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A B S T R A C T

Applications of composite materials in industry have increased due to their high stiffness-to-weight ratio. In the
particular case of unidirectional fibers or perpendicular fabrics, the materials behavior is orthotropic, so that an
extra degree of freedom, related to the orientation of the fibers, must be included in the structural optimization.
Composite material thin walled beam models have been developed for reducing the computational cost of
the simulations. Traditionally, these models have been coupled with potential aerodynamics to calculate the
aeroelastic response, and thus, the viscous nonlinear effects have been omitted. In order to capture these
effects, this manuscript focus on the development of a Reduced Order Model enhanced by an Artificial
Neural Network for the analysis of composite structures under aerodynamic loads. The presented methodology
shows the training process of the neural network, the comparison with high fidelity simulations and the
design optimization of a carbon fiber laminated foam beam. It is demonstrated that the model reduces the
computational cost by orders of magnitude, while still capturing structural couplings and being capable of
increasing the flutter velocity by more than 10% with respect to the longitudinal orientation.
1. Introduction

Due to their high stiffness-to-weight ratio, the importance of com-
posite materials has grown significantly in the last decades. An ample
research has been carried out on composite laminates, promoted by the
diversity and severity of the loads that light structures must meet in the
aerospace [1], automotive [2], naval [3], energy [4,5] or civil [6,7]
industries. For instance, in the aerospace industry, the European objec-
tives for 2050 [8] require a substantial decrease in the frame weight.
As a possible solution, the use of fiber-reinforced polymers has been
proposed in numerous research works, such as those reported by Khalil
[9] and Rajpal et al. [10].

In addition, the use of composite materials allows developing de-
signs that improve the dynamic behavior of the whole structure. In
the work of Attaran et al. [11] the possibility of improving the aeroe-
lastic limits of the structure as a result of the bend–twist coupling
generated by the fiber orientation, as demonstrated by Chadra et al.
[12], was analyzed numerically and experimentally. Other authors
such as Geroghiades and Banerjee [13] analytically studied similar
effects. In fact, two different structural coupling effects can be ob-
served in orthotropic materials [14]: wash-in, or positive bend–twist
coupling (augmentation of the flight loads), and wash-out, or negative
bend–twist coupling (alleviation of the flight loads).
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Different tools and methodologies have been proposed in order to
model and calculate composite thin walled structures. Many authors
have used finite element analysis (FEA) to obtain the internal stress
and strain of the composite elements [15]. When the loads are ap-
plied by a flow, the Fluid Structure Interaction (FSI) problem can be
solved by means of a coupled Computational Solid Dynamics (CSD)/
Computational Fluid Dynamics (CFD) simulation [16,17]. However, the
fully coupled simulation of an elastic solid and a viscous flow is not
affordable at the initial stages of the design process [18].

The reduction of the associated computational cost has traditionally
been achieved by reducing the dimensions of the problem. The classic
reference of Dowell [19] proposes an equivalent section for repre-
senting a whole isotropic beam. This equivalent section was adopted
in many works such as that reported by Baxevanou et al. [20], who
simulated classical flutter in wind turbine rigid airfoils coupled with
torsional and linear springs. However, the concept of an equivalent
section is limited, as the boundary conditions may be changed and the
effect of secondary modes is not straightforwardly reproduced. In order
to overcome these limitations, on one hand Gil et al. [21] proposed a
methodology for obtaining the 2D equivalent section of an arbitrary
beam. Nevertheless, the use of their model was limited to isotropic or
slightly orthotropic structures. On the other hand, a wide amount of
vailable online 3 June 2022
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Symbols

𝛼 Angle of attack
�̄� Mean angle of attack
𝛼0 Initial incidence of the airflow
𝛥𝛼 Amplitude of the angle of attack respect to the

mean
𝛥𝑡 Time step
𝛥𝑡𝑖 Internal time step
𝜖 Error
𝜃 Rotation around 𝑧 axis
�̄� Mean rotation around 𝑧 axis
𝜃0 Initial incidence of the beam
𝜃𝑓 Orientation of the laminate ply
𝜃𝑚𝑎𝑥 Maximum twist of the beam
𝜈 Poisson’s ratio
𝜈𝑙𝑡 Longitudinal–transverse Poisson’s ratio of the

laminate ply
𝜈𝑡𝑡 Transverse- transverse Poisson’s ratio of the

laminate ply
𝜌 Density of the material
𝜌∞ Density of the air
𝑐 Chord of the beam
𝐶𝐿 3D lift coefficient
𝑐𝑙 2D lift coefficient
𝑐𝑠𝑡𝑙 Steady 2D lift coefficient
𝑐𝑑𝑦𝑛𝑙 Dynamic 2D lift coefficient
𝐶𝑀 3D moment coefficient
𝑐𝑚 2D moment coefficient
𝑐𝑠𝑡𝑚 Steady 2D moment coefficient
𝑐𝑑𝑦𝑛𝑚 Dynamic 2D moment coefficient
𝑐𝑝 Power coefficient
𝐸 Elastic modulus
𝐸∗ Nondimensional stiffness
𝐸𝑙 Longitudinal elastic modulus of the laminate ply
𝐸𝑡 Transverse elastic modulus of the laminate ply
𝐹 Load vector
𝐺 Shear modulus
𝐺𝑙𝑡 Longitudinal–transverse shear modulus of the

laminate ply
𝐺𝑡𝑡 Transverse–transverse shear modulus of the lam-

inate ply
ℎ Thickness of the beam
ℎply Thickness of the laminate ply
𝐊 Stiffness matrix
𝐿 Length of the beam
𝐌 Mass matrix
𝑇 Period
𝑡𝑜𝑙 Maximum error admitted
𝑡 Time

research can be found in the literature where the three dimensional
structure is simplified to a one dimensional beam. In Ghafari and
Rezaeepazhand [22], the cross-section mass and stiffness properties
were studied and then applied to a beam model for the whole beam
simulation.

Beam models have been widely used to model orthotropic material
structures. For instance, Carrera et al. [23] applied the Carrera Uni-
fied Formulation (CUF) to obtain the vibrational state of a rotating
blade; Dhadwal and Jung [24] calculated the shear and torsional
2

𝑡∗ Nondimensional time
𝑡𝑚𝑎𝑥 Total simulation time
𝑉∞ Free stream velocity
𝑢 Deformation vector
𝑣 Vertical deformation
𝑣0 Initial vertical displacement
�̄� Mean vertical deformation
𝑧 Longitudinal coordinate

warping of an anisotropic open section using the Timoshenko model
for transverse shear and the Vlasov model for nonuniform torsion,
and Farsadi et al. [25] applied the Librescu composite thin walled beam
(TWB) theory [26] to the optimization of the aeroelastic response of a
wing. Even though multiple structural models for thin walled beams
were considered in the previous research, they were still uncoupled
with any nonlinear viscous aerodynamic model.

Relative to the aerodynamic loads, simulating Navier–Stokes equa-
tions for the aeroelastic motion of an equivalent rigid section re-
quires high computational resources for both the initial design and
the structural optimization. For this reason, many authors have pro-
posed Reduced Order Models (ROMs), some of which are based on
Proper Orthogonal Decomposition (POD) [27–29]. However, citing the
words of Li et al. [30]: ‘‘POD ROMs are only suitable for a frozen
aeroelastic model configuration’’. Other researchers have developed
aeroelastic models based on Artificial Neural networks (ANN) [31].
Wu and Kareem [32] divided the aerodynamic coefficient into a static
and a dynamic term to model the hysteretic nonlinear behavior of
bridge decks. Another example is the research of Chen et al. [33], in
which the authors used experimental data to feed the neural network.
Moreover, in the works of Abbas et al. [34] and Li et al. [35] the
artificial neural network is trained using results from CFD simulations.
Finally, Torregrosa et al. [36] evaluated the application of feed-forward
(FNN) and long short-term memory (LSTM) neurons, evidencing that
FNN can reduce computational cost when compared to LSTM without
accuracy penalties. Nevertheless, the previous ANN enhanced models
only focus on the transient aerodynamics or couple the surrogate
models with spring–mass models. They do not take into account the
structural behavior of orthotropic material thin walled cross-section
beams.

This article aims to extend the research found in the literature
by adding an Artificial Neural Network to the Reduced Order Models
for orthotropic thin walled beams (TWB). The objective of adding
the Neural Network is to calculate nonlinear complex aerodynamics,
including viscous effects to the simulations. The structural model is
based on the Librescu composite TWB theory [37], and derives the
equivalent structure applying classical lamination theory. This beam
model is validated against the literature [38–40] and then coupled
with an aerodynamic surrogate model based on Feed-forward neural
networks (FFN), which was developed and tested in [36]. The results of
the ROM are compared with CSD/CFD simulations in order to validate
the procedure and solvers. It is demonstrated that the model allows re-
ducing the computational cost, while predicting nonlinear aerodynamic
effects and calculating structural couplings of the orthotropic material.

The paper is organized as follows: firstly, in Section 2, the method-
ology is explained, showing the case studied, the ROM structure and
the CSD/CFD configuration; then, in Section 3 the main results of
the research are shown; the ROM is compared with high accuracy
simulations and the influence of the fiber orientation in the test case is
discussed. Finally, the main conclusions are commented in Section 4.
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Fig. 1. Geometry of beam and wind tunnel domain.
Table 1
Material properties of CFRP and foam, based on the works of Qin and Librescu [41]
and Koohi et al. [42] respectively. 𝐸𝑙 and 𝐸𝑡 are the longitudinal and transverse elastic
modulus respectively, 𝐺𝑙𝑡 and 𝐺𝑡𝑡 the longitudinal–transverse and transverse–transverse
shear modulus, 𝜈𝑙𝑡 and 𝜈𝑡𝑡 the longitudinal–transverse and transverse–transverse Poisson
ratios, ℎ𝑝𝑙𝑦 is the ply thickness and 𝜌 is the material density.

AS4/3501–6 Foam AS4/3501–6 Foam

𝐸𝑙 (MPa) 141960 15 𝜈𝑙𝑡 (-) 0.42 0.28
𝐸𝑡 (MPa) 9780 15 𝜈𝑡𝑡 (-) 0.50 0.28
𝐺𝑙𝑡 (MPa) 6000 8 ℎ𝑝𝑙𝑦 (mm) 0.13 3.87
𝐺𝑡𝑡 (MPa) 4830 8 𝜌 (kg∕m3) 1445 35

2. Material and methods

In this section, the methodology used in the article is presented. The
geometry, boundary conditions and the material are defined. Then, the
two different approaches procedures are included. For the CSD/CFD
simulation, the models are discussed and the mesh is shown. Finally,
the algorithm and models of the ROM are presented and explained.

2.1. Case of study

Along this work, a carbon fiber laminated foam squared-section
beam is used. This geometry was previously used in Gil et al. [21]
and Torregrosa et al. [36]. The beam had a length of 𝐿 = 370 mm,
a chord of 𝑐 = 100 mm and its thickness was ℎ = 4 mm. The laminate
of the studied geometry presents a

[

𝜃𝑓∕−
]

configuration where 𝜃𝑓 is
the orientation of the fiber, which is varied from −90 to 90 deg. The
thickness of the carbon-fiber-reinforced polymer (CFRP) ply is 0.13 mm
and the foam ply completes the total thickness of the laminate. The
geometry of the cross-section is presented in Fig. 1(a). Note that the
origin of the coordinate system is located at the center of the root
cross-section. The beam geometry is clamped by one end and the free
faces are connected to the fluid. The beam is simulated inside a square
cross-section wind channel. The width of the tunnel is equal to 4𝑐.
The walls of the tunnel have been defined as slipping [43], while the
boundaries upwash and downwash have been defined as velocity inlet
and pressure outlet respectively. These boundaries have been placed
far enough for not affecting the results, 5𝑐 upwash and 15𝑐 downwash.
Different airflow velocities are simulated to obtain aeroelastic deforma-
tions along the working range, containing the Reynolds number in the
range 6 ⋅ 103–50 ⋅ 103. The aerodynamic loads are applied to the beam
surface. Fig. 1(b) shows the domain of the aeroelastic simulation.

2.2. CSD/CFD methodology

The aeroelastic ROM was compared with a CSD/CFD simulation for
geometry of Section 2.1. The conservation equations were solved for
3

the solid and the fluid by using the commercial software Simcenter
STAR-CCM+®, and a setup similar to that used by Gil et al. [21]. The
displacements of the structure due to the applied loads were solved by
means of a Finite Element Method (FEM), the fluid flow was solved
using the Finite Volume Method (FVM) to discretize the conservation
equations applied to a fluid, and these two simulations were coupled
through a mapped contact interface. This interface was located between
the solid and the fluid, generating an indirect association between
the faces and allowing a non-conformal mesh. In order to define the
material, each ply of the layup was meshed independently and then
connected thought a contact interface.

The equations were calculated on a polyhedral mesh, as presented
in Fig. 2. A final mesh of 5.29 ⋅ 106 elements for the fluid and 1.60 ⋅ 105
for the solid was selected following a mesh independence analysis with
a maximum error of 2% in the main forces and moments.

2.3. Aeroelastic ROM

The aeroelastic ROM is presented in Fig. 3. The structure of the
model may be divided into three main blocks or submodels: initializa-
tion, load estimation and coupled solver.

In the initialization block, the initial and boundary conditions are
set and the material of the beam is selected. In addition, the mechanical
properties of the generic cross-section of the beam are calculated using
the Librescu and Song [37] theory, for more information the reader
is referred to Appendix A. This theory has been previously applied
by Qin and Librescu [41] and Touraj Farsadi [44] to the thin walled
orthotropic beam problem, reducing the 3D problem to a 1D problem.
The cross-section is taken into account by calculating its stiffness and
mass matrices. Then, the solution is integrated along the beam and the
nodal stiffness and mass matrices are obtained.

For each time step, the load estimation submodel is called and
generates the aerodynamic load vector as an output. The total aero-
dynamic load is obtained by adding the quasi-steady forces to the
dynamic effects, similarly to Torregrosa et al. [36]. On one hand,
the quasi-steady aerodynamic forces are obtained from the CFD polar
interpolation, as a function of the angle of attack (𝛼) and plunge (𝑤),
see Fig. 4. Then, the coefficients are corrected in an iterative process
using the Prandtl Lifting Line Theory [45]. On the other hand, the
unsteady effects are estimated at independent sections by means of a
Feed Forward Artificial Neural Network (FFN), the reader is referred to
Appendix B for the details of the network, using the following inputs:
the mean angle of attack (�̄�), the increment of angle of attack from
the mean (𝛥𝛼), and its two first derivatives (�̇� and �̈�). The artificial
neural network is the result of the previous work Torregrosa et al. [36].
Therefore, for the sake of brevity the training methodology and test
results are not presented in this paper.

Finally, in the coupled solver, the position, velocity and acceleration
at the following time step is calculated. The dynamic equation is solved



Composite Structures 295 (2022) 115845A.J. Torregrosa et al.
Fig. 2. Mesh of the CSD/CFD simulation, zoom on the wall mesh and the boundary layer. The layup structure is presented, showing the CFRP reinforced foam beam.
Fig. 3. Scheme of the aeroelastic ROM. The 3D coupled problem is simplified to a 1D beam and the aerodynamic coefficients are solved for a 2D section by means of an ANN
and then corrected with 3D effects.
Fig. 4. Aerodynamic coefficients as a function of the angle of attack and plunge. The coefficients have been obtained from CFD simulations.
Source: Figure taken from Torregrosa et al. [36].
for the 𝑛 first modes of the beam by applying a modal truncation. Thus,
the contribution of the faster modes is neglected. In addition, modal
truncation avoids the neural network to extrapolate the solution, as
the training process of the neural network has utilized oscillations of
the cross-section relative to the first modes. The contribution of the
faster frequencies (truncated modes) might exceed the ANN domain,
producing unrealistic results.
4

The equation of the section motion, Eq. (1), is solved using an
explicit 4th order Runge–Kutta scheme. In this equation 𝐌, 𝐊, 𝑢 and
𝐹 represent the mass and stiffness matrices and the displacement and
load vectors respectively. To maintain the stability of the calculation,
internal iterations are allowed. An adaptive internal time step is im-
plemented to preserve the error of the solution relative to the double
of internal time steps. In addition, aerodynamic loads are extrapolated
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Table 2
Validation of the structural model. Natural frequency comparison with the literature.

Mode Shaat [38] Banerjee [39] Minguet [40] Current

Analytical Experimental

1 1.278 Hz 1.280 Hz 1.280 Hz 1.400 Hz 1.285 Hz
2 8.012 Hz 8.020 Hz 8.010 Hz 8.000 Hz 8.053 Hz
3 22.433 Hz 22.441 Hz 22.500 Hz 20.000 Hz 22.544 Hz
4 43.960 Hz 43.927 Hz 44.400 Hz 68.000 Hz 44.045 Hz
5 – 48.431 Hz 48.700 Hz – 47.748 Hz

from the previous solution in the internal steps.

𝐌 ̈⃗𝑢 +𝐊𝑢 = 𝐹 (1)

A mesh, time step and number of modes independence analysis was
performed to set the ANN-enhanced ROM simulations, resulting in a
beam of 16 elements, a time step of 𝛥𝑡 = 2 ⋅ 10−4 s and 4 mode shapes.

he detailed procedures are included in the Appendix C.

. Results and discussion

In this section, the results of the article are presented. At first, the
odels (structural, aerodynamic and aeroelastic) are validated. The

omputational cost of the ROM is compared against the full CSD/CFD
imulation. Then, the capabilities of the reduced order model in the
tructural optimization process are demonstrated. In this sense, the
nfluence of the fiber orientation is analyzed for different working
onditions.

.1. Structural model validation

As stated in Sections 1, the structural model was validated against
he literature before the aeroelastic simulation. The structural valida-
ion test was performed by comparing the natural frequencies of a
arbon fiber laminated beam taken from Minguet [46] with the results
f the current model. In Table 2 the comparison of the natural fre-

quencies is presented, showing good agreement with similar 1D models.
Note that the experimental data was obtained with a tip deflection of
137 mm and nonlinear structural effects appeared, which explains the
differences in mode 4. The mode shapes of the structure are shown in
Fig. 5. Structural coupling is evidenced in all the mode shapes, as the
beam is twisting and bending in the same vibration mode. For the first
mode both twist and plunge increase with the longitudinal coordinate.
This is the dominating mode of the aeroelastic motion. In the second
and third modes the torsion presents a zero when the plunge amplitude
derivative is null. For the fourth mode the torsion increases along the
longitudinal coordinate while the vertical displacement has two relative
maxima and two relative minima. The aeroelastic dynamic motion of
the beam is expected to reproduce the first mode with small vibrations
of the second, third and fourth modes.

3.2. Aerodynamic model results and limitations

Complex nonlinear aerodynamic patterns can be observed from the
three dimensional simulations. Near the beam free tip, recirculation
couples with tip vortex effects, displacing the pressure center of the
sections near the tip and, thus, modifying the moment coefficient with
respect to the value estimated with the Lifting Line Theory. In Fig. 6,
the aerodynamic effects of the tip vortex are presented. The figure
shows the distribution of the pressure coefficient along the span of the
beam, evidencing that the nonlinearities of the aerodynamic loads are
induced in first term by a recirculation area near the leading edge.
The recirculation area is reduced near the tip, where the pressure
is homogenized as an effect of the vortex. In the wing span 5 color
rectangles indicate the measured cross-sections, for which the pressure
5

coefficient is presented. In the bottom of the figure, the pressure
coefficient distribution of the previously mentioned cross sections are
presented following the previous color code. In addition, the direction
of the wall shear loads is included in the image. The shear stress lines
show the limit of the recirculation area and its reduction in the suction
side near the tip. Finally, the center of pressure position moves near the
tip vortex (the color points reference the cross sections indicated over
the surface.

Although the Lifting Line Theory fails when estimating
three-dimensional effects near the tip (due to the movement of the
center of pressure), as shown in Fig. 7, the error remains below 4%.

3.3. Aeroelastic validation against CSD/CFD

The solution of the complete CSD/CFD simulation was compared
with the results of the ROM in order to determine the accuracy of
the procedure. Firstly, the deviation between the ROM and CFD/CSD
aeroelastic results was evaluated. Fig. 8, shows the comparison between
the mean deformation values of the CSD/CFD simulations and the ROM
model. The continuous line represents the perfect agreement between
both methodologies. The points below the line in Fig. 8(a) indicate
that the ROM tends to underestimate the plunge motion, whereas in
Fig. 8(b) they show higher twist in absolute value. According with
the figure, the reduced order model is able to obtain results similar
to those of the high-cost solution. However, the error increases as the
deformations grow.

In Fig. 9 comparison of the evolution of the mean values is shown
as a function of the nondimensional carbon fiber stiffness, 𝐸∗ =

𝐸𝑐𝑙
1
2 𝜌∞𝑣

2
∞

(

ℎ
𝑐

)3
. In the figure the effects of the fiber direction can be ob-

served. When the fibers are oriented longitudinally, the elastic modulus
of the material is higher in the normal stress direction (where the
bending loads act) and, therefore, the bending deformation is lower.
In addition, the asymptotic behavior of the system can be appreciated:
the air–structure coupling acts reducing the nondimensional stiffness
of the structure as the flow velocity increases and thus an asymptotic
limit appears for low nondimensional stiffness.

The mean twist is shown in Fig. 10. Both models show good agree-
ment for longitudinal and oblique orientation of the fibers, and similar
effects to the plunge can be observed. In addition, as the elastic axis
of the structure (without bending–torsion coupling) is coincident with
its center of gravity, no dynamic instabilities are expected. The struc-
ture should be expected to collapse near the divergence velocity (the
asymptotic value of the velocity) where the angle of attack will increase
dramatically and the structure will stall and oscillate (stall flutter).

According to the previous figures, plunge and twist are demon-
strated to be accurately captured by the Reduced Order Model, indicat-
ing that the methodology is capable of predicting the influence of the
fiber orientation on the structural design. The Reduced Order Model en-
hanced by Artificial Neural Networks is evidenced to provide accurate
simulations for high nondimensional stiffness. However, a progressive
increase in the error near the instability conditions was detected. The
values of the asymptote are shifted from the CFD/CSD solution, see
Fig. 8. Nevertheless, the accuracy remains sufficiently high so as to
predict aeroelastic phenomena such as flutter, divergence or limit cycle
oscillations (LCO), and the computational cost of the calculation is
decreased by orders of magnitude. Note that the nonlinearities leading
to the LCO are provided by the aerodynamic model, as the structure
remains linear in the present work.

The computational cost was measured for the different computing
tools. The CFD/CSD simulations were performed on a 15 Intel® Xeon®
Gold 6154 CPUs multiuser cluster whereas ROM simulations were run
on an Intel® Xeon® CPU ES-2630 v2. The CPU computing time required
for a time step in the CFD/CSD simulation is slightly above 2 ⋅104 s and
the complete simulation requires 430 h, while for the ROM the CPU time
per time step is around 2.2 s and the simulation needs approximately
h, what implies a decrease of more than two orders of magnitude and

our orders of magnitude in the total simulation and CPU computational
ost respectively.
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Fig. 5. Mode shapes (not-scaled) of the beam structure based on Minguet [46].

Fig. 6. Tip vortex effects, pressure distribution and pressure center position over the structure surface.
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Fig. 7. Steady aerodynamic load distribution along the span for 3D CFD simulations and 3D ROM analysis.
Fig. 8. Deviation of the ROM solution with respect to CFD/CSD simulations.
Fig. 9. Plunge evolution of CFD and ROM calculations for different fiber orientations. Note that the velocity measurements correspond to a structure of the properties listed in
Table 1.
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3.4. Influence of fiber orientation

Fiber orientation influences the aeroelastic behavior of the struc-
ture. The ROM was applied to a range of orientations from −90 to 90
eg. Fig. 11 shows the variations of the mean deformation as a function
f the nondimensional stiffness and the fiber orientation. A reduction
n the mean twist is observed for negative orientations of the fiber.
his fact matches the results found in the literature [14], as wash-
7

ut effect is applied to the structure, resulting in an alleviation of the a
erodynamic load. In other words, the plunge of the beam generates a

eduction on the angle of attack, acting as a passive aeroelastic control.

oreover, as the twist has been reduced, the aerodynamic force is also

ecreased, resulting in a lower plunge. Inverse effects are obtained for

ositive orientations, generating higher deformations and resulting in

lower unstable free stream velocity.
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Fig. 10. Twist evolution of CFD and ROM calculations for different fiber orientations. Note that the velocity measurements correspond to a structure of the properties listed in
Table 1.
Fig. 11. Mean deformation of the tip section as a function of the velocity and fiber orientation. The solid line limits the stable region.
Additionally to the structural couplings described in the literature,
the current methodology includes the simulation of aerodynamic non-
linear effects, improving the results near the instability with respect to
the linear potential aerodynamic model [11].

The stability limit of the system was estimated by the damping of
the solution signal and it is presented by the solid line in Figs. 11 and
12. Fig. 12(a) includes the torsion damping of the system. As it can be
observed, inside the stable region the aerodynamic damping increases
with velocity for negative values of the fiber orientation. This effect
is in accordance with the information found in the literature [12,47].
The negative orientation of the fiber (fiber rotated to the leading edge)
produces wash-out: the twist of the tip is reduced when its plunge
increases. Therefore, the mean torsion is lower than for positive and
longitudinal orientations, thus preventing from stall. For a squared-
section beam, stall initializes flutter, creating a phenomena known as
stall flutter, which is an oscillatory instability dominated by torsion
and produced by the aerodynamic nonlinearities. The time evolution
of the system for the indicated design points is presented in Fig. 12(b).
It shows that the −45 deg orientation remains stable while the rest
of configurations are under stall flutter. Therefore, according with
Fig. 12(a), for an optimum design the fiber should be in the range
[−44,−68] deg for maximizing the stall flutter velocity and protect the
structure.

Similar results were obtained for the aerodynamic coefficients. Lift
and moment coefficients are shown in Fig. 13. The aerodynamic coeffi-
cients are directly related with the angle of attack, in other words, with
8

the twist of the beam. Thus, the increase in the mean twist generates
higher lift and moment coefficients. In addition, the instability appears
when the aerodynamic coefficients rise approximately 20% off the rigid
beam value. This growth is equivalent to an increment of 1 deg of the
mean twist in the tip section. Similar effects were noticed in the drag
coefficient. Therefore, the aerodynamic efficiency remains constant
for the stability domain. When the instability begins, the coefficients
increase, rising the aerodynamic efficiency until the cross-section stalls.

Finally, the modal contribution on the deformed shape is presented
in Fig. 14, for the highlighted operational points of Fig. 12. A similar
contribution is observed for all the fiber orientations. The displacement
of the nodes is mainly affected by the first mode. This means that
the phenomenon could be simulated by using an equivalent section.
However, as the velocity of the nodes is affected by the first three
modes, in case of studying the aeroelastic behavior of the equivalent
section the contribution of the velocity of vibration would be omitted.

4. Conclusions

A Reduced Order Model enhanced by Artificial Neural Networks for
aeroelastic calculations has been presented. The addition of a Neural
Network to the existing Lisbrescu’s thin walled beam model has allowed
to reproduce nonlinear aerodynamic effects. Thus, nonlinear oscillatory
phenomena have been simulated. The model has been tested for a
carbon fiber reinforced foam squared-section beam clamped in one of
the ends. The methodology of the solver has been described, the solver
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Fig. 12. Torsional damping and evolution of the torsion of the system for different flow and structural conditions. The time evolution, Fig. 12(b), is shown for the highlighted
color squares in the damping map, Fig. 12(a).
Fig. 13. Aerodynamic coefficients of the beam for different flow and structural conditions. The solid lines limit the stable regions.
have been validated against the literature and the results have been
compared with high fidelity CSD/CFD simulations. Finally, the behav-
ior of the beam have been analyzed for different fiber orientations,
showing the influence of the fiber direction on the solution and the
applicability of ROMs in the structural design process.

With respect to the methodology, ROMs have demonstrated to be an
efficient low fidelity tool for calculating the aeroelastic behavior of the
structure. A reduction of four orders of magnitude of CPU cost has been
9

noticed in the previous calculations. In addition, the error registered
when comparing with complex CSD/CFD simulations remains under 2%
far from the instability and increases near the asymptote up to a 15%.
However, the increase in the error is not a limitation for the use of the
methodology in the ROM, as the nondimensional curves fit for both
methodologies. The increase in the error is due to a slight deviation of
approximately 5% on the asymptote.
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Fig. 14. Squared mean modal contribution of the last 0.2 s of simulation for position and velocity for 𝐸∗ = 0.4 ⋅ 106.
In addition, the structural optimization capabilities of the model
have been tested by simulating a batch of operational points in which
the bending–torsion coupling effects have been analyzed. The wash-
out effects presented in the literature have demonstrated to prevent
from stall flutter. The fibers should be rotated upwash to generate a
reduction of the angle of attack when the plunge is increased. For the
geometry studied, a range of [−44,−68] deg has been obtained as the
more effective in the protection of the structure.

Regarding the modal contribution, the first mode is dominant in
the displacement. Differently from the isotropic material, plunge and
twist are contained in the same mode. In addition, the second and
third modes contribute to the velocity of the sections, and thus to
the aerodynamic damping. Therefore, if the problem is reduced to an
equivalent section, only the first bending and the first torsion mode are
required. In the case of oblique fibers both modes (plunge and twist) are
contained in the first vibration mode. Thus, only this mode is necessary
for reproducing the behavior of the beam, and the effects of velocity
(secondary modes) would be canceled.

As a summary, the benefits and limitations of the ANN enhanced
ROM have been analyzed. The methodology has proved to be a pow-
erful tool in the predesign process, allowing to establish an optimum
structure and reducing the number of high fidelity simulations re-
quired for an optimization process, decreasing computational cost and
speeding up the design by orders of magnitude.
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Appendix A. Definition of the structural model

In this section, the structural equations are derived from first prin-
ciples, obtaining the stiffness and mass matrices. This section follows
the methodology presented by Librescu and Song [37].

On one side, relative to the cross-section stiffness, the coordinates 𝑥
and 𝑦 of the beam element local reference frame are used for describing
the cross section, while the 𝑧 axis is used for the longitudinal coordi-
nate, Fig. A.15(a). The linear displacements in coordinates 𝑥, 𝑦, 𝑧 are
denoted by 𝑢, 𝑣, 𝑤, and the respective rotation angles are 𝜙, 𝜓 , 𝜃. On
the other side, the cross-section reference frame is defined with the wall
mean fiber path coordinate 𝑠 and the thickness coordinate 𝑛, as shown
in Fig. A.15(b).

Assuming that: the longitudinal displacement 𝑤 is much smaller
than the transverse displacements 𝑢 and 𝑣; the normal stress in the
thickness direction is negligible 𝜎𝑛𝑛 ≈ 0; the section is rigid 𝜖𝑥𝑥 =
𝜖𝑦𝑦 = 𝜖𝑥𝑦 = 0; warping is included and shear strains are uniform in
the section, then the displacement of a generic point of the section is
defined in Eqs. (A.1)–(A.3).

𝑢 = 𝑢0 −
(

𝑦 − 𝑛𝑑𝑥
𝑑𝑠

)

sin(𝜃) −
(

𝑥 + 𝑛
𝑑𝑦
𝑑𝑠

)

(1 − cos(𝜃)) (A.1)

𝑣 = 𝑣0 +
(

𝑥 + 𝑛
𝑑𝑦
𝑑𝑠

)

sin(𝜃) −
(

𝑦 − 𝑛𝑑𝑥
𝑑𝑠

)

(1 − cos(𝜃)) (A.2)

𝑤 = 𝑤0 −
(

𝑥 + 𝑛
𝑑𝑦
𝑑𝑠

)

𝜓 +
(

𝑦 − 𝑛𝑑𝑥
𝑑𝑠

)

𝜙 −
(

𝐹𝑤(𝑠) + 𝑛𝑟𝑡(𝑠)
)

𝜃′ (A.3)

Here, index 0 indicates the reference point of the section, the first
warping function is defined by the function 𝐹𝑤(𝑠) (Eq. (A.4)), and the
second warping function is 𝑛𝑟𝑡(𝑠), where 𝑟𝑡 is the tangential distance to
an arbitrary point of the mean fiber of the wall. Symbol (′) represents
the derivative with respect to the 𝑧 coordinate.

𝐹𝑤(𝑠) = ∫

𝑠

0

(

𝑟𝑛(𝑠) − 𝛹
)

𝑑𝑠; 𝛹 =
∮ 𝑟𝑛(𝑠)𝑑𝑠

ℎ(𝑠)
𝑑𝑠
ℎ(𝑠)

→ ifℎ(𝑠) = 𝑐𝑡𝑒→ 𝛹 = 2𝛺
𝛽

(A.4)

where ℎ(𝑠) is the thickness of the wall,𝛺 is the closed area of the section
(null in the case of open cross-section), 𝛽 is its perimeter and 𝑟𝑛(𝑠) is
the normal distance to an arbitrary point of the mean fiber of the wall.

The strains are defined through the Green–Lagrange tensor, as in
Eqs. (A.5)–(A.7).

𝜖𝑧𝑧 =
𝜕𝑤
𝜕𝑧

+ 1
2

[

( 𝜕𝑢
𝜕𝑧

)2
+
( 𝜕𝑣
𝜕𝑧

)2]

(A.5)

𝛾𝑠𝑧 = 𝛾𝑥𝑧
𝑑𝑥
𝑑𝑠

+ 𝛾𝑦𝑧
𝑑𝑦
𝑑𝑠

+ 𝛹𝜙′ + 2𝑛𝜙′ (A.6)

𝛾 = 𝛾
𝑑𝑦

− 𝛾 𝑑𝑥 (A.7)
𝑛𝑧 𝑥𝑧 𝑑𝑠 𝑦𝑧 𝑑𝑠
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Fig. A.15. Reference frames of the beam element and cross section.
where the tangential strains are defined in global axis by Eqs. (A.8) and
(A.9).

𝛾𝑥𝑧 = −𝜓 + 𝑢′0 cos(𝜃) + 𝑣
′
0 sin(𝜃) (A.8)

𝛾𝑦𝑧 = 𝜙 + 𝑣′0 cos(𝜃) − 𝑢
′
0 sin(𝜃) (A.9)

Substituting Eqs. (A.1)–(A.3), (A.8) and (A.9) into Eqs. (A.5)–(A.7)
it is possible to obtain an expression of the strains as a function of the
𝑛 coordinate, as in Eqs. (A.10)–(A.12).

𝜖𝑧𝑧 = 𝜖0𝑧𝑧 + 𝑛𝜖
1
𝑧𝑧 + 𝑛

2𝜖2𝑧𝑧 (A.10)

𝛾𝑠𝑧 = 𝛾0𝑠𝑧 + 𝑛𝛾
1
𝑠𝑧 (A.11)

𝛾𝑛𝑧 = 𝛾0𝑛𝑧 (A.12)

The constitutive equations of the orthotropic ply in the beam and
material reference frames (𝑙, 𝑡, 𝑛) are expressed in Eq. (A.13).

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜎𝑠𝑠
𝜎𝑧𝑧
𝜏𝑧𝑛
𝜏𝑠𝑛
𝜏𝑠𝑧

⎫

⎪

⎪

⎬

⎪

⎪

⎭

= �̄�

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜖𝑠𝑠
𝜖𝑧𝑧
𝛾𝑧𝑛
𝛾𝑠𝑛
𝛾𝑠𝑧

⎫

⎪

⎪

⎬

⎪

⎪

⎭

→

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜎𝑡𝑡
𝜎𝑙𝑙
𝜏𝑙𝑛
𝜏𝑡𝑛
𝜏𝑙𝑡

⎫

⎪

⎪

⎬

⎪

⎪

⎭

= 𝐐

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜖𝑡𝑡
𝜖𝑙𝑙
𝛾𝑙𝑛
𝛾𝑡𝑛
𝛾𝑙𝑡

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(A.13)

For an orthotropic material, the constitutive matrix 𝐐 in the fiber
material reference frame is expressed in Eq. (A.14). In addition, the
transformation of the constitutive equations is also included.

𝐐 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐸𝑡
1−𝜈𝑡𝑙𝜈𝑙𝑡

𝜈𝑙𝑡𝐸𝑡
1−𝜈𝑡𝑙𝜈𝑙𝑡

0 0 0
𝜈𝑙𝑡𝐸𝑡

1−𝜈𝑡𝑙𝜈𝑙𝑡
𝐸𝑙

1−𝜈𝑡𝑙𝜈𝑙𝑡
0 0 0

0 0 𝐺𝑙𝑛 0 0
0 0 0 𝐺𝑡𝑛 0
0 0 0 0 𝐺𝑡𝑙

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

→ �̄� = 𝐓−1𝐐𝐑𝐓𝐑−1 (A.14)

The coordinate transformation of the constitutive matrix is per-
formed using the rotation matrix 𝐓 and the transformation matrix from
tensor to engineering strains 𝐑. Note that 𝜃𝑓 represents the material
orientation.

𝐓

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

cos2 𝜃𝑓 sin2 𝜃𝑓 0 0 2 sin 𝜃𝑓 cos 𝜃𝑓
sin2 𝜃𝑓 cos2 𝜃𝑓 0 0 −2 sin 𝜃𝑓 cos 𝜃𝑓

0 0 cos 𝜃𝑓 − sin 𝜃𝑓 0
0 0 sin 𝜃𝑓 cos 𝜃𝑓 0

− sin 𝜃𝑓 cos 𝜃𝑓 sin 𝜃𝑓 cos 𝜃𝑓 0 0 cos2 𝜃𝑓 − sin2 𝜃𝑓

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(A.15)
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⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜖𝑡𝑡
𝜖𝑙𝑙
𝛾𝑙𝑛
𝛾𝑡𝑛
𝛾𝑙𝑡

⎫

⎪

⎪

⎬

⎪

⎪

⎭

= 𝐑

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜖𝑙𝑙
𝜖𝑡𝑡
𝜖𝑙𝑛
𝜖𝑡𝑛
𝜖𝑙𝑡

⎫

⎪

⎪

⎬

⎪

⎪

⎭

→ 𝐑 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0
0 1 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(A.16)

Stresses are integrated along the normal coordinate to obtain the
forces and moments acting on the mean fiber of the walls. The mem-
brane forces are shown in Eqs. (A.17), the transverse shear resultants
in Eq. (A.18), the stress couples in Eq. (A.19) and the high order stress
couple in Eq. (A.20).

𝑁𝑠𝑠 =
𝑀
∑

𝑘=1
∫

ℎ𝑘

ℎ𝑘−1
𝜎𝑠𝑠𝑑𝑛; 𝑁𝑧𝑧 =

𝑀
∑

𝑘=1
∫

ℎ𝑘

ℎ𝑘−1
𝜎𝑧𝑧𝑑𝑛; 𝑁𝑠𝑧 =

𝑀
∑

𝑘=1
∫

ℎ𝑘

ℎ𝑘−1
𝜎𝑠𝑧𝑑𝑛

(A.17)

𝑁𝑧𝑛 =
𝑀
∑

𝑘=1
∫

ℎ𝑘

ℎ𝑘−1
𝜎𝑧𝑛𝑑𝑛; 𝑁𝑠𝑛 =

𝑀
∑

𝑘=1
∫

ℎ𝑘

ℎ𝑘−1
𝜎𝑠𝑛𝑑𝑛 (A.18)

𝐿𝑧𝑧 =
𝑀
∑

𝑘=1
∫

ℎ𝑘

ℎ𝑘−1
𝜎𝑧𝑧𝑛𝑑𝑛; 𝐿𝑠𝑧 =

𝑀
∑

𝑘=1
∫

ℎ𝑘

ℎ𝑘−1
𝜎𝑠𝑧𝑛𝑑𝑛 (A.19)

𝛤𝑧𝑧 =
𝑀
∑

𝑘=1
∫

ℎ𝑘

ℎ𝑘−1
𝜎𝑧𝑧𝑛

2𝑑𝑛 (A.20)

where 𝑀 is the total number of layers. The stiffness coefficients of the
laminate are defined on Eq. (A.21).

(𝐴𝑖𝑗 , 𝐵𝑖𝑗 , 𝐷𝑖𝑗 , 𝐹𝑖𝑗 ,𝐻𝑖𝑗 ) =
𝑀
∑

𝑘=1
∫

ℎ𝑘

ℎ𝑘−1
Q̄(𝑘)
𝑖𝑗 (1, 𝑛, 𝑛

2, 𝑛3, 𝑛4)𝑑𝑛 (A.21)

The internal forces and moments of the structure are expressed as
a function of the strains, Eq. (A.22), assuming 𝜖𝑠𝑠 = 𝜖0𝑠𝑠 and 𝛾𝑠𝑛 = 𝛾0𝑠𝑛

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑁𝑧𝑧
𝐿𝑧𝑧
𝛤𝑧𝑧
𝑁𝑠𝑧
𝐿𝑠𝑧

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐴22 𝐵22 𝐷22 𝐴26 𝐵26
𝐵22 𝐷22 𝐹22 𝐵26 𝐷26
𝐷22 𝐹22 𝐻22 𝐷26 𝐹26
𝐴26 𝐵26 𝐷26 𝐴66 𝐵66
𝐵26 𝐷26 𝐹26 𝐵66 𝐷66

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜖0𝑧𝑧
𝜖1𝑧𝑧
𝜖2𝑧𝑧
𝛾0𝑠𝑧
𝛾1𝑠𝑧

⎫

⎪

⎪

⎬

⎪

⎪

⎭

+

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐴12
𝐵12
𝐷12
𝐴16
𝐵16

⎤

⎥

⎥

⎥

⎥

⎥

⎦

{

𝜖0𝑠𝑠
}

(A.22)
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𝑉

𝑇

a

𝐷

t

𝐾

v
l

{

𝑁𝑠𝑠
}

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐴12
𝐵12
𝐷12
𝐴16
𝐵16

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝑇
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜖0𝑧𝑧
𝜖1𝑧𝑧
𝜖2𝑧𝑧
𝛾0𝑠𝑧
𝛾1𝑠𝑧

⎫

⎪

⎪

⎬

⎪

⎪

⎭

+𝐌3 =
[

𝐴11
] {

𝜖0𝑠𝑠
}

(A.23)

𝑁𝑧𝑛 = 𝐴44𝛾
0
𝑧𝑛 + 𝐴45𝛾

0
𝑠𝑛 (A.24)

𝑁𝑠𝑛 = 𝐴45𝛾
0
𝑧𝑛 + 𝐴55𝛾

0
𝑠𝑛 (A.25)

Assuming that 𝑁𝑠𝑠 = 0 and solving the system, the reduced stiffness
coefficients are obtained, see Eq. (A.26).

𝐾11 = 𝐴22 −
𝐴2
12

𝐴11
; 𝐾13 = 𝛹

(

𝐴26 −
𝐴12𝐴16
𝐴11

)

+ 2
(

𝐵26 −
𝐴12𝐵16
𝐴11

)

𝐾14 = 𝐵22 −
𝐴12𝐵12
𝐴11

; 𝐾23 = 𝛹
(

𝐴66 −
𝐴2
16

𝐴11

)

+ 2
(

𝐵66 −
𝐴16𝐵16
𝐴11

)

𝐾44 = 2
(

𝐷22 −
𝐵2
12

𝐴11

)

; 𝐾43 = 𝛹
(

𝐵26 −
𝐵12𝐴16
𝐴11

)

+ 2
(

𝐷26 −
𝐵12𝐵16
𝐴11

)

𝐾53 = 𝛹
(

𝐵66 −
𝐵16𝐴16
𝐴11

)

+ 2
(

𝐷66 −
𝐵2
16

𝐴11

)

(A.26)

The strain energy of the system is calculated in Eq. (A.27).

= 1
2 ∫

𝐿

0 ∮𝑐

𝑀
∑

𝑘=1
∫ℎ(𝑘)

[

𝜎𝑧𝑧𝜖𝑧𝑧 + 𝜏𝑠𝑧𝛾𝑠𝑧 + 𝜎𝑛𝑧𝛾𝑛𝑧
]

𝑘 𝑑𝑛𝑑𝑠𝑑𝑧 (A.27)

and substituting stresses and strains:

𝑉 = 1
2 ∫

𝐿

0

[

𝑇𝑧
(

𝑤′
0 +

1
2
𝑢′20 + 1

2
𝑣′20

)

+𝑄𝑦
(

𝜙 + 𝑣′0 cos 𝜃 − 𝑢
′
0 sin 𝜃

)

+

𝑄𝑥
(

−𝜓 + 𝑢′0 cos 𝜃 + 𝑣
′
0 sin 𝜃

)

+𝑀𝑦
(

−𝜓 ′ − 𝑢′0𝜃
′ sin 𝜃 + 𝑣′0𝜃

′ cos 𝜃
)

+

𝑀𝑥
(

𝜙′ − 𝑢′0𝜃
′ cos 𝜃 − 𝑣′0𝜃

′ sin 𝜃
)

+𝑀𝑧𝜃
′ − 𝐵𝑤𝜃′′ +

1
2
𝛬𝑧𝜃

′2
]

(A.28)

Now, the section loads are defined in Eqs. (A.29)–(A.32).

𝑧 = ∮𝑐
𝑁𝑧𝑧𝑑𝑠; 𝑄𝑥 = ∮𝑐

(

𝑁𝑠𝑧
𝑑𝑥
𝑑𝑠

+𝑁𝑧𝑛
𝑑𝑦
𝑑𝑠

)

𝑑𝑠 (A.29)

𝑄𝑦 = ∮𝑐

(

𝑁𝑠𝑧
𝑑𝑦
𝑑𝑠

−𝑁𝑧𝑛
𝑑𝑥
𝑑𝑠

)

𝑑𝑠; 𝑀𝑦 = ∮𝑐

(

−𝑥𝑁𝑧𝑧 − 𝐿𝑧𝑧
𝑑𝑦
𝑑𝑠

)

𝑑𝑠 (A.30)

𝑀𝑥 = ∮𝑐

(

𝑦𝑁𝑧𝑧 − 𝐿𝑧𝑧
𝑑𝑥
𝑑𝑠

)

𝑑𝑠; 𝑀𝑧 = ∮𝑐

(

𝑁𝑠𝑧𝛹 + 2𝐿𝑠𝑧
)

𝑑𝑠 (A.31)

𝐵𝑤 = ∮𝑐

(

𝑁𝑧𝑧𝐹𝑤(𝑠) + 𝑟𝑡(𝑠)𝐿𝑧𝑧
)

𝑑𝑠;

𝛬𝑧 = ∮𝑐

(

𝑁𝑧𝑧
(

𝑥2 + 𝑦2
)

+ 2𝐿𝑧𝑧𝑟𝑛(𝑠) + 𝛤𝑧𝑧
)

𝑑𝑠
(A.32)

The equations are linearized and the strain energy can be calculated
as in Eq. (A.33).

𝑉 = 1
2 ∫

𝐿

0
�⃗�𝑇𝐀�⃗�𝑑𝑧 (A.33)

where vector �⃗� is defined in Eq. (A.34) and 𝐀 is the stiffness matrix of
cross-section.
⃗ =

{

𝑤′
0 −𝑢′′0 −𝑣′′0 𝜃′ −𝜃′′

}𝑇 (A.34)

A similar procedure is developed to calculate the kinetic energy and
he mass matrix. The kinetic energy is calculated from Eq. (A.35).

𝐸 = 1
2 ∫

𝐿

0

̇⃗𝑈𝑇𝐌 ̇⃗𝑈𝑑𝑧 (A.35)

Here, �⃗� =
{

𝑢0 𝑣0 𝑤0 𝑣′0 𝑢′0 𝜃 𝜃′
}𝑇 and 𝐌 is the

section mass matrix.
On the other hand, relative to the beam model, the stiffness matrix

of the beam element is obtained from the integration of matrices 𝐀
and 𝐌 along the longitudinal coordinate of each element. Finally, the
element local matrices are assembled and the global matrix stiffness
and mass matrices are calculated.
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Appendix B. Artificial neural network training procedure

In this appendix, the architecture of the neural network is presented,
the training process is described and the selection criteria for the
numbers of neurons and training epochs are shown. The neural network
used in this paper has been taken from [36], and therefore the figures
included in this appendix were included in the reference work.

Relative to the network architecture, the present ANN uses a feed
forward (FFN) architecture, which only needs the current time infor-
mation to predict the aerodynamics. This architecture allows to reduce
the computing cost of the simulation compared to deep-learning neural
networks without any important accuracy penalties. The neurons are
configured with continuous activation functions to predict continuous
coefficients.

ANN reproduce a function as a result of a training process in which
the weights and biases need to be fitted. Although any aerodynamic
data may be used to train the model, in this work, a set of CFD
simulations was used for the training process (90% for training and
10% for validation).

B.1. Neuron independence analysis

The number of neurons used to calculate the aerodynamic model
sets the number of weights and variables necessary to adjust the ANN.
Therefore, it determines the accuracy and computing cost of training
the network [48], but also the probability of network overfitting. The
analysis is performed to increase the efficiency of the calculations in
terms of computational cost. All the studied ANN are composed by
an input layer, a hidden layer with 𝑁1 neurons and an output layer
with 𝑁2 = 2 neurons. The energetic error of the aerodynamic cycle,
𝜖𝐸𝑐𝑚 , is calculated to validate the independence analysis. This error is
computed as the difference of power coefficients (𝑐𝑝 = 𝑐𝑚

�̇�𝑐
𝑉∞

) integrated
in time for CFD and ANN, as stated by Eq. (B.1).

𝜖𝐸𝑐𝑚 =
∫ 𝑡+𝑇𝑡 (𝑐𝑝𝐴𝑁𝑁 )𝑑𝑡 − ∫ 𝑡+𝑇𝑡 (𝑐𝑝𝐶𝐹𝐷 )𝑑𝑡

∫ 𝑡+𝑇𝑡 (𝑐𝑝𝐶𝐹𝐷 )𝑑𝑡
(B.1)

In Fig. B.16, the power coefficient comparison between CFD and
ANN is presented for a network of 2 and 50 neurons (Figs. B.16(a)
and B.16(b) respectively). In the figure, an improvement of accuracy
compared with the steady solution is observed.

In Fig. B.17 the cycle energetic error density function is shown as
a function of the number of neurons of the first layer. The optimum is
reached for 𝑁1 = 50 when the energetic error becomes constant.

B.2. Optimum number of epochs

In addition, the mean squared error of the training is monitored in
order to determine the optimum number of epochs. For the network
used, the number of epochs must be set to 5⋅103 to ensure that the error
has reached an asymptotic limit or has started to increase. In Fig. B.18,
the validation error flattens for 5 ⋅ 103 epochs.

B.3. Training results and validation

The dynamic aerodynamic coefficient calculated by means of the
neural networks must be added to a stationary aerodynamic coefficient,
called quasi-steady model. This quasi-steady model interpolates the
coefficients from the steady CFD results, as shown in Fig. 4. Three
models are shown in this section: CFD (2D aeroelastic CFD simulations),
quasi-steady (aerodynamic coefficients interpolated from steady polar)
and FNN (dynamic coefficients calculated by means of FNN added to
the quasi-steady coefficient)

In Fig. B.19 the performance of the ANN is shown for training and
alidation data. The network shows an accurate behavior in the simu-
ation of nonlinear aerodynamics when compared to the quasi-steady

pproach.
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Fig. B.16. Power coefficient comparison between the ANNs and the CFD simulations for two representative number of neurons on the hidden layer. The cycle is shown for an
nitial incidence of 2.5 deg, an amplitude of 5 deg and a nondimensional frequency of 𝑓𝑐

𝑉∞
= 0.1250.

ource: Figure taken from Torregrosa et al. [36].
Fig. B.17. Distribution of the energy error for the different number of neurons.
Source: Figure taken from Torregrosa et al. [36].
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Fig. B.18. Evolution of the MSE as a function of the epoch of training for FNN and
STM networks.
ource: Figure taken from Torregrosa et al. [36].

ppendix C. ROM mathematical description

In this appendix a mathematical description of the algorithms used
o solve the coupling between the aerodynamic and structural models
s provided.

Firstly, the linear mode analysis of the structure is calculated, ob-
aining its eigenvalues and eigenvectors. For this purpose, the dynamic
quation is normalized, Eq. (C.1).

̈⃗𝑢 +𝐊𝑢 = 𝐹 → 𝐌−1∕2𝐌𝐌−1∕2 ̈⃗𝑞 +𝐌−1∕2𝐊𝐌−1∕2𝑞 = 𝐌−1∕2𝐹 (C.1)
13
where 𝑢 = 𝐌−1∕2𝑞. Then, the mode shapes (eigenvectors) are sorted by
the vibration frequency. The final deformation of the beam, 𝑢, can be
expressed in terms of the 𝑛 first modal weights 𝑦, Eq. (C.2).

𝜳 𝑇𝐌−1∕2𝐌𝐌−1∕2𝜳 ̈⃗𝑦 + 𝜳 𝑇𝐌−1∕2𝐊𝐌−1∕2𝜳𝑦 = 𝜳 𝑇𝐌−1∕2𝐹 (C.2)

Here, 𝜳 is the modal matrix that converts the normalized nodal
coordinates 𝑞 to the 𝑛 first modal weights. Eq. (C.2) is redefined to
simplify the expression, assuming the relationships shown in Eqs. (C.3)–
C.5).
̄ = 𝜳 𝑇𝐌−1∕2𝐌𝐌−1∕2𝜳 (C.3)

̄ = 𝜳 𝑇𝐌−1∕2𝐊𝐌−1∕2𝜳 (C.4)

�⃗� = 𝜳 𝑇𝐌−1∕2𝐹 (C.5)

Thus, the motion of the structure is expressed by Eq. (C.6).

̄ ̈⃗𝑦 + �̄�𝑦 = 𝐹𝑚 (C.6)

The dynamic equation is solved by using an adaptive 4th order
unge–Kutta algorithm. The second order ordinary derivative equation

s reduced to first order by creating matrix 𝐀 and vector �⃗�. The new
tate of the system is described by vector �⃗�𝑡. This algorithm uses
qs. (C.7) and (C.8) for obtaining the displacements at the next time
tep.

𝑓1 = 𝐀�⃗�𝑡 + �⃗� 𝑓2 = 𝐀
(

�⃗�𝑡 +
1
2𝑓1𝛥𝑡𝑖

)

+ �⃗�

𝑓3 = 𝐀
(

�⃗�𝑡 +
1
2𝑓2𝛥𝑡𝑖

)

+ �⃗� 𝑓4 = 𝐀
(

�⃗�𝑡 + 𝑓3𝛥𝑡𝑖
)

+ �⃗�
(C.7)

�⃗� = �⃗� + 1 (

𝑓 + 2𝑓 + 2𝑓 + 𝑓
)

𝛥𝑡 (C.8)
𝑡+1 𝑡 6 1 2 3 4 𝑖
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𝑑
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Fig. B.19. Training and validation of the FNN neural network.
Source: Figure taken from Torregrosa et al. [36].
In order to stabilize the results of this solver, the value of 𝛥𝑡𝑖 is
iterated for each time step to ensure the convergence of the problem,
as explicit solvers may diverge if its value exceeds the stability limit.

The aerodynamic forces are calculated only in the initial value of
time step 𝛥𝑡 and updated through Taylor series, Eq. (C.9), in the internal
iterations.

𝑑𝑖,0 = 𝑓𝑖; 𝑑𝑖,1 =
𝑓𝑖 − 𝑓𝑖−1
𝛥𝑡𝑖

; 𝑑𝑖,2 =
𝑑𝑖,1 − 𝑑𝑖−1,1

𝛥𝑡𝑖

𝑖,3 =
𝑑𝑖,2 − 𝑑𝑖−1,2

𝛥𝑡𝑖
; 𝑑𝑖,4 =

𝑑𝑖,3 − 𝑑𝑖−1,3
𝛥𝑡𝑖

; 𝑓𝑖+1 =
4
∑

𝑗=0

𝑑𝑖,𝑗
(

𝛥𝑡𝑖
)𝑗

𝑗!

(C.9)
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