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POSITIVITY-PRESERVING METHODS FOR ORDINARY DIFFERENTIAL
EQUATIONS

Sergio Blanes1,* , Arieh Iserles2 and Shev Macnamara3

Abstract. Many important applications are modelled by differential equations with positive solutions.
However, it remains an outstanding open problem to develop numerical methods that are both (i) of a
high order of accuracy and (ii) capable of preserving positivity. It is known that the two main families
of numerical methods, Runge–Kutta methods and multistep methods, face an order barrier. If they
preserve positivity, then they are constrained to low accuracy: they cannot be better than first order.
We propose novel methods that overcome this barrier: second order methods that preserve positivity
unconditionally and a third order method that preserves positivity under very mild conditions. Our
methods apply to a large class of differential equations that have a special graph Laplacian structure,
which we elucidate. The equations need be neither linear nor autonomous and the graph Laplacian
need not be symmetric. This algebraic structure arises naturally in many important applications where
positivity is required. We showcase our new methods on applications where standard high order meth-
ods fail to preserve positivity, including infectious diseases, Markov processes, master equations and
chemical reactions.
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1. Introduction

Numerical integration of mathematical models is an essential step in the implementation and analysis of
population models: chemical reactions (see e.g. [19, 49] or [24]), biochemical systems [12], and the evolution of
epidemics [33] (see also [21] and references therein). Such models are usually formulated as a system of Ordinary
Differential Equations (ODEs)

y′ = f(𝑡,y), y(0) = y0 ∈ R𝑑, (1.1)
where f(𝑡,y) is, in the context of this paper, consistent with two requirements of the application being modeled.
First, if 𝑦0

𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑑 then we have positivity preservation:

𝑦𝑖(𝑡) ≥ 0 ∀𝑡, 𝑖 = 1, . . . , 𝑑.
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Second, there exist wℓ = (𝑤ℓ,1, . . . , 𝑤ℓ,𝑑)⊤, ℓ = 1, 2, . . . , 𝑘 such that w⊤
ℓ f(𝑡,y) = 0 so, the solution satisfies

the conditions (with y = (𝑦1, . . . , 𝑦𝑑)⊤, y0 = (𝑦0
1 , . . . , 𝑦0

𝑑)⊤)

𝑑∑︁
𝑖=1

𝑤ℓ,𝑖𝑦𝑖 =
𝑑∑︁

𝑖=1

𝑤ℓ,𝑖𝑦
0
𝑖 = 𝑐ℓ, ℓ = 1, 2, . . . , 𝑘

with 𝑤ℓ,𝑖 ≥ 0 and 𝑐ℓ > 0. The most important special case is 𝑘 = 1 and w1 = (1, . . . , 1)⊤ = 1, which is referred
to as mass preservation, and in this case we may assume without loss of generality that 𝑐1 = 1.

Although the focus of this article is mainly on positivity and mass preservation ODEs, positivity preservation
is a much wider challenge. For example, Lotka–Volterra models [3,16] preserve positivity but not mass as well as
some parabolic problems [26]. The stochastic differential equation associated with the Nobel prize winning Black–
Scholes model in finance has positive solutions, but standard numerical solvers, such as the Euler–Maruyama
method, fail to preserve positivity. The Kolmogorov Lecture at the Ninth World Congress in Probability and
Statistics concerned methods for preserving positivity in the setting of the stochastic Langevin equations [36].

We note in passing that even with these two requirements, equation (1.1) may display rich dynamical
behaviour: some systems of this kind converge to a unique steady state, others have a number of steady states,
yet others exhibit oscillatory behaviour.

The methods proposed in this work are constructed to preserve positivity, while keeping linear invariants
preservation to high accuracy (symplectic integrators preserve the symplectic structure of Hamiltonian systems
while not exactly preserving energy, but this gives good properties in regards to error propagation over long time
intervals). However, in the case where only mass preservation is required there are well known mathematical
results that allow us to adapt the methods to preserve exactly, and for this reason this case is now treated in
more detail.

1.1. Graph Laplacians and ODEs

A useful way to envisage mass and positivity preservation is that for every 𝑡 ≥ 0 the state variable y(𝑡) is a
discrete probability distribution of 𝑑 species. This corresponds to the case 𝑘 = 1, w1 = 1 and, as we will show
in Proposition 1.1, these properties can be preserved if the vector field in (1.1) can be written in the form (see
also e.g. [5, 15,20])

f(𝑡,y) = 𝐴(𝑡,y)y

where the matrix 𝐴 : R× R𝑑 → R𝑑×𝑑 is a graph Laplacian.

Definition. An 𝑛× 𝑛 real matrix 𝐴 is a graph Laplacian if it has the following properties:

Property 1 (Pattern of signs). 𝐴𝑘,ℓ ≥ 0 for 𝑘, ℓ = 1, . . . , 𝑛, 𝑘 ̸= ℓ, 𝐴𝑘,𝑘 ≤ 0 for 𝑘 = 1, . . . , 𝑛 and
Property 2 (Zero column sum).

∑︀𝑛
𝑘=1 𝐴𝑘,ℓ = 0 for ℓ = 1, . . . , 𝑛.

We denote the set of all 𝑛 × 𝑛 graph Laplacians by ℒ𝑛. The same term “graph Laplacian” is used with
different meanings in the literature – in our work, we allow it to be non-symmetric.

For simplicity, we consider the autonomous case. (The general nonautonomous case can be considered simi-
larly, as we will show latter.) We focus on the solution of the nonlinear ODE

y′ = 𝐴(y)y, y(0) = y0 ∈ R𝑑, (1.2)

where we assume throughout that 𝐴(y) has the same pattern of signs as a graph Laplacian, i.e. we assume
Property 1 of the definition above. (In some examples, such as the MAPK cascade example, we do not assume
Property 2, i.e. we do not always assume 1⊤𝐴(y) = 0⊤, and we demonstrate that our methods can neverthe-
less work well.) We typically also assume that all components of the initial condition are nonnegative. Many
applications fit this framework: Markov processes in continuous time on discrete states; master equations [39];
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single molecule chemistry [51] (Fig. 4); studies of robustness of Turing pattern formation in stochastic settings
[27,43]; and lasers and quantum dots [53].

Given two compatible matrices 𝑃 and 𝑄 we say that 𝑃 ≻ 𝑄 if 𝑃𝑖,𝑗 > 𝑄𝑖,𝑗 for all 𝑖, 𝑗 and 𝑃 ⪰ 𝑄 if 𝑃𝑖,𝑗 ≥ 𝑄𝑖,𝑗 .
We assume that y0 ⪰ 0 and 1⊤y0 = 1. Then the solutions of (1.2) have the following desirable features.

Proposition 1.1. Solutions of (1.2) with y0 ⪰ 0,1𝑇 y0 = 1 have the following two properties:

Positivity. y(𝑡) ⪰ 0 for all 𝑡 ≥ 0, and
Conservation of mass. 1⊤y(𝑡) = 1, for all 𝑡 ≥ 0.

Proof. The statement about mass conservations is trivial, because

1⊤y′(𝑡) = 1⊤𝐴(y(𝑡))y(𝑡) = 0⊤y(𝑡) = 0

implies that 1⊤y(𝑡) ≡ const = 1⊤y0 = 1.
To prove the statement about positivity, we consider any 𝑡* ≥ 0 such that there exists 𝑘* ∈ {1, 2, . . . , 𝑑} with

𝑦𝑘*(𝑡*) = 0 and such that y(𝑡*) ⪰ 0 – clearly, unless such 𝑡* exists, y(𝑡) stays forever in the nonnegative cone.
Note that it is perfectly possible for 𝑡* to be zero, also it is possible that several components of y(𝑡) vanish at
𝑡 = 𝑡*, this makes no difference to our argument. We note that, by (1.2),

𝑦′𝑘*(𝑡*) =
𝑑∑︁

ℓ=1

𝐴𝑘*,ℓ(y(𝑡*))𝑦ℓ(𝑡*) ≥ 0,

because 𝐴 is a graph Laplacian, so off-diagonal entries are nonnegative. Therefore 𝑦𝑘* cannot change sign at 𝑡*,
and it must stay in the nonnegative cone. �

Remark. Note in the proof of Proposition 1.1 that Property 1 alone of the definition of the Laplacian (pattern
of signs) suffices to give positivity, and that, separately, Property 2 alone of the definition of the Laplacian suffices
to give mass preservation. In particular, if the matrix 𝐴(y) has the same pattern of ± signs as a Laplacian (but
we make no assumption on the column sums of 𝐴(y)), then it is still true that solutions of y′ = 𝐴(y)y, preserve
positivity.

Let us now consider some properties of graph Laplacian matrices that allow us to deduce additional qualitative
properties of the solution of (1.2).

Theorem 1.2. Let 𝐴 ∈ ℒ𝑛. Then it has an eigenvalue at the origin, which is simple if 𝐴 is irreducible, and all
its other eigenvalues reside in C− = {𝑧 ∈ C : Re 𝑧 < 0}.

Proof. Since 1⊤𝐴 = 0⊤, it follows that 0 ∈ 𝜎(𝐴). To locate the remaining eigenvalues we use the Gerschgorin
theorem, applying it to columns (typically it is applied to rows, but this makes no difference). Thus, letting

Sℓ =

⎧⎨⎩𝑧 ∈ 𝐶 : |𝑧 −𝐴ℓ,ℓ| ≤
∑︁
𝑘 ̸=ℓ

|𝐴𝑘,ℓ|

⎫⎬⎭, ℓ = 1, . . . , 𝑛,

we have 𝜎(𝐴) ⊂
⋃︀𝑛

ℓ=1 Sℓ. By the definition of graph Laplacian, all Gerschgorin discs live in clC− and adjoin iR
only at the origin. Therefore 𝜎(𝐴) ∖ {0} ∈ C−.

It remains to prove that 0 is a simple eigenvalue. Let 𝛼 = min𝑘=1,...,𝑛 𝐴𝑘,𝑘, then the entries of 𝐵 = 𝐴−𝛼𝐼 ̸= 𝑂
are all nonnegative. Therefore, according to Frobenius–Perron theory [4], irreducibility implies that the largest
in modulus eigenvalue of 𝐵 is positive and simple. Since this is −𝛼, it follows that 0 is a simple eigenvalue of
𝐴. �

Incidentally, one of the less well-known formulations of the Gerschgorin theorem states that if 𝐴 is irreducible
then an eigenvalue might be on the boundary of one Gerschgorin disc only if it is on the boundary of all
Gerschgorin discs – this is certainly the case with 0.



1846 S. BLANES ET AL.

Proposition 1.3. Assume the matrix 𝐴 ∈ ℒ𝑛 is symmetric. Then d‖y(𝑡)‖2/d𝑡 ≤ 0.

Proof. We compute

1
2

d‖y(𝑡)‖2

d𝑡
= y⊤(𝑡)y′(𝑡) = y⊤(𝑡)𝐴(y(𝑡))y(𝑡) ≤ 𝛼+(𝐴(y(𝑡)))‖y(𝑡)‖2,

where 𝛼+(𝐵) is the spectral abscissa – the eigenvalue of the matrix 𝐵 with the largest real part (which in
the case of 𝐴 is real because of the Perron–Frobenius theory). This is true because 𝛼+(𝐵) ≥ v⊤𝐵v/‖v‖2 for
any square matrix 𝐵 and a nonzero vector v. Since our 𝐴(y) is graph Laplacian, it follows at once from the
Gerschgorin theorem that 𝛼+(𝐴(y(𝑡))) ≤ 0 and, since 0 ∈ 𝜎(𝐴(y(𝑡))), we deduce that d‖y(𝑡)‖2/d𝑡 ≤ 0. �

Let ŷ be the eigenvector corresponding to the simple eigenvalue 0. In the symmetric case, it is clear that
‖y(𝑡)− ŷ‖2 is a monotonically decreasing function – using the fact that 𝐴(y(𝑡))ŷ = 0,

[y(𝑡)− ŷ]′ = y′(𝑡) = 𝐴(y(𝑡))y(𝑡) = 𝐴(y(𝑡))[y(𝑡)− ŷ]

and we continue as before.
In the nonsymmetric case, the issue of stability needs more discussion. The two defining properties of the graph

Laplacian together ensure that the columns of the matrix exponential are probability vectors, so that, when 𝐴
is a constant matrix, in the 1-norm we always have ‖ exp(𝑡𝐴)‖ = 1, 𝑡 ≥ 0. In the case of a constant matrix,
these matrices are sometimes known as “W-matrices” in the statistical physics literature and, by studying the
adjoint z′(𝑡) = 𝐴⊤z(𝑡) – with arguments similar to those of our Proposition 1.1 – it is known that the minimum
of the solution z is increasing, and that the maximum is decreasing. In the 2-norm, a sufficient condition for
strong stability of y′ = 𝐴y(𝑡) with solution y(𝑡) = exp(𝑡𝐴)y(0), is that (𝐴 + 𝐴⊤) be negative definite. Note
that this condition is more restrictive than merely the assumption that the eigenvalues of 𝐴 have negative real
part (because then it would still be possible that (𝐴 + 𝐴⊤) had a positive eigenvalue). This issue of stability
is related to “the hump” in the classical literature on the numerical analysis of the matrix exponential, and
to the lognorm, and also to the subject of pseudospectra. Nonsymmetric graph Laplacians exhibit significant
pseudospectra, manifesting themselves in various ways, such as a more subtle stability analysis, and the failure
of standard eigenvalue algorithms [30, 37, 41]. A sufficient condition for stability of operator splitting methods
is that each part separately be strongly stable, although this may be too pessimistic in practice. For operator
splitting methods, the graph Laplacian can sometimes be expressed as the sum of two matrices, each of which is
separately a graph Laplacian with a physical interpretation [38]. In general, operator splitting does not preserve
the steady state [52] – so it is worth pointing out that the novel splitting methods that we introduce in this
work, for example later in (3.2), in our numerical experiments, do have the desirable property that they preserve
the steady state. In the nonautonomous case, but still linear case, it can be shown under suitable assumptions
that the difference of any two solutions is decreasing in the 1-norm, but the issue of stability is much more
delicate. For instance, see the catalogue of counterexamples, and Theorem 3.1 described in [17].

To sum up, the solution of a mathematical model given by (1.2) with y0 ⪰ 0 and where 𝐴(y) is a graph
Laplacian matrix (assuming y ⪰ 0) always preserves mass and always preserves positivity. Often, the model
(1.2) is also stable and converges to a steady state. These features correspond to the phenomenological desiderata
in for example epidemiological models.

In theory, there are always exact formulae for the right eigenvector corresponding to the zero eigenvalue of
a nonsymmetric graph Laplacian matrix 𝐴, via the Matrix-Tree Theorem [22]. This is the steady state of the
corresponding linear Laplacian dynamical system, and in special cases, there are also formulae for the dynamical
solutions [17,18,30].

Unfortunately, in general, the exact solution of these dynamical systems is unknown, so we need to resort to
numerical algorithms. Using backward error analysis, we can envisage a numerical method as the exact solution
of a perturbed model. While this is typically adequate across a single step, unless the method is chosen carefully,
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a numerical solution is highly unlikely to respect the important special structure of (1.2) across the entire time
interval of interest.

The mathematical models we are considering in this paper are based on differential equations whose solutions
preserve some underlying geometric structure. The design and analysis of numerical integrators that preserve
the qualitative features of the underlying differential equations is the subject of Geometric Numerical Integration
[7, 25, 29, 50]. We are not only concerned with the accuracy and stability of numerical schemes but also with
their geometric properties, which reflect important features of the phenomena being modelled. This endows
the integrators with an improved qualitative behaviour, but also typically leads to significantly more accurate
results.

For example, in [21] the authors consider a mathematical model for the COVID-19 epidemic in Italy, while
paying much attention so that the proposed model has the structure of (1.2), but then numerically solve it using
the first order explicit Euler method

y𝑛+1 = y𝑛 + ℎf(y𝑛)

where ℎ is the time step and y𝑛 ≃ y(𝑡𝑛) with 𝑡𝑛 = 𝑡0 + 𝑛ℎ. We easily see that

1⊤y𝑛+1 = 1⊤y𝑛 + ℎ1⊤f(y𝑛) = 1⊤y𝑛 = . . . = 1⊤y0

and then the mass is preserved (this is also the case for most standard methods like Runge–Kutta or multistep
methods). However, it is well known that, in general, this method does not preserve positivity unconditionally.

This inadequate behaviour cannot be rectified by a standard higher-order method: in [10] it is shown that
within the class of linear multistep and Runge–Kutta methods unconditional positivity restricts the order of
the method to just one1.

For non-stiff problems and for relatively short time integration, an Euler method, or any other standard
method, can provide sufficiently accurate, satisfactory results. However, if a mathematical model is stiff (this
is typical to equations of chemical kinetics) or need be solved for long time intervals, standard methods may
produce negative solutions or become unstable. While the stiffness in chemical kinetics equations can be dealt
with using implicit methods and mass is preserved by most numerical methods, positivity remains an outstanding
challenge.

The most efficient solvers considered in [24] for low to medium accuracy in the numerical solution of stiff
kinetic equations are Rosenbrock methods. In addition, they are among the simplest implicit schemes to be
implemented in a code, yet they fail to preserve positivity. Note that there exist exponential Rosenbrock-type
methods [28] that involve the computation of the exponential of the Jacobian. However, in general, this Jacobian
is not a graph Laplacian and positivity cannot be guaranteed.

The objective of preserving mass and positivity in numerical integration, in particular within the context of
chemical kinetics, received a measure of attention, although perhaps less than it deserves given its importance
in applications. An obvious device to avoid the solution from becoming negative is clipping: the practice of
converting a negative component to zero. This, of course, interferes with the preservation of mass but the
latter can be recovered using laborious optimization procedure in every time step [49]. The effects of this costly
algorithm on long-term accuracy and stability are unknown.

Another approach toward preservation of mass and positivity are Runge–Kutta–Patankar methods
[5, 14, 34, 47]. The idea is to adapt Runge–Kutta-like methods for production–destruction systems in chemi-
cal kinetics. We will show that this class of methods can be seen as particular approximation to the methods
proposed in the present work.

2. Illustrative examples

To illustrate our analysis we consider several simple population models from the literature.

1This is a necessary condition which, alas, is not sufficient: the above explicit Euler method is of order one but does not preserve
positivity.
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Example 2.1 (The Robertson reaction). Let us consider the following example of chemical reactions, 𝐴 −→ 𝐵
and 𝐵 + 𝐵 −→ 𝐵 + 𝐶 −→ 𝐴 + 𝐶, leading to the stiff differential equations for concentrations y = (𝑦1, 𝑦2, 𝑦3)
of 𝐴, 𝐵, 𝐶 [24] (p. 157):

𝑦′1 = −0.04𝑦1 + 104𝑦2𝑦3, 𝑦1(0) = 1
𝑦′2 = 0.04𝑦1 − 104𝑦2𝑦3 − 3 · 107𝑦2

2 , 𝑦2(0) = 0
𝑦′3 = 3 · 107𝑦2

2 , 𝑦3(0) = 0, (2.1)

that, rewritten in a vector form, read

d
d𝑡

⎡⎢⎣ 𝑦1

𝑦2

𝑦3

⎤⎥⎦ =

⎡⎢⎣−0.04 104𝑦3 0

0.04 −3 · 107𝑦2 − 104𝑦3 0

0 3 · 107𝑦2 0

⎤⎥⎦
⎡⎢⎣ 𝑦1

𝑦2

𝑦3

⎤⎥⎦, (2.2)

where the matrix is graph Laplacian. This example fits into the framework of Theorem 4.2, which comes later.
Note that the system can also be written in many different ways, for example

d
d𝑡

⎡⎢⎣ 𝑦1

𝑦2

𝑦3

⎤⎥⎦ =

⎡⎢⎣−0.04 0 104𝑦2

0.04 −3 · 107𝑦2 −104𝑦2

0 3 · 107𝑦2 0

⎤⎥⎦
⎡⎢⎣ 𝑦1

𝑦2

𝑦3

⎤⎥⎦, (2.3)

where now the matrix is no longer a graph Laplacian. As we will see, it is crucial to write properly the equations
for the numerical solutions to preserve their qualitative properties.

Example 2.2 (The SIR model). The Susceptible–Infected–Recovered (SIR) model describes the temporal epi-
demic evolution in terms of three variables for the population: 𝑆(𝑡): (Susceptible), 𝐼(𝑡) (Infected) and 𝑅(𝑡)
(Recovered). It is usually asssumed that the total population does not change during the infection period. 𝑆, 𝐼
and 𝑅 denote the fractions with respect to the total population: 𝑆(𝑡)+𝐼(𝑡)+𝑅(𝑡) ≡ 1. This model was proposed
in [33]

𝑆′ = −𝑅0𝑆𝐼 ,

𝐼 ′ = 𝑅0𝑆𝐼 − 𝐼 , (2.4)
𝑅′ = 𝐼 ,

where 𝑅0 > 0 is the basic reproduction number, and the system can be written in the form

d
d𝑡

⎡⎢⎣ 𝑆

𝐼

𝑅

⎤⎥⎦ =

⎡⎢⎣−𝑅0𝐼 0 0
𝑅0𝐼 −1 0
0 1 0

⎤⎥⎦
⎡⎢⎣ 𝑆

𝐼

𝑅

⎤⎥⎦ (2.5)

which is like (1.2) with y = [𝑆, 𝐼, 𝑅]⊤ and the matrix is evidently a graph Laplacian.

Example 2.3 (Laplacian dynamics on graphs (autonomous and linear)). Graph Laplacian dynamics, y′ =
ℒ(𝐺)y, where ℒ(𝐺) is a constant matrix, representing the Laplacian of a directed graph 𝐺, gives rise to a large
class of applications in biochemical kinetics, including Michaelis–Menten enzyme kinetics, allosteric enzymes,
G-protein coupled receptors, ion channels, and gene regulation [22] (Eq. (3)). Discussion of conditions under
which such linear systems always converge to a steady state, and discussion of the sense in which that might
be considered unique is given in [45]. That linear setting y′ = ℒ(𝐺)y is a special case of the more general
framework here where we focus on the exact nonlinear model in (1.2).
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Example 2.4 (Cardiac ion channels (nonautonomous and linear)). Nonautonomous Laplacian systems, y′ =
𝐴(𝑡)y, have many important applications, including cardiac ion channel kinetics [17,18]. In special cases, there
are also exact solutions for the dynamical solutions, such as the explicit Magnus formulæ in [30], and closely
related invariant manifolds of binomial-like solutions.

Example 2.5 (MAPK cascade (autonomous and nonlinear)). The mitogen-activated protein kinase (MAPK)
cascade is fundamental in cell signalling biology and cancer biology, and it is modelled by eighteen differential
equations with rates given by the Law of Mass Action, together with some linear conservation laws [48]. By
our Theorem 4.2, in the sequel, this MAPK model fits our framework of (1.2), subject to the remarks we
make following Proposition 1.1. The Laplacian dynamics mentioned in the above constant coefficient and linear
examples, where convergence to a steady state is common [45], makes it tempting to conjecture that the model
we focus on here in (1.2), likewise always converges to a steady state. However, a counterexample is provided
by the MAPK cascade, which can be modelled by our nonlinear Laplacian dynamics (1.2), and which has been
shown by numerical simulations to exhibit both bistability and oscillations [48].

We have taken the model of [23] (Tab. 3, Fig. 3, Eqs. (12)–(17)), which is closely related to the MAPK
cascade, and rewritten it here in the form of our model (1.2), to show that it is clearly an example of the
Laplacian dynamics that we study in this paper:

d
d𝑡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑦1

𝑦2

𝑦3

𝑦4

𝑦5

𝑦6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝑘7 − 𝑘1𝑦2 0 0 𝑘2 0 𝑘6

0 −𝑘1𝑦1 𝑘5 0 0 0
0 0 −𝑘3𝑦1 − 𝑘5 𝑘2 𝑘4 0
(1− 𝛼)𝑘1𝑦2 𝛼𝑘1𝑦1 0 −𝑘2 0 0
0 0 𝑘3𝑦1 0 −𝑘4 0
𝑘7 0 0 0 0 −𝑘6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑦1

𝑦2

𝑦3

𝑦4

𝑦5

𝑦6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.6)

We take the same rate constants 𝑘1 = 100
3 , 𝑘2 = 1

3 , 𝑘3 = 50, 𝑘4 = 1
2 , 𝑘5 = 10

3 , 𝑘6 = 1
10 , 𝑘7 = 7

10 , and initial state
𝑦(0) = [0.1, 0.175, 0.15, 1.15, 0.81, 0.5]⊤. Note that we have y′ = 𝐴(𝛼,y)y, where 𝛼 ∈ [0, 1] is a parameter we
can freely choose in this interval and the matrix 𝐴(𝛼,y) has the same pattern of signs as a Laplacian, but that
a column of 𝐴(𝛼,y) does not always sum to zero, so this fits our framework of (1.2), subject to the remarks we
make following Proposition 1.1, and this is also an example of our later Theorem 4.2. This model possesses two
conservation of mass laws, namely both 𝑦1 + 𝑦4 + 𝑦6 and 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5 are constants, which have physical
interpretation in terms of the total enzyme of two types of kinases. Those two conservation laws correspond to
w1 = [1, 0, 0, 1, 0, 1]⊤, and w2 = [0, 1, 1, 1, 1, 0]⊤, respectively. Note that we have

w⊤
1 𝐴(𝛼,y)y = 0, w⊤

2 𝐴(𝛼,y)y = 0,

and this is irrespective of the value of 𝛼 ∈ (0, 1). However, if we take 𝛼 = 0 we have that

w⊤
1 𝐴(0,y) = 0, w⊤

2 𝐴(0,y) ̸= 0,

while for 𝛼 = 1
w⊤

1 𝐴(1,y) ̸= 0, w⊤
2 𝐴(1,y) = 0.

It should be possible to use methods based on matrix exponentials (such as the methods proposed in this paper)
to respect e.g. the second conservation law, if we take 𝛼 = 1 because w⊤

2 𝐴(y) = 0, so w⊤
2 exp(𝑡𝐴(y)) = w⊤

2 .
However, because w⊤

1 𝐴(y) ̸= 0, it will be difficult (and probably impossible) to maintain exactly the first
conservation law by methods that compute matrix exponentials2. This is typical of applications in chemical

2The situation whereby it is impossible to satisfy several conservation laws under discretisation – except, of course, by the exact
solution – is familiar in Geometric Numerical Integration [25].
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kinetics, and for example, the famous Michaelis–Menten enzyme kinetics model (which always converges to a
unique and simple steady state) also fits the framework, with a matrix that has the same pattern of signs as
a Laplacian, but that does not have zero column sum, and the model still has two simple well-known linear
conservation laws. Significantly, by numerical simulation, it has been shown that solutions of this model (2.6)
show oscillations [23] (Fig. 5).

3. Positivity preserving second-order methods

Let us first consider the particular case in which the matrix 𝐴 is constant. Then the exact solution is given
via the exponential:

y(𝑡) = e𝑡𝐴y0.

If 𝐴 is a graph Laplacian matrix it is a consequence of Theorem 1.2 that 𝜎(e𝑡𝐴) ⊂ {𝑧 ∈ C : |𝑧| ≤ 1}, hence the
solution is stable (subject to the discussion of stability we gave earlier, in the nonsymmetric case).

The exponential of a graph Laplacian matrix is fundamental to the work of this paper, and this calls for a
more detailed study of its qualitative properties.

3.1. The exponential of a graph Laplacian matrix

We begin with column sums for an arbitrary square matrix.

Proposition 3.1. Suppose that 1⊤𝐴 = 0⊤. Then 1⊤e𝐴 = 1⊤.

Proof. By the series definition of the exponential

1⊤e𝐴 = 1⊤
(︃ ∞∑︁

𝑛=0

𝐴𝑛

𝑛!

)︃
= (1⊤𝐼) +

∞∑︁
𝑛=1

(1⊤𝐴)
𝐴𝑛−1

𝑛!
= 1⊤ +

∞∑︁
𝑛=1

(0⊤)
𝐴𝑛−1

𝑛!
= 1⊤.

�

Remark. Replace 𝐴 by 𝑡𝐴 in the proposition to see that, as a corollary, if 1⊤𝐴 = 0⊤, then 1⊤e𝑡𝐴 = 1⊤.

Remark. Graph Laplacians have the property 1⊤𝐴 = 0⊤ by definition, so for graph Laplacians it is also true
that 1⊤e𝑡𝐴 = 1⊤.

We need the following elements of the Perron–Frobenius theory [4] (pp. 26 and 27). Let 𝐵 ∈ R𝑑×𝑑, 𝐵 ⪰ 𝑂.
Then 𝜌(𝐵) is an eigenvalue of 𝐵 and we can choose the corresponding eigenvector v such that v ⪰ 0. Moreover, if
in addition 𝐵 is irreducible then 𝜌(𝐵) is a simple eigenvalue and v is the only eigenvector of 𝐵 with nonnegative
entries.

Let 𝑎* = min𝑖=1,...,𝑑 𝐴𝑖,𝑖 < 0 and set 𝐴 = 𝐴− 𝑎*𝐼. Then

e𝑡𝐴 = e𝑡𝑎*𝐼+𝑡𝐴 = e𝑡𝑎*e𝑡𝐴.

Since 𝐴 ⪰ 𝑂, all its nonnegative powers are also nonnegative and we deduce that e𝑡𝐴 ⪰ 𝑂. Therefore e𝑡𝐴 ⪰ 𝑂.
Indeed, the Mittag–Leffler matrix function of a graph Laplacian, 𝐸𝛼(𝐴𝑡𝛼), is likewise a stochastic matrix, i.e.
𝐸𝛼(𝐴𝑡𝛼) ⪰ 𝑂, and all entries are positive, and columns sum to unity [40]. Here the Mittag–Leffler function
𝐸𝛼(𝑧) =

∑︀∞
𝑘=0 𝑧𝑘/Γ(𝛼𝑘 + 1) is a one-parameter generalisation of the exponential, and the exponential is

recovered as the special case once 𝛼 → 1. Furthermore, when 𝐴 is Laplacian then the pattern of signs in the
resolvent, and the properties of 𝑀 -matrices, show that for large 𝑛, all entries of the matrix

(︀
𝐼 − 𝑡

𝑛𝐴
)︀−𝑛 are

nonnegative. This suggests the results we derive here may be extended to more general settings.
Additionally, once 𝐴 is irreducible and we denote by w ⪰ 0 the left eigenvector of 𝐴 corresponding to the

zero eigenvalue, then w⊤𝐴 = −𝑎*w⊤. Since 𝑎* < 0, we deduce that |𝑎*| = 𝜌(𝐴) and w = 1.
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Proposition 3.2.

𝜎(𝐴) ⊂ {𝑧 ∈ C : |𝑧| ≤ |𝑎*|}.

Proof. By the Gerschgorin theorem applied to the columns of 𝐴 (or the standard Gerschgorin theorem applied
to 𝐴⊤) and because 𝐴𝑗,𝑖 ≥ 0 for 𝑖 ̸= 𝑗, we have

𝜎(𝐴) ⊂
𝑑⋃︁

𝑖=1

⎧⎪⎪⎨⎪⎪⎩𝑧 ∈ C : |𝑧 −𝐴𝑖,𝑖 + 𝑎*| ≤
𝑑∑︁

𝑗=1
𝑗 ̸=𝑖

𝐴𝑗,𝑖

⎫⎪⎪⎬⎪⎪⎭
and the proof follows. �

Proposition 3.3. Let R𝑑 ∋ p ⪰ 0 be such that 1⊤p = 1 and set q = e𝑡𝐴p. Then for every 𝑡 ≥ 0 q ⪰ 0 and
1⊤q = 1.

Proof. We deduce at once that q ⪰ 0 because e𝑡𝐴 ≻ 𝑂. Moreover, 1⊤q = 1⊤e𝑡𝐴p = 1⊤p = 1, concluding the
proof. �

Remark. Note that all previously stated results apply to maps of the form z = e𝜎𝑆x where x ⪰ 0, 𝑆 is a graph
Laplacian and 𝜎 is a non-negative constant. Since 𝑆 can have large negative eigenvalues, taking negative values
of 𝜎 is likely to lead to a poorly conditioned problem where negative solutions can occur and this compels us
to avoid this choice. In the sequel we propose several methods that involve maps of the form e𝜎𝑆 with 𝑆 being
graph Laplacian, and we will see that condition 𝜎 > 0 limits the order of the methods to two in the time step,
an order barrier.

Since e𝑡𝐴 = [𝐼 − 𝑡𝐴]−1 +𝒪(𝑡2), the following well known result will be useful in the sequel.

Proposition 3.4. If 𝐴 is graph-Laplacian then [𝐼 − 𝑡𝐴]−1 ⪰ 𝑂.

Proof. Given 𝐵 = 𝐼 − 𝑡𝐴 we have that 𝐵𝑖𝑖 > 0,∀𝑖 and 𝐵𝑖,𝑗 ≤ 0, 𝑖 ̸= 𝑗. Since 𝜎(𝐴) ∖ {0} ∈ C− then we have
𝜎(𝐼 − 𝑡𝐴) ∈ C+, which is an 𝑀 -matrix whose inverse has only non-negative elements. �

3.2. Splitting methods

Splitting methods are frequently used to solve differential equations that are separable into solvable parts.
However, for stiff as well as for non-separable problems it is more convenient to proceed as follows [6]. Let us
consider the following system in the extended space

x′ = 𝐴(z)x, x(0) = x0 = y0,

z′ = 𝐴(x)z, z(0) = z0 = y0,

where x(𝑡) = y(𝑡) = z(𝑡). The system is separable into two solvable parts

𝒜 :
{︂

x′ = 𝐴(z)x,

z′ = 0
⇒

{︂
x(𝑡) = e𝑡𝐴(z0)x0,

z(𝑡) = z0

and

ℬ :
{︂

x′ = 0,

z′ = 𝐴(x)z
⇒

{︂
x(𝑡) = x0,

z(𝑡) = e𝑡𝐴(x0)z0.
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We solve the system with the symmetric second order Strang splitting method, i.e. advance half a step with
𝒜 followed by a step with ℬ and conclude with another half a step with 𝒜:

x1/2 = e
1
2 ℎ𝐴(z0)x0,

z1 = eℎ𝐴(x1/2)z0, (3.1)

x1 = e
1
2 ℎ𝐴(z1)x1/2.

Since z0 ⪰ 0, the frozen matrix 𝐴(z0) is a graph Laplacian, therefore x1/2 ⪰ 0 and preserves the 1-norm, and
similarly for z1 and x1.

In addition, x1 and z1 correspond to symmetric second order approximations: z1 can be seen as the exponential
midpoint and x1 as the exponential trapezoidal rule. Then, we can advance the solution either with z1 or with
x1 but, in general, more accurate results are obtained with the smoothing technique, i.e. taking the solution for
the next step as the average

y1 =
1
2

(x1 + z1) (3.2)

where again the 1-norm is preserved and all components of y1 are nonnegative. The Lie group structure is
not preserved by this linear combination, but this is not a property that concerns us in the present context.
In addition, the difference x1 − z1 can be taken as an estimate of local error, using the scheme as a variable
time-step algorithm in order to get more accurate results.

Remark. If 𝐴 is graph Laplacian and irreducible then (3.1) is a time-symmetric second order method that
preserves mass and positivity unconditionally (the average (3.2) breaks time symmetry) and converges to the
steady state solution. Let y𝑓 be the steady state solution, then f(y𝑓 ) = 𝐴(y𝑓 )y𝑓 = 0. Since 𝜎(𝐴) ∖ {0} ∈ C−
where 0 is a simple eigenvalue and the method is a composition of exponentials of 𝐴, it must converge to a
steady state solution, say ŷ𝑓 . However, we observe that if we take y0 = y𝑓 then it is trivial to check that
x1/2 = z1 = x1 = y𝑓 , so y1 = y𝑓 and then ŷ𝑓 = y𝑓 .

Note also that

u =
[︂
𝐼 − 1

2
ℎ𝐴(z0)

]︂−1

x0 = e
1
2 ℎ𝐴(z0)x0 +𝒪(ℎ2)

which is a first order approximation to the exponential that, by our earlier Proposition 3.4, still preserves
positivity. We can replace 𝐴(x1/2) by 𝐴(u) in (3.1) and, since this matrix is multiplied by ℎ, the method retains
second order of accuracy.
The non-autonomous case. Let us now consider the non-autonomous system

y′ = 𝐴(𝑡,y)y, y(0) = y0.

This occurs, for example, when a chemical reaction takes place at variable temperature and the coefficients 𝑘𝑖(𝑡)
are time dependent or when the parameter 𝑅0 in the SIR model changes due to political decisions, variations
in behaviour or the evolution of a pathogen.

In this case we duplicate the system, but taking the time as two dependent variables

x′ = 𝐴(𝑧𝑡, z)x, x(0) = x0 = y0

𝑥′𝑡 = 1, 𝑥𝑡(0) = 𝑡0

z′ = 𝐴(𝑥𝑡,x)z, z(0) = z0 = y0

𝑧′𝑡 = 1, 𝑧𝑡(0) = 𝑡0

where x(𝑡) = y(𝑡) = z(𝑡) and 𝑥𝑡(𝑡) = 𝑧𝑡(𝑡) = 𝑡: the system is now autonomous and separable into solvable parts:
the outcome is an algorithm similar to (3.1),

x1/2 = e
ℎ
2 𝐴(𝑡0,z0)x0,
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z1 = eℎ𝐴(𝑡0+ℎ/2,x1/2)z0,

x1 = e
ℎ
2 𝐴(𝑡0+ℎ,z1)x1/2,

and finally

y1 =
1
2

(x1 + z1). (3.3)

3.3. Magnus integrators

A more general procedure to construct higher-order methods is to consider Magnus integrators.
Let 𝐴 : R× R𝑑 → R𝑑×𝑑. We consider the equation

y′ = 𝐴(𝑡,y)y, 𝑡 ≥ 0, y(0) = y0, (3.4)

and suppose that y𝑛 ≃ y(𝑡𝑛). One approach toward the solution of (3.4) is

y[0] ≡ y𝑛,

y[𝑚+1]′ = 𝐴
(︁
𝑡,y[𝑚](𝑡)

)︁
y[𝑚+1], y[𝑚+1](𝑡𝑛) = y𝑛, 𝑚 = 0, 1, . . . ,𝑚* − 1,

y𝑛+1 = y[𝑚*] (𝑡𝑛+1), where 𝑡𝑛+1 = 𝑡𝑛 + ℎ𝑛, (3.5)

that corresponds to an approximation to the exact solution to order 𝑚*. The linear ODE in (3.5) can be solved
e.g. by Magnus series expansion [42] (see also [8,31,32] and references therein). For simplicity, we first consider
the autonomous case, with 𝐴(y), and next we show the results for the non-autonomous problem.

For example, for 𝑚* = 1 we have y[1]′ = 𝐴(y𝑛)y[1], therefore y[1](𝑡) = e(𝑡−𝑡𝑛)𝐴(y𝑛)y𝑛 and we obtain the
first-order method

y𝑛+1 = eℎ𝑛𝐴(y𝑛)y𝑛. (3.6)

Letting 𝑚* = 2 leads to a second-order method y[2]′ = 𝐴
(︀
e(𝑡−𝑡𝑛)𝐴(y𝑛)y𝑛

)︀
y[2], whose Magnus solution truncated

to the first term that provides second order approximations in the time step is

y[2](𝑡) = exp
(︂∫︁ 𝑡

𝑡𝑛

𝐴
(︁

e(𝜏−𝑡𝑛)𝐴(y𝑛)y𝑛

)︁
d𝜏

)︂
y𝑛

≈ exp
(︂

𝑡− 𝑡𝑛
2

(︁
𝐴(y𝑛) + 𝐴

(︁
e(𝑡−𝑡𝑛)𝐴(y𝑛)y𝑛

)︁)︁)︂
y𝑛

(note that the approximation of the integral with the trapezoidal rule is fully consistent with second order).
This results in the second-order method

y𝑛+1 = exp
(︂

ℎ𝑛

2

(︁
𝐴(y𝑛) + 𝐴

(︁
eℎ𝑛𝐴(y𝑛)y𝑛

)︁)︁)︂
y𝑛. (3.7)

If we consider instead the midpoint rule we have

y𝑛+1 = exp
(︁
ℎ𝑛𝐴

(︁
e

1
2 ℎ𝑛𝐴(y𝑛)y𝑛

)︁)︁
y𝑛. (3.8)

Note that (3.8) coincides with z1 in (3.1) for the first step. This method requires only two exponentials but it
is not time symmetric. If it is important to preserve time symmetry, the three-exponential method (3.1) should
be used, otherwise this simple and cheaper scheme suffices.

Remark. If 𝐴 is graph Laplacian and irreducible then the first-order methods (3.6) as well as the second order
methods (3.7) and (3.8) preserve mass and positivity unconditionally and converge to the steady state solution
similarly to the previous splitting methods.
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We can easily apply these Magnus integrators to non-autonomous problems. The first-order method is,
obviously

y𝑛+1 = eℎ𝑛𝐴(𝑡𝑛,y𝑛)y𝑛. (3.9)

The trapezoidal second-order method is given by

y𝑛+1 = exp
(︂

ℎ𝑛

2

(︁
𝐴(𝑡𝑛,y𝑛) + 𝐴

(︁
𝑡𝑛+1, eℎ𝑛𝐴(𝑡𝑛,y𝑛)y𝑛

)︁)︁)︂
y𝑛, (3.10)

while the corresponding second-order midpoint rule method is

y𝑛+1 = exp
(︂

ℎ𝑛𝐴

(︂
𝑡𝑛 +

ℎ𝑛

2
, e

1
2 ℎ𝑛𝐴(𝑡𝑛y𝑛)y𝑛

)︂)︂
y𝑛. (3.11)

Note that if we consider the first order approximation to eℎ𝑛𝐴(𝑡𝑛,y𝑛) or e
1
2 ℎ𝑛𝐴(𝑡𝑛y𝑛) given by

u1 = [𝐼 − ℎ𝑛𝐴(𝑡𝑛,y𝑛)]−1y𝑛 or u2 =
[︂
𝐼 − ℎ𝑛

2
𝐴(𝑡𝑛,y𝑛)

]︂−1

y𝑛

as the internal stages in (3.10) or (3.11) then the new and cheaper schemes read

y𝑛+1 = exp
(︂

ℎ𝑛

2
(𝐴(𝑡𝑛,y𝑛) + 𝐴(𝑡𝑛+1,u1))

)︂
y𝑛, (3.12)

or

y𝑛+1 = exp
(︂

ℎ𝑛𝐴

(︂
𝑡𝑛 +

ℎ𝑛

2
,u2

)︂)︂
y𝑛. (3.13)

and still preserve mass and positivity as well as the second order accuracy. We can either compute the expo-
nentials to high accuracy, or to look for cheaper approximations that preserve both mass and positivity, this
being a problem to be studied further in the future.

3.4. Patankar methods

A well-known approach toward preservation of mass and positivity are Runge–Kutta–Patankar methods
[14,34,35,46,47]. The idea is to use Runge–Kutta-like methods for production–destruction systems in chemical
kinetics, of the form

𝑦′𝑘 =
𝑑∑︁

𝑗=1

𝑝𝑘,𝑗(𝑡,y)−
𝑑∑︁

𝑗=1

𝑑𝑘,𝑗(𝑡,y), 𝑘 = 1, . . . , 𝑑, (3.14)

where 𝑝𝑘,𝑗(𝑡,y), 𝑑𝑘,𝑗(𝑡,y) ≥ 0. The first order Patankar method is given by

𝑦𝑛+1,𝑘 = 𝑦𝑛,𝑘 + ℎ

𝑑∑︁
𝑗=1

[︂
𝑝𝑘,𝑗(𝑡𝑛,y𝑛)− 𝑑𝑘,𝑗(𝑡𝑛,y𝑛)

𝑦𝑛+1,𝑘

𝑦𝑛,𝑘

]︂
, 𝑘 = 1, . . . , 𝑑.

This method preserves positivity but does not preserve mass. In [14] the authors propose a Modified Patankar
Euler scheme (MPE) given by

𝑦𝑛+1,𝑘 = 𝑦𝑛,𝑘 + ℎ

𝑑∑︁
𝑗=1

[︂
𝑝𝑘,𝑗(𝑡𝑛,y𝑛)

𝑦𝑛+1,𝑗

𝑦𝑛,𝑗
− 𝑑𝑘,𝑗(𝑡𝑛,y𝑛)

𝑦𝑛+1,𝑘

𝑦𝑛,𝑘

]︂
, 𝑘 = 1, . . . , 𝑑, (3.15)

which preserves both mass and positivity unconditionally. Note that we can write (3.14) in our graph-Laplacian
notation as

y′ = f(y) = 𝐴(𝑡,y)y
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with
𝐴𝑘,𝑗(𝑡,y) = 𝑝𝑘,𝑗(𝑡,y)

1
𝑦𝑗
− 𝑑𝑘,𝑗(𝑡,y)

𝛿𝑘,𝑗

𝑦𝑘

where 𝛿𝑘,𝑗 = 0 if 𝑘 ̸= 𝑗 and 𝛿𝑘,𝑘 = 1. Then, equation (3.15) can be written in matrix form as

y𝑛+1 = y𝑛 + ℎ𝐴(𝑡𝑛,y𝑛)y𝑛+1 (3.16)

that preserves mass (because 𝐴(𝑡𝑛,y𝑛) is graph Laplacian) and as already shown preserves positivity.
Note that

y𝑛+1 = [𝐼 − ℎ𝐴(𝑡𝑛,y𝑛)]−1y𝑛 = 𝑒ℎ𝐴(𝑡𝑛,y𝑛)y𝑛 +𝒪(ℎ2),

corresponding to a first order rational approximation to the first order exponential Magnus integrator.
The second-order Modified Patankar–Runge–Kutta scheme (MPRK) is given by

𝑢𝑘 = 𝑦𝑛,𝑘 + ℎ

𝑑∑︁
𝑗=1

[︂
𝑝𝑘,𝑗(𝑡𝑛,y𝑛)

𝑢𝑗

𝑦𝑛,𝑗
− 𝑑𝑘,𝑗(𝑡𝑛,y𝑛)

𝑢𝑘

𝑦𝑛,𝑘

]︂
, 𝑘 = 1, . . . , 𝑑,

𝑦𝑛+1,𝑘 = 𝑦𝑛,𝑘 +
ℎ

2

𝑑∑︁
𝑗=1

{︂
[𝑝𝑘,𝑗(𝑡𝑛,y𝑛) + 𝑝𝑘,𝑗(𝑡𝑛+1,u)]

𝑦𝑛+1,𝑗

𝑢𝑗
− [𝑑𝑘,𝑗(𝑡𝑛,y𝑛) + 𝑑𝑘,𝑗(𝑡𝑛+1,u)]

𝑦𝑛+1,𝑘

𝑢𝑘

}︂
[14] (Eq. (27)), which can be written in matrix form as

u = [𝐼 − ℎ𝐴(𝑡𝑛,y𝑛)]−1y𝑛

y𝑛+1 =
[︂
𝐼 − ℎ

2

(︁
𝐴(𝑡𝑛,y𝑛)𝐷(y𝑛,u) + 𝐴(𝑡𝑛+1,u)

)︁]︂−1

y𝑛 (3.17)

where

𝐷(y𝑛,u) = diag
(︂

𝑦𝑛,1

𝑢1
, . . . ,

𝑦𝑛,𝑑

𝑢𝑑

)︂
and y𝑛 = (𝑦𝑛,1, . . . , 𝑦𝑛,𝑑)⊤, u = (𝑢1, . . . , 𝑢𝑑)⊤.

Note that u coincides with u1 in (3.10) and then the modified Patankar method can be considered as a
particular second order approximation to the second order Magnus method (3.10). Obviously, different second
order approximations to this exponential or to the method using the midpoint rule (3.11) would lead to different
modified second order Patankar methods.

Note that during the integration some of the values 𝑢𝑖 may approach zero. In this case one may take, for
example, 𝑦𝑛,𝑖

𝑢𝑖
= 0 when 𝑢𝑖 is smaller than a given tolerance. Some caution is required if any component of the

solution is very close to zero and suddenly grows, as it happens with some of the numerical examples we will
consider.

This method has shown a good performance on stiff problems [13]. Higher order modified Patankar methods
have also been recently obtained in the literature [20, 35, 46] and it would be interesting to find if there is any
connection with our exponential integrators.

There are other families of methods which consider some kind of adaptive time steps which depend on the
phase space and the time step which allows to preserve positivity as well as the linear invariants [2, 11, 44] but
they are not considered in this work and a proper study of their performance with respect to the new methods
is left for future research.

3.5. Higher order methods

Continuing in this vain,

y[3]′ = 𝐴

(︂
exp
(︂∫︁ 𝑡

𝑡𝑛

𝐴
(︁

e(𝜏−𝑡𝑛)𝐴(y𝑛)y𝑛

)︁
d𝜏

)︂
y𝑛

)︂
y[3] = 𝐴2(𝑡)y[3]
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and a fourth-order Magnus reads (this is a 4th-order approximation to y[3] which is a third order approximation
to the exact solution, so the methods will be of order three)

y𝑛+1 = exp
(︂∫︁ 𝑡𝑛+1

𝑡𝑛

𝐴2(𝜏)d𝜏 − 1
2

∫︁ 𝑡𝑛+1

𝑡𝑛

∫︁ 𝜏

𝑡𝑛

[𝐴2(𝜏), 𝐴2(𝜂)]d𝜂d𝜏

)︂
y𝑛.

The temptation is now to discretise using standard Magnus quadrature at Gauss–Legendre points but this does
not work because the definition of 𝐴2 itself contains an integral. Moreover, the critical issue is the dependence
of 𝐴2 on 𝑡, not on y𝑛.

We approximate

y𝑛+1 ≈ exp

(︃
ℎ𝑛

2
(ℬ1 + ℬ2) +

√
3

12
ℎ2

𝑛[ℬ1,ℬ2]

)︃
y𝑛,

where

ℬ1 = 𝐴2

(︁
𝑡𝑛 +

(︁
1
2 −

√
3

6

)︁
ℎ
)︁
, ℬ2 = 𝐴2

(︁
𝑡𝑛 +

(︁
1
2 +

√
3

6

)︁
ℎ
)︁

– except that 𝐴2 itself has a built-in integral,

𝐴2(𝑡) = 𝐴

(︂
exp
(︂∫︁ 𝑡

𝑡𝑛

𝐴1(𝜂)d𝜂

)︂
y𝑛

)︂
.

The simplest solution is to approximate that integral also by two-point Gauss–Legendre (note that the interval
of integration in the inner integral is of length

(︁
1
2 −

√
3

6

)︁
ℎ𝑛 and we need to adjust quadrature points), whereby

ℬ1 ≈ 𝐴
(︁

exp
(︁(︁

1
4 −

√
3

12

)︁
ℎ𝑛

[︁
𝐴1

(︁
𝑡𝑛 +

(︁
1
3 −

√
3

6

)︁
ℎ𝑛

)︁
+ 𝐴1

(︀
𝑡𝑛 + 1

6ℎ𝑛

)︀]︁)︁
y𝑛

)︁
,

ℬ2 ≈ 𝐴
(︁

exp
(︁(︁

1
4 +

√
3

12

)︁
ℎ𝑛

[︁
𝐴1

(︀
𝑡𝑛 + 1

6ℎ𝑛

)︀
+ 𝐴1

(︁
𝑡𝑛 +

(︁
1
3 +

√
3

6

)︁
ℎ𝑛

)︁]︁)︁
y𝑛

)︁
.

Brief explanation: the first integral is in the interval
[︁
𝑡𝑛, 𝑡𝑛 +

(︁
1
2 −

√
3

6

)︁]︁
and the Gauss–Legendre nodes

1
2 ±

√
3

6 need be multiplied by the length of the interval. Ditto in the second interval,
[︁
𝑡𝑛, 𝑡𝑛 +

(︁
1
2 +

√
3

6

)︁]︁
and we are saved a single function evaluation because, by happy coincidence, real numbers commute and(︁

1
2 −

√
3

6

)︁(︁
1
2 +

√
3

6

)︁
=
(︁

1
2 +

√
3

6

)︁(︁
1
2 −

√
3

6

)︁
= 1

6 .
Thus, altogether we need three function evaluations, one more than standard Magnus. Note moreover that

the integration in 𝐴1 is explicit,

𝐴1(𝑡) = 𝐴
(︁

e(𝑡−𝑡𝑛)𝐴(y𝑛)
)︁
.

We observe that ℬ𝑖, 𝑖 = 1, 2, are graph Laplacians, but this need not be the case for their commutator [ℬ1,ℬ2].
This problem can be bypassed using commutator-free Magnus integrators [1, 9].
Commutator-free Magnus integrators. We describe briefly, using an example, the construction of commutation-
free integrators, based upon the work of [9]. We approximate the solution across a single time step by

y𝑛+1 ≈ exp
(︂

ℎ𝑛

2
(𝛽ℬ2 + 𝛼ℬ1)

)︂
exp
(︂

ℎ𝑛

2
(𝛼ℬ2 + 𝛽ℬ1)

)︂
y𝑛,

where

𝛼 =
1
2

+
√

3
3

, 𝛽 =
1
2
−
√

3
3
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and the algorithm is given by
x1 = exp

(︁(︁
1
3 −

√
3

6

)︁
ℎ𝑛𝐴(y𝑛)

)︁
y𝑛, 𝐴1,1 = 𝐴(x1),

x2 = exp
(︀

1
6ℎ𝑛𝐴(y𝑛)

)︀
y𝑛, 𝐴1,2 = 𝐴(x2),

x3 = exp
(︁(︁

1
3 +

√
3

6

)︁
ℎ𝑛𝐴(y𝑛)

)︁
y𝑛, 𝐴1,3 = 𝐴(x3),

x4 = exp
(︁(︁

1
4 −

√
3

12

)︁
ℎ𝑛(𝐴1,1 + 𝐴1,2)

)︁
y𝑛, ℬ1 = 𝐴(x4),

x5 = exp
(︁(︁

1
4 +

√
3

12

)︁
ℎ𝑛(𝐴1,2 + 𝐴1,3)

)︁
y𝑛, ℬ2 = 𝐴(x5),

x6 = exp
(︀

1
2ℎ𝑛(𝛼ℬ2 + 𝛽ℬ1)

)︀
y𝑛,

y𝑛+1 = exp
(︀

1
2ℎ𝑛(𝛽ℬ2 + 𝛼ℬ1)

)︀
x6. (3.18)

This is a seven-exponential method that might be useful when highly accurate results are desired and the cost
of each exponential is not excessive. It preserves positivity for moderately stiff problems since it is conditionally
positivity preserving. If y𝑛 ⪰ 0 then it is easy to see that x𝑖 ⪰ 0, 𝑖 = 1, 2, 3, 4, 5 since 𝐴1,1, 𝐴1,2, 𝐴1,3,ℬ1,ℬ2 ∈
ℒ𝑑. However, positivity is guaranteed as long as the matrices

𝛼ℬ2 + 𝛽ℬ1, 𝛽ℬ2 + 𝛼ℬ1

are graph Laplacians [41]. Unfortunately, 𝛽 < 0 but 𝛼/|𝛽| = 7 + 4
√

3 ≃ 14, and unless ℬ1,ℬ2 drastically change
in a short time interval or their sparsity structure is “unlucky”, their linear combinations are likely to inherit
graph-Laplacian structure. In other words, while preservation of graph Laplacians for this third-order method
is not assured, it is highly likely in practice.

Finally, we present this Magnus integrator to be used on non-autonomous problems. A third-order
commutator-free method can be obtained following the same approximations as previously and taking, for
example, the midpoint rule when approximating the intermediate integrals that ensure the third order of accu-
racy for the method, resulting in the following algorithm

𝐴1 = 𝐴
(︁
𝑡𝑛 +

(︁
1
6 −

√
3

12

)︁
ℎ𝑛,y𝑛

)︁
, 𝐴2 = 𝐴

(︀
𝑡𝑛 + 1

12ℎ𝑛,y𝑛

)︀
, 𝐴3 = 𝐴

(︁
𝑡𝑛 −

(︁
1
6 −

√
3

12

)︁
ℎ𝑛,y𝑛

)︁
,

x1 = exp
(︁(︁

1
3 −

√
3

6

)︁
ℎ𝑛𝐴1

)︁
y𝑛, 𝐴1,1 = 𝐴

(︁
𝑡𝑛 +

(︁
1
3 −

√
3

6

)︁
ℎ𝑛,x1

)︁
x2 = exp

(︀
1
6ℎ𝑛𝐴2

)︀
y𝑛, 𝐴1,2 = 𝐴

(︀
𝑡𝑛 + 1

6ℎ𝑛,x2

)︀
x3 = exp

(︁(︁
1
3 +

√
3

6

)︁
ℎ𝑛𝐴3

)︁
y𝑛, 𝐴1,3 = 𝐴

(︁
𝑡𝑛 +

(︁
1
3 +

√
3

6

)︁
ℎ𝑛,x3

)︁
x4 = exp

(︁(︁
1
4 −

√
3

12

)︁
ℎ𝑛(𝐴1,1 + 𝐴1,2)

)︁
y𝑛, ℬ1 = 𝐴

(︁
𝑡𝑛 +

(︁
1
2 −

√
3

6

)︁
ℎ𝑛,x4

)︁
x5 = exp

(︁(︁
1
4 +

√
3

12

)︁
ℎ𝑛(𝐴1,2 + 𝐴1,3)

)︁
y𝑛, ℬ2 = 𝐴

(︁
𝑡𝑛 +

(︁
1
2 +

√
3

6

)︁
ℎ𝑛,x5

)︁
x6 = exp

(︀
1
2ℎ𝑛(𝛼ℬ2 + 𝛽ℬ1)

)︀
y𝑛,

y𝑛+1 = exp
(︀

1
2ℎ𝑛(𝛽ℬ2 + 𝛼ℬ1)

)︀
x6. (3.19)

4. Hidden graph Laplacian structures for polynomial ODEs

4.1. The recovery of graph Laplacian structure

Given an ODE system of the form

𝑦′𝑘 =
𝑑∑︁

ℓ=1

𝑏ℓ
𝑘𝑦ℓ +

𝑑∑︁
ℓ=1

𝑑∑︁
𝑖=1

𝑎ℓ,𝑖
𝑘 𝑦ℓ𝑦𝑖, 𝑘 = 1, . . . , 𝑑, (4.1)
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with suitable initial conditions y(0) ⪰ 0, 1⊤y(0) = 1, we seek conditions so that it can be written in the form
(1.2), where the matrix 𝐴(y) is a graph Laplacian, namely that for every nonnegative y such that 1⊤y = 1 it is
true that 𝐴𝑘,𝑘(y) ≤ 0 and 𝐴𝑘,ℓ(y) ≥ 0, ℓ ̸= 𝑘. Moreover, we seek constructive means of deriving such a matrix
𝐴, given (4.1).

Our first observation is that the representation of (4.1) in the form (1.2) is additive, in the sense that if
we can do so for two different right-hand sides of (4.1), we can do so for their sum. By the same token, if we
can do so separately for the first sum and the second, double sum in (4.1), all we need is simply add the two
representations. The first sum is trivial and corresponds to the constant-matrix representation y′ = 𝐵y, where
𝐵 = (𝑏ℓ

𝑘) is a graph Laplacian. Consequently, the task at hand reduces to the derivation of a representation
(1.2) of the system

𝑦′𝑘 =
𝑑∑︁

ℓ=1

𝑑∑︁
𝑖=1

𝑎ℓ,𝑖
𝑘 𝑦ℓ𝑦𝑖, 𝑘 = 1, . . . , 𝑑.

With greater generality, we may just as well consider the multinomial ODE system

𝑦′𝑘 =
𝑚∑︁

𝑗=1

∑︁
ℓ1+···+ℓ𝑑=𝑗
ℓ1,...,ℓ𝑑≥0

𝑎ℓ1,,...,ℓ𝑑

𝑘 𝑦ℓ1
1 · · · 𝑦ℓ𝑑

𝑑 =
𝑚∑︁

𝑗=1

∑︁
|ℓ|=𝑗

𝑎ℓ
𝑘y

ℓ, 𝑘 = 1, . . . , 𝑑,

with initial conditions y(0) = y0 ⪰ 0, 1⊤y0 = 1. Again, the challenge is to write it in the form (1.2) with
a graph Laplacian 𝐴(y) and, again, we can use the same argument to split the task at hand into a sum of
homogeneous problems of the form

𝑦′𝑘 =
∑︁
|ℓ|=𝑗

𝑎ℓ
𝑘y

ℓ, 𝑘 = 1, . . . , 𝑑 (4.2)

for 𝑗 = 2, . . . ,𝑚 – the case 𝑗 = 1 is trivial.
The problem, though, is that (4.2) can be written in the form (1.2) in a multitude of ways – indeed, even the

coefficients 𝑎ℓ
𝑘 are not unique. This can be seen in the simplest nontrivial case, 𝑑 = 2 and 𝑗 = 2:

𝑦′1 = 𝑎1,1
1 𝑦2

1 +
(︁
𝑎1,2
1 + 𝑎2,1

1

)︁
𝑦1𝑦2 + 𝑎2,2

1 𝑦2
2 ,

𝑦′2 = 𝑎1,1
2 𝑦2

1 +
(︁
𝑎1,2
2 + 𝑎2,1

2

)︁
𝑦1𝑦2 + 𝑎2,2

2 𝑦2
2 .

Therefore

𝐴(y) =

[︃
𝑎1,1
1 𝑦1 + 𝛽1,1𝑦2 𝛽1,2𝑦1 + 𝑎2,2

1 𝑦2

𝑎1,1
2 𝑦1 + 𝛽2,1𝑦2 𝛽2,2𝑦1 + 𝑎2,2

2 𝑦2

]︃
,

where
𝛽1,1 + 𝛽1,2 = 𝑎1,2

1 + 𝑎2,1
1 , 𝛽2,1 + 𝛽2,2 = 𝑎1,2

2 + 𝑎2,1
2 . (4.3)

We deduce that in this case the graph-Laplacian conditions (which must hold for all y ⪰ 0) are

𝑎1,1
1 , 𝑎2,2

2 , 𝛽1,1, 𝛽2,2 ≤ 0,

𝑎1,1
1 + 𝑎1,1

2 = 𝑎2,2
1 + 𝑎2,2

2 = 𝛽1,1 + 𝛽2,1 = 𝛽1,2 + 𝛽2,2 = 0.

Six equalities (inclusive of (4.3)) and four inequalities for eight variables: impossible in some configurations,
while other configurations lead to an infinity of solutions.

Henceforth we let e𝑖 stand for the 𝑖th unit vector.
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Theorem 4.1. The ODE system

𝑦′𝑘 =
∑︁

ℓ1+···+ℓ𝑑=2
ℓ1,...,ℓ𝑑≥0

𝑎ℓ
𝑘𝑦ℓ1

1 𝑦ℓ2
2 · · · 𝑦ℓ𝑑

𝑑 , 𝑘 = 1, . . . , 𝑑 (4.4)

admits the graph Laplacian representation (1.2) subject to the assumptions

𝑎2e𝑘

𝑘 ≤ 0, 𝑎2e𝑖

𝑘 ≥ 0, 𝑘, 𝑖 = 1, . . . , 𝑑, 𝑖 ̸= 𝑘, (4.5)

𝑎e𝑖+e𝑘

𝑘 ≤ 0, 𝑎
e𝑖+e𝑗

𝑘 ≥ 0, 𝑘, 𝑖, 𝑗 = 1, . . . , 𝑑, 𝑖 ̸= 𝑗, 𝑘 ̸= 𝑖, 𝑗, (4.6)
𝑑∑︁

𝑘=1

𝑎e𝑘+e𝑖

𝑘 = 0, 𝑖 = 1, . . . , 𝑑. (4.7)

Proof. We prove the theorem by constructing explicitly a graph Laplacian 𝐴(y), letting

𝐴𝑘,ℓ(y) = 𝑎2eℓ

𝑘 𝑦ℓ + 𝑎
eℓ+eℓ+1
𝑘 𝑦ℓ+1, 𝑘, ℓ = 1, . . . , 𝑑 (mod 𝑑). (4.8)

All that remains is to prove that 𝐴(y), as defined in (4.8), is indeed a graph Laplacian. Thus, recalling that
𝑦1, . . . , 𝑦𝑑 ≥ 0 and that 𝑘 is computed modulo 𝑑,

𝐴𝑘,𝑘(y) = 𝑎2e𝑘

𝑘 𝑦𝑘 + 𝑎
e𝑘+e𝑘+1
𝑘 𝑦𝑘+1 ≤ 0

because of (4.5) and (4.6). These two conditions also imply that

𝐴𝑘,ℓ(y) = 𝑎2eℓ

𝑘 𝑦ℓ + 𝑎
eℓ+eℓ+1
𝑘 𝑦ℓ+1 ≥ 0, 𝑘 ̸= ℓ.

Finally, it follows from (4.7) that

𝑑∑︁
𝑘=1

𝐴𝑘,ℓ(y) =

(︃
𝑑∑︁

𝑘=1

𝑎2eℓ

𝑘

)︃
𝑦ℓ +

(︃
𝑑∑︁

𝑘=1

𝑎
eℓ+eℓ+1
𝑘

)︃
𝑦ℓ+1 = 0

and we are done. �

As an example, we revisit (2.1), focussing on the quadratic part. Now

𝑎e2+e3
1 = 104, 𝑎e2+e3

2 = −104, 𝑎2e2
2 = −3 · 107, 𝑎2e2

3 = 3 · 107

and the remaining coefficients are zero: it is easy to verify that the conditions of Theorem 4.1 are satisfied. The
representation (4.8), incidentally, corresponds to (2.2), the graph-Laplacian form of of the Robertson reaction.

In this paper we focus only on equations (4.4). The situation is more subtle for higher-order equations. For
example, consider the case 𝑑 = 2, 𝑚 = 3 and

𝑦′1 = −𝛼3,0
2 𝑦3

1 + 𝛼2,1
1 𝑦2

1𝑦2 + 𝛼1,2
1 𝑦1𝑦

2
2 + 𝛼0,3

1 𝑦3
2 ,

𝑦′2 = 𝛼3,0
2 𝑦3

1 − 𝛼2,1
1 𝑦2

1𝑦2 − 𝛼1,2
1 𝑦1𝑦

2
2 − 𝛼0,3

1 𝑦3
2 .

The most general way of writing it in the form (1.2) is with the matrix

𝐴(y) =

⎡⎣−𝛼3,0
2 𝑦2

1 − 𝛽2,1
2,1𝑦1𝑦2 − 𝛽1,2

2,1𝑦2
2

(︁
𝛼2,1

1 + 𝛽2,1
2,1

)︁
𝑦2
1 +

(︁
𝛼1,2

1 + 𝛽1,2
2,1

)︁
𝑦1𝑦2 + 𝛼0,3

1 𝑦2
2

𝛼3,0
2 𝑦2

1 + 𝛽2,1
2,1𝑦1𝑦2 + 𝛽1,2

2,1𝑦2
2 −

(︁
𝛼2,1

1 + 𝛽2,1
2,1

)︁
𝑦2
1 −

(︁
𝛼1,2

1 + 𝛽1.2
2,1

)︁
𝑦1𝑦2 − 𝛼0,3

1 𝑦3
2

⎤⎦,
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where 𝛽2,1
2,1 and 𝛽1,2

2,1 are constants. Clearly, to have a graph Laplacian for all y ⪰ 0 we require 𝛼0,3
1 , 𝛼3,0

2 ≥ 0 and
the two parameters need to satisfy

𝛽2,1
2,1 ≥ max

{︁
0,−𝛼2,1

1

}︁
, 𝛽1,2

2,1 ≥ max
{︁

0,−𝛼1,2
1

}︁
.

Note that it is possible for 𝛽2,1
2,1 < 0, say, and yet 𝐴2,1 ≥ 0, provided that 𝛽1,2

2,1 ≥ 0 and 𝛽2,1
2,1 ≥ −2

√︁
𝛼3,0

2 𝛽1,2
2,1 . As

an example, we can write

𝑦′1 = −𝑦3
1 + 𝑦2

1𝑦2 + 𝑦3
2 , 𝑦′2 = 𝑦3

1 − 𝑦2
1𝑦2 − 𝑦3

2

in the form (1.2) with

𝐴(y) =

[︃
−𝑦2

1 𝑦2
1 + 𝑦2

2

𝑦2
1 −

(︀
𝑦2
1 + 𝑦2

2

)︀]︃

but it can also be written as

𝐴(y) =

[︃
−𝑦2

1 + 1
2𝑦1𝑦2 − 𝑦2

2
1
2𝑦2

1 + 𝑦1𝑦2 + 𝑦2
2

𝑦2
1 − 1

2𝑦1𝑦2 + 𝑦2
2 − 1

2𝑦2
1 − 𝑦1𝑦2 − 𝑦2

2

]︃
=

[︃
−(𝑦1 − 𝑦2)2 1

2

(︀
𝑦2
1 + 𝑦2

)︀2
(𝑦1 − 𝑦2)2 − 1

2

(︀
𝑦2
1 + 𝑦2

)︀2
]︃
.

Note that this cannot occur for quadratic equations (4.4) because, once 𝐴𝑘,ℓ(y) is a multilinear function of
y ⪰ 0, it is a graph Laplacian only if all off-diagonal coefficients are nonnegative.

4.2. Chemical reactions by the Law of Mass Action

An important application are chemical reactions, where the rate of reaction is modelled by the Law of Mass
Action. Then the model is a first-order ODE with a multivariate polynomial for the right hand side, so it can be
considered an important special case of our framework. Suppose there are 𝑁 reactions, where the 𝑗-th reaction
is written in the form

𝑟𝑗,1𝐺1 + 𝑟𝑗,2𝐺2 + . . . + 𝑟𝑗,𝑀𝐺𝑀
𝑘𝑗−→ 𝑞𝑗,1𝐺1 + 𝑞𝑗,2𝐺2 + . . . + 𝑞𝑗,𝑀𝐺𝑀 ,

𝑗 = 1 . . . , 𝑁 . Here 𝑟𝑖,𝑗 , 𝑞𝑖,𝑗 are integer coefficients, 𝐺𝑖, 𝑖 = 1, 2, . . . ,𝑀 are symbols for the chemical species, 𝑦𝑖

denotes the concentration of species 𝑖, and 𝑘𝑗 is the rate constant. The model is the ODE

y′ = 𝑆p, y(0) = y0 (4.9)

where y ∈ R𝑀 , 𝑆 ∈ R𝑀×𝑁 , p ∈ R𝑁 , and 𝑆𝑖,𝑗 = 𝑞𝑖,𝑗 − 𝑟𝑖,𝑗 is the matrix of stoichiometric vectors, while

𝑝𝑗 = 𝑘𝑗

𝑀∏︁
𝑖=1

𝑦
𝑟𝑖,𝑗

𝑖

is the Law of Mass Action to model the rates of reaction. This is a nonlinear and autonomous differential
equation (it would be non-autonomous if the rates 𝑘𝑗 = 𝑘𝑗(𝑡) were time-varying, for example to model fluctuating
temperatures). The following theorem shows this model can always be written in the form

y′ = ℒ(y)y, (4.10)

where the matrix ℒ(y) has the same pattern of signs as a Laplacian, i.e. off-diagonal entries are nonnegative,
and negative entries can only appear on the diagonal.
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Theorem 4.2. The nonlinear ODE (4.9) can be written in the quasi-linearised form (4.10) where the negative
elements of the matrix ℒ(y) only appear on the diagonal.

Proof. We assume that 𝑞𝑖,𝑗 , 𝑟𝑖,𝑗 are non-negative integers, 𝑘𝑗 is a non-negative real number and 𝑦𝑗 ≥ 0. Then,
a negative coefficient could only appear in the stoichiometric matrix 𝑆𝑖,𝑗 if 𝑟𝑖,𝑗 ≥ 1, and this happens in the

equation for 𝑦′𝑖. Since we have 𝑝𝑗 = 𝑘𝑗

(︁∏︀𝑀
𝑘=1,𝑘 ̸=𝑖 𝑦

𝑟𝑘,𝑗

𝑘

)︁
𝑦

𝑟𝑖,𝑗

𝑖 with 𝑟𝑖,𝑗 ≥ 1, we may allocate this term to the
diagonal of the matrix ℒ(y). All other components where 𝑟𝑖,𝑗 = 0 in the right hand side of the equation for 𝑦′𝑖
have positive coefficients and can be allocated outside the diagonal. �

Remark. Note that the matrix ℒ(y) of (4.10) need not be unique, as we previously showed by the example of
the Robertsons reaction in (2.2). The theorem shows that we may form ℒ(y) so that it has the right pattern
of signs to be a graph Laplacian. Similarly to the remarks following Proposition 1.1, this ensures positivity of
the solutions, and the point we are making here is that the new numerical methods proposed in this paper can
be applied, via (4.10), to this big class of important applications. The only difference between (4.10) and the
primary focus of this paper in (1.2), is that in (1.2) we additionally assume that 1⊤ is in the left null space of
𝐴(y), but that does not prevent us from applying the numerical schemes proposed in this paper, and they will
preserve positivity as required. (Although there may be issues with other conservation laws, as we show in the
autonomous oscillations example (2.6), and our atmospheric chemistry example (5.1).)

5. Numerical experiments

In this section we present some numerical experiments to illustrate the performance of the new methods on
a number of examples from the literature. We denote:

– ES2: The symmetric second order 3-exponential splitting method (3.2) or (3.3);
– EM1: The first order 1-exponential Magnus integrator (3.6) or (3.9);
– EM2: The second order 2-exponential Magnus integrator (3.8) or (3.11);
– EM3: The third order 7-exponential Magnus integrator (3.18) or (3.19).

We will also consider, for comparison, the following more conventional numerical solvers:

– Euler: The first-order explicit Euler method;
– RK4: The 4-stage fourth-order explicit RK method (as a reference method to compare);
– ROS4: The 4-stage fourth-order Rosenbrock method with coefficients used by default in [24].
– MP2: The second order Modified Patankar method.

5.1. Example 1: The SIDARTHE mathematical model

We first consider a generalised SIR model (SIDARTHE) that has been used to model the evolution of the
Cov-SARS-2 epidemic in Italy [21]. That model can also be used for any other country with appropriate data
or it can be even extended e.g. to age-dependent variables.

The SIDARTHE dynamical system [21] consists of eight ordinary differential equations, describing the evo-
lution of the population in each stage over time. The equations can be written in the form

y′ = 𝐴(b(𝑡),y)y, y(0) = y0 ∈ R8,

where b : R → R15 is a vector function depending on 15 time-dependent parameters. The vector b was taken as
a piecewise constant function, and the authors estimate the model parameters based on data from 20 February
2020 (day 1) to 5 April 2020 (day 46) and show the impact of progressive restrictions on the spread of the
epidemic. For example, b is constant from day 1 to 4 (with a value of 𝑅0 = 2.28), and changes to new constant
values for the period 4 to 12 (with a value of 𝑅0 = 1.66), and so on.
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Figure 1. Solution for the susceptible population at 𝑡 = 20 for different values of the parameter
𝑟 where 𝛼 = 0.57 · 𝑟.

Notice that since the vector field is not a smooth function (it is piecewise constant) the numerical methods
deteriorate down to order one. However, a more realistic model should consider b(𝑡) as a smooth time-dependent
function, and in this case the order of the methods is recovered.

For simplicity, we take the same initial values for b and the same initial conditions y0 as in [21], but we take
b constant for a longer period, from day 1 to 20.

We observed that the model is very sensitive to the parameter associated to the first component of b, 𝑏1 = 𝛼.
That parameter was taken initially as 𝛼 = 0.57, and we have analysed the solution for the first component of
y (i.e. 𝑦1(𝑡) = 𝑆(𝑡), the susceptible (uninfected) population at day 20) for different values of 𝛼 = 0.57 · 𝑟 with
𝑟 ∈ [1, 2]. The results are shown in Figure 1.

Next, we take 𝑟 = 1.5, corresponding to a moderately stiff problem (𝑆(20) still has not dramatically decreased)
and we compute the 2-norm error of the solution y(20) versus the time step for the new methods as well as for
the explicit Euler method that was used in [21]. The results are displayed in Figure 2 (left) where the order of
the methods is clearly visible from the slopes of the curves.

The new methods require to compute matrix exponentials and this can be computationally costly in some
cases. It is thus interesting to study if it is possible to replace the exact exponential of matrices by cheaper
approximations while still preserving positivity.

This is not a very stiff problem and we have repeated the same numerical experiments while replacing each
exponential by the second-order diagonal Padé approximation. In order to preserve positivity, we proceed as
follows, given 𝐴 = 𝐴 + 𝑎*𝐼 where 𝐴 ⪰ 𝑂, we consider the following approximation to the exponential

e𝑡𝐴 = e𝑡𝑎*e𝑡𝐴 ≃ e𝑡𝑎* 1 + 1
2 𝑡𝐴

1− 1
2 𝑡𝐴

·

Note that, since 1⊤𝐴 = −𝑎*, we have

1⊤e𝑡𝑎* 1 + 1
2 𝑡𝐴

1− 1
2 𝑡𝐴

= e𝑡𝑎* 1− 1
2 𝑡𝑎*

1 + 1
2 𝑡𝑎*

̸= 1

and mass is not preserved. This can be fixed, for example, if we also approximate the scalar function e𝑡𝑎* by
the second-order diagonal Padé approximation, so

1⊤
1 + 1

2 𝑡𝑎*

1− 1
2 𝑡𝑎*

1 + 1
2 𝑡𝐴

1− 1
2 𝑡𝐴

= 1
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Figure 2. The 2-norm error of the solution of the SIDARTHE mathematical model at the
final time versus the time step in double logarithmic scale: (left) the new methods compute the
exponential of matrices to round-off accuracy (this, of course, is irrelevant to the explicit Euler
method); and (right) the same new methods with each exponential replaced by the second order
Padé approximation.

and this approach preserves norm and positivity in the stability region.
The results are shown in Figure 2 (right). We observe that the schemes maintain their accuracy while being

considerably cheaper. The third-order method EM3 exhibits second order accuracy (due to the second order
Padé approximation) but this occurs only at higher accuracies.

For clarity in the presentation, the results for MP2 are not shown but, as expected they are slightly worse
but close to the results given by EM2.

Unfortunately, this is not the case if we repeat the numerical experiment with the very stiff problem of
Robertson’s reaction. Once higher-order approximations to the exponential are used, positivity is not guaranteed.
Not all higher-order Padé approximations preserve positivity, unlike the second order one, and this deserves
further investigation.

5.2. Example 2: Robertson’s reaction.

Let us now consider the Robertson’s reaction written in the form (2.2) with initial conditions y0 = [1, 0, 0]⊤

and time interval 𝑡 ∈ [0, 0.3] as in [24] (p. 57). We numerically solve the problem repeatedly using different
values for the time step and compute the 2-norm error of the solution at the final time. Here, we compare with
the “exact” solution that is computed numerically with sufficiently high accuracy.

Notice that this is a very stiff problem that turns into a non-stiff problem if one applies an appropriate
time transformation which can be integrated with a constant time step (in the fictitious time) by methods for
non-stiff problems. This is basically the case studied in [14] with time step ℎ𝑛 = 1.8𝑛 × ℎ0 and initial time step
ℎ0 = 10−6 that allows to integrate for the interval 𝑡 ∈ [0, 1011] with a very small number of time steps, but the
details in the reaction at the very beginning can be lost.

Figure 3 (left) shows the error versus the time step in double logarithmic scale. The implicit Rosenbrock
method, ROS4, outperforms the explicit RK methods, Euler and RK4, but also turns unstable for moderate
values of the time step (and does not preserve positivity) while the new exponential methods preserve positivity
and are unconditionally stable (the third order method, EM3, preserves positivity for all time steps considered).
Note the relatively high accuracy provided by the new schemes even when considering large time steps. The
best method among the proposed schemes depends on the desired accuracy where the computational cost has
to be taken into account.

As in the previous example, the results for MP2, not shown, are slightly worse but close to the results given
by EM2.
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Figure 3. The 2-norm error of the solution of the Robertson’s reaction at the final time versus
the time step in double logarithmic scale: (left) the new methods are used to solve (2.2) where
the matrix is graph Laplacian (the results of the standard methods Euler, RK4 and ROS4
are also included); and (right) the same new methods applied to solve the same problem, but
written in the form (2.3), where the matrix is no longer a graph Laplacian (a filled circle
indicates that a negative solution on any of the components has been obtained in the course of
the time integration).

We have repeated the same numerical experiments using only the new exponential methods, but applied to
the equations as given in (2.3), i.e. the same problem but written in a different way such that the matrix is
no longer graph Laplacian. Figure 3 (right) shows the results obtained. We filled a relevant circle when, during
the numerical integration, a negative solution was obtained on any of the components. For small time steps the
performance is quite similar (and the performance for EM1 is actually somewhat better) but the errors grow
faster for large time steps (lower accuracies) and, even worse, negative solutions do occur.

5.3. Example 3: The stratospheric reaction

Let us consider the basic stratospheric reaction mechanism studied in [49] that involves six species

y = [ [𝑂1𝐷], [𝑂], [𝑂3], [𝑂2], [𝑁𝑂], [𝑁𝑂2] ]⊤ = [𝑦1, . . . , 𝑦6]⊤

and whose model to obtain the evolution of the concentrations is given by the system of ODEs

𝑦′1 = 𝑘5𝑦3 − 𝑘6𝑦1 − 𝑘7𝑦1𝑦3

𝑦′2 = 2𝑘1𝑦4 − 𝑘2𝑦2𝑦4 + 𝑘3𝑦3 − 𝑘4𝑦2𝑦3 + 𝑘6𝑦1 − 𝑘9𝑦2𝑦6 + 𝑘10𝑦6

𝑦′3 = 𝑘2𝑦2𝑦4 − 𝑘3𝑦3 − 𝑘4𝑦2𝑦3 − 𝑘5𝑦3 − 𝑘7𝑦1𝑦3 − 𝑘8𝑦3𝑦5 (5.1)
𝑦′4 = −𝑘1𝑦4 − 𝑘2𝑦2𝑦4 + 𝑘3𝑦3 + 2𝑘4𝑦2𝑦3 + 𝑘5𝑦3 + 2𝑘7𝑦1𝑦3 + 𝑘8𝑦3𝑦5 + 𝑘9𝑦2𝑦6

𝑦′5 = −𝑘8𝑦3𝑦5 + 𝑘9𝑦2𝑦6 + 𝑘10𝑦6

𝑦′6 = 𝑘8𝑦3𝑦5 − 𝑘9𝑦2𝑦6 − 𝑘10𝑦6

with
𝑘1 = 2.643 · 10−10𝜎3(𝑡), 𝑘2 = 8.018 · 10−17, 𝑘3 = 6.120 · 10−4𝜎(𝑡),
𝑘4 = 1.576 · 10−15, 𝑘5 = 1.070 · 10−3𝜎2(𝑡), 𝑘6 = 7.110 · 10−11,

𝑘7 = 1.200 · 10−10, 𝑘8 = 6.062 · 10−15, 𝑘9 = 1.069 · 10−11,

𝑘10 = 1.289 · 10−2𝜎(𝑡),

where

𝜎(𝑡) =

{︃
1
2 + 1

2 cos
(︁
𝜋
⃒⃒⃒
2𝑇𝐿−𝑇𝑅−𝑇𝑆

𝑇𝑆−𝑇𝑅

⃒⃒⃒
2𝑇𝐿−𝑇𝑅−𝑇𝑆

𝑇𝑆−𝑇𝑅

)︁
if 𝑇𝑅 ≤ 𝑇𝐿 ≤ 𝑇𝑆

0 otherwise.
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The time is measured in seconds and it is taken as

𝑇𝐿 =
(︂

𝑡

3600

)︂
mod 24, 𝑇𝑅 = 4.5, 𝑇𝑆 = 19.5.

The initial time is considered at noon, 𝑡0 = 12 × 3600, and it is integrated for three full days, until 𝑡𝑓 =
𝑡0 + 72× 3600 with initial conditions given by

y0 =
[︀
9.906 · 101, 6.624 · 108, 5.326 · 1011, 1.697 · 1016, 8.725 · 108, 2.240 · 108

]︀⊤
.

This is a non-autonomous systems that can be written in the form

y′ = 𝐴(𝑡,y)y

with 𝐴(𝑡,y) an explicitly time-dependent graph Laplacian matrix. We can write the vector field in terms of the
production and destruction parts

𝐴(𝑡,y)y = 𝑃 (𝑡,y)−𝐷(𝑡,y)y

where 𝑃 (𝑡,y), 𝐷(𝑡,y)y are non-negative. While the diagonal matrix 𝐷 is unique in this case, we can write

𝑃 (𝑡,y) = 𝐴𝑃 (𝑡,y)y

in many different ways for the matrix 𝐴𝑃 . We have considered the following choice (other choices of 𝐴𝑃 can be
considered) for 𝐴,

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

−(𝑘6 + 𝑘7𝑦3) 0 𝑘5 0 0 0

𝑘6 −(𝑘2𝑦4 + 𝑘4𝑦3 + 𝑘9𝑦6) 𝑘3 2𝑘1 0 𝑘10

0 1
3
𝑘2𝑦4 −𝛾 2

3
𝑘2𝑦2 0 0

1
2
𝑘7𝑦3 𝑘4𝑦3 + 1

2
𝑘9𝑦6 𝛾 + 1

2
𝑘7𝑦1 −(𝑘1 + 𝑘2𝑦2) 0 1

2
𝑘9𝑦2

0 0 0 0 −𝑘8𝑦3 𝑘10 + 𝑘9𝑦2

0 0 0 0 𝑘8𝑦3 −(𝑘10 + 𝑘9𝑦2)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

with 𝛾 = 𝑘3 + 𝑘5 + 𝑘4𝑦2 + 𝑘7𝑦1 + 𝑘8𝑦5.
This problem has two linear mass conservation laws, the number of atoms of oxygen and nitrogen, respectively.

Given
w1 = [1, 1, 3, 2, 1, 2]⊤, w2 = [0, 0, 0, 0, 1, 1]⊤

it is true that
w⊤

1 𝐴(𝑡,y)y = w⊤
2 𝐴(𝑡,y)y = 0.

Unfortunately, it is impossible to find a matrix 𝐴𝑃 such that

w⊤
1 𝐴(𝑡,y) = w⊤

2 𝐴(𝑡,y) = 0,

and both mass conservations cannot be simultaneously preserved by our schemes. We have to decide how to
choose 𝐴𝑃 to optimise the performance of our methods: this is typical to geometric numerical integration of
differential equations with multiple invariants.

For this particular choice we have

w⊤
2 𝐴(𝑡,y) = 0, but w⊤

1 𝐴(𝑡,y) ̸= 0,

and then, in general, w⊤
1 y(𝑡) ̸= const. However, a good choice for 𝐴𝑃 can provide solutions where this quantity

is preserved to very high accuracy.
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Figure 4. Solution for the concentrations for the stratospheric reaction in a logarithmic scale.

Figure 5. Left: error in the preserved quantities 𝐼1 and 𝐼2 for the stratospheric reaction
model. Right: 2-norm error of the numerical solutions for the stratospheric reaction model for
the components (𝑦3, 𝑦4, 𝑦5, 𝑦6) at the final time 𝑡𝑓 = 𝑡0 + 3600 (one hour) versus the time step
in double logarithmic scale.

We have observed that 𝑦1, 𝑦2 and 𝑦5 take very small, but positive, values (say 10−200 or smaller) along the
integration (standard methods usually provide negative values). In that case, measuring relative error is not
appropriate for these components.

Figure 4 shows the evolution of the concentration of the different species in a logarithmic scale. Negative
values in this plot correspond to having no particles.

We have repeated the numerical experiments, integrating for just one hour (instead of 72 h) and measured
the two-norm relative error for the vector with components ỹ = [𝑦3, 𝑦4, 𝑦5, 𝑦6] since at the final time 𝑦1 and
𝑦2 vanish. The reference solution is obtained numerically using the third-order method and a sufficiently small
time step. Figure 5 (right panel) shows the results obtained where we can observe the order of convergence of
each method for this non-autonomous problem. Figure 5 (left panel) shows the error in the preservation of the
quantities 𝐼1 = w⊤

1 y(𝑡𝑓 ) (curves with circles) and 𝐼2 = w⊤
2 y(𝑡𝑓 ) (curves with stars). Remarkably, the error
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Figure 6. Left: solution of the MAPK cascade, given in (2.6), and right: two-norm relative
error in the vector solution at the final time versus the time step in double logarithmic scale.

committed for 𝐼1 is orders of magnitude smaller than the error in the actual solution, as seen the left panel in
Fig. 5!

We observe that MP2, as in the previous examples, provide slightly worse results than EM2 when accurate
results are desired, but the error considerably grows for large time steps (the approximation to the exponential
in this case is not accurate). Surprisingly, it provides more accurate results in the exact preservation of 𝐼2 and
for all time steps positivity was preserved even if this property was not guaranteed for the method MP2 since
𝐴 is not graph Laplacian. Were one to prove that the matrix 𝐴 has no eigenvalues with positive real part then
𝐼 − 𝑡𝐴 would be an 𝑀 -matrix and positivity would be guaranteed, and this deserves further investigation.

5.4. Example 4: The MAPK cascade

Finally, we consider the model of [23] (Tab. 3, Fig. 3, Eqs. (12)–(17)), which is closely related to the MAPK
cascade, given in (2.6) with values therein for the parameters and initial conditions. The solution for each
component is shown in the left panel of Figure 6 for the time interval 𝑡 ∈ [0, 200] (the initial conditions clearly
identify each curve) where we observe that, after a transition period, the solution turns nearly periodic. Next,
we have numerically solved the problem for 𝛼 = 1 using the new exponential methods using different values of
the time step and measured the two-norm relative error in the vector solution at the final time. The right panel
of Figure 6 shows the results obtained.

6. Conclusions

Preservation of inequalities is considerably more challenging than the recovery of “equality invariants” under
discretisation. Thus, while numerous geometric numerical integration algorithms present us with a wide range
of highly effective means to recover conservation laws, often of crucial importance in applications, this is not
the case with inequalities and, of particular importance to us, nonnegativity of solutions. The importance of
the latter in applications is clear – the number of chemical species cannot be negative, temperature cannot
be less that 0 ∘K, the number of infected people 𝐼(𝑡) cannot (sadly) be negative – yet we cannot be assured
that computed ODE solutions remain nonnegative in this setting unless the order is unacceptably low. As
aforementioned, the subject has already received significant attention and led to the development of Patankar-
type methods [5,14,34,47]. In this paper we have developed a framework allowing us to use higher-order methods
in this setting. While this framework is by no means final and many challenges remain, it represents in our view
a useful contribution to a different kind of geometric numerical integration, one dealing with preservation of
inequalities.
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An outstanding challenge is to approximate the exponential of matrices by diagonal Padé approximants or
by other means (e.g. Krylov-subspace methods) to reduce the cost of the algorithms for large ODE systems
while still preserving positivity. Another is to explore the scope of methods, like the commutator-free Magnus
integrators (3.18), which almost preserve positivity and formulate “almost preservation” in more precise terms.

Yet, perhaps the most interesting challenge is to explore the surprising success of “almost positivity-
preserving” methods, e.g. the fourth-order commutator-free Magnus method, in the examples in this paper.
Recall that classical ODE solvers that preserve positivity are restricted to order one [10], while in this paper
we have introduced second-order positivity-preserving methods in the non-classical class of Magnus integrators,
and other high-order methods have been introduced elsewhere, in particular modified Patankar methods. It is
natural to formulate the conjecture that this is as much as can be done within the realm of such methods,
but equally fascinating is the remarkable almost-preservation of positivity or mass (at any rate in the examples
of this paper) by some higher-order methods. For example, Figure 5 (left) is concerned with two conservation
laws in a stratospheric reaction: one is preserved correctly, up to roundoff error, while the other is preserved to
much higher accuracy than the error committed (cf. Fig. 5 right) in the solution itself. We look forward to an
explanation.

For the reader who simply wants a good method without studying all the details, we recommend to try the
new splitting method we propose in equation (3.1), which we call ‘ES2’: it is simple, fast, easy to implement,
second order accurate, and of course preserves positivity.
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[23] O. Hadač, F. Muzika, V. Nevoral, M. Přibyl and I. Schreiber, Minimal oscillating subnetwork in the Huang–Ferrell model of
the MAPK cascade. Plos One 12 (2017) e0178457.

[24] E. Hairer and G. Wanner, Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems, 2nd revised
edition, paperback. Vol. 14 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (2010).

[25] E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differ-
ential Equations, Reprint of the second (2006) edition. Vol. 31 of Springer Series in Computational Mathematics. Springer,
Heidelberg (2010).

[26] E. Hansen, F. Kramer and A. Ostermann, A second-order positivity preserving scheme for semilinear parabolic problems. Appl.
Numer. Math. 62 (2012) 1428–1435.

[27] A. Hellander, J. Klosa, P. Lötstedt and S. MacNamara, Robustness analysis of spatiotemporal models in the presence of
extrinsic fluctuations. SIAM J. Appl. Math. 77 (2017) 1157–1183.

[28] M. Hochbruck, A. Ostermann and J. Schweitzer, Exponential Rosenbrock-type methods. SIAM J. Numer. Anal. 47 (2008/2009)
786–803.

[29] A. Iserles, A First Course in the Numerical Analysis of Differential Equations, 2nd edition. Cambridge Texts in Applied
Mathematics. Cambridge University Press, Cambridge (2009).

[30] A. Iserles and S. MacNamara, Applications of Magnus expansions and pseudospectra to Markov processes. Eur. J. Appl. Maths
30 (2019) 400–425.

[31] A. Iserles and S.P. Nørsett, On the solution of linear differential equations in Lie groups. R. Soc. Lond. Philos. Trans. Ser. A
Math. Phys. Eng. Sci. 357 (1999) 983–1019.

[32] A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett and A. Zanna, Lie-Group Methods. In: Acta numerica, 2000. Vol. 9 of Acta Numer.
Cambridge Univ. Press, Cambridge (2000) 215–365.

[33] W.O. Kermack and A.G. McKendrick, A contribution to the mathematical theory of epidemics. Proc. R. Soc. London 115
(1927) 700–721.

[34] S. Kopecz and A. Meister, On order conditions for modified Patankar–Runge–Kutta schemes. Appl. Numer. Math. 123 (2018)
159–179.

[35] S. Kopecz and A. Meister, Unconditionally positive and conservative third order modified Patankar–Runge–Kutta discretiza-
tions of production-destruction systems. BIT Numer. Math. 58 (2018) 691–728.

[36] S.C. Leite and R.J. Williams, A constrained Langevin approximation for chemical reaction networks. Ann. Appl. Prob. 29
(2019) 1541–1608.

[37] S. MacNamara, Cauchy integrals for computational solutions of master equations. ANZIAM J. 56 (2015) 32–51.

[38] S. MacNamara, A.M. Bersani, K. Burrage and R.B. Sidje, Stochastic chemical kinetics and the total quasi-steady-state assump-
tion: application to the stochastic simulation algorithm and chemical master equation. J. Chem. Phys. 129 (2008) 095105.

[39] S. MacNamara, K. Burrage and R.B. Sidje, Multiscale modeling of chemical kinetics via the master equation. Multiscale
Modeling Simul. 6 (2008) 1146–1168.

[40] S. MacNamara, B. Henry and W. Mclean, Fractional Euler limits and their applications. SIAM J. Appl. Math. 77 (2017)
447–469.

[41] S. MacNamara, S. Blanes and A. Iserles, Simulation of bimolecular reactions: numerical challenges with the graph Laplacian.
ANZIAM J. 61 (2020) C59–C74.

[42] W. Magnus, On the exponential solution of differential equations for a linear operator. Comm. Pure Appl. Math. 7 (1954)
649–673.

[43] P.K. Maini, T.E. Woolley, R.E. Baker, E.A. Gaffney and S.S. Lee, Turing’s model for biological pattern formation and the
robustness problem. J. R. Soc. Interface Focus 2 (2012) 487–496.

[44] A. Martiradonna, G. Colonna and F. Diele, GeCo: Geometric Conservative nonstandard schemes for biochemical systems.
Appl. Numer. Math. 155 (2020s) 38–57.

[45] I. Mirzaev and J. Gunawardena, Laplacian dynamics on general graphs. Bull. Math. Biol. 75 (2013) 2118–2149.
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