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A B S T R A C T

This paper presents a hybrid methodology for accelerating Computational Fluid Dynamics (CFD) simulations
intertwining inferences from deep neural networks (DNN). The strategy leverages the local spatial data of
the velocity field to leverage three-dimensional convolutional kernels within DNN. The hybrid workflow is
composed of two-step cycles where CFD solvers calculations are utilized to feed predictive models, whose
inferences, in turn, accelerate the simulation of the fluid evolution compared with traditional CFD. This
approach has proved to reduce 30% time-to-solution in an urban scale study case, which leads to generating
massive datasets at a fraction of the cost.
1. Introduction

Traditional Computational Fluid Dynamics (CFD) simulations are
able to compute and analyze the fluid flow behavior from a set of
Partial Differential Equations (PDE) [1]. This permits the optimization
of the performance of a wide variety of industrial devices and facilities
in fields such as aerodynamics [2,3], industrial mixing [4,5], nuclear
reactor safety [6] and wastewater treatment [7,8]. The ability of these
codes to forecast future states of the fluid flow makes them also a
valuable tool for environmental studies [9,10]. Here, the focus lies
on the dispersion of contaminants depending on emissions and local
climatology to prevent risks to the population.

The huge computational cost of the CFD modeling (both in terms
of memory and time) strongly limits their practical implementation.
Recent studies try to speed up CFD simulations by using Artificial In-
telligence (AI) techniques following two main approaches: (1) learning
from simulations and predicting results using neural networks [11];
and (2) including predictive models in the CFD solvers to work over
a specific problem [12]. The combination of both approaches has
provided such promising results that it has given birth to the new area
of knowledge Data-driven CFD [13]. It is interesting to note that AI
methods have been also leveraged in other tasks of CFD such as, for
instance, automating the spatial discretization of the fluid flow domain
by estimating optimal meshes based on large sets of examples [14].

This paper contributes with a novel methodology that combines
stages of CFD resolution and predictions to accelerate the calculation
of transient flows in a specific 3D domain leveraging its local spatial
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structure. First, the domain for the simulations is established. Then,
a conventional transient CFD solver is used to train a Deep Neural
Network (DNN) consisting of convolutional layers that rely on 3D
kernels to detect patterns and extract the physical characteristics of the
simulated flow. Finally, the resulting DNN provides spatial–temporal
predictions of the flow evolution within the chosen domain in a small
fraction of the time needed by the transient CFD solver.

The proposed methodology calculates the flow evolution by alter-
nating stages of transient CFD simulations and predictions of the DNN.
In this way, the hybrid approach profits from both the reliability of
CFD resolutions to mitigate error accumulation and propagation and
the inference speed of predictive models.

The reduction of the time-to-result while achieving a low error
rate can be crucial when simulating computationally expensive CFD
models, particularly, in the case of generating datasets for training
neural networks with the aim of making fluid dynamic predictions. For
this purpose, datasets are expected to be composed of many similar
simulations, where boundary conditions can be slightly altered [15,16].
This operation provides a dataset with a large variety of scenarios to
train the DNN, which can then learn and generalize solutions.

The rest of the paper is structured as follows: Section 2 summarizes
the related work. Section 3 presents the study case and how it has
been modeled. Section 4 introduces the hybrid solver based on CFD
and DNN and the interfaces developed to integrate both subsystems.
Section 5 describes the training and evaluation of the devised deep
learning model and details the results provided by the hybrid model.
Finally, Section 6 concludes this work and states open research lines.
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2. Related work

The incursion of AI methods in CFD simulations to reduce the
time-to-solution while providing an acceptable accuracy is a current
hot research topic [17]. Several strategies are being followed to pro-
vide predictive models capable of accelerating simulations, as well as
improving turbulence closure modeling or enhancing Reduced-Order
Models (ROM).

Deep learning is used in CFD to infer the physic behavior that allows
predicting the evolution of a fluid flow. In principle, it may seem that
the ultimate aim here is to deploy a neural network that completely
substitutes the numerical solvers of CFD, in other words, use a predic-
tive model to simulate flows virtually in real-time. However, the current
state of the art is still far from accomplishing that mission [18]. In the
following paragraphs, we refer to some of the most relevant efforts,
related to this work.

In [19], authors complement their CFD with deep learning surro-
gate models of specific subdomains of the case. Especially those that
are highly computational demanding. For this purpose, the authors
leverage recurrent neural networks (RNN) to predict the unsteady
aerodynamic loads of free pitching and plunging airfoil in a transonic
flow field.

The work in [20] presents a real-time iterative model that learns
from previous data and predicts subsequent temperatures in a voxel.
This project trains the model with the available data (calculated +
predicted) at each step to make new predictions, which means that the
error may be propagated in case of a bad prediction.

Tompson et al. [21] used a predictive model to compute just one of
the CFD solver tasks. Specifically, CFD solvers for incompressible flows
need to ensure that the computed velocity fields are divergence-free. In
practice, this involves a high time-consuming resolution of a Poisson
equation that was accelerated thanks to the training of a ConvNet
model.

In [22], the authors include the actual equations of the physics
models to data-driven approaches in which neural networks are trained
to fit the physical laws (i.e.: mass or momentum conservation). They de-
signed data-driven algorithms for inferring solutions to nonlinear PDEs
and construct physics-informed surrogate models. Similarly, in [23]
physics laws were embedded within the convolutional layers of their
network to improve temporal predictions of three-dimensional un-
steady vortex dynamics, which are expected to accumulate and propa-
gate the errors when the model is fed with only predicted data.

More related to wind urban environments, there have been several
AI applications reviewed in [24] including field regressors, Bayesian
deep learning, dynamic node decomposition, cyber–physical systems,
autonomous morphing, or digital twins. Particularly, in [25] authors
devised a Non-Intrusive Reduced Order Model (NIROM) combining
Proper Orthogonal Decomposition (POD) and machine learning tech-
niques. Their results show that the model is capable of predicting the
evolution of a turbulent flow in a quasi-steady state. The methodology
based on reducing the temporal characteristics before learning is also
used in [15], where the authors propose a method based on a convo-
lutional autoencoder that computes a latent space and a Long Short
Term Memory (LSTM) network for temporal evolution learning. A more
general approach can be found in [16], where authors present CFDNet,
a deep learning framework coupled with a physical simulator for RANS
models. These solutions are based on reducing the data dimensionality,
which in turn removes the local spatial information of the data.

There are also data-driven solutions for Lagrangian mechanics. For
instance, the authors in [26] present a general-purpose framework
for learning from data of particle-based representation of physics.
Nevertheless, it is important to note that the approach taken in this
manuscript leverages Eulerian mechanics for calculating fluid motion.

At the end of the day, scientists aim to reduce the extremely large
computation time of some simulations using AI (machine or deep
learning) techniques. In this paper, a novel hybrid methodology for
2

Fig. 1. Representation of the case simple city blocks of AIJ. 𝑋-axis is aligned with the
wind direction and the 𝑍-axis with the vertical plane.

inferring flow evolution that combines traditional CFD simulation and
DNN predictions is presented. The strategy leverages the accuracy of
CFD solvers to feed a deep 3D convolutional neural network producing
predictions which are then used to accelerate the simulation of the fluid
evolution. These two-stage cycles will accelerate simulations thanks to
the interleaved predictions, which can be translated in non-negligible
time, energy, and cost savings when generating large datasets. To the
best of our knowledge, no CFD-DNN hybrid solver like the one proposed
in this work has previously incorporated a fully convolutional approach
to accelerate CFD simulations.

3. Case description

The present study considers a flow scenario comprising several
city blocks in an urban area. This configuration has been extensively
characterized in wind tunnel tests by the Architectural Institute of
Japan (AIJ) and serves for the validation of CFD simulations aiming at
the prediction of pedestrian wind environment around buildings [27,
28]. Particularly, the experimental test case C (simple city blocks) of
AIJ [29] has been targeted. Fig. 1 represents the case and the wind
direction. Notice that the figure illustrates that the 𝑋-axis is aligned
with the wind direction and the 𝑍-axis with the vertical plane.

The computational domain limits for the case are established fol-
lowing the COST guideline [30]. Fig. 2 depicts a vertical 2(a) and
an horizontal 2(b) section of the domain under study. The resultant
domain is configured being 𝐻 = 0.4 m the height of the highest-rise
building, and 𝑏 = 0.2 m the height of the low-rise buildings.

The case is discretized into a mesh harnessing the blockMesh1utility
provided by OpenFOAM [31] software, to create a three-dimensional
structured grid composed of hexahedral cells, with physical values,
such as velocity, pressure, etc., centered in each cell. The methodology
presented in this work is spatial dependent because it is based on con-
volutional kernels, and therefore unstructured meshes cannot be used
directly. However, if the unstructured mesh values are interpolated into
a structured grid, data could be used in the hybrid methodology. A
standard grid is established to ensure computational accuracy for CFD
simulations. Fig. 3 shows the vertical cross-section of the computational
grid distribution around the buildings in the middle of the 𝑌 domain
(Fig. 3(a)) and at the bottom of 𝑍 (Fig. 3(b)). As a result, the generated
mesh is conformed to 374,400 grid points.

Flow equations are modeled using the Unsteady Reynolds-averaged
Navier–Stokes (URANS) equations. Particularly, the pimpleFOAM solver
was used for their numerical resolution, providing an accurate (though
highly time-consuming) description of the flow evolution. To grant

1 https://www.openfoam.com/documentation/user-guide/4-mesh-
generation-and-conversion/4.3-mesh-generation-with-the-blockmesh-utility

https://www.openfoam.com/documentation/user-guide/4-mesh-generation-and-conversion/4.3-mesh-generation-with-the-blockmesh-utility
https://www.openfoam.com/documentation/user-guide/4-mesh-generation-and-conversion/4.3-mesh-generation-with-the-blockmesh-utility
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Fig. 2. Computational domain for 𝐻 for AIJ case C following the COST guidelines.
a smooth initialization of the transient solver, the initial conditions
are computed from a steady-state resolution using the simpleFOAM
solver. It is beyond the scope of this paper to conduct a more detailed
evaluation of these specific CFD solvers, but a detailed description can
be found in the OpenFOAM documentation.2

4. CFD-DNN hybrid solver

This section details the methodology implemented by the hybrid
solver. Furthermore, the dataset generated to train and evaluate the
predictive model is described in detail.

The solution proposed in this work provides an accelerated alter-
native to the traditional CFD simulations. As introduced in Section 2,
the high accuracy of CFD is achieved by solving complex PDEs which
usually require large computational times. The DNN offers a technique
that provides highly-reduced time-to-solution at the expense of small
errors. Alternatively, the predictive model could be applied to subdo-
mains of the case under study [19], or certain periods of the temporal
evolution [25].

2 https://www.openfoam.com/documentation/user-guide/a-reference/a.1-
standard-solvers
3

The hybrid solver combines both approaches, CFD and DNN, to
rapidly return a solution while preventing error accumulation and
propagation. Fig. 4 depicts how the different subsystems interact. Every
cycle (the 𝑖th cycle is represented) starts with the CFD computation
of 𝑁𝐶𝐹𝐷 solved timesteps. These results are kept in memory, and
just a small subset of 𝑁𝑤,𝐶𝐹𝐷 timesteps (green squares) are stored on
disk at a given write interval. Then, the last three written timesteps
(also known as snapshots) serve as input for the DNN after a proper
transformation (T) of the CFD results into a format that the DNN solver
can process. Next, the DNN computes 𝑁𝐷𝑁𝑁 predicted timesteps as
output (orange squares). The cycle ends with the parsing (P) from the
three-dimensional DNN format to the CFD flat-array domain so that the
next cycle starts. These cycles can be repeated as many times as needed
to provide the flow evolution. In this work, the cycle is composed of
𝑁𝑤,𝐶𝐹𝐷 = 10 written timesteps followed by 𝑁𝐷𝑁𝑁 = 10 predicted
timesteps.

The election of three time steps for DNN input intents to capture
the acceleration that theoretically corresponds to the second derivative
of the displacement. The 10-timestep output is chosen as a trade-
off between performance and accuracy, which for this specific study
returned appropriate results.

The presented hybrid solver employs OpenFOAM and Keras/
Tensorflow. In this regard, OpenFOAM velocity files for every written
timestep are transformed into NumPy [32] arrays (T). The NumPy

https://www.openfoam.com/documentation/user-guide/a-reference/a.1-standard-solvers
https://www.openfoam.com/documentation/user-guide/a-reference/a.1-standard-solvers
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Fig. 3. Computational mesh of the discretized domain depicted in Fig. 2. Range of X-axis: [-2.44:5.98]. Range of Y-axis: [-2.48:2.48]. Range of Z-axis: [0:2.4].
Fig. 4. Hybrid CFD-DNN model scheme.
arrays returned by the DNN are parsed to the OpenFOAM expected
file format (P). Through these format conversions, the hybrid solver
intertwines both subsystems.

The OpenFOAM format represented in a cartesian system in Fig. 3
has to be transformed to an equidistant space handled by NumPy. Each
point in the OpenFOAM domain matches a cell in the NumPy tensor of
shape 117 × 86 × 38, corresponding respectively to axes X, Y, and Z of
the domain (see Fig. 5). For this purpose, the primarily structured mesh
of 382,356 cells is shrunk to 374,400 by setting to zero the cells that
correspond to the interior of the buildings (these nodes are removed
from the CFD mesh). This conversion can be easily done thanks to
4

the multiblock-structured nature of the mesh with matching cell faces.
Figs. 5(a) and 5(c) represent the same planes, once the domain is
converted, of Figs. 3(a) and 3(b), respectively. As an example of the
transformed domain representation, Figs. 5(b) and 5(d) show how the
velocity field within the domain would be after 4 s of time evolution
(400 written timesteps).

4.1. Dataset generation

The CFD simulations have been performed with OpenFOAM v2006
and executed in Tirant III supercomputer at Universitat de València
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Fig. 5. NumPy representation of the domain with the shape (117, 86, 38) corresponding to dimensions X, Y, and Z, respectively. Range of X-axis: [0:116]. Range of Y-axis: [0:85]
in (c) and (d). Range of Z-axis[0:37] in (a) and (b).
(UV). The servers in this platform are equipped of two Intel Xeon
SandyBridge E5-2670 sockets, and 32 GB of main memory.

The dataset used for training and evaluating the neural network is
composed of 31 transient CFD simulations. Details about these simula-
tions and how they have been preprocessed to conform the dataset are
described next.

4.1.1. CFD simulations
The inflow conditions proposed by [33,34] were used to ensure

a homogeneous Atmospheric Boundary Layer (ABL). They are imple-
mented in OpenFOAM as the following utilities:

• atmBoundaryLayerInletVelocity defines the average wind
velocity profile represented by the logarithmic law:

𝑈 (𝑧) = 𝑢∗

𝜅
ln
(

𝑧 + 𝑧0
𝑧0

)

, (1)

where 𝜅 is the von Karman constant (𝜅 = 0.4), 𝑧0 [m] is the aero-
dynamic roughness length, and 𝑢∗ [m/s] is the friction velocity,
given by

𝑢∗ =
𝜅𝑢𝑟𝑒𝑓

ln
( 𝑧𝑟𝑒𝑓+𝑧0

𝑧0

) , (2)

where 𝑢𝑟𝑒𝑓 [m/s] is the user-defined reference velocity at a refer-
ence height 𝑧𝑟𝑒𝑓 [m].

• atmBoundaryLayerInletK defines the default generalized
log-law for the turbulent kinetic energy.

• atmBoundaryLayerInletOmega defines the default inlet pro-
file for the specific dissipation of the eddies.

Notice that slip (free-slip) conditions are used for the lateral and top
boundaries of the domain; while zero gradient condition is applied to
the outflow boundary.

The transient CFD simulations were initialized from a common
steady-state CFD simulation to ensure an adequate smooth initialization
5

of the transient solver. The steady-state simulation used a constant inlet
profile with 𝑢𝑟𝑒𝑓 = 1 m∕s, 𝑧𝑟𝑒𝑓 = 0.15 m and 𝑧𝑜 = 0.001 m and was run
up to convergence, defined at a root mean square error (RMSE) lower
than 10−4.

In these experiments, the transient simulations are run to simulate
flow evolution to 𝑡 = 6.51 s with a solving timestep of 0.001 s and a
writing interval of 10. At second 6.51 the residual thresholds of the
solver convergence criteria are lower than an RMSE of 10−5 for all
variables.

In this regard, solutions are written to disk every 0.01 s of flow time.
Consequently, DNN predicted timesteps comprise 0.01 s. During the
first 0.5 s of evolution, 𝑢𝑟𝑒𝑓 is linearly increased from its initial value
(1 m∕s) up to a value 𝑢𝑟𝑒𝑓 ,𝑒𝑛𝑑 , keeping this value for the rest of the
execution. A total of 31 simulations were launched with 𝑢𝑟𝑒𝑓 ,𝑒𝑛𝑑 rang-
ing between 3 m∕s (minimum velocity profile) and 6 m∕s (maximum
velocity profile) in steps of 0.1 m∕s. Fig. 6 represents the minimum and
maximum wind profiles. These profiles show, for each height (Y-axis),
the expected velocity (X-axis). Notice that all the profiles configurations
of 𝑢𝑟𝑒𝑓 ,𝑒𝑛𝑑 lie within these bounds.

4.1.2. Data preprocessing
The dataset generation stage involves the methods of filtering,

remapping, reshaping, standardizing, and splitting the data in order to
produce a dataset that feeds the deep convolutional neural network.

In this work, only the velocity field (in its three dimensions) within
the physical domain is taken into account. For this reason, pressure
or turbulence-related metrics are filtered out from raw data. Further-
more, the DNN training was focused on just the first two seconds of
time evolution, which involves 200 written timesteps of the transient
simulations. Simulations up to 𝑡 = 2 s contain enough information for
fitting the predictive model. After completion of this process, the initial
dataset is composed of 31 cases of 200 timesteps each, with 374,400
three-component vectors corresponding to the velocity in the mesh cell
locations.
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Fig. 6. Inflow profiles for the cases with maximum and minimum values for 𝑢𝑟𝑒𝑓 ,𝑒𝑛𝑑 .

As described in Section 3, the domain studied in this work relies
n a structured mesh. To leverage the spatial arrangement of data,
he next step rearranges the velocity flat array of 374,400 elements
nto a 3D space adapted to the convolutional kernels. The resultant
omain, with dimension 117 × 86 × 38 (X, Y, and Z, respectively),
ounts with a total of 382,356 cells. Furthermore, the domain contains
956 additional cells than the OpenFOAM flat array. These extra cells
re associated with the buildings, and they are necessary for computing
D convolutions. At this point, the dataset shape is 31 × 200 × 117 ×
6 × 38 × 3, respectively describing the number of cases, number of
ritten timesteps per case, cells in domain dimension X, cells in domain
imension Y, cells in domain dimension Z, and velocity dimensions.

Since the proposed predictive model handles the velocity in three
ifferent neural networks, one per velocity dimension, the shape of
ach dataset is 31 × 200 × 117 × 86 × 38, where the components
espectively correspond to the number of cases, number of written
imesteps per case, cells in domain dimension X, cells in domain
imension Y, cells in domain dimension Z. Velocity values are then
ransformed to have a distribution of mean zero and standard deviation
f one. The resultant dataset has a size in memory of 26.49 GB. Values
re stored in a 32-bit floating point datatype.

Finally, the dataset is split into train and test subsets. In particular,
he cases are shuffled and 80% of them (for a total of 24 cases) are
ssigned to the training dataset, while the remaining seven cases to
he testing dataset. In addition 20% of the training cases are used for
ross-validation.

.2. CNN training and evaluation

The DNNs have been trained in CTE-Power at Barcelona Supercom-
uting Center (BSC) with the following software: Python 3.7.4, NumPy
.18.4, Scikit-learn 0.23.1, and Keras 2.4 over Tensorflow [35] 2.3.
ach CTE-Power node is equipped with two IBM Power9 8335-GTH
rocessors, 512 GB of main memory, and four GPU NVIDIA V100 with
6 GB HBM2.

The predictive model devised in this work is designed to provide
ulti-step predictions of a 3D variable. For this purpose, three indepen-
ent identical convolutional neural networks have been implemented,
ne for each velocity dimension.

These networks are composed of three 3D convolutional layers plus
dense layer, as Fig. 7 depicts. In the figure, for each layer, the

nput and output data shape is showcased. These layers expect data
o be formatted as (mini-batch size, height, width, depth, timesteps). The
ini-batch size is determined by the GPU memory which, for the
roposed model, cannot fit larger mini-batches, and the last dimension,
orresponding to the channels of the layers, is used to convey the
onsecutive timesteps.
6

Fig. 7. CNN architecture per velocity dimension. For each layer it is indicated its
type (leftmost) and the data shape in the input and output (rightmost). Dimensions at
layers’ input/output correspond to mini-batch size, width, height, depth, and channels,
respectively.

Table 1
Training epochs and time per neural network.

Dimension Epochs Time

X 34 9,644 s
Y 29 8,169 s
Z 47 13,378 s

Table 2
Aggregated errors of evaluation cases per velocity dimension.

Dim. MSE

Min. Max. Mean Std. dev.

X 8.31 × 10−4 1.03 × 10−1 6.75 × 10−3 5.20 × 10−4

Y 1.50 × 10−3 2.37 × 10−1 1.28 × 10−2 5.33 × 10−3

Z 1.78 × 10−3 1.74 × 10−1 1.69 × 10−2 2.16 × 10−3

The convolutional layers are configured with a kernel size of 3 ×
× 3 with a padding set to zero. Furthermore, the padding type is

efined to ‘‘same’’ which configures a same convolution where the
utput matrix is of the same dimension as the input matrix. The number
f filters defined for the three layers is 64, 128, and 64, respectively.
on-linearity in the convolutional layers is realized with the LeakyReLU

activation function, a variation of the rectified linear unit (ReLU) which
allows small positive gradients when the unit is not active [36].

The dense layer counts with the number of neurons corresponding
to the number of steps that will be predicted. Particularly, this layer is
configured with 10 neurons meaning that the prediction will return 10
written timesteps. This dense last layer is activated linearly since it is
a regression problem

It is important to note that the network expects three observation
samples as input. For this purpose, instead of using recurrent neural
networks, we have used the channels of the input layer (last parameter
of the input tensor) to convey the values of three consecutive written
timesteps of a dimension of the velocity.

Mini-batches are composed of four elements, and the model is
compiled with the Adam optimizer [37], with a learning rate of 0.0001,
to update weights and biases within the network, which relies on the
mean square error (MSE) loss function:

𝑀𝑆𝐸 = 1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑦′𝑖)

2. (3)

Each independent neural network, one per velocity dimension, has
been trained using a GPU of CTE-Power cluster. Table 1 compiles the
number of epochs and time employed in each training.

The model is evaluated with the test subset composed of seven cases.
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Fig. 8. CFD and Hybrid results comparison for six velocity magnitude profiles in a vertical plane 𝑌 = 0 for different three times. (a, c, e) Comparisons of the vertical profiles; (b,
d, f) Comparisons of the percentage difference.
Table 2 shows the absolute errors of the evaluation for this sub-
dataset. In this regard, testing cases have been independently evalu-
ated and their errors aggregated with minimum, maximum, mean and
standard deviation per dimension.

When predicting the dimension X of velocity, the model is able to
provide lower errors than for the other dimensions. Since the wind
blows from the 𝑋-axis, this dimension contains more data diversity
and the model is likely to learn more patterns. In contrast, axes Y and
Z present more homogeneity in their data, which undermines pattern
detection. As a result, the model encounters more difficulties to learn
and predictions are not so accurate.

A priori, the evaluation errors are acceptable since all the values
have been standardized. Although maximum errors are not ideal, the
mean and the standard deviation show small errors with low variance.
7

5. Results

This section compares the hybrid model execution with the CFD
simulation, as well as their performance.

5.1. Hybrid model evaluation

Next, we illustrate the accuracy of the hybrid solver by performing
an in-depth analysis of one of the cases. Since the standard deviation
of the errors calculated during the evaluation of the predictive model
(see Table 2) shows little variations when predicting the different cases
of the test subdataset, an arbitrary case from the test dataset was
selected (𝑢 = 3.5 m∕s). In this subsection, we present the results
𝑟𝑒𝑓 ,𝑒𝑛𝑑



Journal of Computational Science 62 (2022) 101741S. Iserte et al.
Fig. 9. CFD and Hybrid results comparison for six velocity magnitude profiles in a horizontal plane 𝑧 = 0.1 m for different three times. (a, c, e) Comparisons of the horizontal
profiles; (b, d, f) Comparisons of the percentage difference.
obtained with the proposed hybrid solver in different temporal and
spatial points.

Fig. 8 compares the resulting velocities of the CFD and hybrid
solvers in three different instants: 𝑡 = 2 s, 𝑡 = 4 s, and 𝑡 = 6 s. Figs. 8(a),
8(c), and 8(e) compare the velocity profiles at six vertical lines in the
ZX plane, specifically at locations: 𝑥∕𝑏 = −11, −7.54, −3, −1, 1, and
3. Notice that 𝑥∕𝑏 in the 𝑋-axis and 𝑧∕𝑏 in the 𝑌 -axis represent the
non-dimensional horizontal and vertical distance, respectively. From
these results, it is patent that the hybrid solver can properly capture
the spatial–temporal evolution of the flow for most locations at any
time. Only a small deviation from the CFD is observed at line 𝑥∕𝑏 = 1
for 𝑡 = 4 s, where the velocity magnitude is slightly under-predicted
8

by the hybrid model. Figs. 8(b), 8(d), and 8(f) directly compare the
velocities at the same locations of their peer Figs. 8(a), 8(c), and 8(e),
respectively. The plots showcase the strong correlation in the studied
points between CFD and hybrid solvers. Some discrepancies appear for
the lowest velocities due to the recirculation regions behind the blocks,
particularly in the high-rise building. Overall, the deviations remain
below 20%, especially for high-velocity values.

Fig. 9 shows the results corresponding to a horizontal plane 𝑍 = 0.1
m, close to the ground. Again, some discrepancies are observed in
the space between blocks, particularly behind the high-rise building
due to the complex eddies generated behind it. Hybrid results at the
majority points are adequate, with an average velocity difference lower
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Fig. 10. The velocity vectors and contours in a vertical plane at 𝑌 = 0 for CFD simulation (top) and Hybrid (bottom) at 𝑡 = 6.51 s.
Fig. 11. The velocity vectors and contours in a horizontal plane at 𝑍 = 0.05 m for
CFD simulation (top) and Hybrid (bottom) at 𝑡 = 6.51 s.

than 20%. The differences in a few locations are higher than 30%
characterized by under-predicting the CFD results as mentioned above.

Finally, Figs. 10 and 11 present the mean velocity contours and
vectors in vertical (plane 𝑌 = 0) and horizontal (plane 𝑍 = 0.05 m)
cross-sections. These results demonstrate that the CFD-DNN model cap-
tures the main trends of the flow, especially for the separation region
around the blocks and recirculation region behind blocks, despite the
small deviations in velocity values.

5.2. Performance analysis

Once the hybrid solver is validated, in this section, we study its
performance in terms of time compared with the traditional CFD solver.

The interleaved predictions provided by the DNN in the hybrid
solver are expected to reduce the time-to-solution by accelerating the
flow simulation. For this purpose, the execution of the simulation case
described in the previous section, (𝑢𝑟𝑒𝑓 ,𝑒𝑛𝑑 = 3.5 m∕s), is analyzed. All
the executions described in this section have been run on a single core
of a Tirant III server in an effort to provide a fair comparison.

For evaluation purposes, the flow evolution has been extended
to second 6.51 of the simulation, calculating a total of 652 writ-
ten timesteps. Table 3 compares the experiment execution times for
9

Table 3
Execution time comparison of case 𝑢𝑟𝑒𝑓 ,𝑒𝑛𝑑 = 3.5 m∕s.

Solvers #Simulated TS #Predicted TS Execution time

CFD 652 0 15,891.16 s
Hybrid 322 330 11,018.57 s

Table 4
Stages of a hybrid simulation. Notice that times in the time evolution stage are the
average of the 32 cycles values.

Stage Operation #Written
timesteps

Time

1. Boot Initialization – 2.08 s
Simulation 2 75.10 s

2. Inference
Generate DS – 5.57 s
Prediction 10 38.20 s
Regenerate DS – 11.59 s

3. Time evolution
(32 cycles)

Simulation 10 284.81 s
Inference stage 10 55.36 s

both approaches. The CFD solver computes all timesteps in nearly
15,900 s. The hybrid solver combines CFD and DNN leverages Open-
FOAM to calculate 322 written timesteps and the DNN to infer 330
predicted timesteps. The results reveal that the hybrid solver reduces
the execution time by more than 30%.

In more detail, Table 4 analyzes the stages of the hybrid solver
workflow digging deeper into its operations.

The workflow begins with an initialization of the necessary data
structures and file systems. During this operation, the predictive model
is also loaded in memory.

The boot stage also involves a two-written timestep CFD simulation,
starting from the steady-state initialization (𝑡 = 0 s) to end at 𝑡 = 0.02
s. The three resulting written timesteps are used for the first inference
of 10 predicted timesteps.

The inference stage comprehends the operations of generating the
dataset (T) for feeding the predictive model, the prediction, and the
conversion (P) of the predicted timesteps into the OpenFOAM format,
to continue with the simulation (recall Fig. 4).

Finally, in the time evolution stage, the hybrid solver performs 32
cycles that combine CFD simulation and DNN inference. Particularly,
every cycle is composed of 10 written timesteps and 10 predicted
timesteps.

6. Conclusions

This paper presents a novel hybrid methodology that combines CFD
calculations and DNN. Compared with the variety of approaches that
are being taken to integrate AI with physics simulations, the hybrid
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model proposes an intermediate solution between the traditional CFD
simulations and the continuous spatial–temporal flow inferences. The
results show a significant reduction of the execution time (over 30%),
while the errors in the velocity values remain typically below 10%, with
some conflictive locations in the vortex shredding regions behind the
buildings (30% error). The execution time savings could be exacerbated
by reducing the ratio between the number of CFD resolved written
timesteps and the number of DNN predicted timesteps, at the expense
of increasing errors in the velocity field.

The hybrid solver has been proved as an interesting tool for large
sets of massive simulations. The training took 8.6 GPU-hours, and the
dataset generation around 31.2 CPU-hours (1.3 CPU-hours per case
for a total of 24 two-second long cases). The simulation of a case,
up to 𝑡 = 6.51 s, using the hybrid solver needs 1.3 CPU-hours (as

able 3 showcased) less than the CFD solver. For this reason, the hybrid
odel demonstrates that its training cost is amortized in the long run,

specially when resorting to paying-per-use facilities.
In summary, the hybrid CFD-DNN solver can reduce the time-to-

olution while delivering sufficient accuracy.
The authors have limited the study to a proof of concept that, once

alidated, can be scaled to other types of flows. Hence, there is still
oom for improvement in the accuracy of the predictions, which is
lanned as future work: for instance, expanding the training dataset
ith other wind directions, or cases or tuning the network model hy-
erparameters. Also, designing specific models for the different velocity
imensions, or even other types of neural networks such as geometric
raph-based, could pose important benefits and extend the flexibility
f the presented solution to be adopted in other types of meshes.

Particularly, the authors aim to apply hybrid simulations for gener-
ting datasets of transient flows in a fraction of the time that common
FD simulations would take. In this regard, the methodology presented

n this paper is enormously useful to create a dataset of converged sim-
lations of a given case. The generated dataset provides an invaluable
ool that can be used in other predictive models or analyses.

All the code developed in this work can be found in https://github.
om/siserte/HybridCFDML.
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