that T(N) is recurrent while T(N+1) is not.

3.2 The projection P and the sequences (w∗
k)k≥N+2, (mk)k∈N and (λk)k∈N

Denote by P : X −→ span{e1, e2, ..., eN+1} the projection of X onto the linear span of the
first N + 1 basis vectors defined by

Px :=
N+1∑︂
j=1

⟨e∗
j , x⟩ej for every x ∈ X.

Note that P is continuous. In fact ∥P∥ ≤ (N + 1)K. Let E := span{e∗
1, e

∗
2, ..., e

∗
N+1} endowed

with the norm ∥·∥∗ of X∗, and consider on E the equivalent norm ∥·∥∞ defined in the following
way for each α1, α2, ..., αN+1 ∈ C,⃦⃦⃦⃦

⃦⃦N+1∑︂
j=1

αje
∗
j

⃦⃦⃦⃦
⃦⃦

∞

:= max{|α1|, |α2|, ..., |αN+1|}.

This makes sense because the vectors e∗
1, ..., e

∗
N+1 are linearly independent. There exist constants

M ≥ m > 0 such that m∥w∗∥∞ ≤ ∥w∗∥∗ ≤ M∥w∗∥∞ for every w∗ ∈ E.
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Moreover, since the unit sphere SE∞ := {w∗ ∈ E : ∥w∗∥∞ = 1} is a compact metrizable
space there exists a sequence (w∗

k)k≥N+2 ⊂ SE∞ , which is dense in SE∞ . Note that:

Fact 3.2.1. For each w∗ ∈ SE∞ there exists an index i ∈ {1, 2, ..., N+1} such that the following
holds: for every ε > 0 and every x ∈ X with ∥x− ei∥ < ε we have that

|⟨w∗, Px⟩| > 1 − (N + 1)Kε.

Proof. Since w∗ ∈ SE∞ there are coefficients (αj)N+1
j=1 ∈ CN+1 such that w∗ = ∑︁N+1

j=1 αje
∗
j , and

there exists at least one index i ∈ {1, 2, ..., N + 1} with |αi| = 1. Given ε > 0 and x ∈ X
with ∥x − ei∥ < ε, the inequality (3.2) implies that |xi − 1| < Kε while |xj| < Kε for every
1 ≤ j ≤ N + 1 with j ̸= i. Since 0 ≤ |αj| ≤ 1 for every 1 ≤ j ≤ N + 1 we get that

|⟨w∗, Px⟩| =
⃓⃓⃓⃓
⃓⃓N+1∑︂

j=1
αjxj

⃓⃓⃓⃓
⃓⃓ ≥ |xi| −

N+1∑︂
j=1,j ̸=i

|αj| |xj| > (1 −Kε) −NKε = 1 − (N + 1)Kε.

Let (mk)k∈N ∈ NN be a sequence of positive integers with the following properties:

(a) mk | mk+1 for each k ≥ 1;

(b) m1 = m2 = · · · = mN+1 = 1;

and starting from k = N + 2, the sequence (mk)k≥N+2 grows fast enough to satisfy:

(c) lim
j→∞

(︂
mj ·∑︁∞

k=j+1
1

mk

)︂
= 0.

The sequence (λk)k∈N ∈ TN is then defined by setting λk := e
2πi 1

mk for each k ∈ N. Using the
inequality |eiθ −1| ≤ |θ|, which is true for every θ ∈ R, and also that λ1 = λ2 = · · · = λN+1 = 1,
we deduce the inequality

∞∑︂
k=1

|λk − 1| ≤ 2π
∞∑︂

k=N+2

1
mk

< ∞, (3.3)

since condition (c) on the sequence (mk)k∈N implies that the series ∑︁∞
k=1

1
mk

is convergent.

3.3 The operators R and T

For each x ∈ c00 = span{en : n ∈ N}, which we write as x = ∑︁n
k=1 xkek, we set

Rx :=
n∑︂

k=1
λkxkek.

Note that for each x = ∑︁n
k=1 xkek ∈ c00, and using (3.1), we have that:

∥Rx∥ ≤ ∥Rx− x∥ + ∥x∥ ≤
n∑︂

k=1
|λk − 1| · ∥xkek∥ + ∥x∥ ≤

(︄
K

∞∑︂
k=1

|λk − 1| + 1
)︄

∥x∥.

By (3.3) the map R extends to a bounded operator on X still denoted by R.
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We now define the operator T on X by setting

Tx := Rx +
∞∑︂

k=N+2

1
mk−1

⟨w∗
k, Px⟩ek for every x ∈ X. (3.4)

The second sum in the expression (3.4) defines a bounded operator by the assumption (c) on the
sequence (mk)k∈N, the fact that ∥P∥ ≤ (N +1)K and also that ∥w∗

k∥∗ ≤ M for each k ≥ N +2.
Indeed,⃦⃦⃦⃦

⃦⃦ ∞∑︂
k=N+2

1
mk−1

⟨w∗
k, Px⟩ek

⃦⃦⃦⃦
⃦⃦ ≤

∞∑︂
k=N+2

∥w∗
k∥∗ · ∥Px∥
mk−1

≤

⎛⎝M(N + 1)K
∞∑︂

k=N+2

1
mk−1

⎞⎠ ∥x∥,

for every x ∈ X, where the last parenthesis has finite value by assumption (c) on (mk)k∈N. It
follows that T is a continuous operator on X. Let us now compute its n-th power:

Fact 3.3.1 (Modification of [Aug12, Lemma 3.5]). For every x ∈ X and n ≥ 1 we have
that

T nx = Rnx +
∞∑︂

k=N+2

λk,n

mk−1
⟨w∗

k, Px⟩ek,

where λk,n := ∑︁n−1
l=0 λ

l
k = λn

k −1
λk−1 for each k ≥ N + 2.

Proof. Suppose that the formula holds for some n ≥ 1. Then

T n+1x = TRnx +
∞∑︂

k=N+2

λk,n

mk−1
⟨w∗

k, Px⟩Tek = Rn+1x +
∞∑︂

k=N+2

1
mk−1

⟨w∗
k, PR

nx⟩ek

+
∞∑︂

k=N+2

λk,n

mk−1
⟨w∗

k, Px⟩

⎛⎝Rek +
∞∑︂

j=N+2

1
mj−1

⟨w∗
j , P ek⟩ej

⎞⎠

= Rn+1x +
∞∑︂

k=N+2

1 + λk,n · λk

mk−1
⟨w∗

k, Px⟩ek = Rn+1x +
∞∑︂

k=N+2

λk,n+1

mk−1
⟨w∗

k, Px⟩ek.

In order to obtain these equalities we have used the fact that PRnx = Px, which follows from
the equality λ1 = λ2 = · · · = λN+1 = 1, and also the fact that Pek = 0 for k ≥ N + 2.

We will also need the following properties regarding the numbers λk,n:

Fact 3.3.2 (Modification of [Aug12, Fact 3.6]). Let n ≥ 1. Then:

(i) |λk,n| ≤ n for all k ≥ N + 2;

(ii) λk,mn = 0 whenever n ≥ k ≥ N + 2;

(iii) |λk,n| ≥ 2
π
n > mk−1

π
whenever k = min{j ≥ N + 2 : 2n ≤ mj}.
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3. Existence of recurrent but not quasi-rigid operators

Proof. Each λk,n, for k ≥ N + 2, is the geometric sum

λk,n = ∑︁n−1
l=0 λ

l
k = λn

k −1
λk−1 with λk = e

2πi 1
mk ;

then (i) follows from the triangle inequality; (ii) since n ≥ k implies that λmn
k = e

2πi mn
mk = 1 by

condition (a) on the sequence (mk)k∈N; and (iii) because

|λk,n| =
⃓⃓⃓⃓
⃓⃓e2πi n

mk − 1
e

2πi 1
mk − 1

⃓⃓⃓⃓
⃓⃓ =

⃓⃓⃓
sin(π n

mk
)
⃓⃓⃓

⃓⃓⃓
sin(π 1

mk
)
⃓⃓⃓ ≥ 2

π
n >

mk−1

π
,

using that sin(θ) ≥ 2
π
θ for each θ ∈ [0, π

2 ] and that | sin(θ)| ≤ |θ| for every θ ∈ R.

Up to now, we have defined the operator T and computed its powers T n. It remains to
check that T(N) is recurrent while T(N+1) is not. We start by showing that R : X −→ X is a
rigid operator (see Subsection 2.1 or [CMP14, Definition 1.2]) with respect to the (eventually)
increasing sequence of positive integers (mk)k∈N:

Fact 3.3.3 (Modification of [Aug12, Lemma 3.4]). We have lim
k→∞

Rmkx = x for all x ∈ X.

Proof. Following [Aug12, Lemma 3.4] we first show that the sequence (∥Rmj ∥)j∈N is bounded.
In fact, if we fix x = ∑︁n

k=1 xkek ∈ c00 such that ∥x∥ = 1, for all j ≥ 1 we have that

∥Rmjx− x∥ =
⃦⃦⃦⃦
⃦

n∑︂
k=1

(λmj

k − 1)xkek

⃦⃦⃦⃦
⃦

=
⃦⃦⃦⃦
⃦⃦ n∑︂

k=j+1
(λmj

k − 1)xkek

⃦⃦⃦⃦
⃦⃦ since λmj = 1 for all k ≤ j,

≤ K∥x∥
n∑︂

k=j+1
|λmj

k − 1| = K
n∑︂

k=j+1

⃓⃓⃓⃓
e

2πi
mj
mk − 1

⃓⃓⃓⃓
by (3.1),

≤ 2πK
∞∑︂

k=j+1

mj

mk

since |eiθ − 1| ≤ |θ| for every θ ∈ R,

which is less than a constant independent of j by condition (c) on (mk)k∈N. The density of c00
in X implies that (∥Rmj ∥)j∈N is a bounded sequence. Now if given x ∈ X and ε > 0 we find
y ∈ c00 with ∥y − x∥ < ε, then

∥Rmjx− x∥ ≤ ∥Rmj (x− y)∥ + ∥Rmjy − y∥ + ∥y − x∥ < sup
j∈N

∥Rmj ∥ε+ ∥Rmjy − y∥ + ε.

The claim follows since Rmjy = y for every j ∈ N large enough, and ε was arbitrary.

Now we can prove the recurrence property of T(N):

Proposition 3.4. The operator T(N) : XN −→ XN is recurrent. Moreover, Rec(T(N)) = XN .
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Proof. Fix x(1), x(2), ..., x(N) ∈ X and set x(i)
j := ⟨e∗

j , x
(i)⟩ for each 1 ≤ i ≤ N and j ≥ 1. Choose

(αj)N+1
j=1 ∈ CN+1 such that

⎛⎜⎜⎜⎜⎜⎝
x

(1)
1 x

(1)
2 · · · x

(1)
N+1

x
(2)
1 x

(2)
2 · · · x

(2)
N+1

... ... · · · ...
x

(N)
1 x

(N)
2 · · · x

(N)
N+1

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

α1
α2
...

αN+1

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
0
0
...
0

⎞⎟⎟⎟⎟⎠ and max
1≤j≤N+1

|αj| = 1.

This is indeed possible since the system considered has N equations and N + 1 unknowns.
Set w∗ := ∑︁N+1

j=1 αje
∗
j ∈ E. Then w∗ ∈ SE∞ and clearly ⟨w∗, Px(i)⟩ = 0 for all 1 ≤ i ≤ N .

Let (kn)n∈N be an increasing sequence of positive integers (all greater than N + 2) such that
limn→∞ w∗

kn
= w∗ in E. By Fact 3.3.1, for each 1 ≤ i ≤ N we have that

(Tmkn−1 −Rmkn−1)x(i) =
∞∑︂

k=N+2

λk,mkn−1

mk−1
⟨w∗

k, Px
(i)⟩ek =

∑︂
N+2≤k<kn

λk,mkn−1

mk−1
⟨w∗

k, Px
(i)⟩ek⏞ ⏟⏟ ⏞

(∗)

+
λkn,mkn−1

mkn−1
⟨w∗

kn
, Px(i)⟩ekn⏞ ⏟⏟ ⏞

(∗∗)

+
∑︂

kn<k

λk,mkn−1

mk−1
⟨w∗

k, Px
(i)⟩ek⏞ ⏟⏟ ⏞

(∗∗∗)

.

Note that for each 1 ≤ i ≤ N ,

(∗) =
∑︂

N+2≤k<kn

λk,mkn−1

mk−1
⟨w∗

k, Px
(i)⟩ek = 0,

since by (ii) of Fact 3.3.2 we have that λk,mkn−1 = 0 for kn − 1 ≥ k. By (i) of Fact 3.3.2 we have
that |λkn,mkn−1| ≤ mkn−1 and hence

∥(∗∗)∥ =
⃓⃓⃓⃓
⃓λkn,mkn−1

mkn−1
⟨w∗

kn
, Px(i)⟩

⃓⃓⃓⃓
⃓ ≤ |⟨w∗

kn
, Px(i)⟩| −→

n→∞
0,

since limn→∞ w∗
kn

= w∗ and ⟨w∗, Px(i)⟩ = 0 for every 1 ≤ i ≤ N . Moreover, by condition (c) on
the sequence (mk)k∈N we get that, for each 1 ≤ i ≤ N ,

∥(∗ ∗ ∗)∥ ≤
∑︂

kn<k

⃓⃓⃓
λk,mkn−1

⃓⃓⃓
mk−1

∥w∗
k∥∗ · ∥P∥ · ∥x(i)∥ ≤ M · (N + 1)K · ∥x(i)∥ ·

∑︂
kn<k

mkn−1

mk−1
−→
n→∞

0.

Finally, for each 1 ≤ i ≤ N we have that

∥Tmkn−1x(i) − x(i)∥ ≤ ∥ (Tmkn−1 −Rmkn−1)x(i)∥ + ∥Rmkn−1x(i) − x(i)∥

≤ ∥(∗)∥ + ∥(∗∗)∥ + ∥(∗ ∗ ∗)∥ + ∥Rmkn−1x(i) − x(i)∥ −→
n→∞

0,

where ∥Rmkn−1x(i) − x(i)∥ → 0 by Fact 3.3.3. That is, (x(1), x(2), ..., x(N)) ∈ Rec(T(N)) and the
arbitrariness of the vectors x(1), x(2), ..., x(N) implies that Rec(T(N)) = XN .
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3. Existence of recurrent but not quasi-rigid operators

To end the proof of Theorem 3.2 we just have to show the following:

Proposition 3.5. The operator T(N+1) : XN+1 −→ XN+1 is not recurrent.

Proof. By contradiction suppose that T(N+1) is recurrent. Fix any positive value

0 < ε <
1

K(N + 1 + 2π) , (3.5)

and consider the open balls B(e1, ε), B(e2, ε), ..., B(eN+1, ε) ⊂ X centred at ei, 1 ≤ i ≤ N + 1,
with radius ε. Then there exists some n ∈ N such that

T n(B(ei, ε)) ∩B(ei, ε) ̸= ∅ for every i = 1, 2, ..., N + 1.

Let kn := min{j ≥ N + 2 : 2n ≤ mj} ≥ N + 2. By (iii) of Fact 3.3.2 we have that

|λkn,n| > mkn−1
π

. (3.6)

Moreover, Fact 3.2.1 applied to the functional w∗
kn

yields the existence of (at least) one index
in ∈ {1, 2, ..., N + 1} for which⃓⃓⃓

⟨w∗
kn
, Px⟩

⃓⃓⃓
> 1 − (N + 1)Kε whenever ∥x− ein∥ < ε. (3.7)

Picking any x ∈ B(ein , ε) ∩ T−n(B(ein , ε)) ∩ c00 we get the following inequalities

ε > ∥T nx− ein∥ ≥ 1
K

⃓⃓⃓
⟨e∗

kn
, T nx− ein⟩

⃓⃓⃓
= 1
K

⃓⃓⃓
⟨e∗

kn
, T nx⟩

⃓⃓⃓
by (3.1),

= 1
K

⃓⃓⃓⃓
⃓λn

kn
xkn + λkn,n

mkn−1
⟨w∗

kn
, Px⟩

⃓⃓⃓⃓
⃓ by Fact 3.3.1.

Hence

ε >
1
K

(︄⃓⃓⃓⃓
⃓ λkn,n

mkn−1

⃓⃓⃓⃓
⃓ · ⃓⃓⃓⟨w∗

kn
, Px⟩

⃓⃓⃓
−Kε

)︄
>

1
Kπ

·
⃓⃓⃓
⟨w∗

kn
, Px⟩

⃓⃓⃓
− ε by (3.2) and (3.6),

>
(1 − (N + 1)Kε)

Kπ
− ε >

1
K(N + 1 + 2π) by (3.7) and (3.5).

This is a contradiction with (3.5).

The complex version of Theorem 3.2 is now proved. The construction can be adapted to
the real case using the same arguments as in [Aug12], so every separable infinite-dimensional
Banach space supports a recurrent operator which is not quasi-rigid. Moreover, there are
operators whose N -fold direct sum is recurrent while its N + 1-fold direct sum is not, and
taking N = 1 we solve negatively the T ⊕ T -recurrence problem. We recall here that the
respective problem for C0-semigroups of operators, stated in [CKV21], remains open.
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4 Furstenberg families for pointwise recurrence

In the last two decades hypercyclicity has been studied from the frequency of visits point of view:
one investigates “how often” the orbit of a vector returns to every open subset of the space. The
recent notions of frequent, U-frequent or reiterative hypercyclicity have emerged following this
line of thought (see [BG06, Shk09, BMPP16, BMPP19]). As showed in [BMPP16, BGELMP22],
under some natural assumptions this behaviour can be decomposed in two factors:

(1) usual hypercyclicity (we have to require that the operator under study has a dense orbit);

(2) some kind of strong recurrence property (we have to require that each non-empty open
subset of the space contains an orbit returning to it with some frequency).

Even though the study of linear recurrence began in 2014 with [CMP14], stronger recurrence
notions have only recently been orderly investigated in the 2022 paper [BGELMP22], and then
in the following works [GLM23, CM], where the concepts of F-recurrence and F-hypercyclicity
with respect to a Furstenberg family F are deeply studied. In this section we show that
quasi-rigidity can be studied from an F -recurrence perspective for a very particular kind of
Furstenberg families called free filters (see Proposition 4.5). Then we study both the weakest
and strongest possible F -recurrence notions together with the Furstenberg families associated
to them (see Subsection 4.2), and we finish the section recalling that F -recurrence behaves well
under homomorphisms, quasi-conjugacies and commutants (see Subsection 4.3).

4.1 Definitions, examples and F(A)-recurrence

A collection of sets F ⊂ P(N0) is said to be a Furstenberg family (a family for short) provided
that: each set A ∈ F is infinite; F is hereditarily upward (i.e. B ∈ F when A ∈ F and A ⊂ B);
and also A ∩ [n,∞[∈ F for all A ∈ F and n ∈ N. The dual family F∗ for a given family F is
the collection of sets A ⊂ N0 such that A ∩ B ̸= ∅ for every B ∈ F . The rather vague notion
of frequency mentioned above will be defined in terms of families: given a dynamical system
(X,T ), a point x ∈ X and a non-empty (open) subset U ⊂ X we denote by

NT (x, U) := {n ∈ N0 : T nx ∈ U},

the return set from x to U . It will be denoted by N(x, U) if no confusion with the map arises.

Definition 4.1. Let (X,T ) be a dynamical system and let F be a Furstenberg family. A point
x ∈ X is said to be

– F-recurrent if N(x, U) ∈ F for every neighbourhood U of x;

– F-hypercyclic if N(x, U) ∈ F for every non-empty open subset U ⊂ X.

Moreover, we will denote by

– FRec(T ) the set of F-recurrent points, and we will say that T is F-recurrent whenever the
set FRec(T ) is dense in X;

– FHC(T ) the set of F-hypercyclic points, and we will say that T is F-hypercyclic whenever
the set FHC(T ) is non-empty.
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4. Furstenberg families for pointwise recurrence

Example 4.2. The previous Linear Dynamics works [BM09a, GEP11, CMP14, BMPP16,
BGE18, BGELMP22, CM22a, CM22b, CM, GLM23] have considered the families formed by:

(a) the infinite sets
I = {A ⊂ N0 : A is infinite}.

The notion of I-recurrence (resp. I-hypercyclicity) coincides with the concept of recurrence
(resp. hypercyclicity) as defined in the Introduction. We denote by Rec(T ) (resp. HC(T ))
the set of recurrent (resp. hypercyclic) vectors associated to this family.

(b) the sets containing arbitrarily long arithmetic progressions or AP-sets

AP := {A ⊂ N0 : A contains arbitrarily long arithmetic progressions}.

In other words, A ∈ AP if ∀l ∈ N, ∃a,m ∈ N such that {a + km : 0 ≤ k ≤ l} ⊂ A,
or equivalently A contains the arithmetic progression of length l + 1, common difference
m ∈ N and initial term a ∈ N0. The concept of AP-recurrence is equivalent to the notion
of (topological) multiple recurrence, which requires that for each non-empty open subset
U ⊂ X and each length l ∈ N there exists some n ∈ N fulfilling that

U ∩ T−n(U) ∩ · · · ∩ T−ln(U) ̸= ∅.

This concept was introduced for linear dynamical systems in [CP12] and further developed
in [KLOY17] and [CM22b], where AP-hypercyclicity is also considered. We will denote by
APRec(T ) (resp. APHC(T )) the set of AP-recurrent (resp. AP-hypercyclic) vectors.

(c) the sets with positive upper Banach density BD := {A ⊂ N0 : Bd(A) > 0}, where for each
A ⊂ N0 its upper Banach density is defined as

Bd(A) := lim
N→∞

(︄
max
n≥0

#(A ∩ [n+ 1, n+N ])
N

)︄
. See [GTT10] for alternative definitions.

The BD-recurrence (resp. BD-hypercyclicity) has been called reiterative recurrence (resp.
reiterative hypercyclicity), and RRec(T ) (resp. RHC(T )) is the set of reiteratively recurrent
(resp. reiteratively hypercyclic) vectors, see [BMPP16, BMPP19, BGELMP22, GLM23].

(d) the sets with positive upper density D := {A ⊂ N0 : dens(A) > 0}, where for each A ⊂ N0
its upper density is defined as

dens(A) := lim sup
N→∞

#(A ∩ [1, N ])
N

.

The D-recurrence (resp. D-hypercyclicity) notion is commonly called U-frequent recurrence
(resp. U-frequent hypercyclicity) and UFRec(T ) (resp. UFHC(T )) is the set of U -frequent
recurrent (resp. U -frequent hypercyclic) vectors, see [Shk09, CP12, BGELMP22, GLM23].

(e) the sets with positive lower density D := {A ⊂ N0 : dens(A) > 0}, where for each A ⊂ N0
its lower density is defined as

dens(A) := lim sup
N→∞

#(A ∩ [1, N ])
N

.

The notion of D-recurrence (resp. D-hypercyclicity) is usually called frequent recurrence
(resp. frequent hypercyclicity), and we will denote by FRec(T ) (resp. FHC(T )) the set of
frequently recurrent (resp. frequently hypercyclic) vectors, see [BG06, BMPP16, GLM23].
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(f) the syndetic sets
S := {A ⊂ N0 : A is syndetic},

i.e. A ∈ S whenever ∃m ∈ N such that ∀a ∈ N0, [a, a + m] ∩ A ̸= ∅. The notion of
S-recurrence has been called uniform recurrence and we denote by URec(T ) the set of
uniformly recurrent vectors, see [Fur81, BGELMP22, GLM23]. The family S coincides
with the family of sets with positive lower Banach density BD := {A ⊂ N0 : Bd(A) > 0},
where for each A ⊂ N0 its lower Banach density is defined as

Bd(A) := lim
N→∞

(︄
inf
n≥0

#(A ∩ [n+ 1, n+N ])
N

)︄
. See [GTT10] for alternative definitions.

(g) the IP-sets
IP := {A ⊂ N0 : A is an IP-set},

i.e. A ∈ IP whenever {∑︁k∈F nk : F ⊂ N finite} ⊂ A for some sequence (nk)k∈N ∈ NN.
In this case we use the dual family IP∗, and for the IP∗-recurrence notion we denote by
IP∗Rec(T ) the set IP∗-recurrent vectors, see [Fur81, GMJPO15, BGELMP22, GLM23].

(h) the ∆-sets
∆ := {A ⊂ N0 : A is an ∆-set},

i.e. A ∈ ∆ whenever ∃B ∈ I with (B − B) ∩ N ⊂ A. In this case we again use the dual
family ∆∗, and for the ∆∗-recurrence notion we denote by ∆∗Rec(T ) the set of ∆∗-recurrent
vectors, see [Fur81, GLM23].

We have the following relations between the families listed above:

∆∗ ⊂ IP∗ ⊂ S = BD ⊂ D ⊂ D ⊂ BD ⊂ AP ⊂ IB.

Among these inclusions, some of them follow easily from the definitions while others depend on
deep theorems like the celebrated Szemerédi theorem, see [BD08, CM22b, HS98, Sze75]. They
imply the respective inclusions between the introduced sets of recurrent vectors

∆∗Rec(T ) ⊂ IP∗Rec(T ) ⊂ URec(T ) ⊂ ...

... ⊂ FRec(T ) ⊂ UFRec(T ) ⊂ RRec(T ) ⊂ APRec(T ) ⊂ Rec(T ),

and also between the sets of hypercyclic vectors

FHC(T ) ⊂ UFHC(T ) ⊂ RHC(T ) ⊂ APHC(T ) ⊂ HC(T ).

It is worth mentioning that the families F for which there exist F -hypercyclic operators are by
far less common than those for which F -recurrence exists, which is not surprising since having
an orbit distributed around the whole space is much more complicated than having it just
coming back around the initial point of the orbit (it is known that there does not exist any ∆∗,
IP∗ neither S-hypercyclic operator, see [BMPP16, BGELMP22]). Other families have been
considered from the F -hypercyclicity perspective in the works [BGE18, EEM21]. Our aim now
is to show that a dynamical system is quasi-rigid if and only if it is F -recurrent with respect
to a free filter F . Let us recall the following classical definitions (see [Bou89]):

BSee Sections 1, 2 and 3 of the Appendix for more details on the stated inclusions.

110



4. Furstenberg families for pointwise recurrence

Definition 4.3. Let F ⊂ P(N0) be a collection of sets of natural numbers (note that F is not
necessarily a Furstenberg family here). We say that F :

– has the finite intersection property, if ⋂︁A∈A A ̸= ∅ for every A ⊂ F with #A < ∞;

– is a filter, if F is hereditarily upward and for every A,B ∈ F we have that A ∩B ∈ F ;

– is a free filter, if it is a filter and ⋂︁A∈F A = ∅.

Finally, given any infinite subset A ⊂ N0 we denote by F(A) the free filter generated by A,
which is the Furstenberg family

F(A) := {B ⊂ N0 : #(A \B) < ∞} .

In the literature, F(A) has been called the Fréchet filter on A, or also the eventuality filter
generated by the increasing sequence of integers (nk)k∈N forming the set A ⊂ N0 (see [Bou89]).

Remark 4.4. It is clear that every free filter is a filter, and that every filter has the finite
intersection property. However, when F is a Furstenberg family as defined in this paper the
previous definitions have some extra (and immediate) consequences:

(a) A Furstenberg family F has the finite intersection property if and only if ⋂︁A∈A A ∈ I for
every A ⊂ F with #A < ∞: indeed, if F has the finite intersection property but for some
A ⊂ F with #A < ∞ we had that ⋂︁A∈A A is finite, then for any fixed n > max (⋂︁A∈A A)
we would arrive to the contradiction:

A′ := {A ∩ [n,∞[: A ∈ A} ⊂ F with #A′ < ∞ but
⋂︂

A∈A′
A = ∅.

(b) Let F be a Furstenberg family. Then, F is a filter if and only if it is a free filter: note that
given any B from a filter F which is also a Furstenberg family we have that⋂︂

A∈F
A ⊂

⋂︂
n∈N

B ∩ [n,∞[= ∅,

by the definition of Furstenberg family used in this paper.

We are now ready to characterize quasi-rigidity in terms of F -recurrence and free filters:

Proposition 4.5. Let (X,T ) be a dynamical system. The following are equivalent:

(i) T is quasi-rigid;

(ii) T is F(A)-recurrent for some infinite subset A ⊂ N0;

(iii) T is F-recurrent with respect to a free filter F with a countable base.

Moreover, if X is a second-countable space, the previous statements are equivalent to:

(iv) T is F-recurrent for a family F with the finite intersection property.
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Proof. For (i) ⇒ (ii), if T is quasi-rigid with respect to (nk)k∈N consider A := {nk : k ∈ N}.
The implication (ii) ⇒ (iii) is obvious since F(A) has a countable base. To see (iii) ⇒ (i)
assume that the map T is F -recurrent and let (Ak)k∈N be a decreasing countable base of the
free filter F . Setting nk := min(Ak) for each k ∈ N, and taking a subsequence if necessary, we
get an increasing sequence (nk)k∈N with respect to which T is quasi-rigid.

We always have that (i), (ii) and (iii) ⇒ (iv) even if the space X is not second-countable.
Assume now that X is second-countable and that T is F -recurrent for a family F with the finite
intersection property. Let {xs : s ∈ N} ⊂ FRec(T ) be a dense set in X and, for each s ∈ N,
let (Us,k)k∈N be a decreasing neighbourhood basis of xs. We can now recursively construct an
increasing sequence of positive integers (nk)k∈N such that

T nkxs ∈ Us,k for every s, k ∈ N with 1 ≤ s ≤ k,

by taking a sufficiently large integer nk ∈ ⋂︁k
s=1 NT (xs, Us,k) ∈ I. It is easily seen that the map

T is quasi-rigid with respect to (nk)k∈N, which shows that (iv) ⇒ (i), (ii) and (iii).

4.2 Appropriate Furstenberg families for F-recurrence

We have just shown that quasi-rigidity is indeed a particular case of F -recurrence for a kind of
family not listed in Example 4.2. It is then natural to ask the following:

Question 4.6. Are the families of Example 4.2, i.e. F = I,AP ,BD,D,D,S, IP∗,∆∗, and the
free filters F(A) the only ones for which F -recurrence should be considered?

This may seem a very open query. Our objective in this part of the paper is to look in
detail into two very different classes of Furstenberg families: those for which F -recurrence is
the weakest possible recurrence notion, i.e. families F ⊊ I such that FRec(T ) = Rec(T ); and
those for which F -recurrence is the strongest possible recurrence notion, i.e. periodicity.

Starting with the first of these two classes (i.e. the weaker ones):

– For any dynamical system (X,T ) every recurrent point x ∈ Rec(T ) is an IP-recurrent point.

This is shown in [Fur81, Theorem 2.17] when X is a metric space, and that proof easily extends
for arbitrary dynamical systemsC. Hence

Rec(T ) ⊂ IPRec(T ) ⊂ ∆Rec(T ) ⊂ IRec(T ).

Since IRec(T ) = Rec(T ) we always have that

IPRec(T ) = ∆Rec(T ) = Rec(T ).

This apparently basic relation allows us to give an alternative (and much simpler) proof to the
so-called Ansari and León-Müller recurrence theorems, which assert that powers and unimodular
multiples of an operator share the same set of recurrent vectors (see [CMP14, Proposition 2.3]
for the original, different for each of the T p and λT cases, and rather long proof):

CSee Proposition 4.2 in Section 4 of the Appendix.
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4. Furstenberg families for pointwise recurrence

Proposition 4.7 ([CMP14, Proposition 2.3]). Let (X,T ) be a dynamical system. Then:

(a) For every positive integer p ∈ N we have that Rec(T ) = Rec(T p).

(b) If (X,T ) is linear, then for every λ ∈ T we have that Rec(T ) = Rec(λT ).

Proof. D Suppose that x ∈ Rec(T ), i.e. NT (x, V ) belongs to ∆ for every neighbourhood V of x.
Fixed any p ∈ N and any neighbourhood U of x, since the set (p ·N0) belongs to the ∆∗ familyE

we have that
∅ ̸= NT (x, U) ∩ (p · N0) ⊂ NT p(x, U),

which implies that x ∈ Rec(T p), proving (a). To check (b) assume moreover that (X,T ) is a
linear dynamical system and fix any λ ∈ T. Let ε > 0 and let U0 ⊂ U be a neighbourhood of
x such that µ · U0 ⊂ U for all |µ − 1| < ε. Since the set {n ∈ N : |λn − 1| < ε} belongs to ∆∗

(see [GLM23, Proposition 4.1]) we have that
∅ ̸= NT (x, U0) ∩ {n ∈ N : |λn − 1| < ε} ⊂ NλT (x, U),

which implies that x ∈ Rec(λT ).

Let us now look at the strongest possible recurrence notion by using families of big subsets
of natural numbers, which have been also historically considered in (linear) dynamics:
Example 4.8. Consider the Furstenberg families formed by:

(a) the cofinite sets
I∗ := {A ⊂ N0 : A is cofinite},

which is the dual family of that formed by the infinite sets I, and which is used to define
the notion of (topological) mixing: a dynamical system (X,T ) is called mixing if the set
{n ∈ N0 : T n(U)∩V ̸= ∅} belongs to I∗ for every pair of non-empty open subset U, V ⊂ X
(see [GEP11, Definition 1.38]).

(b) the thick sets
T := {A ⊂ N0 : A is thick},

i.e. A ∈ T if ∀m ∈ N, ∃am ∈ A with [am, am+m] ⊂ A. This family is known to characterize
the weak-mixing property (see [GEP10, Theorem 3] or [GEP11, Theorem 1.54]):

– For every dynamical system (X,T ) the following statements are equivalent:
(i) (X,T ) is weakly mixing;
(ii) the set {n ∈ N0 : T n(U) ∩ V ̸= ∅} belongs to T for every pair of non-empty open

subsets U, V ⊂ X.

(c) the thickly syndetic sets

T S := {A ⊂ N0 : A is thickly syndetic},

i.e. A ∈ T S if ∀m ∈ N, ∃Am syndetic such that Am +[0,m] ⊂ A. This family characterizes
the topological ergodicity (i.e. the property that {n ∈ N0 : T n(U) ∩ V ̸= ∅} is syndetic for
every pair of non-empty open subsets U, V ⊂ X) for linear dynamical systems, as it is
shown in [GEP11, Exercise 2.5.4] and [BMPP19]:

DThe same arguments show the “Ansari-León-Müller” properties for the families IP∗ and ∆∗.
ESee Lemma 4.3 in Section 4 of the Appendix.
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– For every linear dynamical system (X,T ) the following are equivalent:
(i) (X,T ) is topologically ergodic;
(ii) the set {n ∈ N0 : T n(U) ∩ V ̸= ∅} belongs to T S for every pair of non-empty open

subsets U, V ⊂ X.

(d) the sets of density greater or equal to δ > 0, which for each 0 < δ ≤ 1 are the families

BDδ := {A ⊂ N0 : Bd(A) ≥ δ}, BDδ := {A ⊂ N0 : Bd(A) ≥ δ},

Dδ := {A ⊂ N0 : dens(A) ≥ δ}, Dδ := {A ⊂ N0 : dens(A) ≥ δ}.

The density families have also been studied in Linear Dynamics, and we refer the reader
to [BMPP16, BMPP19] for more about them.

We are about to show that the recurrence notions associated to the Furstenberg families
introduced in Example 4.8 above imply different periodicity notions (see Proposition 4.11). We
replicate the arguments from [BMPP16, Proposition 3], which have been used in an independent
way in [CM, Lemma 2.14 and Corollary 2.15]. Our contribution here is to rewrite these results
in their “pointwise F-recurrence” version. We start by proving two key lemmas:

Lemma 4.9. Let (X,T ) be a dynamical system, x ∈ X and N ∈ N. The following statements
are equivalent:

(i) x ∈ Per(T ) and its period is strictly lower than N ;

(ii) for every neighbourhood U of x there exists nU ∈ N0 such that

#(N(x, U) ∩ [nU + 1, nU +N ]) ≥ 2;

(iii) for every neighbourhood U of x we have that T p(U) ∩ U ̸= ∅ for some 1 ≤ p < N .

Proof. For (i) ⇒ (ii) let nU be the period of x minus one. For (ii) ⇒ (iii) recall that

given n1 < n2 ∈ N(x, U) we have that T n2−n1(U) ∩ U ̸= ∅.

Finally, if we suppose that T px ̸= x for all 1 ≤ p < N , by continuity we can find an open
neighbourhood U of x such that T p(U) ∩ U = ∅ for every 1 ≤ p < N , so (iii) ⇒ (i).

Lemma 4.10. Let 0 < δ ≤ 1 and N ∈ N with 1
N
< δ. Then, for every A ∈ BDδ there is

nA ∈ N0 such that #(A ∩ [nA + 1, nA +N ]) ≥ 2.

Proof. Otherwise we would have that #(A∩ [n+ 1, n+N ]) ≤ 1 for every n ∈ N0 obtaining the
contradiction

Bd(A) = lim
K→∞

(︄
max
n≥0

#(A ∩ [n+ 1, n+ (N ·K)])
N ·K

)︄
≤ lim

K→∞

K

N ·K
= 1
N
< δ.

Finally we get the desired result, in which we classify the periodic points of a dynamical
system in terms of the density of the return sets:
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Proposition 4.11. Let (X,T ) be a dynamical system and let x ∈ X. Then:

(a) Given 0 < δ ≤ 1, the following statements are equivalent:

(i) x ∈ Per(T ) and its period is lower or equal to
⌊︂

1
δ

⌋︂
;

(ii) x ∈ BDδRec(T );
(iii) x ∈ DδRec(T );
(iv) x ∈ DδRec(T );
(v) x ∈ BDδRec(T ).

In particular, if T is BDδ-recurrent then TN = I for N = 1 · 2 · · ·
(︂⌊︂

1
δ

⌋︂
− 1

)︂
·
⌊︂

1
δ

⌋︂
.

(b) The following statements are equivalent:

(i) x is a fixed point, i.e. Tx = x;
(ii) x ∈ I∗Rec(T );
(iii) x ∈ T SRec(T );
(iv) x ∈ T Rec(T );
(v) x ∈ BDδRec(T ) for some δ > 1

2 ;
(vi) for every neighbourhood U of x the set N(x, U) contains two consecutive integers.

Proof. (a): Let us first show that (i) ⇒ (ii): let p ∈
{︂
1, 2, ...,

⌊︂
1
δ

⌋︂}︂
be such that T px = x. Then

Bd(N(x, U)) ≥ Bd(p · N0) = 1
p

≥ δ

for every neighbourhood U of x, so N(x, U) ∈ BDδ. For (ii) ⇒ (iii) ⇒ (iv) ⇒ (v) recall
that BDδ ⊂ Dδ ⊂ Dδ ⊂ BDδ. For (v) ⇒ (i) let N :=

⌊︂
1
δ

⌋︂
+ 1. By Lemma 4.10, for every

neighbourhood U of x there is nU ∈ N such that

#(N(x, U) ∩ [nU + 1, nU +N ]) ≥ 2,

so Lemma 4.9 finishes the work.
(b): The implications (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (v) follow from the following well-known

relations N0 ∈ I∗ ⊂ T S ⊂ T = BD1 ⊂ BDδ for every 0 < δ ≤ 1 (see [BD08, HS98]). In order
to prove (v) ⇒ (vi) use Lemma 4.10 applied to N = 2. Finally, the equivalence (i) ⇔ (vi)
follows from Lemma 4.9.

The characterization obtained for periodic points in part (a) of Proposition 4.11 tells us which
are the Furstenberg families F whose respective F -recurrence notion is trivial, in the sense that
it coincides with periodicity. However, it is still interesting to study all the recurrence notions
introduced in Example 4.2: recall that for each positive integer p ∈ N the set p · N0 belongs
to the ∆∗ familyF, so that Per(T ) ⊂ ∆∗Rec(T ) for every dynamical system (X,T ) and hence
∆∗-recurrence is weaker than periodicity. We have also reproved [BMPP16, Proposition 3]:

Corollary 4.12. There is no BDδ-hypercyclic operator for any 0 < δ ≤ 1.
FSee Lemma 4.3 in Section 4 of the Appendix.
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4.3 Quasi-conjugacies and commutants in F-recurrence

We end Section 4 with some basic but useful tools about quasi-conjugacies and (non-linear)
commutants which will be used in Section 5 to study the lineability and dense lineability of the
set of F -recurrent vectors. Following [Fur81, GEP11] we define:
Definition 4.13. Given two dynamical systems (X,T ) and (Y, S), a map ϕ : Y −→ X is called
an homomorphism of dynamical systems if ϕ is continuous and the diagram

Y
S−−−→ Y

ϕ

⏐⏐⏐↓ ⏐⏐⏐↓ϕ

X
T−−−→ X

commutes, i.e. ϕ ◦ S = T ◦ ϕ. Moreover, we say that the map ϕ is a:

– quasi-conjugacy, if ϕ has dense range, and hence that (X,T ) is quasi-conjugate to (Y, S);

– conjugacy, if ϕ is an homeomorphism between X and Y (see Remark 5.2).

Many dynamical properties are preserved by quasi-conjugacy (see [GEP11, Chapter 1]): if
(Y, S) admits a dense orbit, is topologically transitive, weakly-mixing or even (Devaney) chaotic,
then so is (X,T ). On the other hand, to preserve the recurrence of a point it is enough to have
an homomorphism. This is a really well-known fact (see [Fur81, Proposition 1.3]), and indeed
similar arguments were already used in [Fur81, Proposition 9.9] for F -recurrence with respect
to the Furstenberg families ∆∗ and IP∗, or in [CM, Proposition 2.7] for general Furstenberg
families. We include here the general argument regarding return sets:
Lemma 4.14. Let (X,T ) and (Y, S) be dynamical systems and suppose that ϕ : Y −→ X is
an homomorphism between them. Given y ∈ Y and any neighbourhood U ⊂ X of ϕ(y), the set
V := ϕ−1(U) ⊂ Y is a neighbourhood of y for which NS(y, V ) = NT (ϕ(y), U). In particular,
for any Furstenberg family F we have that:

(a) If y ∈ Y is F-recurrent for S then ϕ(y) is F-recurrent for T .

(b) If ϕ is a quasi-conjugacy and S is F-recurrent then so is T .

Proof. By continuity of ϕ the set V = ϕ−1(U) is a neighbourhood of y. Since ϕ ◦ S = T ◦ ϕ we
have that ϕ(Sny) = T nϕ(y) for every n ∈ N0. It follows that

NT (ϕ(y), U) = {n ∈ N0 : T nϕ(y) ∈ U} = {n ∈ N0 : Sny ∈ ϕ−1(U)} = NS(y, V ).

In particular, if y is F -recurrent then the return set NT (ϕ(y), U) = NS(y, ϕ−1(U)) belongs to
F for every neighbourhood U of ϕ(y). Statement (b) follows immediately from (a).

Considering Y := X, S := T and ϕ := S we obtain the following:
Corollary 4.15. Let (X,T ) be a dynamical system and let S : X −→ X be a continuous map
commuting with T , that is S ◦ T = T ◦ S. Given x ∈ X and any neighbourhood U of Sx, the
set V := S−1(U) is a neighbourhood of x for which NT (x, V ) = NT (Sx, U). In particular, for
any Furstenberg family F we have that

S(FRec(T )) ⊂ FRec(T ).
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Corollary 4.15 unifies some of the well-known arguments used in [AB, Proposition 2.5],
[CMP14, Proof of Theorem 9.1] and [Fur81, Propositions 1.3 and 9.9], generalizing them to
arbitrary Furstenberg families and (not necessarily linear) maps acting on arbitrary topological
spaces. From now on we will write

C (X) := {S : X −→ X continuous map} ,

i.e. the set of continuous (and not necessarily linear) self-maps of the Hausdorff topological
space X. Following the notation of [Jun76] we define:

Definition 4.16. Let (X,T ) be a dynamical system. We will denote by

CT := {S ∈ C (X) : S ◦ T = T ◦ S} ,

the (non-linear) commutant of T . Given x ∈ X we will denote by CT (x) := {Sx : S ∈ CT } the
CT -orbit of x. We say that a subset Y ⊂ X is CT -invariant if S(Y ) ⊂ Y for every S ∈ CT .

Remark 4.17. Since T ∈ CT we always have that:

– every CT -invariant set is also T -invariant;

– if X is a linear space, then {p(T ) : p polynomial} ⊂ CT and for every x ∈ X we get that

span(Orb(x, T )) = span{T nx : n ∈ N0} = {p(T )x : p polynomial} ⊂ CT (x).

In particular, every cyclic vector for an operator T ∈ L(X) has a dense CT -orbit.

Moreover, in the linear setting every CT -orbit is a vector subspace of X:

Lemma 4.18. Let (X,T ) be a linear dynamical system. Then (CT ,+, ◦) is a subring of the
ring of continuous maps (C (X),+, ◦). In particular, given any x ∈ X the set CT (x) is a vector
subspace of X and the smallest CT -invariant subset of X containing the point x.

Proof. Given S,R ∈ CT and α, β ∈ K we have that (αS+βR) ∈ CT and also that (S ◦R) ∈ CT .
In particular, given x ∈ X the set CT (x) is a vector subspace of X. Moreover, if Y ⊂ X is any
CT -invariant subset of X and x ∈ Y then CT (x) = {Sx : S ∈ CT } ⊂ ⋃︁

S∈CT
S(Y ) ⊂ Y .

When (X,T ) is a non-linear system it is still true that CT (x) is the smallest CT -invariant
subset of X containing the point x ∈ X. Let us now generalize Corollary 4.15 to direct products
by using the following notation: given a system (X,T ) and a subset Y ⊂ X we will denote by

Npr(Y ) := {A ⊂ N0 : N(x, U) ⊂ A for some x ∈ Y and some neighbourhood U of x},

the family of pointwise-recurrent return sets of the points of Y . Note that Npr({x}) is a filter, for
a point x ∈ X, if and only if x ∈ Rec(T ): indeed, if x /∈ Rec(T ) then Npr({x}) = P(N0), which
is not a filter; conversely, if we choose a pair U and V of neighbourhoods for a recurrent vector
x ∈ Rec(T ) then we have that N(x, U ∩ V ) ⊂ N(x, U) ∩N(x, V ). Note also that a dynamical
system (X,T ) is F -recurrent if there exits a dense set Y ⊂ X such that Npr(Y ) ⊂ F .
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Theorem 4.19. Let (X,T ) be a (linear) dynamical system and let F be a Furstenberg family.
Given x ∈ FRec(T ) we have that

Npr(CT (x)) = Npr({x}),

and hence CT (x) is a CT -invariant (vector) subspace of X with the property that

CT (x)N ⊂ FRec(T(N)) for every N ∈ N.

Proof. Obviously Npr({x}) ⊂ Npr(CT (x)). For Npr(CT (x)) ⊂ Npr({x}) we use Corollary 4.15:
given y ∈ CT (x) and any neighbourhood U of y there is a neighbourhood V of x such that

NT (y, U) = NT (x, V ) ∈ Npr({x}).

The rest of the result follows from the filter condition of the family Npr({x}): for any N ∈ N and
any set {x1, x2, ..., xN} ⊂ CT (x) let z := (x1, x2, ..., xN) ∈ XN . Then, given any neighbourhood
U ⊂ XN of z we can find neighbourhoods Ui ⊂ X of xi, for 1 ≤ i ≤ N , such that

U1 × · · · × UN ⊂ U and hence NT(N)(z, U) ⊃ ⋂︁N
i=1 NT (xi, Ui) ∈ Npr({x}) ⊂ F .

The arbitrariness of U implies that z ∈ FRec(T(N)). Finally, if (X,T ) is a linear dynamical
system, then the set CT (x) is a CT -invariant vector subspace of X by Lemma 4.18.

Remark 4.20. Theorem 4.19 is an extension of Corollary 4.15 to N -fold direct products/sums.
As we have already mentioned, these kind of arguments have been used many times: for example
in [CMP14, Theorem 9.1] they were used for usual recurrence, and in [CM, Proposition 2.7] for
arbitrary Furstenberg families.

5 Infinite-dimensional vector spaces in FRec(T )

The objective of this section is to study, for a linear dynamical system (X,T ) and arbitrary
Furstenberg families F , when the set of F -recurrent vectors is lineable or dense lineable, i.e. to
establish if it contains a (possibly dense) infinite-dimensional vector subspace. Theorem 4.19
will be our main tool for this study, which motivation stems from the following two already
showed facts:

– quasi-rigidity coincides with F(A)-recurrence (see Proposition 4.5);

– quasi-rigidity for an operator T implies that Rec(T ) is dense lineable (see Proposition 2.7).

It is then natural to ask whether the set FRec(T ) contains an infinite-dimensional vector space
for other Furstenberg families F . We are about to show that FRec(T ) is lineable as soon as T is
F -recurrent (see Theorem 5.5 and Corollary 5.6 below), and we obtain some (natural) sufficient
conditions implying that FRec(T ) is dense lineable (see Theorem 5.8). As a consequence we
obtain the Herrero-Bourdon theorem for F -hypercyclicity (see Subsection 5.3).
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5.1 Lineability

Given a vector space X and a subset of vectors Y ⊂ X with some property, we say that Y is
lineable if there exists an infinite-dimensional vector subspace Z ⊂ X such that Z \ {0} ⊂ Y .
In our case, given a linear dynamical system (X,T ) we always have that 0 ∈ FRec(T ) for
every Furstenberg family F , so the set of F -recurrent vectors will be lineable if it admits an
infinite-dimensional vector space (which includes the zero-vector).

In order to prove that FRec(T ) is lineable as soon as (X,T ) is F -recurrent, we will observe
that the (span of the) unimodular eigenvectors are the only recurrent vectors whose orbits have
a finite-dimensional linear span (see Lemma 5.3 below). Recall that:
Definition 5.1. Given a complex-linear dynamical system T : X −→ X, a vector x ∈ X
is called a unimodular eigenvector for T if x ̸= 0 and Tx = λx for some unimodular complex
number λ ∈ T. We denote by E(T ) the set of unimodular eigenvectors for T , i.e.

E(T ) = {x ∈ X \ {0} : Tx = λx for some λ ∈ T}.

Every finite linear combination of unimodular eigenvectors is a ∆∗-recurrent vector (see for
instance [GLM23, Proposition 4.1]) and the following holds (see [GEP11, Proposition 2.33]):

Per(T ) = span{x ∈ X : Tx = eαπix for some α ∈ Q} ⊂ span(E(T )) ⊂ ∆∗Rec(T ).

In order to treat both real and complex cases at the same time, we need a set of (real) vectors
having an analogous recurrent-behaviour to that of unimodular eigenvectors:
Remark 5.2. The complexification (˜︂X, ˜︁T ) of a real-linear system T : X −→ X is defined in
the following way (see [MST99, MMFPSS22] and [GEP11, Exercise 2.2.7]):

– the space ˜︂X := {x+ iy : x, y ∈ X}, which is topologically identified with X⊕X and becomes
a complex F-space endowed with the multiplication (α+iβ)(x+iy) = (αx−βy)+i(αy+βx)
for every α, β ∈ R and every x, y ∈ X;

– and the operator ˜︁T : ˜︂X −→ ˜︂X is defined as ˜︁T (x+ iy) = Tx+ iTy for every x, y ∈ X. Note
that this is a continuous complex-linear operator acting on ˜︂X.

Defining the map J : X ⊕ X −→ ˜︂X as J(x, y) := x + iy ∈ ˜︂X for every (x, y) ∈ X ⊕ X, the
diagram

X ⊕X
T ⊕T−−−→ X ⊕X

J

⏐⏐⏐↓ ⏐⏐⏐↓J

˜︂X ˜︁T−−−→ ˜︂X
commutes so J is a conjugacy (see Definition 4.13). In this setting we define the (real) set of
unimodular eigenvectors for T as

E(T ) :=
{︂
x ∈ X : there exists y ∈ X such that x+ iy ∈ E( ˜︁T )

}︂
.

These real unimodular eigenvectors have the same recurrent-behaviour than the complex
unimodular eigenvectors. In fact, the following properties are easily checked:

span(E(T )) =
{︂
x ∈ X : there exists y ∈ X such that x+ iy ∈ span(E( ˜︁T ))

}︂
,

Per(T ) ⊂ span(E(T )) ⊂ ∆∗Rec(T ).
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Lemma 5.3. Let (X,T ) be a (real or complex) linear dynamical system. For each recurrent
vector x ∈ Rec(T ) the following statements are equivalent:

(i) x ∈ span(E(T ));

(ii) dim (span{T nx : n ∈ N0}) < ∞.

In particular, given any Furstenberg family F for which FRec(T )\span(E(T )) ̸= ∅, there exists
an infinite-dimensional T -invariant vector subspace Z ⊂ X with the property that

ZN ⊂ FRec(T(N)) for every N ∈ N.

Proof. For (i) ⇒ (ii) compute the orbit of a vector from span(E(T )) in both real and complex
cases, and observe that its span is finite-dimensional. For (ii) ⇒ (i) let x ∈ Rec(T ) and suppose
that the T -invariant subspace E = span{T nx : n ∈ N0} is finite-dimensional. We have two
cases:

(1) If (X,T ) is complex, then T |E : E −→ E is a recurrent complex-linear operator on a
finite-dimensional space. By [CMP14, Theorem 4.1] there exists a basis of E formed by
unimodular eigenvectors for T |E (and hence for T ) so x ∈ E ⊂ span(E(T )).

(2) If (X,T ) is real, then we can identify the complexification ˜︃T |E : ˜︁E −→ ˜︁E with the direct
sum T |E ⊕ T |E (see Remark 5.2). Theorem 4.19 implies that

E ⊕ E ⊂ Rec(T |E ⊕ T |E),

so ˜︃T |E is a recurrent complex-linear operator on a finite-dimensional space. As in case
(1) above, by [CMP14, Theorem 4.1] there exists a basis of ˜︁E formed by unimodular
eigenvectors for ˜︁T , so x+ i0 ∈ ˜︁E ⊂ span(E( ˜︁T )) and hence x ∈ span(E(T )).

Finally, if F is a Furstenberg family for which there exists some x ∈ FRec(T ) \ span(E(T )),
the equivalence (i) ⇔ (ii) implies that Z := span{T nx : n ∈ N0} is an infinite-dimensional
T -invariant vector subspace of X. Theorem 4.19 then shows

ZN ⊂ CT (x)N ⊂ FRec(T(N)) for every N ∈ N.

The strongest F -recurrence notion considered in this paper and fulfilling the condition that

span(E(T )) ⊂ FRec(T ) for every T ∈ L(X),

is that of ∆∗-recurrence. The properties of “having a spanning set of unimodular eigenvectors”
and that of “being ∆∗-recurrent” have been deeply related in the recent work [GLM23] and they
are specially near when one considers power-bounded operators (see [GLM23, Theorem 1.9]).
It is then natural to ask if the equality span(E(T )) = ∆∗Rec(T ) holds for some general class of
linear dynamical systems (X,T ), a natural candidate being that of power-bounded operators.

The answer is negative as we show in the following trivial example by using Lemma 5.3:
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Example 5.4. There exists a linear dynamical system admitting a ∆∗-recurrent vector such
that the linear span of its orbit is infinite-dimensional: consider X = c0(N) or ℓp(N) for some
1 ≤ p < ∞ with their usual norms. Define a linear map T : c00(N) −→ c00(N) in the following
way: Te1 = e1 and for every k ≥ 2

Tek =
⎧⎨⎩ek+1, if 2m < k < 2m+1,

e2m+1, if k = 2m+1,

for each m ≥ 0, where ek = (δk,n)∞
n=1 is the k-th vector of the canonical basis of X. Since

∥Tx∥ = ∥x∥ for each x ∈ c00(N), T extends to a linear isometry on the whole space X. We
now show that the vector x = ∑︁

m≥0
1

2m e2m+1 ∈ X has the required properties:

(1) x ∈ ∆∗Rec(T ): given any ε > 0 there is mε ∈ N such that
⃦⃦⃦∑︁

m>mε

1
2m e2m+1

⃦⃦⃦
< ε

2 . Then,
given n ∈ 2mε · N0 we have that

T n

⎛⎝ ∑︂
m≤mε

1
2m
e2m+1

⎞⎠ =
∑︂

m≤mε

1
2m
e2m+1 so ∥T nx− x∥ ≤ 2

⃦⃦⃦⃦
⃦ ∑︂

m>mε

1
2m
e2m+1

⃦⃦⃦⃦
⃦ < ε.

Hence 2mε · N0 ⊂ NT (x,B(x, ε)), so x ∈ ∆∗Rec(T ) since 2m · N0 ∈ ∆∗ for all m ∈ N.

(2) span{T nx : n ∈ N0} is infinite-dimensional: otherwise there would exist a polynomial

p(z) =
N∑︂

i=1
aiz

i with ai ∈ K and aN ̸= 0 such that p(T )x = 0,

and taking m0 ∈ N such that N < 2m0 we would arrive to the contradiction

0 = [p(T )x]2m0 +1+N =
[︂
aN · TNx

]︂
2m0 +1+N

= aN

2m0
̸= 0.

We finally state the desired lineability results:

Theorem 5.5 (Lineability). Let F be a Furstenberg family with the property that the inclusion

span(E(S)) ⊂ FRec(S),

holds for every linear dynamical system (Y, S). Then, for each F-recurrent linear system (X,T )
there exists an infinite-dimensional T -invariant vector subspace Z ⊂ X with the property that

ZN ⊂ FRec(T(N)) for every N ∈ N.

Proof. By assumption FRec(T ) is dense. We distinguish two cases:

(1) If span(E(T )) is finite-dimensional (or simply if it is not dense in X), then we have that
FRec(T ) \ span(E(T )) ̸= ∅ and Lemma 5.3 yields the desired vector subspace.

(2) If span(E(T )) is infinite-dimensional, then (span(E(T )))N = span(E(T(N))) ⊂ FRec(T(N))
for every N ∈ N, and Z := span(E(T )) is the required vector subspace.
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The previous theorem is “optimal” for the families considered in this paper: we always have
the inclusions

Per(T ) ⊂ span(E(T )) ⊂ ∆∗Rec(T ),

and we observed in Section 4 that the families F for which FRec(T ) ⊂ ∆∗Rec(T ) are such that
FRec(T ) ⊂ Per(T ), for every system (X,T ). We deduce (at least) the following result:

Corollary 5.6. Let (X,T ) be a linear dynamical system. If the linear operator T is recurrent
(resp. AP, reiterative, U-frequent, frequent, uniformly, IP∗ or ∆∗-recurrent), then the set
Rec(T ) (resp. APRec(T ), RRec(T ), UFRec(T ), FRec(T ), URec(T ), IP∗Rec(T ) or ∆∗Rec(T ))
admits an infinite-dimensional T -invariant vector space, and in particular it is lineable.

Theorem 5.5 (and hence Corollary 5.6) is still true with the same proof if we replace the
original assumption that “T is F-recurrent” by the very much less restrictive hypothesis that
“FRec(T ) is dense in some infinite-dimensional closed subspace Y ⊂ X”, or even by the
formally weaker assumption that “FRec(T ) spans an infinite-dimensional vector subspace”.
These are also necessary conditions for the lineability property as the following example shows:

Example 5.7. Let X = c0(N) or ℓp(N) for some 1 ≤ p < ∞ with their usual norm. Let
(λn)n∈N ⊂ C be a bounded sequence and take the multiplication operator defined as

T ((xn)n∈N) := (λnxn)n∈N for each (xn)n∈N ∈ X.

For any fixed any N ∈ N, consider a sequence (λn)n∈N with the properties that λn = 1 for
n ≤ N and λn /∈ T for n > N . Then it is trivial to check that, for any Furstenberg family F ,
the set FRec(T ) = span(FRec(T )) is exactly a finite-dimensional subspace of dimension N .

5.2 Dense Lineability

Given a topological vector space X and a subset of vectors Y ⊂ X with some property, we say
that Y is dense lineable if there exists a dense infinite-dimensional vector subspace Z ⊂ X such
that Z \ {0} ⊂ Y . As it happens for lineability, given a linear system (X,T ) we always have
that 0 ∈ FRec(T ) for every family F , so the set of F -recurrent vectors will be dense lineable
if it admits a dense infinite-dimensional vector space (including the zero-vector).

Given a linear dynamical system (X,T ) we provide some sufficient conditions for the set
FRec(T ) to be dense lineable. Filters will play a fundamental role in our study. The motivation
for our main result (see Theorem 5.8 below) is again the notion of quasi-rigidity:

– quasi-rigidity implies that Rec(T ) = IRec(T ) is dense lineable (see Proposition 2.7);

– quasi-rigidity coincides with F(A)-recurrence, and F(A) is a filter (see Proposition 4.5);

– i.e. there is a dense set Y ⊂ X and a filter F ′ = F(A) such that Npr(Y ) ⊂ F ′ ⊂ I.

We can generalize these ideas to arbitrary Furstenberg families F , finding some filter F ′

contained in F . In particular, we extend [BGELMP22, Theorem 6.1] where it is shown that
the set of IP∗-recurrent vectors is always a vector subspace:
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5. Infinite-dimensional vector spaces in FRec(T )

Theorem 5.8 (Dense Lineability). Let (X,T ) be a linear dynamical system and let F be a
Furstenberg family. If there exist a dense subset Y ⊂ X and a filter F ′ such that

Npr(Y ) ⊂ F ′ ⊂ F ,

then Z := span(⋃︁S∈CT
S(Y )) ⊂ X is a dense infinite-dimensional T -invariant vector subspace

with the property that ZN ⊂ FRec(T(N)) for every N ∈ N. In particular, if F is a filter itself,
then for every N ∈ N we have the equality FRec(T )N = FRec(T(N)), which is a T -invariant
vector subspace of XN , and the following statements are equivalent:

(i) T is F-recurrent;

(ii) FRec(T(N)) is a dense infinite-dimensional vector subspace of XN for every N ∈ N.

Proof. It is clear that Z ⊂ X is a dense infinite-dimensional T -invariant vector subspace. Let
us show that Npr(Z) ⊂ F ′: given y1, y2, ..., yN ∈ ⋃︁

S∈CT
S(Y ) and any neighbourhood U ⊂ X of

x := ∑︁N
i=1 yi ∈ Z we can find neighbourhoods Ui of yi, for 1 ≤ i ≤ N , such that

N∑︂
i=1

Ui ⊂ U ⊂ X and hence NT (x, U) ⊃
N⋂︂

i=1
NT (yi, Ui) ∈ F ′,

since Npr({yi}) ⊂ F ′ for all 1 ≤ i ≤ N by Theorem 4.19. Finally, given any N ∈ N,
x1, x2, ..., xN ∈ Z and any neighbourhood V ⊂ XN of the N -tuple z := (x1, ..., xN) ∈ XN ,
we can find neighbourhoods Vi of zi, for 1 ≤ i ≤ N , such that

V1 ⊕ · · · ⊕ VN ⊂ V ⊂ XN and hence NT(N)(z, V ) ⊃
N⋂︂

i=1
NT (zi, Vi) ∈ F ′ ⊂ F .

The arbitrariness of V ⊂ XN implies that z ∈ FRec(T(N)).

Note that Theorem 5.8 extends the result obtained in Proposition 2.7 to every N -fold direct
sum operator. Moreover, in view of Theorems 4.19 and 5.8 we can generalize Proposition 2.9
establishing, for dense lineability, the following (natural) sufficient conditions:

Proposition 5.9. Let (X,T ) be a linear dynamical system and let F be a Furstenberg family.
If T admits an F-recurrent vector x ∈ FRec(T ) with a dense CT -orbit

CT (x) = {Sx : S ∈ CT },

then FRec(T(N)) is dense lineable in XN for every N ∈ N. In particular, the later is true
whenever any of the following holds:

– T admits an F-recurrent and cyclic vector;

– T admits an F-hypercyclic vector.

Proof. Given a vector x ∈ FRec(T ) for which CT (x) is dense in X, Theorem 4.19 implies that
Npr(CT (x)) ⊂ Npr({x}) ⊂ F and the result follows from Theorem 5.8.
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The dense lineability of the set FRec(T(N)) implies that T(N) is F -recurrent. A slightly
weaker hypothesis allows us to keep the F -recurrence of every N -fold direct product:

Proposition 5.10 (F-recurrence for all T(N)). Let (X,T ) be a linear dynamical system and
let F be a Furstenberg family. If T is F-recurrent and if there exists a vector x ∈ X with a
dense CT -orbit

CT (x) = {Sx : S ∈ CT },
then T(N) : XN −→ XN is F-recurrent for every N ∈ N. In particular, the later is true
whenever any of the following holds:

– T is F-recurrent and cyclic;

– T is F-recurrent and hypercyclic.

This has been recently proved in [CM, Proposition 2.7], but we repeat here the argument
for the sake of completeness:

Proof. Fix N ∈ N. By Theorem 4.19 we have the inclusion

Y :=
⋃︂

y∈FRec(T )
CT (y)N ⊂ FRec(T(N)),

so it is enough to show that Y is dense in XN . By assumption the point x ∈ X has a
dense CT -orbit, so given any non-empty open subset U ⊂ XN there are N continuous maps
S1, S2, ..., SN ∈ CT such that (S1x, S2x, ..., SNx) ∈ U . By the continuity of S1, S2, ..., SN , and
since T is F -recurrent, we can find y ∈ FRec(T ) near enough to x such that

(S1y, S2y, ..., SNy) ∈ CT (y)N ∩ U ⊂ Y ∩ U.

Remark 5.11. We include here some comments about the previous results:

(a) Proposition 5.10 remains valid for non-linear dynamical systems. It is a slight improvement
of [CMP14, Theorem 9.1] in terms of Furstenberg families and non-linear commuting maps,
and it has been independently proved in the recent work [CM, Proposition 2.7].

(b) Given a Furstenberg family F , the following is a natural open question:

Problem 5.12. Suppose that a linear dynamical system (X,T ) does not admit any dense
CT -orbit. Can every N -fold direct sum (XN , T(N)) be F -recurrent?

(c) The assumptions of Proposition 5.9 imply those of Proposition 5.10. Conversely:

Problem 5.13. Let F be a Furstenberg family. Can an F -recurrent linear system (X,T )
admit dense CT -orbits but fulfill that FRec(T ) ∩ {x ∈ X : CT (x) = X} = ∅?

This seems to be a tough question since the commutator of an operator is usually difficult
to describe. If instead of dense CT -orbits we just consider the set of hypercyclic vectors, then
the answer is yes: Menet constructed a chaotic (and hence with dense periodic vectors)
operator T , which is not U -frequently hypercyclic (see [Men17]), i.e.

– Such an operator T fulfills the assumptions of Proposition 5.10 for every Furstenberg
family F satisfying that ∆∗ ⊂ F ⊂ D, but it has no F-recurrent and hypercyclic vector.
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Considering now the set of cyclic (instead of the dense CT -orbit or hypercyclic) vectors,
then Corollary 2.11 and Proposition 5.9 imply that:

– If (X,T ) is a recurrent and cyclic linear dynamical system, then the set Rec(T(N)) is
dense lineable for every N ∈ N.

In general we cannot change Rec(T(N)) into FRec(T(N)) unless we could ensure that FRec(T )
is a co-meager set. This is the case for AP-recurrence (see [KLOY17, CM22b]):

– If (X,T ) is an AP-recurrent (i.e. multiple recurrent) and cyclic linear dynamical system,
then the set APRec(T(N)) is dense lineable for every N ∈ N.

In [BGELMP22, Example 2.4] it is exhibited a BD-recurrent (i.e. reiteratively recurrent)
operator T ∈ L(X) for which the set BDRec(T ) = RRec(T ) is meager. Such an operator
T is not cyclic, and in view of [BGELMP22, Theorem 2.1] (result which states that: the
set of BD-recurrent vectors is co-meager for every BD-recurrent and hypercyclic operator)
the following question is then a natural open problem:

Problem 5.14. Let (X,T ) be a BD-recurrent (i.e. reiteratively recurrent) and cyclic linear
dynamical system. Is RRec(T ) a co-meager set?

5.3 Dense Lineability for F-hypercyclicity

Under some natural conditions on the Furstenberg family F we can apply the F -recurrence
theory developed above in order to obtain some results regarding F -hypercyclicity. We will
consider right-invariant and upper Furstenberg families. Let us recall the definitions:

A family F is said to be right-invariant if for every A ∈ F and every n ∈ N0 the set
A+ n = {k + n : k ∈ A} also belongs to F . For example, the families I,AP ,S, T , T S, I∗ and
the density ones are easily seen to be right-invariant. However, the families IP and ∆ together
with their dual families IP∗ and ∆∗ are not right-invariant (see [BMPP19, Proposition 5.6]).

It is shown in [BGELMP22] that given any right-invariant Furstenberg family F , then every
single F -recurrent and hypercyclic vector is indeed F -hypercyclic. As a consequence we obtain
a kind of Herrero-Bourdon theorem (see [GEP11, Theorem 2.55]) for F -hypercyclicity:

Corollary 5.15. Let (X,T ) be a linear dynamical system and assume that F is a right-invariant
Furstenberg family. If x is an F-hypercyclic vector for T , then

{p(T )x : p polynomial} \ {0},

is a dense set of F-hypercyclic vectors. In particular, any F-hypercyclic operator admits a
dense invariant vector space consisting, except for zero, of F-hypercyclic vectors.

Proof. Follows from the original Herrero-Bourdon theorem, together with Theorem 4.19 and
the equality

FHC(T ) = FRec(T ) ∩ HC(T ),

showed in [BGELMP22] for every right-invariant Furstenberg family F .
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Apart from right-invariance we may assume the u.f.i. upper condition (defined in [BGE18])
to obtain even stronger results: a family F is said to be upper if it can be written as

F =
⋃︂

δ∈D

Fδ with Fδ =
⋂︂

m∈M

Fδ,m

for sets Fδ,m ⊂ P(N0) such that δ ∈ D and m ∈ M , where D is arbitrary, M is countable and
they have the following properties:

(i) for any Fδ,m and any A ∈ Fδ,m there exists a finite set F ⊂ N0 such that

A ∩ F ⊂ B implies B ∈ Fδ,m;

(ii) for any A ∈ F there exists some δ ∈ D such that for all n ∈ N0 we have

(A− n) ∩ N0 ∈ Fδ.

We say that an upper family F as above is uniformly finitely invariant (called u.f.i. for short),
if for any A ∈ F , there is some δ ∈ D such that, for all n ∈ N, A ∩ [n,∞[∈ Fδ.

The families I,AP ,BD and D are easily checked to be u.f.i. upper, while D is not even upper
(see [BGE18, CM22b])G. As it is shown in [BGE18], there exists a kind of Birkhoff transitivity
theorem for these u.f.i. upper families, and in particular, the following holds:

Corollary 5.16. Let (X,T ) be an F-recurrent linear dynamical system where F is a u.f.i.
upper Furstenberg family. If there is a dense set X0 ⊂ X such that T nx → 0 for each x ∈ X0,
then the set FRec(T(N)) is dense lineable for every N ∈ N. In particular:

(a) If T is recurrent then Rec(T(N)) is dense lineable for every N ∈ N;

(b) If T is AP-recurrent then APRec(T(N)) is dense lineable for every N ∈ N;

(c) If T is reiteratively recurrent then RRec(T(N)) is dense lineable for every N ∈ N;

(d) If T is U-frequently recurrent then UFRec(T(N)) is dense lineable for every N ∈ N.

Proof. By [BGELMP22, Theorem 8.5], if T is F -recurrent for a u.f.i. upper family F and if
there exists a dense set of vectors x ∈ X such that T nx → 0 as n → ∞, then T is F -hypercyclic.
By Proposition 5.9 the set FRec(T(N)) is then dense lineable for every N ∈ N. The particular
cases follow from the fact that I, AP , BD and D are u.f.i. upper Furstenberg families.

Moreover, if we consider the Furstenberg family BD of positive upper Banach density sets
we can prove a particular case of [EEM21, Theorem 2.5 and Corollary 2.8] in a much simpler
way, which is also a particular case of [CM, Proposition 2.8]:

Corollary 5.17 ([EEM21, Theorem 2.5 and Corollary 2.8]). Let (X,T ) be a reiteratively
hypercyclic linear system. Then T(N) : XN −→ XN is reiteratively hypercyclic for every N ∈ N.

Proof. By [BMPP16, Proposition 4] we have that T(N) is hypercyclic. By Corollary 5.10 we
have that T(N) is reiteratively recurrent. By [BGELMP22, Theorem 2.1] every hypercyclic
vector for T(N) is also reiteratively hypercyclic, so that T(N) is reiteratively hypercyclic.

GSee Example 3.2 in Section 3 of the Appendix for more on u.f.i. upper Furstenberg families.
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6 Open problems

In this section we include three open questions and a few comments related to them. They
essentially ask “what happens if we cannot apply Theorem 5.8”:
Problems 6.1. Let F be a Furstenberg family and assume that it is not a filter. Suppose that
T ∈ L(X) is a continuous linear F -recurrent operator:

(a) Is the set FRec(T(N)) necessarily dense lineable for every N ∈ N?

(b) Is the set FRec(T ) necessarily dense lineable?

(c) Is T ⊕ T necessarily an F -recurrent operator?

Note that Problems (b) and (c) are weaker questions than Problem (a), i.e. a positive
answer to (a) would imply a positive answer to both (b) and (c). However, for usual recurrence
(i.e. for I-recurrence) we already have a negative answer to Problems (a) and (c):

– in Section 3 we construct recurrent operators T ∈ L(X) for which T ⊕ T is not recurrent.

Nevertheless, that example is not solving Problem (b) in the negative since the mentioned
operator fulfills that Rec(T ) = X. Thus, finding a possible recurrent operator T for which the
set Rec(T ) is not dense lineable demands to solve again the T ⊕ T -recurrence problem. It is
not hard to check that all the operators constructed in Section 3 have a dense lineable set of
AP-recurrent vectorsH. In particular:

– there exist multiple recurrent operators T ∈ L(X) for which T ⊕ T is not even recurrent;

and the same comments done for usual recurrence hold for AP-recurrence. These arguments
are not valid for the other recurrence notions considered in this document:
Proposition 6.2. Let (X,T ) be a reiteratively recurrent linear dynamical system. Then T is
a quasi-rigid operator, and hence Rec(T(N)) is dense lineable for every N ∈ N.

Proof. Following [BMPP16, Proposition 4] and [BMPP19, Proposition 5.6]: given a non-empty
subset U ⊂ X we can pick a vector x ∈ RRec(T ) ∩U and hence Bd(NT (x, U)) > 0. Recall that(︂

NT (x, U) −NT (x, U)
)︂

:= {s2 − s1 : s1 ≤ s2 ∈ NT (x, U)} ⊂ {n ≥ 0 : T n(U) ∩ U ̸= ∅} .

Since given A ⊂ N0 with A ∈ BD we have that A−A belongs to ∆∗ by [Fur81, Theorem 3.18]I,
then: for every non-empty open subset U ⊂ X we have that

{n ≥ 0 : T n(U) ∩ U ̸= ∅} ∈ ∆∗.

Since ∆∗ is a filter (see [BD08, HS98]) it is easily checked that every N -fold direct sum
(XN , T(N)) is topologically recurrent. By Theorem 2.5 we have that T is quasi-rigid and finally
Proposition 2.7 (or Theorem 5.8) implies that Rec(T(N)) is dense lineable for every N ∈ N.

Proposition 6.2 together with the very recent results [GLM23, Theorems 5.1 and 5.8] show
that Problems (a), (b) and (c) may have a positive answer for Furstenberg families implying
stronger recurrence notions than those of usual and AP-recurrence.

HThe proof of this fact has been included in Section 2.3 of the General discussion of the results.
ISee also statement (e) of Proposition 2.10 in Section 2 of the Appendix.
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Abstract

We study the spaceability of the set of recurrent vectors Rec(T ) for an operator T : X −→ X on
a Banach space X. In particular: we find sufficient conditions for a quasi-rigid operator to have a
recurrent subspace; when X is a complex Banach space we show that having a recurrent subspace
is equivalent to the fact that the essential spectrum of the operator intersects the closed unit disc;
and we extend the previous result to the real case through some complexification techniques. As a
consequence we obtain that: a weakly-mixing operator on a real or complex separable Banach space
has a hypercyclic subspace if and only if it has a recurrent subspace. The results exposed exhibit a
symmetry between the hypercyclic and recurrent spaceability theories showing that, at least for the
spaceable property, hypercyclicity and recurrence can be treated as equals.
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Chapter 4. Recurrent subspaces in Banach spaces

1 Introduction

In Linear Dynamics the interest in hypercyclicity comes from the invariant subset problem,
which remains open for operators acting on Hilbert spaces: an operator has no non-trivial
invariant closed subset if and only if each non-zero vector is hypercyclic for it. This motivated
the study of the structure of the set of hypercyclic vectors, and it is well-known due to Herrero
and Bourdon that such a set is always dense lineable, i.e. every hypercyclic operator admits
a (not necessarily closed) dense invariant subspace that consists (except for the zero-vector)
entirely of hypercyclic vectors; see [GEP11, Theorem 2.55]. The spaceability (i.e. the property
of admitting an infinite-dimensional closed subspace) of such a set has also been deeply studied
and, for the case of operators acting on Banach spaces, we will follow the basic references
[MR96, LSMR97, LSMR01, GLSMR00], [BM09, Chapter 8] and [GEP11, Chapter 10].

In its turn, recurrence is one of the fundamental concepts in dynamics since the beginning
of the theory at the end of the 19th century when Poincaré introduced his recurrence theorem,
even though most of the literature in the context of Linear Dynamics is built around the
central concept of hypercyclicity. In fact, we refer to the 2014 paper of Costakis, Manoussos
and Parissis [CMP14] as the beginning of the systematic study of linear recurrence, despite
the great non-linear dynamical knowledge already existing in this area; see [Fur81]. The linear
structure of the set of recurrent vectors has been recently studied, and results about lineability
and dense lineability have been obtained; see [GLMP]. The aim of this paper is rewriting the
already existent hypercyclic spaceability theory on Banach spaces for recurrence and, moreover,
linking both concepts in a deep way when we consider weakly-mixing operators.

The paper is organized as follows. In Section 2 we introduce the notation, basic concepts and
the historical development of the hypercyclic spaceability theory on Banach spaces. In Section 3
we present the obtained results about the spaceability of the recurrent vectors by establishing
a symmetry with the hypercyclic case. Section 4 is devoted to prove sufficient conditions for a
quasi-rigid operator to have a recurrent subspace. In Section 5 we study the essential spectrum
for recurrent operators and its consequences on the existence of recurrent subspaces when the
underlying space is complex. Finally, Section 6 exhibits the real case of the previous results
while in Section 7 we investigate their applications and we show that every C-type operator, as
defined in the recent works [Men17] and [GMM21], has a hypercyclic subspace.

2 Notation and basic concepts

2.1 General background

From now on let T : X −→ X be a bounded linear operator on a (real or complex) separable
infinite-dimensional Banach space X, denote by L(X) the set of bounded linear operators acting
on such a space X, and let K be the real or complex field, R or C. We say that a subset of
vectors Y ⊂ X is spaceable if there exists an infinite-dimensional closed subspace Z ⊂ X such
that Z \ {0} ⊂ Y . In this paper we will study the spaceability property for subsets of vectors
with certain dynamical attributes. Given a vector x ∈ X we will denote its T -orbit by

Orb(x, T ) := {T nx : n ∈ N0},

where N0 = N ∪ {0}, and we are interested in the dynamical properties:
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2. Notation and basic concepts

(a) hypercyclicity: a vector x ∈ X is called hypercyclic for T if its T -orbit is dense in X. We
denote by HC(T ) the set of such vectors, and T is called hypercyclic if HC(T ) is non-empty;

(b) recurrence: a vector x ∈ X is called recurrent for T if there exists an increasing sequence
(kn)n∈N of natural numbers for which T knx → x. We denote by Rec(T ) the set of such
vectors, and we say that T is recurrent if Rec(T ) is dense in X.

Following the notation of [LSMR01, GLSMR00], [BM09, Chapter 8], [GEP11, Chapter 10],
and having present that the vector 0 ∈ X is always a recurrent vector for any operator:

Definition 2.1. Let X be a (real or complex) Banach space and T ∈ L(X):

(a) a hypercyclic subspace for T is an infinite-dimensional closed subspace Z ⊂ X with the
property that Z \ {0} ⊂ HC(T );

(b) a recurrent subspace for T is an infinite-dimensional closed subspace Z ⊂ X with the
property that Z ⊂ Rec(T ).

In the next subsection we recall the existent hypercyclic spaceability theory for operators
acting on Banach spaces, pointing out the similarities that we will find in the recurrent case.

2.2 Hypercyclic subspaces

The first known result, which established sufficient conditions for a general operator to have a
hypercyclic subspace, is due to A. Montes-Rodríguez [MR96]:

Theorem 2.2 ([MR96]). Let X be a (real or complex) separable Banach space and T ∈ L(X).
Assume that there is an increasing sequence of integers (kn)n∈N such that:

(a) T satisfies the Hypercyclicity Criterion with respect to (kn)n∈N;

(b) there is an infinite-dimensional closed subspace E ⊂ X such that T knx → 0 for all x ∈ E.

Then T has a hypercyclic subspace.

One may note various things when looking at Theorem 2.2:

– the original statement used the whole sequence (kn)n∈N = (n)n∈N, i.e. T was required to satisfy
the Kitai’s Criterion instead of the more refined Hypercyclicity Criterion (see [LSM06]);

– it is now well-known (due to J. Bès and A. Peris [BP99]) that an operator T ∈ L(X) satisfies
the Hypercyclicity Criterion if and only if it is weakly-mixing, i.e. if and only if the N -fold
direct sum operator T ⊕ · · · ⊕ T is hypercyclic for every N ∈ N;

– however, the sequence with respect to which conditions (a) and (b) are satisfied must coincide,
so a priori one cannot exchange the hypothesis that “T satisfies the Hypercyclicity Criterion
with respect to (kn)n∈N” by the apparently equivalent “T is weakly-mixing”;

– there exists a nice alternative proof for Theorem 2.2 given by K. Chan (see [Cha99, CT01]).
We will not use that approach here, but it is worth mentioning that it also needs to assume
both (a) and (b) conditions with respect to the same sequence (kn)n∈N.
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The next result that appeared about the existence of hypercyclic subspaces for operators
acting on Banach spaces is due to F. León-Saavedra and A. Montes-Rodríguez [LSMR97]. They
showed that Theorem 2.2 applies for weakly-mixing compact perturbations of the identity:

Theorem 2.3 ([LSMR97]). Let X be a (real or complex) separable Banach space and consider
any T ∈ L(X). Assume that T is weakly-mixing and that there exists some compact operator
K such that ∥T −K∥ ≤ 1. Then T has a hypercyclic subspace.

Note that, contrary to Theorem 2.2, no assumption on the sequence with respect to which T
satisfies the Hypercyclicity Criterion is necessary for Theorem 2.3 and, indeed, we have stated
the result with the weak-mixing assumption. The development of the theory followed by giving
a complete characterization of the operators that admit a hypercyclic subspace, provided they
are weakly-mixing. This was first established by F. León-Saavedra and A. Montes-Rodríguez
for Hilbert spaces [LSMR01], and later by M. González and the previous two authors for the
general Banach space case [GLSMR00].

To state the announced characterization we move into the complex setting, and in fact,
we need the concept of essential spectrum for an operator acting on a complex Banach space
(see [Con89]). We also introduce the concept of left-essential spectrum, since it turns out to be
an important tool for the result and we also use it along the paper (see Section 5):

Definition 2.4. Let X be a complex Banach space and let K(X) be the two-sided ideal of L(X)
consisting of all compact operators on X. Given T ∈ L(X) we denote by [T ]L/K the image of
the operator T under the standard projection L(X) ↪→ L(X)/K(X), where the Banach algebra
L(X)/K(X) is the known Calkin algebra. Then:

(a) the left-essential spectrum of T is the compact set of complex numbers

σℓe(T ) =
{︂
λ ∈ C : [T − λ]L/K is not left-invertible in L(X)/K(X)

}︂
;

(b) the essential spectrum of T is the compact set of complex numbers

σe(T ) =
{︂
λ ∈ C : [T − λ]L/K is not invertible in L(X)/K(X)

}︂
.

In Section 5 we recall the relation between the previous concepts and the so-called Fredholm
and semi-Fredholm operators. For the moment, and setting D := {z ∈ C : |z| < 1}, we are able
to state the mentioned characterization:

Theorem 2.5 ([GLSMR00]). Let X be a complex separable Banach space and let T ∈ L(X).
If T is weakly-mixing, then the following statements are equivalent:

(i) T has a hypercyclic subspace;

(ii) there exists an infinite-dimensional closed subspace E ⊂ X and an increasing sequence of
integers (ln)n∈N such that T lnx → 0 for all x ∈ E;

(iii) there exists an infinite-dimensional closed subspace E ⊂ X and an increasing sequence of
integers (ln)n∈N such that supn∈N ∥T ln|E∥ < ∞;

(iv) the essential spectrum of T intersects the closed unit disk, i.e. σe(T ) ∩ D ̸= ∅.
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Theorem 2.5 contains the complex cases of Theorems 2.2 and 2.3, the second being true since
the compact perturbation of any operator preserves its essential spectrum. As we have already
mentioned the weakly-mixing property is a really important tool in the three stated results, but
in order to conclude the existence of a hypercyclic subspace there is always a second assumption
about the “regularity” of the operator T on some subspace of X.

3 Recurrent subspaces

If we want to rewrite the previous theory for recurrence, then we should introduce the analogous
ingredients to those observed in Theorems 2.2, 2.3 and 2.5. First of all we need the operator
T ∈ L(X) to have a recurrence property similar to the weak-mixing condition:

– the N-fold direct sum operator T ⊕ · · · ⊕ T has to be recurrent for every N ∈ N.

It has been recently shown that, for separable Banach spaces, this property is equivalent to the
notion of quasi-rigidity (see [GLMP]):

Definition 3.1 ([GLMP]). We say that T ∈ L(X) is quasi-rigid with respect to an increasing
sequence (kn)n∈N if there exists a dense subset Y ⊂ X such that T knx → x for all x ∈ Y .

Secondly, we need an assumption about the “regularity” of the operator T . In Theorem 2.2
this assumption was condition (b). However, we would like the identity operator I : X −→ X
to fulfill the main theorems of the recurrent spaceability theory, so we will use a more realistic
condition than that of having, for a recurrent (and not necessarily hypercyclic) operator, an
infinite-dimensional closed subspace of vectors with 0-convergent sub-orbits:

Theorem 3.2. Let X be a (real or complex) separable Banach space and let T ∈ L(X). Assume
that there is an increasing sequence of integers (kn)n∈N such that:

(a) T is quasi-rigid with respect to (kn)n∈N;

(b) there exists a non-increasing sequence (En)n∈N of infinite-dimensional closed subspaces of
the space X such that supn∈N

⃦⃦⃦
T kn|En

⃦⃦⃦
< ∞.

Then T has a recurrent subspace. In particular, there exists an infinite-dimensional closed
subspace F ⊂ X and a subsequence (ln)n∈N of (kn)n∈N such that T lnx → x for all x ∈ F , so

F ⊕ · · · ⊕ F ⊂ Rec(T ⊕ · · · ⊕ T )

for every N-fold direct sum operator T ⊕ · · · ⊕ T : X ⊕ · · · ⊕X −→ X ⊕ · · · ⊕X.

Theorem 3.2 can be compared with Theorem 2.2. Condition (b) of Theorem 3.2 is satisfied
by the identity operator and, for recurrent (and not necessarily hypercyclic) operators, it is
a more suitable assumption than the original condition (b) of Theorem 2.2. The proof of
Theorem 3.2 is highly based on the arguments and basic sequence’s techniques used in the
proof of Theorem 2.2 (see Section 4). In particular, our proof can be compared with the very
well-known results [LSM06, Theorem 20] or [GEP11, Theorem 10.29], where condition (b) of
Theorem 3.2 was already used to obtain the existence of hypercyclic subspaces.
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An application of the Banach-Steinhaus theorem together with Theorem 3.2 yields that,
given a (real or complex) Banach space X and given T ∈ L(X) a quasi-rigid operator with
respect to the sequence (kn)n∈N, the following conditions are equivalent:

– there exists an infinite-dimensional closed subspace E ⊂ X and a subsequence (ln)n∈N of
(kn)n∈N such that T lnx → x for all x ∈ E;

– there exists an infinite-dimensional closed subspace E ⊂ X and a subsequence (ln)n∈N of
(kn)n∈N such that (T lnx)n∈N converges in X for all x ∈ E;

– there exists an infinite-dimensional closed subspace E ⊂ X and a subsequence (ln)n∈N of
(kn)n∈N such that (T lnx)n∈N is bounded in X for all x ∈ E;

– there exists an infinite-dimensional closed subspace E ⊂ X and a subsequence (ln)n∈N of
(kn)n∈N such that supn∈N ∥T ln|E∥ < ∞;

– there exists a non-increasing sequence (En)n∈N of infinite-dimensional closed subspaces of X
and a subsequence (ln)n∈N of (kn)n∈N such that supn∈N

⃦⃦⃦
T ln|En

⃦⃦⃦
< ∞;

and if any of them holds, then T has a recurrent subspace.

A stronger result is true: following [LSMR01, GLSMR00] and [BM09, Chapter 8] and the
philosophy of Theorem 2.5 we can establish the equivalence between the previous statements
and the (apparently weaker) condition of admitting a recurrent subspace:

Theorem 3.3. Let X be a complex separable Banach space and T ∈ L(X). If T is quasi-rigid,
then the following statements are equivalent:

(i) T has a recurrent subspace;

(ii) there exists an infinite-dimensional closed subspace E ⊂ X and an increasing sequence of
integers (ln)n∈N such that T lnx → x for all x ∈ E;

(iii) there exists an infinite-dimensional closed subspace E ⊂ X and an increasing sequence of
integers (ln)n∈N such that supn∈N ∥T ln|E∥ < ∞;

(iv) the essential spectrum of T intersects the closed unit disk, i.e. σe(T ) ∩ D ̸= ∅.

Theorem 3.3 reaffirms the fact that quasi-rigidity is, for recurrence, the analogous property
to that of weak-mixing for hypercyclicity. The proof of Theorem 3.3 (see Section 5) is highly
based on the proof of Theorem 2.5, but we shall study the structure of the essential spectrum
for recurrent operators in order to complete the different implications required.

In view of Theorems 2.5 and 3.3 we deduce that:

– A weakly-mixing operator on a complex separable Banach space has a hypercyclic subspace if
and only if it has a recurrent subspace.
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However, we can also prove that equivalence for operators acting on real Banach spaces by
using some complexification’s techniques (see [MST99, MMFPSS22]): for a real Banach space
(X, ∥ · ∥) the complexification ˜︂X of X is defined formally as the vector space

˜︂X := {x+ iy : x, y ∈ X} ,

which can be (algebraically and topologically) identified with X ⊕X. Indeed, if we define the
multiplication by complex scalars as (a+ ib)(x+ iy) = (ax− by) + i(ay + bx), for any a, b ∈ R
and x, y ∈ X, then ˜︂X becomes a complex Banach space with the norm

∥x+ iy∥c := sup
t∈[0,2π]

∥ cos(t)x− sin(t)y∥,

for x, y ∈ X. It is easy to check that ∥ · ∥c is a C-homogeneous norm that endows ˜︂X = X + iX
with an homeomorphic topology to that of the usual direct sum space X ⊕X, and the map

J : ˜︂X −→ X ⊕X with J(x+ iy) = (x, y) ∈ X ⊕X,

is an R-isomorphism. Given a (real-linear) operator T : X −→ X on the real Banach space X,
the complexified operator (or simply its complexification) ˜︁T : ˜︂X −→ ˜︂X is defined by

˜︁T (x+ iy) = Tx+ iTy for every x, y ∈ X,

which is a (complex-linear) operator on the (complex) Banach space ˜︂X. It is easily seen that˜︁T is conjugate to T ⊕ T via J , i.e. J ◦ ˜︁T = T ⊕ T ◦ J , and also that ∥T∥ = ∥ ˜︁T∥.
By using this complex structure we can state the real version of Theorems 2.5 and 3.3:

Theorem 3.4. Let X be a real separable Banach space and let T ∈ L(X):

(a) If T is weakly-mixing, then the following statements are equivalent:

(i) T has a hypercyclic subspace;
(ii) there exists an infinite-dimensional closed subspace E ⊂ X and an increasing sequence

of integers (ln)n∈N such that T lnx → 0 for all x ∈ E;
(iii) there exists an infinite-dimensional closed subspace E ⊂ X and an increasing sequence

of integers (ln)n∈N such that supn∈N ∥T ln|E∥ < ∞;
(iv) the essential spectrum of the complexification ˜︁T : ˜︂X −→ ˜︂X intersects the closed unit

disk, i.e. σe( ˜︁T ) ∩ D ̸= ∅.

(b) If T is quasi-rigid, then the following statements are equivalent:

(i) T has a recurrent subspace;
(ii) there exists an infinite-dimensional closed subspace E ⊂ X and an increasing sequence

of integers (ln)n∈N such that T lnx → x for all x ∈ E;
(iii) there exists an infinite-dimensional closed subspace E ⊂ X and an increasing sequence

of integers (ln)n∈N such that supn∈N ∥T ln|E∥ < ∞;
(iv) the essential spectrum of the complexification ˜︁T : ˜︂X −→ ˜︂X intersects the closed unit

disk, i.e. σe( ˜︁T ) ∩ D ̸= ∅.
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Theorem 3.4 is a modest extension of the previous theory to the real setting. Its proof is
highly based on the proofs of Theorems 2.5 and 3.3, but we require some basic lemmas in order
to pass from (hypercyclic or recurrent) subspaces for the real-linear system to subspaces for its
complexification and vice versa, see Section 6.

Since the weak-mixing property implies quasi-rigidity for every operator on a separable
Banach space (see [GLMP, Theorem 2.5]), from Theorems 2.5, 3.3 and 3.4 we obtain that:

Corollary 3.5. Let T : X −→ X be a weakly-mixing operator on a (real or complex) separable
Banach space X. Then the following statements are equivalent:

(i) T has a hypercyclic subspace;

(ii) T has a recurrent subspace.

4 Sufficient conditions for recurrent subspaces

In this section we prove Theorem 3.2. As in the proof of Theorem 2.2:

– we can extract a basic sequence from the family (En)n∈N of infinite-dimensional subspaces,
by using the Mazur theorem (see [LT77, Vol I, page 4] or [BM09, Lemma C.1.1]);

– we will “perturb” that basic sequence to obtain an equivalent one formed by vectors with a
strong recurrent property (see [BM09, Lemmas 8.4 and C.1.2] or [GEP11, Lemma 10.6]);

We refer to the textbooks [Die84, LT77] for any unexplained but standard notion about
Schauder basis and basic sequences.

4.1 Proof of Theorem 3.2

By the Mazur theorem (see [LT77, Vol I, page 4] or [BM09, Lemma C.1.1]) there exists a
normalized basic sequence (en)n∈N such that en ∈ En for each n ∈ N. This sequence is then a
Schauder basis of

E := span{en : n ∈ N}.

Moreover, for every strictly increasing sequence of integers (ln)n∈N, the sequence (eln)n∈N is a
normalized Schauder basis of the closed subspace

span {eln : n ∈ N} ⊂ E ⊂ X.

For each n ∈ N consider the coefficient functional e∗
n : E −→ K such that

⟨e∗
n, x⟩ = ⟨e∗

n,
∑︂
k∈N

akek⟩ = an for each x ∈ E with x =
∑︂
n∈N

anen.

The family (e∗
n)n∈N is uniformly continuous since the we have constructed a normalized basic

sequence (en)n∈N (see for instance [LT77, Vol. I, 1.b] or [BM09, Appendix C.1]). Denote by
∥e∗

n∥ the norm of e∗
n as a functional in E and write K := 1 + maxn∈N ∥e∗

n∥.
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4. Sufficient conditions for recurrent subspaces

By assumption (a) there is a dense subset Y of X such that T knx → x for every x ∈ Y .

Claim. There exists:

(1) an increasing sequence of integers (ln)n∈N, subsequence of (kn)n∈N;

(2) a sequence of vectors (fln)n∈N ⊂ Y , and the related sequence (gln)n∈N := (fln − eln)n∈N;

with the properties:

(i) ∥fln − eln∥ = ∥gln∥ < 1
2n+1K

for every n ∈ N;

(ii) ∥T ljgln∥ < 1
2j+n for each j ∈ N and n > j;

(iii) ∥T ljfln − fln∥ < 1
2j+n for each j ∈ N and 1 ≤ n ≤ j;

(iv) kln+1 > ln ∈ {kj : j ∈ N} for every n ∈ N.

Proof of the Claim. Suppose that we have constructed (fln)i
n=1 and (ln)i

n=1 with:

(i) ∥fln − eln∥ = ∥gn∥ < 1
2n+1K

for each n ≤ i;

(ii) ∥T ljgln∥ < 1
2j+n for each 1 ≤ j < i and i ≥ n > j;

(iii) ∥T ljfln − fln∥ < 1
2j+n for each 1 ≤ j ≤ i and 1 ≤ n ≤ j;

(iv) kln+1 > ln ∈ {kj : j ∈ N} for every n < i.

By the continuity of T there is ε > 0 such that

∥T ljy∥ < 1
2j+(i+1) for every 1 ≤ j ≤ i and y ∈ X with ∥y∥ < ε.

Therefore, taking fli+1 ∈ Y such that ∥fli+1 − eli+1∥ < max
{︂

1
2i+2K

, εi

}︂
we get

(i) ∥fli+1 − eli+1∥ = ∥gli+1∥ < 1
2(i+1)+1K

, which is (i) for i+ 1;

(ii) ∥T ljgli+1∥ < 1
2j+(i+1) for each 1 ≤ j < i+ 1, which is (ii) for i+ 1.

Choose li+1 ∈ {kj : j ∈ N} large enough such that kli+1 > li and ∥T li+1fln − fln∥ < 1
2(i+1)+n for

every 1 ≤ n ≤ i+ 1. This is possible since fln ∈ Y , and it implies (iii) and (iv) for i+ 1.

Once the Claim is proved, by condition (i) we get that
∑︂
n∈N

∥e∗
ln∥ · ∥fln − eln∥ =

∑︂
n∈N

∥e∗
ln∥ · ∥gln∥

(i)
<
∑︂
n∈N

1
2n+1 = 1

2 < 1,

so [BM09, Lemmas 8.4 and C.1.2] or [GEP11, Lemma 10.6] imply that (fln)n∈N is a basic
sequence equivalent to (eln)n∈N. It follows that (fln)n∈N is a Schauder basis of

F := span{fln : n ∈ N} ⊂ X,

which is an infinite-dimensional closed subspace of X.

139



Chapter 4. Recurrent subspaces in Banach spaces

We claim that T ljx → x for all x ∈ F : indeed, given x ∈ F there is a 0-convergent sequence
a = (an)n∈N ∈ c0(N) such that

x =
∑︂
n∈N

anfln =
∑︂
n∈N

an(eln + gln) =
∑︂
n∈N

aneln +
∑︂
n∈N

angln ,

where ∑︁n∈N aneln is convergent since (fln)n∈N and (eln)n∈N are equivalent basic sequences, and∑︁
n∈N angln is an absolutely convergent series by (i). Hence

∥T ljx− x∥ =
⃦⃦⃦⃦
⃦⃦
⎛⎝∑︂

n≤j

anT
ljfln

⎞⎠+ T lj

⎛⎝∑︂
n>j

angln

⎞⎠+ T lj

⎛⎝∑︂
n>j

aneln

⎞⎠−
∑︂
n∈N

anfln

⃦⃦⃦⃦
⃦⃦

≤

⃦⃦⃦⃦
⃦⃦∑︂

n≤j

an(T ljfln − fln)
⃦⃦⃦⃦
⃦⃦+

⃦⃦⃦⃦
⃦⃦∑︂

n>j

anT
ljgln

⃦⃦⃦⃦
⃦⃦+

⃦⃦⃦⃦
⃦⃦T lj

⎛⎝∑︂
n>j

aneln

⎞⎠⃦⃦⃦⃦⃦⃦+
⃦⃦⃦⃦
⃦⃦∑︂

n>j

anfln

⃦⃦⃦⃦
⃦⃦

≤ ∥a∥∞

⎛⎝∑︂
n≤j

∥T ljfln − fln∥ +
∑︂
n>j

∥T ljgln∥

⎞⎠

+
⃦⃦⃦
T lj |Elj+1

⃦⃦⃦
·

⃦⃦⃦⃦
⃦⃦∑︂

n>j

aneln

⃦⃦⃦⃦
⃦⃦+

⃦⃦⃦⃦
⃦⃦∑︂

n>j

anfln

⃦⃦⃦⃦
⃦⃦

(ii),(iii)
<

(iv),(b)
∥a∥∞

∑︂
i>j

1
2i

+ sup
n∈N

⃦⃦⃦
T kn|En

⃦⃦⃦
·

⃦⃦⃦⃦
⃦⃦∑︂

n>j

aneln

⃦⃦⃦⃦
⃦⃦+

⃦⃦⃦⃦
⃦⃦∑︂

n>j

anfln

⃦⃦⃦⃦
⃦⃦ −→ 0

when j → ∞ since (eln)n∈N and (fln)n∈N are basic sequences.

4.2 Comments on Theorem 3.2

The previous proof allows us to relax the hypothesis of Theorem 3.2 in two different ways: we
can delete the separability hypothesis; and we can assume just local quasi-rigidity:

Remark 4.1 (Non-Separability). The separability of the underlying space is crucial to study
hypercyclicity: Theorem 2.2 applies to bounded linear operators on separable Banach spaces.
However, as it is mentioned in [CMP14], the separability is not a necessary assumption for
recurrence: Theorem 3.2 is still true, with the same proof, for non-separable spaces.

Remark 4.2 (Local Quasi-Rigidity is allowed in Theorem 3.2). Suppose that (En)n∈N
is the non-increasing sequence of infinite-dimensional closed subspaces that comes from the
assumption (b) of Theorem 3.2. The proof of Theorem 3.2 still holds if we replace (a) by the
following much weaker condition:

(a∗) there is a set of vectors Y ⊂ X with E1 ⊂ Y such that T knx → x for all x ∈ Y .
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5. The complex case

This last condition is a kind of local quasi-rigidity. Note that, contrary to the hypercyclicity
case, an operator T does not need to be recurrent in order to have a recurrent subspace. For
instance, given λ ∈ R with |λ| ≠ 1 we can consider the operator

T := I ⊕ λI : X ⊕X −→ X ⊕X,

where I : X −→ X is the identity operator on a Banach space X. Clearly T is not a recurrent
operator (i.e. the set of recurrent vectors Rec(T ) is not dense) but it contains a recurrent
subspace. Note that T fulfills property (a∗) for any sequence (kn)n∈N whenever E1 ⊂ X ⊕ {0}.

5 The complex case

In this section the underlying Banach spaces X are assumed to be complex. Theorem 3.3 is
proved, characterising the quasi-rigid operators admitting a recurrent subspace in a similar
way than the already well-known Theorem 2.5 does for weakly-mixing operators admitting a
hypercyclic subspace. We start by studying the essential spectrum for recurrent operators.

5.1 The essential spectrum for recurrent operators

In the proof of Theorem 2.5 the left-essential spectrum of the operator T : X −→ X plays
a fundamental role even though in the statement just appears the essential spectrum. This
happens because both sets coincide when T is hypercyclic (see [GLSMR00]). Here we prove
that the same holds for recurrent operators and we will use this fact to prove Theorem 3.3.

Let us recall why the latter is true for hypercyclic operators. Following the general theory
of Fredholm operators, see for instance [LT77, Vol. I, 2.c], we have that:

(a) λ ∈ σℓe(T ) if and only if T − λ is not a left-Fredholm operator. Recall that the operator
T − λ is left-Fredholm if the following conditions hold:

Ran(T − λ) is closed and dim Ker(T − λ) < ∞.

(b) λ ∈ σe(T ) if and only if T − λ is not a Fredholm operator. Recall that the operator T − λ
is Fredholm if the following conditions hold:

Ran(T − λ) is closed, dim Ker(T − λ) < ∞ and codim Ran(T − λ) < ∞.

Clearly σℓe(T ) ⊂ σe(T ). Conversely, given λ ∈ σe(T ) for which Ran(T − λ) is dense we can
deduce that λ ∈ σℓe(T ). This is why we have the equality

σℓe(T ) = σe(T ),

for every hypercyclic operator T , since hypercyclicity implies that Ran(T − λ) is dense for
every λ ∈ C (see for instance [GEP11, Lemma 2.53]). For a recurrent operator T , and setting
T := {z ∈ C : |z| = 1}, the previous argument just gives us that

σℓe(T ) \ T = σe(T ) \ T,

since in this case Ran(T−λ) is not necessarily dense when λ ∈ T, see [CMP14, Proposition 2.14].
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Chapter 4. Recurrent subspaces in Banach spaces

However, if given any T ∈ L(X) we denote by T ∗ its adjoint operator acting on the respective
dual Banach space X∗, then the following argument will allow us to show the complete equality
between both spectrums for every recurrent operator:

Lemma 5.1. Let X be a complex Banach space and let T ∈ L(X). Suppose that Ω ⊂ C is a
non-empty connected open set with the property that Ω \ σp(T ∗) ̸= ∅. Then we have that

σℓe(T ) ∩ Ω ̸= ∅ if and only if σe(T ) ∩ Ω ̸= ∅.

Proof. Since σℓe(T ) ⊂ σe(T ) we just argue the case in which σe(T ) ∩ Ω ̸= ∅. Suppose by
contradiction that σℓe(T ) ∩ Ω = ∅, then

Ω ⊂ {λ ∈ C : Ran(T − λ) is closed and dim Ker(T − λ) < ∞} ,

so the index
ind(T − λ) := dim Ker(T − λ) − codim Ran(T − λ),

is well defined as an element of Z ∪ {±∞} for every λ ∈ Ω (see [LT77, Vol I, 2.c]). Since
the set of semi-Fredholm operators is a norm-open subset of L(X) and the index function is
norm-discrete-continuous on it (see [O’S92, Theorem 2.2]), we deduce that there is a connected
open set U ⊂ C with Ω ⊂ U and such that the index function

λ ↦→ ind(T − λ) ∈ Z ∪ {±∞},

is constant on U . Moreover, this value is finite and non-negative since by assumption we can
find some λ ∈ Ω \ σp(T ∗), which implies that Ran(T − λ) is closed, T − λ has dense range,
codim Ran(T − λ) = 0, and then we have the equality ind(T − λ) = dim Ker(T − λ) ∈ N0.
Finally, given µ ∈ σe(T ) ∩ Ω ⊂ U we were assuming that µ /∈ σℓe(T ), but then

Ran(T − µ) is closed and dim Ker(T − µ) < ∞,

so we necessarily have that codim Ran(T −µ) = ∞, and hence ind(T −µ) = −∞, which yields
a contradiction since we have proved that ind(T − µ) ∈ N0.

Proposition 5.2. Let X be a complex Banach space and let T ∈ L(X). If σp(T ∗) has empty
interior, then we have the equality σℓe(T ) = σe(T ).

Proof. We already know that σℓe(T ) ⊂ σe(T ). Suppose by contradiction that there exists some
element λ ∈ σe(T )\σℓe(T ). Using that the set σℓe(T ) is compact (and hence closed) we can find
a connected open neighbourhood Ω of λ such that σℓe(T )∩Ω = ∅. This is a contradiction with
Lemma 5.1 since Ω\σp(T ∗) ̸= ∅, by the empty interior assumption, and also λ ∈ σe(T )∩Ω.

The previous result applies to recurrent operators:

Corollary 5.3. Let X be a complex Banach space and let T ∈ L(X). If T is recurrent, then
we have the equality σℓe(T ) = σe(T ).

Proof. If T ∈ L(X) is recurrent we have that σp(T ∗) ⊂ T by [CMP14, Proposition 2.14].
Proposition 5.2 yields the result.

We are now ready to prove Theorem 3.3.
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5. The complex case

5.2 Proof of Theorem 3.3

Clearly (ii) ⇒ (i). It is also direct that (ii) ⇒ (iii) by the Banach-Steinhaus theorem applied
to the family of operators

{︂
T ln|E : n ∈ N

}︂
.

To see the implications (i) ⇒ (iv) and (iii) ⇒ (iv) we use the following fact originally proved
in [GLSMR00, Proof of Theorem 4.1] for operators on complex separable Banach spaces:

Lemma 5.4. If σℓe(T )∩D = ∅, then every infinite-dimensional closed subspace Z ⊂ X admits
a vector x ∈ Z such that limn→∞ ∥T nx∥ = ∞.

Since T is recurrent we have the equality σe(T ) = σℓe(T ) by Corollary 5.3. Then, if any of
the statements (i) or (iii) holds but σe(T ) ∩ D = ∅ we arrive to a contradiction: the vector
with divergent orbit obtained by Lemma 5.4 cannot be in a recurrent subspace, neither in the
subspace described in statement (iii).

To finish the proof we show that (iv) ⇒ (ii): suppose that (iv) holds and let λ ∈ σe(T ) ∩ D
which by Corollary 5.3 has the property λ ∈ σℓe(T ). Then T − λ is not left-Fredholm so we
can apply [BM09, Proposition D.3.4] obtaining an infinite-dimensional closed subspace E ⊂ X
and a compact operator R ∈ L(X) such that (T −R)|E = λI|E, which implies that

∥(T −R)n|E∥ ≤ 1 for every n ∈ N.

From now we modify the proof of [BM09, Lemma 8.16]: by assumption T is quasi-rigid with
respect to some sequence (kn)n∈N. For each n ∈ N we can write

T kn = (T −R)kn +Rn,

where Rn is a compact operator. By [BM09, Lemma 8.13] there exists a non-increasing sequence
(En)n∈N of finite-codimensional (and hence infinite-dimensional) closed subspaces of E with

∥Rn|En∥ ≤ 1 for every n ∈ N.

Then ⃦⃦⃦
T kn|En

⃦⃦⃦
=
⃦⃦⃦
[(T −R)kn +Rn]|En

⃦⃦⃦
≤
⃦⃦⃦
(T −R)kn|En

⃦⃦⃦
+ ∥Rn|En∥ ≤ 2 < ∞.

By Theorem 3.2 we get (ii) for some subsequence (ln)n∈N of (kn)n∈N.

Remark 5.5. The complex case of Corollary 3.5 is now proved as a direct consequence of
Theorems 2.5 and 3.3. However, in view of Lemma 5.4 there is an alternative proof:

– It is clear that having a hypercyclic subspace implies having a recurrent subspace since every
hypercyclic vector is recurrent.

– On the other hand Lemma 5.4 implies that: a necessary condition for a weakly-mixing
operator to admit a recurrent subspace is that the left-essential spectrum must intersect the
closed unit disc, since a vector with a divergent orbit is not recurrent. Hence, Theorem 2.5
implies that the operator must have a hypercyclic subspace.

In Section 6 we obtain the real case of Corollary 3.5.
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5.3 Comments on Theorem 3.3

Before the comments on Theorem 3.3 let us introduce the following standard notation:

Definition 5.6. Let X and Y be a Banach spaces:

– We will denote by L(X, Y ) the set of bounded linear operators from X to Y .

– Let (Yj)j∈J be a collection of Banach spaces and K ⊂ ⋃︁
j∈J L(X, Yj) a family of compact

operators acting on X. We will say that a sequence of vectors (xn)n∈N ⊂ X is K-null if
limn→∞ Kxn = 0 for every operator K ∈ K.

As we did for Theorem 3.2 in Subsection 4.2, we can relax the hypothesis of Theorem 3.3:

Remark 5.7 (Non-Separability). Theorem 3.3 is still true if X is a non-separable space.
This is not completely direct since the implications (i) ⇒ (vii) and (vi) ⇒ (vii) are deduced
from Lemma 5.4, which with the proof of [GLSMR00, Proof of Theorem 4.1] is only valid for
complex separable Banach spaces. Nevertheless, if one reads carefully the proof given for those
implications in [BM09, Section 8.3], it can be deduced the following more general fact that uses
directly the essential spectrum:

Proposition 5.8. Let X be a complex (and not necessarily separable) Banach space and let
T ∈ L(X). If σe(T ) ∩ D = ∅, then every infinite-dimensional closed subspace Z ⊂ X admits a
vector x ∈ Z such that limn→∞ ∥T nx∥ = ∞.

If we let X and (Yn)n∈N be complex Banach spaces, T ∈ L(X), and we consider any Z ⊂ X
infinite-dimensional closed subspace, then Proposition 5.8 can be proved in three steps:

– [BM09, Lemma 8.15 (b)] If σe(T ) ∩D = ∅, then one can find λ > 1, n0 ∈ N and a countable
family of compact operators K0 ⊂ L(X) such that the following holds for any normalized
K0-null sequence (ej)j∈N ⊂ X:

lim inf
j→∞

∥T nej∥ ≥ λn for each n ≥ n0.

– [BM09, Lemma 8.17] If Z is separable, then there exist a complex separable Banach space
Ŷ and a countable family of compact operators K1 ⊂ L(Z, Ŷ ) such that the following holds
for any normalized K1-null sequence (ej)j∈N ⊂ Z: given any summable sequence of positive
numbers (αn)n∈N, there exists some vector x ∈ spanR{ej : j ∈ N} ⊂ Z such that

∥T nx∥ ≥ αn lim sup
j→∞

∥T nej∥ for each n ∈ N.

– [BM09, Corollary 8.14] If K = (Kn : Z −→ Yn)n∈N is a countable family of compact operators,
then Z contains a normalized K-null basic sequence.

One just needs to apply [BM09, Corollary 8.14] to the countable family of compact operators
K = K0 ∪ K1 and choose a summable sequence (αn)n∈N for which αnλ

n → ∞ when n → ∞.
The separability of X is replaced by the separability of Z. It is worth mentioning that the
vector x ∈ Z constructed lies in the closure of the real-linear span of the sequence (ej)j∈N
selected. This fact will be important in the real case, see Section 6.
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6. The real case

Remark 5.9 (Local Quasi-Rigidity is not allowed in Theorem 3.3). We cannot repeat
the exchange of assumption done for Theorem 3.2 in Remark 4.2: the infinite-dimensional closed
subspace E ⊂ X obtained in the proof by the non-left-Fredholm condition of T − λ cannot be
controlled to be included in the closure of a set Y ⊂ X such that T knx → x for all x ∈ Y . In
fact, let X be any of the complex spaces ℓp(N), 1 ≤ p < ∞, or c0(N), and let B : X −→ X
be the well-known backward shift operator on such a space X. Then for any fixed λ ∈ D \ {0}
consider the operator

T := λ−1B ⊕ λI : X ⊕X −→ X ⊕X,

where I : X −→ X is the identity operator on X. It is easy to verify that:

(1) T is not quasi-rigid neither recurrent since (x, y) ∈ Rec(T ) implies that y = 0;

(2) λ−1B is quasi-rigid since the Rolewicz operator is known to be (weakly-)mixing;

(3) λ ∈ σe(T ) ∩ D since Ker(T − λ) is infinite-dimensional;

(4) T has no recurrent subspace: otherwise λ−1B would have a recurrent subspace, but it is
really well-known that σe(λ−1B) = σℓe(λ−1B) = λ−1T = {µ ∈ C : |µ| = 1

|λ|}, contradiction.

6 The real case

In this section we extend Theorems 2.5 and 3.3 to the real case via Theorem 3.4. Since given
a real-linear operator T : X −→ X one of the equivalences included in Theorem 3.4 is:

– the essential spectrum of the complexification ˜︁T : ˜︂X −→ ˜︂X intersects the closed unit disk;

we need some previous results allowing us to pass from subspaces for the real-linear system to
subspaces for its complexification and vice versa.

The first of such results is the following: given a complex infinite-dimensional closed subspace
Z of the complexification ˜︂X we want to conclude that its projection

P (Z) := {x ∈ X : x+ iy ∈ Z for some y ∈ X}, (4.1)

contains an infinite-dimensional closed subspace. Note that P (Z), expressed in (4.1) as the real
part projection of Z, coincides with the imaginary part projection of Z, namely

Q(Z) := {y ∈ X : x+ iy ∈ Z for some x ∈ X}.

Indeed, P (Z) = Q(Z) because a vector x+ iy belongs to Z if and only if i · (x+ iy) = −y + ix
belongs to Z and also if and only if (−i) · (x + iy) = y − ix belongs to Z. Since ˜︂X can be
identified with the direct sum space X ⊕X we will prove the following more general fact:

Lemma 6.1. Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y ) be (real or complex) Banach spaces and consider
an infinite-dimensional closed subspace Z ⊂ X ⊕ Y of its direct sum. If we denote by

PX : X ⊕ Y −→ X and PY : X ⊕ Y −→ Y,

the standard projections on the corresponding subspace, then at least one of the subspaces PX(Z)
or PY (Z) contains an infinite-dimensional closed subspace.
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Proof. Suppose that PY (Z) ⊂ Y does not admit any infinite-dimensional closed subspace:
Claim. For every δ > 0 and every infinite-dimensional closed subspace V ⊂ Z there exist a
vector (x, y) ∈ V such that ∥x∥X = 1 and ∥y∥Y < δ.

Proof of the Claim. By the initial assumption on PY (Z) ⊂ Y we just have two possibilities:
the subspace PY (V ) is closed (and hence finite-dimensional) or PY (V ) is not closed. In both
cases PY |V : V −→ PY (V ) is not a Banach isomorphism so it is not bounded from below and
considering the norm ∥(x, y)∥ := max{∥x∥X , ∥y∥Y } in the space X ⊕ Y we get the Claim.

Now one can modify the Mazur theorem (see [LT77, Vol I, Theorem 1.a.5 and Lemma 1.a.6])
and easily construct a basic sequence (xn, yn)n∈N ⊂ Z with the properties:

(a) ∥xn∥X = 1 and ∥yn∥Y < 1
2n for every n ∈ N (by using the Claim);

(b) (xn)n∈N is a basic sequence for (X, ∥·∥X) (adding to each step of [LT77, Vol I, Lemma 1.a.6]
the corresponding functionals of the type (x∗, 0) ∈ X∗ ⊕ Y ∗ = (X ⊕ Y )∗).

We claim that PX(Z) contains the subspace span{xn : n ∈ N}: given any convergent series
x = ∑︁

n∈N anxn we have that a = (an)n∈N ∈ c0(N) since (xn)n∈N is a normalized sequence, and
hence ∑︁n∈N anyn is an absolutely convergent series to some vector y ∈ Y , i.e.

y =
∑︂
n∈N

anyn ∈ Y, so (x, y) =
∑︂
n∈N

an(xn, yn) ∈ Z,

and finally x = PX(x, y) ∈ PX(Z).

Remark 6.2 (W. B. Johnson’s Proof). Lemma 6.1 admits an equivalent shorter proof in
terms of strictly singular operators: if PX(Z) and PY (Z) do not contain any infinite-dimensional
closed subspace, then the operators PX : Z −→ X ⊕ Y and PY : Z −→ X ⊕ Y are strictly
singular. By [LT77, Vol I, Theorem 2.c.5] we would have that PX + PY = I : Z −→ Z, which
is an isomorphism, has to be a strictly singular operator yielding a contradiction.

Remark 6.3. It follows from Lemma 6.1 that for any real Banach space X and any T ∈ L(X):
if there exists an infinite-dimensional closed subspace Z ⊂ ˜︂X fulfilling any dynamical property
(among those described in Theorems 2.5 or 3.3) with respect to the complexification ˜︁T , then
P (Z) ⊂ X as defined in (4.1) admits an infinite-dimensional closed subspace fulfilling the same
dynamical property with respect to the real-linear operator T .

6.1 Divergent orbits for real-linear operators

Once we know how to pass from a “recurrent or hypercyclic subspace for ˜︁T” to one for T , we
need to study the converse implication. We do it by proving a real version of Proposition 5.8:

Proposition 6.4. Let X be a real (and not necessarily separable) Banach space and T ∈ L(X).
If σe( ˜︁T )∩D = ∅, then every infinite-dimensional closed subspace E ⊂ X admits a vector x ∈ E
such that limn→∞ ∥T nx∥ = ∞.

In order to prove Proposition 6.4 we will rewrite the proof of Proposition 5.8 but using the
following real version of [BM09, Corollary 8.14]:
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Lemma 6.5. Let X be a real Banach space, and let E be an infinite-dimensional closed subspace
of X. If K = (Kn : ˜︁E −→ Yn)n∈N is a countable family of complex-linear compact operators,
where each Yn is a complex Banach space, then there exist a normalized basic sequence (ej)j∈N
on E such that ( ˜︁ej)j∈N = (ej + i0)j∈N ⊂ ˜︁E is a K-null sequence.

This is just the complexification version of the well-known (real and complex) Banach spaces
results [BM09, Lemma 8.13 and Corollary 8.14]:

Proof of Lemma 6.5. We start by claiming that there exists a decreasing sequence (Ej)j∈N of
finite-codimensional closed subspaces of E such that ∥Kn|˜︂Ej

∥ ≤ 1
2j whenever n ≤ j:

Since K1 is compact, the adjoint operator K∗
1 is also compact, so one can find a finite number

of functionals z∗
1 , ..., z

∗
N ∈ ˜︁E∗ such that

K∗
1(BY ∗

1
) ⊂

⋃︂
1≤k≤N

B(z∗
k,

1
2),

where BY ∗
1

is the closed unit ball of Y ∗
1 and B(z∗

k,
1
2) is the ball on ˜︁E∗ centred at each vector z∗

k

and of radius 1
2 . Then we have that

∥K1(z)∥ = sup{|z∗(z)| : z∗ ∈ K∗
1(BY ∗

1
)} ≤ max

1≤k≤N
|z∗

k(z)| + 1
2∥z∥ for all z ∈ ˜︁E. (4.2)

By [MMFPSS22, Section 4.10] we can identify ( ˜︁E)∗ with ˜︃(E∗), and in particular, for each z∗
k

there are x∗
k, y

∗
k ∈ E∗ such that

z∗
k(x+ iy) = [x∗

k(x) − y∗
k(y)] + i [y∗

k(x) + x∗
k(y)] ,

for every x+ iy ∈ ˜︁E and 1 ≤ k ≤ N . Hence we have the inclusion
˜︂Ker(x∗
k) ∩ Ker(y∗

k) ⊂ Ker(z∗
k) ⊂ ˜︁E for every 1 ≤ k ≤ N.

Therefore, by (4.2), the finite-codimensional closed subspace
E1 := E ∩

⋂︂
1≤k≤N

Ker(x∗
k) ∩ Ker(y∗

k) ⊂ E, has the property ∥K1|˜︂E1
∥ < 1

2 .

Recursively, if we have E1, ..., Ej already constructed we obtain Ej+1 in the same way: consider
a finite covering of ⋃︁j+1

n=1 K
∗
n(BY ∗

n
) with balls of diameter lower than 1

2j+1 and intersect Ej with
the kernels of the corresponding finite sequence of functionals.

The already mentioned Mazur theorem provides now a normalized basic sequence (ej)j∈N on
E such that ej ∈ Ej for all j ∈ N. This sequence (ej)j∈N has the required properties.

Proof of Proposition 6.4. Assume that E is separable. Let K0 ⊂ L(˜︂X) and K1 ⊂ L( ˜︁E, Ŷ ) be
the countable family of compact operators obtained from the results [BM09, Lemma 8.15 (b)]
and [BM09, Lemma 8.17] respectively. Apply Lemma 6.5 to the countable family of compact
operators K = K0 ∪ K1 obtaining a a normalized basic sequence (ej)j∈N ⊂ E such that its
complexification ( ˜︁ej)j∈N = (ej + i0)j∈N ⊂ ˜︁E is a K-null sequence. Choose a summable sequence
(αn)n∈N for which αnλ

n → ∞ and apply [BM09, Lemma 8.17] to ( ˜︁ej)j∈N obtaining a vector
z = x+ iy ∈ spanR{ ˜︁ej : j ∈ N} for which lim

n→∞
∥ ˜︁T nz∥ = ∞.

Note that x ∈ E, y = 0 and hence lim
n→∞

∥T nx∥ = lim
n→∞

∥ ˜︁T nz∥ = ∞.

We are now ready to prove Theorem 3.4.
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6.2 Proof of Theorem 3.4

We show (a) and (b) at the same time following the proofs of Theorems 2.5 and 3.3: firstly, we
observe that (ii) ⇒ (iii) by the Banach-Steinhaus theorem.

To see (i) ⇒ (iv) and (iii) ⇒ (iv) note that if (i) or (iii) hold but σe( ˜︁T ) ∩ D = ∅ we arrive
to a contradiction: the vector with divergent orbit obtained by Proposition 6.4 cannot be in a
recurrent subspace, neither in the subspace described by statement (iii).

Finally, since T is weakly-mixing or quasi-rigid if and only if so is ˜︁T , we have that statement
(iv) implies (i), (ii) and (iii) for the complexification operator ˜︁T by Theorems 2.5 and 3.3. By
Lemma 6.1 we deduce (i), (ii) and (iii) for T itself (see Remark 6.3).

6.3 Comments on Theorem 3.4

Remark 6.6 (Non-Separability). As it happens in Theorems 3.2 and 3.3, the quasi-rigid
part of Theorem 3.4 is still true for non-separable Banach spaces.
Remark 6.7 (Operators without common hypercyclic subspaces). It was first shown in
[ABLSP05, Example 2.1] that there are two operators admitting hypercyclic subspaces which do
not have a common hypercyclic subspace. The example was extended in [BM09, Exercise 8.2].
In particular, given any λ ∈ C \ D:

– Let T ∈ L(ℓ2(N)) be a weakly-mixing operator, on the complex space ℓ2(N), with a hypercyclic
subspace. Then

T1 := T ⊕ λB : ℓ2(N) ⊕ ℓ2(N) −→ ℓ2(N) ⊕ ℓ2(N),
T2 := λB ⊕ T : ℓ2(N) ⊕ ℓ2(N) −→ ℓ2(N) ⊕ ℓ2(N),

are weakly-mixing operators with a hypercyclic subspace, but they do not share any common
hypercyclic subspace (where B : ℓ2(N) −→ ℓ2(N) is the known backward shift).

The proof is based on the following four facts:

(1) T1 and T2 are weakly-mixing because λB is mixing (it is the Rolewicz operator);

(2) σe(T1) ∩ D ̸= ∅ and σe(T2) ∩ D ̸= ∅ because σe(T ) ∩ D ̸= ∅;

(3) for a Hilbert space H there is a simple proof, using orthogonality, of the fact that: for any
infinite-dimensional closed subspace Z ⊂ H ⊕ H, at least one of the projections P1(Z) or
P2(Z) admits an infinite-dimensional closed subspace (see [ABLSP05, Example 2.1]);

(4) the Rolewicz operator λB has no hypercyclic subspace (see Remark 5.9).

By Theorem 3.4 and Lemma 6.1 we get that, for any (real or complex) number λ ∈ K \ D:

– Let T ∈ L(X) be a weakly-mixing operator with a hypercyclic subspace on a (real or complex)
Banach space X. Let Y be the (real or complex) ℓp(N) (1 ≤ p < ∞) or c0(N) space and
denote by B : Y −→ Y the backward shift on Y . Then

T1 := T ⊕ λB : X ⊕ Y −→ X ⊕ Y and T2 := λB ⊕ T : Y ⊕X −→ Y ⊕X,

are weakly-mixing operators with a hypercyclic subspace, but they do not share any common
hypercyclic subspace.

148



7. Further results, applications and open problems

7 Further results, applications and open problems

One of the objectives of the hypercyclic spaceability theory is establishing sufficient conditions
for an operator to admit a hypercyclic subspace. This is the case of Theorem 2.3 which can
be easily reproved with the theory developed here: for any operator S = T − K ∈ L(X) with
∥S∥ ≤ 1 we have that its essential spectrum (which is a subset of the spectrum of S) is included
in the closed unit disk, so any weakly-mixing compact perturbation T = S + K of S admits
a hypercyclic subspace (use Theorem 3.4 for the real case). We can also recover the following
well-known result (see [GEP11, Corollary 10.11]):

Corollary 7.1. Let T ∈ L(X) be a weakly-mixing (resp. quasi-rigid) operator acting on complex
separable Banach space X. If Ker(T − λ) is infinite-dimensional for some λ ∈ D, then T has
a hypercyclic (resp. recurrent) subspace.

Proof. In that case λ ∈ σe(T ) ∩ D and Theorem 3.3 applies.

Nonetheless, Theorem 2.3 and the previous corollary are somehow restrictive: the first needs
that the perturbed operator has norm bounded by 1, and the second requires the existence of
plenty of eigenvectors associated to the same eigenvalue. We propose the following alternative
“sufficient condition” in order to obtain the existence of hypercyclic subspaces:

Corollary 7.2. Let X be a (real or complex) Banach space and let T, S,K ∈ L(X) where the
operator T is weakly-mixing, S is quasi-rigid, K is compact and T = S + K. Then T has a
hypercyclic subspace if and only if S has a recurrent subspace.

Proof. Theorems 2.5 and 3.3 yield the result in the complex case since σe(T ) = σe(S). Use
Theorem 3.4 for the real case.

The idea behind Corollary 7.2 is to apply it to C-type operators.

7.1 Application to C-type operators

In the last years lots of dynamical properties have been distinguished in Linear Dynamics by the
so-called C-type operators. Using them one can construct operators which are (Devaney) chaotic
but not U-frequently hypercyclic, see [Men17]; chaotic and frequently hypercyclic but do not
admit an ergodic probability measure with full support; chaotic and U-frequently hypercyclic but
not frequently hypercyclic; chaotic and mixing but not U-frequently hypercyclic, see [GMM21];
invertible and frequently hypercyclic (resp. U-frequently hypercyclic) but whose inverse is not
frequently hypercyclic (resp. U-frequently hypercyclic), see [Men20, Men22].

In this section we show that every C-type operator as defined in [Men17, GMM21] admits a
hypercyclic subspace. We do it in two different ways:

– first by using the essential spectrum and applying Theorem 3.3;

– and secondly by constructing explicitly a sequence of subspaces to apply Theorem 3.2.

However, in both cases we use Corollary 7.2 to simplify the problem.
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As defined in [GMM21], the C-type operators are chaotic (and hence weakly-mixing) compact
perturbations of operators with a dense set of periodic points (and hence quasi-rigid). More
precisely, each C-type operator is associated to four parameters v, w, φ and b, where:

– w = (wj)j∈N is a sequence of complex numbers which is both bounded and bounded from
below, i.e. 0 < infj∈N |wj| ≤ supj∈N |wj| < ∞;

– φ : N0 −→ N0 is a map such that φ(0) = 0, φ(n) < n for every n ∈ N0, and the set
φ−1(l) = {n ∈ N0 : φ(n) = l} is infinite for every l ∈ N0;

– b = (bn)n∈N0 is a strictly increasing sequence of positive integers such that b0 = 0 and bn+1−bn

is a multiple of 2(bφ(n)+1 − bφ(n)) for every n ∈ N;

– v = (vn)n∈N is a sequence of non-zero complex numbers such that ∑︁n∈N |vn| < ∞.

Definition 7.3 ([GMM21]). Let (ek)k∈N0 be the canonical basis of the linear space

c00(N0) :=
{︂
(xj)j∈N0 ∈ CN0 : there exists j0 ∈ N with xj = 0 for all j ≥ j0

}︂
,

i.e. ek = (δk,j)j∈N0 . The linear map Tw,b on c00(N0) associated to the data w and b is defined
by:

Tw,b ek :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
wk+1ek+1, if k ∈ [bn, bn+1 − 1[,

−
(︂∏︁bn+1−1

j=bn+1 wj

)︂−1
ebn , if k = bn+1 − 1, for n ≥ 0.

Moreover, the linear map Tw,φ,b,v on c00(N0) associated to the data w,φ, b and v given as above
is defined by:

Tw,φ,b,v ek :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wk+1ek+1, if k ∈ [bn, bn+1 − 1[, n ≥ 0,

vnebφ(n) −
(︂∏︁bn+1−1

j=bn+1 wj

)︂−1
ebn , if k = bn+1 − 1, n ≥ 1,

−
(︂∏︁b1−1

j=b0+1 wj

)︂−1
e0, if k = b1 − 1.

When they extend continuously to an ℓp(N0) space (with 1 ≤ p < ∞) the resulting continuous
operators are still denoted by Tw,b and Tw,φ,b,v respectively, and this last operator Tw,φ,b,v is
called the operator of C-type on ℓp(N0) associated to the data w,φ, b and v.

As showed in [GMM21, Lemma 6.2 and Proposition 6.5] we have that Tw,φ,b,v = Tw,b +Kφ,v

where
Kφ,v x :=

∑︂
n∈N

vnxbn+1−1 · ebφ(n) for each x = (xj)j∈N0 ∈ ℓp(N0)

is a compact operator. The continuity of Tw,b (and hence that of Tw,φ,b,v) depends on the
following condition

inf
n∈N0

bn+1−1∏︂
j=bn+1

|wj| > 0,

and the chaotic behaviour of Tw,φ,b,v can be deduced whenever the following holds:
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lim sup
N→∞

N∈φ−1(n)

|vN |
bN+1−1∏︂
j=bN +1

|wj| = ∞ for every n ≥ 0. (4.3)

Since Tw,b has a dense set of periodic points it is quasi-rigid (see [GLMP, Proposition 2.9]),
so that Corollary 7.2 can be applied to every C-type operator Tw,φ,b,v defined as above, that is,
studying if it admits a hypercyclic subspace is equivalent to study if the respective operator Tw,b

(which has much easier dynamics than Tw,φ,b,v) admits a recurrent subspace. As we advanced,
we will show that Tw,b always has a recurrent subspace in two different ways:

First Option (Tw,b has a recurrent subspace): via the essential spectrum. In view
of Theorem 3.3 and Corollary 5.3, the operator Tw,b has a recurrent subspace if and only if
there exists some λ ∈ D fulfilling at least one of the following properties:

(a) Ker(Tw,b − λ) is infinite-dimensional;

(b) Ran(Tw,b − λ) is not closed.

With respect to (a), it can be checked that every element in the point spectrum of Tw,b has
to be an appropriated root of the unity, so in particular σp(Tw,b) ⊂ T ⊂ D. Moreover, it is not
hard to check that:

– The subspace Ker(Tw,b − λ) is infinite-dimensional for some λ ∈ T if and only if there are
infinitely many blocks [bn, bn+1[ for which λbn+1−bn = −1.

This is a problem for our proposes since the condition that bn+1 − bn has to be a multiple of
2(bφ(n)+1 − bφ(n)), which is an assumption on the parameter b = (bn)n∈N0 , fights against having
infinitely many blocks with an appropriated length for λ: the equality λbφ(n)+1−bφ(n) = −1 implies
that λbn+1−bn = 1. Indeed, for the most interesting examples exhibited in [Men17, GMM21],
there is no λ ∈ T with Ker(Tw,b − λ) being infinite-dimensional.

Regarding property (b), we can show that Ran(Tw,b) = Ran(Tw,b − 0) is not closed whenever
the operator fulfills (4.3), and hence that 0 ∈ σe(Tw,b) ∩ D. We first claim that Tw,b is not
invertible: otherwise T−1

w,b would act on c00(N0) as:

T−1
w,b ek :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

wk−1
ek−1, if k ∈]bn, bn+1 − 1],

−
(︂∏︁bn+1−1

j=bn+1 wj

)︂
ebn+1−1, if k = bn, for n ≥ 0.

However, since Tw,b is assumed to fulfill (4.3) and (vN)N∈N is a summable sequence we get that

sup
n∈N0

bn+1−1∏︂
j=bn+1

|wj| = ∞, (4.4)

which implies that T−1
w,b : c00(N0) −→ c00(N0) does not extend continuously to ℓp(N0). Since Tw,b

is quasi-rigid it has dense range. Moreover, Tw,b is one-to-one so the open mapping theorem
implies that Tw,b is not surjective (otherwise it would be invertible). We deduce that Ran(Tw,b)
is not closed, that 0 ∈ σe(Tw,b) ∩ D and that Tw,b has a recurrent subspace. By Corollary 7.2
the C-type operator Tw,φ,b,v has a hypercyclic subspace.
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The previous argument is a particular case of the following result, which was already used in
[LSMR01] for the particular case of the bilateral weighted shifts (the spectrum of such operators
is either an annulus or a disk, depending on whether T is invertible or not):

Corollary 7.4. Let X be a (real or complex) separable Banach space and suppose that T ∈ L(X)
is a weakly-mixing (resp. quasi-rigid) operator. If T is one-to-one but not invertible, then T
has a hypercyclic (resp. recurrent) subspace.

Proof. We have that T is a recurrent operator (weak-mixing implies quasi-rigidity, which implies
recurrence in its turn) so T has dense range. Then Ran(T ) is not closed (otherwise T would be
invertible by the open mapping theorem and the one-to-one assumption). The previous implies
that 0 ∈ σe(T ) ∩ D (and 0 ∈ σe( ˜︁T ) ∩ D for the real case).

Second Option (Tw,b has a recurrent subspace): by finding explicit subspaces.
In view of Theorem 3.2 and since Tw,b is quasi-rigid with respect to some increasing sequence
(kn)n∈N, it is enough to find a decreasing sequence (En)n∈N of infinite-dimensional and closed
subspaces of ℓp(N0) for which

sup
n∈N

⃦⃦⃦
T kn

w,b|En

⃦⃦⃦
< ∞. (4.5)

We use (4.4), which again comes from (4.3) and the fact that (vN)N∈N is a summable sequence
(and hence convergent to 0). Fix M ≥ supj∈N |wj| > 0 and construct recursively a strictly
increasing sequence of natural numbers (ln)n∈N such that

(kn − 1) < (bln+1 − bln) and Mkn−1 ≤
bln+1−1∏︂
j=bln +1

|wj| for all n ∈ N.

This election can be done since we can always choose a big enough ln ∈ N by (4.4). Now, for
each n ∈ N consider the subspace

En := span{eblm+1−1 : m ≥ n},

and note that the sequence (En)n∈N is a decreasing family of infinite-dimensional and closed
subspaces of ℓp(N0). Hence, fixed n ∈ N and given x = ∑︁

m≥n am · eblm+1−1 ∈ En we have that

T kn
w,b(x) =

∑︂
m≥n

am ·
∏︁blm +kn−1

j=blm +1 wj∏︁blm+1−1
j=blm +1 wj

· eblm +kn−1,

which implies that

⃦⃦⃦
T kn

w,b(x)
⃦⃦⃦p

p
≤
∑︂

m≥n

⎛⎝|am| · Mkn−1∏︁blm+1−1
j=blm +1 |wj|

⎞⎠p

≤
∑︂

m≥n

|am|p = ∥x∥p
p,

so ∥T kn
w,b|En∥ ≤ 1 and (4.5) holds. The constructive proof of Theorem 3.2 yields now to the

existence of a recurrent subspace for the operator Tw,b. Finally, and again by Corollary 7.2, we
deduce that the C-type operator Tw,φ,b,v has a hypercyclic subspace.
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Example 7.5. The previous arguments, together with the work and examples exhibited in
[Men17, GMM21], allow us to construct (Devaney) chaotic operators on every ℓp(N0)-space
having a hypercyclic subspace, which (among others) can be chosen to be:

– not U-frequently hypercyclic, see [Men17];

– frequently hypercyclic but not ergodic, see [GMM21, Examples 7.7 and 7.19];

– U-frequently hypercyclic but not frequently hypercyclic, see [GMM21, Example 7.11];

– topologically mixing but not U-frequently hypercyclic, see [GMM21, Example 7.16].

Example 7.5 exhibits how the theory developed in this paper can be used to simplify the
study of the dynamics for certain weakly-mixing operators. In particular, there could be plenty
of interesting weakly-mixing operators whose spaceability may be studied via Corollary 7.2.

7.2 Open problems

The following open problems could be interesting:

Question 7.6. Can Theorem 3.2 be proved via the K. Chan approach (see [Cha99, CT01])?

There also exists a hypercyclic spaceability theory for operators acting on Fréchet spaces.
However, for Fréchet spaces we loose the tool of the essential spectrum, so that this theory
is much weaker than the one presented here for Banach spaces. Indeed, and as far as we
know, there does not exist a general characterization of the weakly-mixing operators acting on
Fréchet spaces that admit a hypercyclic subspace, even though some sufficient conditions about
the existence of hypercyclic subspaces, such as Theorem 2.2, are still true in the Fréchet setting
(see [GEP11, Chapter 10, Section 10.5]). In view of that we propose the following problem:

Question 7.7. Is (a proper variation of) Theorem 3.2 still true for Fréchet spaces?

When we use the term “proper variation” we refer to using, in the Fréchet setting, the
proper notion of “equicontinuity” instead of the original “equiboundedness” used in this paper. In
particular, we really believe that the works [Men11, Men13, Men14] have developed a sufficiently
powerful theory of basic sequences, on Fréchet spaces with a continuous norm, in order to extend
the proof of Theorem 3.2 to this more general class of spaces.

Note also that an affirmative answer for Question 7.6 could lead to a positive solution for
Question 7.7, simpler than the constructive proof showed in Section 4, by using the techniques
related to left-multiplication operators (acting on the algebra of linear operators) and tensor
products (see [BMGP04, BGE12] for the hypercyclic and frequently hypercyclic cases).

The following and last problem seems to be more intriguing:

Question 7.8. Is Corollary 3.5 still true for operators acting on Fréchet spaces?
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General discussion of the results

This chapter presents two independent sections. First we discuss the nature of the different
results achieved, and then we include some remarks and further results related to each of the
chapters/articles forming this memoir.

1 Nature of the results

This brief section is more philosophical than mathematical in character since we will focus on
the spirit of the results obtained more than on the results themselves. Our main idea has been
to compare recurrence with the central Linear Dynamics notion of hypercyclicity.

Along the work we can find three different kind of results:

(1) Results following the existing general evolution of hypercyclicity. After the 2014
Costakis, Manoussos and Parissis paper [30], which presents the basis of linear recurrence,
the natural evolution of the theory seemed to be adding the “frequency of visits” point of
view that appeared in hypercyclicity with the works of Bayart and Grivaux [6] in 2006,
Shkarin [84] in 2009, and Bès, Menet, Peris and Puig [16] in 2016 with the concepts of
frequent, U -frequent and reiterative hypercyclicity.
Article [21] (i.e. Chapter 1) provides a first approach in this direction by defining the notions
of frequent, U -frequent and reiterative recurrence, and exhibiting a symmetry between the
theory of “frequent recurrence” and the last advances in hypercyclicity.
This train of thought is mainly concentrated in Chapter 1, Sections 2, 4, 5 and 8, but also in
Chapter 3, Sections 4 and 5. We are referring to all those results where the F-hypercyclicity
is decomposed in F-recurrence + hypercyclicity, which usually allows us to prove strong
theorems for F -hypercyclicity by proving them first for “usual hypercyclicity” and then for
F -recurrence (see for instance the Ansari-León-Müller-type theorems).
We also include in this category the results that exhibit a symmetry between the notions
of “usual” hypercyclicity and recurrence: the T ⊕T -recurrence problem presents a negative
answer as it happens for the T ⊕ T -hypercyclicity problem (see Section 3 of Chapter 3);
and the conditions used to show the existence of recurrent subspaces are very similar to
those already developed in the hypercyclicity literature to obtain hypercyclic subspaces
(see Chapter 4 and compare Theorem 2.2 with Theorem 3.2 stated there).
This last pair of “usual recurrence” results appear naturally when one is able to define
properly the notion of quasi-rigidity, that is, the analogous property for recurrence, to that
of weak-mixing/satisfying the Hypercyclicity Criterion for transitivity/hypercyclicity.
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General discussion of the results

(2) Results linking hypercyclicity and recurrence in a deep way. In this category we
include the situations in which hypercyclicity and recurrence behave exactly in the same
manner. This happens when some restrictions are assumed on the underlying space, on the
operator studied or on the Furstenberg family used:

– F-hypercyclicity is equivalent to F-recurrence, when F is an u.f.i. upper Furstenberg
family and there exists a dense set of 0-convergent orbits, see Theorems 2.12 and 8.5
stated in Chapter 1, but also its consequences in Theorem 5.6 included in Chapter 2 or
Corollary 5.16 included in Chapter 3. These results apply for every unilateral backward
shift, which are a very important type of operators in Linear Dynamics.

– Having a hypercyclic subspace is equivalent to having a recurrent subspace, at least when
the operator is weakly-mixing and acts on a Banach space, see Theorems 2.5, 3.3, 3.4
and Corollary 3.5 stated in Chapter 4. These results show that, for some properties such
as spaceability, the hypercyclic behaviour of an operator can be fully studied by looking
only at its recurrence characteristics.

(3) Results strictly related to recurrence. This are the type of results that do not have
sense for, are not related to, or differ widely from what happens for hypercyclicity:

– There exist, and we can study, power-bounded and recurrent operators (see Chapter 1,
Section 3; and Chapter 2, Theorem 1.9), but linear recurrence can be also considered on
finite-dimensional spaces (see Chapter 1, Section 7). It is well-known that hypercyclicity
is an infinite-dimensional phenomenon requiring the existence of unbounded orbits.

– We can study F -recurrence for Furstenberg families F that do not admit F -hypercyclic
operators as it happens for the ∆∗ and IP∗ families, and for the uniform recurrence
notion (see Chapter 1, Sections 6, 7; and Chapter 2, Section 4). This is also the case of
periodicity, which can be characterized in terms of families (see Chapter 3, Section 4).

– The notions of frequent and reiterative recurrence coincide, for adjoint operators on dual
Banach spaces (see Theorem 1.3 stated in Chapter 2). Also, having a spanning set of
unimodular eigenvectors is equivalent to uniform recurrence, on Hilbert spaces and for
power-bounded operators on reflexive spaces (see Chapter 2, Theorems 1.7 and 1.9).
These results appear when we are able to use Ergodic Theory, and they are included in
this category because the respective hypercyclicity notions are not equivalent even in the
dual/reflexive/Hilbertian setting (see [73, 53, 74]), although some implications for the
respective F -hypercyclicity notions can be obtained (see Chapter 2, Sections 5 and 6).

– The T ⊕T -recurrence problem has a negative answer as the T ⊕T -hypercyclicity problem,
but a huge difference between recurrence and hypercyclicity appears when we assume that
the operator T ⊕T is recurrent/hypercyclic and we look at the recurrence/hypercyclicity
property of the N -fold direct sum operator T(N) for N ≥ 3. In this sense Theorem 3.2
stated in Chapter 3 shows a behaviour for recurrence, which differs in a strong way to
what happens for hypercyclicity.

The results exhibited along the work can be classified using these three categories, showing
how other dynamical properties may interact with hypercyclicity in very different ways.
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2. Remarks and further results

2 Remarks and further results

Before focusing on each chapter let us dedicate a few words to the separability and linearity
assumptions: from the beginning of this work we have assumed that the operator under study
T ∈ L(X) was acting on a separable F-space X (see page 2), but recurrence can be also
considered when X is non-separable (the identity map is recurrent). However, one of the main
ideas of this work was to connect recurrence with hypercyclicity, and since this last property
needs separability we preferred to assume it in order to avoid unnecessary difficulties. Along
the chapters we have briefly pointed out when the separability assumption can be dropped, see
Chapter 2, Remarks 3.4 and 4.6, but also Chapter 4, Remarks 4.1, 5.7 and 6.6. This usually
happens for the type of results that are strictly related to recurrence.

Historically, the underlying spaces considered in dynamics have been separable. This is
the case of Linear Dynamics because of hypercyclicity (even though there are at least two
remarkable exceptions, see [15] and [71]), but also for classical non-linear systems since the
most usual set up is that of continuous maps acting on compact metrizable spaces, which are
separable. Many references framed on the topic of compact dynamical systems have been used
here (see [1, 4, 27, 38, 41, 45, 48, 61, 65]). Among them we must highlight the 1981 Furstenberg’s
book [41] entitled “Recurrence in Ergodic Theory and Combinatorial Number Theory”, which
can be considered the theoretical basis of this thesis.

This last comment links to our second remark: the necessity of linearity. It is clear that
some of the results and ideas used in this work are only valid in the linear setting. This is
the case when we consider power-bounded operators, unimodular eigenvectors, or the (dense)
lineability and spaceability properties. However, the rest of the results do still work in the
broader context of Polish dynamical systems, that is, when T : X −→ X is a continuous map
acting on a separable completely metrizable space X (see Chapter 2, Section 2, 5 and 6 but
also Chapter 3, Sections 2 and 4). For better readability, and exactly as we have done in the
very first Introduction chapter, we will mainly treat and focus on Linear Dynamics in both
the General discussion of the results and the final Conclusions chapters.

Let us now include some remarks and further results:

2.1 On Chapter 1

The original version of article [21] (i.e. Chapter 1) did not include the notion of AP-recurrence.
Indeed, the point of the paper was to observe, for each operator T ∈ L(X) and each set A ⊂ N0,
the following nice symmetry:

Per(T ) ⊂ URec(T ) ⊂ FRec(T ) ⊂ UFRec(T ) ⊂ RRec(T ) ⊂ Rec(T ),

0 ≤ Bd(A) ≤ dens(A) ≤ dens(A) ≤ Bd(A) ≤ 1.

The syndetic sets that define uniform recurrence are exactly those sets with positive lower
Banach densityA, the sets with positive lower and upper density define frequent and U -frequent
recurrence, while the sets of positive upper Banach density define reiterative recurrence.

ASee Proposition 2.10 in Section 2 of the Appendix.
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The referee of article [21] suggested the inclusion of AP-recurrence recently studied in [24],
which is equivalent to the notion of (topological) multiple recurrence introduced for linear
operators by Costakis and Parissis in the 2012 paper [31]. We finally incorporated this notion
in the Introduction of article [21] but, in order to maintain a good readability, we did not
elaborate further on it. Recall that AP is the Furstenberg family formed by sets containing
arbitrarily long arithmetic progressions, and that APRec(T ) denotes the set of AP-recurrent
vectors for an operator T ∈ L(X). We have the following inclusions:

RRec(T ) ⊂ APRec(T ) ⊂ Rec(T ).

We can show that these inclusions are strict, in a rather strong sense, obtaining an analogous
result to that of Theorem 5.7 stated in Chapter 1:

Proposition 2.1. Usual, AP and reiterative recurrence can be strongly distinguished:

(a) There is a hypercyclic operator T ∈ L(X) for which APRec(T ) is nowhere dense.

(b) There is an AP-hypercyclic operator T ∈ L(X) for which RRec(T ) is nowhere dense.

Proof. (a): By [31, Proposition 5.8] there exists a hypercyclic (even weakly-mixing) bilateral
weighted shift T ∈ L(ℓ2(Z)), which is not topologically multiply recurrent. If the set APRec(T )
was somewhere dense, then a similar argument to that used in [51, Proposition 5.10] would show
that T is AP-recurrent arriving to a contradiction.

(b): By using [8] and [9], in [24, Section 4] it is shown the existence of an AP-hypercyclic
operator T ∈ L(ℓ1(N)), which is not weakly-mixing. If RRec(T ) was somewhere dense, again by
a similar argument to that used in [51, Proposition 5.10] we would obtain that T is reiteratively
recurrent and then reiteratively hypercyclic by [21, Theorem 2.1]. This yields a contradiction
since every reiteratively hypercyclic operator is weakly-mixing by [16, Proposition 4].

An analogous result to that of Corollary 5.8 stated in Chapter 1 follows:

Corollary 2.2. Usual, AP and reiterative recurrence can be distinguished:

(a) There is a recurrent operator T ∈ L(X) for which APRec(T ) is nowhere dense.

(b) There is an AP-recurrent operator T ∈ L(X) for which RRec(T ) is nowhere dense.

These results are based on the interchange of ideas between the chapters/articles forming
this memoir and the recent investigations done by Rodrigo Cardeccia and Santiago Muro in the
works [23, 24, 25], which have significantly contributed to the development of F -hypercyclicity
and F -recurrence. A good example of this fact is the following result from [25], which follows
from the negative answer obtained there to Question 4.10 stated in Chapter 1:

Cardeccia and Muro, [25, Corollary 3.7]: There are separable infinite-dimensional Banach
spaces without reiteratively hypercyclic operators.

The approach used in [25] considers recurrence and Furstenberg families via the so-called
PF property, which we define minutely in the following section.
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2. Remarks and further results

It is also shown in [25] that a general F -hypercyclicity version of Theorem 2.1 stated in
Chapter 1 holds (see [25, Proposition 2.8]). Indeed, the same six equivalences are still true for
u.f.i. upper block families. Given a Furstenberg family F ⊂ P(N0):

– we define its block family bF as the collection of sets A ⊂ N0 for which there exists B ∈ F
fulfilling that for every finite subset F ⊂ B there is n ∈ N0 such that F + n ⊂ A.

– we say that F is a block family whenever bF = F .

Among other relations, it is checked in [25] that bD = bD = bBD = BD, so that BD is a block
familyB. It is also clear that AP is a block family. These type of Furstenberg families have
been also used in previous works such as [45], [59] and [68], and they enjoy the following nice
properties: first, an operator T ∈ L(X) is F-hypercyclic if and only if it is F-recurrent and
hypercyclic; and once T is F-hypercyclic, then every hypercyclic vector is F-hypercyclic.

General Furstenberg families have been also used in the context of topological transitivity.
Indeed, if for every pair U, V of non-empty open subsets of X one demands that the return set

NT (U, V ) := {n ∈ N0 : T n(U) ∩ V ̸= ∅}

belongs to F , then the concept of topological F-transitivity appears. This has been deeply
studied in [17] and concepts such as mixing, weak-mixing and topological ergodicity can be seen
as topological I∗-transitivity, T -transitivity and T S-transitivityC. It might be interesting to
study the concept of topological F-recurrence: require that NT (U,U) belongs to F for every
non-empty open subset U of X. As far as we know this is an unexplored field, but it can be
used to characterize topological quasi-rigidity in terms of filters (see Section 2.3 of this chapter).

See Section 2.1 of the Conclusions for more on Chapter 1.

2.2 On Chapter 2

In article [50] (i.e. Chapter 2) the results exhibit some strong equivalences between (a priori)
different recurrence notions, in the context of adjoint operators acting on separable dual Banach
spaces. These results are based on the w∗-w∗-continuity of the adjoint operators, and under
this hypothesis Cardeccia and Muro have been able to characterize the linear chaos in terms
of F -hypercyclicity (see [23]).

Another notion that they have studied minutely in [25] and deeply related with F -recurrence
is the PF property, which was formally defined in 2018 by Puig [81], but previously considered
for particular Furstenberg families by several authors such as Costakis and Parissis [31], Badea
and Grivaux [3, Proposition 4.6] and Grivaux and Matheron [52, Section 2.5]:

Definition 2.3. Let F be a Furstenberg family. We say that T ∈ L(X) has the PF property
if for every non-empty open subset U of X there exists xU ∈ U such that NT (xU , U) ∈ F .

Note that, if F is a left-invariant family, then T ∈ L(X) has the PF property if and only if
for every non-empty open subset U of X there exists xU ∈ X such that NT (xU , U) ∈ F .

BSee Lemma 2.12 of the Appendix for an argument showing that BD is a block family.
CSee Sections 1 and 3 of the Appendix for the definition of the families I∗, T and T S.
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Recall that the notion of F -recurrence requires the density of the set FRec(T ), and that
the vectors of this set return to each of their neighbourhoods with frequency F . It is then
clear that the PF property is, at least formally, weaker than F -recurrence. In [25, Section 5]
it is asked, and left as an open problem, if the PF property is equivalent to F -recurrence. The
results that we have obtained in Chapter 2, and in particular Lemma 3.1 there, solve positively
this question under the already mentioned “adjoint operator’s assumption”.

As we argue in Section 2 of Chapter 2, these strong results, that appear when we are able
to use Ergodic Theory, are still true for many natural classes of Polish dynamical systems.
In particular, they hold for compact dynamical systems, which have been the main context in
classical non-linear dynamics. This is probably the reason why the notions of frequent and
reiterative recurrence have not been considered for classical systems (there they are equivalent
to the existence of an invariant measure with full support), while stronger recurrence notions
such as uniform, IP∗ or ∆∗-recurrence have been deeply studied (see [41]).

Returning to the linear setting, we have also shown in Chapter 2 that having a spanning
set of unimodular eigenvectors is equivalent to be uniformly recurrent, at least for operators
acting on Hilbert spaces (Theorem 1.3) and for power-bounded operators on reflexive Banach
spaces (Theorem 1.9). Along Section 4 of Chapter 2 we have discussed the difficulties that the
“Hilbert space’s result” presents when one tries to extend it for other spaces. However, for the
case of “power-bounded operators on reflexive Banach spaces”, it seems that a much stronger
result (which will appear in a forthcoming work) can be achieved.

See Section 2.2 of the Conclusions for more on Chapter 2.

2.3 On Chapter 3

In article [51] (i.e. Chapter 3) we define the notion of quasi-rigidity characterizing the operators
T ∈ L(X) for which every N -fold direct sum T(N) is again recurrent. Then we construct in
Theorem 3.2 some recurrent but not quasi-rigid operators, which are not reiteratively recurrent
by Proposition 6.2 of Chapter 3. However, these operators are AP-recurrent:

Corollary 2.4. Let X be any (real or complex) separable infinite-dimensional Banach space.
For each N ∈ N there exists an operator T ∈ L(X) such that

T(N) : XN −→ XN is AP-recurrent,

but for which T(N+1) : XN+1 −→ XN+1 (and hence T(J) for all J > N) is not recurrent.

Proof. We just show the “N = 1 and complex” case. Let X be a complex Banach space and
suppose that (en, e

∗
n)n∈N ⊂ X × X∗ is the biorthogonal sequence; P the projection; M > 0

the constant; (w∗
k)k≥3, (mk)k∈N and (λk)k∈N the sequences of functionals, integers and complex

numbers; and R, T the operators considered in Section 3 of Chapter 3.
It is enough to check that c00 := span{en : n ∈ N} ⊂ APRec(T ). Indeed, let us prove that

given an arbitrary but fixed vector x ∈ c00 the following holds:

– For each l ∈ N there exist some n ∈ N such that ∥T jmn−1x− x∥ < 1
l

for all 1 ≤ j ≤ l.
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2. Remarks and further results

First of all note that, if x = ∑︁n0
k=1 xkek, then Rjmn−1x = x for all n > n0 and all j ∈ N0.

Now, by the assumptions on the sequence (mk)k∈N we can fix n1 ∈ N such that

M · 2K · ∥x∥ ·
∑︂
n<k

mn−1

mk−1
<

1
2l2 for all n > n1.

By the construction of (w∗
k)k≥3 we can now choose n > max(n0, n1) such that |⟨w∗

n, Px⟩| < 1
2l2

.
Finally, for each 1 ≤ j ≤ l we have that

T jmn−1x− x =
(︂
(T jmn−1 −Rjmn−1)x

)︂
+
(︂
Rjmn−1x− x

)︂
= (T jmn−1 −Rjmn−1)x,

since n > n0. Hence, and since n > n1, we have that

∥T jmn−1x− x∥ = ∥(T jmn−1 −Rjmn−1)x∥
Fact 3.3.1

≤
Chapter 3

⃦⃦⃦⃦
⃦⃦ ∑︂

3≤k<n

λk,jmn−1

mk−1
⟨w∗

k, Px⟩ek

⃦⃦⃦⃦
⃦⃦

+
⃦⃦⃦⃦
⃦λn,jmn−1

mn−1
⟨w∗

n, Px⟩en

⃦⃦⃦⃦
⃦ +

⃦⃦⃦⃦
⃦⃦∑︂

n<k

λk,jmn−1

mk−1
⟨w∗

k, Px⟩ek

⃦⃦⃦⃦
⃦⃦

Fact 3.3.2
≤

Chapter 3
j · |⟨w∗

n, Px⟩| + j ·

⃓⃓⃓⃓
⃓⃓M · 2K · ∥x∥ ·

∑︂
n<k

mn−1

mk−1

⃓⃓⃓⃓
⃓⃓ < 2j · 1

2l2 ≤ 1
l
,

for all 1 ≤ j ≤ l as we wanted to show. The later easily implies that x belongs to APRec(T )
because for each l ∈ N, and for the ball B(x, 1

l
) centred at x and of radius 1

l
, we have that the

return set NT (x,B(x, 1
l
)) contains an arithmetic progression of length l + 1.

Quasi-rigidity seems to be a new notion even for classical non-linear dynamical systems,
but we have also defined topological quasi-rigidity (see Chapter 3, Definition 2.2). It is worth
mentioning that this can be also characterized in terms of free filters. Indeed, if we consider
the definition of topological F-recurrence given at the end of Section 2.1 of this chapter then:

Proposition 2.5. Let (X,T ) be a dynamical system. The following are equivalent:

(i) T is topologically quasi-rigid;

(ii) T is topologically F(A)-recurrent for some infinite subset A ⊂ N0;

(iii) T is topologically F-recurrent with respect to a free filter F with a countable base.

Moreover, if X is a second-countable space, the previous statements are equivalent to:

(iv) T is topologically F-recurrent for a family F with the finite intersection property.

Proof. The proof is completely analogous to that of Proposition 4.5 stated in Chapter 3.

As a final remark on Chapter 3 we would like to include here a short argument, which shows
(the really well-known fact) that hypercyclicity is an infinite-dimensional phenomenon, but
using the recurrence theory developed:
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Corollary 2.6. There are no hypercyclic operators on a finite-dimensional space X ̸= {0}.

Proof. Suppose that T : X −→ X was a complex hypercyclic matrix. Then T would be a
recurrent matrix. By [30, Theorem 4.1] there would exist a base of X formed by unimodular
eigenvectors for T so that every orbit would be bounded and no vector could be hypercyclic.
The real case follows similarly by the arguments used in Section 5.1 of Chapter 3.

See [10, Proposition 1.1] or [55, Proposition 2.57 or Exercises 2.7.1 and 2.7.2] for some of
the standard proofs of this last fact.

See Section 2.3 of the Conclusions for more on Chapter 3.

2.4 On Chapter 4

In article [69] (i.e. Chapter 4) we identify those quasi-rigid operators (acting on Banach spaces)
that admit a recurrent subspace, just as in the case of weakly-mixing operators admitting a
hypercyclic subspace. The theory developed could simplify the study of those weakly-mixing
operators that can be written as a compact perturbation of a quasi-rigid operator with a much
easier dynamical behaviour (see Chapter 4, Section 7, Corollary 7.2). In view of these results
it could be interesting to find other properties for which recurrence and hypercyclicity behave
exactly in the same way, as it happens for spaceability in the “weakly-mixing” context.

For non-weakly-mixing operators, it is an open problem to characterize when they admit
hypercyclic subspaces (see [43, Question 7]). We can at least show the following:
Corollary 2.7. Let X be a complex (resp. real) separable Banach space and let T ∈ L(X) be
a hypercyclic but not weakly-mixing operator. The following statements are equivalent:

(i) T has a recurrent subspace;

(ii) there exists an infinite-dimensional closed subspace E ⊂ X and an increasing sequence of
integers (ln)n∈N such that T lnx → x for all x ∈ E;

(ii’) there exists an infinite-dimensional closed subspace E ⊂ X and an increasing sequence of
integers (ln)n∈N such that T lnx → 0 for all x ∈ E;

(iii) there exists an infinite-dimensional closed subspace E ⊂ X and an increasing sequence of
integers (ln)n∈N such that supn∈N ∥T ln|E∥ < ∞;

(iv) the essential spectrum of T (resp. ˜︁T ) intersects the closed unit disk D.

Proof. Recall that every hypercyclic operator is quasi-rigid by Proposition 2.9 of Chapter 3.
Then (i) ⇔ (ii) ⇔ (iii) ⇔ (iv) follow from Theorem 3.3 and 3.4 of Chapter 4; (ii’) ⇒ (iii) by the
Banach-Steinhaus theorem; and (iv) ⇒ (ii’) by the proof of (iv) ⇒ (ii) showed in Theorem 3.3
of Chapter 4 combined with [55, Proof of Theorem 10.29], since by hypercyclicity there exist a
dense set X0 ⊂ X and an increasing sequence (kn)n ∈ NN such that T knx → 0 for all x ∈ X0.

See Section 2.4 of the Conclusions for more on Chapter 4.

We refer to the Conclusions chapter for the final concluding remarks.
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Conclusions

In this chapter we summarize the conclusions we got in this work: first we state the general
conclusions; and then we collect the lines of research and problems that remain open.

1 General conclusions

In this thesis we have studied linear recurrence, which provides a wide range of different research
possibilities: one can focus on the original notion of “usual recurrence”, but it is also possible
to use Combinatorial Number Theory and work with the generalized and stronger recurrence
properties of “frequent recurrence” called F -recurrence along this memoir.

From the beginning of this document we have insisted on the novelty of recurrence for linear
dynamical systems: it has been just deeply studied from 2014 while the notion of hypercyclicity
has more than 30 years of development. This contrast comes to show a fact that has recently
appeared in Linear Dynamics: the problems that remain open in (also “frequent”) hypercyclicity
are, by far, much more difficult than those arising right now for other more modern dynamical
properties (see [43] for a very recent compendium of open problems in hypercyclicity).

Among these newer properties, it seems that linear recurrence is particularly important
because of the natural links that appear with hypercyclicity, as we have shown along this work.
However, it is more or less clear that hypercyclicity is and will continue to be the quintessential
property in Linear Dynamics, in part due to the invariant subspace and subset problems since
these represent the basis on which the theory of linear systems has been developed.

From our point of view it is at least nice (and hopeful) that the lines of though used in the
chapters/articles forming this memoir have aroused the interest of other researchers such as the
already mentioned Rodrigo Cardeccia and Santiago Muro, whose work has complemented ours
in a really deep way. This recent interchange of ideas shows that Linear Dynamics can still be
a really active research area, and that other dynamical properties (such as recurrence) may be
exploited in order to give alternative approaches to hypercyclicity.

Plenty of open problems and research lines remain open in linear recurrence as one could
expect due to its newness. These questions are not only connected to hypercyclicity since plenty
of queries are strictly related to recurrence. Indeed, recall that there are many Furstenberg
families F for which there does not exist any F -hypercyclic operator and just F -recurrence can
be considered. This is the case of uniform, IP∗ and ∆∗-recurrence, and studying the structure
of the sets FRec(T ) of F -recurrent vectors for these, but also for other strong recurrence
properties such as frequent recurrence, seems to be a challenging problem.
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2 Open problems and concluding remarks

Let us now focus on each chapter to include the main left open problems:

2.1 On Chapter 1

In article [21] (i.e. Chapter 1) we have studied F -recurrence for many natural Furstenberg
families F . For the strong recurrence notions of frequent, uniform, IP∗ and ∆∗-recurrence it
is still unknown if the respective sets of FRec(T ) can be of second category without taking up
the whole space (see Questions 2.9 and 2.11 of Chapter 1):

Open Problem 1. For any operator T ∈ L(X) acting on a (real or complex) F-space X:

(a) Do we always have that either FRec(T ) = X or FRec(T ) is of first category?

(b) Do we always have that either URec(T ) = X or URec(T ) is of first category?

(c) Do we always have that either IP∗Rec(T ) = X or IP∗Rec(T ) is of first category?

(d) Do we always have that either ∆∗Rec(T ) = X or ∆∗Rec(T ) is of first category?

The raise of these questions is based on the following two facts (already stated in Chapter 1):

(1) the sets considered can be of second category since the identity operator I : X −→ X
fulfills that ∆∗Rec(T ) = IP∗Rec(T ) = URec(T ) = FRec(T ) = X;

(2) and also for the set of periodic vectors Per(T ) the corresponding property holds: if we let
Pern(T ) := {x ∈ X : T nx = x} then

Per(T ) =
⋃︂

n∈N
Pern(T ),

and once Per(T ) is of second category we have that Pern(T ) is somewhere dense for some
n ∈ N, which implies T n = I (i.e. either Per(T ) is of first category or else Per(T ) = X).

Let us include some comments regarding Problem 1:

– We know that (a) is true when T is a hypercyclic operator: in that case FRec(T ) is necessarily
of first category (see Chapter 1, Theorem 2.8). When T is not hypercyclic we do not know
anything even in the dual/reflexive setting used in Chapter 2: the set of frequently recurrent
vectors in that case is “big” with respect to a certain invariant measure, but this has usually
nothing to do with the “bigness” in the Baire category sense.

– If X is a Banach space then (b), (c) and (d) are true (see Chapter 1, Corollary 3.2). In
contrast, note that Example 3.3 given in Chapter 1 also shows a ∆∗-recurrent vector with an
unbounded orbit for an operator acting on a Fréchet space.

– The next possible stronger recurrence notion of those studied in this memoir is that of having
a dense set of unimodular eigenvectors. Note that, if span(E(T )) is a second category set,
then T is a power-bounded operator on the F-space X so that FRec(T ) = X, for every
Furstenberg family F , whenever T is F -recurrent (see Chapter 1, Theorem 8.6).
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Regarding weaker recurrence notions we have shown in Example 2.4 of Chapter 1 that there
exist a reiteratively recurrent operator with a first category set of reiteratively recurrent vectors.
Since this operator is not cyclic and in view of Theorem 2.1 of Chapter 1, which shows that

– the set of reiteratively recurrent vectors is always of second category for every reiteratively
recurrent and hypercyclic operator,

the following is then a natural question already stated in Problem 5.14 of Chapter 3:

Open Problem 2. Let T ∈ L(X) be a reiteratively recurrent and cyclic operator. Is then the
set of reiteratively recurrent vectors RRec(T ) necessarily a second category set?

Let us turn to finding sufficient conditions to show the equivalence between F -hypercyclicity
and F -recurrence. Question 2.13 of Chapter 1 is still unanswered:

Open Problem 3. Let T ∈ L(X) be a frequently recurrent operator (or even Devaney chaotic)
acting on an F-space X and such that T nx → 0 as n → ∞ for all x from a dense subset of X.
Does it follow that the operator T is frequently hypercyclic?

It seems to be even open whether every chaotic operator with a dense generalized kernel
(that is, ⋃︁n≥0 Ker(T n) = X) is frequently hypercyclic.

Another kind of question is that related to the T−1-type and T ⊕ T -type problems, which
have been asked in Question 2.14 of Chapter 1 and Questions 8.7 and 8.8 of Chapter 2:

Open Problem 4. Let T ∈ L(X) be an operator acting on a (real or complex) F-space X:

(a) If T is an invertible reiteratively (U-frequently, frequently, uniformly, IP∗, ∆∗) recurrent
operator, does T−1 have the same property?

(b) If T is a reiteratively (U-frequently, frequently, uniformly) recurrent operator, does T ⊕ T
(or more generally T(N) for all N ≥ 2) have the same property?

All these questions present positive answers in the very particular dual/reflexive/Hilbertian
setting used in Chapter 2, so the question is if these properties still hold for operators on general
F-spaces. In this broader context we prove, in Proposition 5.10 of Chapter 3, that the answer
to question (b) is positive whenever T admits a dense CT -orbit (in particular if T is cyclic).

We could also include here Question 6.3 stated in Chapter 1, which asks the equivalence
between uniform and IP∗-recurrence. However, we treat this problem in a much deeper way
(involving unimodular eigenvectors) in the following section.

2.2 On Chapter 2

In article [50] (i.e. Chapter 2) we have used Ergodic Theory and measure preserving systems
to obtain strong recurrence notions from weaker ones. The concept of reiterative recurrence
was specially interesting since it implied the existence of invariant measures, at least in our
dual/reflexive setting. Even though this is not true in general (as it happens for some operators
acting on non-reflexive Banach spaces), the following is a natural question:
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Open Problem 5. Let T ∈ L(X) be an operator acting on an F-space X. Suppose that there
exists some vector x0 ∈ RRec(T ) \ {0}:

(a) Under which extra conditions (on the operator T or on the space X) does T admits a
non-trivial invariant measure containing the vector x0 in its support?

(b) What happens when X is a (possibly reflexive) Fréchet space?

To show the existence of unimodular eigenvectors we needed, in Chapter 2, a particularly
restrictive setting (either an underlying Hilbert space or else a power-bounded operator acting
on a reflexive Banach space). Following Questions 1.8 and 8.1 of Chapter 2:

Open Problem 6. Let T ∈ L(X) be an operator acting on a complex F-space X:

(a) If T is uniformly recurrent, is span(E(T )) a dense set in X?

(b) What happens when X is a complex (reflexive) Fréchet space?

(c) What if X is a complex (reflexive) Banach space?

(d) What about the case where T is an adjoint operator on a separable dual Banach space X?

(e) What can we say about this question if T is a power-bounded operator?

It seems to us that a more general “unimodular eigenvectors’ constructing machine”, not
strictly restricted to the invariant measures or power-bounded assumptions, should be developed
in order to provide a positive answer to Problem 6. What we know for the moment are the
next two facts proved in Chapter 2, Section 8:

– Let T ∈ L(H) an operator acting on a complex separable Hilbert space H. Given a T -invariant
w-compact subset K of H for which 0 /∈ K, we have that span(E(T )) ∩K ̸= ∅.

– Let T ∈ L(X) be an adjoint operator acting on a complex separable dual Banach space X.
Let n ∈ N and λ ∈ T. Given a [λT ]n-invariant w∗-compact and convex subset K of H for
which 0 /∈ K, we have that E(T ) ∩ span(Orb(x, T )) ̸= ∅ for some x ∈ K.

The questions above where originated by Question 1.6 of Chapter 1, and in fact, a positive
answer to Problem 6 would automatically imply a negative one to the next problem also
stated in Chapter 2, Question 8.2:

Open Problem 7. Let T ∈ L(X) be an operator acting on a (real or complex) F-space X:

(a) Can T be IP∗-recurrent but not ∆∗-recurrent?

(b) Can T be uniformly recurrent but not IP∗-recurrent?

As we comment in Section 8 of Chapter 2, the notions of uniform and IP∗-recurrence are
completely distinguished for compact dynamical systems (see the construction from [38], its
properties in [27] and then use [41, Theorems 1.15 and 9.12]), so the question here is if the
linearity assumption avoids that distinction.

168



2. Open problems and concluding remarks

2.3 On Chapter 3

One of the main results obtained in article [51] (i.e. Chapter 3) is the negative answer to
the T ⊕ T -recurrence problem. The counterexample constructed is valid for discrete linear
dynamical systems, but we could also consider semigroups of operators: recall that an operator
family (T (t))t≥0 ⊂ L(X) on a Banach space X is said to be a C0-semigroup if the following
conditions hold

(C01) T (0) = I;

(C02) T (t+ s) = T (t)T (s) for all t, s ≥ 0;

(C03) the mapping t ↦→ T (t)x ∈ X, t ≥ 0, is continuous for every x ∈ X.

Following [26] we have that: a vector x in a Banach space X is called recurrent for a
C0-semigroup (T (t))t≥0 ⊂ L(X) if there exist an increasing sequence (tn)n∈N of positive real
numbers such that T (tn)x → x as n → ∞. We denote by Rec(T (t)) the set of recurrent
vectors for the C0-semigroup (T (t))t≥0. A kind of Costakis-Manoussos-Parissis theorem holds
for recurrent C0-semigroups (see [26, Theorem 2.1]) and the following was asked in [26]:

Open Problem 8. Let (T (t))t≥0 be a recurrent C0-semigroup. Is the direct sum (T (t)⊕T (t))t≥0
a recurrent C0-semigroup?

As far as we know Problem 8 is still open if we replace “recurrent” by “hypercyclic”, but
solving the recurrence version could be a first step to achieve the hypercyclicity one.

Returning to our discrete dynamical systems, we also include here those problems related
to the existence of dense CT -orbits: recall that, for an operator T ∈ L(X), we have denoted by

CT := {S ∈ C (X) : S ◦ T = T ◦ S} .

the (non-linear) commutant of the operator T , and that given any vector x ∈ X we define the
CT -orbit of x as CT (x) := {Sx : S ∈ CT }. The following is asked in Chapter 3:

Open Problem 9. Let F ⊂ P(N0) be any Furstenberg family and suppose that T ∈ L(X) is
an F-recurrent operator acting on a (real or complex) F-space X:

(a) If T does not admit any dense CT -orbit, can T(N) be F-recurrent for all N ∈ N?

(b) Can T admit a dense CT -orbit and fulfill that FRec(T ) ∩ {x ∈ X : CT (x) = X} = ∅?

These seem to be tough questions since the commutator of an operator is usually difficult to
describe. Related to Problem 9, and as we comment in Chapter 3, the general dense lineability
of the set of F -recurrent vectors is for the moment an open question:

Open Problem 10. Let F be a Furstenberg family, assume that it is not a filter and suppose
that T ∈ L(X) is an F-recurrent operator acting on a (real or complex) F-space X:

Is the set FRec(T ) necessarily dense lineable?
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2.4 On Chapter 4

In article [69] (i.e. Chapter 4) we have just looked at operators acting on Banach spaces. We
have already mentioned along this work that there also exists a hypercyclic spaceability theory
for operator acting on Fréchet spaces (see for instance [55, Chapter 10, Section 10.5]).

The following is then asked in Chapter 4:

Open Problem 11. Let X be a Fréchet space:

(a) Under which conditions does a quasi-rigid operator T ∈ L(X) have a recurrent subspace?

(b) Suppose that T ∈ L(X) is a weakly-mixing operator. Is it true that T has a hypercyclic
subspace if and only if it has a recurrent subspace?

This last question seems to be non-trivial since for Fréchet spaces we loose the techniques,
involving the essential spectrum, used in Chapter 4.

3 Recent advances in the previous problems

Although the final version of this memoir was presented in June 2023, the body of this document
was written between February and the end of March 2023. From April to the end of June 2023
the author did a research stay in Mons where significant progress was made on the posed open
problems. In particular:

– Problem 2 has been solved in the negative by finding a counterexample.

– Problem 5 is now partially solved: we can construct invariant measures for operators acting
on reflexive Fréchet spaces, under some extra boundedness assumption.

– Problem 6 is now partially solved: a positive answer has been obtained for power-bounded
operators acting on arbitrary Fréchet spaces.

– Problem 8 has been solved in the negative by modifying the counterexample exhibited here
in Theorem 3.2 of Chapter 3.

– Problem 10 is now partially solved: a negative answer has been obtained for usual recurrence
by modifying the counterexample exhibited here in Theorem 3.2 of Chapter 3.

– Problem 11 is now partially solved: similar sufficient conditions to those used in the Banach
case are valid for quasi-rigid operators acting on Fréchet spaces.

These new ideas and results will appear in forthcoming works.

We end here this Conclusions chapter together with the entire thesis.

170



Appendix

Combinatorial Number Theory

Combinatorial Number Theory plays a fundamental role when we generalize concepts such as
recurrence or hypercyclicity in terms of Furstenberg families. In this Appendix we gather some
definitions, easy well-known facts and examples that help to understand and clarify the various
ideas taken for granted along the different articles forming this memoir. Our aim is to provide
a solid knowledge base to be able to work with F -hypercyclicity and F -recurrence.

The first section is devoted to introduce some necessary concepts of size, for infinite sets of
natural numbers (see Definition 1.1), related to the topological and algebraic properties of the
Stone-Čech compactification βN0. We then include in Proposition 1.3 some relations between
them, which have been already used in various chapters of this work. We also introduce
the notions of asymptotic and Banach density (see Definitions 2.1 and 2.6), studying their
basic properties (see Propositions 2.4 and 2.8). In Section 3 we elaborate on the concept of
Furstenberg family, and we give detailed examples of upper families (see Example 3.2). We
finally check, in Section 4, how important are the IP , ∆, IP∗ and ∆∗ families in dynamics.

Let us establish the following notation (used throughout the work): N will be the set of
strictly positive integers while N0 := N ∪ {0}. Moreover, Z will be the set of all integers and
given any n ∈ N we will denote by Z/nZ the quotient space of modulus n. Given n,m ∈ Z
with n ≤ m and A ⊂ N0 we will write [n,m] := {n, n+ 1, ...,m}, nA = n ·A := {n · x : x ∈ A},
A+ n := {x+ n : x ∈ A}, A− n := {x− n : x ∈ A} and

A+ [n,m] :=
m⋃︂

j=n

(A+ j).

In addition, if we consider two sets of numbers A,B ⊂ N0, then we will denote their sum set
by A + B := {x + y : x ∈ A, y ∈ B}, their difference set by A − B := {x − y : x ∈ A, y ∈ B},
and also their symmetric difference by A △ B := (A ∪ B) \ (A ∩ B), where ∪ and ∩ are the
usual union and intersection symbols. We will denote by #A the cardinal of the set A.

1 The natural numbers

As stated in [58, Part I], the internal operation defined on a discrete topological semigroup
(S, ·) has a natural extension to the Stone-Čech compactification

βS := {p ⊂ P(S) : p is an ultrafilter on S}.
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By this extension (βS, ·) becomes a compact topological semigroup containing S as its centre in
the form of principal ultrafilters (see [58, Part II]). The study of the algebraic and topological
properties of (βS, ·) has applications in several fields such as Ramsey Theory, Combinatorial
Number Theory [58, Part III], Ergodic Theory and Topological Dynamics [58, Part IV].

In particular, if we denote by N the set of strictly positive integers and by N0 := N∪ {0} we
can consider the discrete topological semigroup (N0,+), where the operation + : N0×N0 −→ N0
is the usual sum that brings (n,m) ↦→ n+m for each n,m ∈ N0. Then

βN0 := {p ⊂ P(N0) : p is an ultrafilter on N0},

with the extended operation + : βN0 × βN0 −→ βN0, is a compact topological semigroup that
provides deep relations between Combinatorial Number Theory and Topological Dynamics.

In fact, many notions originated in Topological Dynamics such as syndetic sets, piecewise
syndetic sets or IP-sets are important to describe the algebraic and topological structure of
(βN0,+). For example, a point p ∈ βN0 is in the closure of the smallest ideal of βN0 if and
only if every element A ∈ p satisfies that A ⊂ N0 is piecewise syndetic [58, Theorem 4.40]. It
is also true that for a set B ⊂ N0 there is a sequence (xn)n∈N ∈ NN

0 fulfilling that{︄∑︂
n∈F

xn : F finite subset of N
}︄

⊂ B,

if and only if there exists some (non-zero) idempotent p ∈ βN0 (i.e. p+ p = p) such that B ∈ p,
see [58, Theorem 5.12]. Due to the extension of this theory we will reduce ourselves to include
the needed concepts of size for infinite subsets of natural numbers together with their basic
properties. For a deeper and more complete development of the theory see [58].

Definition 1.1. We say that a set A ⊂ N0 is:

(a) thick if for each m ∈ N there exists x ∈ A such that [x, x+m] ⊂ A.

(b) syndetic if there exists m ∈ N such that [x, x+m] ∩ A ̸= ∅ for all x ∈ N0.

(c) thickly syndetic if for each m ∈ N there is a syndetic set Am ⊂ N0 such that Am+[0,m] ⊂ A.

(d) piecewise syndetic if there exist two sets B,C ⊂ N0 fulfilling that A = B ∩ C and where
the set B is thick and the set C is syndetic.

(e) an AP-set if for each l ∈ N there exist numbers x,m ∈ N such that

{x+ km : 0 ≤ k ≤ l} ⊂ A.

(f) an IP-set if there exists a sequence (xn)n∈N ∈ NN
0 such that{︄∑︂

n∈F

xn : F finite subset of N
}︄

⊂ A.

(g) a ∆-set if there exists an infinite set B ⊂ N0 such that (B −B) ∩ N ⊂ A.
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Remark 1.2. The sets fulfilling the previous definitions are included in the collection of sets
with infinite cardinality

I := {A ⊂ N0 : A is infinite}.

Moreover:

(a) Informally speaking, the thick sets are those that contain “intervals” of natural numbers of
arbitrarily long “length”. We will denote the family of thick sets by

T := {A ⊂ N0 : A is thick}.

(b) Informally speaking, the syndetic sets are those that have bounded “holes” or “gaps”, that
is, those A ⊂ N0 such that if (nk)k∈N is the strictly increasing sequence of natural numbers
forming A, then

sup
k∈N

(nk+1 − nk) < ∞.

We will denote the family of syndetic sets by

S := {A ⊂ N0 : A is syndetic}.

(c) The thickly syndetic sets contain “intervals” arbitrarily “long” but at “bounded distance”.
We will denote the family of thickly syndetic sets by

T S := {A ⊂ N0 : A is thickly syndetic}.

(d) Piecewise syndetic sets are those containing “intervals” of natural numbers of arbitrarily
long “length” but intersected with a syndetic set. Indeed, if A = B ∩ C for a thick set B
and a syndetic set C, then we can find m ∈ N such that [x, x+m] ∩C ̸= ∅ for all x ∈ N0.
Hence, for each n > m we can find j ∈ B satisfying that [j, j + n] ⊂ B, so

[x, x+m] ∩ A = [x, x+m] ∩ C ̸= ∅ for each x ∈ [j, j + (n−m)].

We will denote the family of piecewise syndetic sets by

PS := {A ⊂ N0 : A is piecewise syndetic}.

(e) The AP-sets contain “arbitrarily long arithmetic progressions” since, for each l, x,m ∈ N
the set {x+km : 0 ≤ k ≤ l} is the arithmetic progression of length l+1, common difference
m ∈ N and initial term x ∈ N0. We will denote the family of AP-sets by

AP := {A ⊂ N0 : A is an AP-set}.

(f) The IP-sets contain the “finite sums” of a sequence of natural numbers. We will denote
the family of IP-sets by

IP := {A ⊂ N0 : A is an IP-set}.

(g) The ∆-sets contain the difference set of an infinite set. We will denote the family of ∆-sets
by

∆ := {A ⊂ N0 : A is a ∆-set}.

173



Apendix. Combinatorial Number Theory

The following well-known facts will be used in Section 3 of this Appendix:

Proposition 1.3. Consider two sets A,B ⊂ N0. The following statements hold:

(a) A is syndetic if and only if N0 \ A is not thick.

(b) A is piecewise syndetic if and only if N0 \ A is not thickly syndetic.

(c) If A and B be are thickly syndetic, then A ∩B is thickly syndetic.

(d) If A is thickly syndetic, then A is thick and syndetic.

(e) If A is thick or syndetic, then A is piecewise syndetic.

(f) If A is piecewise syndetic, then A is an AP-set.

(g) If A is thick, then A is an IP-set.

(h) If A is an IP-set, then A is a ∆-set.

Proof. (a) The set A is syndetic if and only if there exists m ∈ N such that [x, x+m] ∩A ̸= ∅
for all x ∈ N0, and therefore, if and only if there exists m ∈ N with [x, x+m] ⊈ N0 \A for
all x ∈ N0, that is, if and only if N0 \ A is not thick.

(b) A is piecewise syndetic if and only if there exists m ∈ N such that for every n ∈ N with
n > m we can find j ∈ N satisfying that if x ∈ [j, j + (n − m)] then [x, x + m] ⊈ N0 \ A
(see Remark 1.2), that is, if and only if there does not exist a syndetic set Bm satisfying
Bm + [0,m] ⊂ N0 \ A, and therefore if and only if N0 \ A is not thickly syndetic.

(c) Given m ∈ N consider a syndetic set Am ⊂ N0 with Am + [0,m] ⊂ A and fix k ∈ N such
that Am ∩ [x, x+ k] ̸= ∅ for each x ∈ N0. Considering now a syndetic set Bm+k ⊂ N0 with
Bm+k + [0,m+ k] ⊂ B we get that Cm := Am ∩ (Bm+k + [0, k]) is syndetic and satisfies

Cm + [0,m] ⊂ A ∩B.

(d) Trivial from the definitions.

(e) Trivial since A = A ∩ N0 and N0 is both thick and syndetic.

(f) This is a consequence of the (non-trivial) Szemerédi theorem (see [85]).

(g) Suppose that for some k ∈ N we have constructed a finite sequence (xn)k
n=1 ⊂ N0 satisfying

that {︄∑︂
n∈F

xn : F ⊂ {1, ..., k}
}︄

⊂ A.

Since A is thick we can choose an element xk+1 ∈ A satisfying that[︄
xk+1, xk+1 +

k∑︂
n=1

xn

]︄
⊂ A and hence

{︄∑︂
n∈F

xn : F ⊂ {1, ..., k + 1}
}︄

⊂ A.

Recursively we obtain a sequence (xn)n∈N guaranteeing that A is an IP-set.
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(h) Let (xn)n∈N ∈ NN
0 be a sequence satisfying that{︄∑︂

n∈F

xn : F finite subset of N
}︄

⊂ A,

and consider the infinite set B :=
{︂∑︁k

n=1 xn : k ∈ N
}︂

⊂ A. Then it is clear that

(B −B) ∩ N ⊂
{︄∑︂

n∈F

xn : F finite subset of N
}︄

⊂ A,

so A is a ∆-set.

In Section 3 of this Appendix we will go into detail about Furstenberg families, and in
particular, we will easily check that the collections of sets I, T , S, T S, PS, AP , IP and ∆
fulfill the definition of Furstenberg family. Moreover, Proposition 1.3 will be used to establish
different (inclusion and dual) relations between these families.

2 Densities

In the different chapters/articles forming this memoir we have used several concepts of size for
sets of natural numbers. In the previous section these notions were taken from the algebraic
and topological properties of the semigroup (βN0,+). Another way to “measure” the size of a
set of natural numbers is by using the so-called densities.

The concept of density plays a fundamental role in the development of Probabilistic, Additive
and Combinatorial Number Theory, and in certain areas of Analysis and Ergodic Theory.
Indeed, the densities are a really effective tool when one wants to measure and study the
relationship between the “structure” and the “width” of a set of natural or integer numbers.

The two most common density concepts in Linear Dynamics are the so-called asymptotic
and Banach densities. These notions are the ones used in this work, and we have included here
their definitions, some equivalences and their elementary properties.

Let us start by the asymptotic ones, which we will simply call densities:

Definition 2.1. Let A ⊂ N0. We define the (asymptotic) lower density of the set A as

dens(A) := lim inf
N→∞

#(A ∩ [0, N ])
N + 1 .

We define the (asymptotic) upper density of the set A as

dens(A) := lim sup
N→∞

#(A ∩ [0, N ])
N + 1 .

If the equality dens(A) = dens(A) holds we will say that dens(A) := dens(A) = dens(A) is the
(asymptotic) density of the set A.
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Remark 2.2. For each set A ⊂ N0 we have that

0 ≤ dens(A) ≤ dens(A) ≤ 1.

Moreover, if the equality dens(A) = dens(A) holds, then the following limit exists

lim
N→∞

#(A ∩ [0, N ])
N + 1 ,

and this is exactly equal to dens(A). On the other hand, the next equalities are always true:

dens(A) = lim inf
N→∞

#(A ∩ [0, N ])
N + 1 = lim inf

N→∞

(︄
1 − #((N0 \ A) ∩ [0, N ])

N + 1

)︄

= 1 − lim sup
N→∞

#((N0 \ A) ∩ [0, N ])
N + 1 = 1 − dens(N0 \ A).

If a set A ⊂ N0 is finite then its densities are equal to 0, the complementary set N0 \ A is
cofinite and its densities are equal to 1. For infinite sets the following holds:

Theorem 2.3 ([78, Theorem 11.1]). Let A ⊂ N0 be an infinite set and suppose that (nk)k∈N
is the strictly increasing sequence of numbers forming the set A. Then we have that:

dens(A) = lim inf
k→∞

k

nk

and dens(A) = lim sup
k→∞

k

nk

.

If both limits coincide, then dens(A) = lim
k→∞

k

nk

.

Proof. Given k ∈ N with 0 < nk ≤ N < nk+1, then

k

nk+1
≤ #(A ∩ [0, N ])

N + 1 <
k

nk

.

The result follows from taking inferior and superior limits in the previous inequalities.

These equivalences allow us to quickly prove some of the following well-known properties:

Proposition 2.4. Let A,B ⊂ N0 and p, q ∈ N0. The following statements hold:

(a) If A ⊂ B, then dens(A) ≤ dens(B) and dens(A) ≤ dens(B).

(b) dens(A∪B) ≤ dens(A) + dens(B). If dens(A∩B) = 0, dens(A) + dens(B) ≤ dens(A∪B).

(c) If dens(A△B) = 0, then dens(A) = dens(B) and dens(A) = dens(B).

(d) If p ≥ 1, then dens(p · A) = 1
p

· dens(A) and dens(p · A) = 1
p

· dens(A).

(e) dens((A−q)∩N0) = dens(A) = dens(A+q) and dens((A−q)∩N0) = dens(A) = dens(A+q).

(f) If dens(A ∪B) > 0, then we have that dens(A) > 0 or dens(B) > 0, or both.

(g) If dens((A+ p) ∩ (A+ q)) = 0, then dens((A+ p) ∪ (A+ q)) = dens(A+ p) + dens(A+ q).
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Proof. (a) Trivial from the definitions.

(b) We just show the upper density case (the lower one being completely analogous):

dens(A ∪B) = lim sup
N→∞

#((A ∪B) ∩ [0, N ])
N + 1

≤ lim sup
N→∞

(︄
#(A ∩ [0, N ])

N + 1 + #(B ∩ [0, N ])
N + 1

)︄

≤ lim sup
N→∞

(︄
#(A ∩ [0, N ])

N + 1

)︄
+ lim sup

M→∞

(︄
#(B ∩ [0,M ])

M + 1

)︄

= dens(A) + dens(B).

(c) We just show the upper density case (the lower one being completely analogous): note that
the hypothesis dens(A△B) = 0 implies that dens(A ∪B) = dens(A ∩B). Indeed

dens(A ∪B) = dens((A ∩B) ∪ (A△B))

= lim sup
N→∞

(︄
#((A ∩B) ∩ [0, N ])

N + 1 + #((A△B) ∩ [0, N ])
N + 1

)︄

= dens(A ∩B).

Since A ∩B ⊂ A,B ⊂ A ∪B, using statement (a) we obtain dens(A) = dens(B).

(d) If A is a finite set the result is clear. Suppose that A is infinite and let (nk)k∈N be the
increasing sequence of integers forming the set A, then p · A = {p · nk : k ∈ N} and by
Theorem 2.3 we get that

dens(A) = lim sup
k→∞

k

p · nk

= 1
p

· dens(A), dens(p · A) = lim inf
k→∞

k

p · nk

= 1
p

· dens(A).

(e) If A is finite the result si clear. Suppose that (nk)k∈N is the infinite increasing sequence of
integers forming the set A. Then A+q = {nk+q : k ∈ N} and (A−q)∩N0 = {nk−q : k ≥ k0}
where k0 = min{k ∈ N : nk ≥ q}. By Theorem 2.3 and writing “ 1

∞ = 0” we get that

dens(A+ q) = lim sup
k→∞

k

nk + q
=
(︃

lim inf
k→∞

nk + q

k

)︃−1

=
(︃

lim inf
k→∞

nk

k

)︃−1
= lim sup

k→∞

k

nk

= dens(A),

and also

dens((A− q) ∩ N0) = lim sup
k→∞

(k − k0) + 1
nk − q

= lim sup
k→∞

k

nk − q

=
(︃

lim inf
k→∞

nk − q

k

)︃−1
=
(︃

lim inf
k→∞

nk

k

)︃−1
= lim sup

k→∞

k

nk

= dens(A).

The lower density case is completely analogous.
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(f) This a consequence of statement (b) since whenever dens(A) = 0 = dens(B) we have that
0 ≤ dens(A ∪B) ≤ dens(A) + dens(B) = 0.

(g) Without lost of generality assume that q < p. Using statement (b) we have the inequality
dens((A+p)∪(A+q)) ≤ dens(A+p)+dens(A+q). Moreover, from statement (e) we know
that dens(A+ p) = dens(A) = dens(A+ q) and then there exists an increasing sequence of
natural numbers (Nk)k∈N such that

dens(A+ p) = lim
k→∞

#((A+ p) ∩ [0, Nk])
Nk + 1 .

For each k ∈ N we have that #((A+ p) ∩ [0, Nk]) ≤ #((A+ q) ∩ [0, Nk]) and with the same
sequence we get that

dens(A+ q) ≥ lim sup
k→∞

#((A+ q) ∩ [0, Nk])
Nk + 1 ≥ lim inf

k→∞

#((A+ q) ∩ [0, Nk])
Nk + 1

≥ lim inf
k→∞

#((A+ p) ∩ [0, Nk])
Nk + 1 = dens(A+ p) = dens(A+ q).

Since the inferior and superior limits coincide we can exchange them by a limit. Finally:

dens((A+ p) ∪ (A+ q)) ≥ lim sup
k→∞

#(((A+ p) ∪ (A+ q)) ∩ [0, Nk])
Nk + 1 ,

which is equal to

lim sup
k→∞

⎛⎝#((A+ p) ∩ [0, Nk])
Nk + 1 + #((A+ q) ∩ [0, Nk])

Nk + 1 − #((A+ p) ∩ (A+ q) ∩ [0, Nk])
Nk + 1

⎞⎠,
and taking limits on each term this is equal to dens(p+ A) + dens(q + A).

Remark 2.5. Statement (g) of the previous proposition implies that the upper density is at
least additive for translations of a fixed set. Moreover: given A ⊂ N0 and a finite sequence
(pn)k

n=1 ⊂ N0 satisfying the equality dens((A+pn)∩ (A+pl)) = 0 for every 1 ≤ n < l ≤ k, then
we can repeat the previous proof but using the inclusion-exclusion principle to obtain that

dens
(︄

k⋃︂
n=1

A+ pn

)︄
=

k∑︂
n=1

dens(A+ pn) = k · dens(A).

Let us now introduce the Banach densities:

Definition 2.6. Let A ⊂ N0. We define the lower Banach density of the set A as

Bd(A) := lim inf
N→∞

(︄
inf
m≥0

#(A ∩ [m,m+N ])
N + 1

)︄
.

We define the upper Banach density of the set A as

Bd(A) := lim sup
N→∞

(︄
sup
m≥0

#(A ∩ [m,m+N ])
N + 1

)︄
.

If the equality Bd(A) = Bd(A) holds we will say that the value Bd(A) := Bd(A) = Bd(A) is
the Banach density of the set A.
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These notions have a very similar behaviour to that of the (asymptotic) densities: first, for
each set A ⊂ N0 the following inequalities are satisfied

0 ≤ Bd(A) ≤ Bd(A) ≤ 1,

and also, if A is a finite set its Banach densities are equal to 0. On the other hand, there is a
clear relationship between these densities and previous ones since the inequalities

inf
m≥0

#(A ∩ [m,m+N ])
N + 1 ≤ #(A ∩ [0, N ])

N + 1 ≤ sup
m≥0

#(A ∩ [m,m+N ])
N + 1 ,

imply that
0 ≤ Bd(A) ≤ dens(A) ≤ dens(A) ≤ Bd(A) ≤ 1,

for all A ⊂ N0.

Remark 2.7. In the definitions of lower and upper Banach density we can change the infimum
and supremum, to a minimum and a maximum respectively. Furthermore, it can be shown
that the lower and upper limits are in this case limits, obtaining the alternative formulas:

Bd(A) = lim
N→∞

(︄
inf
m≥0

#(A ∩ [m,m+N ])
N + 1

)︄
= lim

N→∞

(︄
min
m≥0

#(A ∩ [m,m+N ])
N + 1

)︄

= lim
N→∞

(︄
lim inf
m→∞

#(A ∩ [m,m+N ])
N + 1

)︄
,

and for the upper Banach density

Bd(A) = lim
N→∞

(︄
sup
m≥0

#(A ∩ [m,m+N ])
N + 1

)︄
= lim

N→∞

(︄
max
m≥0

#(A ∩ [m,m+N ])
N + 1

)︄

= lim
N→∞

(︄
lim sup

m→∞

#(A ∩ [m,m+N ])
N + 1

)︄
.

These results are well-known and a proof can be found in [49], a paper entirely devoted to
establishing these equalities in a simple way.

Using the formulas with limits, minimums and maximums of the Banach densities it is clear
that the equality Bd(A) = Bd(A) implies the existence of the limit

lim
N→∞

#(A ∩ [mN ,mN +N ])
N + 1 ,

for every sequence (mN)N∈N0 ⊂ N0, and then the previous limit coincide with Bd(A) = dens(A).
It is also straightforward to check the equality

Bd(A) + Bd(N0 \ A) = 1,

for every set A ⊂ N0. Moreover, the statements of Proposition 2.4 are still valid if we replace
the asymptotic densities by their respective Banach version:
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Proposition 2.8. Let A,B ⊂ N0 and p, q ∈ N0. The following statements hold:

(a) If A ⊂ B, then Bd(A) ≤ Bd(B) and Bd(A) ≤ Bd(B).

(b) Bd(A ∪B) ≤ Bd(A) + Bd(B). If Bd(A ∩B) = 0, then Bd(A) + Bd(B) ≤ Bd(A ∪B).

(c) If Bd(A△B) = 0, then Bd(A) = Bd(B) and Bd(A) = Bd(B).

(d) If p ≥ 1, then Bd(p · A) = 1
p

· Bd(A) and Bd(p · A) = 1
p

· Bd(A).

(e) Bd((A− q) ∩ N0) = Bd(A) = Bd(A+ q) and Bd((A− q) ∩ N0) = Bd(A) = Bd(A+ q).

(f) If Bd(A ∪B) > 0, then we have that Bd(A) > 0 or Bd(B) > 0, or both.

(g) If Bd((A+ p) ∩ (A+ q)) = 0, then Bd((A+ p) ∪ (A+ q)) = Bd(A+ p) + Bd(A+ q).

Proof. The proof is analogous to that of Proposition 2.4 but using, in each case, the appropriate
expression (from those stated in Remark 2.7) for the lower and upper Banach densities.

Remark 2.9. As in Remark 2.5 it should be noted that the upper Banach density is additive
for translations of a fixed set, that is: given A ⊂ N0 and any finite sequence (pn)k

n=1 ⊂ N0
satisfying Bd((A+ pn) ∩ (A+ pl)) = 0 for every 1 ≤ n < l ≤ k, then

Bd
(︄

k⋃︂
n=1

A+ pn

)︄
=

k∑︂
n=1

Bd(A+ pn) = k · Bd(A).

This fact will be used in Proposition 2.10 below.

Let us now include some well-known relations between the densities introduced in this section
and the collections of sets of natural numbers already used in Section 1. These facts together
with Propositions 1.3, 2.4 and 2.8 will be used in Section 3:

Proposition 2.10. Let A,B ⊂ N0. The following statements hold:

(a) A is thick if and only if Bd(A) = 1. Equivalently, A is syndetic if and only if Bd(A) > 0.

(b) If Bd(A) = 1, then A is thickly syndetic.

(c) If A is piecewise syndetic, then Bd(A) > 0.

(d) If Bd(A) > 0, then A is an AP-set.

(e) If Bd(A) > 0, then (A−A) ∩N0 is syndetic (and even (A−A) ∩B ̸= ∅ for every B ∈ ∆).

(f) If dens(A) + dens(B) > 1 or Bd(A) + Bd(B) > 1, then A ∩B ̸= ∅.

Proof. (a) If A is thick for each N ∈ N there exists mN ∈ A such that [mN ,mN +N ] ⊂ A so

Bd(A) = lim
N→∞

(︄
max
n≥0

#(A ∩ [n, n+N ])
N + 1

)︄
≥ lim

N→∞

#(A ∩ [mN ,mN +N ])
N + 1 = 1.

If A is syndetic there exists mA ∈ N such that A ∩ [n+ 1, n+mA] ̸= ∅ for all n ∈ N0 so
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Bd(A) = lim
N→∞

(︄
min
n≥0

#(A ∩ [n, n+N ])
N + 1

)︄
= lim

N→∞

(︄
min
n≥0

#(A ∩ [n, n+ (mA ·N)])
mA ·N + 1

)︄

≥ lim
N→∞

N

mA ·N + 1 = 1
mA

> 0.

Finally, if Bd(A) = 1 then Bd(N0 \ A) = 0 so N0 \ A is not syndetic and hence A is thick.

(b) If Bd(A) = 1 then Bd(N0 \ A) = 0. Now it is enough to show (c), since then N0 \ A is not
piecewise syndetic and by Proposition 1.3 the set A is thickly syndetic.

(c) Suppose that A = B ∩ C where B is thick and C is syndetic. Let m ∈ N such that
C ∩ [n + 1, n + m] ̸= ∅ for all n ∈ N0. For each N ∈ N there exists xN ∈ B fulfilling that
[xN , xN + (m ·N)] ⊂ B. Hence

#(A ∩ [xN , xN + (m ·N)]) = #(C ∩ [xN , xN + (m ·N)]) ≥ N,

so we obtain that

Bd(A) = lim
N→∞

(︄
max
n≥0

#(A ∩ [n, n+N ])
N + 1

)︄
= lim

N→∞

(︄
max
n≥0

#(A ∩ [n, n+ (m ·N)])
m ·N + 1

)︄

≥ lim
N→∞

#(A ∩ [xN , xN + (m ·N)])
m ·N + 1 ≥ lim

N→∞

N

m ·N + 1 = 1
m
> 0.

(d) This is a (non-trivial) consequence of the Szemerédi theorem (see [85]).

(e) Suppose that there exists B ∈ ∆, and hence an infinite set C ⊂ N0 with (C −C) ∩N ⊂ B,
such that (A−A)∩ (C−C)∩N ⊂ (A−A)∩B = ∅. Let (xj)j∈N be the increasing sequence
of integers forming the infinite set C and note that (A+xj)∩(A+xi) = ∅ for all j ̸= i ∈ N.
Finally, given k ∈ N such that Bd(A) > 1/k, by Remark 2.9 we get the contradiction

Bd
⎛⎝ k⋃︂

j=1
A+ xj

⎞⎠ =
k∑︂

j=1
Bd(A+ xj) = k · Bd(A) > 1.

Since a set is syndetic if and only if it intersects every thick set, and since T ⊂ ∆, the proof
is finished (see [41, Theorem 3.18] for an alternative proof via symbolic dynamics).

(f) If A ∩B = ∅ we have that B ⊂ N0 \ A and we get the contradiction

1 < dens(A) + dens(B) ≤ dens(A) + dens(N0 \ A) = 1.

Remark 2.11. Following [17] we will denote the collection of sets with positive density as:

BD := {A ⊂ N0 : Bd(A) > 0}, BD := {A ⊂ N0 : Bd(A) > 0},

D := {A ⊂ N0 : dens(A) > 0}, D := {A ⊂ N0 : dens(A) > 0}.

Given 0 < δ ≤ 1 we will denote the collection of sets with density greater or equal to δ by:

BDδ := {A ⊂ N0 : Bd(A) ≥ δ}, BDδ := {A ⊂ N0 : Bd(A) ≥ δ},

Dδ := {A ⊂ N0 : dens(A) ≥ δ}, Dδ := {A ⊂ N0 : dens(A) ≥ δ}.
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The following is used in [21] (see Chapter 1, Section 2, Proof of Theorem 2.1):

Lemma 2.12 (Argument found in [16, Theorem 14]). Let A,B ⊂ N0 fulfilling that for
each n ∈ N0 there exists kn ∈ N0 such that (A ∩ [0, n]) + kn ⊂ B. Then Bd(A) ≤ Bd(B).

Proof. Fixed any N ∈ N let nN such that maxn≥0 #(A ∩ [n, n + N ]) = #(A ∩ [nN , nN + N ]).
Let n := nN +N . There exists kn ∈ N0 such that (A ∩ [0, n]) + kn ⊂ B so

(A ∩ [nN , nN +N ]) + kn ⊂ B and then max
j≥0

#(B ∩ [j, j +N ]) ≥ #(A ∩ [nN , nN +N ]).

We get that

Bd(B) = lim
N→∞

(︄
max
j≥0

#(B ∩ [j, j +N ])
N + 1

)︄
≥ lim

N→∞

(︄
max
j≥0

#(A ∩ [j, j +N ])
N + 1

)︄
= Bd(A).

3 Furstenberg families

The term “Furstenberg family” was first used by Akin in [1], where the different approaches
regarding the study of the size of the return sets (used by Gottschalk and Hedlundand [48] and
by Furstenberg [41]) were unified in the context of compact dynamical systems. In this memoir
we have used Furstenberg families in a very similar way through the concepts of F -recurrence
and F -hypercyclicity. However, if one looks at the definitions of Furstenberg family given in
each chapter/article one may note some differences between them:

– In Chapter 1, Section 8, we said that F ⊂ P(N0) was a Furstenberg family whenever it was
hereditarily upward, i.e. if given A ∈ F the inclusion A ⊂ B implies that B belongs to F .
This definition coincides with that given by Akin in [1], and has been also recently used in
the context of F -hypercyclicity; see [16], [23], [24] and [25].

– In Chapter 2, Section 1.2, we said that F ⊂ P(N0) was a Furstenberg family if, besides being
hereditarily upward, each set A from the collection F was infinite. This is a natural extra
assumption that does not reduce the amount of Furstenberg families F for which we can
study F -recurrence, since the return sets of a recurrent vector are always infinite. Moreover,
this definition has been also used in the F -hypercyclicity context; see [17] and [50].

– In Chapter 3, Section 4, we said that F ⊂ P(N0) was a Furstenberg family if, apart from
the above properties (being hereditarily upward and containing infinite sets), each set A from
F had the property that A ∩ [n,∞[ belonged to F for all n ∈ N. The families with this last
property have been called finitely invariant in the recent work [25]. One can easily check
that all the families F considered in this memoir fulfill this property and, moreover, this is
also a natural condition in our F -recurrence context by the following reasoning:
Let (X,T ) be a dynamical system and suppose that there exists a point x ∈ X \ Per(T ) such
that: for each neighbourhood V of x, the set NT (x, V ) \ {0} belongs to some collection of
sets F ⊂ P(N0). Since x /∈ Per(T ), given any neighbourhood U of x and any n ∈ N we can
choose another neighbourhood Un ⊂ U of x such that T jx /∈ Un for all 1 ≤ j < n. Hence

NT (x, Un) \ {0} ⊂ NT (x, U) ∩ [n,∞[,

so that, if F is hereditarily upward, then also NT (x, U) ∩ [n,∞[ must belong to F .
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This last finitely invariant condition allows us to work in a much easier way when considering
filters and free filters in [51] (see Chapter 3, Section 4, Definition 4.3 and Remark 4.4). For the
rest of the Appendix we will use this last definition of Furstenberg family given in Chapter 3.

The dual family of a Furstenberg family F ⊂ P(N0) is defined as the collection of sets

F∗ := {A ⊂ N0 infinite : A ∩B ̸= ∅ for all B ∈ F}.

Note that, if we denote by F∗∗ := (F∗)∗, then we have that F∗∗ = F . Indeed:

– given A ∈ F we have that A ∩B ̸= ∅ for all B ∈ F∗ so that A ∈ F∗∗ and hence F ⊂ F∗∗;

– conversely, given A ∈ F∗∗ it is clear that N0 \ A /∈ F∗ so there exists B ∈ F for which
B ∩ (N0 \ A) = ∅, then B ⊂ A and therefore A ∈ F .

This means that every family, as defined here, is a dual family. Moreover, for any two families
F1,F2 ⊂ P(N0) we have that

F1 ⊂ F2 implies that F∗
2 ⊂ F∗

1 ,

that is, the direction of the inclusion is exchanged when considering dual families.

Example 3.1. Let us exemplify the previous concepts by using the collections of sets introduced
along Sections 1 and 2 of this Appendix:

(a) By Remark 1.2 we know that the collections of sets I, T , S, T S, PS, AP , IP and ∆ are
the Furstenberg families of infinite, thick, syndetic, thickly syndetic, piecewise syndetic,
AP, IP and ∆ sets respectively. By Proposition 1.3 we know that T ∗ = S, T S∗ = PS,

T S ⊂ T ∩ S ⊂ PS ⊂ AP ,

and also that
AP∗ ⊂ T S ⊂ T ⊂ IP ⊂ ∆ ⊂ I.

Taking the dual inclusions and recalling that I∗ = {A ⊂ N0 : A is cofinite} we have that

I∗ ⊂ ∆∗ ⊂ IP∗ ⊂ S ⊂ PS ⊂ AP .

(b) By Remark 2.11 and the monotony of the densities (see Propositions 2.4 and 2.8) we know
that the collections of sets D, D, BD, BD and for each 0 < δ ≤ 1 the collections Dδ, Dδ,
BDδ, BDδ are also Furstenberg families. By Proposition 2.10 we know that

BD1 = T and BD = S,

PS ⊂ BD ⊂ AP and AP∗ ⊂ BD1 ⊂ T S.

By statement (f) of Proposition 2.10 we also have that

BD1 = BD∗
, D1 = D∗

, D1 = D∗, BD1 = BD∗.
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Another concept used in Chapters 1 and 3 is that of u.f.i. upper Furstenberg family. This
was introduced in [20] where a kind of Birkhoff transitivity theorem for the upper families is
shown. Let us recall the exact definition and some examples: a Furstenberg family F is said
to be upper if it can be written as

F =
⋃︂

δ∈D

Fδ with Fδ =
⋂︂

m∈M

Fδ,m

for sets Fδ,m ⊂ P(N0) such that δ ∈ D and m ∈ M , where D is arbitrary, M is countable and:

(i) for any Fδ,m and any A ∈ Fδ,m there exists a finite set F ⊂ N0 such that

A ∩ F ⊂ B implies B ∈ Fδ,m;

(ii) for any A ∈ F there exists some δ ∈ D such that (A− n) ∩ N0 ∈ Fδ for all n ∈ N0.

We say that an upper family F is uniformly finitely invariant (called u.f.i. for short), if for
any A ∈ F there is some δ ∈ D such that A ∩ [n,∞[∈ Fδ for all n ∈ N.

Example 3.2. The families I,AP ,BD and D are easily checked to be upper:

I: As it is done in [20] we can consider Fm ⊂ P(N0) as the set

Fm := {A ⊂ N0 : ∃N ≥ m with N ∈ A} for each m ∈ N.

Clearly I = ⋂︁
m∈N Fm and fixed any A ∈ Fm with N ≥ m and N ∈ A, we can take

F := {N} which implies (i). Condition (ii) is trivially fulfilled.

AP : As it is done in [24] we can consider Fm ⊂ P(N0) as the set

Fm := {A ⊂ N0 : ∃l ≥ m and x, n ∈ N such that {x+ kn : 0 ≤ k ≤ l} ⊂ A} ,

for each m ∈ N. Clearly AP = ⋂︁
m∈N Fm and fixed any A ∈ Fm we can consider an

arithmetic progression of length greater than m included in A as the finite set F to fulfill
property (i) of the definition. Condition (ii) is also trivially fulfilled.

D: As it is done in [20] we can consider Fδ,m ⊂ P(N0) as the set

Fδ,m :=
{︄
A ⊂ N0 : ∃N ≥ m,nN ∈ N0 with #(A ∩ [nN , nN +N ])

N + 1 > δ

}︄
,

for each 0 < δ < 1 and m ∈ N. Clearly D = ⋃︁
0<δ<1

⋂︁
m∈N Fδ,m and for any A ∈ Fδ,m with

N ≥ m and #(A ∩ [0, N ]) > (N + 1)δ then F := [0, N ] implies (i). Moreover, condition
(ii) comes from the left-invariant property of the densities (see Proposition 2.4).

BD: As it is done in [20] we can consider Fδ,m ⊂ P(N0) as the set

Fδ,m :=
{︄
A ⊂ N0 : ∃N ≥ m,nN ∈ N0 with #(A ∩ [nN , nN +N ])

N + 1 > δ

}︄
,

for each 0 < δ < 1 and m ∈ N. Conditions (i) and (ii) follow as in the previous case.

The u.f.i. property is also trivially fulfilled by these families.
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4 The families IP, ∆, IP∗ and ∆∗ in dynamics

The Furstenberg families IP , ∆, and their dual families IP∗ and ∆∗, have repeatedly appeared
along our work. For instance, we showed in Section 4 of Chapter 3 that the respective concepts
of IP-recurrence and ∆-recurrence are equivalent to the weakest possible recurrence notion
(i.e. that of usual recurrence), while the dual families IP∗ and ∆∗ characterize the strongest
F -recurrence notions (weaker than periodicity) among those studied here. Our aim in this
section is to recall three basic (and really well-known) properties of these families that have
been constantly used in Chapters 1, 2 and 3:

– the families IP∗ and ∆∗ are filters;

– the equality IPRec(T ) = ∆Rec(T ) = Rec(T ) holds for every dynamical system (X,T );

– the inclusions Per(T ) ⊂ ∆∗Rec(T ) ⊂ IP∗Rec(T ) holds for every dynamical system (X,T ).

Recall first that the family IP can be expressed as the union of all non-zero idempotents
0 ̸= p ∈ βN0 (see [13, Definition 1.2]), and that ∆ is also the union of a collection of ultrafilters
(see [14, Definition 1.6 and Lemma 1.9]). By the definition of ultrafilter it is then obvious that
the families IP and ∆ are partition regular, i.e. if we fix F = IP or ∆, then for each A ∈ F
and each partition A = A1 ∪ A2 we necessarily have that either A1 or A2 belongs to F .

The partition regular condition (also called Ramsey property in the literature) easily implies
the filter condition of the dual families IP∗ and ∆∗ by the following general well-known fact
(see for instance [17, Lema 2.1]):

Lemma 4.1. Given a Furstenberg family F ⊂ P(N) the following are equivalent:

(i) F is partition regular;

(ii) F∗ is a filter.

Proof. (i) ⇒ (ii): Given B,C ∈ F∗ we have to check that B∩C ∈ F∗: for each A ∈ F we have
that A∩B ̸= ∅ and A = (A∩B)∪ (A\B), so the partition regular condition of F implies that
either A ∩ B ∈ F or A \ B ∈ F . Since (A \ B) ∩ B = ∅ we necessarily have that A ∩ B ∈ F ,
and finally

A ∩ (B ∩ C) = (A ∩B) ∩ C ̸= ∅,

which implies that B ∩ C belongs again to F∗.
(ii) ⇒ (i): Given A ∈ F and A1, A2 ⊂ N0 with A = A1 ∪ A2 we have to check that

Ai ∈ F = F∗∗ for some i ∈ {1, 2}. If this was false there would be B1, B2 ∈ F∗ such that
Ai ∩Bi = ∅ for each i ∈ {1, 2}, and the filter condition would imply that C = B1 ∩B2 belongs
to F∗ arriving to the contradiction

∅ ̸= A ∩ C ⊂ (A1 ∩B1) ∪ (A2 ∩B2) = ∅.

Since F = F∗∗ holds for every family F , this lemma also shows that F is a filter if and only
if F∗ is partition regular. The fact that IP∗ and ∆∗ are filters has been repeatedly used along
this memoir (see Chapter 1, Section 6; Chapter 2, Sections 4 and 8; Chapter 3, Section 6).
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Let us now prove the equality

IPRec(T ) = ∆Rec(T ) = Rec(T ),

which has been used in Chapter 1 (see Section 6) and Chapter 3 (see Section 4.2):

Proposition 4.2 (Extension of [41, Theorem 2.17]). Let T : X −→ X be a continuous
map on a topological space X. For every recurrent point x ∈ Rec(T ) (that is, x ∈ Orb(Tx, T ))
and every neighbourhood U of x the return set

NT (x, U) := {n ∈ N0 : T nx ∈ U} belongs to IP .

As a result, the equality
IPRec(T ) = ∆Rec(T ) = Rec(T )

holds for every dynamical system (X,T ).

Proof. Set U1 := U and let n1 ∈ NT (x, U1). By continuity of T we can find a neighbourhood
U2 ⊂ U of x such that

T n1(U2) ⊂ U1.

Pick any n2 ∈ NT (x, U2) with n2 > n1 and note that

T nx ∈ U for each n ∈ {n1, n2, n1 + n2}.

Assume that we have constructed (Uj)k
j=1, neighbourhoods of x included in U , and (nj)k

j=1,
increasing sequence of positive integers, fulfilling that nj ∈ NT (x, Uj) for each 1 ≤ j ≤ k but
also that

T nj (Ul) ⊂ Uj for each 1 ≤ j < l ≤ k.

Using again continuity we find a neighbourhood Uk+1 ⊂ U such that

T nj (Uk+1) ⊂ Uj for each 1 ≤ j ≤ k.

Picking nk+1 ∈ NT (x, Uk+1) with nk+1 > nk we get that

T nx ∈ U for each n ∈

⎧⎨⎩∑︂
j∈F

nj : F ⊂ {1, 2, ..., k, k + 1}

⎫⎬⎭ .
Recursively we get a sequence (nj)j∈N which clearly fulfills that⎧⎨⎩∑︂

j∈F

nj : F finite subset of N
⎫⎬⎭ ⊂ NT (x, U),

so NT (x, U) belongs to IP . Finally, since IP ⊂ ∆ we get that

IPRec(T ) ⊂ ∆Rec(T ) ⊂ Rec(T ) ⊂ IPRec(T ).
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4. The families IP , ∆, IP∗ and ∆∗ in dynamics

In Section 6 of Chapter 1 we included the definition of product recurrent vector (see page 44).
In general, given a dynamical system (X,T ) we say that x ∈ X is a product recurrent point if,
for any dynamical system (S, Y ) and any recurrent point y ∈ Rec(S), the vector (x, y) ∈ X×Y
is recurrent for the direct product dynamical system T × S : X × Y −→ X × Y . In view of
this definition, Proposition 4.2 shows that being IP∗-recurrent is a sufficient condition for a
point to be a product recurrent point: indeed, the return sets of an IP∗-recurrent point always
intersect the IP-sets (and hence the return sets of every recurrent point).

The necessity is also proved in the same result [41, Theorem 2.17]: using the construction
given there, for each increasing sequence (nk)k∈N of positive integers fulfilling that

j∑︂
k=1

nk < nj+1 for all j ∈ N,

then there exist an operator T ∈ L(X), a vector x ∈ X and a neighbourhood U of x such that

NT (x, U) =
⎧⎨⎩∑︂

k∈F

nk : F finite subset of N
⎫⎬⎭ .

Note that each IP-set contains a set as {∑︁k∈F nk : F finite subset of N} for a sequence (nk)k∈N
with the mentioned properties.

We finally focus on the “∆∗-recurrent behaviour” of the periodic points:

Lemma 4.3. For any p ∈ N the set p · N = {pn : n ∈ N} belongs to ∆∗ (and hence to IP∗).
As a result, the inclusion

Per(T ) ⊂ ∆∗Rec(T ) ⊂ IP∗Rec(T )
holds for every dynamical system (X,T ).

Proof. Let p be a positive integer, B ⊂ N0 be an arbitrary but fixed infinite set, and suppose
that (nk)k∈N is the increasing sequence of integers forming the set B. It is then obvious that
there exist a class [j] ∈ Z/pZ and an infinite set A ⊂ N such that [j] = [nk] ∈ Z/pZ for all
k ∈ A. Picking k1, k2 ∈ A with k1 ̸= k2 we get that

[nk2 − nk1 ] = [0] ∈ Z/pZ and then nk2 − nk1 ∈ (B −B) ∩ pN.

Since ∆∗ ⊂ IP∗ we have that pN also belongs to IP∗.

When (X,T ) is a complex linear dynamical system then we also have, in between, the set
of unimodular eigenvectors

Per(T ) ⊂ span(E(T )) ⊂ ∆∗Rec(T ) ⊂ IP∗Rec(T ).

This is shown in detail in [50] (see Chapter 2, Section 4, Proposition 4.1). Note also that:

(a) Proposition 4.2 + Lemma 4.3 ⇒ Rec(T ) = Rec(T p) for every p ∈ N;

(b) Proposition 4.2 + Proposition 4.1 of Chapter 2 ⇒ Rec(T ) = Rec(λT ) for every λ ∈ T.

The precise argument has been included in Proposition 4.7 of Chapter 3.
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We refer the reader to the textbook [41, Chapters 8 and 9] for more on the dynamical role
of the families IP , ∆, IP∗ and ∆∗.
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operator, 9, 28, 58, 109, 153
vector, 9, 28, 58, 109

frequently recurrent
operator, 11, 26, 58, 109
vector, 11, 26, 58, 109

Fréchet sequence space, 41
Fréchet space, 3, 31, 153
full supported measure, 14, 57
Furstenberg family, 10, 50, 58, 108, 182

G
Gaussian measure, 17, 73

H
Hilbert space, 3, 17, 61
homomorphism of dynamical systems, 116
hypercyclic

operator, 3, 28, 56, 92, 109, 133
spaceability theory, 23, 132
subspace, 23, 133
vector, 3, 28, 56, 92, 109, 133

hypercyclicity
criterion, 19, 92, 133
spaceability theory, 23, 132
T ⊕ T -problem, 19, 92

I
invariant

measure, 13, 57
subset problem, 4, 132
subspace problem, 4

inverse dynamical system, 17, 82
IP-recurrent

operator, 112
vector, 44, 112

IP-set, 44, 60, 110, 172
IP∗-recurrent

operator, 44, 60, 110
vector, 44, 60, 110

IP∗-set, 44, 187

K
K-null sequence, 144

L
left-essential spectrum, 134
left-Fredholm operator, 141
left-invariant family, 50
lineability, 22, 93, 119
linear

dynamical system, 2, 56, 92
operator, 2, 26, 56, 92, 132

lower Banach density, 110, 178
lower density, 27, 58, 109, 175

M
measure

Borel, 14, 57
centered, 73
ergodic, 13, 57
Gaussian, 17, 73
invariant, 13, 57
T -invariant, 13, 57
with finite second-order moment, 73
with full support, 14, 57

measure preserving system, 13
mixing, 113, 161

(measurable), 73
(topological), 113

multiple recurrence, 27, 109, 160

N
N -fold

direct product operator, 94
direct product space, 94
direct sum operator, 18, 79, 94
direct sum space, 18, 79, 94
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non-trivial
invariant subset problem, 4, 132
invariant subspace problem, 4
probability measure, 14, 57

O
operator, 2, 26, 56, 92, 132

adjoint, 7, 16, 36, 59, 142
AP-hypercyclic, 109
AP-recurrent, 27, 109, 160
B(X)-measurable, 14
covariance, 74
cyclic, 98
∆-recurrent, 112
∆∗-recurrent, 60, 110
ergodic w.r.t. a measure, 57, 153
F-hypercyclic, 10, 51, 58, 108
F-recurrent, 11, 50, 58, 108
Fredholm, 141
frequently hypercyclic, 9, 58, 109, 153
frequently recurrent, 11, 26, 58, 109
hypercyclic, 3, 56, 92, 109, 133
invariant w.r.t. a measure, 57
IP-recurrent, 112
IP∗-recurrent, 44, 60, 110
left-Fredholm, 141
mixing, 113, 153
µ-invariant, 13, 57
of C-type, 150
quasi-rigid, 95, 135
recurrent, 5, 26, 56, 93, 109, 133
reiteratively hypercyclic, 10, 58, 109
reiteratively recurrent, 11, 26, 58, 109
rigid, 94
strong topology, 22, 85
strong∗ topology, 22, 85
U-frequently hypercyclic, 10, 58, 109, 153
U-frequently recurrent, 11, 26, 58, 109
uniformly recurrent, 11, 26, 60, 110
weakly-mixing, 19, 92, 113, 133

orbit, 1
distributionally near to zero, 31
distributionally unbounded, 31
of a vector, 56, 92, 132

P
periodic vector, 4, 26, 88, 98
piecewise syndetic set, 172
Poincaré recurrence theorem, 13
Polish dynamical system, 56, 94

probability
Borel measure, 14, 57
measure, 57
non-trivial measure, 14, 57

product
dynamical system, 17, 78
recurrent vector, 44

proximal points, 45

Q
quasi-conjugacy, 116
quasi-rigidity, 20, 93, 95, 135

R
recurrence

multiple, 27, 109, 160
spaceability theory, 23, 135
T ⊕ T -problem, 20, 93

recurrent
operator, 5, 26, 56, 93, 109, 133
spaceability theory, 23, 135
subspace, 23, 133
vector, 5, 26, 56, 93, 109, 133

reflexive Banach space, 59
reiteratively hypercyclic

operator, 10, 28, 58
vector, 10, 28, 58, 109

reiteratively recurrent
operator, 11, 26, 58, 109
vector, 11, 26, 58, 109

return set, 9, 26, 56, 108
right-invariant family, 50, 125
rigidity, 94

S
sensitive dependence on initial conditions, 4
set

AP, 109, 172
AP∗, 183
cofinite, 113
CT -invariant, 117
∆, 60, 110, 172
∆∗, 187
IP, 44, 60, 110, 172
IP∗, 44, 187
of return, 9, 26, 56, 108
piecewise syndetic, 172
syndetic, 60, 110, 172
thick, 113, 172
thickly syndetic, 113, 172
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σ-algebra, 13
of Borel sets, 14, 57, 64

space
Banach, 3, 23, 56, 132
Banach dual, 16, 59, 101, 142
Banach reflexive, 59
Fréchet, 3, 31, 153
Fréchet sequence, 41
Hilbert, 3, 17, 61
measure, 1, 13
topological, 1, 94
topological vector, 3

spaceability, 22, 132
spectrum

essential, 134
left-essential, 134

Stone-Čech compactification, 171
strong operator topology, 22, 85
strong∗ operator topology, 22, 85
subspace

hypercyclic, 23, 133
recurrent, 23, 133

support of a measure, 15, 64
syndetic set, 60, 110, 172

T
T ⊕ T -chaos problem, 18
T ⊕ T -frequent-hypercyclicity problem, 18
T ⊕ T -hypercyclicity problem, 19, 92
T ⊕ T -recurrence problem, 20, 93
T ⊕ T -type problem, 18
thick set, 113, 172
thickly syndetic set, 113, 172
topological

ergodicity, 113, 161
F-recurrence, 51
F-transitivity, 51
multiple recurrence, 27, 109, 160
quasi-rigidity, 95
recurrence, 6, 56, 93
space, 1, 94
transitivity, 2, 56, 92
vector space, 3
weak-mixing, 19, 92, 113, 133

U
U-frequently hypercyclic

operator, 10, 28, 58, 109, 153
vector, 10, 28, 58, 109

U-frequently recurrent
operator, 11, 26, 58, 109
vector, 11, 26, 58, 109

u.f.i. upper family, 51, 126, 184
uniformly recurrent

operator, 11, 26, 60, 110
vector, 11, 26, 60, 110

unimodular eigenvector, 8, 46, 60, 119, 187
upper Banach density, 27, 58, 109, 178
upper density, 27, 58, 109, 175
upper family, 51, 126, 184

V
vector

AP-hypercyclic, 109
AP-recurrent, 27, 109, 160
cyclic, 98
∆-recurrent, 112
∆∗-recurrent, 60, 110
distributionally irregular, 31
F-hypercyclic, 10, 51, 58, 108
F-recurrent, 11, 50, 58, 108
frequently hypercyclic, 9, 58, 109
frequently recurrent, 11, 26, 58, 109
hypercyclic, 3, 56, 92, 109, 133
IP-recurrent, 44, 112
IP∗-recurrent, 44, 60, 110
periodic, 4, 26, 88, 98
product recurrent, 44
recurrent, 5, 26, 56, 93, 109, 133
reiteratively hypercyclic, 10, 58, 109
reiteratively recurrent, 11, 26, 58, 109
U-frequently hypercyclic, 58, 109
U-frequently recurrent, 11, 26, 58, 109
uniformly recurrent, 11, 26, 60, 110

W
weak-mixing

(measurable), 73
(topological), 19, 92, 113, 133

weakly-mixing, 19, 92, 113, 133, 161
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