
MOMENT: A Formal Framework for MOdel managemMENT

by

Artur Boronat

Submitted to the Department of Information Systems and Computation

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

at the Universitat Politècnica de València

June 2007

Supervisors:

José Meseguer, Isidro Ramos and José Á. Carśı

Table of Contents

Chapter 1: Introduction . 7

Introduction . 7
1.1 Structure of the Document . 8

I Foundations 9

Chapter 2: Presentation of the Problem . 11
2.1 The MOF Modeling Framework . 11
2.2 Discussion on the Current MOF Standard . 13
2.3 OCL Constraints in MOF Metamodels . 15

2.3.1 A Brief Overview of OCL . 15
2.3.2 Context of OCL Expressions . 16
2.3.3 OCL Constraint Satisfaction . 17

2.4 Open Problems . 18

Chapter 3: Related Work . 21
3.1 Formal Semantics of Concepts in Model-Driven Development 21

3.1.1 Model . 21
3.1.2 Metamodel . 22

3.2 Formal Metamodeling Approaches . 23
3.2.1 Formal UML Modeling Environments: The MOVA Framework 24
3.2.2 Graph-based Metamodeling Frameworks . 25

AGG . 25
AToM3 . 25
VIATRA2 . 26

3.2.3 Model Checking Graph Transformations . 26
3.2.4 Discussion: Motivating our Approach . 26

3.3 Antecedents . 29

Chapter 4: Preliminary Concepts . 31
4.1 Membership Equational Logic . 31
4.2 Reflection . 32
4.3 Maude . 32

4.3.1 Parameterized programming . 34

II A Formal MOF Framework 37

Chapter 5: A High-Level View of the MOF Algebraic Semantics 39
5.1 Informal Semantics of MOF . 39
5.2 A High-Level View of the MOF Metamodel Algebraic Semantics 40

5.3 Formalization of the MOF Reflection support . 42
5.4 Discussion about the Algebraic Semantics of MOF Metamodels 43

Chapter 6: An Algebraic Structural Conformance Relation 47
6.1 A Generic Infrastructure of Parameterized Theories 49

6.1.1 Primitive Type Theories . 49
6.1.2 OCL Collection Types . 50

Undefined Values . 52
6.1.3 The OCL-DATATYPE-COLLECTIONS theory . 53
6.1.4 The MODEL theory . 53
6.1.5 The EXT-MODEL theory . 55

6.2 Algebraic Semantics of the MOF Metamodel . 55
6.2.1 Algebraic Semantics of MOF Object Types 57

NamedElement . 58
Type . 58
Class . 59
Property . 59
DataType . 61
PrimitiveType . 61
Enumeration and EnumerationLiteral 62
Package . 63

6.2.2 Algebraic Semantics of MOF Model Types 64
6.2.3 Structure of a Metamodel Definition . 64

Graph structure . 65
Tree structure . 68
Type Definitions in �MOF . 72
The Specialization Relation s . 72
Additional Semantics . 73

6.2.4 Graphical Representation of MOF Metamodel Definitions �M 75
6.3 Algebraic Semantics of MOF Metamodels Static Structure 76

6.3.1 Generic Semantics of any Metamodel Definition �M 77
Graph Structure . 78
Tree structure . 79
Structure Definition . 82

6.3.2 Specific Semantics of a Metamodel Definition �M 87
Package . 88
Enumeration Types . 90
Primitive Types . 91
Object Types . 91
Algebraic Semantics of Object Types OT . 93
Object Type Names . 93
Object Type Identifiers . 94
Object Type Properties . 95
Object Type Specialization Relation s . 97
Algebraic Semantics of the Specialization Relation s 98

6.3.3 Name Strategy . 98
6.4 Reflecting the Algebraic Semantics: the Reflect Operator. 99
6.5 Reifying the Algebraic Semantics: the Inverse Step. 100
6.6 Summary . 100

Chapter 7: Algebraic Constrained Conformance Relation 103
7.1 Algebraic Semantics of the OCL Metamodel . 104

7.1.1 Abstract Syntax of the OCL Language . 105
7.2 Algebraic Semantics of OCL Predefined Operators 107

7.2.1 Primitive Type Theories . 108
7.2.2 The ENVIRONMENT Theory . 111
7.2.3 The OCL-COLLECTIONS{T :: TRIV} Theory . 112

Common Operators . 113
Regular Collection Operators . 113
Iterator Operators . 114
Iterate Operator . 118

7.2.4 The MODEL{OBJ :: TH-OBJECT} Theory . 120
Common Operations . 120
User-defined Operations . 121
OclAny . 122
OclType . 123

7.3 Algebraic Semantics of the reflect Function . 124
7.3.1 Preliminary concepts and functions . 125
7.3.2 User-Defined OCL Type Operators: getExpTheory 129

IfExp . 130
IterateExp . 130
IteratorExp . 131
LetExp . 133
LiteralExp . 134
OperationCallExp . 134
PropertyCallExp . 134
VariableExp . 136
TypeExp . 136

7.3.3 Algebraic Semantics of OCL Expressions: getExpTerm 136
IfExp . 137
IterateExp . 137
IteratorExp . 139
LetExp . 139
LiteralExp . 139
OperationCallExp . 142
PropertyCallExp . 149
VariableExp . 149
TypeExp . 149

7.3.4 Name Strategy . 150
7.3.5 Complete Example . 150

7.4 Algebraic Semantics of the Constrained Conformance Relation 152
7.4.1 Discussion: Non-Determinism in OCL Expressions 153
7.4.2 Unspecified Part of the OCL Language . 154

Chapter 8: Formalizing the MOF Reflection Facilities 157
8.1 Informal Introduction to the MOF Reflective Facilities 158

8.1.1 Discussion on the MOF Reflective Facilities 160
Element object type . 161
ReflectiveCollection and ReflectiveSequence object types 161
Null values . 161
Only side-effect free operators . 161

8.2 Semantics of the MOF Reflection Facilities . 161
8.2.1 The META-MODEL theory . 163
8.2.2 Semantics of the MOF Object object type 167
8.2.3 Semantics of the MOF Object Operations 168

8.3 Summary . 174

III Applications 175

Chapter 9: Tools and Applications . 177
9.1 Interoperating Conventional and algebraic MOF frameworks 177

9.1.1 Interoperating the EMF and our MOF Algebraic Framework 178
Our algebraic MOF framework as an Eclipse plugin 178
Pending work . 180
Considering other Modeling Frameworks . 180

9.2 MOMENT-OCL . 181
9.3 MOMENT-QVT . 183

9.3.1 The QVT Relations Language and the ModelGen Operator 183
9.3.2 Overview of a model transformation in MOMENT-QVT 184
9.3.3 MOMENT-QVT . 186
9.3.4 Applications . 188

MOMENT Case . 188
Bioinformatics . 188
Software Metrics . 189

9.4 MOMENT: Model Management within the EMF. 189
9.4.1 Case studies . 191

Change propagation . 191
Merging UML Class Diagrams . 194
Exogenous Model Merging . 194

9.4.2 Pending work . 194
9.5 Relationships to Graph Rewriting . 195

9.5.1 Graph Rewriting Concepts in our Algebraic Framework 195
9.5.2 Graph Rewriting as Term Rewriting Modulo AC 196

Conclusions 205

Chapter 10: Conclusions and Future Work . 205
10.1 The Advantages of Rewriting Logic and Maude . 206
10.2 Summary of Contributions . 207
10.3 Future Work . 207
10.4 Open Research Areas . 208

10.4.1 Metamodeling Aspects . 208
10.4.2 Precise Model Transformation and Model Management 208
10.4.3 Model-based Formal Verification Techniques 208
10.4.4 Bridging the Gap Between Grammarware and Modelware 209

References . 211

Appendixes 221

Appendix A: The MOF Theory . 221

Appendix B: The RDBMS Metamodel Definition . 225

Appendix C: The RDBMS theory . 237

Appendix D: The rsPerson relational schema definition 239

Appendix E: The metarepresented rsPerson relational schema definition 243

Appendix F: Algebraic Specification of OCL Collection Operators 251

List of Tables

3.1 Comparative study. 27

6.1 Generic collection types instantiated with a sort s, depending on multiplicity metadata. 96

7.1 Correspondence between MOF and Maude basic data type operators. 109
7.2 Semantics of boolean operators. 110
7.3 OCL Collection Operators Classified by their Returning Types 112

List of Figures

2.1 isValueOf and structural conformance relations. 11
2.2 The MOF framework . 12
2.3 Reflection. 14
2.4 The MOF reflective tower . 14

5.1 M2 sublevels. 43
5.2 M1 sublevels. 43
5.3 Infrastructure of parameterized theories. 45

6.1 Infrastructure of parameterized theories. 49
6.2 Subsort Structure of our Specification of the OCL Type System. 51
6.3 Simplification of the EMOF metamodel, in UML notation. 56
6.4 Graphical representation of part of the metamodel definition �MOF as a graph. . . . 66
6.5 Tree structure of a metamodel �M : MOF. 68
6.6 Tree view of part of the metamodel definition �MOF. 69
6.7 Graphical representation of the model type definition �RDBMS. 76
6.8 Metamodel definition with two root object types. 82
6.9 Metamodel definition with a single root object type. 82

7.1 Expressions package of the OCL metamodel: core part. 105
7.2 Expressions package of the OCL metamodel: ifThen expressions. 105
7.3 Expressions package of the OCL metamodel: let expressions. 106
7.4 Expressions package of the OCL metamodel: literal expressions. 106
7.5 Expressions package of the OCL metamodel: loop expressions. 106
7.6 Parameterized theories that provide the predefined OCL operators. 109
7.7 Metamodel definition �Example as a class diagram. 115
7.8 A relational schema. 117

8.1 The MOF Reflection API . 159
8.2 The MOF Reflection API . 159
8.3 Manipulation of an object by means of the MOF Reflective Facilities. 162
8.4 Manipulation of a model definition by means of the MOF Reflective Facilities. 162
8.5 The MOF Reflection API . 163

9.1 The algebraic MOF framework into the Eclipse platform. 179
9.2 Tree editor of the MOMENT-OCL tool. 181
9.3 Evaluation of OCL expressions in the MOMENT-OCL tool. 182
9.4 Console view of the MOMENT-OCL tool. 182
9.5 Overview of the architecture of the MOMENT-OCL tool. 183
9.6 Example of Model Transformation. 185
9.7 Example of Model Transformation. 185
9.8 Defining a model transformation. 187
9.9 Parsing a model transformation definition. 187
9.10 Invocation of a model transformation. 187

9.11 Traceability editor. 188
9.12 Graphical editor for the RDBMS metamodel in MOMENT Case. 189
9.13 Traceability Management Operators. 190
9.14 An example of change propagation. 192
9.15 Schematization of the case study problem. 192
9.16 Solution of the case study problem. 193
9.17 The �PacMan metamodel. 196
9.18 Typed attributed graph representing the initial state of a PacMan game. 197
9.19 Three solutions of the PacMan game. 197
9.20 Graphical representation of the collect production rule of the PacMan game. 197
9.21 Graphical representation of the movePM production rule of the PacMan game. . . . 197
9.22 Graphical representation of the kill production rule of the PacMan game. 198
9.23 Graphical representation of the moveGhost production rule of the PacMan game. . . 198

Abstract

Model-Driven Development is a field in Software Engineering that, for several years, has repre-
sented software artifacts as models in order to improve productivity, quality, and cost effectiveness.
Models provide a more abstract description of a software artifact than the final code of the appli-
cation. In this field, Model-Driven Architecture (MDA) is an initiative, sponsored by the OMG,
that is constituted by a family of industry standards including: Meta-Object Facility (MOF), Uni-
fied Modeling Language (UML), Object Constraint Language (OCL), XML Metadata Interchange
(XMI), and Query/Views/Transformations (QVT). These standards provide common guidelines for
model-based tools and processes in order to improve interoperability among executable frameworks,
automation in the software development process, and analysis techniques to avoid errors during this
process.

The MOF standard describes a generic framework where the abstract syntax of modeling lan-
guages can be defined. This standard aims at offering a good basis for Model-Driven Development
processes, providing some of the building blocks that are needed to support a Model-Driven Devel-
opment approach: what is a model, what is a metamodel, what is reflection in a MOF framework,
etc. However, most of these concepts lack at present a formal semantics in the current MOF stan-
dard. Furthermore, OCL is a constraint definition language that permits adding semantics to a
MOF metamodel. Unfortunately, the relation between a metamodel and its OCL constraints also
lacks a formal semantics. This is, in part, due to the fact that metamodels can only be defined as
data in the MOF framework.

The MOF standard also provides the so-called MOF-Reflection facilities, by means of a generic
API, to manipulate software artifacts that are made up out of objects. Broadly speaking, reflection
is the capacity to represent entities that have a formal semantics at a base level, such as types, as
data at a metalevel. Metalevel entities, once metarepresented, can be computationally manipulated
and transformed. This notion of reflection is still not supported in the MOF standard.

In this dissertation, we define a reflective, algebraic, executable framework for precise meta-
modeling that provides support for the MOF and the OCL standards. On the one hand, our
formal framework provides a formal semantics for the building blocks that are usually involved in
a Model-Driven Development process. On the other hand, our framework provides an executable
environment that is plugged into the Eclipse Modeling Framework (EMF) and that constitutes the
kernel of a model management framework, supporting model transformations and formal verification
techniques. The main contributions of this dissertation are:

• The formal definition of the following notions: metamodel, model, OCL constraint satisfaction,
and metamodel conformance. We clearly distinguish the different roles that the notion of
metamodel usually plays in the literature: as data, as type and as theory. In addition, we have
defined new notions: metamodel specification, capturing the relationship between a metamodel
and its OCL constraints; metamodel realization, referring to the mathematical representation
of a metamodel; and model type and constrained model type, allowing models to be considered
as first-class citizens.

• A formal executable mechanism for metamodel reflection in the MOF framework, so that
metamodels and models can be manipulated in a generic way.

• An algebraic executable metamodeling framework that is plugged into the Eclipse Model-

ing Framework, constituting a high-level prototyping environment to experiment with model
management tasks where formal verification techniques can be applied.

• A set of prototypes that validate the ideas and notions that have been mathematically defined
in this dissertation. These tools provide: OCL constraint validation and OCL query facilities,
QVT-based model transformations, and model management tasks by means of generic algebraic
operators. Some of these prototypes have already been applied in other universities to explore
new areas of research, and in industry. Furthermore, we have shown how our algebraic MOF
framework enables the application of formal verification techniques to graph rewriting systems
with a simple example.

The outcome of this dissertation constitutes a mathematical executable framework, where formal
methods can be applied to several areas of Software Engineering: precise definition of model-based
domain-specific languages, model-based formal verification techniques (reachability analysis, model
checking, inductive theorem proving, OCL constraint validation, among others), formal definition
of model management tasks (model transformation, model merging, traceability support, among
others), as well as their application to specific case studies.

Some preliminary experiments related with this dissertation have appeared in [1, 2, 3, 4]. Parts
of this work have appeared in [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].

Keywords: MOF, OCL, Model-Driven Development, Membership Equational Logic, model man-
agement, mathematical metamodeling, structural reflection.

Resumen

El Desarrollo de Software Dirigido por Modelos es una rama de la Ingenieŕıa del Software en la
que los artefactos software se representan como modelos para incrementar la productividad, cal-
idad y eficiencia económica en el proceso de desarrollo de software, donde un modelo propor-
ciona una representación abstracta del código final de una aplicación. En este campo, la inicia-
tiva Model-Driven Architecture (MDA), patrocinada por la OMG, está constituida por una familia
de estándares industriales, entre los que se destacan: Meta-Object Facility (MOF), Unified Mod-
eling Language (UML), Object Constraint Language (OCL), XML Metadata Interchange (XMI),
y Query/Views/Transformations (QVT). Estos estándares proporcionan unas directrices comunes
para herramientas basadas en modelos y para procesos de desarrollo de software dirigidos por mod-
elos. Su objetivo consiste en mejorar la interoperabilidad entre marcos de trabajo ejecutables, en
automatizar el proceso desarrollo de software de software y en proporcionar técnicas que eviten
errores durante ese proceso.

El estándar MOF describe un marco de trabajo genérico que permite definir la sintaxis abstracta
de lenguajes de modelado. Este estándar persigue la definición de los conceptos básicos que son
utilizados en procesos de desarrollo de software dirigidos por modelos: qué es un modelo, qué es un
metamodelo, qué es reflexión en un marco de trabajo basado en MOF, etc. Sin embargo, la mayoŕıa
de estos conceptos carecen de una semántica formal en la versión actual del estándar MOF. Además,
OCL se utiliza como un lenguage de definición de restricciones que permite añadir semántica a un
metamodelo MOF. Desafortunadamente, la relación entre un metamodelo y sus restricciones OCL
también carece de una semántica formal. Este hecho es debido, en parte, a que los metamodelos
sólo pueden ser definidos como dato en un marco de trabajo basado en MOF.

El estándar MOF también proporciona las llamadas facilidades de reflexión de MOF (MOF Re-
flection facilities), mediante una API genérica que permite manipular artefactos software que están
compuestos por objetos. De manera informal, reflexión es la capacidad para representar entidades
que tienen una semántica formal en un nivel base, como por ejemplo tipos, como datos en un
metanivel. Las entidades del metanivel pueden ser computacionalmente manipuladas y transfor-
madas. Esta noción de reflexión aún no está soportada en el estándar MOF.

En esta tesis, se define un marco de trabajo reflexivo, algebraico y ejecutable para el metamod-
elado preciso, que proporciona soporte para los estándares MOF y OCL. Por una parte, nuestra
aproximación proporciona una definición formal de las nociones básicas que se utilizan en procesos
de desarrollo de software dirigidos por modelos. Por otra parte, nuestro marco de trabajo pro-
porciona un entorno ejecutable que está integrado en la herramienta Eclipse Modeling Framework
(EMF), y que constituye el núcleo de una herramienta de gestión de modelos, dando soporte a
transformaciones de modelos y técnicas de verificación formal. Las principales contribuciones de
esta tesis son:

• La definición formal de las siguientes nociones: metamodelo, modelo, satisfacción de restric-
ciones OCL, y corrección sintáctica de un modelo. En este trabajo se distingue de una manera
clara las diferentes situaciones en las que se utiliza el concepto de metamodelo en la literatura:
como dato, como tipo y como teoŕıa. Con este objetivo, se han definido, además, las sigu-
ientes nociones: especificación de metamodelo, capturando la relación entre un metamodelo y
sus restricciones OCL; realización de un metamodelo, haciendo referencia a la representación
matemática de un metamodelo; y tipo de modelo y tipo de modelo con restricciones, permi-

tiendo definir modelos como entidades de primer orden.

• Un mecanismo formal y ejecutable de reflexión de metamodelos en el marco de trabajo MOF,
de manera que modelos y metamodelos se pueden manipular de manera genérica.

• Un marco de metamodelado algebraico y ejecutable que está integrado en Eclipse Modeling
Framework, constituyendo un prototipo de alto nivel para expermientar con tareas de gestión
de modelos, en las que se pueden aplicar técnicas de verificación formal.

• Un conjunto de prototipos que validan las ideas y nociones que se han definido matemáticamente
en esta tesis. Estas herramientas proporcionan: facilidades para la validación de restricciones
OCL y evaluación de consultas OCL, transformaciones de modelos basadas en QVT, y gestión
de modelos mediante operadores algebraicos genéricos. Algunos de estos prototipos se han
aplicado en otras universidades para explorar nuevas áreas de investigación, y también en in-
dustria. Además, se ha presentado cómo se pueden aplicar técnicas de verificación formal a
un sistema de reescritura de grafos en nuestro marco de trabajo MOF mediante un ejemplo
sencillo.

El resultado de esta tesis constituye un prototipo de metamodelado matemático y ejecutable,
donde métodos formales se pueden aplicar a varias áreas de la Ingenieŕıa del Software: definición
precisa de lenguajes espećıficos de dominio basados en modelos, técnicas de verificación formal
basadas en modelos (análisis de alcanzabilidad, model checking, demostración inductiva de teoremas,
validación de restricciones OCL, entre otras), definición formal de tareas de gestión de modelos
(transformación de modelos, integración de modelos, soporte para trazabilidad, entre otros), y sus
aplicaciones a casos de estudio espećıficos.

Algunos experimentos preliminares fueron publicados en [1, 2, 3, 4]. Algunas partes de este
trabajo han aparecido en [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].

Palabras clave: MOF, OCL, Desarrollo de Software Dirigido por Modelos, Lógica Ecuacional de
Pertenencia, gestión de modelos, metamodelado matemático, reflexión estructural.

Resum

El Desenvolupament de Programari Dirigit per Models és una branca de l’Enginyeria del Progra-
mari, on els artefactes de programari es representen com models per a incrementar la productivi-
tat, qualitat i eficiència econòmica en el procés de desenvolupament de programari, on un model
proporciona una representació abstracta del codi final d’una aplicació. En aquest camp, la inicia-
tiva Model-Driven Architecture (MDA), patrocinada per l’OMG, està constitüıda per una famı́lia
d’estàndars industrials, entre els quals destaquem: Meta-Object Facility (MOF), Unified Model-
ing Language (UML), Object Constraint Language (OCL), XML Metadata Interchange (XMI), i
Query/Views/Transformations (QVT). Aquestos estàndars proporcionen unes directrius comunes
per a eines basades en models i per a processos de desenvolupament de programari dirigits per mod-
els. El seu objectiu consisteix en millorar la interoperabilitat entre marcs de treball executables,
en automatitzar el procés de desenvolupament de programri i en proporcionar tècniques que eviten
errors durant aquest procés.

L’estàndar MOF descriu un marc de treball genèric que permet definir la sintaxi abstracta de
llenguatges de modelat. Aquest estàndar persegueix la definició dels fonaments per a processos de
desenvolupament de programari dirigits per models: què és un model, què es un metamodel, què és la
reflexió en un marc de treball basat en MOF, etc. No obstant això, la majoria d’aquestos conceptes
manquen d’una semàntica formal en la versió actual de l’estàndar MOF. A més a més, OCL s’empra
com un llenguatge de definició de restriccions que permet afegir semàntica a un metamodel MOF.
Malauradament, la relació entre un metamodel i les seues restriccions OCL també manquen d’una
semàntica formal. Aquest fet es deu, en part, a que els metamodels únicament poden ser definits
com a data en un marc de treball basat en MOF.

L’estàndar MOF també proporciona les anomenades facilitats de reflexió MOF (MOF Reflection
facilities), mitjançant una API genèrica que permet manipular artefactes de programari que estan
composats per objectes. De manera informal, reflexió es la capacitat per a representar entitats que
tenen una semàntica formal en un nivell base, com per exemple tipus, com a dades en un metanivell.
Les entitats del metanivell poden ser manipulades i transformades computacionalment. Aquesta
noció de reflexió encara no està suportada en l’estàndar MOF.

En aquesta tesi, es defineix un marc de treball reflexiu, algebraic i executable per al metamodelat
prećıs, proporcionant suport per als estàndars MOF i OCL. D’una banda, la nostra aproximació pro-
porciona una definició formal de les nocions bàsiques que s’empren en processos de desenvolupament
de programari dirigits per models. D’altra banda, el nostre marc de treball proporciona un entorn
executable que està integrat en l’eina Eclipse Modeling Framework (EMF), i que constitueix el nucli
d’una eina de gestió de models, donant suport a transformacions de models i tècniques de verificació
formal. Les principals constribucions d’aquesta tesi són:

• La definició formal de les següents nocions: metamodel, model, satisfacció de restriccions OCL,
i correcció sintàctica d’un model. En aquest treball es distingueix d’una manera clara les difer-
ents situacions en les quals s’empra el concepte de metamodel en la literatura: com a data,
com a tipus, i com a teoria. Amb aquest objectiu, s’han incorporat les següent nocions: es-
pecificació de metamodel, capturant la relació entre un metamodel i les seues restriccions OCL;
realització d’un metamodel, fent referència a la representació matemàtica d’un metamodel; i
tipus de model i tipus de model amb restriccions, permetent definir models com a entitats de
primer ordre.

• Un mecanisme formal i executable de reflexió de metamodels en el marc de treball MOF, de
manera que models i metamodels poden ser manipulats de manera genèrica.

• Un marc de metamodelat algebraic i executable que està integrat en Eclipse Modeling Frame-
work, constituint un prototip d’alt nivell per tal d’experimentar amb tasques de gestió de
models, en les quals es poden aplicar tècniques de verificació formal.

• Un conjunt de prototips que validen les idees i nocions que s’han definit matemàticament en
aquesta tesi. Aquestes eines proporcionen: facilitats per a la validació de restriccions OCL i
avaluació de consultes OCL, transformacions de models basades en QVT, i gestió de models
mitjançant operadors algebraics genèrics. Alguns d’aquestos prototips s’han aplicat en altres
universitats per a explorar noves àrees d’investigació. D’altres s’han aplicat en indústria. A
més a més, s’ha presentat com es poden aplicar tècniques de verificació formal a un sistema
de reescriptura de grafs en el nostre marc de treball MOF mitjançant un exemple senzill.

El resultat d’aquesta tesi constitueix un prototip de metamodelat matemàtic i executable, on
mètodes formals es poden aplicar a diverses àrees de l’Enginyeria del Software: definició formal de
llenguatges espećıfics a domini basats en models, tècniques de verificació formal basades en models
(anàlisi d’arribada, model checking, demostraci inductiva de teoremes, validació de restriccions OCL,
entre altres), definició formal de tasques de gestió de models (transformació de models, integració
de models, suport per a traçabilitat, entre altres), i les seues aplicacions a casos d’estudi espećıfics.

Alguns experiments preliminars foren publicats en [1, 2, 3, 4]. Algunes parts d’aquest treball
han aparegut en [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].

Paraules clau: MOF, OCL, Desenvolupament de Programari Dirigit per Models, Lògica Equa-
cional de Pertenència, gestió de models, metamodelat matemàtic, reflexió estructural.

1

Als maues pares, per l’esforç impagable que han realitzat per tal que pogués realitzar el meu somni.

Als meus germans, Salvador i Carles, que sempre m’han oferit la seua ajuda i estima.

A Fernando i Encarna, els meus nous pares.

A la meua muller, Vicky, per oferir-me la seua estima i rescolzament, fins i tot, a través de la
distància que ens ha separat a vegades. Bona part d’aquesta tesi li la dec a ella.

2

3

Acknowledgments

During the development of this thesis, I have met many people and I have learnt from all of them.
I am grateful to:
Isidro Ramos, because this thesis would not have been finished without his constant support, advice
and help. He has not only taught me values for research but also, and more important, for facing
life itself.
José Meseguer, who constitutes a source of motivation for me. I would like to thank him his warm
welcomes and his patience during my stays in Urbana and, later on, during conference calls. . .
José Á. Carśı, for trusting me and for his help in the experiences that we have enjoyed during the
development of this thesis.
The students, and friends, that have contributed to the development of this thesis, and without
whom its impact would not have been the same, specially to: Abel Gómez, Pascual Queralt, Joaqúın
Oriente, Luis Hoyos, José Iborra, and Julián Pedrós.
CapGemini S.L. España, specially to Pedro J. Molina and José Borrás, for trusting our work and
for their support.
I am also very grateful to the members of the ISSI group, to the participants in the DYNAMICA
and META projects, and to my friends in UIUC for making my stay a really nice experience, despite
the -20 ℃. Specially, to Santiago Escobar, for his advices, for his friendship and for such wonderful
walks under the moonlight.

5

Introduction

Chapter 1

Introduction

Model-Driven Development is a field in Software Engineering that, for several years, has represented
software artifacts as models in order to improve productivity, quality, and cost effectiveness. Models
provide a more abstract description of a software artifact than the final code of the application.
Roughly speaking, a model can be built by defining concepts and relationships. The set of primitives
that permit the definition of these elements constitutes what is called the metamodel of the model.

Interest in this field has grown in software development companies due to several factors. Previous
experiences with Model Integrated Computing [17] (where embedded systems are designed and tested
by means of models before generating them automatically) have shown that costs decrease in the
development process. The consolidation of UML as a design language for software engineers has
contributed to Model-Driven Development of software by means of several CASE tools that support
the definition of UML models and automated code generation. The emergence of important model-
driven initiatives such as the Model-Driven Architecture (MDA) [18, 19], which is supported by
OMG, and the Software Factories [20], which is supported by Microsoft, ensures a stock of model-
driven technologies for the near future.

Model-Driven Development has evolved into the field of Model-Driven Engineering [21], where
not only design and code generation tasks are involved, but also traceability, model management,
metamodeling issues, model interchange and persistence, etc. To fulfil these tasks, model trans-
formations and model queries are relevant tasks that must be solved. In the MDA context several
open-standards are proposed to handle these tasks. The standard Meta-Object Facility (MOF) stan-
dard [22] provides a framework to define metamodels. The standard Query/Views/Transformations
(QVT) standard [23] provides support for both transformations and queries. While model transfor-
mation technology is being developed, the Object Constraint Language (OCL)[24] remains the best
standard choice for queries.

The MOF standard describes a generic framework where the abstract syntax of modeling lan-
guages can be defined. This standard aims at offering a good basis for Model-Driven Development
processes and tool interoperability providing some of the building blocks that are needed to support
a Model-Driven Development approach: what is a model, what is a metamodel, what means that all
models that conform to a metamodel satisfy a set of OCL constraints, etc. However, as discussed in
Sections 2 and 3, most of these concepts lacks at present an actual semantics in the current MOF
standard. Furthermore, OCL is a constraint definition language that permits adding semantics to a
MOF metamodel. However, the relation between a metamodel and its OCL constrains lack a formal
semantics. This is, in part, due to the fact that metamodels can only be defined as data in the MOF
framework.

The MOF standard also provides the so-called MOF-Reflection facilities, by means of a generic
API, to manipulate software artifacts that are made up out of objects. Broadly speaking, reflection is
the capacity to represent entities that have a formal semantics at a base level, such as types, as data
at a metalevel. Reflection is a very powerful computational feature, because metalevel entities, once
metarepresented, can be computationally manipulated and transformed. Providing actual reflection
in the MOF framework requires that the metamodel notion should be formally defined. That is, a

8 Introduction

metamodel should be a mathematical entity, so that it can be represented as data, manipulated by
means of the MOF Reflection Facilities, and represented again as a mathematical entity.

In this work, we define a reflective, algebraic, executable framework for precise metamodeling
that provides support for the MOF and the OCL standards. On the one hand, our formal frame-
work aims at providing a formal semantics of the building blocks that are usually involved in a
Model-Driven Development process. On the other hand, our framework provides an executable en-
vironment that is plugged into the Eclipse Modeling Framework (EMF) [25] and that constitutes the
kernel of a model management framework, supporting model transformations and formal verification
techniques, among other features, as introduced in Section 9. To achieve these goals, we have chosen
Rewriting Logic (rl)[26] as the underlying formalism. In this work, we have made explicit use, for
the most part, of a subset of rl, namely, Membership Equational Logic (mel)[27].

1.1 Structure of the Document

In this work, we describe an algebraic metamodeling framework that provides support for MOF and
OCL concepts, and that is integrated with the Eclipse Modeling Framework. The structure of the
document is as follows:

Section 2 states the problem under study in this work, i.e., the main notions of a MOF-based
metamodeling approach, involving the MOF and OCL standards. In this section, we discuss
their meaning and we clearly distinguish the concepts that we study in detail throughout the
rest of the work.

Section 3 provides a summary of (sometimes semi-) formal approaches to deal with precise meta-
modeling and model transformations. In this section, we also describe some other works that
has been done in this direction using the same formalism as ours, namely, Membership Equa-
tional Logic (MEL).

Section 4 provides some preliminary concepts about the underlying formalism Membership Equa-
tional Logic and their executable representation in the Maude language.

Section 5 provides an overview of the algebraic metamodeling framework, introducing the infras-
tructure of parameterized mel theories that constitute the kernel of the framework.

Section 6 provides the formal semantics of the MOF metamodel, an automated reflection mech-
anism to define the formal semantics of any MOF metamodel, and a reification mechanism
to perform the inverse step. In this section, we provide a formal definition of the structural
conformance relation between a model and its metamodel.

Section 7 provides the algebraic semantics of the OCL language in our framework. In this Section,
we formalize the constrained conformance relation between a model and a metamodel with
OCL constraints.

Section 8 provides the algebraic semantics of the MOF Reflection Facilities by formalizing the
MOF Object object type, which permits querying and manipulating any object in a model
definition, independently of the corresponding object type. This feature gives full formal
support for the reflection notion in the MOF framework.

Section 9 provides a brief description of the integration of the algebraic metamodeling framework
into the Eclipse Modeling Framework. We also give an example of how graph rewriting can
be achieved by means of Rewriting Logic in our algebraic metamodeling framework.

Section 10 gives a comparison of our approach with other related approaches; summarizes the
main contributions of our work; and outlines some future work and open research areas.

9

Part I

Foundations

Chapter 2

Presentation of the Problem

The Meta Object Facility (MOF) [22] provides a metadata management framework and a set of
metadata services to enable the development and interoperability of model and metadata-driven
systems. Examples of these systems that use MOF include: software modeling and development
tools, data warehouse systems, metadata repositories, etc.

In this section, we provide an informal description of the MOF standard by describing the MOF
architecture and the main concepts in the MOF metamodel, which are then formally defined in
subsequent sections. We also introduce OCL as a constraint definition language that can be used
to define well-formedness rules in MOF metamodels, and describe the reflection facilities that are
provided in the MOF framework. We also make explicit those aspects of the MOF framework lacking
at present a precise mathematical semantics, a topic that we will fully address in Sections 4-8.

2.1 The MOF Modeling Framework

The MOF is a semiformal approach to define modeling languages. It provides a four-level hierarchy,
with levels M0, M1, M2 and M3. The entities rm populating each level Mi, written rm P Mi are
always collections, made up of constituent data elements re. Each entity �M P Mi�1 at level i+1
metarepresents a model1 M and is viewed as the metarepresentation of a collection of types, i.e.,
as a metadata collection that defines specific collection of types. Each type T is metarepresented
as rT P �M and characterizes a collection of data elements, its value domain. We write that a data
element re P rm is a value of type rT P �M as re r: rT . A metarepresentation at level i + 1 of a collection�M P Mi�1 of types characterizes collections of data elements rm P Mi at level i. A specific data
collection rm PMi is said to conform to model M , which is metarepresented by its collection of types�M P Mi�1, iff for each data element re P rm there exists a type rT P �M such that re r: rT . We writerm r: �M to denote this conformance relation for model M , which we call structural conformance
relation. The isValueOf relation re r: rT and the structural conformance relation rm r: �M are
summarized in Fig. 2.1.

Figure 2.1: isValueOf and structural conformance relations.

Fig. 2.2 illustrates example collections at each level M0-M3 of the MOF framework. Each
1In the MOF framework, the concept of a model M is conceptually specialized depending on the specific metalevel,

in which a model is located: model at level M1, metamodel at level M2 and meta-metamodel at level M3; as shown
below.

12 Chapter 2. Presentation of the Problem

Figure 2.2: The MOF framework

collection is encircled by a boundary and tagged with a name. This boundary is the non-standard
graphical representation of what becomes the physical resource where the model is persisted as data.
For example, rsPerson PM1 is a model corresponding to a relational schema. The isValueOf relation
between elements re of a data collection and the metarepresentation of types rT of a type collection,
and the structural conformance relation between a data collection rm and the metarepresentation�M of a model M are depicted with dashed arrows. The four levels M0–M3 in the MOF hierarchy,
illustrated in Fig. 2.2 are:

M0 level. In the M0 level, we only consider collections of data elements that are manipulated in a
running system. For instance, we may have a simple such collection involving a person called
”Joe” who is 18 years old and an invoice to Joe for two items for a cost of 3.5 euros.

M1 level. The M1 level contains metarepresentations of models. A model is a set of types that
describe the elements of some physical, abstract or hypothetical reality by using a well-defined
language. A model of a system enhances the communication among system stakeholders
during the software development process. In addition, a model is suitable for computer-based
interpretation, so that development tasks can be automated. For example, a model can define
a relational schema describing the concepts, i.e., types, of Person, Invoice and Item. For
example, the type of Person is a table Person, with columns name and age; similarly, there
is a table Invoice, with columns date and cost ; and a table Item, with columns name and

2.2. Discussion on the Current MOF Standard 13

price; a foreign key Invoice Person FK ; and a foreign key Item Invoice FK. Note that our
example collection of data elements in M0 consisting of the person Joe and his invoice and
items conforms to this relational schema.

M2 level. The M2 level contains metarepresentations of metamodels. A metamodel is a model
specifying a modeling language. As an example, we take a simple relational metamodel from
the example of the QVT standard that contains the main concepts to define relational schemas,
as shown in Fig. 2.2 in UML notation. The types of a relational schema are called table,
column, foreign key, etc. Our example model, namely, the relational schema with tables
Person, Invoice and Item can be represented as a collection at level M1 that conforms to the
relational metamodel at level M2.

M3 level. An entity at the M3 level is the metarepresentation of a meta-metamodel. A meta-
metamodel specifies a modeling framework, which could also be called a modeling space. In
MOF, there is only one such meta-metamodel, called the MOF meta-metamodel. Within the
MOF modeling framework one can define many different metamodels. Such metamodels, when
represented as data, must conform to the MOF meta-metamodel. In particular, the relational
metamodel conforms to the MOF meta-metamodel. But in MOF one can likewise define
many other metamodels, for example the UML metamodel to define UML models, the OWL
metamodel to define ontologies, and so on. The fact that all these metamodels are specified
within the single MOF framework greatly facilitates systematic model/metamodel interchange
and integration.

2.2 Discussion on the Current MOF Standard

At present, important MOF concepts such as those of metamodel, model and conformance relation
do not have an explicit, syntactically characterizable status in their data versions. For example,
we can syntactically characterize the correctness of the data elements in �M for a metamodel M,
but there is no explicit type that permits defining �M as a well-characterized value. In addition,
in the MOF standard and in current MOF-like modeling environments, such as Eclipse Modeling
Framework [25], NetBeans MDR [28], DSL tools [29], MetaEdit+ [30], a metamodel M does not
have a precise mathematical status. Instead, at best, a metamodel M is realized as a program in
a conventional language, which may be generated from �M, as, for example, the Java code that is
generated for a metamodel �M in EMF. In these modeling environments, the conformance relation
between a model definition �M and its corresponding metamodel definition �M is checked by means
of indirect techniques based on XML document validation or on tool-specific implementations in OO
programming languages. Therefore, metamodels �M and models �M cannot be explicitly characterized
as first-class entities in their data versions, and the semantics of the conformance relation remains
formally unspecified.

In our approach, a formal executable method to define MOF metamodels as precise, mathemat-
ical entities is described. Once the mathematical status of a MOF metamodel is made clear, the
conformance relation acquires a well-defined algebraic semantics. This mechanism is embodied by
the reflection concept, which appears partially specified in the MOF standard, as discussed below.

Broadly speaking, reflection is the capacity to represent metainformation such as types, which
are available at a base level, as data in a metadata level. Such form of metarepresentation is usually
called reification. Reflection is a very powerful computational feature because metalevel entities,
once metarepresented, can be computationally manipulated and transformed. After a metadata
manipulation of this nature, a mechanism, called reflection, permits defining the metarepresented
entities of the metalevel as mathematical entities in the base level back again. This concept is illus-
trated in Fig. 2.3, where rφ is a metadata level function that permits manipulating metarepresented
entities, such as metamodel definitions �M, and where φ is the corresponding function at the base
level.

In the case of MOF, there are three metalevels, namely M1–M3, structured as a ”reflective tower.”
Each of these metalevels can in turn be split into a base level and a metadata level, as shown in

14 Chapter 2. Presentation of the Problem

metadata level �M � rφ // �M1
_

reflect

��
base level M

_
reify

OO

� φ // M1

Figure 2.3: Reflection.

base level metadata level

M3 MOF �MOF
�

reflect
oo
� reify //

:

zz
QX_fm

t

M2 M �M
:

ggO O O O O O O
r:OO���

�
reflect

oo
� reify //

M1 M �M
:

ggO O O O O O O O
r:OO���

�
reflect

oo
� reify //

M0 rm
:

hhP P P P P P P P
r:OO���

Figure 2.4: The MOF reflective tower

Fig. 2.4. A reification function reify : M ÞÑ �M maps M in the base sublevel of Mi, 1 ¤ i ¤ 3, to
its metarepresentation �M as data in the metadata sublevel of Mi. If M P M1 is a model, then its
reification �M must conform to its metamodel M P M2. Now, the structural conformance relation
is not metarepresented as data, and we write �M : M. For example, if M is a UML class diagram,�M must conform to the UML metamodel. Similarly, if M PM2 is a metamodel, then its reification�M must conform to the MOF meta-metamodel. What about �MOF? The interesting point is that
the MOF avoids an infinite reflective tower upwards because its metarepresentation �MOF conforms
to the MOF meta-metamodel itself, that is, we have �MOF : MOF. What about the types of M?
To answer this question we should consider the inverse process reify : �M ÞÑ M of passing from a
metarepresentation �M to the metalevel entity M that it represents in the corresponding base level.
This inverse process is usually called reflection.

The MOF standard provides a specification of the so-called MOF Reflection facilities. These
focus on the manipulation of the metarepresentation �M of a MOF metamodel M. The reflect and
reify functions, together with the MOF Reflection facilities, provide full support for metamodel
reflection in the MOF framework. Fig. 2.3 illustrates how the metarepresentation of a MOF
metamodel �M can be manipulated by means of a function rφ : �M ÞÑ �M1 that modifies the objects
that define the metamodel �M. Therefore, the function φ : M ÞÑM1 that applies the same changes
to the mathematical entities of a metamodel can be defined as φ � reflect � rφ � reify .

In its current version, the MOF standard only permits the formal definition of software artifacts
in the metadata sublevel of each metalevel (M3-M0). This is due to the lack of a suitable, reflective
logic in which the software artifacts, and not just their metarepresentations, can acquire a formal
semantics. The current MOF standard does not provide any guidelines to implement the reflect/reify
mappings. Only some MOF-like environments provide an informal approach to the reflect feature,
based on simple code generation. In our approach, we provide a formal definition of the reflect
function for MOF metamodels. Since our formal specification is executable, this function can also

2.3. OCL Constraints in MOF Metamodels 15

be viewed as a code generation function, but there is a very important conceptual and practical
difference: the resulting software artifact can be directly considered as a mathematical theory in
Membership Equational Logic, enabling reflective formal reasoning in the MOF framework.

2.3 OCL Constraints in MOF Metamodels

A metamodel definition �M provides type definitions rT that can be used to define associated data
elements re r: rT in a model definition �M r: �M. Object type definitions�OT in a metamodel definition�M constitute subsets �OT � �M. A data element that is a value of an object type definition �OT
is called an object ro. The isValueOf relation is refined as the instanceOf relation between an
object definition ro and the corresponding object type definition �OT. We write ro r: �OT to denote
the metarepresentation of the instanceOf relation as data. This relation can also be expressed asro : OT, when OT is the type that defines the object type, instead of its metadata representation�OT. A model definition �M that conforms to a specific metamodel definition �M, �M r: �M, is a
collection of objects ro such that each object is instance of a specific object type definition �OT � �M,
that is, ro r: �OT.

The Object Constraint Language (OCL) permits defining constraints upon specific object type
definitions �OT in a metamodel definition �M, constraining the objects ro that can be instances of
object types �OT in a model �M r: �M. In subsequent sections, we provide a brief overview of
OCL and introduce the mechanism to relate OCL constraints to metamodels. Finally, we introduce
the concept of meaningful constraint for a metamodel and the OCL constraint satisfaction relation.
The OCL constraint satisfaction relation enriches the structural conformance relation. We call
constrained conformance relation to the resulting conformance relation.

2.3.1 A Brief Overview of OCL

The Object Constraint Language (OCL) [24] was born as a specification language to complement
UML models with constraints and well-formedness requirements, such as invariants, and pre- and
post-conditions. The main motivation of the OCL language consists in providing a formal specifica-
tion language to add expressive power to UML-based models while keeping a textual programming
front-end. This makes UML easier to learn for a broad community of system designers and devel-
opers. The UML/OCL combination supports both the verification of formal properties in software
specifications in the early stages of the software development process and the formal refinement of
software specifications into final code. The current version, OCL 2.0, can also be used as a query
language for UML-based models. OCL 2.0 is aligned with UML 2.0 and MOF 2.0, so that OCL can
also be used in MOF metamodels.

OCL is a strongly typed language without side-effects, where each OCL expression has a type
and represents a value, namely, the result of the evaluation of the expression. The evaluation of an
expression never changes the system state. For example, if a metamodel is annotated with OCL
constraints, these cannot manipulate models that conform to it. The type system of OCL is based
on two kinds of types: predefined types, which can be decomposed as basic types and collection types;
and user-defined types. The predefined basic types are Integer, Real, String and Bool. Examples for
predefined operations on these types are logical operations like and, or, not, arithmetic operations
such as �, �, �, and operations for string manipulation such as concat, and substring. The predefined
collection types are used to specify collections of values. There are four collection types:

• Set: A collection of values where order is not relevant and duplicate elements are not allowed.

• OrderedSet: A set whose elements are ordered, but not sorted.

• Bag: A collection that may contain duplicate elements. Elements in a bag are not ordered.

• Sequence: A bag whose elements are ordered, but not sorted.

Among collection operators, we can find universal and existential quantification by means of the
forAll and exists operators, respectively. Collection operators and basic data type operators provide

16 Chapter 2. Presentation of the Problem

an expressive power close to that of first-order predicate logic together with (finitary) set theory.
User-defined types are provided by means of type definitions rT in a metamodel definition �M.

An OCL expression constitutes a constraint when the resulting value of its evaluation is a boolean
value. When an OCL expression is evaluated, an undefined value may be returned. For example,
typecasting of an object to a type that the object does not support, or getting an element from
an empty collection. Due to undefined values, OCL constraints can be regarded as sentences in a
three-valued logic: true, false, and undefined.

2.3.2 Context of OCL Expressions

OCL expressions rely on type definitions rT of a specific metamodel definition �M. Any metamodel
specification p�M, rCq in which OCL plays a part consists of a class diagram, the metamodel definition�M, and a set rC of OCL constraint definitions. The relationship between a type definition rT in a
specific metamodel definition �M and a specific OCL constraint rc is made explicit in the so-called
context of the OCL constraint rc. The type definition rT is then called the contextual type of the
constraint rc and we denote it as contextprcq. Usually, an entity rT of the metamodel definition�M that behaves as context for an OCL constraint is an object type definition2. Given a specific
metamodel definition �M and an OCL constraint definition rc, we say that rc is a meaningful OCL
constraint for �M if its contextual type is a type definition in the metamodel �M, i.e., contextprcq P �M.

OCL constraints are always evaluated for a single object ro, which is always an instance of the
corresponding contextual type. In this case, the object ro is called the contextual instance. In an
OCL constraint definition, the contextual instance can be explicitly referred to by means of the self
keyword. We write rcproq to denote the evaluation of the OCL constraint definition rc over the objectro.

OCL constraints can be directly incorporated in the class diagram of a metamodel definition, but
they may also be provided in a separate text file, where the context definition is given in a textual
format. It is then denoted by the context keyword followed by the name of the type, as shown in
the following example of a context Foo for an invariant OCL constraint given by an expression Bar:
context [var:] Foo
inv: Bar
where var: is a variable of type Foo, which is the contextual type of the constraint; the keyword
inv indicates that the constraint is an invariant that must hold for all the instances of the Foo type
at any time 3.

In this paper, we have taken as an example the relational metamodel that has been provided in
the QVT standard as a case study, shown in Fig. 2.2. In this case, we can use an OCL invariant
to ensure that the number of columns that participate in a foreign key must be the same as the
number of columns that participate in the corresponding referred primary key. In addition, the type
of the columns that participate in a foreign key must be equal to that of each corresponding column
(by order) of the referred primary key. This constraint can be expressed in OCL by means of the
following invariant:

context ForeignKey: inv: if (self.column->size() =

self.refersTo.column->size()) then

self.column->forAll(c:Column |

self.refersTo.column-> at(self.column->indexOf(c)).type

= c.type

)

else

false

endif

2In UML, it can also be an interface, a datatype, or a component. Sometimes it can be an operation, and only
rarely it can be an instance.

3Constraints of other kinds are also considered in the OCL specification to define pre- and post-conditions for
operations. In this paper, we restrict ourselves to the treatment of OCL constraints that are invariants.

2.3. OCL Constraints in MOF Metamodels 17

where the collection operator size computes the cardinality of a collection, the collection operator
forAll checks if a boolean expression holds over each element of a collection, the collection operator
indexOf obtains the index of an element in an ordered collection (OrderedSet or Sequence), and the
collection operator at obtains the element that is located at a given position in an ordered collection.
Properties in a class definition are queried by using the ”.” notation. Collection operators are applied
over a collection by means of the -> construct.

2.3.3 OCL Constraint Satisfaction

An OCL invariant rc is a constraint that is defined using a boolean expression that evaluates to true
if the invariant is met, that is, rcproq : Boolean. An OCL invariant must hold true for any instance of
the contextual type at any moment in time. Only when an instance is executing an operation, this
does not need to evaluate to true. A set of OCL constraints that are meaningful for a metamodel
definition �M may be evaluated over a specific model definition �M : M. More specifically, each OCL
constraint definition rc P rC is evaluated for each contextual instance ro P �M such that ro r: contextprcq.
We say that a model �M satisfies a set rC of OCL constraint definitions that are meaningful for a
metamodel definition �M if all such constraints evaluate to true for every contextual instance of the
model definition �M . We write �M |ù rC to denote this OCL constraint satisfaction relation, which is
formally expressed as:

�M |ù rC ðñ

@ro P �M,@rc P rC pp�M r: �M ^ contextprcq P �M ^ ro r: contextprcqq Ñ rcproq � trueq.

In the OCL standard, the abstract syntax of the OCL language is provided as a metamodel.
Therefore, the metamodel OCL is provided as a model definition �OCL that conforms to the MOF
metamodel, �OCL : MOF; and a specific OCL constraint c is provided as a model definition rc that
conforms to the OCL metamodel, i.e., rc r: �OCL. The OCL standard provides a precise definition
of the semantics of both the types of the values that can be used in OCL expressions and the
expressions themselves. Some of the types that can be used for values in OCL expressions can be
defined by the user in MOF metamodels4. The isValueOf relation between each value that can be
used in an OCL expression and its corresponding type is completely defined in the OCL standard,
providing the formal semantics of OCL expressions. Therefore, a set rC of OCL constraint definitions
acquires a mathematical status C, and we can also write �M |ù C. At present, [31] provides some
guidelines to develop OCL support in modeling environments. However, a rigorous procedure to
implement the OCL formal semantics has not been provided, so that the implementation of the
standard semantics is left to the developers’ programming skills. Thus, the less mathematical the
programming language in use is, the more error-prone this task becomes. In this paper, we propose
a mechanism to automate this process using executable formal specifications.

The approach that is followed in the standard for the validation of UML models and OCL con-
straints is based on animation, as formerly described in [32]. A set rC of OCL constraint definitions,
which are meaningful for a metamodel definition �M, can only be checked over specific model defi-
nitions �M such that �M r: �M. Therefore, a preliminary notion of model conformance where OCL
constraints are taken into account appears between a model definition �M and its metamodel M (or,
analogously, between a snapshot rm and its model M). We call constrained conformance relation to
the conformance relation that, in addition to requiring structural conformance, also takes the OCL
constraint satisfaction relation into account.

However, the provided semantics does not consider either models or snapshots as first-class
citizens, so that there is no automated mechanism to formally categorize the set of well-formed
models �M that conform to a metamodel definition �M together with a set rC of meaningful constraint
definitions. Therefore, the constrained conformance relation remains formally unspecified. One of
the goals of this paper is to give a precise formal definition of the constrained conformance relation.

4We are considering that the formalization that is given for class diagrams in the OCL standard can be directly
used for MOF class diagrams.

18 Chapter 2. Presentation of the Problem

2.4 Open Problems

In this section we summarize some concepts that are constantly used in Model-Driven Engineering
but that lack at present a proper formal semantics. A formal definition of these concepts and their
specification in an executable formal framework constitute the main contributions of this paper.

Metamodel Realization. At present, in current MOF-like modeling environments, a metamodel
M does not have a precise mathematical status. Instead, at best, a metamodel M is realized
as a program in a conventional language, which may be generated from �M, as, for example,
the Java code that is generated for a metamodel �M in EMF.

Model Type. Metamodels and models are used in Model-Driven Engineering as first-class citizens,
but there is no formal, explicit definition of these concepts. Current modeling environments
do not provide specific types to define metamodels and models as values, only technologically-
based solutions are provided, such as the definition of a model as a XMI document. Therefore,
metamodels �M and models �M cannot be explicitly characterized as first-class citizens in their
data versions, and the semantics of the conformance relation remains formally unspecified.

Structural Conformance Relation. In these modeling environments, the conformance relation
between a model definition �M and its corresponding metamodel definition �M is checked by
means of indirect techniques based on XML document validation or on tool-specific imple-
mentations in OO programming languages. Without considering OCL constraints, a formal
characterization of the structural conformance relation is missing. This is, in part, due to the
lack of explicit types for metamodels and models.

Metamodel Specification Realization. When a metamodel definition is realized as code in an
OO programming language, OCL constraints are usually not considered. They are added
afterwards.

Consistent Model Type. Considering OCL constraints in a metamodel definition is still not achieved
in an implicit way. Once a model is defined by instantiating the classes of a metamodel in a
first step, OCL constraints are validated in a second step. Using metamodels together with
their OCL constraints to define model management tasks, such as model transformations, is
not straightforward. As indicated in Section 7, another approach consists in defining model
types, whose values are model definitions that satisfy the OCL constraints of the corresponding
metamodel. In this way, OCL constraints can be taken implicitly when a model is defined.
Currently, considering OCL constraints may become a cumbersome task and involves too many
technical details in the final solutions.

OCL Constraint Satisfaction Relation. The OCL constraint satisfaction relation is currently
defined by means of validation techniques that permit checking if a model definition �M con-
forms to a metamodel M together with a set C of meaningful OCL constraints. However,
there is no automated mechanism to formally characterize the set of well-formed models that
conform to a metamodel M that is enriched with OCL constraints rC, that is, conforming to
the pair pM, Cq. In current MOF formalizations, we cannot implicitly assume that a model
definition �M belongs to a certain domain of values of a model type iff it satisfies a set of
OCL constraints. This means that a formal characterization of the constrained conformance
relation is still missing. Therefore, the application of formal reasoning techniques in a MOF-
based framework is still very limited. In our approach the constrained conformance relation is
defined in a natural way in the underlying formalism: Membership Equational Logic.

Reflection in the MOF Framework. In the MOF standard, the MOF Reflection facilities are
informally described as a single, generic API that permits the manipulation of any MOF
metamodel definition �M or any model definition �M in a type-agnostic way. These facilities
provide the basic operations to manipulate model definitions, while OCL remains as a side-
effect free language. A complete formal support for reflection also involves reflection and

2.4. Open Problems 19

reification mappings, as shown in Fig. 2.3, which permit working not only with the metadata
representation �M of a metamodel, but also with its realization as a mathematical entity,
which could be finally refined into a specific application. These mappings are not present
in the MOF standard. An informal attempt to realize MOF metamodel definitions as Java
programs is provided in the Java Metadata Interface (JMI) specification [33], which is defined
for a previous version of the MOF standard. A mapping of this kind has been successfully
implemented in modeling environments such as Eclipse Modeling Framework.

Chapter 3

Related Work

3.1 Formal Semantics of Concepts in Model-Driven Devel-
opment

Model-Driven Engineering is an approach supporting the design of software systems at a conceptual
level from where tasks like code generation, interoperability, integration, scalability, quality measure-
ment, among others, can be performed in a mechanical way. [34] summarizes some of the advantages
of Model-Driven Engineering. Although industry is becoming more interested in this field, even the
most fundamental building blocks of this discipline are still under discussion: starting from informal
discussions about the terminology [35] to formal approaches [36, 37] that provide automated support
for formal verification, through semi-formal approaches [38, 39, 40, 41, 42]. The common features
that characterize these approaches are:

• Informal approaches: provide informal definitions of the notions that are used in a model-
driven approach for software development. These approaches are usually pioneers and provide
new ideas and tools to show proof of concept. However, there is always a gap between the
implementation of these tools by means of a specific tool and their underlying mathematical
theory (not always existing).

• Semi-formal discussions: assume that models are defined, somehow, as subjects in a domain,
and model-based notions are studied at a coarser degree. Although all these approaches give
more abstract and clearer definitions of the concepts, they are still informal and cannot be
proved/checked by means of an objective automated logical system.

• Formal approaches: provide a rigorous definition of the notions and the relations that can be
used in a model-driven process. These notions are usually defined in a logical theory, where an
inference system permits checking the semantics of the notion or of the relations. Therefore,
these approaches constitute a more objective alternative to validate the notions. Even in this
approach, the theory that defines such notions and relations is developed by a human being.
However, the support of an automated logical inference system helps in reducing the degree of
informality of the previous approaches and supports formal reasoning and verification.

In subsequent sections, we summarize the notions of model and metamodel that can be found in the
literature.

3.1.1 Model

The discussion on the meaning of the model notion is present in the literature, where [43, 38, 40, 39]
are just a few citations. There is a consensus on that a model can play several roles:

22 Chapter 3. Related Work

• As data: a model is a collection of structured data elements that syntactically represents
some hypothetical or abstract reality, also called the system under study (SUS). The definition
of the notion of model that is given in [38] falls into this category:

”A model is a set of statements about some SUS.”

where each statement means some predicate about the SUS that can be considered true or
false. Seidewitz calls model interpretation to the SUS that is denoted by the syntactical
representation of a model. Rensink calls subject to a model interpretation of this kind, whereas
Kühne recalls the notion of token model from Peirce’s terminology of token/type.

• As type: In [39], Rensink characterizes a model as:

”A subject with one special feature, namely membership test. Essentially the membership
test is a function stating, for every subject, whether it is or it is not a member of the model

in question.”

This definition reminds us of the notion of type that has a type checking mechanism. This
notion of type is developed for model types (not for models as types) in [36, 37]. This mem-
bership function is given by the classification function in Kühne’s approach, where a model
of this kind is called a type model. The membership function is further discussed in [41] as
Hesse’s placeholder projection. These authors assume that the notion of model can play sev-
eral roles as data or as type, but they do not study their relation. Poernomo provides a formal
metamodeling framework based on Constructive Type Theory [36], where models, which are
define as terms (token models), can also be represented as types (type models) by means of a
reflection mechanism. In this framework, Rensink’s membership function is implicitly provided
by construction: only valid subjects can be defined as terms, and their definition constitute a
formal proof of the fact that the subject belongs to the corresponding type, by means of the
Curry-Howard isomorphism.

• As a specification: Siedewitz considers the mathematical notion of model that is attached to
a term in a theory. In this sense, a theory is a way to deduce new statements about a SUS
from the statements that are already given in some model of the SUS. Seidewitz calls model
specification to the class of model interpretations that can be build in a theory based on a
deductive process. This notion of theory is different from the notion of type. While a type
model has a membership function associated to it, a model theory constitutes the syntactical
representation that contains the syntactical representation of the type model. Based on the
inference system of the underlying formalism of the model theory, the truth value (soundness)
of a token model can be checked by means of an automated deductive process.

3.1.2 Metamodel

A metamodel is defined in [38] as

”a specification model for a class of SUS where each SUS in the class is itself a valid model
expressed in a valid modeling language,”

where the modeling language is, in fact, defined as data (as a token model) in the form of a metamodel
definition. Seidewitz defines the interpretation of a metamodel as a mapping from the elements of
a metamodel (as token models) to the elements of the modeling language (theory). This feature
constitutes a preliminary notion of reflection that associates the data version of a metamodel to its
theory representation. However the notion of type is not developed.

Kühne and Hesse take into account that a model can play the role of type, by means of the
classification function. The classification function groups (classifies) values taking into account their
types. The notion of instanceOf relation is reused in their work to refer to the relation between a

3.2. Formal Metamodeling Approaches 23

token model and its type. However, it is not explained the relation between the instanceOf relation
for token models and for the objects that constitute a token model, assuming an object-oriented
metamodel such as UML.

Kühne defines a metamodel as a model that needs two steps by means of the instanceOf relation
to represent the system under study. That is, a metamodel permits defining a model type, whose
values represent different SUS1. Rensink also studies the notion of metamodel as a language in a
similar way. In his approach, a model is an entity that provides a membership function to determine if
a given entity belongs to the model. A language is a model that, in addition, induces the membership
test for all its members. For example, the Java language allow defining types in programs, which
characterize the objects that can be created and manipulated by the program. This approach
coincides with Kühne’s vision of two meta-layers. Rensink discusses that the MOF meta-metamodel
is not a language, because only the data version of a metamodel can be defined. In this case, the
semantics of the types that constitute a metamodel remains unspecified.

In Sections 5-8, we describe a reflection mechanism that obtains the semantics for the types
that are provided in a metamodel definition �M. This reflection mechanism also takes into account
OCL constraints, resulting in an expressive metamodeling framework where the static semantics of
metamodels can be defined.

3.2 Formal Metamodeling Approaches

In this section, we study several tools that are used for metamodeling and model transformation
purposes. We have focused on tools that are based on formal foundations and that provide formal
verification techniques. In this study, we consider the following criteria:

• Metamodeling approach(two level/multilevel): As indicated in [44], a multiple metamodeling
approach permits dealing with metamodeling frameworks where the number of meta-layers
is not fixed. In this approach, both metamodels and models are defined as collections of
objects that are related by means of a instanceOf relation. This relation is called ontological
instanceOf relation by Kühne [40]. There is another metamodeling approach based on two
levels, namely, the type level and the data level. For example, in a MOF-based approach, a
metamodel realization provides the model type M and the object types that can be used to
define objects in a model definition �M , such that �M : M. Kühne calls linguistic instanceOf
relation to the relationship between an object in a model definition and its object type in the
corresponding metamodel realization. Despite the fact that the MOF framework is split in
four conceptual layers, the linguistic instanceOf relation must be defined for each of the types
that participates in a meta-metamodel, in a metamodel or in a model, in levels M3, M2 and
M1, respectively.

• Concrete Syntax: A metamodeling approach permits defining the semantics of a specific mod-
eling language: usually only the statics and, sometimes, also the dynamics. Some metamodel-
ing approaches also provide facilities to define the concrete syntax of the modeling language:
graphical or textual.

• Static Semantics: The static semantics of a modeling language is provided by a metamodel
definition �M, defining the value domains of the types that are defined in �M, and by a mech-
anism to check the conformance relation between a model definition �M and a model type M,�M : M. Some metamodeling approaches also allow considering structural constraints, such as
OCL constraints, allowing the definition of more expressive metamodels.

• Dynamic Semantics: The dynamic semantics of a model permits representing the dynamic
behavior of a system, which may be functional or concurrent. A functional system has a

1Although, Kühne follows a very generic approach to study ontological metamodeling, where a token model can
be considered type of another token model, we restrict ourselves to the so-called linguistic metamodeling, so that we
only consider the classification function to define the relation between a token model and its type.

24 Chapter 3. Related Work

deterministic behavior, while a concurrent system may be non-deterministic. The MOF meta-
metamodel lacks suitable constructs to represent the dynamics of a system, whereas the UML
metamodel fits better. However, each metamodeling approach provides its own facilities based
on its underlying formalism. Some metamodeling approaches that permit representing the
non-deterministic semantics of a system in a declarative way also permit defining execution
strategies.

• Reflection: In a metamodeling framework, reflection is the ability to represent a metamodel
as data, so that it can be queried or manipulated during a model manipulation task, such as a
model transformation. More specifically, introspection refers to the ability for representing a
metamodel as data to enable formal reasoning over it. Introspection is a desirable feature in a
metamodeling framework that enhances genericity because a model manipulation task can be
performed in a way independent of the corresponding metamodel. This feature is discussed in
further detail in Section 8.

• Formal Verification Techniques: These techniques comprise static analysis techniques to check
if a certain property is satisfied during the execution of a non-deterministic system, techniques
to study the confluence and termination of the formal definition of a model transformation
system, etc.

• Standards: The MDA initiative provides a set of standards that are used for metamodeling
purposes: MOF, UML, XMI, OCL; and for model transformation purposes: QVT. These stan-
dards provide a common conceptual framework to enhance interoperability between different
metamodeling approaches.

3.2.1 Formal UML Modeling Environments: The MOVA Framework

UML modeling environments, which may provide support for OCL constraint validation, can also be
used for metamodeling purposes by taking into account the UML class diagram and the UML object
diagram metamodels. UML modeling environments may also be used for model transformations,
although this is not their primary purpose. We have chosen the MOVA tool for the comparison
study, because it is based on Membership Equational Logic and provides a set of features that are
common to our framework. However, the main purposes of the two approaches are different.

The MOVA tool [45] is a Maude-based modeling framework that provides support for UML and
SecureUML [46] modeling, OCL contraint validation, OCL query evaluation, and OCL-based met-
rication. MOVA supports the UML modeling approach, where metamodel specification definitions
p�M, rCq can be defined as class diagrams with OCL constraints, and model definitions �M can be
defined as object diagrams [47]. Both UML class diagrams and object diagrams are formalized as
mel theories in the MOVA Tool. Thus, from and algebraic point of view, the notions of metamodel
specification definition and model definition can be syntactically represented as mel theories, and
semantically defined by the corresponding initial algebra [48]. The main purpose of the MOVA tool
consists in precise modeling, focusing on the static semantics.

Although mel provides support for reflection, as indicated in Section 4.2, and the implementation
of the MOVA tool is widely based on this feature, the concept of reflection is still not explicitly
available at the UML level. This is in part due to the fact that the UML metamodel does not provide
reflection facilities. Therefore, a model can be queried and manipulated as a metarepresented term
or as a metarepresented mel theory in the underlying algebraic representation of the MOVA tool,
but the notion of an explicit metarepresented model is not considered in the current state of the
work.

Since the MOVA tool is specified in Maude, it can take advantage of Maude-based formal verifica-
tion techniques, such as an inductive theorem prover, and tools for checking sufficient completeness,
confluence and termination. In addition, operator declarations in a mel signature can be given in
mixfix format so that the concrete syntax of new languages can be taken into account easily.

3.2. Formal Metamodeling Approaches 25

3.2.2 Graph-based Metamodeling Frameworks

In [49], the authors provide a comparative study between different graph transformation tools.
We have based ourselves on [49] to summarize the main features of the tools AGG, ATOM3 and
VIATRA2. However, the criteria that we have proposed above to compare these tools is different,
allowing the study of tools that are not graph-based.

AGG

AGG [50] is a development environment for attributed graph transformation systems supporting an
algebraic approach to graph transformation. Describing a model transformation by graph transfor-
mation, the source and target models have to be given as graphs. Performing model transformation
by graph transformation means taking the abstract syntax graph of a model, and transforming it
according to certain transformation rules. The result is the abstract syntax graph of the target
model.

In this approach, metamodels are defined as type graphs with multiplicities, and models are
defined as typed attributed graphs. A class diagram can thus be represented by a type graph plus
a set of constraints over this type graph, expressing multiplicities and maybe further constraints.
The types that are defined in a type graph can be related by means of subtype relationships [51].
Theoretically, attribute values are defined by separate data nodes, which are elements of some algebra
[52]. In AGG, attributes are given as Java objects. The Java semantics is not covered by the formal
foundation.

A model transformation can be precisely defined by a graph transformation system GTS � pT,Rq
consisting of a type graph T and a set of transformation rules R. A graph transformation rule
r : L Ñ R consists of a pair of T -typed graphs L,R such that the union L Y R is defined. In this
case, LYR forms a graph again, i.e. the union is compatible with source, target and type settings.
The left-hand side L represents the pre-conditions of the rule, while the right-hand side R describes
the post-conditions. A rule r may specify attribute computations. The applicability of a rule can
be further restricted, if additional application conditions have to be satisfied [53]. Given a host
graph and a set of graph rules, two kinds of non-determinism can occur: first several rules might
be applicable and one of them is chosen arbitrarily; second, given a certain rule several matches
might be possible and one of them has to be chosen. There are techniques to restrict both kinds of
choices. Some kind of control flow on rules can be defined by applying them in a certain order or
using explicit control constructs, priorities, etc.

Due to its formal foundation, AGG offers validation support by means of consistency checking
of graphs and graph transformation systems according to graph constraints, critical pair analysis to
find conflicts between rules and checking of termination criteria for graph transformation systems.
Corresponding criteria are given in [52] for confluence and [54, 55] for termination.

AToM3

AToM 3 (A Tool for Multi-formalism and Meta-Modeling) [56] is a tool for the design of Domain
Specific Visual Languages. It allows defining the abstract and concrete syntax of the Visual Language
by means of meta-modeling and expressing model manipulation by means of graph transformation
[57]. With the metamodel information, AToM3 generates a customized modeling environment for
the described language.

AToM3 permits defining triple graph grammars [58] and multiple views [59]. Triple Graph
Grammars [60] were proposed by Andy Schürr as a means to specify translators of data structures,
check consistency, or propagate small changes of one data structure as incremental updates into
another one. Triple graph grammars can be extended by providing a triple metamodel for typing
the triple graphs [58], where metamodels may contain inheritance relations and additional textual
constraints. The view support in AToM 3 is very useful when defining multi-view languages, such as
UML. In addition, AToM 3 allows the definition of consistency relations between views by means of
the aforementioned triple graph grammars.

In AToM 3, the production rules of a graph grammar can also be defined with application condi-

26 Chapter 3. Related Work

tions, constraining the context in which they can be applied. In addition, AToM 3 provides a control
structure [56], based on rule priorities, for rule execution.

VIATRA2

VIATRA2 [61] is an Eclipse-based general-purpose model transformation framework that provides
support for the specification, design, execution, validation and maintenance of transformations
within and between various modeling languages and domains.

VIATRA2 uses the VPM metamodeling approach [62] for describing modeling languages and
models, which supports arbitrary metalevels in the model space. Queries on models are intuitively
captured by generalized (recursive) graph patterns. Model constraints are also captured by the same
graph pattern concept, but there is no explicit constraint language for this purpose.

Its rule specification language combines graph transformations and abstract state machines into a
single paradigm. Essentially, elementary transformation steps are captured by graph transformation
rules (using a recursive graph pattern concept), while complex transformations are assembled from
these basic steps by using abstract state machine (ASM) rules as control flow specification. ASMs
act as control structures to reduce non-determinism and thus to improve run-time performance.

VIATRA2 provides support for generic and meta-transformations [63] that allow type parameters
and manipulate transformations as ordinary models, respectively. This allows arranging common
graph algorithms (e.g. transitive closure, graph traversals, etc.) into a reusable library, which is
called by assigning concrete types to type parameters in the generic rules. Furthermore, transfor-
mations can be externalized by compiling transformations into native Java code, as stand-alone
transformation plug-ins. VIATRA2 transformations may call external Java methods if necessary to
integrate external tools into a single tool chain.

3.2.3 Model Checking Graph Transformations

The model checking problem consists in automatically deciding whether a certain correctness prop-
erty holds in a given system by systematically traversing all enabled transitions in all states (thus
all possible execution paths) of the system. The correctness properties are frequently formalized as
LTL formulae. The theoretical basics of verifying graph transformation systems by model checking
have been studied by Heckel in [64]. The author proposes that graphs can be interpreted as states
and rule applications as transitions in a transition system. In [65], two tools that provide support
to apply model checking to graph transformations are compared: CheckVML and Groove. We have
used this document to extract a summary of both tools.

The main idea of the CheckVML approach [66, 67, 68] consists in exploiting off-the-shelf model
checker tools like SPIN [69] for the verification of graph transformation systems. More specifically,
it translates a graph transformation system parameterized with a type graph and an initial graph
into its Promela equivalent to carry out the formal analysis in SPIN. Furthermore, property graphs
are also translated into their temporal logic equivalents, i.e., into the SPIN representation of LTL
formulae. CheckVML uses directed, typed and attributed graphs to define models. Inheritance
between node types in the corresponding type graph is also supported. As indicated in [70], the
CheckVML tool will be integrated into the VIATRA2 tool soon.

The idea behind the GROOVE approach [71] consists in providing support for model checking,
starting from a graph rewriting point of view. This means that states are explicitly represented
and stored as graphs, and transitions as applications of graph transformation rules; moreover, prop-
erties to be checked should be specified in a graph-based logic, and graph-specific model checking
algorithms should be applied. GROOVE uses untyped, non-attributed, edge-labeled graphs without
parallel edges. It supports the use of negative application conditions.

3.2.4 Discussion: Motivating our Approach

In Table 3.1, we summarize the main features of the aforementioned tools, following the criteria that
we have provided above. In the comparative study, we can observe that none of the studied tools
provide support for all of the above-mentioned features:

3.2. Formal Metamodeling Approaches 27

M
O

V
A

A
G

G
A

T
o
M

3
V

IA
T

R
A

2
C

h
e
ck

V
M

L
G

ro
o
v
e

m
e
ta

m
o
d
e
li
n
g

tw
o

tw
o

m
u
lt

i-
m

u
lt

i-
tw

o
�

a
p
p
ro

a
ch

le
v
e
ls

le
v
e
ls

le
v
e
l

le
v
e
l

le
v
e
ls

c
o
n
c
re

te
m

ix
fi
x

�
v
is

u
a
l

�
�

�

sy
n
ta

x
n
o
ta

ti
o
n
�

S
T
A
T

IC
S

fo
rm

a
li
sm

m
e
l

a
tt

ri
b
u
te

d
ty

p
e
d

a
tt

ri
b
u
te

d
ty

p
e
d

re
fi
n
e
m

e
n
t

a
tt

ri
b
u
te

d
ty

p
e
d

u
n
ty

p
e
d

n
o
n
-a

tt
ri
b
u
te

d
g
ra

p
h
s

w
it

h
in

h
e
ri

ta
n
c
e

g
ra

p
h
s

w
it

h
in

h
e
ri

ta
n
c
e

c
a
lc

u
lu

s
g
ra

p
h
s

w
it

h
in

h
e
ri

ta
n
c
e

la
b
e
le

d
g
ra

p
h
s

st
ru

c
tu

ra
l

m
u
lt

ip
li
c
it

ie
s,

m
u
lt

ip
li
c
it

ie
s

m
u
lt

ip
li
c
it

ie
s

re
c
u
rs

iv
e

p
a
tt

e
rn

N
A

C
N

A
C

c
o
n
st

ra
in

ts
o
rd

e
r,

a
p
p
li
c
a
ti

o
n

c
o
n
d
it

io
n
s

a
p
p
li
c
a
ti

o
n

c
o
n
d
it

io
n
s

m
a
tc

h
in

g
u
n
iq

u
e
n
e
ss

,
O

C
L

N
A

C
N

A
C

N
A

C
D

Y
N

A
M

IC
S

�
d
e
te

rm
in

is
m

p
o
te

n
ti

a
ll
y

p
o
te

n
ti

a
ll
y

b
o
th

p
o
te

n
ti

a
ll
y

p
o
te

n
ti

a
ll
y

n
o
n
-d

e
te

rm
in

is
ti

c
n
o
n
-d

e
te

rm
in

is
ti

c
n
o
n
-d

e
te

rm
in

is
ti

c
n
o
n
-d

e
te

rm
in

is
ti

c
fo

rm
a
li
sm

g
ra

p
h

g
ra

p
h

g
ra

m
m

a
rs

g
ra

p
h

g
ra

m
m

a
rs

g
ra

p
h

g
ra

m
m

a
rs

g
ra

p
h

g
ra

m
m

a
rs

g
ra

m
m

a
rs

tr
ip

le
g
ra

p
h

+
A

S
M

g
ra

m
m

a
rs

c
o
n
tr

o
l

ru
le

ru
le

A
S
M

st
ru

c
tu

re
s

p
ri

o
ri

ti
e
s

p
ri

o
ri

ti
e
s

d
y
n
a
m

ic
c
o
n
st

ra
in

ts
�

�
�

L
T

L
p
re

d
ic

a
te

g
ra

p
h

lo
g
ic

re
fl
e
c
ti

o
n

b
y

m
e
a
n
s

o
f

m
e
l

�
�

in
tr

o
sp

e
c
ti

o
n

�
�

fo
rm

a
l
v
e
ri
fi
c
a
ti

o
n

O
C

L
c
o
n
st

ra
in

t
v
a
li
d
a
ti

o
n

c
ri

ti
c
a
l
p
a
ir

a
n
a
ly

si
s

c
o
rr

e
c
t

ty
p
in

g
c
o
rr

e
c
t

ty
p
in

g
m

o
d
e
l
ch

e
ck

in
g

m
o
d
e
l
ch

e
ck

in
g

te
ch

n
iq

u
e
s

in
d
u
c
ti

v
e

th
e
o
re

m
te

rm
in

a
ti

o
n

p
ro

v
in

g
c
o
n
si

st
e
n
c
y

ch
e
ck

in
g

st
a
n
d
a
rd

s
U

M
L
,O

C
L

X
M

L
U

M
L
,X

M
L

X
M

L
X

M
L

X
M

L
o
th

e
r

S
e
c
u
re

U
M

L
,

g
ra

p
h

p
a
rs

in
g

,
v
ie

w
c
o
n
si

st
e
n
c
y
,

g
e
n
e
ri

c
tr

a
n
sf

o
rm

a
ti

o
n
s,

fe
a
tu

re
s

O
C

L
m

e
tr

ic
a
ti

o
n
,

a
tt

ri
b
u
te

v
a
lu

e
s

a
s

b
ri

d
g
e

to
A

G
G

to
o
l,

m
e
ta

-t
ra

n
sf

o
rm

a
ti

o
n
s,

O
C

L
q
u
e
ri

e
s

J
a
v
a

o
b
je

c
ts

a
tt

ri
b
u
te

v
a
lu

e
s

c
o
m

p
il
a
ti

o
n

o
f
m

o
d
e
l
tr

a
n
sf

o
rm

a
ti

o
n
,

a
s

P
y
th

o
n

o
b
je

c
ts

,
d
e
fi
n
it

io
n
s

to
J
a
v
a

c
o
d
e
,

p
o
te

n
ti

a
ll
y

in
c
re

m
e
n
ta

l
in

te
ro

p
e
ra

b
il
it
y

w
it

h
J
a
v
a
,

tr
a
n
sf

o
rm

a
ti

o
n
s,

im
p
o
rt

e
r/

e
x
p
o
rt

e
r

fa
c
il
it

ie
s

(E
M

F
)

p
a
ra

ll
e
l
e
x
e
c
u
ti

o
n

o
f
p
ro

d
u
c
ti

o
n

ru
le

s

T
ab

le
3.

1:
C

om
pa

ra
ti

ve
st

ud
y.

28 Chapter 3. Related Work

• Most of the tools provide a linguistic approach to deal with types and values, where types are
provided by metamodels, and values are defined in model definitions one level down. VIATRA2
is the tool that follows a multilevel approach.

• The aforementioned metamodeling frameworks are well-suited to define the abstract syntax of
a modeling language, but not its concrete syntax. AToM 3 is the most advanced in this sense,
providing support for the definition of the visual concrete syntax of a modeling language. The
Tiger tool [72] is a metamodeling environment that permits defining graphical environments
for metamodels as plugins of the Eclipse platform by using AGG as a model transformation
engine.

• For defining the static semantics of a modeling language, the OCL language is becoming
popular, also in graph-based tools [73, 74]. However, support for OCL is not always available.

• For defining the dynamic semantics of a modeling language, non-standard but formal ap-
proaches are used. In the aforementioned tools, graph grammars are the most common choice
to define potentially non-deterministic behavior. Sometimes, control structures, like rule pri-
orities or more elaborated constructs, are provided to define a deterministic behavior or to
make the execution of a graph transformation more efficient. Model transformations have
a functional behavior. This is why some tools, like AGG, provide support for determining
the confluence and the termination of a graph rewriting system. However, the underlying
formalism is not intended for defining functional behavior.

• Reflection is a powerful feature that is used in the VIATRA2 tool for defining generic model
transformations and meta-transformations. The MOVA tool can also take advantage of its
underlying reflective logic.

• Formal verification techniques are present in all of the chosen approaches. However, each
of the tools has been built from scratch pursuing a specific goal, for example, Groove for
model checking graph transformations. An approach for precise metamodeling and for model
transformation that takes into account a holistic view of all the aforementioned verification
techniques seems quite difficult to obtain if we want to build a new tool from scratch.

• Standards are not always taken into account. However, they are a desired feature, since they are
intended to enable interoperability between different modeling frameworks. For example, they
can be used as interface between precise metamodeling environments and informal development
frameworks.

In our approach, we have chosen Membership Equational Logic (mel) [27], introduced in Section
4, as the underlying formalism for our metamodeling framework. Our goal is to provide a formal
reflective MOF framework where OCL constraints can be used to define the static semantics of
metamodels. In addition, this framework is defined as the basis for a model transformation tool
that can benefit from Rewriting Logic (rl) [26], a formalism that subsumes MEL. In Section 9,
we provide some examples of how our framework can be used to define type graphs and graph in-
stances, and Rewriting Logic is used to define graph grammars. mel is well-suited for specifying
the functional behavior of systems, while rl is ideally suited for specifying concurrent (and possibly
non-deterministic) systems. rl, and thereby mel, are implemented in Maude [75], which provides
a flexible parser for user-definable syntax that permits representing context-free grammars as mel
signatures, providing facilities for the definition of the concrete syntax of a language. This is briefly
shown in Section 10. The Maude environment also includes an inductive theorem prover, a model
checker, and tools for checking sufficient completeness, confluence, and termination of specifications.
In addition, Maude provides facilities for debugging, profiling, real-time systems analysis, probabilis-
tic rewriting, reachability analysis, execution strategies, among others (see [75] for a comprehensive
overview). Therefore, our motivation consists in formalizing a MOF framework with OCL and reflec-
tion facilities, in order to obtain the kernel for a model management framework where Maude-based
formal verification techniques can be reused.

3.3. Antecedents 29

3.3 Antecedents

Maude already provides support for object-oriented programming [76], where objects, the instanceOf
relation and the class specialization relation are supported. The dynamics of object-oriented systems
can be provided by means of term rewriting.

The static semantics of the UML metamodel (version 1.3) has been previously provided as an
algebraic specification in mel [77]. In this approach, the authors already took the MOF approach
into account, although the MOF standard was in its early stages. In [78, 79], the authors provide a
formal four-layered framework where: (i) some parts of the MOF meta-metamodel are formalized in
a mel theory at M3 level (called MOF layer); (ii) the UML class diagram and the object diagram
metamodels are provided as mel theories, called syntactic specification and semantic specification
respectively, at M2 level (called UML metamodel layer); (iii) UML class diagrams are defined as
terms in the syntactic specification theory at M1 level (called domain model layer); and (iv) object
diagrams are defined as terms in the semantic specification theory at M0-level (named user objects
layer). A novel feature in this approach relies on the reuse of the reflective facilities of mel to
provide support for the evolution of UML-based software artifacts [80].

The authors focused on static verification of properties by using Maude as an implementation
of mel and the language to define the constraints. Our work introduces OCL 2.0 as the constraint
definition language, the version 2.0 of the MOF standard and considers reflection facilities at a
higher-level of abstraction.

Chapter 4

Preliminary Concepts

In this section, we introduce some fundamental concepts of Membership Equational Logic and their
representation in Maude. These concepts are used throughout the work and are needed to understand
the formal semantics of the notions that are provided in Sections 5-8.

4.1 Membership Equational Logic

A membership equational logic (mel) [27] signature is a triple pK,Σ, Sq (just Σ in the following),
with K a set of kinds, Σ � tΣw,kupw,kqPK��K a many-kinded signature and S � tSkukPK a K-kinded
family of disjoint sets of sorts. The kind of a sort s is denoted by rss. A mel Σ-algebra A contains a
set Ak for each kind k P K, a function Af : Ak1�� � ��Akn

Ñ Ak for each operator f P Σk1���kn,k and
a subset As � Ak for each sort s P Sk, with the meaning that the elements in sorts are well-defined,
while elements without a sort are errors. TΣ,k and TΣpXqk denote, respectively, the set of ground Σ-
terms with kind k and of Σ-terms with kind k over variables in X, where X � tx1 : k1, . . . , xn : knu
is a set of kinded variables.

Given a mel signature Σ, atomic formulae have either the form t � t1 (Σ-equation) or t : s
(Σ-membership) with t, t1 P TΣpXqk and s P Sk; and Σ-sentences are conditional formulae of the
form p@Xq ϕ if

�
i pi � qi ^

�
j wj : sj , where ϕ is either a Σ-equation or a Σ-membership, and

all the variables in ϕ, pi, qi, and wj are in X.
A mel theory is a pair pΣ, Eq with Σ a mel signature and E a set of Σ-sentences. The paper [27]

gives a detailed presentation of pΣ, Eq-algebras, sound and complete deduction rules, and initial
and free algebras. In particular, given an mel theory pΣ, Eq, its initial algebra is denoted TΣ{E ; its
elements are E-equivalence classes of ground terms in TΣ.

Order-sorted notation s1 s2 can be used to abbreviate the conditional membership p@x : kq x :
s2 if x : s1. Similarly, an operator declaration f : s1�� � ��sn Ñ s corresponds to declaring f at the
kind level and giving the membership axiom p@x1 : k1, . . . , xn : knq fpx1, . . . , xnq : s if

�
1¤i¤n xi :

si. We write p@x1 : s1, . . . , xn : snq t � t1 in place of p@x1 : k1, . . . , xn : knq t � t1 if
�

1¤i¤n xi : si.
We can use order-sorted notation as syntactic sugar to present a mel theory pΣ, Eq in a more

readable form as a tuple pS, ,Σ, E0 Y Aq where: (i) S is the set of sorts; (ii) is the subsort
inclusions, so that there is an implicit kind associated to each connected component in the poset of
sorts pS, q; (iii) Σ is given as an order-sorted signature, that is, giving different (possibly overloaded)
operator declarations; and (iv) the set E of (possibly conditional) equations and memberships is
quantified with variables having specific sorts (instead than with variables having specific kinds) in
the sugared fashion described above; furthermore, E is decomposed as a disjoint union E � E0YA,
where A is a collection of “structural” axioms such as associativity, commutativity, and identity. As
explained above, any theory pS, ,Σ, E0 YAq can then be desugared into a standard mel an theory
pΣ, Eq.

The point of the decomposition E � E0YA is that, under appropriate executability requirements
explained in [81], such as confluence, termination, and sort-decreasingness modulo A, an mel theory
pS, ,Σ, E0 Y Aq becomes executable by rewriting with the equations and memberships E0 modulo

32 Chapter 4. Preliminary Concepts

the structural axioms A. Furthermore, the initial algebra TΣ{E then becomes isomorphic to the
canonical term algebra CanΣ{E0,A whose elements are A-equivalence classes of ground Σ-terms that
cannot be further simplified by the equations and memberships in E0.

4.2 Reflection

Reflection is a very important property of membership equational logic and of rewriting logic [82].
Intuitively, a logic is reflective if it can represent its metalevel at the object level in a sound and
coherent way. Specifically, membership logic can represent its own theories and their deductions by
having a finitely presented mel theory U that is universal, in the sense that for any finitely presented
mel theory T � pΣ, Eq (including U itself) and for each Σ-equation or Σ-membership φ we have the
following equivalence

T $ φ ô U $ T $ φ,

where T $ φ is the sentence in U stating at the metalevel that φ is provable in T . Since U is
representable in itself, we can achieve a “reflective tower” with an arbitrary number of levels of
reflection [83, 84].

Reflection is a very powerful property: it allows powerful meta-programming uses. It is used
extensively in our implementation of the reflect function, which assigns to each metamodel specifi-
cation in MOF a corresponding mel theory as its algebraic semantics. Although for the most part we
describe the reflect function at the object level; that is, by explaining precisely which mel theory T
is associated by reflect to each metamodel specification in MOF, our actual partial implementation
in Maude of reflect does not map a metamodel specification to T itself, but to the term T which
meta-represents T as data in the universal theory U .

As we further explain in what follow, functional modules in the Maude language are exactly
mel theories. In particular, reflection is a key mel feature supported by Maude (also for rewriting
logic, which extends MEL). Specifically, reflection is efficiently supported in Maude through its
META-LEVEL module, which provides efficient built-in support in the form of descent functions [84]
for key functionality in the universal theory U . In particular, META-LEVEL has two key sorts: (i) the
Module sort, whose elements are the meta-representations T of theories T ; and (ii) the Term sort,
whose elements are the meta-representations t of terms t belonging to some theory T .

4.3 Maude

In this Section, we provide a brief description of the syntactical constructs of the Maude language
that we are using throughout the document. For a detailed explanation of the Maude language and
its semantics, we refer to [75], which we have used as a basis for this summary.

Maude is a declarative language in the strict sense of the word. That is, a Maude program is
a logical theory, and a Maude computation is logical deduction using the axioms specified in the
theory/program. In Maude, the basic units of specification and programming are called modules. A
module consists of syntax declarations, providing an appropriate language to describe the system at
hand, and of statements, asserting the properties of such a system. Membership equational theories
are specified as functional modules in Maude, where the statements are given in the form of equations
and memberships.

From a programming point of view, a functional module is an equational-style functional program
with user-definable syntax in which a number of sorts, their elements, and functions on those sorts
are defined. Computation is of course the efficient form of equational deduction in which equations
are used from left to right as simplification rules. From a specification viewpoint, a functional module
is an equational theory pΣ, Eq with initial algebra semantics. The syntax declaration part is called
a signature and consists of declarations for:

• Sorts: giving names for the types of data. A sort is declared using the sort keyword followed
by an identifier (the sort name), followed by white space and a period, as follows:

sort x Sort y .

4.3. Maude 33

• Subsorts: organizing the data types in a hierarchy. Subsort inclusions are declared using the
keyword subsort. The declaration

subsort x Sort-1 y < x Sort-2 y .

states that the first sort is a subsort of the second.

• Kinds: which are implicit and intuitively correspond to error supertypes that, in addition to
normal data, can contain error expressions. This notion is used in our framework to provide
support for undefined values in OCL expressions in the MOF framework. In Maude modules,
kinds are not independently and explicitly named. Instead, a kind is identified with its equiv-
alence class of sorts and can be named by enclosing the name of one or more of these sorts in
square brackets [...]; when using more than one sort, sorts are separated by commas.

• Operators: providing names for the operations that will act upon the data and allowing us
to build expressions (or terms) referring to such data. In a Maude module, an operator is
declared with the keyword op followed by its name, followed by a colon, followed by the list of
sorts for its arguments (called the operators arity or domain sorts), followed by ->, followed
by the sort of its result (called the operators coarity or range sort), optionally followed by an
attribute declaration (where attributes to indicate associativity, commutativity and identity,
among others, can be used 1), followed by white space and a period. Thus the general scheme
has the form

op xOpName y : xSort-1 y ... xSort-k y -> xSort y [xOperatorAttributes y] .

To emphasize the fact that an operator defined at the kind level in general defines only a partial
function at the sort level, Maude also supports a notational variant in which an (always total)
operator at the kind level can equivalently be defined as a partial operator between sorts in
the corresponding kinds, with syntax ‘~>’ instead of ‘->’ to indicate partiality.

For example, the following module specifies the definition of natural numbers:

fmod NAT is

sorts Zero NzNat Nat .

subsorts Zero NzNat < Nat .

op 0 : -> Zero .

op s_ : Nat -> NzNat .

endfm

where s represents the successor function. Using the NAT theory, specified as the NAT functional
module, the natural number 2 can be defined as s(s(0)).

The semantics of the operators of a logical signature is defined by means of equations and
memberships. Unconditional equations are declared using the keyword eq, followed by a term (its
lefthand side), the equality sign =, then a term (its right hand side), optionally followed by a list of
statement attributes enclosed in square brackets, and ending with white space and a period:

eq xTerm-1 y = xTerm-2 y [xStatementAttributes y] .

Unconditional membership axioms specify terms as having a given sort. They are declared with
the keyword mb followed by a term, followed by ‘:’, followed by a sort (that must always be in the
same kind as that of the term), followed by a period. As equations, memberships can optionally
have statement attributes:

mb xTerm y : xSort y [xStatementAttributes y] .

1see [75] for a more detailed presentation of these attributes.

34 Chapter 4. Preliminary Concepts

Equational conditions in conditional equations and memberships are made up of individual equa-
tions t � t1 and memberships t : s. A condition can be either a single equation, a single membership,
or a conjunction of equations and memberships using the binary conjunction connective {z which is
assumed to be associative. Thus the general form of conditional equations and conditional member-
ships is the following:

ceq xTerm-1 y = xTerm-2 y

if EqCondition-1 {z ... {z EqCondition-k [xStatementAttributes y] .

cmb xTerm y : xSort y

if EqCondition-1 {z ... {z EqCondition-k [xStatementAttributes y] .

Furthermore, the concrete syntax of equations in conditions has three variants, namely:

• ordinary equations t = t’,

• matching equations t := t’, and

• abbreviated Boolean equations of the form t, with t a term in the kind [Bool], abbreviating
the equation t = true.

The terms t and t’ in an equation t = t’ must both have the same kind. A further feature,
greatly extending the expressive power for specifying partial functions, is the possibility of defining
sorts by means of equational conditions. Our MOF framework is widely based on this feature to
define the semantics of model types in Section 6 and constrained model types in Section 7.

4.3.1 Parameterized programming

Theories, parameterized modules, and views are the basic building blocks of parameterized program-
ming [85, 86]. Parameterized programming is widely used in the formal specification of our MOF
framework to define the generic semantics of metamodels and OCL constructs.

A parameterized module is a module with one or more parameters, each of which is expressed by
means of one theory, that is, modules can be parameterized by one or more theories. If we want,
e.g., to define a list or a set of elements, we may define a module LIST or SET parameterized by
a theory expressing the requirements on the type of the elements to store in such data structures.
Thus, theories are used to declare the interface requirements for parameterized modules.

Theories are used to declare module interfaces, namely the syntactic and semantic properties to
be satisfied by the actual parameter modules used in an instantiation. As for modules, Maude sup-
ports two different types of theories: functional theories and system theories, with the same structure
of their module counterparts, but with a different semantics. Functional theories are declared with
the keywords fth ... endfth, and system theories with the keywords th ... endth. Both of
them can have sorts, subsort relationships, operators, variables, membership axioms, and equations,
and can import other theories or modules. The theory TRIV is used very often, for instance in the
definition of data structures, such as lists, sets, trees, etc., which are made out of basic elements of
some type with no specific requirement. To express this simple requirement, namely a parameter
type with no additional requirements we use the theory TRIV, which is predefined in Maude as
follows:

fth TRIV is
sort Elt .

endfth

4.3. Maude 35

The instantiation of the formal parameters of a parameterized module with actual parameter
modules or theories requires a view, mapping entities from the formal interface theory to the corre-
sponding entities in the actual parameter module. In the definition of a view we have to indicate its
name, the source theory, the target module or theory, and the mapping of each sort and operator
in the source theory. The name space of views is separate from the name space of modules and
theories, which means that, e.g., a view and a module could have the same name. The syntax for
views is as follows:

view xViewName y from xSource y to xTarget y is

xMappings y

endv

The mapping of a sort in the source theory to a sort in the target module or theory is expressed
with syntax

sort xidentifier y to xidentifier y .

For each sort S in the source theory, there must exist a sort S1 in the target module or theory which
is its mapping under the view; unmentioned sorts get the identity mapping. Operators can also be
mapped in a view, see [75] for a detailed explanation. For example to map the TRIV theory to the
NAT functional module, we can use the following view:

view Nat from TRIV to NAT is

sort Elt to Nat .

endview

We can also have views between theories, which is particularly useful to compose instantiations
of views. A view between theories links the formal parameter of some parameterized module to some
actual parameter via some intermediate formal parameter of another parameterized module.

System modules and functional modules can be parameterized. A parameterized functional
module has syntax

fmod M{X1 :: T1 , ... , Xn :: Tn} is ... endfm

with n ¥ 1. Parameterized system modules have completely analogous syntax. The
{X1 :: T1 , ... , Xn :: Tn} part is called the interface, where in each pair Xi :: Ti,
Xi is an identifier�the parameter name or parameter label�and each Ti is an expression that yields
a theory�the parameter theory.

For example, we define a parameterized functional module that specifies parameterized sets. This
module will be further develop in Section 6 as the OCL-COLLECTION-TYPES{T :: TRIV} theory:

fmod SET{X :: TRIV} is

sorts Magma{X} NeSet{X} Set{X} .

subsort NeSet{X} < Set{X} .

subsort X$Elt < Magma{X} .

op _,_ : Magma{X} Magma{X} -> Magma{X} [assoc comm] .

op Set{_} : Magma{X} -> NeSet{X} .

op empty-set : -> Set{X} .

endfm

In this module, the terms of sort Magma{X} represent sets of elements, where the elements are
separated by commas. The Set{ } operator allows defining sets by using the concrete syntax of the
OCL language. While Set is the sort for sets that may be empty, NeSet is the sort for sets that
are not empty. The X$Elt sort refers to the Elt sort that is defined in the parameter theory TRIV.
Terms of sort X$Elt can participate as elements in a set.

36 Chapter 4. Preliminary Concepts

Instantiation is the process by which actual parameters are bound to the formal parameters of a
parameterized module or theory and a new module is created as a result. The instantiation requires
a view from each formal parameter to its corresponding actual parameter. Each such view is then
used to bind the names of sorts, operators, etc. in the formal parameters to the corresponding sorts,
operators (or expressions), etc. in the actual target. For example, the SET{X :: TRIV} module
can be instantiated with the NAT theory by means of the expression SET{Nat}, that is, by using the
view Nat. In the SET{Nat} module we can define sets of natural numbers as follows: Set{s(0), 0,
s(s(0))}2.

2Maude also supports representing natural numbers in normal decimal notation if we use its NAT module. However,
we have used a simpler version of this module in the example.

37

Part II

A Formal MOF Framework

Chapter 5

A High-Level View of the MOF
Algebraic Semantics

The practical usefulness of a formal semantics for a language is that it provides a rigorous standard
that can be used to judge the correctness of an implementation. For example, if a programming
language lacks a formal semantics, compiler writers may interpret the informal semantics of the lan-
guage in different ways, resulting in inconsistent and diverging implementations. For MOF, given its
genericity, the need for a formal semantics that can serve as a rigorous standard for any implemen-
tation is even more pressing, since many different modeling languages rely on the correctness of the
MOF infrastructure. There is, furthermore, another reason for the usefulness of a formal semantics
for metamodeling frameworks, namely, that at present it is unclear whether the differences between
various metamodeling frameworks are merely verbal, or there exist substantial semantic differences.
A formal semantics may greatly help in cutting through the confusions caused by merely verbal
differences and can make explicit the really important, semantic ones.

In this section, we propose an algebraic, mathematical semantics for MOF in Membership Equa-
tional Logic (MEL). However, to better motivate our semantics, we first present an informal seman-
tics for MOF that our formal semantics will later make entirely precise and rigorous. At the end
of this section, we introduce the structure that is used in Sections 6-8 to define the MOF formal
semantics in detail.

5.1 Informal Semantics of MOF

The MOF semantics we present is informal because, as already mentioned, at present, a metamodel
M does not have a precise mathematical status, except for other formalization proposals such as
[87]. Similarly, the conforms to relation also lacks a precise mathematical status. Finally, except for
some recent proposals such as [47, 88], in MOF-compliant modeling environments, the satisfaction
of a set C of OCL constraints by a model �M is either checked by conventional code, instead than by
a deductive process, or is not checked at all.

Our approach here is to pretend that: (i) metamodels, (ii) the structural conformance relation,
(iii) metamodel realizations, (iv) metamodel specifications, (v) the OCL constraint satisfaction re-
lation, (vi) the constrained conformance relation, and (vii) metamodel specification realizations,
already have a precise mathematical meaning, and to use set-theoretic notation to make explicit the
corresponding informal semantics. However, the semantics itself remains, for the moment, informal,
despite the set-theoretic notation. Nevertheless, this informal semantics will become entirely precise
when we give our algebraic semantics.

We should view a MOF metamodel specification definition as a pair p�M, rCq, where �M is a
metamodel definition, and rC is a set of OCL constraint definitions that any model definition �M ,
such that �M : M, must satisfy. What this specification describes is, of course, a set of models. We
call this the extensional semantics of p�M, rCq, and denote this semantics by vpM, CqwMOF. Recall

40 Chapter 5. A High-Level View of the MOF Algebraic Semantics

that we use the notation �M : M for the conforms to relation, and �M |ù C for the satisfaction of
OCL constraints C by model �M . Using this notation, the extensional semantics can be informally
defined as follows:

vpM, CqwMOF � t�M | �M : M^ �M |ù Cu.

5.2 A High-Level View of the MOF Metamodel Algebraic
Semantics

We make the informal MOF semantics just described mathematically precise in terms of the initial
algebra semantics of MEL. As already mentioned in Section 4, a mel specification pΣ, Eq has an
associated initial algebra TpΣ,Eq. We call TpΣ,Eq the initial algebra semantics of pΣ, Eq, and write

vpΣ, EqwIAS � TpΣ,Eq.

Let SpecMOF denote the set of all MOF metamodel specification definitions of the form p�M, rCq,
and let SpecMEL denote the set of all mel specifications. The reason why we define SpecMOF as
a set of pairs p�M, rCq, instead than as a set of pairs pM, Cq is because, as already mentioned, the
mathematical status of M is, as yet, undefined, and is precisely one of the questions to be settled
by a mathematical semantics. Instead, well-formed pairs p�M, rCq are data structures that can be
syntactically characterized in a fully formal way. Therefore, the set SpecMOF , thus understood, is
a well-defined mathematical entity. Our algebraic semantics is then defined as a mapping

reflect : SpecMOF ; SpecMEL

that associates to each MOF metamodel specification definition p�M, rCq a corresponding mel spec-
ification reflectp�M, rCq. The detailed definition of the mapping reflect will be given in following
sections. But we can already make precise the way in which our informal semantics vpM, CqwMOF

is now made mathematically precise. Recall that any mel signature Σ has an associated set S of
sorts. Therefore, in the initial algebra TpΣ,Eq each sort s P S has an associated set of elements
TpΣ,Eq,s. The key point is that in any mel specification of the form reflectp�M, rCq, there is always
a sort ConsistentModelTypetMu, which we also denote as pM, Cq for short, whose data elements
in the initial algebra are precisely the data representations of those models that both conform to
M and satisfy C. Therefore, we can give a precise mathematical semantics to our informal MOF
extensional semantics by means of the equation

vpM, CqwMOF � T
reflectp rM,rCq,ConsistentModelTypetMu

.

Note that our algebraic semantics gives a precise mathematical meaning to the entities lacking
such a precise meaning in the informal semantics, namely, the notions of: (i) metamodel M, (ii)
structural conformance relation �M : M, (iii) metamodel realization reflectp�M,Hq, (iv) metamodel
specification pM, Cq, (v) OCL constraint satisfaction relation �M |ù C, (vi) constrained conformance
relation �M : pM, Cq, and (vi) metamodel specification realization reflectp�M, rCq. Specifically, a
metamodel definition �M is defined as a precise mathematical object as the mel theory reflectp�M,Hq,
that is, the mathematical object defining �M is the mel theory associated by reflect to �M when the
set rC of OCL constraints is empty. In reflectp�M,Hq, there is always a sort ModelTypetMu, whose
data elements in the initial algebra are precisely the data representations of those models that only
conform to M. The structural conformance relation between a model and its metamodel is then
defined mathematically by the equivalence

�M : M ô �M P T
reflectp rM,Hq,ModelTypetMu

.

Finally, the OCL constraint satisfaction relation acquires a precise mathematical meaning by means
of the equivalence

5.2. A High-Level View of the MOF Metamodel Algebraic Semantics 41

�M |ù C ô �M P T
reflectp rM,rCq,ConsistentModelTypetMu

.

We can, of course, combine these two relations into a more general conformance relation, i.e.,
the constrained conformance relation, in which a model conforms not just to a metamodel M but
to a metamodel specification pM, Cq. This is defined by means of the equivalence

�M : pM, Cq ô �M : M ^ �M |ù C.

The mel theory that is generated by the reflect mapping for a metamodel specification definition
p�M, rCq provides a mathematical meaning for both the metamodel definition �M and the set rC of OCL
constraints that provide well-formedness requirements for such a metamodel. The OCL constraint
satisfaction relation constitutes a powerful notion by means of which every model definition �M :
pM, Cq is inherently well-formed, conforming to the metamodel M, �M : M, and satisfying the
constraints C, �M |ù C. Note that, in the current OCL standard, OCL constraints can only be checked
over specific model definitions �M , and there is no automated mechanism to formally categorize the
set of well-formed models that conform to a metamodel that is enriched with OCL constraints, that
is, to a metamodel specification pM, Cq. This mechanism is easily represented in the underlying mel

by means of the notion of membership, so that a model definition �M , such that �M : M, only belongs
to the carrier of the sort ConsistentModelTypetMu iff �M |ù C, as we develop in next sections.

This formal characterization permits using models as first-class citizens, rising the level of ab-
straction of model-based tasks, where the internals of a specific model remain hidden. For example,
a model transformation that is defined at level M2 between a source metamodel specification defini-
tion p rA,�CAq and a target metamodel specification definition p rB,�CBq can be mathematically defined
as a function f : vpA, CAqwMOF Ñ vpB, CBqwMOF. Given a model definition �M : pA, CAq, we can then
use the model fp�Mq, where fp�Mq : pB, CBq without any need for knowing the specific objects that
constitute either �M or fp�Mq. Note that, in addition, the sets CA and CB of OCL constraints are
implicitly taken into account without any need for performing additional checking tasks.

The semantics of a metamodel M is provided by the set of all model definitions �M that are well-
defined regarding the types in M, i.e., �M : M. Therefore, M can also be interpreted as a sort whose
values are terms that represent model definitions. At this point, we summarize the terminology that
we use for the concepts that we develop in detail in the next sections:

• �M : metamodel definition, or model type definition;

• reflectp�M,Hq : metamodel realization;

• M : metamodel, or model type sort (in the mel theory reflectp�M,Hq, M is represented by
the ModelTypetMu sort);

• �M : M : structural conformance relation;

• vMwMOF : semantics of the metamodel M;

• p�M, rCq : metamodel specification definition, or consistent model type definition;

• reflectp�M, rCq : metamodel specification realization;

• pM, Cq : metamodel specification, or consistent model type sort (in the mel theory reflectp�M, rCq,
pM, Cq is represented by the ConsistentModelTypetMu sort);

• �M |ù C : OCL constraint satisfaction relation;

• �M : pM, Cq : constrained conformance relation; and

• vpM, CqwMOF : semantics of the metamodel specification pM, Cq.

42 Chapter 5. A High-Level View of the MOF Algebraic Semantics

5.3 Formalization of the MOF Reflection support

A complete formal support for reflection in the MOF framework involves: reflection and reification
mappings, which permit working not only with a metamodel definition �M but also with its realization
as a mathematical entity reflectp�M,Hq; and a mechanism to manipulate the metadata representation
of metamodels and models in a generic way.

On the one hand, we provide an algebraic semantics for the reflection and reification mechanisms
for MOF metamodels. The OCL standard mathematically defines a metamodel as an algebraic
signature whose semantics is given in terms of domain theory [32]. In our approach, an alternative
formalization is given by the computable, equationally-defined reflect function, which maps a meta-
model specification definition p�M, rCq into a theory in Membership Equational Logic. Our algebraic
semantics associates a different mel theory reflectp�M, rCq to each different MOF metamodel spec-
ification definition p�M, rCq. Note that in this algebraic semantics, the models conforming to such
a MOF metamodel specification are precisely the elements �M P T

reflectp rM,rCq,ConsistentModelTypetMu
.

Therefore, models conforming to different metamodel specifications belong to different algebraic data
types. Far from performing a mere code generation task, this function provides the mathematical
characterization of a metamodel, which is then interpreted as an initial algebra. This fact makes the
formalization more practical, enabling the application of automated formal reasoning techniques for
metamodels in the MOF framework.

On the other hand, the MOF standard provides a specification of the so-called MOF Reflection fa-
cilities. This focuses on the manipulation of the metarepresentation of a MOF metamodel definition�M. In particular, in the MOF metamodel the Object object type provides an API to query and ma-
nipulate MOF objects. Any other MOF object type, including the Class object type, specializes the
Object object type and therefore inherits this API. This feature is very useful for MOF metamodels.
The reification �M of a MOF metamodel realization reflectp�M,Hq is a collection of MOF objects and
therefore, by inheritance, a collection of objects of class Object. For purposes of the MOF Reflection
facilities, we are interested in a single data representation for models, which can be manipulated with
a single API, the MOF Object object type. The way this is formalized in our algebraic semantics is
as follows. For each MOF metamodel specification definition p�M, rCq, the mel theory reflectp�M, rCq
contains a shared subtheory, called META-MODEL, whose data elements are not modified by the the-
ory inclusion META-MODEL � reflectp�M, rCq. The single, metamodel-independent representation of
a model �M is provided by the elements of a sort ModelTypetMetaObjectu in META-MODEL. We usexM to denote this metamodel-independent representation of �M . Specifically, terms xM are sets of
terms of sort MetaObject , which metarepresent the explicitly typed objects that make up the model
definition �M . The change of representation �M ÞÑ xM and its inverse xM ÞÑ �M are supported in the
mel theory reflectp�M, rCq by two equationally-defined operations

upModel : ConsistentModelTypetMu ÝÑ ModelTypetMetaObjectu

downModel : ModelTypetMetaObjectu ; ConsistentModelTypetMu.

where the second operation is partial, but becomes total at the level of the corresponding kinds
(see Section 4). For each model definition �M , such that �M : M, these two operations satisfy the
equations downModelpupModelp�Mqq � �M and upModelpdownModelpxMqq � xM .

The META-MODEL theory, together with its subtheory inclusion in each theory reflectp�M, rCq, for-
mally defines the notion of MOF Reflection Facilities, that permit the manipulation of the metarep-
resentation of model definitions �M and metamodel definitions �M. This theory introduces an extra
sublevel in the metalevels M1, M2, and M3 of the MOF Framework. A metamodel realization
reflectp�M,Hq can be metarepresented as �M, which can be manipulated by means of specific op-
erators of the MOF metamodel. Taking the META-MODEL theory into account, the objects that
constitute �M can be represented as instances of the MOF Object object type in xM by means of
the upModel operator. xM can be manipulated by means of the methods of the MOF Object object
type by means of a function pφ. This process is summarized in Fig. 5.1. The MOF Object level
introduces a type-agnostic layer, where objects can be manipulated by means of a generic API. Note

5.4. Discussion about the Algebraic Semantics of MOF Metamodels 43

metadata level untyped sublevel xM � pφ // xM1
_

downModel

��
typed sublevel �M_

upModel

OO

� rφ // �M1
_

reflect

��
base level reflectp�M,Hq

_
reify

OO

� φ // reflectp�M1,Hq

Figure 5.1: M2 sublevels.

MOF Object level xM � pφ // xM 1
_

downModel

��
metadata level �M_

upModel

OO

� rφ // �M 1

Figure 5.2: M1 sublevels.

that both metadata sublevels, untyped and typed, in a specific metalevel of the MOF framework
appear specified in the MOF standard in an informal way. Our aim here is to provide a simple but
precise and powerful algebraic definition of such constructs.

In the MOF reflection process supported by reflect , each object in the collection �M that is an
instance of the MOF Class object type is mapped to an object type in reflectp�M,Hq that specializes
the algebraic representation of the MOF Object object type, thus inheriting its API. This means
that any object in a model definition �M that conforms to a MOF metamodel M can be queried and
transformed by means of this reflective API, as shown in Fig. 5.2. For example, we can transform a
UML model by adding or deleting properties to some classes in that model. The algebraic semantics
of the MOF Reflection facilities is developed in the META-MODEL theory, which is presented in more
detail in Section 8.

5.4 Discussion about the Algebraic Semantics of MOF Meta-
models

In this section, we introduce the structure that is used in Sections 6-8 to describe an algebraic
semantics of the MOF framework. Throughout these sections we present an automated mechanism to
define the algebraic semantics of a metamodel specification definition p�M, rCq by means of the reflect
function. The reflect function provides a set of formal notions for p�M, rCq: (i) metamodel M, (ii)
structural conformance relation �M : M, (iii) metamodel realization reflectp�M,Hq, (iv) metamodel
specification pM, Cq, (v) OCL constraint satisfaction relation �M |ù C, (vi) constrained conformance
relation �M : pM, Cq, and (vi) metamodel specification realization reflectp�M, rCq. In addition, we
provide an algebraic semantics for the MOF Reflection Facilities, which together with the reflect
and reify functions constitutes a complete formal support for reflection in a MOF framework, which
is informally supported in current MOF implementations.

These concepts are developed in Sections 6-8. However, their definitions are interrelated, leading
to many cross-references between these Sections. In addition, some of these concepts are defined in
a self-referential way, due to the reflective character of the MOF Framework. In this section, we
identify these self-referential definitions, providing the building blocks that permit bootstrapping a

44 Chapter 5. A High-Level View of the MOF Algebraic Semantics

formal MOF framework in several stages:

1. The function
reflect : SpecMOF ; SpecMEL

provides the algebraic semantics for the types that are defined in a metamodel specification
definition p�M, rCq. We define the algebraic data type vMOFwMOF, whose values are well-formed
MOF metamodel definitions �M, without taking into account the OCL constraints of the MOF
metamodel. To define the reflect function, we first define a partial function

reflectMOF : vMOFwMOF ; SpecMEL,

satisfying the equation reflectMOFp�Mq � reflectp�M,Hq. On the one hand, the metamodel def-
inition �MOF is a special case of metamodel definition, i.e., �MOF P vMOFwMOF. On the other
hand, the vMOFwMOF domain is defined as data in the metamodel definition �MOF, and is
formally defined by the reflectMOFp�MOFq theory. Therefore, we identify a self-referential defi-
nition of the reflectMOF function: the domain of the reflectMOF function is defined by the
function itself! We break this self-referential definition by first defining the reflectMOFp�MOFq
theory, which constitutes the first building block for our MOF framework. Once the data type
vMOFwMOF is defined in this way, we then define the reflectMOF function for any metamodel
definition �M P vMOFwMOF. The reflectMOF function is discussed in more detail in Section 6.

2. Without taking the semantics of OCL constraints into account, a metamodel specification defi-
nition p�M, rCq is constituted by a metamodel definition �M, such that �M P vMOFwMOF, and by
a set rC of OCL constraints rc, such that rc P vOCLwMOF, where vOCLwMOF is an algebraic data
type whose elements are well-formed OCL expressions. This data type is defined as data using
the metamodel definition �OCL, given that �OCL P vMOFwMOF. Taking into account the se-
mantics of OCL constraints, we define two algebraic data types: vpMOF, CMOFqwMOF as the set
of metamodel definitions �M that satisfy the following conditions: �M P vMOFwMOF and �M |ù
CMOF; and
vpOCL, COCLqwMOF as the set of OCL expressions rc that satisfy the following conditions:rc P vOCLwMOF and rc |ù COCL. The reflect function can then be defined as a function:

reflect : vpMOF, CMOFqwMOF � PfinpvpOCL, COCLqwMOFq ; SpecMEL.

The reflect function uses the semantics for the OCL constraint satisfaction relations �M |ù

CMOF, in the reflectp�MOF,�CMOFq theory, and the semantics of the satisfaction relation rc |ù
COCL between an OCL constraint and the constraints �COCL associated to the OCL metamodel
in the reflectp�OCL,�COCLq theory. However, in the latter case, OCL constraints rc in �COCL are
again model definitions rc such that rc P vpOCL, COCLqwMOF. At this point, we find the second
self-referential definition: the domain of the reflect function relies on a set �COCL of
OCL constraints whose semantics is provided by the reflect function itself! Recall
the sort ConsistentModelTypetMu in the reflectp�M, rCq theory, so that

vp�M, rCqwMOF � T
reflectp rM,rCq,ConsistentModelTypetMu

.

In Section 7, we indicate how the semantics of OCL expressions is defined in the reflect function.
This function permits constraining the domain
vMOFwMOF into the smaller domain vpMOF, CMOFqwMOF so that

vpMOF, CMOFqwMOF � vMOFwMOF,

and the domain vOCLwMOF into the smaller domain vpOCL, COCLqwMOF so that

vpOCL, COCLqwMOF � vOCLwMOF.

5.4. Discussion about the Algebraic Semantics of MOF Metamodels 45

Figure 5.3: Infrastructure of parameterized theories.

3. Each model definition �M , such that �M : pM, Cq, which is defined at the base level of a specific
conceptual level in the MOF framework, can be queried and manipulated by means of a
generic API, called MOF Reflection Facilities, which is provided in a theory called META-MODEL.
To manipulate the model definition �M by means of this API, we have to metarepresent it at
the metalevel of the corresponding conceptual level of the MOF framework by means of the
upModel function, presented in the previous section. There is a sort ModelTypetMetaObjectu
in the META-MODEL theory whose values are the metarepresentation xM of any model definition�M .

The reflectMOF function could be generically defined by using the domain
TMETA-MODEL,ModelTypetMetaObjectu instead of vMOFwMOF. However, we prefer using the
reflectMOFp�MOFq theory for bootstrapping the mechanical formalization of the MOF frame-
work. Using the META-MODEL theory as the bootstrapping theory to define the reflectMOF func-
tion for a metamodel definition �M implies would require with the metarepresentation of the
types in M at a base level, which have not been defined yet. Therefore, we first present the
algebraic semantics of the metamodels MOF and OCL at a base level in Section 6 and 7 by
means of the reflect function. After explaining how the semantics of both metamodels can be
metarepresented by means of the upModel function in Section 8, we indicate how the reflect
function can be specified at the object metalevel, simplifying the formalization approach from
a more generic point of view.

To break the self-reference in the definition of the reflect function, we usually follow a two-step
strategy where: (a) the reflectMOF function is first defined for the specific metamodel definition�MOF, which permits defining the vMOFwMOF domain; and (b) the second step consists in the
generalization of the reflectMOF function for any metamodel definition �M. The reflectMOF function
is then used to define the reflect function. A reflectp�M, rCq theory has a generic part, independent
from any metamodel definition �M, and a metamodel-specific part, whose definition depends on �M
and rC. To avoid defining the generic part of the theory twice � a first time for the metamodel
definition �MOF, and a second time for any metamodel definition �M �, we have specified it by
means of a set of parameterized theories that will be instantiated depending on the metamodel
definition �M. These theories are shown in Fig. 5.3, and are further explained throughout Sections
6-8. They can be summarized as follows:

1. Types. The theories that provide the sorts and constructors to define the algebraic semantics
of the types that are defined in a metamodel definition �M are depicted in white. The theories

46 Chapter 5. A High-Level View of the MOF Algebraic Semantics

STRING, BOOL, INT, FLOAT, and OID provide the predefined basic data types, and the parameterized
theory OCL-COLLECTION-TYPES{X :: TRIV} provides the parameterized OCL collection types.
Although the BOOL theory is predefined, some of its operators are redefined to match the
semantics of the operators for the OCL Boolean primitive type, in Section 7. The MODEL{OBJ
:: TH-OBJECT} theory provides the constructors that are needed to define objects and model
definitions as collections of objects. The EXT-MODEL{OBJ :: TH-OBJECT} theory includes the
reflectMOFp�MOFq theory, without changing any of its type definitions, so that the vMOFwMOF

type can be used in it. The theories that permit defining the type semantics for a metamodel
definition �M are presented in more detail in Section 6.

2. Operators. Once the reflectMOF function is defined, the reflectMOFp�OCLq theory provides the
semantics of the types that are defined in the metamodel definition �OCL. In a second stage,
we define the operators for all the types that can be used in OCL expressions in order to
define OCL constraints. The theories that are depicted with a dashed background provide
these predefined operators, and are discussed in more detail in Section 7.

3. MOF Reflection Facilities. In a third stage, we present the theories that provide the MOF
Reflection Facilities API to manipulate model definitions �M , such that �M : pM, Cq, by means
of a generic API. These theories, which are depicted with dotted background in Fig. 5.3,
constitute together with the reflect and reify functions a complete support for reflection in a
MOF framework. These theories are presented in Section 8.

Chapter 6

An Algebraic Structural
Conformance Relation

As introduced in the previous section, the reflect function maps a MOF metamodel specification
p�M, rCq to a mel theory pS, ,Ω, E YAq. This theory provides a hierarchy of algebraic types, where
the hierarchy itself is defined by a partially ordered set of sorts pS,¤q, where ¤ is defined as the
reflexive closure of the strict partial order of subsort inclusion relationships, and by a set of operator
declarations Ω, whose semantics is defined by the set of conditional equations and memberships EYA.
The set Ω contains constructor operators to define values of sorts in S, and defined functions over
the sorts in S, i.e., operators that disappear during the equational simplification process modulo
the equations and memberships in E Y A. In a type system, type safety is the guarantee that no
runtime-error will result from the application of a defined function to the wrong value. A type system
is a set of rules for checking type safety, i.e., the isValueOf relation between a value and its type.
Under appropriate requirements on Ω and E Y A, which are met for reflectp�M, rCq, each value that
can appear in a model definition �M , such that �M : M, always has at least one sort, and always a
smallest possible sort in the hierarchy of sorts provided by pS,¤q.

In our approach, the types that are provided by reflectp�M, rCq are not only syntactically defined
in a mel theory reflectp�M, rCq, but also semantically defined using the initial algebra that is directly
associated to it1. In the initial algebra, the formal semantics of a specific type is given by the carrier
of the corresponding sort in S (or value domain), and the formal semantics of the isValueOf relation
is given by the membership relation of a specific value to the carrier of the corresponding sort.
Among the types that are provided by the reflectp�M, rCq theory, we find object types and, what is
more relevant, model types. While the isValueOf relation is refined as the instanceOf relation for an
object type, it is instead refined as the structural conformance relation for a model type. A model
type permits a syntactic characterization of a model definition �M itself as a collection of objects,
and a semantic characterization of the set of conformant model definitions �M such that �M : pM, Cq.
Therefore, model definitions �M can be treated as first-class citizens in both a practical and a formal
way.

To define the reflect function, we consider the SpecMOF data type, whose elements are meta-
model specification definitions p�M, rCq. In the end, the function we want to define is

reflect : SpecMOF ; SpecMEL.

This function provides the algebraic semantics for the types that are defined in a metamodel spec-
ification definition p�M, rCq. Both �M and each constraint definition rc in rC can be defined as models
taking into account the algebraic semantics that is provided for both metamodel definitions �MOF
and �OCL, respectively. The algebraic semantics of both metamodels is provided by the reflect func-

1This initial algebra has a very simple description in terms of canonical forms for the equations E modulo A, given

that the reflectp�M, rCq theory is ground confluent, terminating and pre-regular.

48 Chapter 6. An Algebraic Structural Conformance Relation

tion, again! To break the self-reference in the definition of the reflect function, we first define a
simpler function

reflectMOF : vMOFwMOF ; SpecMEL,

satisfying the equation reflectMOFp�Mq � reflectp�M,Hq. vMOFwMOF is the data type whose ele-
ments are metamodel definitions �M, such that �M : MOF. For elements �M in vMOFwMOF, the
satisfaction of OCL constraints �CMOF is not mandatory. The definition of the reflectMOF function
still has the same self-reference problem since vMOFwMOF is defined by means of the reflectMOF

function itself. In subsequent sections, we define the reflectMOF function as follows:

1. The mel theory that provides the algebraic semantics for the types of a specific metamodel
can be split into a generic part, common to all metamodels, and a part specific to the given
metamodel. To avoid presenting the generic part of a metamodel specification twice: (a)
a first time for the metamodel definition �MOF, and (b) a second time for any metamodel
definition �M; we present it as a set of parameterized mel theories. These theories provide the
semantics of the primitive data types and the OCL collection types that can be used in the
MOF Framework.

2. Recall that �MOF is itself a MOF metamodel, since �MOF : MOF, as explained in Section
3.2. We first define a mel theory reflectMOFp�MOFq, that is, we first define reflectMOF for a
single metamodel, namely �MOF. In particular, reflectMOF instantiates the aforementioned
parameterized theories for the metamodel definition �MOF. The reflectMOFp�MOFq theory
defines the vMOFwMOF type as the set of metamodel definitions �M, which can be viewed as
both graphs and trees. This step breaks the self-reference in the reflectMOF function definition,
constituting the first solid building block on which to define the reflect function.

3. Once the reflectMOFp�MOFq theory, such that

reflectMOFp�MOFq � reflectp�MOF,Hq,

is defined, we identify the ModelTypetMOFu sort in this theory, whose carrier in the initial
algebra defines the vMOFwMOF type, i.e.,

vMOFwMOF � T
reflectMOFp�MOFq,ModelTypetMOFu

.

Note that, in particular, this means that

�MOF P vMOFwMOF.

We then define the value of the function reflectMOF on any metamodel �M, such that �M P

vMOFwMOF, as its corresponding mel theory reflectMOFp�Mq. In this case, the parameterized
theories of step 1 are instantiated for the metamodel definition �M. Given a metamodel defini-
tion �M, the
reflectMOFp�Mq theory defines the vMwMOF type as the set of model definitions �M that are
constituted by a collection of typed objects, which can be viewed as both a graph and a
tree. However, note that the vMwMOF type does not consider the OCL constraint satisfaction
relation yet. The constrained conformance relation is studied in Section 7.

4. At the end of this section, a brief description of how the reflectMOF function has been embedded
into the mel reflective semantics is provided, and a brief description of a reify function that
permits obtaining the metamodel definition �M from the mel theory reflectMOFp�Mq, such that�M � reifypreflectMOFp�Mqq, is also provided.

6.1. A Generic Infrastructure of Parameterized Theories 49

Figure 6.1: Infrastructure of parameterized theories.

6.1 A Generic Infrastructure of Parameterized Theories

In this section, we describe the set of theories, some of them parameterized, that provide the algebraic
semantics for the predefined types in a MOF metamodel: primitive types and OCL collection types.
Fig. 6.1 shows a simplification of the complete structure of theories that is shown in Fig. 5.3,
namely, those theories used to define the algebraic semantics of the types in a metamodel realization
reflectMOFp�Mq. In this section, we only present the constructors that are needed to define values
for these types. Type operators are presented in Section 7 in order to define OCL expressions.

In subsequent sections, we detail the theories that appear in Fig. 6.1, which are used to define
the reflectMOF function:

• Basic data type theories: Provide the semantics for the OCL primitive types.

• Parameter theories: Provide the formal parameters for the parameterized theories
OCL-COLLECTION-TYPES, MODEL and EXT-MODEL.

• OCL-COLLECTION-TYPES theory: Provides the semantics of OCL collection types, which can be
instantiated for primitive data types, enumeration types and object types.

• MODEL theory: Provides the constructors that are needed to define objects and model defini-
tions. This theory is only instantiated for the metamodel definition �MOF in the
reflectMOFp�MOFq theory. The reflectMOFp�MOFq theory is presented in Section 6.2, defin-
ing the model type vMOFwMOF.

• EXT-MODEL theory: Provides the constructors to define objects and model definitions for any
MOF metamodel definition �M. This theory is instantiated for a specific metamodel definition�M, different from �MOF, in a theory reflectMOF p�Mq, which provides the model type vMwMOF.
The semantics of a metamodel M is provided in Section 6.3.

6.1.1 Primitive Type Theories

Basic data types are implemented in Maude as built-in types, and their algebraic semantics is defined
in [75] (see Chapter 9). More specifically, the BOOL theory provides the sort Bool, the STRING theory
provides the sort String, the INT theory provides the sort Int, and the FLOAT theory provides the
sort Float. In addition, we define the OID theory as

fmod OID is

sorts Oid .

op nullOid : -> [Oid] .

endfm

50 Chapter 6. An Algebraic Structural Conformance Relation

This theory provides the sort Oid that represents the object identifier type.
These sorts may be used to define the type of object properties. Properties of this kind may not

require a value so that a null value can be used. This null value is not explicitly represented in any
of the theories BOOL, STRING, INT, nor FLOAT. In our approach, a null value for a specific sort T is
identified with a term in the kind rT s. A null value belongs to a kind [T] but not to a specific sort
T. Null values can be defined by means of constants that are defined, in Maude notation, as follows:

op nullBool : -> [Bool] .

op nullString : -> [String] .

op nullInt : -> [Int] .

op nullFloat : -> [Float] .

These constants are defined in the OCL-DATATYPE-COLLECTIONS theory.
In MOF there are four basic data types that are reused from the UML specification: Boolean,

String, Integer and UnlimitedNatural. Instead of these types, we use the basic data types of
the OCL specification to align the MOF algebraic semantics with the OCL algebraic semantics, that
is, we consider the basic types: Boolean, String, Integer and Real. The algebraic semantics
of the four primitive types that can be used in the MOF framework is provided as follows:

vBooleanwMOF � TOCL-DATATYPE-COLLECTIONS,Bool

vStringwMOF � TOCL-DATATYPE-COLLECTIONS,String

vIntegerwMOF � TOCL-DATATYPE-COLLECTIONS,Int

vRealwMOF � TOCL-DATATYPE-COLLECTIONS,Float

and the isValueOf relation between a value rv and its corresponding primitive type PT is then
formally defined by the equivalence

rv : PT ô rv P vPTwMOF

Note that if rv is a null value, it is not considered as a value of the corresponding type. The reason
for this is that a property that is set to a null value is considered to be undefined (See section A.1.1.1
in [24]). We discuss the algebraic semantics of undefined values in Section 7.

6.1.2 OCL Collection Types

The theory OCL-COLLECTION-TYPES provides the sorts and constructors that permit defining OCL
collections. The formal parameter of this theory is the trivial theory TRIV defined, in Maude notation,
as follows:

fth TRIV is

sorts Elt .

endfth

The TRIV theory only contains one sort, namely, Elt. OCL collection types are then defined in
the MEL theory OCL-COLLECTION-TYPES{T :: TRIV}, which provides OCL parameterized sorts and
constructors w.r.t. a generic parameter T. This theory is instantiated with a view, usually also called
T, that is defined between the TRIV theory and the theory that provides the sort T. For example, to
define collections of integers we need to instantiate it with the view

view Int from TRIV to INT as

sort Elt to Int .

endv

by means of the expression OCL-COLLECTION-TYPES{Int}. In the same way, we define views for the
theories BOOL, STRING, FLOAT and OID.

6.1. A Generic Infrastructure of Parameterized Theories 51

Figure 6.2: Subsort Structure of our Specification of the OCL Type System.

The OCL-COLLECTIONS{T} theory provides a set of generic sorts that represent OCL collections of el-
ements that cannot be empty: NeSet{T}, NeOrderedSet{T}, NeBag{T} and NeSequence{T}. NeSet{T} rep-
resents a parameterized collection sort that is instantiated with the sort T. For example, we can define
the sort
NeSet{Int} for non-empty sets of integers.

To take into account the uniqueness and order features of an OCL collection, we introduce
two intermediate sorts and their constructors (shown in Fig. 6.2): Magma{T} and OrderedMagma{T}.
Basically, we define the sort Magma{T} as the sort whose terms represent multisets of elements that
are not ordered. The constructor for this sort has the symbol ” , ” and is defined as associative and
commutative. Through the subsort relationships

T < Collection+{T} < Magma{T},

constructors that can be used to define terms of sort T can also be used to define Magma{T} terms.
Thus, working with integers, 1 , 2 , 3 is a term that represents a well-formed Magma{Int}. In
addition, we can state that 1 , 2 , 3 and 3 , 2 , 1 represent the same set of elements modulo the
commutative and associative attributes. Terms of the OrderedMagma{T} sort represent ordered lists
of s terms that are built by means of the associative constructor ” :: ”. In this case, both 1 ::

2 :: 3 and 3 :: 2 :: 1 are well-formed OrderedMagma{Int} terms, but they are not equal, since
” :: ” is associative but not commutative.

The four collection types, Set, OrderedSet, Bag and Sequence, are represented as parameterized
sorts. For example, Set{Int} is the sort for sets of integers. In addition, each collection has a
constructor operator, whose symbol coincides with that of the corresponding collection sort. For
example,

Set{ } : Magma{Int} Ñ Set{Int}

is the constructor symbol for Set collections of integers and it can be used to define, for example, the
set Set{1,2}. Magma{T} terms are used to define sets and bags, while OrderedMagma{T} terms are
used to define ordered sets and sequences. All these four types are subtypes of the Collection{T}
type, which does not have a direct constructor operator. Collection{T} terms can only be created
by means of constructors in its subsorts. In OCL, nested collections are allowed, so that an element
in a set of integers can be another collection of integers. This is specified by indicating that one
collection can be an element of another collection, i.e., by the subsort inclusion

Collection{T} < Collection+{T}.

For example, Set{Sequence{1,2}, Sequence{2}} is a valid term of type Set{Sequence{Integer}}.

52 Chapter 6. An Algebraic Structural Conformance Relation

The parameterized collection types, i.e., Set{T}, OrderedSet{T}, Bag{T}, and Sequence{T},
represent collections that can be empty for properties that have lower multiplicity � 0. Their
carriers are those of the analogous collection types (NeSet{T}, NeOrderedSet{T}, NeBag{T} and
NeSequence{T}) plus a value that represents an empty collection: empty-set, empty-orderedset,
empty-bag and empty-sequence, respectively. The key sorts, subsorts, and constructor operators of
the resulting equational theory that represents the OCL collections types is summarized, in Maude
notation, as follows:

sorts NeSet{T} Set{T} NeOrderedSet{T} OrderedSet{T}

NeBag{T} Bag{T} NeSequence{T} Sequence{T}

Collection{T} Collection+{T} .

sorts Magma{T} OrderedMagma{T} .

subsort NeSet{T} < Set{T} .

subsort NeOrderedSet{T} < OrderedSet{T} .

subsort NeBag{T} < Bag{T} .

subsort NeSequence{T} < Sequence{T} .

subsorts Set{T} OrderedSet{T} Bag{T} Sequence{T} < Collection{T} .

subsorts T Collection{T} < Collection+{T} .

subsorts Collection+{T} < Magma{T} OrderedMagma{T} .

op _,_ : Magma{T} Magma{T} -> Magma{T} [ctor assoc comm] .

op _::_ : OrderedMagma{T} OrderedMagma{T} -> OrderedMagma{T} [ctor assoc] .

op empty-set : -> Set{T} .

op Set{_} : Magma{T} -> NeSet{T} [ctor] .

op empty-orderedset : -> OrderedSet{T} .

op OrderedSet{_} : OrderedMagma{T} -> NeOrderedSet{T} [ctor] .

op empty-bag : -> Bag{T} .

op Bag{_} : Magma{T} -> NeBag{T} [ctor] .

op empty-sequence : -> Sequence{T} .

op Sequence{_} : OrderedMagma{T} -> NeSequence{T} [ctor] .

The algebraic semantics of parameterized OCL collection types is given, in the OCL-COLLECTIONS{T
:: TRIV} theory, by the following equations:

vSettT uwMOF � TOCL-COLLECTIONS{T},SettT u

vOrderedSettT uwMOF � TOCL-COLLECTIONS{T},OrderedSettT u

vBagtT uwMOF � TOCL-COLLECTIONS{T},BagtT u

vSequencetT uwMOF � TOCL-COLLECTIONS{T},SequencetT u

vCollectiontT uwMOF � TOCL-COLLECTIONS{T},CollectiontT u

where T is the formal parameter of the parameterized OCL collection types, which can be represented
as a view that maps the TRIV theory to the corresponding theory that represents primitive types,
enumeration types or object types.

Undefined Values

In OCL, the evaluation of an expression may result in an undefined value, denoted by K. For
example, an undefined value may result from querying the value of a property that has not been set
to an object instance or from partially defined operations like division by zero. The general OCL
rule is that, if one or more parts in an expression are undefined, then the complete expression will
be undefined. Thus, all functions in our OCL type system remain partial, since any function can
receive an undefined argument. The type for the undefined value K is OclVoid, which is considered

6.1. A Generic Infrastructure of Parameterized Theories 53

to be subtype of any other type in M. Therefore, the K value can be used as a value of any type.
The algebraic semantics of the OclVoid type is represented in mel by means of the kind concept in
a natural way.

In the OCL-COLLECTION-TYPES{T :: TRIV} theory, undefined values are specified as terms that
have no sort assigned to them, remaining in the kind of the corresponding sort. The OclVoid type
is not represented by a specific sort in the OCL-COLLECTION-TYPES{T :: TRIV} theory. However, its
semantics is provided by the equation

vOclV oidwMOF � TOCL-COLLECTION-TYPES{T :: TRIV},rCollection�tTus

6.1.3 The OCL-DATATYPE-COLLECTIONS theory

The OCL-DATATYPE-COLLECTIONS theory imports the theories OCL-COLLECTIONS-TYPES{Bool},
OCL-COLLECTIONS-TYPES{String}, OCL-COLLECTIONS-TYPES{Int}, OCL-COLLECTIONS-TYPES{Float} and
OCL-COLLECTIONS-TYPES{Oid} so that their data elements are not manipulated by the inclusions

OCL-COLLECTIONS-TYPES{Bool},
OCL-COLLECTIONS-TYPES{String},
OCL-COLLECTIONS-TYPES{Int},
OCL-COLLECTIONS-TYPES{Float},
OCL-COLLECTIONS-TYPES{Oid}
�
OCL-DATATYPE-COLLECTIONS

The OCL-DATATYPE-COLLECTIONS theory permits the use of collection types of primitive type values
in the algebraic representation of the metamodel realizations reflectMOFp�MOFq for the metamodel
definition �MOF, and reflectMOFp�Mq for a metamodel definition �M. The set of undefined values in
the
OCL-DATATYPE-COLLECTIONS theory is defined by the equation:

vOclV oidwMOF � TOCL-DATATYPE-COLLECTIONS,rBools Y
TOCL-DATATYPE-COLLECTIONS,rStrings Y
TOCL-DATATYPE-COLLECTIONS,rInts Y
TOCL-DATATYPE-COLLECTIONS,rFloats Y
TOCL-DATATYPE-COLLECTIONS,rOids

6.1.4 The MODEL theory

The MODEL theory provides the algebraic representation for object types and model types in a meta-
model definition �M. This theory is parameterized with the TH-OBJECT theory, which is defined, in
Maude notation, as

th TH-EOBJECT is

including OCL-COLLECTIONS-TYPES{Oid} *

(op empty-set to empty-set#Oid,

op empty-orderedset to empty-orderedset#Oid,

op empty-bag to empty-bag#Oid,

op empty-sequence to empty-sequence#Oid) .

sorts ObjectOid Cid Property PropertySet Object .

subsort Property < PropertySet .

subsort ObjectOid < Oid .

op noneProperty : -> PropertySet .

op _‘,_ : PropertySet PropertySet -> PropertySet

[assoc comm id: noneProperty ctor] .

54 Chapter 6. An Algebraic Structural Conformance Relation

op <_:_|_> : ObjectOid Cid PropertySet -> Object [obj ctor] .

op nullObject : -> [Object] [ctor] .

op oid : Object -> ObjectOid .

op class : Object -> Cid .

op getPropertySet : Object -> PropertySet .

endth

In this theory, object types are used to describe a model definition �M : M as a set of objects. Objects
are defined using the following sorts: ObjectOid for object identifiers, where ObjectOid < Oid; Cid

for class names; and PropertySet for multisets of comma-separated pairs of the form (property

: value), which represent property values. Objects in a model definition �M are syntactically
characterized by means of an operator

< : | > : ObjectOid Cid PropertySet -> Object.

The operators oid, class and getPropertySet are defined to project the contents of an object, in
Maude notation, as follows:

eq oid(< OID : CID | PS >) = OID .

eq class(< OID : CID | PS >) = CID .

eq getPropertySet(< OID : CID | PS >) = PS .

where OID : ObjectOid, CID : Cid, and PS : PropertySet. Properties are defined as terms of sort
Property, such that we have a subsort inclusion Property < PropertySet.

In the MODEL{Obj :: TH-OBJECT} theory, a model definition �M that conforms to the metamodel
M, that is, such that �M : M, can be viewed as a data element collection, which is represented as
a set of objects by means of a Configuration{OBJ} term. A Configuration{OBJ} term is defined by
means of the following constructors, in Maude notation:

op __ : ObjectCollection{OBJ} ObjectCollection{OBJ} ->

ObjectCollection{OBJ} [ctor config assoc comm] .

op <<_>> : ObjectCollection{OBJ} -> Configuration{OBJ} [ctor] .

where the Object sort is a subsort of the ObjectCollection{OBJ} sort. That is, we first form a
multiset of objects of sort ObjectCollection{OBJ} using the associative and commutative multiset
union operator , , and then we wrap the set of objects using the << >> constructor to get the
desired term of sort Configuration{OBJ}. The MODEL{Obj :: TH-OBJECT} theory is defined, in Maude
notation, as

mod MODEL{OBJ :: TH-EOBJECT} is

sorts ObjectCollection{OBJ} Configuration{OBJ} ModelType{OBJ}

ConsistentModelType{OBJ} .

subsorts OBJ$Object < ObjectCollection{OBJ} .

subsorts ConsistentModelType{OBJ} < ModelType{OBJ} .

subsorts ModelType{OBJ} < Configuration{OBJ} .

op none : -> ObjectCollection{OBJ} [ctor] .

op __ : ObjectCollection{OBJ} ObjectCollection{OBJ} ->

ObjectCollection{OBJ}

[assoc comm config id: none ctor format(d n d)] .

op <<_>> : ObjectCollection{OBJ} -> Configuration{OBJ} [ctor] .

endm

In this theory, we have three sorts, namely Configuration{OBJ}, ModelType{OBJ}, and ConsistentModelType{OBJ},
that permit constraining the semantics of a model type, considering its values as sets of typed ob-
jects. In particular, the terms of sort Configuration{OBJ} represent collections of typed objects

6.2. Algebraic Semantics of the MOF Metamodel 55

that may have property values. However, a model definition has a graph structure, by considering
all the object-typed properties, which can also be viewed as a tree structure, by considering only
the object-typed properties that are also defined as containment properties. This structure is not
defined for terms of sort Configuration{OBJ}. A term �M of the sort Configuration{OBJ} belongs
ModelType{OBJ} iff it has a graph structure. This structure is checked by means of a membership
axiom that assigns the sort ModelType{OBJ} to the term �M if it has the proper graph structure. The
structure of a model definition is developed in the following sections, by means of the reflectMOF

function. A model definition �M belongs to the sort ConsistentModelType{OBJ} iff, in addition, satis-
fies a set of OCL constraints that are defined for the corresponding metamodel. The OCL constraint
satisfaction relation is also defined as a decision procedure by means of a membership axiom in MEL.
In Section 7, we define the OCL constraint satisfaction relation, indicating how the carrier of the
sort ConsistentModelType{OBJ} is defined for a specific metamodel specification pM, Cq.

To instantiate the MODEL{OBJ :: TH-OBJECT} theory for a specific metamodel definition �M, we
define a view that maps the TH-OBJECT theory to another one that is generated from �M by means of
the reflectMOF function. We use the symbol M (the name of the root package of the metamodel defi-
nition �M) as the view name. The reflectMOF function is defined in the following sections. Therefore,
when we instantiate the theory MODEL{OBJ :: TH-OBJECT} for a specific metamodel definition �M by
means of the expression MODEL{M}, we obtain the sorts ModelType{M} and ConsistentModelType{M}.
We usually denote the sort ModelType{M} by M, and the sort ConsistentModelType{M} by pM, Cq
for short.

The properties of an object can be accessed by using the dot notation, i.e., by means of an operator
.property that is provided in the MODEL{OBJ :: TH-OBJECT} theory for each property property. This

operator is equationally defined in the expected way, so that its semantics in the initial algebra is
that of a mapping

.property : < OID : CID | property : value , PS > ÞÑ value,

where OID : Oid, CID : Cid, PS : PropertySet, property is the name of the property, and value is
the value of the corresponding property. For example, if we define an object term c, c.property

obtains the value of the property meta-property. In addition, when value is a collection of object
identifiers, we also define the function .property(), which is defined by the equation

< OID : CID | property : value , PS> . propertyp�Mq �

tro P �M | oidproq P valueu.

The functions that project property values in an object are presented in detail in Section 7.

6.1.5 The EXT-MODEL theory

The reflectMOFp�MOFq theory instantiates the MODEL{OBJ :: TH-OBJECT} theory with the view MOF,
as explained in the following section, providing the algebraic semantics for the types that are defined
in �MOF. The EXT-MODEL{OBJ :: TH-OBJECT} theory includes both the MODEL{OBJ} theory and the
reflectMOFp�MOFq theory, so that the type vMOFwMOF can be used to define the type vMwMOF in the
reflectMOFp�Mq theory. The theory EXT-MODEL{OBJ :: TH-OBJECT} is instantiated by the reflectMOF

function for a metamodel definition �M that is different from �MOF, as shown in Section 6.3.

6.2 Algebraic Semantics of the MOF Metamodel

In this section, we describe the mel theory reflectMOFp�MOFq that provides the type system and
mel axioms that can be used to define MOF metamodels. The reflectMOFp�MOFq theory formalizes
some of the concepts that appear in the MOF standard. More specifically, it formalizes the object
types that are defined in a specific subset of the MOF metamodel definition: the Essential MOF
metamodel definition, which we denote as �MOF from now on. Essential MOF (EMOF) [22] is

56 Chapter 6. An Algebraic Structural Conformance Relation

Figure 6.3: Simplification of the EMOF metamodel, in UML notation.

a subset of MOF that closely corresponds to the facilities found in object oriented programming
languages and XML. A primary goal of EMOF is to provide a set of simple modeling concepts and
to support class extension. EMOF is intended to enhance the combination of model-driven tool
development and tool integration. We have chosen EMOF for its simplicity, and because it is a
standard that is close to current modeling frameworks, such as the Eclipse Modeling Framework.

We show a simplification of the EMOF metamodel in Fig. 6.3, which includes the most relevant
concepts that are used when a metamodel is defined. Since the EMOF metamodel reuses UML
concepts to define the syntax of modeling languages, the UML notation is also reused for graphically
representing the static structure of metamodels. Each concept is provided as an object type definition�OT in �MOF, which is depicted as a class in Fig. 6.3. The object type definitions of the metamodel
definition �MOF are related by means of an specialization relation s, represented as object type
inheritance relationships in Fig. 6.3.

A metamodel definition �M has a graph structure where each object is a node of the graph
and the object-typed properties are the edges, which are depicted as associations in Fig. 6.3. A
metamodel definition �M can also be viewed as a tree by means of the containment properties that are
defined between object types in �MOF, which are depicted as composition aggregations in the figure.
The reflectMOFp�MOFq theory provides the vMOFwMOF model type, whose values are metamodel
definitions that can be viewed both as graphs, through object-typed properties, and trees, through
containment relationships.

The reflectMOFp�MOFq theory can be decomposed as

reflectMOFp�MOFq � MODELtMOFu Y MOFSTRUCTURE,

where MOF is a view that maps the sorts and operators of the TH-OBJECT theory to the elements of
the mod#MOF theory, and the MOFSTRUCTURE theory provides the operators, equations and memberships
that are needed to check the graph/tree structure of a specific metamodel definition �M. The mod#MOF

theory provides the operators that are specific to the metamodel definition �MOF, which are needed
to define objects in a metamodel definition �M. The mod#MOF theory represents the actual parameter
that instantiates the MODEL{OBJ :: TH-OBJECT} theory for the metamodel definition �MOF.

In this section, we define the reflectMOFp�MOFq theory by providing: (a) the mod#MOF theory and
the algebraic semantics of the object types that are defined in the metamodel definition �MOF; (b)
the algebraic semantics of the model types that are provided by the reflectMOFp�MOFq theory; (c)

6.2. Algebraic Semantics of the MOF Metamodel 57

the algebraic semantics of the vMOFwMOF model type by means of a membership axiom, which is
defined in the MOFSTRUCTURE theory; and (d) the graphical representation of a metamodel definition�M.

6.2.1 Algebraic Semantics of MOF Object Types

Object types are used to describe a metamodel definition �M : MOF as a collection of objects. In
the mod#MOF theory, objects are defined using the following sorts: Oid#MOF for object identifiers, where
Oid#MOF < Oid; Cid#MOF for class names; and PropertySet#MOF for multisets of comma-separated pairs
of the form (property : value), which represent property values. Objects in a metamodel definition�M are then syntactically characterized in the theory reflectMOFp�MOFq by means of an operator

< : | > : Oid#MOF Cid#MOF PropertySet#MOF -> Object#MOF.

A constant
op nullObject#MOF : -> [Object#MOF] [ctor] .

permits defining undefined values for objects. Three operators are defined to project the contents
of an object, which are defined, in Maude notation, as follows:

op oid : Object#MOF -> Oid#MOF .

eq oid(< OID : CID | PS >) = OID .

op class : Object#MOF -> Cid#MOF .

eq class(< OID : CID | PS >) = CID .

op propertySet : Object#MOF -> Cid#MOF .

eq propertySet(< OID : CID | PS >) = PS .

where OID : Oid#MOF, CID : Cid#MOF, and PS : PropertySet#MOF. Properties are defined as terms of a
sort Property#MOF, such that we have a subsort inclusion Property#MOF < PropertySet#MOF. The constant

nullProperty#MOF : -> PropertySet#MOF

permits defining an object without property values.
The view MOF that maps the TH-OBJECT to the mod#MOF theory is defined, in Maude notation, as follows:

view MOF from TH-EOBJECT to mod#MOF is

sort Cid to Cid#MOF .

sort Object to Object#MOF .

sort ObjectOid to Oid#MOF .

sort Property to Property#MOF .

sort PropertySet to PropertySet#MOF .

op noneProperty to noneProperty#MOF .

op nullEObject to nullObject#MOF .

endv

Therefore, the MODEL{MOF} theory instantiates the theory MODEL{OBJ :: TH-OBJECT} with the MOF view, pro-
viding the types that are needed to represent collections of typed objects as terms of sort Configuration{MOF},
also called MOF0. Note that a Configuration{MOF} term is not a metamodel definition yet. This term

becomes a metamodel definition �M when it belongs to the carrier of the sort ModelType{MOF}, also called
MOF. This is achieved by means of the membership axiom that is defined in the MOFSTRUCTURE theory,
defined below.

The mod#MOF theory also includes the OCL-DATATYPE-COLLECTIONS theory, so that any of the sorts that are
defined in this theory, primitive types and OCL collection types, can be used to define operator arguments.

We explain the syntactic representation of the object types that are defined in �MOF in the mel theory

mod#MOF so that they can be used to define metamodel definitions �M in the model definition MODEL{MOF}

58 Chapter 6. An Algebraic Structural Conformance Relation

theory2. To illustrate how the types of the theory reflectMOFp�MOFq can be used in a metamodel definition �M,

we have taken the metamodel definition �MOF itself as an example. This syntactic algebraic representation

is generalized for any MOF metamodel �M : MOF in Section 6.3. The object type definitions�OT that we

have considered in the metamodel definition �MOF are the following:

NamedElement

The abstract object type NamedElement provides the attribute name and is syntactically represented in

the mel theory reflectMOFp�MOFq, in Maude notation, as follows:

sorts NamedElement oid#NamedElement .

subsort NamedElement < Cid#MOF .

subsort oid#NamedElement < Oid#MOF .

op name‘:_ : String -> Property#MOF .

op name : -> Property#MOF .

The semantics of the object type NamedElement in the initial algebra of the reflectMOFp�MOFq theory
is defined by the equation

vNamedElementwMOF �

tro P T
reflectMOFp�MOF q,Object#MOF

| classproq P T
reflectMOFp�MOF q,NamedElement

u,

and the instanceOf relation between an object ro P T
reflectMOFp�MOF q,Object#MOF

and the object type NamedEle-

ment is defined by the following equivalence:

ro : NamedElement ô ro P vNamedElementwMOF

Type

The abstract object type Type defines the common structure of objects that can participate as object prop-

erty types in object types of a metamodel definition �M P T
reflectMOFp�MOFq,ConfigurationtMOFu

. It provides the

meta-property package, indicating the Package instance that contains it. The abstract object type Type is
specialized by both the DataType and the Class object types, so that any type can be enclosed in a Pack-

age instance. This class is syntactically represented, in Maude notation, in the mel theory reflectMOFp�MOFq
as follows:

sorts Type oid#Type .

subsort Type < NamedElement .

subsort oid#Type < oid#NamedElement .

op package‘:_ : Oid -> Property#MOF .

op package : -> Property#MOF .

The semantics of the object type Type in the initial algebra of the reflectMOFp�MOFq theory is defined
by the equation

vTypewMOF �

tro P T
reflectMOFp�MOF q,Object#MOF

| classproq P T
reflectMOFp�MOF q,Type

u,

and the instanceOf relation between an object ro P T
reflectMOFp�MOF q,Object#MOF

and the object type Type is

defined by the following equivalence:

ro : Type ô ro P vTypewMOF

2This syntactic representation will be given in the usual algebraic manner by specifying a collection of sorts
(algebraic types) and subsorts (subtypes), and certain operator declarations, so that each algebraic term can be built
up using such operators. Note that this is entirely analogous to using a context-free grammar to specifying the
algebraic terms, with nonterminals corresponding to sorts, and operator declarations corresponding to grammar rules.

6.2. Algebraic Semantics of the MOF Metamodel 59

Class

Object types are the central concept of EMOF to model entities of the problem domain in metamodels. An

object type OT is defined in �MOF as a Class instance rc and a set of Property instances rp. Therefore,
a user can define new object types in the form of Class instances and Property instances. The object
type Class contains the following meta-properties: name, indicates the name of the object type definition�OT; abstract, indicates whether the object type can be instantiated (abstract = false) or not (abstract =
true); and superClass, indicates that the object type is defined as a specialization of the object types that
are referred to by means of this property. The constructors that permit defining objects of the object type
Class are defined, in Maude notation, as follows:

sort Class oid#Class .

subsort Class < Type .

subsort oid#Class < oid#Type .

op Class : -> Class .

op oid#Class : Qid -> oid#Class .

op isAbstract‘:_ : Bool -> Property#MOF .

op isAbstract : -> Property#MOF .

op superClass‘:_ : OrderedSet{Oid} -> Property#MOF

op superClass : -> Property#MOF

op ownedAttribute‘:_ : OrderedSet{Oid} -> Property#MOF .

op ownedAtribute : -> Property#MOF .

The Class instance that defines the name of the object type Class in the metamodel MOF is defined
as the term

< oid#Class(’Class0) : Class |

name : "Class", isAbstract : false,

package : oid#Package(’Package0)

>.

The semantics of the object type Class in the initial algebra of the reflectMOFp�MOFq theory is defined
by the equation

vClasswMOF �

tro P T
reflectMOFp�MOF q,Object#MOF

| classproq P T
reflectMOFp�MOF q,Class

u,

and the instanceOf relation between an object ro P T
reflectMOFp�MOF q,Object#MOF

and the object type Class is

defined by the following equivalence:

ro : Class ô ro P vClasswMOF

Property

The object type Property permits describing attributes of object type definitions in �M, or relationships

among object types. The object type Property is defined in the meta-metamodel definition �MOF with
the following metaproperties: name, indicates the name of the property; lower, indicates the minimum
multiplicity of the property, whose values can be 1 if a value is required for the property, or 0 if no value
is required; upper, indicates the maximum multiplicity of the property, whose values can be 1 if a value of
the property is not a collection, or -1 (usually written *) if a value of the property is a collection3; ordered,
indicates that a collection of values must be ordered for the property, when upper = -1 ; unique, indicates
that a collection of values for the property cannot contain duplicates, when upper = -1 ; opposite, indicates

that an object type�OT2, which is used to type a property instance�p1 in an object type�OT1, has a property�p2 , which is typed with the object type�OT1; class, indicates the class instance rc of the object type�OT that
owns the property; type, defines the type of the property, where the type can be a basic type definition, an

3We do not consider values n, such that 1 n, for the upper metaproperty.

60 Chapter 6. An Algebraic Structural Conformance Relation

enumeration type definition or an object type definition; and isComposite, indicates that a property, whose

class meta-property refers to a class instance �cl1 of an object type�OT1 and whose type meta-property refers

to a class instance �cl2 of an object type�OT2, defines a composition relationship between object types�OT1

and�OT2, where�OT2 is the composite object type and�OT1 is the component object type; and defaultValue,
indicates a literal that represents the default value of the property when the property is not initialized. The
meta-properties lower, upper, ordered and unique constitute the multiplicity metadata of a specific property
4.

The constructors that permit defining objects of the object type Property are defined, in Maude
notation, as follows:

sort Property oid#Property .

subsort Property < NamedElement .

subsort oid#Property < oid#NamedElement .

op Property : -> Property .

op oid#Property : Qid -> oid#Property .

op lower‘:_ : Int -> Property#MOF .

op lower : -> Property#MOF .

op upper‘:_ : Int -> Property#MOF .

op upper : -> Property#MOF .

op isOrdered‘:_ : Bool -> Property#MOF .

op isOrdered : -> Property#MOF .

op isUnique‘:_ : Bool -> Property#MOF .

op isUnique : -> Property#MOF .

op isComposite‘:_ : Bool -> Property#MOF .

op isComposite : -> Property#MOF .

op opposite‘:_ : [Oid] -> Property#MOF .

op opposite : -> Property#MOF .

op class‘:_ : Oid -> Property#MOF .

op class : -> Property#MOF .

op defaultValue‘:_ : String -> Property#MOF .

op defaultValue : -> Property#MOF .

The Property instance rp that defines the metaproperty name of the object type Class in �MOF is
represented by the term

< oid#Property(’Property0) : Property |

name : "name", lower : 1, upper: 1,

isOrdered, isUnique, isComposite,

type : oid#PrimitiveType(’PrimitiveType0),

class : oid#Class(’Class0)

>.

In EMOF, an association between two classes can be defined by means of two properties that are defined
as opposite, i.e., each one refers to the other by means of the opposite association end. For example, the
composition that is defined between the classes Enumeration and EnumerationLiteral by means of the
ownedLiteral and enumeration opposite references is represented as follows:

< oid#Class(’class0) : Class |

name : "Enumeration",

ownedAttribute : OrderedSet{oid#Property(’prop0)}

>

< oid#Property(’prop0) : Property |

name : "ownedLiteral",

class : oid#Class(class0),

opposite : oid#Property(’prop1)

>

< oid#Class(’class1) : Class |

4In the metamodel of the MOF 2.0 specification, multiplicity meta-properties belong to the MultiplicityElement
object type.

6.2. Algebraic Semantics of the MOF Metamodel 61

name : "EnumerationLiteral",

ownedAttribute : OrderedSet{oid#Property(’prop1)}

>

< oid#Property(’prop1) : Property |

name : "enumeration",

isComposite : true,

class : oid#Class(’class1),

opposite : oid#Property(’prop0)

>.

The semantics of the object type Property in the initial algebra of

the reflectMOFp�MOFq theory is defined by the equation

vPropertywMOF �

tro P T
reflectMOFp�MOF q,Object#MOF

| classproq P T
reflectMOFp�MOF q,Property

u,

and the instanceOf relation between an object ro P T
reflectMOFp�MOF q,Object#MOF

and the object type Property

is defined by the following equivalence:

ro : Property ô ro P vPropertywMOF

DataType

The object type DataType describes any type that does not constitute an object type definition�OT, i.e.,
types whose values do not change over time. For example, the integer 1 always represents the same value.
The Integer type is defined as an instance of the Datatype object type. The object type DataType is
specialized by both the PrimitiveType and the Enumeration object types. The object type DataType

is abstract and is represented in the reflectMOFp�MOFq by the following sorts and constructors:

sort DataType oid#DataType .

subsort DataType < Type .

subsort oid#DataType < oid#Type .

The semantics of the object type DataType in the initial algebra of the reflectMOFp�MOFq theory is
defined by the equation

vDataTypewMOF �

tro P T
reflectMOFp�MOF q,Object#MOF

| classproq P T
reflectMOFp�MOF q,DataType

u,

and the instanceOf relation between an object ro P T
reflectMOFp�MOF q,Object#MOF

and the object type DataType

is defined by the following equivalence:

ro : DataType ô ro P vDataTypewMOF

PrimitiveType

The object type PrimitiveType permits the definition of basic data types that can be used when a modelrM : MOF is defined. For example, we take into account four instances of the object type PrimitiveType

in �MOF: �Boolean, �String, �Integer and �Real5. The constructors that permit defining objects of the
object type PrimitiveType are defined, in Maude notation, as follows:

5In the EMOF specification, the primitive type UnlimitedNatural is provided instead of Real. We have added this
modification to the metamodel to align it with the OCL type system.

62 Chapter 6. An Algebraic Structural Conformance Relation

sort PrimitiveType oid#PrimitiveType .

subsort PrimitiveType < DataType .

subsort oid#PrimitiveType < oid#Type .

op PrimitiveType : -> PrimitiveType .

op oid#PrimitiveType : Qid -> oid#PrimitiveType .

The PrimitiveType instance �String that defines the String data type is represented by means of the
term

< oid#PrimitiveType(’PrimitiveType0) : PrimitiveType |

name : "String", package : oid#Package(’Package0) > .

The semantics of the object type PrimitiveType in the initial algebra of the reflectMOFp�MOFq theory
is defined by the equation

vPrimitiveTypewMOF �

tro P T
reflectMOFp�MOF q,Object#MOF

| classproq P T
reflectMOFp�MOF q,PrimitiveType

u,

and the instanceOf relation between an object ro P T
reflectMOFp�MOF q,Object#MOF

and the object type Primi-

tiveType is defined by the following equivalence:

ro : PrimitiveType ô ro P vPrimitiveTypewMOF

Enumeration and EnumerationLiteral

An enumeration type is a finite set of literal values. It can be defined by means of an instance of the object
type Enumeration and a set of instances of the object type EnumerationLiteral. The constructors that
permit defining instances of the object types Enumeration and EnumerationLiteral are represented, in
Maude notation, as follows:

sorts Enumeration oid#Enumeration

EnumerationLiteral oid#EnumerationLiteral .

subsort Enumeration < DataType .

subsort oid#Enumeration < oid#DataType .

subsort EnumerationLiteral < NamedElement .

subsort oid#EnumerationLiteral < oid#NamedElement .

op ownedLiteral‘:_ : OrderedSet{Oid} -> Property#MOF .

op ownedLiteral : -> Property#MOF .

op enumeration‘:_ : Oid -> Property#MOF .

op enumeration : -> Property#MOF .

As an example, we take the enumeration that is defined in the metamodel definition �RDBMS. This
enumeration is represented as the following collection of objects:

< oid#Enumeration(’Enum0) : Enumeration |

name : "RDataType", literal :

OrderedSet{

oid#EnumerationLiteral(’Literal0) ::

oid#EnumerationLiteral(’Literal1) ::

oid#EnumerationLiteral(’Literal2) ::

oid#EnumerationLiteral(’Literal3) ::

oid#EnumerationLiteral(’Literal4)

},

package : oid#Package(’Package0)

>

< oid#EnumerationLiteral(’Literal0) : EnumerationLiteral |

name : "VARCHAR", enumeration : oid#Enumeration(’Enum0) >

6.2. Algebraic Semantics of the MOF Metamodel 63

< oid#EnumerationLiteral(’Literal1) : EnumerationLiteral |

name : "NUMBER", enumeration : oid#Enumeration(’Enum0) >

< oid#EnumerationLiteral(’Literal2) : EnumerationLiteral |

name : "BOOLEAN", enumeration : oid#Enumeration(’Enum0) >

< oid#EnumerationLiteral(’Literal3) : EnumerationLiteral |

name : "DATE", enumeration : oid#Enumeration(’Enum0) >

< oid#EnumerationLiteral(’Literal4) : EnumerationLiteral |

name : "DECIMAL", enumeration : oid#Enumeration(’Enum0) > .

The semantics of the object type Enumeration in the initial algebra of the reflectMOFp�MOFq theory is
defined by the equation

vEnumerationwMOF �

tro P T
reflectMOFp�MOF q,Object#MOF

| classproq P T
reflectMOFp�MOF q,Enumeration

u,

and the instanceOf relation between an object ro P T
reflectMOFp�MOF q,Object#MOF

and the object type Enumer-

ation is defined by the following equivalence:

ro : Enumeration ô ro P vEnumerationwMOF

The semantics of the object type EnumerationLiteral in the initial algebra of the reflectMOFp�MOFq
theory is defined by the equation

vEnumerationLiteralwMOF �

tro P T
reflectMOFp�MOF q,Object#MOF

|

classproq P T
reflectMOFp�MOF q,EnumerationLiteral

u,

and the instanceOf relation between an object ro P T
reflectMOFp�MOF q,Object#MOF

and the object type Enumer-

ationLiteral is defined by the following equivalence:

ro : EnumerationLiteral ô ro P vEnumerationLiteralwMOF

Package

A Package instance is the root element of an EMOF model and encapsulates all user-defined types that
describe a metamodel, i.e., instances of the object type Type. In EMOF, a Package instance can also
contain other Package instances by means of the nestedPackage meta-property. The nestingPackage meta-
property indicates its container package, if any. The constructors that permit defining objects of the object
type Package are defined, in Maude notation, as follows:

sort Package oid#Package .

subsort Package < NamedElement .

subsort oid#Package < oid#NamedElement .

op Package : -> Package .

op oid#Package : Qid -> oid#Package .

op ownedType‘:_ : OrderedSet{Oid} -> Property#MOF .

op ownedType : -> Property#MOF .

op nestedPackage‘:_ : OrderedSet{Oid} -> Property#MOF .

op nestedPackage : -> Property#MOF .

op nestingPackage‘:_ : [Oid] -> Property#MOF .

op nestingPackage : -> Property#MOF .

The Package instance rpk that encapsulates the types that are defined in the metamodel definition �MOF
is represented by means of the term

64 Chapter 6. An Algebraic Structural Conformance Relation

< oid#Package(’Package0) : Package |

name : "EMOF",

nestedPackage, nestingPackage,

ownedType : OrderedSet{

oid#Class(’Class0) ::

oid#PrimitiveType(’PrimitiveType0) :: ...

}

>

6.2.2 Algebraic Semantics of MOF Model Types

The reflectMOFp�MOFq theory provides the following model types:

(i) MOF0, which is represented by the sort ConfigurationtMOFu in the

reflectMOFp�MOFq theory, is the type of collections of typed objects. The semantics of the MOF0

type is defined by the equation

vMOF0wMOF � T
reflectMOFp�MOFq,ConfigurationtMOFu

,

where

�M : MOF0 ô �M P vMOF0wMOF.

(ii) MOF, which is represented by ModelTypetMOF u in the reflectMOFp�MOFq theory, is the type of
collections of typed objects that keep both a graph and a tree structure, constituting what we call a

metamodel definition �M. The semantics of the MOF type is defined by the equation

vMOFwMOF � T
reflectMOFp�MOFq,ModelTypetMOFu

,

where

�M : MOF ô �M P vMOFwMOF.

There is no constructor in the reflectMOFp�MOFq theory to define terms of sort ModelType{MOF}.
The domain T

reflectMOFp�MOFq,ModelTypetMOFu
is defined by means of the conditional membership that is

defined in the MOFSTRUCTURE theory, which is presented below.

(iii) pMOF, CMOF q, which is represented by ConsistentModelTypetMOF u in the

reflectMOFp�MOFq theory, is the type of metamodel definitions that both conform to MOF and satisfy
the OCL constraints CMOF. The semantics of the pMOF, CMOF q type is defined by the equation

vpMOF, CMOF qwMOF � T
reflectMOFp�MOFq,ConsistentModelTypetMOFu

,

where

�M : pMOF, CMOF q ô �M P vpMOF, CMOF qwMOF.

The domain T
reflectMOFp�MOFq,ConsistentModelTypetMOFu

is defined in Section 7.

6.2.3 Structure of a Metamodel Definition

A metamodel definition �M, �M : MOF0, is defined as a collection of typed objects. In an object ro, such thatro P T
reflectMOFp�MOFq,Object#MOF

, an object-typed property (or reference) is an expression of the form (prop :

value) or prop, such that pprop : valueq, ppropq P getPropertiesproq, which is defined in �MOF by means of a

Property instance rp, such that rp.typep�MOFq : Class. A value-typed property (or attribute) is an expression
of the form (prop : value) or prop, such that pprop : valueq, ppropq P getPropertiesproq, which is defined in�MOF by means of a Property instance rp, such that rp.typep�MOFq : DataType. A property value (prop

6.2. Algebraic Semantics of the MOF Metamodel 65

: value) represents a property that has been initialized with a certain value, and prop represents an unset
property that has not been initialized yet.

A metamodel definition �M can be viewed as a graph, by considering the object-typed properties that

are defined in �MOF, or as a tree, by considering the containment properties that are defined in �MOF. This
structure is preserved in the algebraic semantics of the data type vMOFwMOF by means of a membership
axiom, which is defined in the theory MOFSTRUCTURE. In subsequent paragraphs, we define this membership
axiom in MEL, which permits defining types in metamodel definitions and the specialization relation be-
tween object types. We define the vMOFwMOF type by constraining the semantics of the vMOF0wMOF type

gradually: (i) giving the graph structure of a metamodel definition �M, (ii) giving the tree structure of a

metamodel definition �M, and (iii) giving some additional constraints about well-formed metamodel defini-
tions. In Section 8, we indicate how this membership axiom can be redefined using the MOF Reflection
facilities support.

Graph structure

A collection of typed objects �M, such that �M : MOF, can be viewed as a graph where objects are nodes
in the graph, and object-typed properties define edges in the graph. We consider part of the metamodel

definition �MOF, which is represented as the term6

<<

< oid#Package(’pk1) : Package |

ownedAttribute : OrderedSet{

oid#Class(’cl1) ::

oid#Class(’cl2) ::

oid#Class(’cl3) ::

oid#Class(’cl4) ::

oid#PrimtiveType(’t1) ::

oid#PrimtiveType(’t2)

}

>

< oid#Class(’cl1) : Class |

name : "NamedElement"

>

< oid#Class(’cl2) : Class |

name : "Type"

>

< oid#Class(’cl3) : Class |

name : "Class"

>

< oid#Class(’cl4) : Class |

name : "Property"

>

< oid#PrimtiveType(’t1) : PrimitiveType |

name : "String"

>

< oid#PrimtiveType(’t2) : PrimitiveType |

name : "Boolean"

>

< oid#Property(’p11) : Property |

name : "name"

type : oid#PrimtiveType(’t1)

>

< oid#Property(’p31) : Property |

name : "isAbstract"

type : oid#PrimtiveType(’t2)

>

6We have simplified the term by only adding the properties that we want to consider in the example. A detailed
representation of a metamodel definition as term can be found in Appendix B.

66 Chapter 6. An Algebraic Structural Conformance Relation

Figure 6.4: Graphical representation of part of the metamodel definition �MOF as a graph.

< oid#Property(’p32) : Property |

name : "ownedAttribute"

type : oid#Class(’cl4)

>

>>.

This term can be represented as a graph, as shown in Fig. 6.4. In the figure, each node of the graph is
represented by a square that is split in two parts. Each node is an object whose identifier7 and object type
name are shown in the first part of the square, and whose value-typed properties are shown in the second
part of the square. In the figure, each edge represents an object-typed property value.

An edge in the graph of a metamodel definition �M is represented as a pair pro1, ro2q, where ro1, ro2 P
T

reflectMOFp�MOFq,Object#MOF
, ro1, ro2 P �M, ro1 is the object that contains the object-typed property, and ro2 is

the object that is referred to by means of the property. Given a collection of typed objects �M, the collection

of edges that are defined in �M is given by the partial function

edges : vMOFwMOF � vMOFwMOF ;

PfinpT
reflectMOFp�MOFq,Object#MOF

� T
reflectMOFp�MOFq,Object#MOF

q,

which is only defined, by now, for pairs of the form p�M,�MOFq, where: �M : MOF, and �MOF, such that�MOF : MOF, is the definition of the MOF meta-metamodel. In this case, the edges function is defined by
the mapping:

edgesp�M,�MOFq � t pro1, ro2q | ro1, ro2 P T
reflectMOFp�MOFq,Object#MOF

^ ro1, ro2 P �M ^

Drp prp : Property ^ rp P �MOF ^

rp.typep�MOFq : Class ^

ro2 P ro1.prp.nameqp�Mqq
u.

7In the figure, an object identifier of the form oid#Class(’cl1) is simplified as cl1.

6.2. Algebraic Semantics of the MOF Metamodel 67

Definition 1 (MOF Graph). Given a collection �M of typed objects, such that �M : MOF, and the definition

of the meta-metamodel �MOF, graphp�M,�MOFq is called the MOF graph of the metamodel definition �M and
is defined by the equation

graphp�M,�MOFq � pVM, EMq,

where:

(i) VM is a collection of typed objects that constitutes the set of nodes of the graph, and is defined by the

equation VM � �M; and

(ii) EM is the set of edges of the graph, and is defined by the equation

EM � edgesp�M,�MOFq.

SpecMEL is the data type of finitely-presented mel theories, that is, theories of the form pS, ,Ω, EYAq,
where all the components are finite. Without loss of generality we assume countable sets Sorts and OpNames,
so that each set of sorts S is a finite subset of Sorts, and the operator names in Ω are a finite subset of
OpNames. To obtain the sort that corresponds to a class, we define the function ClassSort : Class Ñ Sorts,
which is defined for MOF Class instances as follows: ClassSort : rcl ÞÑ rcl .name, where prcl : Classq.

The data type vMOFwMOF is defined, in a first step, by the set of collections of typed objects that are

graphs. To denote that a collection of typed objects �M, such that �M : MOF0, is a MOF graph, we can also

use the expression �M : MOF by taking into account the following equivalence

�M : MOF ðñ graphp�M,�MOFq is a MOF graph.

The values of the type vMOFwMOF are collections of typed objects that keep a graph structure. This

structure is checked over a collection of typed objects �M, such that �M : MOF0, by means of the following
conditional membership:

�M : MOF0 ^

noBrokenLinksp�M,�MOFq � true ^

wellTypedLinksp�M,�MOFq � true

,////.
////-
ùñ �M : MOF

where noBrokenLinks is a function

noBrokenLinks : vMOF0wMOF � vMOFwMOF ÝÑ vBooleanwMOF,

which checks that there are no broken edges in the graph graphp�M,�MOFq, i.e., an object in �M does not
refer to an undefined object by means of an object-typed property. This function is defined as follows:

noBrokenLinksp�M,�MOFq � false

when Dro1pro1 P T
reflectMOFp�MOFq,Object#MOF

^ ro1 P �M ^

Drp prp : Property ^ rp P �MOF ^ rp.typep�MOFq : Class ^

classpro1q P T
reflectMOFp�MOFq,ClassSortprp.classp�MOFqq

^ ro1.prp.nameq � H ^

DOIDpOID P T
reflectMOFp�MOFq,Oid#MOF

^ OID P ro1.prp.nameq ^

@ro2pro2 P T
reflectMOFp�MOFq,Object#MOF

^ ro2 P �M Ñ oidpro2q � OIDq

q
q

q
q

and

noBrokenLinksp�M,�MOFq � true otherwise;

and the wellTypedLinks is a function

68 Chapter 6. An Algebraic Structural Conformance Relation

Figure 6.5: Tree structure of a metamodel �M : MOF.

wellTypedLinks : vMOF0wMOF � vMOFwMOF ÝÑ vBooleanwMOF,

which checks that the nodes of a graph graphp�M,�MOFq, which are objects in �M, are typed with the object

types that participate in the corresponding property definition in �MOF. This function is defined as follows:

wellTypedLinksp�M,�MOFq � false

when Dpro1, ro2q pro1, ro2 P T
reflectMOFp�MOFq,Object#MOF

^ ro1, ro2 P �M ^

Drp prp : Property ^ rp P �MOF ^ rp.typep�MOFq : Class ^

classpro1q P T
reflectMOFp�MOFq,ClassSortprp.classp�MOFqq

^ ro2 P ro1.prp.nameqp�Mq ^

classpro2q R T
reflectMOFp�MOFq,ClassSortprp.typep�MOFqq

q
q

and

wellTypedLinksp�M,�MOFq � true otherwise.

Definition 2 (MOF subgraph). Given two MOF graphs rG1 � pV 1
M, E1

Mq and rG � pVM, EMq, a pair prG1, rGq
is called a MOF subgraph iff V 1

M � VM and E1
M � EM. We also denote a MOF subgraph prG1, rGq as rG1 � rG.

Tree structure

A MOF graph p�M,�MOFq can also be viewed as a tree of objects by considering the containment properties

that are defined between object types in �MOF. For example, a metamodel definition �M can be viewed

as a tree, as shown in Fig. 6.5, where the root element is a Package instance �rootPk . This Package in-
stance may contain either other Package instances through the containment meta-property nestedPackage,
or Type instances through the containment meta-property ownedType. A nested Package instance may
contain other Package instances recursively in an acyclic way. A Type instance can be either a Class in-
stance, an Enumeration instance or a PrimitiveType instance. A Class instance may contain Property
instances through the containment meta-property ownedAttribute. An Enumeration instance may contain
EnumerationLiteral instances by means of the containment meta-property ownedLiteral. Therefore, the
part of the metamodel definition that is shown in Fig. 6.4 can also be viewed as a tree, as shown in Fig. 6.6.

An edge in the tree view of a metamodel definition �M is defined by means of a containment property.
A Property instance rp is defined as a containment property by means of the function

containment : vPropertywMOF � vMOFwMOF ÝÑ vBooleanwMOF,

which is defined as follows8

8We assume that isComposite properties are always defined with an opposite property, the containment property,

i.e., given a metamodel definition �M, such that �M : MOF,

@rp prp : Property ^ rp P �M ^ rp.isComposite � true ^ rp.oppositep�Mq � Hq.

6.2. Algebraic Semantics of the MOF Metamodel 69

Figure 6.6: Tree view of part of the metamodel definition �MOF.

containmentprp, �Mq �

$&
%

true when rp : Property ^ �M : MOF ^ rp P �M ^
prp.oppositep�Mq.isComposite � trueq

false otherwise

A relationship that is defined by means of a containment property between two objects, in a metamodel

definition �M, can be represented as a pair of the form pro1, ro2q, where ro1, ro2 P T
reflectMOFp�MOFq,Object#MOF

,

ro1, ro2 P �M, ro1 is the object that contains the object-typed property, and ro2 is the object that is referred to
by means of the property. The set of edges of this form defines a containment relation for the metamodel

definition �M. This set is defined for a specific collection �M of typed objects, such that �M : MOF, by means
of the partial function

 c : vMOFwMOF � vMOFwMOF ;

PfinpT
reflectMOFp�MOFq,Object#MOF

� T
reflectMOFp�MOFq,Object#MOF

q,

where the c function is only defined for pairs of the form p�M,�MOFq, where �M : MOF and �MOF is the

definition of the MOF meta-metamodel, such that �MOF : MOF. The c function is defined as follows:

 cp�M,�MOFq �

tpro1, ro2q | ro1, ro2 : Package ^ ro1, ro2 P �M ^ ro1 � ro2 ^ro1 P ro2.nestedPackagep�Mqu Y

tpro1, ro2q | ro1 : Type ^ ro2 : Package ^ ro1, ro2 P �M ^ro1 P ro2.ownedTypep�Mqu Y

tpro1, ro2q | ro1 : Property ^ ro2 : Class ^ ro1, ro2 P �M ^ro1 P ro2.ownedAttributep�Mqu Y

tpro1, ro2q | ro1 : EnumerationLiteral ^ ro2 : Enumeration ^ ro1, ro2 P �M ^ro1 P ro2.ownedLiteralp�Mqu.

Note that this function is now defined for the metamodel definition �MOF. Although the second argument
is not used in the definition of the function, it is kept in order to generalize this function for any metamodel

definition �M in the next section.
We define the associative, commutative function

Y : vMOFwMOF � vMOFwMOF Ñ vMOFwMOF

70 Chapter 6. An Algebraic Structural Conformance Relation

by means of the equation

! ObjCol1 " Y ! ObjCol2 " � ! ObjCol1 ObjCol2 ",

where ObjCol1 ,ObjCol2 P T
reflectMOFp�MOF q,ObjectCollectiontMOFu

, and the constructors and ! " denote

the corresponding constructors of the mel theory reflectMOFp�MOFq that were introduced earlier in this
Section.

Definition 3 (MOF Tree). Given a collection �M of typed objects, such that �M : MOF, and the definition

of the meta-metamodel �MOF,

p�M,�MOF, c, root , containmentsq

is called the MOF tree of the metamodel definition �M, also denoted by treep�M,�MOFq, iff:

(i) �M is a set of typed objects that constitute the nodes in treep�M,�MOFq.

(ii) �MOF is the definition of the MOF meta-metamodel.

(iii) c is the partial function that defines the set of containment relationships in the metamodel definition�M as c p�M,�MOFq.

(iv) p�M,¤cq is a partially ordered set, where ¤c is a binary relation defined by the transitive-reflexive
closure of the relation defined by the function c. That is, the relation ¤c is defined by the equation

¤c � p c p�M,�MOFqq�.

Given two objects ro1 and ro2 such that ro1, ro2 P T
reflectMOFp�MOFq,Object#MOF

and ro1, ro2 P �M, we obtain

the equivalences

pro1 c ro2q ðñ pro1, ro2q P c p�M,�MOFq

and

pro1
�
c ro2q ðñ pro1, ro2q P p c p�M,�MOFqq�,

where p c p�M,�MOFqq� is the transitive closure of the relation that is defined by c p�M,�MOFq.

(v) The root function obtains the root element of a MOF tree, and is defined as follows:

root : vMOFwMOF � vMOFwMOF ; T
reflectMOFp�MOFq,Object#MOF

rootp�M,�MOFq � pro | ro P T
reflectMOFp�MOFq,Object#MOF

^ �M : MOF ^ ro P �M ^

Ero1pro1 P T
reflectMOFp�MOFq,Object#MOF

^ ro1 P �M ^ ro �
c ro1qq.

(vi) The function

containments : T
reflectMOFp�MOFq,Object#MOF

� vMOFwMOF � vMOFwMOF ;

vMOFwMOF

obtains the children nodes of a specific node in a MOF tree. This function is only defined for tuples

pro, �M,�MOFq, where ro P T
reflectMOFp�MOFq,Object#MOF

, �M : MOF, and ro P �M as follows:

containmentspro, �M,�MOFq �
�ro1 P tro1 |ro1P rM ^ro1 croup! ro1 "q.

where ro1 P T
reflectMOFp�MOFq,Object#MOF

, and the union operator of collections of objects is defined above.

The data type vMOFwMOF is defined by the set of collections of typed objects that are MOF trees. To

denote that a collection of typed objects �M, such that �M : MOF, is a MOF tree, we can also use the

notation �M : MOF by taking into account the following equivalence

�M : MOF ðñ graphp�M,�MOFq is a MOF graph ^
treep�M,�MOFq is a MOF tree

6.2. Algebraic Semantics of the MOF Metamodel 71

The vMOFwMOF type is defined by means of a conditional membership axiom that refines the membership
that preserves the graph structure of a collection of typed objects as follows:

�M : MOF0 ^

noBrokenLinksp�M,�MOFq � true ^

wellTypedLinksp�M,�MOFq � true ^

singleContainerp�M,�MOFq � true ^

singleRootp�M,�MOFq � true

,////////////.
////////////-

ùñ �M : MOF

where singleContainer is a function

singleContainer : vMOF0wMOF � vMOFwMOF ÝÑ vBooleanwMOF,

which checks that an object in a tree treep�M,�MOFq cannot be contained in two different objects. This
function is defined as follows:

singleContainerp�M,�MOFq � false

when Dpro1, ro2q pro1, ro2 P T
reflectMOFp�MOFq,Object#MOF

^ ro1, ro2 P �M ^ ro1 � ro2 ^

Dro3 pro3 P T
reflectMOFp�MOFq,Object#MOF

^

ro3 P �M ^ ro3 � ro1 ^ ro3 � ro2 ^

ro3 �
c ro1 ^ ro3 �

c ro2q
q

and

singleContainerp�M,�MOFq � true otherwise;

and singleRoot is a function

singleRoot : vMOF0wMOF � vMOFwMOF ÝÑ vBooleanwMOF,

which checks if a metamodel definition has a single root. The singleRoot function is defined as follows:

singleRootp�M,�MOFq � false

when Dro1 pro1 P T
reflectMOFp�MOFq,Object#MOF

^ �M : MOF ^ ro1 P �M ^

Ero2pro2 P T
reflectMOFp�MOFq,Object#MOF

^ ro2 P �M ^ ro1 �
c ro2q ^

Dro3 pro3 P T
reflectMOFp�MOFq,Object#MOF

^ �M : MOF ^ ro3 P �M ^ ro3 � ro1 ^

Ero4pro4 P T
reflectMOFp�MOFq,Object#MOF

^ ro4 P �M ^ ro3 �
c ro4q

q

and

singleRootp�M,�MOFq � true otherwise.

Definition 4 (MOF subtree). Given two MOF trees rT 1 and rT , such that rT 1, rT : MOF, a pair prT 1, rT q is

called a MOF subtree iff prT 1, rT q is a MOF subgraph, i.e., rT 1 � rT .

72 Chapter 6. An Algebraic Structural Conformance Relation

Note that we call metamodel definition �M to the values of the type vMOFwMOF. However, this values are
collections of typed objects that can be viewed as graphs or trees, as shown above. OCL constraints are still
not taken into account. Therefore, any collection of typed objects is a valid value for the type vMOFwMOF

if it preserves a graph structure and a tree structure. In Section 7, we define proper metamodel definitions
as values of the type vpMOF, CMOF qwMOF.

Type Definitions in �MOF

A model type permits defining collections of typed objects, i.e., model definitions. vMOFwMOF can be

considered as a model type whose values are model definitions of the form �M : MOF. vMOFwMOF is used
as domain in the reflectMOF function, which permits formalizing a MOF metamodel in mel automatically.

A metamodel definition �M : MOF can then be viewed as a collection that can contain nested subcol-
lections recursively, where each subcollection is a subtree in treep�M,�MOFq. Therefore, a subcollection of
objects is constituted by the root node of the subtree and all the objects that are contained recursively
by means of containment properties. Taking into account the containment relation c that is defined by

 c p�M,�MOFq, a metamodel definition �M : MOF can be decomposed in different subtrees. These subtrees
provide the information that is needed to define the types by means of the reflectMOF function. Given a

metamodel definition �M, such that �M : MOF, the types that may be algebraically represented in the

reflectMOFp�Mq theory are defined in the metamodel definition �M as follows:

Definition 5 (Object Type Definition). �OT, such that �OT : MOF, is called an object type definition in

the metamodel definition �M iff satisfies the following conditions

rootp�OT,�MOFq : Class ^ treep�OT,�MOFq � treep�M,�MOFq.

Definition 6 (Enumeration Type Definition). �ET, such that �ET : MOF, is called an enumeration type

definition in the metamodel definition �M iff satisfies the following conditions

rootp�ET,�MOFq : Enumeration ^ treep�ET,�MOFq � treep�M,�MOFq.

Definition 7 (Primitive Type Definition). �PT, such that �PT : MOF, is called a primitive type definition

in the metamodel definition �M iff satisfies the following conditions

rootp�PT,�MOFq : PrimitiveType ^ treep�PT,�MOFq � treep�M,�MOFq.

Definition 8 (Package Definition). �Pk, such that �Pk : MOF, is called a package definition in the metamodel

definition �M iff satisfies the following conditions

rootp�Pk,�MOFq : Package ^ treep�Pk,�MOFq � treep�M,�MOFq.

Definition 9 (Model Type Definition). �MT, such that �MT : MOF, is called a model type definition in the

metamodel definition �M iff satisfies the following conditions

rootp�MT,�MOFq : Package ^ treep�MT,�MOFq � treep�M,�MOFq.

The metamodel definition �MOF : MOF can also be decomposed as a collection of object type defini-

tions, where the set of object type definitions is { �NamedElement, �Package, �Type, �Class, �Property,�Enumeration, �EnumerationLiteral,�PrimitiveType }, and the subcollection of primitive type definitions is { �Boolean, �String, �Integer,�Real }.

The Specialization Relation s

A specialization relationship is a taxonomic relationship between two object types. This relationship permits
specializing a general object type into a more specific one. A specialization relationship between an object

type �OT1 : MOF and an object type �OT2 : MOF is denoted by �OT1 s �OT2, where �OT1 is the specialized

object type definition, and �OT2 is the supertype definition.
The specialization relation s is defined for pairs of object types as a subset inclusion between the carriers

of the corresopnding sorts in the initial algebra of the

reflectMOFp�MOFq theory as follows:

6.2. Algebraic Semantics of the MOF Metamodel 73

vType s NamedElementwMOF ùñ
vTypewMOF � vNamedElementwMOF

vPackage s NamedElementwMOF ùñ
vPackagewMOF � vNamedElementwMOF

vProperty s NamedElementwMOF ùñ
vPropertywMOF � vNamedElementwMOF

vEnumerationLiteral s NamedElementwMOF ùñ
vEnumerationLiteralwMOF � vNamedElementwMOF

vClass s TypewMOF ùñ
vClasswMOF � vTypewMOF

vDataType s TypewMOF ùñ
vDataTypewMOF � vTypewMOF

vEnumeration s DataTypewMOF ùñ
vEnumerationwMOF � vDataTypewMOF

vPrimitiveType s DataTypewMOF ùñ
vPrimitiveTypewMOF � vDataTypewMOF

An object ro P T
reflectMOFp�MOFq,Object#MOF

in a metamodel definition �M, such that �M : MOF, may be

an instance of different object types. In addition, we can state that any object that may participate in a

metamodel definition �M : MOF is an instance of the NamedElement object type, i.e.,

ro P T
reflectMOFp�MOFq,Object#MOF

ô ro : NamedElement,

since NamedElement is the common supertype of all the other object types that are defined in �MOF.

Additional Semantics

In the current definition of the vMOFwMOF type, objects can be defined in a metamodel definition �M, such

that �M : MOF, as instances of object types. For instance, the term

< oid#Class(’Class0) : Class |

name : "Type", isAbstract : false,

package : oid#Package(’Package0),

superClass : OrderedSet{ oid#Class(’NamedElement) },

ownedAttribute : empty-orderedset#MOF

>

represents the Class instance rcl , such that rcl : Class and rcl � rootp�Type,�MOFq, where �Type, such that�Type : MOF, is the definition of the Type object type. However, it is also feasible to define property values
in this object using properties that do not belong to the Class object type. For example,

< oid#Class(’Type) : Class |

name : "Type", isAbstract : false,

package : oid#Package(’Package0),

superClass : OrderedSet{ oid#Class(’NamedElement) },

ownedAttribute : empty-orderedset#MOF,

type

>.

In a specific metamodel definition �M, objects can be defined either with unset properties, those that
are not initialized, or with set properties, those that are initialized with a suitable value. To distinguish
if a property is unset or set in a specific object definition, this has to be defined in the object. In the

74 Chapter 6. An Algebraic Structural Conformance Relation

current definition of the vMOFwMOF type, defining an object without indicating all the properties that
are defined for the corresponding object type is allowed. For example, < oid#Class(’Type) : Class |

noneProperty#MOF > is a valid Class instance. Therefore, we cannot know whether the meta-property name

is initialized or not in this object.
These two problems are addressed by means of constraints that are added to the membership that is

defined in the MOFSTRUCTURE theory. We introduce some auxiliar domains and functions that are used to
define these constraints. We define the sets of types D1 and D as:

D1 � { Bool, String, Int, Float, Oid, Object#MOF }
D �

�
T P D1

{ NeSet{T}, Set{T}, NeOrderedSet{T}, OrderedSet{T},
NeBag{T}, Bag{T}, NeSequence{T}, Sequence{T},
Collection{T} }YD1

where T P D1. The set of values that can be used to define object properties in a specific object is defined as

D �
¤
tPD

pT
reflectMOFp�MOFq,t

q.

The membership of the MOFSTRUCTURE theory that has been presented above is refined with two more
constraints, which are defined by means of the following functions:

• validProperties: The function

validProperties : vMOF0wMOF � vMOFwMOF ÝÑ vBooleanwMOF,

checks if every object in a metamodel definition �M has only properties that are defined in its object
type or in any of its supertypes, taking the specialization relation s into account. This function is
defined as follows:

validPropertiesp�M,�MOFq � false

when Dproq pro P T
reflectMOFp�MOFq,Object#MOF

^ ro P �M ^

p
Dpprop : valueqpprop P OpNames ^ value P D ^

pprop : valueq P getPropertiesproq ^ @rpprp : Property ^ rp P �MOF ^

classproq P T
reflectMOFp�MOFq,ClassSortprp.classp�MOFqq

Ñ rp.name � prop

q
q

_
Dproppprop P OpNames ^ prop P getPropertiesproq ^
@rpprp : Property ^ rp P �MOF ^

classproq P T
reflectMOFp�MOFq,ClassSortprp.classp�MOFqq

Ñ rp.name � prop

q
q

q
and

validPropertiesp�M,�MOFq � true otherwise.

• allProperties: For every object ro in a metamodel definition �M, the function

allProperties : vMOF0wMOF � vMOFwMOF ÝÑ vBooleanwMOF,

checks if ro contains all the properties that are defined either for its object type in �MOF or for any of
its supertypes. This function is defined as follows:

6.2. Algebraic Semantics of the MOF Metamodel 75

allPropertiesp�M,�MOFq � false

when Dproq pro P T
reflectMOFp�MOFq,Object#MOF

^ ro P �M ^

Drpprp : Property ^ rp P �MOF ^ classproq P T
reflectMOFp�MOFq,ClassSortprp.classp�MOFqq

^

p
Epprop : valueqpprop P OpNames ^ value P D ^

rp.name � prop ^ pprop : valueq P getPropertiesproq
q

^
Eppropqpprop P OpNames ^ rp.name � prop ^ ppropq P getPropertiesproqq

q
q

and

allPropertiesp�M,�MOFq � true otherwise.

The membership axiom that defines the vMOFwMOF data type in the MOFSTRUCTURE theory is as follows:

�M : MOF0 ^ �MOF : MOF ^

noBrokenLinksp�M,�MOFq � true ^

wellTypedLinksp�M,�MOFq � true ^

singleContainerp�M,�MOFq � true ^

singleRootp�M,�MOFq � true ^

validPropertiesp�M,�MOFq � true ^

allPropertiesp�M,�MOFq � true

,///////////////////.
///////////////////-

ùñ �M : MOF

In this section, we have presented the result of the function reflectMOF for a single input value: the

metamodel definition �MOF. In the following section, the reflectMOF function is defined for any metamodel

definition �M to provide the algebraic semantics for the different kinds of types that can be defined in a

metamodel definition �M : MOF, i.e., for model type definitions �M, for package definitions �Pk, for primitive

type definitions �PT, for enumeration type definitions �ET, and for object type definitions�OT. In addition,
the reflectMOF function also defines the algebraic semantics of both the specialization relation s and the

containment relation c for each metamodel definition �M. Therefore, the reflectMOF function generalizes,

in a precise, mechanical way, the formalization process of the metamodel definition given for �MOF to any

metamodel definition �M : MOF.

6.2.4 Graphical Representation of MOF Metamodel Definitions �M
Both the metamodel definition �MOF and the metamodel definition �UML reuse a basic infrastructure of
object type definitions [22]. The UML standard specification [89] provides a graphical concrete syntax for
packages, primitive type definitions, enumeration type definitions and object type definitions, in the form
class diagrams.

As an example, the class diagram in Fig. 6.7 represents the metamodel definition �RDBMS. In the
figure, the graphical elements are classified by their object types to provide an intuition of how object type

instances of a metamodel definition �M are represented in a class diagram. A detailed explanation of the
mapping of the graphical concrete syntax into the abstract syntax of UML and, thereby, into the abstract
syntax of MOF is provided in [89].

However, model types do not have a standard graphical representation in a class diagram, because this
concept has not been defined. In this paper, we graphically represent a model type definition in two ways:

76 Chapter 6. An Algebraic Structural Conformance Relation

Figure 6.7: Graphical representation of the model type definition �RDBMS.

• as a boundary, in the form of a dotted line, for the object type instances that appear in a class diagram;
or

• as a boundary, in the form of a dotted line, for the Package instances in a package diagram.

In both cases, the boundary line is tagged with a name representing the name of the model type definition.

In this way, we can present a metamodel definition �M either as a term such that �M : MOF, or as a MOF
class diagram, taking into account that both are isomorphic syntactical representations.

6.3 Algebraic Semantics of MOF Metamodels Static Struc-
ture

SpecMEL is the data type of finitely-presented mel theories, that is, theories of the form pS, ,Ω, E Y Aq,
where all the components are finite. Without loss of generality we assume countable sets Sorts, OpNames,
VarNames, and Ops, so that:

• each set of sorts S is a finite subset of Sorts;

• the operator names in Ω are a finite subset of OpNames;

• all variables appearing in E YA belong to the set Vars, where

Vars � tx : s | x P VarNames, s P Sortsu Y tx : rss | x P VarNames, s P Sortsu;

• and Ops is the set of operators that can be defined in SpecMEL, which is defined by:

Ops � tpf : s1 � � � � � sn Ñ sq | f P OpNames ^ s, s1, . . . , sn P Sortsu.

As shown in the previous section, the reflectMOFp�MOF q theory provides the algebraic representation

of the types that are defined in the MOF meta-metamodel �MOF. In particular, this theory provides the
vMOFwMOF data type, whose values are collections of typed objects that can be viewed as either MOF
graphs or MOF trees. This type is used as domain of the function

reflectMOF : vMOFwMOF ÝÑ SpecMEL

so that a metamodel definition �M, such that �M : MOF, can be mapped to a mel theory pS, ,Ω, E Y Aq.
In particular, note that �MOF : MOF, so that the theory reflectMOFp�MOFq is a specific application of the
reflectMOF function. However, to break the self-reference in the definition of the reflectMOF function, we treat

the metamodel definition �MOF as a special case.

6.3. Algebraic Semantics of MOF Metamodels Static Structure 77

We introduce the notation vOTwMOFbvMOFwMOF to define a subset of the cartesian product vOTwMOF�
vMOFwMOF, where OT is the sort of a specific object type, such as NamedElement for example. We define
the domain vOTwMOF b vMOFwMOF as a subset

vOTwMOF b vMOFwMOF � vOTwMOF � vMOFwMOF,

where pro, �Mq P vOTwMOF b vMOFwMOF iff ro : OT, �M : MOF and ro P �M. Given the metamodel definition�M, such that �M : MOF. A reflectMOFp�Mq theory is defined by instantiating the EXT-MODEL{OBJ ::

TH-OBJECT} theory, shown in Fig. 6.1, with a theory that is defined for a metamodel definition �M by means
of the function

defineParameter : vNamedElementwMOF b vMOFwMOF ÝÑ SpecMEL.

More specifically, the defineParameterprootp�M,�MOFq, �Mq theory acts as actual parameter for the

EXT-MODEL{OBJ :: TH-OBJECT} theory, where �M : MOF and rootp�M,�MOFq : Package.
To instantiate the EXT-MODEL{OBJ :: TH-OBJECT} theory, we define a signature morphism, called M,

that maps the sorts and operators of the formal parameter theory TH-OBJECT to the sorts and operators of the

actual parameter theory defineParameterprootp�M,�MOFq, �Mq for a specific metamodel definition �M. This
signature morphism is called view in Maude, and is defined, in Maude notation, for a specific metamodel

definition �M as follows:

view M from TH-EOBJECT to mod#M is

sort Cid to Cid#M .

sort Object to Object#M .

sort ObjectOid to Oid#M .

sort Property to Property#M .

sort PropertySet to PropertySet#M .

op noneProperty to noneProperty#M .

op nullEObject to nullObject#M .

endv

where M is the name of the root package of the metamodel definition �M. The M view permits instantiating
the EXT-MODEL{OBJ :: TH-OBJECT} theory by means of the expression EXT-MODEL{M}. Therefore, the

reflectMOF function is defined for a given metamodel definition �M as follows:

reflectMOFp�Mq � EXT-MODEL{M},

where �M � �MOF. When �M � �MOF, the reflectMOF function is defined as

reflectMOFp�MOFq � MODEL{MOF} Y MOFSTRUCTURE,

where MOF is the view that is defined for the metamodel definition �MOF, and MOFSTRUCTURE is the theory
that provides the membership that defines both the graph and the tree structure of a metamodel definition�M such that �M : MOF, as shown in Section 6.2.

In subsequent sections, we provide: (a) the generic semantics for any metamodel definition �M in the
EXT-MODEL{OBJ :: TH-OBJECT} theory, providing the semantics of model types; and (b) the specific se-

mantics of a specific metamodel definition �M in the reflectMOFp�Mq theory, by defining the defineParameter
function for: packages, enumeration types and object types.

6.3.1 Generic Semantics of any Metamodel Definition �M
In this section we generalize for any metamodel M the structure of graph and tree that has been defined for

metamodel definitions �M, such that �M : MOF, to model definitions rM , such that rM : M. The graph and
tree structure that is defined for a model type M is provided by means of a conditional membership axiom
of the form rM : M0 ^ condition1 � true ^ � � � ^ conditionn � true ùñ rM : M,

78 Chapter 6. An Algebraic Structural Conformance Relation

which indicates that a collection rM of typed objects belongs to the carrier of the M sort if rM keeps both

a graph structure, by considering the object-typed properties that are defined in �M, and a tree structure,

by considering the containment properties that are defined in �M. The graph/tree structure is checked by
means of the conditions condition1 . . . conditionn of the membership.

The MOF type can be considered as a model type, whose values are metamodel definitions �M. Therefore,

this membership is also applied for the metamodel definition �MOF

�M : MOF0 ^ condition1 � true ^ � � � ^ conditionn � true ùñ �M : MOF,

To define the conditions condition1 . . . conditionn, we need the type MOF, which is defined by means of the
previous membership. Again, we find a self-referential definition, which we break by following a two step
strategy:

(i) the semantics of the MOF model type is provided by means of an adhoc membership in the reflectMOFp�MOFq
theory, which has already been presented in Section 6.2; and

(ii) the semantics of a model type M, which is different from MOF, is provided by means of a generic
membership in the EXT-MODEL{OBJ :: TH-OBJECT} theory. In the definition of this membership, the
model type MOF is also used. In this section, we provide generic concepts to define: (i) the graph
and (ii) the tree structure of a model definition, and (iii) the generic semantics of a model type M.

Graph Structure

Given a specific metamodel definition �M, an edge in the graph of a model definition rM , such that rM : M,
is represented as a pair pro1, ro2q, where ro1, ro2 P T

reflectMOFp rMq,Object#M
, ro1, ro2 P rM , ro1 is the object that

contains the object-typed property, and ro2 is the object that is referred to by means of the property. Given
a collection of typed objects rM , the collection of edges that are defined is given by the partial function

edges : vMwMOF � vMOFwMOF ;

PfinpT
reflectMOFp rMq,Object#M

� T
reflectMOFp rMq,Object#M

q,

which is only defined, for pairs of the form p rM, �Mq, where: rM : M, and �M, such that �M : MOF, is the
corresponding metamodel definition. In this case, the edges function is defined by the mapping:

edgesp rM, �Mq � t pro1, ro2q | ro1, ro2 P T
reflectMOFp rMq,Object#M

^ ro1, ro2 P rM ^

Drp prp : Property ^ rp P �M ^

rp.typep�Mq : Class ^

ro2 P ro1.prp.nameqp rMqq
u.

Definition 10 (Model Graph). Given a collection rM of typed objects, such that rM : M, and the corre-

sponding metamodel definition �M, such that �M : MOF, graphp rM, �Mq is called the model graph of the

model definition rM and is defined by the equation graphp rM, �Mq � pVM , EM q, where:

(i) VM is a collection of typed objects that constitutes the set of nodes of the graph graphp rM, �Mq, and is

defined by the equation VM � rM ; and

(ii) EM is the set of edges of the graph graphp rM, �Mq, and is defined by the equation

EM � edgesp rM, �Mq.

Note that a MOF graph graphp�MMOF,�MOFq, such that �MMOF : MOF and �MOF : MOF, is also a

model graph graphp rM, �Mq, such that rM : M and �M : MOF, where rM � �MMOF and �M � �MOF.

Definition 11 (Model subgraph). Given a metamodel definition �M, such that �M : MOF, and two model

definitions rM 1 and rM , such that rM 1, rM : M, a pair

pgraphp rM 1, �Mq, graphp rM, �Mqq is called a model subgraph iff graphp rM 1, �Mq � pV 1
M , E1

M q, graphp rM, �Mq �

6.3. Algebraic Semantics of MOF Metamodels Static Structure 79

pVM , EM q, V 1
M � VM and E1

M � EM. We also denote a model subgraph pgraphp rM 1, �Mq, graphp rM, �Mqq by
means of the expression

graphp rM 1, �Mq � graphp rM, �Mq.

Tree structure

An edge in the tree view of a model definition rM is defined by means of a containment property, which is

defined in the corresponding metamodel definition �M. A Property instance rp is defined as a containment
property by means of the function

containment : vPropertywMOF b vMOFwMOF ÝÑ vBooleanwMOF,

which is defined as follows9:

containmentprp, �Mq �

$&
%

true when rp : Property ^ �M : MOF ^ rp P �M ^
prp.oppositep�Mq.isComposite � trueq

false otherwise

Recall the function ClassSort : Class Ñ Sorts, which obtains the sort that corresponds to a MOF
Class instance as follows: ClassSort : rcl ÞÑ rcl .name, where rcl : Class. A relationship that is defined
by means of a containment property between two objects, in a model definition rM , can be represented as a
pair of the form pro1, ro2q, where ro1, ro2 P T

reflectMOFp rMq,Object#M
, ro1, ro2 P rM , ro1 is the object that contains the

object-typed property, and ro2 is the object that is referred to by means of the property. The set of edges
of this form defines a containment relation c for the model definition rM . This set is defined for a specific
collection rM of typed objects, such that rM : M, by means of the partial function

 c: vMwMOF � vMOFwMOF ;

PfinpT
reflectMOFp�MOFq,Object#MOF

� T
reflectMOFp�MOFq,Object#MOF

q,

where the c function is only defined for tuples of the form p rM, �Mq, where rM : M, and �M is the corre-

sponding metamodel definition such that �M : MOF. The c function is defined as follows:

 c p rM, �Mq �

tpro1, ro2q | ro1, ro2 P T
reflectMOFp rMq,Object#M

^ rM : M ^ �M : MOF ^ ro1, ro1 P rM ^

Drp prp : Property ^ rp P �M ^ containmentprp, �Mq � true ^

classpro1q P T
reflectMOFp rMq,ClassSortprp.classp rMqq

^

classpro2q P T
reflectMOFp rMq,ClassSortprp.typep rMqq

^ ro2 P ro1.prp.nameqp�Mq

u.

Definition 12 (Model Tree). Given a metamodel definition �M, such that �M : MOF, and a collection rM
of typed objects, such that rM : M,

p rM, �M, cq

is called the model tree of the model definition rM iff

(i) rM is a set of typed objects that constitute the nodes in treep rM, �Mq.

(ii) �M is the metamodel definition that contains the definitions of the object types that are needed to define

objects in rM .

9We assume that isComposite properties are always defined with an opposite property, the containment property,

i.e., given a metamodel definition �M, such that �M : MOF,

@rp prp : Property ^ rp P �M ^ rp.isComposite � true ^ rp.oppositep�Mq � Hq.

80 Chapter 6. An Algebraic Structural Conformance Relation

(iii) c is the partial function that defines the set of containment relationships in the model definition rM
as c p rM, �Mq.

(iv) p rM,¤cq is a partially ordered set, where ¤c is a binary relation defined by the transitive-reflexive
closure of the relation that is defined by the function c. The relation ¤c is defined by the equation

¤c � p c p rM, �Mqq�.

Given two objects ro1 and ro2 such that ro1, ro2 P T
reflectMOFp rMq,Object#M

and ro1, ro2 P rM , we obtain the

equivalences

pro1 c ro2q ðñ pro1, ro2q P c p rM, �Mq

and
pro1

�
c ro2q ðñ pro1, ro2q P p c p rM, �Mqq�,

where p c p rM, �Mqq� is the transitive closure of the relation that is defined by c p rM, �Mq.

(v) The set

rootp rM, �Mq � tro P T
reflectMOFp rMq,Object#M

| rM : M ^ ro P rM ^

Ero1pro1 P T
reflectMOFp rMq,Object#M

^ ro1 P rM ^ ro �
c ro1qu

is a singleton set.

Given a model tree treep rM, �Mq as defined above, we can use the function

containments : T
reflectMOFp rMq,Object#M

� vMwMOF � vMOFwMOF ; vM0wMOF

to obtain the children nodes of a specific node in a model tree. This function is only defined for tuples

pro, rM, �Mq, where ro P T
reflectMOFp rMq,Object#M

, rM : M, and ro P rM as follows:

containmentspro, rM, �Mq �
�ro1 P tro1 |ro1PrM ^ro1 croup! ro1 "q.

where ro1 P T
reflectMOFp rMq,Object#M

and the union operator is defined for configurations of objects, i.e., terms

of sort ConfigurationtMu, as follows:

! OC " Y ! OC 1 " � ! OC OC 1 ",

where OC ,OC 1 : ObjectCollectiontMu.
A model tree treep rM, �Mq can also be viewed as a graph G1 � pV,Eq, where V � rM, and E � c p rM, �Mq.

Since c p rM, �Mq � edgesp rM, �Mq for a model definition rM , such that rM : M, the model tree treep rM, �Mq
is a subgraph of the model graph graphp rM, �Mq, i.e.,

treep rM, �Mq � graphp rM, �Mq.

Note that a MOF tree treep�MMOF,�MOFq, such that �MMOF : MOF and �MOF : MOF, is also a model tree.

The containment relation c for a specific metamodel definition �M is reified at the metadata level, i.e.,

it is not represented by any algebraic structure in the mel theory reflectMOFp�Mq. However, this containment
relation can be taken into account in computable functions in our MOF framework due to the formalization
of the MOF Reflection facilities, which permit querying the metadata representation of types. Therefore,
the containment relation c can be used for both theoretical and practical purposes. The MOF Reflection
facilities are discussed in detail in Section 8.

Definition 13 (Model subtree). Given two model definitions rM 1 and rM , such that rM 1, rM : M,

ptreep rM 1, �Mq, treep rM, �Mqq is called a model subtree iff ptreep rM 1, �Mq, treep rM, �Mqq is a model subgraph,

which is also denoted by treep rM 1, �Mq � treep rM, �Mq.

We define the function

allSuperClasses : vClasswMOF b vMOFwMOF Ñ vMOF0wMOF

to obtain the the collection of Class instances that are defined as super classes of a given Class instance rcl,
which is defined in the metamodel definition �M. Recall the union operator that is defined for configurations
of objects above. The allSuperClasses function is defined by the mapping

6.3. Algebraic Semantics of MOF Metamodels Static Structure 81

allSuperClassesprcl, �Mq �

ColToConf prcl.superClassp�Mqq Y

�rcl
1
Ptrcl

1
:Class | rcl

1
P rcl.superClassp rMqu

pallSuperClassesprcl1, �Mqq,

where the function
ColToConf : T

reflectMOFp rMq,CollectiontMu
Ñ vMOF0wMOF

maps a specific OCL collection of objects into a collection of typed objects of sort MOF0.

Definition 14 (Root Object Type). In a metamodel definition �M, a root object type OT is defined

as an object type definition �OT, such that �OT : MOF and we have a containment treep�OT,�MOFq �
treep�M,�MOFq, that is not referred to by any Property instance rp such that

rp P �M (i)

containmentprp, �Mq � true (ii)

rp.classp�Mq R

! rootp�OT,�MOFq " Y allSuperClassesprootp�OT,�MOFq, �Mq (iii)

rp.typep�Mq P

! rootp�OT,�MOFq " Y allSuperClassesprootp�OT,�MOFq, �Mq (iv)

We can define a partial function

rootOT : vMOFwMOF ; vMOFwMOF

defined on metamodel definitions �M having a single root object type that provides the object type definition

that is defined as root in the metamodel definition �M. The rootOT function is defined by the mapping:

rootOT p�Mq �

t�OT |�OT : MOF ^ rootp�OT,�MOFq : Class ^

Erp prp : Property ^ rp P �M ^

containmentprp, �Mq � true ^

rp.classp�Mq R

! rootp�OT,�MOFq " Y allSuperClassesprootp�OT,�MOFq, �Mq ^

rp.typep�Mq P

! rootp�OT,�MOFq " Y allSuperClassesprootp�OT,�MOFq, �Mq
q

u

Under the assumption that there is only one root object type in a metamodel definition �M, in a model

definition rM , such that rM : M, an instance of the object type that is defined by rootOT p�Mq becomes the

root of the tree view treep rM, �Mq, i.e.,

�OT � rootOT p�Mq ^ rootp rM, �Mq : OT.

However, a model definition rM can be viewed as a forest that is constituted by several trees. For example,

the metamodel definition �Book that is defined as a MOF class diagram in Fig. 6.8 permits defining the

82 Chapter 6. An Algebraic Structural Conformance Relation

Figure 6.8: Metamodel definition with two root object types.

Figure 6.9: Metamodel definition with a single root object type.

following model definition10:

<<

< oid#Book(’Foo) : Book |

name : "Tirant lo Blanch", author : oid#Author(’Bar)

>

< oid#Author(’Bar) : Author |

name : "Joanot Martorell", book : oid#Book(’Foo)

>

>>,

where there are two roots. To simplify the semantics of a model type, we assume throughout that there is

always a single root object type in a metamodel definition �M.

When a metamodel definition �M has more than two root object types, a new object type can be created

as a container for the root object type defintions. For example, the metamodel definition �Book can be

redefined as a rooted metamodel definition in Fig. 6.9 by adding the object type definition�Root.

Structure Definition

A model type vMwMOF is defined by the set of collections of typed objects that can be viewed as a model
graph and as a model tree, i.e.,

rM : M ùñ graphp rM, �Mq is a model graph ^
treep rM, �Mq is a model tree.

The vMwMOF type is defined by means of a membership axiom that is defined in the EXT-MODEL{OBJ
:: TH-OBJECT} theory. This membership axiom is a generalization of the membership axiom that has been
defined for the reflectMOFp�MOFq theory in the MOFSTRUCTURE theory, in Section 6.2 and is defined as follows:

10Although we have not seen yet how instances of an object type can be defined, the example can be understood

once the reflectMOFp�MOFq theory is understood. In this section, we present how a term of this kind can be defined

by using the reflectMOFp�Bookq theory.

6.3. Algebraic Semantics of MOF Metamodels Static Structure 83

rM : M0 ^ �M : MOF ^

noBrokenLinksp rM, �Mq � true ^

wellTypedLinksp rM, �Mq � true ^

singleContainerp rM, �Mq � true ^

singleRootp rM, �Mq � true ^

validPropertiesp rM, �Mq � true ^

allPropertiesp rM, �Mq � true

,///////////////////.
///////////////////-

ùñ rM : M

To define the functions that constitute the conditions of the membership, we first consider some previous
definitions. SpecMEL is the data type of finitely-presented mel theories, that is, theories of the form
pS, ,Ω, E Y Aq, where all the components are finite. Without loss of generality we assume countable sets
Sorts and OpNames, so that each set of sorts S is a finite subset of Sorts, and the operator names in Ω are a
finite subset of OpNames. To obtain the sort that corresponds to a class, we define the function ClassSort :
Class Ñ Sorts, which is defined for MOF Class instances as follows: ClassSort : rcl ÞÑ rcl .name, where
prcl : Classq.

The set of types D’ that can be used to define a model definition rM , such that rM : M, is defined by the
equation

D1 �

{ Bool, String, Int, Float, Oid, Object#MOF }Y

tp�enum.nameq | �enum : Enumeration ^ �enum P �Mu,

where we take into account the enumeration types that are defined in �M. The set D is defined by the
equation

D �
�

T P D’
{ NeSet{T}, Set{T}, NeOrderedSet{T}, OrderedSet{T},
NeBag{T}, Bag{T}, NeSequence{T}, Sequence{T},
Collection{T}u

Y D’,

The set of values that can be used to define object properties in a specific object ro, such that ro P rM is
defined as

D �
¤
tPD

pT
reflectMOFp�MOFq,t

q.

Given a model definition rM , such that rM : M, and an object ro1, such that T
reflectMOFp rMq,Object#M

and

ro1 P rM , and a Property instance rp, such that rp : Property, rp : �M and
classpro1q P T

reflectMOFp�MOFq,ClassSortprp.classp�MOFqq
, the expression ro1.prp.nameq obtains the value of the prop-

erty rp in ro1. For example, consider �MOF as both the model definition rM and the metamodel definition �M,
an object ro1, which is defined by the equation

ro1 � < oid#Class(’Foo) : Class | name : "Property",... >

in the model definition �MOF, and the Property instance rp, which is defined by the equation

rp � < oid#Property(’Bar) : Property | name : "name",...>

that belongs to the NamedElement object type in the metamodel definition �MOF. The expressionro1.prp.nameq corresponds to the term ro1.name, which is reduced to the value "Property".
Taking these considerations into account, the functions that constitute the conditions of the membership

that defines the type vMwMOF are:

84 Chapter 6. An Algebraic Structural Conformance Relation

• noBrokenLinks: checks that there are no broken edges in the graph graphp rM, �Mq, i.e., an object inrM does not refer to an undefined object by means of an object-typed property.

noBrokenLinks : vM0wMOF � vMOFwMOF ÝÑ vBooleanwMOF

noBrokenLinksp rM, �Mq � false

if Dro1pro1 P T
reflectMOFp rMq,Object#M

^

rM : M0 ^ �M : MOF ^ ro1 P rM ^

Drp prp : Property ^ rp P �M ^ rp.typep�Mq : Class ^

classpro1q P T
reflectMOFp rMq,ClassSortprp.classp rMqq

^ ro1.prp.nameq � H ^

DOIDpOID P T
reflectMOFp rMq,Oid#M

^ OID P ro1.prp.nameq ^

@ro2pro2 P T
reflectMOFp rMq,Object#M

^ ro2 P rM Ñ oidpro2q � OIDq

q
q

q
noBrokenLinksp rM, �Mq � true otherwise

• wellTypedLinks: checks that the nodes of a graph graphp rM, �Mq, which are objects in rM , are typed

with the object types that participate in the corresponding property definition in �M.

wellTypedLinks : vM0wMOF � vMOFwMOF ÝÑ vBooleanwMOF

wellTypedLinksp rM, �Mq � false

if Dpro1, ro2q pro1, ro2 P T
reflectMOFp rMq,Object#M

^ ro1, ro2 P rM ^

rM : M0 ^ �M : MOF ^ Drp prp : Property ^ rp P �M ^ rp.typep�Mq : Class ^

classpro1q P T
reflectMOFp rMq,ClassSortprp.classp rMqq

^ ro2 P ro1.prp.nameqp rMq ^

classpro2q R T
reflectMOFp rMq,ClassSortprp.typep rMqq

q
q

wellTypedLinksp rM, �Mq � true otherwise

• singleContainer : checks that an object in a tree treep rM, �Mq cannot be contained in two different
objects.

singleContainer : vM0wMOF � vMOFwMOF ÝÑ vBooleanwMOF

6.3. Algebraic Semantics of MOF Metamodels Static Structure 85

singleContainerp rM, �Mq � false

if Dro1, ro2 pro1, ro2 P T
reflectMOFp rMq,Object#M

^ ro1, ro2 P rM ^ ro1 � ro2 ^

Dro3 pro3 P T
reflectMOFp rMq,Object#M

^ ro3 P rM ^ ro3 � ro1 ^ ro3 � ro2 ^

ro3 �
c ro1 ^ ro3 �

c ro2

q
q

singleContainerp�M,�MOFq � true otherwise

• singleRoot: checks that a tree treep rM, �Mq has a single root object.

singleRoot : vM0wMOF � vMOFwMOF ÝÑ vBooleanwMOF

singleRootp rM, �Mq � false

if Dro1 pro1 P T
reflectMOFp rMq,Object#M

^ �M : MOF ^ ro1 P rM ^

Ero2pro2 P T
reflectMOFp rMq,Object#M

^ ro2 P rM ^ ro1 �
c ro2q ^

Dro3 pro3 P T
reflectMOFp rMq,Object#M

^ ro3 P rM ^ ro3 � ro1 ^

Ero4pro4 P T
reflectMOFp rMq,Object#M

^ ro4 P rM ^ ro3 �
c ro4q

q
singleRootp rM, �Mq � true otherwise

• validProperties: checks that the property values that are defined for a specific object ro in a model
definition rM are defined by means of properties that belong to the object type of the object ro, or to
any of its supertypes.

validProperties : vM0wMOF � vMOFwMOF ÝÑ vBooleanwMOF

86 Chapter 6. An Algebraic Structural Conformance Relation

validPropertiesp rM, �Mq � false

if Dproq pro P T
reflectMOFp rMq,Object#M

^ ro P rM ^

p
Dpprop : valueqpprop P OpNames ^ value P D ^

pprop : valueq P getPropertiesproq ^ @rpprp : Property ^ rp P �M ^

classproq P T
reflectMOFp rMq,ClassSortprp.classp rMqq

Ñ rp.name � prop

q
q

_
Dproppprop P OpNames ^ prop P getPropertiesproq ^
@rpprp : Property ^ rp P �M ^

classproq P T
reflectMOFp rMq,ClassSortprp.classp rMqq

Ñ rp.name � prop

q
q

q
validPropertiesp rM, �Mq � true otherwise

• allProperties: checks that every object ro in a model definition rM contains a property value for each
one of the properties that are defined for the object type of ro or any of its supertypes.

allProperties : vM0wMOF � vMOFwMOF ÝÑ vBooleanwMOF

allPropertiesp rM, �Mq � false

if Dproq pro P T
reflectMOFp rMq,Object#M

^ ro P rM ^

Drpprp : Property ^ rp P �M ^ classproq P T
reflectMOFp rMq,ClassSortprp.classp rMqq

^

p
Epprop : valueqpprop P OpNames ^ value P D ^

rp.name � prop ^ pprop : valueq P getPropertiesproq
q

^
Eppropqpprop P OpNames ^ value P D ^

rp.name � prop ^ ppropq P getPropertiesproq
q

q
q

allPropertiesp rM, �Mq � true otherwise

The EXT-MODEL{OBJ :: TH-OBJECT} theory provides the following types:

(i) M0, which is represented by the sort ConfigurationtMu in the reflectMOFp�Mq theory, is the type
of collections of typed objects that have no structure. The semantics of the M0 is defined by the
equation

vM0wMOF � T
reflectMOFp rMq,ConfigurationtMu

,

where

6.3. Algebraic Semantics of MOF Metamodels Static Structure 87

rM : M0 ô rM P vM0wMOF;

(ii) M, which is represented by ModelTypetMu in the reflectMOFp�Mq theory, is the type of collections of
typed objects that keep both a graph and a tree structure. The semantics of the M type is defined
by the equation

vMwMOF � T
reflectMOFp rMq,ModelTypetMu

,

and the structural conformance relation between a model definition rM : M and its corresponding
model type M is then formally defined by the equivalence

rM : Mô rM P vMwMOF;

(iii) and pM, Cq, which is represented by ConsistentModelTypetMu in the reflectMOFp�Mq theory, is the
type of model types that conform to M and that satisfy the OCL constraints C. The semantics of the
pM, Cq type is defined by the equation

vpM, CqwMOF � T
reflectMOFp rMq,ConsistentModelTypetMu

,

where

rM : pM, Cq ô rM P vpM, CqwMOF.

The domain T
reflectMOFp rMq,ConsistentModelTypetMu

is defined in Section 7.

6.3.2 Specific Semantics of a Metamodel Definition �M
The function

reflectMOF : vMOFwMOF Ñ SpecMEL

maps each object, which is an instance of a specific object type of reflectMOFp�MOF q, of a metamodel

definition �M, such that �M : MOF, to a theory pS, ,Ω, E Y Aq. Given a metamodel definition �M, the

resulting theory reflectMOFp�Mq provides the algebraic semantics for each of the types that are defined as

collections rT , such that rT : MOF, of objects in �M, such that treeprT ,�MOFq � treep�M,�MOFq. A type

definition rT can be a definition of a model type, of a package, of a primitive type, of an enumeration type,

or of an object type. When �M � �MOF, the reflectMOF function is defined as

reflectMOFp�MOFq � MODEL{MOF} Y MOFSTRUCTURE.

When �M � �MOF, the reflectMOF function is defined for a given metamodel definition �M as

reflectMOFp�Mq � EXT-MODEL{M},

where M is the view that maps the TH-OBJECT theory, which represents the formal parameter of the

EXT-MODEL{OBJ :: TH-OBJECT} theory, to the theory that is generated from �M by means of the func-
tion defineParameter.

While the EXT-MODEL{OBJ :: TH-OBJECT} theory provides the generic semantics for the types of any

metamodel definition �M, the defineParameter function provides the semantics for the types that are provided

in a specific metamodel definition �M, i.e., enumeration type definitions and object type definitions. The
semantics of the function

defineParameter : vNamedElementwMOF b vMOFwMOF ÝÑ SpecMEL

is defined compositionally by using the theory union operator

Y : ppS, ,Ω, E YAq, pS1, 1,Ω1, E1 YA1qq ÞÑ
pS Y S1, Y 1,ΩY Ω1, pE Y E1q Y pAYA1qq,

88 Chapter 6. An Algebraic Structural Conformance Relation

which is well-defined provided that the reflexive-transitive closure of the relation Y 1, which is understood
as the set-theoretic union of the relations and 1, is a partial order on S Y S1.

The defineParameter function traverses the objects that constitute a metamodel definition �M by means

of the containment relation c p�M,�MOFq. More specifically, the objects that are the root objects in a

specific type definition in �M are mapped to elements in a mel theory, providing the algebraic representa-

tion of the corresponding type definition. Given the root package �rootPk of the metamodel definition �M,

where �rootPk : Package and �rootPk � rootp�M,�MOFq, the resulting defineParameterp�rootPk , �Mq theory
constitutes the theory that is mapped to the TH-OBJECT theory by means of the view M.

The metamodel definition �MOF provides the type definitions that constitute the MOF meta-metamodel.

The specification defineParameterprootp�MOF,�MOFq,�MOFq provides the mod#MOF theory that has been
defined in an adhoc way in Section 6.2. Note that this adhoc definition is necessary because the vMOFwMOF

domain is used to define the defineParameter function.

In this section, the defineParameter function is defined for any metamodel definition �M, such that�M : MOF and �M � �MOF, providing the algebraic semantics for each one of the enumeration and object

types that can be defined in �M, and a formal definition of the isValueOf relation between each value that

can appear in a model definition rM : M and its corresponding algebraic type in reflectMOFp�Mq.

Package

The nature of the Package construct is merely syntactical, providing a namespace for its contained ele-
ments, so that different types can be defined as data with the same name in different packages. There-

fore, the semantics of a Package definition �PK, such that �PK : MOF, rootp�Pk,�MOFq : Package, and

treep�Pk,�MOFq � treep�M,�MOFq, is regarded as a mel theory that constitutes a syntactical unit for the
sorts and operators that are generated for its contained types.

Each metamodel definition �M, such that �M : MOF, contains a Package instance rpk , such that rpk �
rootp�M,�MOFq, that constitutes a root element in the metamodel definition �M. The root package rpk may

or may not contain other nested packages, providing the types that can be used to define a model rM : M.
The name of the root package is used to qualify the symbols of the generic sorts that are needed to define
objects in a model definition rM , such that rM : M. When a Package instance rpk satisfies the conditionrpk � rootp�M,�MOFq, the defineParameter function is given by the following equation:

defineParameterp rpk , �Mq �

pS, ,Ω, E YAq Y�rpk
1
P trpk

1
: Package | rpk

1
P rpk.nestedPackagep rMqu

defineParameterp rpk
1
, �Mq Y

�rt P trt : Type |rt P rpk.ownedTypep rMqu
defineParameterprt, �Mq.

where the symbols of generic sorts and constructors are qualified with the name of the root package as
follows:

6.3. Algebraic Semantics of MOF Metamodels Static Structure 89

S � tObject# rpk .name, Oid# rpk .name, Cid# rpk .name,

Property# rpk .name, PropertySet# rpk .nameu

 � tpProperty# rpk .name PropertySet# rpk .nameq,

pOid# rpk .name Oidqu

Ω � tpnoneProperty# rpk .name :Ñ Property# rpk .nameq,

p , : PropertySet# rpk .name � PropertySet# rpk .name

Ñ PropertySet# rpk .name rassoc comm id : noneProperty# rpk .namesq,

p : | ¡: Oid# rpk .name � Cid# rpk .name � PropertySet# rpk .name

Ñ Object# rpk .namerobjectsq,

poid : Object# rpk .name Ñ Oid# rpk .nameq

pclass : Object# rpk .name Ñ Cid# rpk .nameq

pproperties : Object# rpk .name Ñ PropertySet# rpk .nameu

E � tpoid : OID : CID | PS ¡ � OIDq,

pclass : OID : CID | PS ¡ � CIDq,

pproperties : OID : CID | PS ¡ � PSqu

When the Package instance rpk is not the root element of the metamodel definition �M, i.e., rpk �
rootp�M,�MOFq, the defineParameter function is defined as follows:

defineParameterp rpk , �Mq �

�rpk
1
P trpk

1
: Package | rpk

1
P rpk.nestedPackagep rMqu

defineParameterp rpk
1
, �Mq Y

�rt P trt : Type |rt P rpk.ownedTypep rMqu
defineParameterprt, �Mq.

The constructor that permits the definition of terms of sort Object# rpk .name is

 : | ¡ : Oid# rpk .name � Cid# rpk .name � PropertySet# rpk .name

Ñ Object# rpk .name,

where the the first argument is an object identifier, the second argument is a class name and the third argu-
ment is a multiset of comma-separated pairs of property values. Three operators are defined to project

the contents of an instance: oid, class and properties. In addition, defineParameterp rpk , �Mq sets the
name of the theory that represents the actual parameter for the EXT-MODEL{OBJ :: TH-OBJECT} theory

as mod# rpk .name.

As example, we consider the metamodel definition �RDBMS : MOF, shown in Fig. 2.2. The

defineParameterprootp �RDBMS,�MOFq, �RDBMSq theory is specified, in Maude notation, as follows:

mod mod#rdbms is

sorts Object#rdbms Oid#rdbms Cid#rdbms Property#rdbms

PropertySet#rdbms .

subsort Property#rdbms < PropertySet#rdbms .

subsort Oid#rdbms < Oid .

op noneProperty#rdbms : -> Property#rdbms [ctor] .

op _‘,_ : PropertySet#rdbms PropertySet#rdbms -> PropertySet#rdbms

[ctor assoc comm id: noneProperty#rdbms] .

op <_:_|_> : Oid#rdbms Cid#rdbms PropertySet#rdbms ->

Object#rdbms [ctor] .

90 Chapter 6. An Algebraic Structural Conformance Relation

op oid : Object#rdbms -> Oid#rdbms .

eq oid(< OID:Oid#rdbms : CID:Cid#rdbms | PS:PropertySet#rdbms >) =

OID:Oid#rdbms .

op class : Object#rdbms -> Cid#rdbms .

eq class(< OID:Oid#rdbms : CID:Cid#rdbms | PS:PropertySet#rdbms >) =

CID:Cid#rdbms .

op properties : Object#rdbms -> PropertySet#rdbms .

eq properties(< OID:Oid#rdbms : CID:Cid#rdbms |

PS:PropertySet#rdbms >) = PS:PropertySet#rdbms .

...

endfm

We usually refer to sorts that are qualified with package information, such as Object# rpk .name, by means
of the the symbol M, i.e., Object#M.

Enumeration Types

�ET, such that �ET : MOF, is called an enumeration type definition in the metamodel definition �M iff it
satisfies the following conditions:

rootp�ET,�MOFq : Enumeration ^ treep�ET,�MOFq � treep�M,�MOFq.

For example, the enumeration in the metamodel definition �RDBMS : MOF, shown in Fig. 2.2, is defined

as the following collection �RDataType : MOF of objects:

< EnumOID : Enumeration |

name : "RDataType", literal : literalsCol, EnumPS >

< LiteralOID1 : EnumerationLiteral |

name : "VARCHAR", enumeration : EnumOID, LiteralPS1 >

< LiteralOID2 : EnumerationLiteral |

name : "NUMBER", enumeration : EnumOID, LiteralPS2 >

< LiteralOID3 : EnumerationLiteral |

name : "BOOLEAN", enumeration : EnumOID, LiteralPS3 >

< LiteralOID4 : EnumerationLiteral |

name : "DATE", enumeration : EnumOID, LiteralPS4 >

< LiteralOID5 : EnumerationLiteral |

name : "DECIMAL", enumeration : EnumOID, LiteralPS5 >

where EnumOID : oid#Enumeration, LiteralOID1, LiteralOID2, LiteralOID3,

LiteralOID4 and LiteralOID5 : oid#EnumerationLiteral, EnumPS, LiteralPS1,

LiteralPS2, LiteralPS3, LiteralPS4 and LiteralPS5 : PropertySet#rdbms,
literalsCol is a collections of object identifiers, and LiteralOID1, LiteralOID2, LiteralOID3, LiteralOID4,

LiteralOID5 P literalsCol.
Enumeration types are represented in the reflectMOFp�Mq theory as sorts whose carrier is constituted by

a finite set of constants. These sorts and constants are defined by means of the function

defineParameterEnum : vEnumerationwMOF b vMOFwMOF ÝÑ SpecMEL,

which maps an Enumeration instance to a MEL theory as follows:

defineParameterEnump�enum, �Mq �
pt�enum.nameu,
H,
tprl.name : Ñ �enum.nameq | rl : EnumerationLiteral ^rl P �enum.ownedLiteralp�Mqu,
Hq.

where �enum : Enumeration, and �M : MOF. The enumeration type that is defined in the relational

metamodel definition �RDBMS, shown in Fig. 2.2, is algebraically represented as a mel theory, which is
presented in Maude notation as

6.3. Algebraic Semantics of MOF Metamodels Static Structure 91

fmod mod#RDataType is

sort RDataType .

op VARCHAR : -> RDataType .

op NUMBER : -> RDataType .

op BOOLEAN : -> RDataType .

op DATE : -> RDataType .

op DECIMAL : -> RDataType .

endfm

Given the set ViewNames of view names that can be defined for parameterized mel theories in SpecMEL,

to enable the definition of collections of literals of a specific enumeration type in the reflectMOFp�Mq theory,
the defineParameter function is defined for Enumeration instances as follows:

defineParameterp�enum, �Mq � OCL-COLLECTION-TYPEStgetEnumViewNamep�enumqu,

where the function getEnumViewName : vEnumerationwMOF ÝÑ ViewNames obtains the name of the view
that maps the TRIV theory to the

defineParameterEnump�enum, �Mq theory. The getEnumViewName is defined by means of the equation

getEnumViewNamep�enumq � �enum.name.

For the example, this view is defined, in Maude notation, as follows

view RDataType from TRIV to mod#RDataType is

sort Elt to RDataType .

endv

The algebraic semantics of an enumeration type ET is defined using the initial algebra of reflectMOFp�Mq
as

vETwMOF � T
reflectMOFp rMq,�enum.name

where �enum : Enumeration, and �enum � rootp�ET,�MOFq. The isValueOf relation between a literal rl and
its corresponding enumeration type ET is then formally defined by the equivalence

rl : ET ðñ rl P vETwMOF

For example, the algebraic semantics of the RDataType enumeration type is defined as follows:

vRDataTypewMOF � {VARCHAR, NUMBER, BOOLEAN, DATE, DECIMAL}.

Primitive Types

The defineParameter function is defined for PrimitiveType instances as follows:

defineParameterprpt , �Mq � pH, H, H, Hq,

where rpt : PrimitiveType and �M : MOF.

Object Types

In the reflectMOFp�Mq theory, the algebraic notion of object type is generically given by means of the sort
Object#M. Terms of sort Object#M are defined by means of the constructor

 : | ¡ : Cid#M Oid#M PropertySet#MÑ Object#M,

which is provided by the theory EXT-MODELtMu theory.

Defining the algebraic semantics of an object type �OT involves the definition of the object identifiers
and the properties that may be involved in the definition of a specific object ro : OT in a model definition

92 Chapter 6. An Algebraic Structural Conformance Relation

rM : M. Object type specialization relationships must be also taken into account. Therefore, we need to
define the carrier of the sorts Oid#M, Cid#M and PropertySet#M for a specific object type definition�OT. In addition, when the semantics of a property is defined, the following types may be involved: primitive
types, enumeration types, object identifier types, and OCL collection types that are instantiated with any

of the previous types. The algebraic representation of an object type definition�OT is defined as follows:

defineParameterprcl , �Mq �

defineParameterOidprclq Y defineParameterCidprclq Y

defineParameter s
prcl , �Mq Y

�rp P trp: Property |rp P rcl.ownedAttributep rMqu
defineParameterprp, �Mq

where: rcl : Class; rcl � rootp�OT,�MOFq; �M : MOF; (1) the function

defineParameterOid : vClasswMOF ÝÑ SpecMEL

provides a mel theory that represents identifier types for object types; (2) the function

defineParameterCid : vClasswMOF ÝÑ SpecMEL

provides a mel theory that represents the set of names for object types; (3) the function

defineParameterProp : vPropertywMOF b vMOFwMOF ÝÑ SpecMEL

provides a mel theory that permits defining properties in an object ro : OT; and (4) the function

defineParameter s
: vClasswMOF b vMOFwMOF ÝÑ SpecMEL

provides a mel theory that represents object type specialization relationships as subsort relationships.

Consider, for example, the �RDBMS metamodel definition, where the Table object type, denoted by�Table, is specified in Maude notation as

< oid#Class(’Table) : Class | name : "Table",

isAbstract : false,

ownedAttribute : OrderedSet{

oid#Property(’prop0) :: oid#Property(’prop1) ::

oid#Property(’prop2) :: oid#Property(’prop3)

},

superClass : OrderedSet{ oid#Class(’RModelElement) }

package : ...

>

< oid#Property(’prop0) : Property |

name : "schema", lower : 1, upper: 1,

isOrdered, isUnique,

isComposite = true,

opposite = ...,

type : oid#Class(’Schema),

class : oid#Class(’Table)

>

< oid#Property(’prop1) : Property |

name : "column", lower : 0, upper: -1,

isOrdered = true, isUnique = true,

isComposite = false,

opposite = ...,

type : oid#Class(’Column),

class : oid#Class(’Table)

>

< oid#Property(’prop2) : Property |

name : "key", lower : 0, upper: 1,

6.3. Algebraic Semantics of MOF Metamodels Static Structure 93

isOrdered, isUnique,

isComposite = false,

opposite = ...,

type : oid#Class(’PrimaryKey),

class : oid#Class(’Table)

>

< oid#Property(’prop3) : Property |

name : "foreignKey", lower : 0, upper: -1,

isOrdered = true, isUnique = true,

isComposite = false,

opposite = ...,

type : oid#Class(’PrimaryKey),

class : oid#Class(’Table)

>.

In subsequent paragraphs, we use this example to obtain the theory that defines this object type.

Algebraic Semantics of Object Types OT

The algebraic semantics of an object type is then given by the set of all the objects that can be defined either
as instances of the object type, i.e., a class, or as instances of any of its subtypes. The algebraic semantics

of an object type definition �OT, such that �OT : MOF, rootp�OT,�MOFq : Class, and treep�OT,�MOFq �
treep�M,�MOFq, is defined as follows:

vOTwMOF � tro | ro P T
reflectMOFp rMq,Object#M

^

classproq P T
reflectMOFp rMq,ClassSortprootp rOT,�MOFqq

u.

The isValueOf relation between an object ro and an object type definition �OT is called instanceOf, and is
defined by means of the equivalence

ro : OT ô ro P vOTwMOF.

Object Type Names

In the defineParameterprcl , �Mq theory, each Class instance rcl is defined as a new sort and a constant, both
of them with the name of the class. Recall the set of sort names Sorts in SpecMEL, and the set Ops of
operators that can be declared in SpecMEL for a mel theory. To obtain the sort that corresponds to a Class
instance rcl, i.e., rcl : Class, we define the function

ClassSort : vClasswMOF ÝÑ Sorts,

which is defined by means of the equation

ClassSortprclq � rcl .name.

Similarly, the partial function
ClassOp : vClasswMOF ; Ops

obtains the declaration of the corresponding constant, when the Class instance is not abstract. In this case,
the function is defined by means of the equation

ClassOpprclq � prcl .name : Ñ ClassSortprclqq,

where rcl : Class and rcl .abstract � false.
Abstract classes are defined as those that cannot be instantiated ([90]). The name of an abstract class

C is not specified with a constant C : C, so that objects in a metamodel definition �M cannot have C as
their type. Therefore, the function

defineParameterCid : vClasswMOF ÝÑ SpecMEL

94 Chapter 6. An Algebraic Structural Conformance Relation

is defined as follows:

defineParameterCidprclq � ptClassSortprclqu,H, tClassOpprclqu,Hq
when rcl .abstract � false

defineParameterCidprclq � ptClassSortprclqu,H,H,Hq
when rcl .abstract � true

In the example of the RDBMS metamodel, the theory

defineParameterCidprootp�Table,�MOFq, �RDBMSq is a theory with a single sort and a single constant, spec-
ified in Maude notation as follows,

sort Table .

op Table : -> Table .

Object Type Identifiers

In the MOF framework, each class instance has an associated identifier that distinguishes it from the others.
An object identifier is obtained by means of the oid operator from an object. Object identifiers permit
considering a model as a graph, where class instances are nodes and object-typed properties are edges
between nodes. Identifier types are represented as sorts and constants for these sorts. An identifier sort is
obtained from a Class instance rcl by means of the partial operator

OidSort : vClasswMOF ; Sorts,

which is defined over Class instances rcl by the equation

OidSortprclq � rcl .name.

Constructors for identifier values are generated from Class instances by means of the operator

OidOp : vClasswMOF ; Ops,

which obtains the declaration of the corresponding constant by the equation

OidOpprclq � poid#rcl .name : Qid Ñ OidSortprclqq,

where Qid is a sort for identifiers in Maude, rcl : Class and rcl .abstract � false.
Each object type has its own identifier type. The identifier type is related to the class type by means of

a function oidType : Sorts Ñ Sorts that maps a class sort to its corresponding identifier sort, i.e.,

oidType : ClassSortprclq ÞÑ OidSortprclq,

where rcl : Class. Object type specialization is algebraically represented by means of subsorts between the
sorts of the corresponding class names, as discussed below. oidType is a monotonic function that preserves
the partial order that is defined by this subsort relation, i.e., if �c1 , �c2 : Class, then:

ClassSortp�c1 q ClassSortp�c2 q ô
oidTypepClassSortp�c1 qq oidTypepClassSortp�c2 qq.

Therefore, the defineParameterOid : vClasswMOF Ñ SpecMEL function is defined as follows:

defineParameterOidprclq � ptOidSortprclqu,H, tOidOpprclqu,Hq
when rcl .abstract � false

defineParameterOidprclq � ptOidSortprclqu,H,H,Hq
when rcl .abstract � true

For the Table object type, its identifier type is represented as the sort oid#Table, the constructor
oid#Table : Qid -> oid#Table. An instance of the Table object type can then be defined as

< oid#Table(’Foo) : Table | ... >.

6.3. Algebraic Semantics of MOF Metamodels Static Structure 95

Object Type Properties

An object type OT is defined with a collection of Property instances describing its properties. A Property

instance rp in a metamodel definition �M : MOF is given by an object rp, such that rp : Property and rp P �M.
As described in Section 6.2.1, a property definition is described by means of the following metaproperties:
name, ordered, unique, lower, upper, type and defaultValue. The meta-properties ordered, unique, lower and
upper constitute the multiplicity metadata of the property and permit, together with the type metaproperty,
obtaining the algebraic type for the corresponding property constructor.

When an object ro : OT is created in a model definition rM such that rM : M, each property that is

defined in the object type definition �OT can be initialized in ro, in which case the property is said to be
set, or it can remain without any value, in which case the property is said to be unset. This is useful when
a property is defined as required (meta-property lower = 1). Therefore, if we create an object ro and the
property is not still initialized, there is no error. Taking into account that properties can be set or unset,
we algebraically represent them by means of the following operators:

• Set properties: pprop : q : Type Ñ Property#M, where prop is the name given to the property,
and Type represents the type of the property, which can be a primitive type, an enumeration type,
an object type, or an OCL collection type. Property#M is a sort that represents properties and
that is a subsort of the PropertySet#M sort. For example, we define the property name of the class
RModelElement of the RDBMS metamodel by means of the operator

(name:) : StringÑ Property#rdbms.

This operator can be used to define the property name of a column as follows:

< oid#Column(’Foo) : Column | name : "date", ... >

• Unset properties: are defined as constants prop : Property#M, where prop is the name of the property.
In the example, the operator type : Property allows the definition of the unset type property for
the class Column in the RDBMS metamodel. We can add an unset type property to the Class instance
as follows:

< oid#Column(’Foo) : Column | name : "date", type, ... >

A Property instance rp is associated with a specific type rt in the metamodel definition �M, which is defined
as an object rt : Type. Depending on the type rt of a property, we can distinguish two kinds of properties:

• Value-typed Properties or Attributes. Properties of this kind are typed with
DataType instances. The above name property is an example of an attribute.

If we consider the objects ro that constitute a model definition rM , such that rM : M, properties of this

kind define the attributes of the nodes of the graph graphp rM, �Mq.

• Object-typed Properties or References. Properties of this kind are typed with object types, so that the
type definition that is referred to by means of the type meta-property is an object rt, such that rt : Class.
Object-typed properties permit the definition of relationships between classes in a metamodel by using
object identifiers as values. Object collections can then be viewed as graphs, where objects define graph
nodes and object-typed properties define graph edges. For example, we can define a Class instance
”Table” and a Property instance ”name” that are related by means of their respective ownedAttribute
and class properties:

< oid#Class(’class0) : Class |

name : "Table",

ownedAttribute : OrderedSet{oid#Property(’prop0)} >

< oid#Property(’prop0) : Property |

name : "name",

class : oid#Class(’class0) >

The type meta-property together with the multiplicity metadata, that is, the meta-properties lower,
upper, isOrdered and isUnique, define a set of specific constraints on the acceptable values for the property
type. These constraints are taken into account in the algebraic type that is assigned to the property by
means of OCL collection types.

When the upper meta-property of a property definition rp is ¡ 1, an OCL collection type constitutes the

type of the property in reflectMOFp�Mq. When the upper meta-property of an object type property is 1, the
type of the property is not represented as a collection type. In this case, we can distinguish two subcases:

96 Chapter 6. An Algebraic Structural Conformance Relation

Collection Type Lower Bound Upper Bound isOrdered isUnique
[T] 0 1 - -

Set{T} 0 * false true
OrderedSet{T} 0 * true true

Bag{T} 0 * false false
Sequence{T} 0 * true false

T 1 1 - -
NeSet{T} 1 * false true

NeOrderedSet{T} 1 * true true
NeBag{T} 1 * false false

NeSequence{T} 1 * true false

Table 6.1: Generic collection types instantiated with a sort s, depending on multiplicity metadata.

(i) when the lower bound is 0, indicating that the value of this property in an object can be a null value,
and (ii) when the lower bound is 1, indicating that a property value is required for this property. In the
former case, the type is represented by the kind of the corresponding algebraic sort, so that null values can
be used. For example, the type of the property key of the Table class definition in the metamodel definition�RDBMS is the kind rOids, so that the constant nullOid can be used to define a null value. In the latter
case, the type is represented by the corresponding sort, so that null values are not allowed. For example,

the type of the property schema of the Table class definition in the metamodel definition �RDBMS is Oid.
Therefore, if the nullOid constant is used as value for this property, it will be considered an error. Table
6.1 summarizes the combinations of multiplicity meta-property values of a specific property definition rp that
are used to obtain the corresponding type of the property.

Recall the set of sort names Sorts in SpecMEL. We define the function

sortName : vTypewMOF ÝÑ Sorts

to obtain the sort that corresponds to the type of a property. This function is defined by the equation
sortNameprtq � rt.name, where rt : Type. We define the domain MELTypeExpression by means of the
equation MELTypeExpression � Sorts Y trss | s P Sortsu. The function

PropertyType : vPropertywMOF b vMOFwMOF ÝÑ MELTypeExpression

obtains the type expression for the constructor of a specific property rp : Property that is defined in a

metamodel definition �M. This function queries the multiplicity metadata of the Property instance rp to
obtain a suitable type for the property. The type of a property is always a Type instance rt, which can be
a PrimitiveType instance, an Enumeration instance, or a Class instance. Given a Property instancerp, and a metamodel definition �M, such that rp P �M, the function PropertyType is defined by means of the
following equalities11:

PropertyTypeprp, �Mq � rsortNameprp.typep�Mqqs where rp.lower � 0^ rp.upper � 1

PropertyTypeprp, �Mq � SettsortNameprp.typep�Mqqu

where rp.lower � 0^ rp.upper � �1^ rp.ordered � false ^ rp.unique � true

PropertyTypeprp, �Mq � OrderedSettsortNameprp.typep�Mqqu

where rp.lower � 0^ rp.upper � �1^ rp.ordered � true ^ rp.unique � true

PropertyTypeprp, �Mq � BagtsortNameprp.typep�Mqqu

where rp.lower � 0^ rp.upper � �1^ rp.ordered � false ^ rp.unique � false

PropertyTypeprp, �Mq � SequencetsortNameprp.typep�Mqqu

where rp.lower � 0^ rp.upper � �1^ rp.ordered � true ^ rp.unique � false

11We use the name of the sort that corresponds to a type, by means of the sortName function, as the view name that
instantiates the OCL-COLLECTION-TYPES{T :: TRIV} theory, in order to obtain the corresponding OCL collection
type.

6.3. Algebraic Semantics of MOF Metamodels Static Structure 97

PropertyTypeprp, �Mq � sortNameprp.typep�Mqq where rp.lower � 1^ rp.upper � 1

PropertyTypeprp, �Mq � NeSettsortNameprp.typep�Mqqu

where rp.lower � 1^ rp.upper � �1^ rp.ordered � false ^ rp.unique � true

PropertyTypeprp, �Mq � NeOrderedSettsortNameprp.typep�Mqqu

where rp.lower � 1^ rp.upper � �1^ rp.ordered � true ^ rp.unique � true

PropertyTypeprp, �Mq � NeBagtsortNameprp.typep�Mqqu

where rp.lower � 1^ rp.upper � �1^ rp.ordered � false ^ rp.unique � false

PropertyTypeprp, �Mq � NeSequencetsortNameprp.typep�Mqqu

where rp.lower � 1^ rp.upper � �1^ rp.ordered � true ^ rp.unique � false

The function

defineParameterProp : vPropertywMOF b vMOFwMOF ÝÑ SpecMEL

provides the operators that permit defining property values in a specific object. The function is defined by
the equation

defineParameterPropprp, �Mq � p
tProperty#M,PropertySet#Mu,
tpProperty#M PropertySet#Mqu,
tprp.name : Ñ Property#Mq,
prp.name : : PropertyTypeprp, �Mq Ñ Property#Mqu,
H

q.

In the example, the theory reflectMOFp�Table, �RDBMSq, which only has sorts and operators, is specified
in Maude notation as follows:

sorts Table oid#Table .

op Table : -> Table .

op oid#Table : Qid -> oid#Table .

op schema : -> Property#rdbms .

op schema : Oid -> Property#rdbms .

op column : -> Property#rdbms .

op column : OrderedSet{Oid} -> Property#rdbms .

op key : -> Property#rdbms .

op key : [Oid] -> Property#rdbms .

op foreignKey : -> Property#rdbms .

op foreignKey : OrderedSet{Oid} -> Property#rdbms .

Object Type Specialization Relation s

A specialization is a taxonomic relationship between two object types. This relationship specializes a general

object type into a more specific one. A specialization relation among object type definitions �OT in a

metamodel definition �M : MOF is given by a set of specialization relationships between the class definitions
that participate in their respective object type definition.

Given two object type definitions �OT1 and �OT2, such that

treep�OT1,�MOFq, treep�OT2,�MOFq � treep�M,�MOFq,

we use the notation �OT1 s �OT2 to indicate that the object type definition �OT1 specializes the object

type definition �OT2. We define the specialization relationship �OT1 s �OT2 by means of the equivalence

98 Chapter 6. An Algebraic Structural Conformance Relation

�OT1 s �OT2 ðñ D�cl1 ,�cl2 p�cl1 ,�cl2 : Class ^�cl1 � rootp�OT1,�MOFq ^�cl2 � rootp�OT2,�MOFq ^�cl2 � �cl1 .superClassp�Mqq.

In the metamodel definition �RDBMS, we define the Class instance

< OID2 : Class | name : "Table", superClass : OrderedSet{ OID1 }, PS2 >,

specializes the Class instance

< OID1 : Class | name : "RModelElement", PS1 >,

by means of the superClass property value.

Each specialization relationship in �M is mapped to a subsort relationship between the corresponding
class sorts, i.e.,

defineParameter s
p�cl1 , �Mq �

pH,
tClassSortp�cl1 q ClassSortp�cl2 q |�cl2 : Class ^ �cl2 P �cl1 .superClassp�Mqu Y
tOidSortp�cl1 q OidSortp�cl2 q |�cl2 : Class ^ �cl2 P �cl1 .superClassp�Mqu,
H,
Hq

when �cl1 : Class ^ �cl1 .superClassp�Mq � H

defineParameter s
p�cl1 , �Mq �

pH, tClassSortp�cl1 q Cid#M,OidSortp�cl1 q Oid#Mu,H,Hq
when �cl1 : Class ^ �cl1 .superClassp�Mq � H

In the RDBMS example, we algebraically define the specialization relationship between the object types�RModelElement and �Table as the subsorts Table < RModelElement and oid#Table < oid#RModelElement.
The supersorts of the resulting subsort hierarchy are defined as subsorts of the Cid#rdbms and Oid#rdbms

sorts, for object type name sorts and object identifier sorts, respectively. In this way, we can define a table
instance as < oid#Table(’Foo) : Table | name : "date", ...>, where the name property is defined for
the RModelElement object type.

Algebraic Semantics of the Specialization Relation s

A specialization relationship OT1 s OT2, between two object types of the metamodel M is defined
as a subset inclusion between the carriers of the corresponding name sorts in the initial algebra of the

reflectMOFp�Mq theory, i.e., we have the implication

vOT1 s OT2wMOF ùñ vOT1wMOF � vOT2wMOF.

6.3.3 Name Strategy

In this section, the object types that are defined in the metamodel definition �MOF are subtypes of the
NamedElement object type, and, thereby, they contain a property name. This property is used to define

sort names, operator names and view names in the reflectMOFp�Mq theory. However, the same name may

be used for different elements within the same metamodel definition �M: two object types that are not
related by means of a chain of specialization relationships may contain properties with the same name, two
enumeration types can be defined with the same name in different packages, two object types can be defined
with the same name in different packages, etc. These situations may lead to several problems. For example,
different theories may have the same name, in the case of enumeration types with the same name. Another

example is that the set of subsorts that is defined in the defineParameterprootp�M,�MOFq, �Mq theory may

6.4. Reflecting the Algebraic Semantics: the Reflect Operator. 99

not represent the specialization relation s. Assume that a metamodel definition �M is constituted by a
package A, which contains a subpackage B. In the package A, the object types A1 and A2 are defined so
that A2 s A1. In the package B, the object types A1 and B are defined so that B s A1. The resulting

defineParameterprootp�M,�MOFq, �Mq theory is, in Maude notation, as follows:

mod mod#M is

sorts A1 A2 B .

subsorts A2 B < A1 .

op A1 : -> A1 . op A2 : -> A2 . op B : -> B .

...

endm

Therefore, the object type A1 of the A and B packages is considered to be the same. To solve this

problem, we use a strategy to structure the names of the objects that consitute �M by taking into account

the containment relation that is defined for a metamodel definition �M as c p�M,�MOFq. This strategy is
defined by means of the function

buildName : vNamedElementwMOF b vMOFwMOF ÝÑ String

as follows:

buildNamepro, �Mq � ro.name when ro � rootp�M,�MOFq

buildNamepro, �Mq � buildNamepcontainerpro, �Mq, �Mq � ”{”� ro.name otherwise

where the function

container : vNamedElementwMOF b vMOFwMOF ; vNamedElementwMOF

obtains the parent node of the node ro in the tree treep�M,�MOFq, when it exists, and �MOF is the MOF

meta-metamodel definition. Note that �MOF is defined as a constant in the reflectMOFp�MOFq theory, so
that it can always be used without any need of passing it as argument to the buildName function.

In the reflect function, and also in the reflectMOF function, whenever the name of a MOF object type in-
stance is used, the buildName function is applied, although we omit this fact in their definition for the sake of

simplicity. Taking into account the strategy of structured names, the theory defineParameterprootp�M,�MOFq, �Mq
that corresponds to the the previous metamodel definition �M is specified, in Maude notation, as follows:

mod mod#M is

sorts A/A1 A/A2 A/B/A1 A/B/B .

subsort A/A2 < A/A1 .

subsort A/B/B < A/B/A1 .

op A/A1 : -> A/A1 . op A/A2 : -> A/A2 .

op A/B/A1 : -> A/B/A1 . op A/B/B : -> A/B/B .

...

endm

6.4 Reflecting the Algebraic Semantics: the Reflect Opera-
tor.

The logical reflective features of MEL, together with its logical framework capabilities, make it possible
to internalize the representation Φ : SpecL ÝÑ SpecMEL of a formalism L in MEL, as an equationally-
defined function Φ : ModuleL Ñ Module, where ModuleL is an equationally defined data type representing

100 Chapter 6. An Algebraic Structural Conformance Relation

specifications in L, and Module is the data type whose terms, of the form pΣ, Eq, metarepresent mel
specifications of the form pΣ, Eq. We can apply this general method to the case of our algebraic semantics

reflect : SpecMOF ; SpecMEL.

Specifically, we define the function

reflectMOF : MOF ; SpecMEL

so that reflectp�M,Hq � reflectMOFp�Mq. Then, the reflective internalization of the MOF algebraic semantics
reflectMOF becomes an equationally-defined function

reflectMOF : ConfigurationtMOFu ; Module.

where Module is the sort whose terms represent mel theories in the universal mel theory (see [75]). This
is a very powerful construction, which we have implemented in our Maude executable specification of the
MOF algebraic semantics. It is very powerful because it makes available the algebraic semantics reflectMOF

itself as a computable function reflectMOF, which we can use for many formal transformational purposes. For

example, suppose that we want, given the data representation �MOF of the MOF metamodel, to compute
the mel theory that is its mathematical semantics. This mel theory is precisely the one metarepresented in

mel as the term reflectMOFp�MOFq of sort Module.
The Eclipse Modeling Framework is an informal implementation of the MOF framework, where the

meta-metamodel definition �MOF is substituted by the meta-metamodel definition �Ecore. The equivalence
of both metamodels is studied in [91]. Since our formalization can be applied to any MOF-like metamodel,

we have formalized the �Ecore meta-metamodel as a mel theory reflectMOFpEcoreq, as shown in Appendix

A. The metamodel definition �Ecore, such that �Ecore : Ecore, is provided in [92].
As another example, the metamodel in Fig. 2.2 provides the concepts for modeling relational schema

elements: Schema, Table, Column, ForeignKey and PrimaryKey. RModelElement is an abstract
object type that defines an attribute name that will be inherited by the rest of object types of the meta-

model. In the metamodel there is one PrimitiveType instance p�Stringq and one Enumeration instance�RDataType. Both of them define the data types that can be used to indicate the type of a Column instance.
To define a foreign key, a ForeignKey instance must refer to one or several Column instances of its contain-
ing Table instance and to one PrimaryKey instance. The RDBMS model type is provided as a metamodel

definition �RDBMS, such that �RDBMS : MOF, in Appendix B. The resulting theory reflectMOFp �RDBMSq
is provided in Appendix C. Finally, the relational schema �rsPerson such that �rsPerson : RDBMS, which
is shown at level M1 of the MOF framework in Fig. 2.2, is provided as a collection of objects in Appendix
D.

6.5 Reifying the Algebraic Semantics: the Inverse Step.

Reifying a MOF metamodel that is used at the base sublevel of the level M2, in a MOF framework, constitutes
an important feature of the MOF reflection. It permits the evolution of the formal semantics of a MOF
metamodel, providing complete formal support for reflection. In our approach the reification of EMOF
metamodels is defined by means of the reify function. The partial function

reify : SpecMEL ; vMOFwMOF

maps a mel theory that has been previously generated from a metamodel definition �M by means of the
function reflect , i.e., the reify function satisfies the equation

reifypreflectMOFp�Mqq � �M.

The algebraic semantics of a specific metamodel �M can be metarepresented as data by using the mel
reflective features. Then, reify is an equationally-defined function whose domain and co-domain sorts are:
reify : Module Ñ ConfigurationtMOFu.

6.6 Summary

In this section, we have provided the algebraic semantics of a MOF metamodel definition �M by means of a

mel theory reflectMOFp�Mq. In particular, the algebraic semantics of the following notions has been provided:

6.6. Summary 101

• model type and structural conformance relation;

• primitive type, enumeration type, OCL collection types, and isValueOf relation for each one of these
types;

• object type and instanceOf relation;

• specialization relation s; and

• composition relation c.

Taking into account an arbitrary model type M, such that �M : MOF, a model definition rM , such thatrM : M, can be considered as:

• a graph given by the pair pV,Eq, where V is the set of nodes given by rM , and E is the set of edges

given by the set of object-typed properties between pairs of objects in rM ; and

• as a forest given by the pair p rM, cq.

In addition, the specialization relation s that is defined for M permits classifying the objects that constituterM .
A metamodel specification p�M, rCq is constituted by a metamodel definition �M and a set rC of OCL

constraint definitions. The algebraic semantics of p�M, rCq is given as a MEL theory reflectp�M, rCq, which is

defined by composing reflectMOFp�Mq and the algebraic semantics of the OCL language.
In Section 7, the types that are provided by the reflectMOF function are extended by adding the OCL

operators for each one of these types, and the algebraic semantics for OCL expressions is defined by means
of a mapping

reflect : p�M, rCq ÞÑ pS,¤,Ω, E YAq,

which formally defines the constrained conformance relation rM : pM, Cq.

Chapter 7

Algebraic Constrained
Conformance Relation

A metamodel specification definition p�M, rCq is constituted by a metamodel definition �M, such that �M :

MOF, and a set rC of OCL constraints rc for �M. The abstract syntax of the OCL language is provided as a

MOF 2.0 metamodel definition �OCL, such that �OCL : MOF, in the OCL standard specification (see [24],

Chapter 8). The types that are defined in �OCL are algebraically defined in the theory reflectMOF p�OCLq,
providing the vOCLwMOF model type as the set of well-formed OCL expressions. OCL constraints rc can

then be defined as model definitions rc : OCL by taking into account a specific metamodel definition �M. An

OCL constraint rc is constituted by a context definition that refers to a type definition in �M, denoted by

contextprcq, and by a body in the form of an OCL expression. Given a pair of the form p�M,rcq, rc constitutes

a meaningful constraint for �M iff contextprcq P �M1.

We call SpecMOF to the set of metamodel specifications p�M, rCq that satisfy the condition

@rc : OCL prc P rC ùñ contextprcq P �Mq.

Given a metamodel specification definition p�M, rCq, the partial function

reflect : SpecMOF ; SpecMEL

is defined in this section. This function maps a metamodel specification definition p�M, rCq to a mel the-
ory, providing the semantics for the following notions: (i) constrained model type vpM, CqwMOF, (ii) OCL

constraint satisfaction relation rM |ù C for rM : M, (iii) constrained conformance relation rM : pM, Cq forrM : M, and (iv) metamodel specification realization reflectp�M, rCq. When the reflect function is applied to a

metamodel specification definition p�M, rCq, the reflectp�M, rCq theory includes the reflectMOFp�Mq theory, i.e.,

reflectMOFp�Mq � reflectp�M, rCq,
where the vMwMOF model type, which is defined in the reflectMOFp�Mq theory, is preserved in the reflectp�M, rCq
theory. Recall the sort ConsistentModelTypetMu, also denoted by pM, Cq, that remains undefined in the

reflectMOFp�Mq theory. The pM, Cq sort is a subsort of the M sort, and its semantics vpM, CqwMOF constrains
the semantics vMwMOF of the M model type sort by taking into account the set C of OCL constraints.

Therefore, we obtain the implication rM : pM, Cq ùñ rM : M.
vpM, CqwMOF constitutes the constrained model type that is defined as data in the metamodel specification

definition p�M, rCq. The reflect function defines the constrained model type vpM, CqwMOF, in the reflectp�M, rCq
theory, by means of a membership axiom of the form

rM : M ^ condition1p rMq � true ^ � � � ^ conditionnp rMq � true ùñ rM : pM, Cq,

where each constraint definition rci, in rC, corresponds to a boolean function conditioni that is evaluated over
a model definition rM , such that rM : M, i.e., conditionip rMq. Therefore, when a model definition rM satisfies

1The expression contextprcq denotes an object ro, such that ro P T
reflectMOFp�MOFq,Object#MOF

and ro P �M, as defined

below.

104 Chapter 7. Algebraic Constrained Conformance Relation

all the constraints that are defined in rC, rM is considered a value of the constrained model type pM, Cq.
When a metamodel specification definition p�M, rCq is given, whenever a model definition rM of sort pM, Cq
is defined in the reflectp�M, rCq theory, we can assume that rM satisfies the set rC of OCL constraints by
definition. There is a subtle difference with other current approaches for the validation of OCL constraints:
in our approach, OCL constraints do not have to be checked explicitly. They are instead taken into account
in the semantics of the pM, Cq sort and are checked implicitly by evaluating the above membership axiom,

so that a model definition rM will satisfy the constraints rC iff its canonical form has sort pM, Cq.
In subsequent sections, we provide: (1) the domain of the reflect function by defining the algebraic

semantics of the metamodel definition �OCL; (2) the operators of the types that are defined in a metamodel

definition �M, which may be used to define the conditions of the membership that specifies the OCL constraint
satisfaction relation for a metamodel specification pM, Cq; (3) the mappings of the reflect function that

permit defining the aforementioned membership in the reflectp�M, rCq theory; and (4) a formal definition
for the following notions: (i) constrained model type vpM, CqwMOF, (ii) OCL constraint satisfaction relationrM |ù C, (iii) constrained conformance relation rM : pM, Cq, and (iv) metamodel specification realization

reflectp�M, rCq.
7.1 Algebraic Semantics of the OCL Metamodel

The concrete syntax of the OCL language is provided as an attributed EBNF grammar in the OCL standard
specification (see [24], Chapter 9). The abstract syntax of the OCL language is provided as a MOF 2.0

metamodel definition �OCL, such that �OCL : MOF, in the OCL standard specification (see [24], Chapter
8). Part of this metamodel is the OCL standard library, which provides the predefined types of the the
OCL language and their operations (see [24], Chapter 11). The OCL standard library can be viewed as a

metamodel definition �OclStdLib, such that �OclStdLib : MOF.

The metamodel definition �OCL is algebraically represented by the theory

reflectMOF p�OCLq. However, the reflectMOF p�OCLq theory only provides the types that are needed to define

OCL expressions as model definitions rM , such that rM : OCL. To provide the algebraic semantics of the

OCL language, the semantics of the predefined OCL type operators, which are defined in �OclStdLib, also
has to be provided.

In this section, we present the metamodel definition �OCL, which is used to define the domain of the

reflect function. The metamodel definition �OCL imports the metamodel definition �MOF. This relationship

is considered as a subcollection inclusion �MOF ��OCL, so that the object types that are defined in �MOF

can also be used in �OCL2. We denote by �OCL∆ the collection of objects that constitute the metamodel

definition that is described in the OCL standard specification, i.e., �OCL∆ ��OCL��MOF.

Recall the function reflectMOF : MOF ÝÑ SpecMEL that maps a metamodel definition �M, such that�M : MOF, to a mel theory reflectMOFp�Mq, which defines the algebraic semantics of: (i) the types T that

are defined in �M, including a model type, primitive types, enumeration types, and object types; (ii) their
corresponding isValueOf relation for values rv, i.e., rv : T; (iii) the specialization relation s between object

types in M; and (iv) the containment relation c between objects in a model rM , such that rM : M. Since�OCL∆,�OCL,�MOF : MOF, the algebraic semantics of the types that are defined in �OCL is provided by the
equation

reflectMOFp�OCLq � reflectMOFp�MOFq Y reflectMOFp�OCL∆q,

where the theories reflectMOFp�MOFq and reflectMOFp�OCL∆q are provided by means of the reflectMOF func-
tion, detailed in Section 6.3.

The partial function
reflect : SpecMOF ; SpecMEL

receives a metamodel specification of the form p�M, rCq as argument, where �M is a metamodel definition

such that �M : MOF, and rC is a finite set of constraints rc, such that rc : OCL, that represent meaningful

constraints for �M.
The mappings between the concrete syntax and the abstract syntax of the OCL language are defined in

the OCL specification. In our approach, we assume that these mappings are provided by a third-party tool.

2In the OCL specification, the metamodel definition�UML is taken into account instead of�MOF, i.e.,�UML � �OCL.

However, we consider that�MOF � �OCL since both�MOF and�UML metamodel definitions share a basic infrastructure
of object types and primitive types, as stated in [22].

7.1. Algebraic Semantics of the OCL Metamodel 105

Figure 7.1: Expressions package of the OCL metamodel: core part.

Figure 7.2: Expressions package of the OCL metamodel: ifThen expressions.

Therefore, whenever an OCL constraint is given in textual format by using the concrete syntax of the OCL
language, we assume that it is provided as a model definition rc, such that rc : OCL.

In the subsequent section, we provide a brief introduction of the abstract syntax of the OCL language,

i.e., the metamodel definition �OCL∆, by giving its graphical representation by means of class diagrams. As
we have already mentioned in Section 6.2, this graphical representation is isomorphic to the definition of the

model type OCL∆ as a collection of objects �OCL∆ : MOF, and is more readable as well.

7.1.1 Abstract Syntax of the OCL Language

In this section, we provide an overview of the metamodel definition �OCL∆. We focus on the Expressions
package of the OCL metamodel, which defines the structure of the OCL expressions that can be used to
define an OCL constraint. Our goal in this section consists in providing an enumeration of the object types

that constitute �OCL∆. We refer to [31] for a better understanding of the OCL language, and, to the OCL

specification [24] for a more detailed presentation of the metamodel definition �OCL. We show the package

expression of the metamodel definition �OCL, in UML notation, in Fig. 7.1, 7.2, 7.3, 7.4, and 7.5. In this

figures, the object types that are depicted with pink background belong to the metamodel definition �MOF.
A Constraint instance rct represents an OCL constraint that is related to an object type of a meta-

model definition �M by means of the constrainedElement property. The referred object type constitutes

the contextual type of the constraint, and is represented as rct.constrainedElementp�Mq. Taking into ac-

count the containment relation c that is defined in �OCL∆, a constraint definition rc, such that rc : OCL,

can be viewed as a model tree treeprc,�OCLq, where its root object is the Constraint instance rct , i.e.,

106 Chapter 7. Algebraic Constrained Conformance Relation

Figure 7.3: Expressions package of the OCL metamodel: let expressions.

Figure 7.4: Expressions package of the OCL metamodel: literal expressions.

Figure 7.5: Expressions package of the OCL metamodel: loop expressions.

7.2. Algebraic Semantics of OCL Predefined Operators 107

rootprc,�OCLq � rct . Given a specific metamodel definition �M and an OCL constraint definition rc, we say

that rc is a meaningful OCL constraint for �M if its contextual type is a type definition in the metamodel �M,

i.e., rct.constrainedElementp�Mq � H.
OCL constraints are always evaluated for a single object ro, which is always an instance of the corre-

sponding contextual type. In this case, the object ro is called the contextual instance. In an OCL constraint
definition, the contextual instance can be explicitly referred to by means of the self keyword.

An OclExpression instance represents an expression that can be evaluated in a given environment.

OclExpression is the abstract super type of all other object types in the metamodel definition �OCL∆.
Every OclExpression instance has a type that can be statically determined by analyzing the expression
and its context. Evaluation of an OCL expression results in a value. Expressions with boolean result can be
used as constraints (e.g., to specify an invariant of an object type).

The environment of an OclExpression instance defines what model elements are visible and can be
referred to in an expression. Taking into account the tree structure of an OCL constraint definition rc that is

given by treeprc,�OCLq, at the topmost level of treeprc,�OCLq the environment contains the self variable that

refers to the contextual instance. On a lower level in treeprc,�OCLq, the following variables can be introduced
into the environment: iterator variables that are declared in a LoopExp instance, the result variable that
can be defined in an IterateExp instance, and the variable that can be defined in a LetExp instance. All

these object types are defined, among others, in the metamodel definition �OCL as follows:

• IfExp : An IfExp instance represents an OCL expression that results in two alternative expressions,
thenExpression and elseExpression, depending on the evaluated value of a condition.

• LetExp: A LetExp instance represents a special expression that defines a new variable with an
initial value. A variable defined by a LetExp instance cannot change its value. Its value corresponds
to the evaluation of the initial expression initExpression. The variable is visible in the in expression.

• LoopExp: A LoopExp instance is an expression that represents an iteration construct over a source
collection. It has an iterator variable that represents the elements of the source collection during the
iteration process. The body expression is evaluated for each element in the collection. The result of
a loop expression depends on the specific kind and its name. A LoopExp instance can be either an
IterateExp instance or an IteratorExp instance. An IterateExp instance represents an iterate
operator, which permits using an accumulator variable result during the iteration process over the
source collection. An IteratorExp instance permits using the predefined collection iterators: select,
reject, any, sortedBy, collect, collectNested, one, forAll, exists, and isUnique.

• LiteralExp: A LiteralExp instance is an expression with no arguments producing a value. This
includes values like the integer 1 or literal strings like ’this is a LiteralExp.’

• OperationCallExp: An OperationCallExp instance refers to an operation that is defined in an
object type. In our approach, we only consider the operators of the object types that have been defined

in the metamodel definition �OclStdLib, that is, the predefined operators of the OCL language. An
OperationCallExp instance may contain a list of argument expressions if the operation that is
referred to has parameters. In this case, the number and types of the arguments must match the
parameters.

• PropertyCallExp: A PropertyCallExp instance is a reference to a property that is defined in

an object type in �M. It evaluates to the value of the attribute.

• VariableExp: A VariableExp instance represents an expression that consists of a reference to a
variable. The variables that can be referenced are those that can be defined in the environment of an
OCL expression.

• TypeExp: A TypeExp instance permits referring to meta-types, which are defined in a metamodel

definition �M, in an OCL expression. In particular, the object type TypeExp permits defining an
OCL expression where any of the following operators is used: allInstances, oclIsKindOf, oclIsTypeOf,
or oclAsType.

7.2 Algebraic Semantics of OCL Predefined Operators

Given a metamodel specification definition p�M, rCq, the reflectp�M, rCq theory includes the reflectMOFp�Mq
theory, i.e., reflectp�M, rCq � reflectMOFp�Mq, preserving the semantics of the vMwMOF model type. The

108 Chapter 7. Algebraic Constrained Conformance Relation

reflectp�M, rCq theory defines the constrained model type vpM, CqwMOF by means of a membership axiom of
the form

rM : M ^ condition1p rMq � true ^ � � � ^ conditionnp rMq � true ùñ rM : pM, Cq,

where each constraint definition rci, in rC � trc1, ..., rcnu, corresponds to a function

conditioni : vMwMOF ÝÑ vBooleanwMOF.

A constraint definition rc, such that rc : OCL and rootprc,�OCLq : Constraint, is a user-defined OCL

expression where a property (Property instance) that is defined for an object type in �M can be referenced
by means of a PropertyCallExp instance; and an operation3 that is predefined in the metamodel definition�OclStdLib can be referenced by means of an OperationCallExp instance or a LoopExp instance. On the

one hand, the OCL predefined operators, which are provided as data in �OclStdLib, are algebraically defined
in the parameterized theories OCL-COLLECTIONS{T :: TRIV} and MODEL{OBJ :: TH-OBJECT}, shown in

Fig. 7.6, which are instantiated in the theory reflectp�M, rCq theory. On the other hand, the reflect function

maps user-defined OCL expressions to sorts, operators and equations in the reflectp�M, rCq theory in order to
define the corresponding conditioni operator.

In this section, we present the algebraic definition of the OCL predefined operators by extending the
structure of parameterized theories that is defined in Section 6. The theories that are modified or added to
the existing infrastructure of parameterized theories, which are depicted with a dashed background in Fig.
7.6, are:

• OCL-BOOL. The OCL-BOOL theory redefines the operators and, or and implies that are defined in
the BOOL theory, in order to provide the semantics that is defined for these operators in the OCL
specification.

• ENVIRONMENT. The environment of an OCL expression provides access to model elements or values
that are needed for the evaluation of the OCL expression. The ENVIRONMENT theory provides the sorts

and operators that permit defining the environment of an OCL expression in the reflectp�M, rCq theory.

• OCL-COLLECTIONS{T :: TRIV}. This theory includes the OCL-COLLECTIONS-TYPES{T :: TRIV} the-
ory, preserving the semantics of the parameterized OCL types. While the OCL-COLLECTIONS-TYPES{T
:: TRIV} theory defines the parameterized OCL collection types, the OCL-COLLECTIONS{T :: TRIV}
provides the predefined operators that are defined, as data, for these types in the metamodel definition�OclStdLib. These operators involve:

– common operators to all of the types: =, <>, oclIsUndefined;

– regular operators for collection types;

– loop operators for collection types;

– and operators for the special types OclAny and OclType.

• MODEL{OBJ :: TH-OBJECT}. This theory is extended with operators that are defined for object

types in the metamodel definition �OclStdLib. More specifically, the operators that permit querying
properties in objects are added to this theory.

Considering this extended infrastructure of mel theories, when the reflectMOF function processes a

metamodel definition �M, the resulting reflectMOF p�Mq theory does not only provide the semantics of the

types that are defined as data in �M but also the predefined operators that are defined for them in the

metamodel definition �OclStdLib. However, we have delayed their presentation until now for the sake of
simplicity. In subsequent paragraphs, the sorts and operators that are added to the theories, which are
depicted with dashed background in Fig. 7.6, are presented in detail.

7.2.1 Primitive Type Theories

The semantics of the four primitive types, Boolean, String, Integer, and Real, is provided in Section 6.1.
The operators that are defined for each one of these types in the OCL specification are already defined in the
corresponding mel theory for each basic type, i.e., BOOL, STRING, INT and FLOAT, respectively. In Table 7.1,
we show the correspondences between OCL 2.0 and the Maude data-type system and their corresponding
operators. In the table, when the operators have different symbols in OCL and Maude, we indicate the

7.2. Algebraic Semantics of OCL Predefined Operators 109

Figure 7.6: Parameterized theories that provide the predefined OCL operators.

OCL 2.0 Maude Operators
Boolean Bool � p � q, ¡ p ¡ q, orp or q, andp and q,

xorp xor q, notpnot q, impliesp implies q,
String String � p � q, ¡ p ¡ q, sizeplengthq, concatp � q,

substringpsubstrq, pfindq, prfindq ,
p q, p � q, p ¡ q, p ¡� q

Integer Int � p � q, ¡ p ¡ q, �p � q, �p � q, �p � q,
unary � p �q, {p quo q, abspabsq, divp div q,

modp mod q, floorpfloorq, roundproundq,
max pmax q, minpminq, p q, � p � q,

¡ p ¡ q, ¡� p ¡� q
Real Float � p � q, ¡ p ¡ q, �p � q, �p � q, �p � q,

unary � p �q, {p quo q, abspabsq, floorpfloorq,
roundpceilingq, max pmax q, minpminq,

 p q, � p � q, ¡ p ¡ q, ¡� p ¡� q

Table 7.1: Correspondence between MOF and Maude basic data type operators.

110 Chapter 7. Algebraic Constrained Conformance Relation

b1 b2 b1 and b2 b1 or b2 b1 implies b2
false false false false true
false true false true true
true false false true false
true true true true true
false K false K true
true K K true K
K false false K K
K true K true true
K K K K K

Table 7.2: Semantics of boolean operators.

Maude symbol in parentheses. In addition, we reuse some Maude basic data type operators that are not
included in the standard, which are shown in parentheses.

While in the OCL specification, Integer is a subtype of Real, in the INT and FLOAT theories, these two
types are represented by Int and Float sorts, respectively. These sorts belong to different kinds and, therefore,
they are not related by means of a subsort relationship. Defining a supersort of both, like the OclAny type
in OCL, would produce name collisions for the operator symbols. For example, � : Int Int Ñ Int and
� : Float Float Ñ Float are defined and both of them cannot coexist as they are, unless Int and Float

sorts remain in different kinds. An operator renaming would make this coexistence feasible but we have
chosen the first approach: to keep the original symbols.

Some boolean operators of the BOOL theory, namely and, or and implies, constitute an exception in order
to manage with undefined values. We follow the semantics that is provided in [32] for these operators, as
shown in Table 7.2. These boolean operators are redefined in the OCL-BOOL theory, which is presented, in
Maude notation, as

fmod OCL-BOOL is

protecting BOOL * (

op and to maudeAnd,

op or to maudeOr,

op implies to maudeImplies

) .

vars A B : Bool .

vars undefA undefB : [Bool] .

op _and_ : Bool Bool ~> Bool [assoc comm] .

eq false and undefB = false .

eq A and B = A maudeAnd B .

op _or_ : Bool Bool ~> Bool [assoc comm] .

eq true or undefB = true .

eq A or B = A maudeOr B .

op _implies_ : Bool Bool ~> Bool .

ceq false implies undefB = true

if not(undefB :: Bool) .

ceq undefA implies true = true

if not(undefA :: Bool) .

eq A implies B = A maudeImplies B .

endfm

where maudeAnd, maudeOr and maudeImplies represent the original boolean maude operators and, or and
implies, which have been renamed. The Bool view is, then, redefined as follows:

3In our approach, we do not consider operations that are defined for object types in �M.

7.2. Algebraic Semantics of OCL Predefined Operators 111

view Bool from TRIV to OCL-BOOL is

sort Elt to Bool .

endv

7.2.2 The ENVIRONMENT Theory

The environment of an OCL expression defines what model elements are visible and can be referred to in the
expression. As shown in Section 7.1, OCL constraints are defined as collections of nested OclExpression

instances in a model definition rc, such that rc : OCL and rootprc,�OCLq : Constraint, where the nesting

relation corresponds to the containment relation c that is defined as the set c prc,�OCLq. We define the
set of types D1 as

D1 � { Bool, String, Int, Float, Oid, Enum, Object#M}

, and the set D as

D �
�

T P D’
{ NeSet{T}, Set{T}, NeOrderedSet{T}, OrderedSet{T},
NeBag{T}, Bag{T}, NeSequence{T}, Sequence{T},
Collection{T} }

Y D’

where T is a view name that corresponds to the sorts in D1. The set of values that can be used to define
objects in a specific model definition rM , such that rM : M, is defined as

D �
¤
tPD

pT
reflectp rM,rCq,tq.

An OCL variable is a pair of the form (name = value), where name P OpNames and value P D. The sorts
and constructors that permit defining variables in the environment of an OCL expression are defined in the
ENVIRONMENT theory, in Maude notation, as follows:

fmod ENVIRONMENT is

sorts VariableName Variable Environment .

subsort Variable < Environment .

op empty-env : -> Environment .

op _,_ : Environment Environment -> Environment

[comm assoc id: empty-env] .

endfm

This theory is sufficient to define the OCL-COLLECTIONS{T :: TRIV} theory. However, we cannot define
variables yet. The operators that permit both defining variables in a term of sort Environment and querying
variable values are defined in the OCL-DATATYPE-COLLECTIONS theory as follows:

op _=_ : VariableName Collection+{Bool} -> Variable .

op _=_ : VariableName Collection+{String} -> Variable .

op _=_ : VariableName Collection+{Int} -> Variable .

op _=_ : VariableName Collection+{Float} -> Variable .

op _=_ : VariableName Collection+{Enum} -> Variable .

op _=_ : VariableName Collection+{Oid} -> Variable .

var VN : VariableName .

op GetBoolVarValue : Variable ~> Collection+{Bool} .

eq GetBoolVarValue(VN = V:Collection+{Bool}) =

V:Collection+{Bool} .

op GetStringVarValue : Variable ~> Collection+{String} .

eq GetStringVarValue(VN = V:Collection+{String}) =

V:Collection+{String} .

112 Chapter 7. Algebraic Constrained Conformance Relation

Return Collection Operator Symbols Iterator Symbols
Type Collection Set OrderedSet Bag Sequence Collection

Collection{T} union, -, -, intesection insertAt, select, reject,
flatten, intersection insertAt, append, any, sortedBy,

including, append, prepend collect,
excluding collectNested,

prepend iterate
Collection+{T} first, first,

last, last,
at at

Boolean includes, one,
includesAll, forAll,

excludes, forAll2,
excludesAll, exists,

isEmpty, isUnique
notEmpty

Int count, indexOf indexOf
size,
sum,

product

Table 7.3: OCL Collection Operators Classified by their Returning Types

op GetIntVarValue : Variable ~> Collection+{Int} .

eq GetIntVarValue(VN = V:Collection+{Int}) =

V:Collection+{Int} .

op GetFloatVarValue : Variable ~> Collection+{Float} .

eq GetFloatVarValue(VN = V:Collection+{Float}) =

V:Collection+{Float} .

op GetEnumVarValue : Variable ~> Collection+{Enum} .

eq GetEnumVarValue(VN = V:Collection+{Enum}) =

V:Collection+{Enum} .

op GetOidVarValue : Variable ~> Collection+{Oid} .

eq GetOidVarValue(VN = V:Collection+{Oid}) =

V:Collection+{Oid} .

In the reflectp�M, rCq theory, an OCL variable can be defined by means of the expression (nameValue :

"Table"), where nameValue : VariableName.

7.2.3 The OCL-COLLECTIONS{T :: TRIV} Theory

This theory provides the equational definition of the OCL operators that are defined as data in the metamodel

definition �OclStdLib : common operators to all OCL types (�, ¡ and oclIsUndefined), and predefined
operators for OCL collection types. Two kinds of collection operators can be distinguished in OCL 2.0:
regular operators, which provide common functionality over collections, such as the size operator that com-
putes the cardinality of a given collection; and loop operators, which permit iterating over the elements in a
source collection performing a specific action, such as forAll, sortedBy and iterate. Loop operators can
be classified in iterator operators, which do not permit accumulating a value while the source collection is
traversed, and the iterate operator, which is the most general loop operator and does provide this function-
ality. The collection operators that are supported in our specification are shown in Table 7.3, classified
by the type of the source collection, to which they can be applied (columns), and by their returning types
(rows).

7.2. Algebraic Semantics of OCL Predefined Operators 113

Given a metamodel specification definition p�M, rCq, the OCL-COLLECTIONS{T :: TRIV} theory is instan-

tiated for the primitive types, enumeration types and object types that are defined in �M in the reflectp�M, rCq
theory. To define collections of objects ro, such that ro P T

reflectMOFp rMq,Object#M
, the OCL-COLLECTIONS{T ::

TRIV} theory is instantiated with the TH-OBJECT{M} view, which is defined, in Maude notation, as follows:

view TH-OBJECT from TRIV to TH-OBJECT is

sort Elt to Object .

endv

Therefore, the OCL-COLLECTIONS{T :: TRIV} theory can be instantiated for a specific metamodel M by
means of the expression OCL-COLLECTIONS{TH-OBJECT}{M}, as shown in Fig. 7.6.

To illustrate the OCL-COLLECTIONS{T :: TRIV} theory, we present the algebraic definition of some oper-
ators: a regular collection operator, an iterator operator and the iterate operator. The complete specification
of the OCL collection operators is provided in Appendix F.

Common Operators

The OCL-COLLECTIONS{T :: TRIV} theory provides the so-called common operators (�, ¡, and oclIsUn-
defined) for OCL types. These operators are defined as follows:

• p � q : This operator checks if two values are the same. The operator can also be applied to collections
of values. The operator p � q is defined, in Maude notation, as follows:

vars E1 E2 : Collection+{T} .

vars undef1 undef2 : [Collection+{T}] .

op _=_ : [Collection+{T}] [Collection+{T}] -> Bool .

eq (undef1 = undef2) = not(undef1 :: Collection+{T})

and not(undef2 :: Collection+{T}) [owise] .

This operator is not completely defined in this theory because to define the equality between objects
we need information that we do not have yet in this theory, like object identifiers. The complete
definition of this operator is achieved in the MODEL{OBJ :: TH-OBJECT} theory.

• p ¡ q : This operator is defined as the negation of the previous one:

op _<>_ : [Collection+{T}] [Collection+{T}] -> Bool .

eq (undef1 <> undef2) = not(undef1 = undef2) .

• p .oclIsUndefinedq : This operator checks wether a value is undefined or not. The operator is defined,
in Maude notation, as follows:

op _.oclIsUndefined : [Collection+{T}] -> Bool .

eq undef1 . oclIsUndefined = not(undef1 :: Collection+{T}) .

Recall that the generation of an undefined value for each one of the primitive types is achieved by means
of the corresponding constructor op nullBool : -> [Bool], op nullString : -> [String], op

nullInt : -> [Int], and
op nullFloat : -> [Float].

Regular Collection Operators

In the OCL-COLLECTIONS{T :: TRIV} theory, the EBNF rules of the OCL grammar have been specified as
operators in mixfix notation. Each OCL expression, in which a collection operator is invoked, is represented
as a term by means of operators of this kind. These terms are written in a format close to the concrete
syntax of OCL due to the mixfix notation of the operators. For example, to invoke the operator size we
provide the following operator:

op _->‘size : Collection{T} -> Int .

114 Chapter 7. Algebraic Constrained Conformance Relation

where the argument of the operator is the source collection over which the operator is evaluated. For
example, the term Set{1,2} -> size represents an OCL expression that computes the size of a source set
of integers.

The semantics of the predefined OCL operators is provided in the form of equations. These equations
can be interpreted from two points of view4: from a programming point of view, the equations provide
the operational semantics of the operators in a functional program; and from a specification point of view,
the equations, together with the sorts and operators, provide a mel theory with initial algebra semantics.
Taking into account the semantics that are defined in [93], the following set of equations defines how to
evaluate an invocation of the size operator over a set of elements:

var N : Collection+{T} .

var M : Magma{T} .

eq Set{ N, M } -> size = Set{ M } + 1 .

eq Set{ N } -> size = 1 .

eq empty-set -> size = 0 .

Note that the function size is only defined when the argument collection is not an undefined value.

Iterator Operators

Operators of this kind receive an OCL expression as argument and execute it over each element of a source
collection. The definition of an iterator operator can be split in several parts:

1. Operator name: represents the name of the specific operator. We consider the operators select, reject,
any, sortedBy, collect, collectNested, one, forAll, exists, and isUnique.

2. Source collection: collection of elements that is traversed.

3. Body expression: represents the expression that is evaluated for each of the elements of the source
collection by the iterator operator. Body expressions are defined as functions whose evaluation results
in a valid OCL type value. A body expression is identified by a symbol, which is a term of one of the
following sorts:

• Body{T} : represents the name of a body expression whose evaluation returns a term of sort
Collection+{T};

• BoolBody{T} : represents the name of a body expression whose evaluation returns a term of sort
Collection+{Bool};

• StringBody{T} : represents the name of a body expression whose evaluation returns a term of
sort Collection+{String};

• IntBody{T} : represents the name of a body expression whose evaluation returns a term of sort
Collection+{Int};

• FloatBody{T} : represents the name of a body expression whose evaluation returns a term of
sort Collection+{Float}; and

• EnumBody{T} : represents the name of a body expression whose evaluation returns a term of sort
Collection+{Enum}.

These sorts are used in constructors that permit defining a body expression as follows:

op _._(_;_) : Magma{T} Body{T} Environment

PreConfiguration{T} -> Collection+{Oid} .

op _._(_;_) : Magma{T} BoolBody{T} Environment

PreConfiguration{T} -> Collection+{Bool} .

op _._(_;_) : Magma{T} StringBody{T} Environment

PreConfiguration{T} -> Collection+{String} .

op _._(_;_) : Magma{T} IntBody{T} Environment

PreConfiguration{T} -> Collection+{Int} .

op _._(_;_) : Magma{T} FloatBody{T} Environment

4We assume that the theories that we provide satisfy the executability requirements for a mel theory. However,
we do not provide a formal proof of the satisfaction of these requirements.

7.2. Algebraic Semantics of OCL Predefined Operators 115

Figure 7.7: Metamodel definition �Example as a class diagram.

Configuration{T} -> Collection+{Float} .

op _._(_;_) : Magma{T} EnumBody{T} Environment

PreConfiguration{T} -> Collection+{Enum} .

where: (i) the first argument represents the element of the source collection, to which the body
expression is applied in a step of the iteration process; (ii) the second argument represents the symbol
of the body expression; (iii) the third argument is the environment for the body expression, which
provides a set of variables that can be used in the evaluation of the body expression; and (iv) the
fourth argument is a term of sort PreConfiguration{T}, whose constructor is defined as

op nonePreConf#T : -> PreConfiguration{T} .

An OCL expression that is applied to the objects of a source collection may involve a navigation
through object-typed properties in a model definition rM . Therefore, the entire model definitionrM is needed to evaluate the OCL expression. In the MODEL{OBJ :: TH-OBJECT} theory, the sort
PreConfiguration{TH-OBJECT}{OBJ} is defined as supersort of Configuration{OBJ}, so that a model

definition rM is also a term of sort PreConfiguration{TH-OBJECT}{OBJ}. When the source collection
that is traversed is a collection of DataType values, i.e., primitive type values or enumeration literals,
the fourth argument is not needed. In these cases, the constant nonePreConf#T is used.

4. Environment: the environment for an iterator operator is a set of variables that may have been defined
in the context of the OCL expression, in a let statement or in other loop operators. In a specific loop
operator, the iterator variable is used to refer to the element of the source collection that is being
traversed in each step of the iteration process. The iterator variable value corresponds to the first
argument of the operator . (;) for a body expression.

5. Model definition: the model definition rM that contains the source collection of elements, when it
is a collection of objects. A term of sort PreConfiguration{T} is used in these cases. When the
source collection that is traversed is a collection of DataType values, i.e., primitive type values or
enumeration literals, this argument is not needed.

To illustrate how the semantics of the OCL iterator operators has been equationally-defined in the
OCL-COLLECTIONS{T :: TRIV} theory, we provide the algebraic specification of the forAll and sortedBy

operators. The algebraic specification for the rest of collection operators is given in Appendix F. Consider

the metamodel definition �Example, shown in Fig. 7.7 as a class diagram that contains the definition of the
A object type. This object type is defined with a single property, named a, of type Integer. We define a
model definition rM , such that rM : Example as the collection of objects

<<

< oid#A(’Foo1) : A | a : 3 >

< oid#A(’Foo2) : A | a : 2 >

< oid#A(’Foo3) : A | a : 5 >

< oid#A(’Foo4) : A | a : 1 >

>>.

The forAll operator represents a universal quantifier that checks whether each element in the source
collection satisfies a given condition or not. As a guiding example, we use an expression, using the concrete
syntax of the OCL language, that indicates whether all the numbers in a set of integers are odd or not:

A.allInstances() -> forAll(objA : A | objA.a.mod(2) <> 0)

116 Chapter 7. Algebraic Constrained Conformance Relation

where A.allInstances() obtains all instances of the class A in the model definition rM as a set of objects
5. In this expression, forAll is the iterator operator, A.allInstances() provides the source collection,
objA : A is the iterator variable, and (objA.a.mod(2) <> 0) is the body expression. Using the example
of the condition of odd numbers, we study first how to specify the forAll body expression objA : A |

objA.a.mod(2) <> 0.
Body expressions are defined as functions whose evaluation results in a valid OCL type value. The

body expression of the forAll operator evaluates to a boolean value. It is defined by a constant of the sort
BoolBody{Example} as follows:

op isOdd : -> BoolBody{Example} .

For the example, the body expression of the forAll operator is provided, in Maude notation, as

eq objA:Object#Example . isOdd (

empty-env ;

model:ModelType{Example}

) =

(((objA:Object#Example . a) rem 2) =/= 0) .

where E represents the environment of the body expression, and a is an operator defined as op a : ->

IntFun{Example}, which permits obtaining the value of the property a of an instance of the object type A,
as explained below. The syntax of the forAll expression is defined by the operator

op _->‘forAll‘(_;_;_‘) : Collection{T} BoolBody{T} Environment

PreConfiguration{T} -> Bool .

where the first argument is the source collection to be traversed, the second argument is the symbol that
identifies the body expression (isOdd for the example), the third argument is the environment of the body
expression, and the fourth argument is a term of sort PreConfiguration{T}, which can be a model definitionrM , such that rM : Example in the example, when the source collection is a collection of objects, as in the
example.

The semantics of iterator operators is defined generically simulating higher-order functions. Three equa-
tions constitute the algebraic specification of the forAll operator for sets in the OCL-COLLECTIONS{T ::

TRIV} theory:

var N : Collection+{T} .

var M : Magma{T} .

var BB : BoolBody{T} .

var E : Environment .

var PR : PreCofiguration{T} .

eq Set{ N , M } -> forAll (BB ; E ; PR) =

(N . BB (E ; PR)) and (Set{ M } -> forAll (BB ; E ; PR)) .

eq Set{ N } -> forAll (BB ; E ; PR) = N . BB (E ; PR) .

eq empty-set -> forAll (BB ; E ; PR) = true .

The first equation considers the recursion case where there is more than one element in the set. The second
equation considers the recursion case when only one element remains in the set so that the recursive trail
ends. The third equation considers the case where the set is empty. To invoke the forAll iterator over a
set of objects with the body isOdd we use the term:

A.allInstancesp rMq-> forAll(isOdd ; empty-env ; rM).

Among the OCL iterator operators, we find the sortedBy operator, which permits ordering the elements
of a given collection. For example, given the model definition rM , such that rM : RDBMS, that is represented
in Fig. 7.8, the expression

Schema.allInstances()

-> sortedBy(t : Table | t.name)

-> collect(t : Table | t.name),

5An equational definition of the allInstances operator is given below.

7.2. Algebraic Semantics of OCL Predefined Operators 117

Figure 7.8: A relational schema.

which is presented using the OCL textual formal, results in an ordered set
OrderedSet{’Invoice’, ’Item’, ’Person’} (also represented in OCL textual format). The parameter
of this operation is a property of the object type of the elements in the collection. Also the elements them-
selves can be used as parameter. For example, the expression Set{2,1} -> sortedBy(i : Integer |

i) results in the value OrderedSet{1,2}. For the type of the parameter, the lesserThan operation (also
denoted by) must be defined. The operator sortedBy loops over all elements in the source collection and
orders all elements according to the parameter value. The first element in the result is the element for which
the parameter value is the lowest.

The sortedBy operator is important in our specification because it permits ordering an unsorted collection
in a deterministic way. We define the lesserThan operation as a boolean body expression by means of
equations of the form

eq N1:T . lesserThanString (

VN:VariableName = N2:T ; pr:PreConfiguration{T}) = ...

where N1:T and N2:T are the elements to be compared. The lesserThan operator is defined for the sorts
that represent primitive types, (String, Int and Float), for object types (Object), and for object identifier
types (Oid), in the MODEL{OBJ :: TH-OBJECT} theory as follows:

op lesserThanString : -> BoolBody{String} .

eq N1:String . lesserThanString

(VN:VariableName = N2:String ; pr:PreConfiguration{String}) =

(N1:String < N2:String) .

op lesserThanInt : -> BoolBody{Int} .

eq N1:Int . lesserThanInt

(VN:VariableName = N2:Int ; pr:PreConfiguration{Int}) =

(N1:Int < N2:Int) .

op lesserThanFloat : -> BoolBody{Float} .

eq N1:Float . lesserThanFloat

(VN:VariableName = N2:Float ; pr:PreConfiguration{Float}) =

(N1:Float < N2:Float) .

op lesserThanOid : -> BoolBody{Oid} .

eq N1:Oid . lesserThanOid

(VN:VariableName = N2:Oid ; pr:PreConfiguration{Oid}) =

(string(N1:Oid) < string(N2:Oid)) .

op lesserThanObject : -> BoolBody{TH-OBJECT}{OBJ} .

eq N1:Object#OBJ . lesserThanObject

(VN:VariableName = N2:Object#OBJ ;

pr:PreConfiguration{TH-OBJECT}{OBJ}) =

118 Chapter 7. Algebraic Constrained Conformance Relation

oid(N1:Object#OBJ) . lesserThanOid(

VN:VariableName = oid(N2:Object#OBJ) ; nonePrConf#Oid

) .

where string : Oid ÝÑ String is a function that obtains a string from an object identifier.
The sortedBy operator is defined in the OCL-COLLECTIONS{T :: TRIV} theory for the case where the

parameter of the operator is the iterator variable, and in the MODEL{OBJ :: TH-OBJECT} theory for the
case where the source collection is a collection of objects and the parameter of the sortedBy operator is a
property of an object.

In the first case, this operator is defined in the OCL-COLLECTIONS{T :: TRIV} theory, in Maude notation,
as

op _->‘sortedBy‘(_;_‘) :

Collection{T} BoolBody{T} Environment -> Collection{T} .

where: the first argument is the source collection to be ordered; the second argument is an operator name
that refers to a lesserThan operator; and the third argument is the environment of variables that can be used
in the lesserThan operator. The OCL expression, in OCL textual concrete syntax, Set{3,2} -> sortedBy(

i : Integer | i), is represented by the term Set{3,2} -> sortedBy(lesserThanInt ; empty-env),
which is reduced to the canonical form OrderedSet{2 :: 3}.

In the second case, the sortedBy operator is defined in the MODEL{OBJ :: TH-OBJECT} theory for each
type of object property that can be used as parameter. We consider the types String, Int, Float, and Oid

by means of the operators:

op _->‘sortedBy‘(_;_;_‘) :

Collection{TH-OBJECT}{OBJ} StringBody{TH-OBJECT}{OBJ}

Environment PreConfiguration{TH-OBJECT}{OBJ}

-> Collection{TH-OBJECT}{OBJ} .

op _->‘sortedBy‘(_;_;_‘) :

Collection{TH-OBJECT}{OBJ} IntBody{TH-OBJECT}{OBJ}

Environment PreConfiguration{TH-OBJECT}{OBJ}

-> Collection{TH-OBJECT}{OBJ} .

op _->‘sortedBy‘(_;_;_‘) :

Collection{TH-OBJECT}{OBJ} FloatBody{TH-OBJECT}{OBJ}

Environment PreConfiguration{TH-OBJECT}{OBJ}

-> Collection{TH-OBJECT}{OBJ} .

op _->‘sortedBy‘(_;_;_‘) :

Collection{TH-OBJECT}{OBJ} Body{TH-OBJECT}{OBJ}

Environment PreConfiguration{TH-OBJECT}{OBJ}

-> Collection{TH-OBJECT}{OBJ} .

where: the first argument is the source collection to be ordered; the second argument is an operator name
that identifies the body expression that is used to obtain the ordering value; the third argument is the
environment of variables that can be used in the body expression, and the fourth argument is the model
definition so that navigations through object-typed properties are also allowed in the body expression.

The OCL expression, in OCL textual concrete syntax, Schema.allInstances() -> sortedBy(t :

Table | t.name), is represented by the term Schema.allInstances(rM) -> sortedBy(getName ; empty-env

; rM), where the getName body expression is defined as follows:

op getName : -> StringBody{rdbms} .

eq tValue:Collection+{rdbms} . getName(

empty-env ; model:ModelType{rdbms}

) = tValue:Collection+{rdbms} . name .

Iterate Operator

The iterate operator is the most generic loop operation. All other loop operations can be described as special
cases of iterate, as shown in [24]. The concrete syntax of the iterate operation is as follows:

7.2. Algebraic Semantics of OCL Predefined Operators 119

collection -> iterate(element : Type1;

result : Type2 = <expression>

| <expression-with-element-and-result>)

The variable element is the iterator variable. The resulting value is accumulated in the variable result,
which is also called the accumulator variable. The accumulator variable gets an initial value, given by the
<expression> after the equal sign. None of the parameters is optional.

The result of the iterate operation is a value obtained by iterating over all elements in a collection. For
each successive element in the source collection, the body expression <expression-with-element-and-result>

is calculated using the previous value of the result variable. A simple example of the iterate operation is
given by the following expression, which results in the sum of the elements of a set of integers:

Set{1, 2, 3} -> iterate(i: Integer, sum: Integer = 0 | sum + i).

The iterate operator is declared in the OCL-COLLECTIONS{T :: TRIV} theory as:

op _->‘iterate‘(_|_;_;_‘) :

Collection{T} Variable IterateBody{T} Environment PreConfiguration{T}

~> Variable .

where: the first argument is the source collection to be traversed; the second argument is the symbol that
is associated to the iterate body expression; the third argument is the result variable; the fourth argument
is the environment that may be used to evaluate the iterate body expression; the fifth argument is the
model definition rM , which contains the objects that are included in the source collection, when the source
collection is a collection of objects (in any other case, this argument is not needed). The iterate operator
returns a term of sort Variable, which represents the accumulator variable.

When the source collection is a set of elements, the iterate operator is defined, in Maude notation, by
means of the following equations:

var N : Collection+{T} .

var M : Magma{T} .

var result : Variable .

var IF : IterateBody{T} .

var E : Environment .

var Pr : PreConfiguration{T} .

eq Set{ N , M } -> iterate (result | IF ; E ; Pr) =

N . IF ((Set{ M } -> iterate (result | IF ; E ; Pr)) ; PL ; Pr) .

eq Set{ N } -> iterate (result| IF ; E ; Pr) =

N . IF (result ; E ; Pr) .

eq empty-set -> iterate (result | IF ; E ; Pr) = result.

where the variable IF represents the symbol that identifies an iterate body expression. An iterate body
expression is defined by means of the operator:

op _._‘(_;_;_‘) :

Collection+{T} IterateBody{T} Variable Environment PreConfiguration{T}

~> Variable .

where: the first argument is the value of the iterator variable in a specific iteration step of the iterate
operator; the second argument is the symbol that is associated to the iterate body expression; the third
argument is the accumulator variable; the fourth argument is the environment that may be used to evaluate
the iterate body expression; the fifth argument is the model definition rM , which contains the objects that
are included in the source collection, when the source collection is a collection of objects (in any other
case, this argument is not needed). An iterate body expression returns a term of sort Variable, which
represents the accumulator variable. The iterate body expression that provides the algebraic semantics for
the body expression (i: Integer, sum: Integer = 0 | sum + i) is algebraically defined by means of
the following equation:

op sum : -> VariableName .

120 Chapter 7. Algebraic Constrained Conformance Relation

op integerSum : -> iterateBody{Int} .

eq iValue:Collection+{Int} . integerSum(

sum = sumValue:Collection+{Int} ; empty-env ; nonePrConf#Int) =

(sum = (sumValue:Collection+{Int} + iValue:Collection+{Int})) .

Therefore, given a set Set{1,2,3} of integers, the OCL expression, in OCL concrete syntax,

Set{1,2,3} ->iterate (i: Integer, sum: Integer = 0 | sum + i)

is represented by the term

Set{1,2,3} -> iterate (result = 0 | integerSum ; empty-env ; nonePrConf#Int)

where Set{1,2,3} is a term of sort Set{Int}, empty-env represents an empty environment, and the constant
nonePrConf#Int indicates that the last argument is not given since it is not needed. The previous term
can be simplified by applying the equations that have been previously defined modulo associativity and
commutativity, resulting in the term result = 6 of sort Variable, which represents the sum of all of the
integer values of the source set.

7.2.4 The MODEL{OBJ :: TH-OBJECT} Theory

Given a metamodel specification definition p�M, rCq, the MODEL{OBJ :: TH-OBJECT} theory provides the

operators that are predefined for the object types that are defined in �M. These predefined operators can
be classified as: common operators, and user-defined operators. Among the user-defined ones, we can make
another classification:

• Value-typed property operators: An operator of this type projects the value of a value-typed property.

• Object-typed property operators: An operator of this type projects the value of an object-typed prop-

erty. These operators permit the navigation through the edges of the graph graphp rM, �Mq, whererM : M.

• Query operators: These operators are defined as OCL expressions for a specific object type and do
not have side effects. The semantics of an object operation is therefore given by the semantics of the
associated OCL expression. We do not consider operators of this kind in our approach at the moment.

In addition, the special types OclAny and OclType of the OCL language provide some operators that
are also specified in the MODEL{OBJ :: TH-OBJECT} theory.

Common Operations

These operators are defined in the OCL-COLLECTIONS{T :: TRIV} theory. However, the operator = is re-
defined to take into account the object identifiers that are intrinsically related to objects. The operator
= checks if two objects are the same by means of their identifiers. The operator can also be applied to
collections of objects. The operator p � q is defined, in Maude notation, as follows:

vars E1 E2 : Collection+{TH-OBJECT}{OBJ} .

eq (E1 = E2) = (oid(E1) == oid(E2)) .

where the operator oid : CollectiontOBJu Ñ CollectiontOidu is an overloaded version of the oid operator
that obtains a collection of object identifiers from a collection of objects, keeping the order and uniqueness
features of each specific domain collection. For example,

oid(

OrderedSet{

< oid#Class("Class0") : Class | PS1 > ::

< oid#Class("Class1") : Class | PS2 >

}

) = OrderedSet{ oid#Class("Class0") :: oid#Class("Class1") }.

The = operator is also defined for data type values as follows:

7.2. Algebraic Semantics of OCL Predefined Operators 121

eq V1:Collection+{Bool} = V2:Collection+{Bool} =

(V1:Collection+{Bool} == V2:Collection+{Bool}) .

eq V1:Collection+{String} = V2:Collection+{String} =

(V1:Collection+{String} == V2:Collection+{String}) .

eq V1:Collection+{Int} = V2:Collection+{Int} =

(V1:Collection+{Int} == V2:Collection+{Int}) .

eq V1:Collection+{Float} = V2:Collection+{Float} =

(V1:Collection+{Float} == V2:Collection+{Float}) .

eq V1:Collection+{Enum} = V2:Collection+{Enum} =

(V1:Collection+{Enum} == V2:Collection+{Enum}) .

User-defined Operations

To project property values from a specific object term, we defined the following sorts

• Fun{TH-OBJECT}{OBJ} : represents the name of property projectors that return a term of sort
Collection+{Oid};

• BoolFun{TH-OBJECT}{OBJ} : represents the name of property projectors that return a term of sort
Collection+{Bool};

• StringFun{TH-OBJECT}{OBJ} : represents the name of property projectors that return a term of sort
Collection+{String};

• IntFun{TH-OBJECT}{OBJ} : represents the name of property projectors that return a term of sort
Collection+{Int};

• FloatFun{TH-OBJECT}{OBJ} : represents the name of property projectors that return a term of sort
Collection+{Float}; and

• EnumFun{TH-OBJECT}{OBJ} : represents the name of property projectors that return a term of sort
Collection+{Enum}.

These sorts are used to define the operators that permit querying the value of value-typed properties as
follows:

op _._ : Collection+{TH-OBJECT}{OBJ} Fun{TH-OBJECT}{OBJ}

~> Collection+{Oid} .

op _._ : Collection+{TH-OBJECT}{OBJ} BoolFun{TH-OBJECT}{OBJ}

~> Collection+{Bool} .

op _._ : Collection+{TH-OBJECT}{OBJ} StringFun{TH-OBJECT}{OBJ}

~> Collection+{String} .

op _._ : Collection+{TH-OBJECT}{OBJ} IntFun{TH-OBJECT}{OBJ}

~> Collection+{Int} .

op _._ : Collection+{TH-OBJECT}{OBJ} FloatFun{TH-OBJECT}{OBJ}

~> Collection+{Float} .

op _._ : Collection+{TH-OBJECT}{OBJ} EnumFun{TH-OBJECT}{OBJ}

~> Collection+{Enum} .

For example, in the RDBMS metamodel, to obtain the value of the property name in a table we define
the operator op name : -> StringFun{rdbms}. The name value of a specific Table instance t can be
then obtained by reducing the term t.name. Note that the equation that defines this operator has not been
defined yet. The equations that define operators of this kind are generated by means of the reflect function,
as shown in Section 7.3.

Object-typed properties are those that are defined with an object identifier type. Object-typed properties
permit traversing the collection of objects that constitutes a specific model definition rM , taking the graph

structure graphp rM, �Mq into account, by means of the operator

op _._(_) : Collection+{TH-OBJECT}{OBJ} Fun{TH-OBJECT}{OBJ}

Configuration{TH-OBJECT}{OBJ} ~> Collection+{TH-OBJECT}{OBJ} .

For example, in the RDBMS metamodel, to obtain the Schema instance that contains a specific Table
instance t in a relational schema rM , such that rM : RDBMS, we define the operator op schema : ->

Fun{rdbms}, which can be used as follows: t.schema(rM).

122 Chapter 7. Algebraic Constrained Conformance Relation

OclAny

The OclAny type is presented in the OCL specification as the supertype of all the types that appear in
a MOF metamodel M, except for OCL collection types. This type provides a set of operators that are
inherited by all the types of a MOF metamodel. This type is not represented as a specific sort in our
specification but its operators are defined in the MODEL{OBJ :: TH-OBJECT} theory as follows:

• oclIsTypeOf: This operator indicates if a value has a specific type, corresponding to the isValueOf
relation. For example, the oclIsTypeOf operator is defined, in Maude notation, to check if a primitive
type value is of sort Bool as follows:

op _.‘oclIsTypeOf‘(‘Bool‘) : Bool -> Bool .

eq B:Bool . oclIsTypeOf(Bool) = true .

op _.‘oclIsTypeOf‘(‘Bool‘) : String -> Bool .

eq S:String . oclIsTypeOf(Bool) = false .

op _.‘oclIsTypeOf‘(‘Bool‘) : Int -> Bool .

eq I:Int . oclIsTypeOf(Bool) = false .

op _.‘oclIsTypeOf‘(‘Bool‘) : Float -> Bool .

eq F:Float . oclIsTypeOf(Bool) = false .

op _.‘oclIsTypeOf‘(‘Bool‘) : Enum -> Bool .

eq E:Enum . oclIsTypeOf(Bool) = false .

This operator is likewise defined for the sorts String, Int and Float. Given a metamodel specification

definition p�M, rCq, the oclIsTypeOf operator is also defined for object type instances ro, such thatro P T
reflectMOFp rMq,Object#M

. This operator checks whether an object ro is a direct instance of a specific

object type, without considering the specialization relation s that may be defined between object

type definitions in �M. Given a specific object type name CID, such that CID P T
reflectMOFp rMq,Cid#M

,

the oclIsTypeOf operator is defined for object type instances as follows:

var Obj:Object#OBJ .

var CID:Cid#OBJ .

op _.‘oclIsTypeOf‘(_‘) : Object#OBJ Cid#OBJ -> Bool .

eq Obj . oclIsTypeOf(CID) = (class(EObj) == CID) .

In addition, the equations that indicate that an object is not a value of a data type are expressed, in
Maude notation, as

eq O:Object#OBJ . oclIsTypeOf(Bool) = false .

eq O:Object#OBJ . oclIsTypeOf(String) = false .

eq O:Object#OBJ . oclIsTypeOf(Int) = false .

eq O:Object#OBJ . oclIsTypeOf(Float) = false .

• oclIsKindOf: This operator checks whether or not a type is valid for a specific value by considering
subtype relationships. Among the data types in OCL, only the type Integer type is defined as a
subtype of the Real type. As already mentioned, the sorts that correspond to these types, in MEL,
are Int and Float respectively, which are not defined in the same kind. To provide the semantics of
the operator that is described in the standard, we define the oclIsKindOf operator for the Float sort
in the MODEL{OBJ :: TH-OBJECT} theory, in Maude notation, as follows:

op _.‘oclIsKindOf‘(‘Float‘) : Bool -> Bool .

eq B:Bool . oclIsKindOf(Float) = false .

op _.‘oclIsKindOf‘(‘Float‘) : String -> Bool .

eq S:String . oclIsKindOf(Float) = false .

op _.‘oclIsKindOf‘(‘Float‘) : Int -> Bool .

eq I:Int . oclIsKindOf(Float) = true .

op _.‘oclIsKindOf‘(‘Float‘) : Float -> Bool .

eq F:Float . oclIsKindOf(Float) = true .

This operator is likewise defined for the sorts Bool, String and Int. Given a metamodel specification

definition p�M, rCq, the oclIsKindOf operator is also defined for object type instances ro, such thatro P T
reflectMOFp rMq,Object#M

. This operator checks whether an object ro is an instance of a specific object

7.2. Algebraic Semantics of OCL Predefined Operators 123

type, by considering the specialization relation s that may be defined between object type definitions

in �M. Given a specific object type name CID, such that CID P T
reflectMOFp rMq,Cid#M

, the oclIsKindOf

operator is defined for object type instances as follows:

var Obj:Object#OBJ .

var CID:Cid#OBJ .

op _.‘oclIsKindOf‘(_‘) : Object#OBJ Cid#OBJ -> Bool .

eq Obj . oclIsKindOf(CID) = (class(Obj) :: sortOf(CID)) .

where the function sortOf : Cid#M ÝÑ Sorts obtains the class sort that corresponds to a specific
class constant by using the mel reflective features6.

• oclAsType: This partial operator provides support for casting or retyping an object into a (usually)
more specific object type. The target type must be related to the type of the object that is being

retyped by means of the specialization relation s that is defined in a metamodel definition �M that
provides the object types, i.e., one must be a subtype of the other. This operator is defined for object
type instances as follows:

var Obj:Object#OBJ .

var CID:Cid#OBJ .

op _.‘oclAsType‘(_‘) : Object#OBJ Cid#OBJ ~> Object#OBJ .

ceq Obj . oclAsTypeOf(CID) = Obj

if Obj . oclIsKindOf(CID) .

Note that if the type name that is passed as argument is not a proper type for the object, the operator
returns an undefined value. This operator is not defined for primitive type values nor enumeration
literals in our algebraic specification.

OclType

This type introduces a metalevel feature in the OCL language that permits defining OCL types as instances
of the OclType object type. However, a specific representation for this type is not provided in our algebraic
specification. The dynamic type of a specific object can still be checked by means of the oclIsTypeOf
and oclIsKindOf operators. The OclType type provides the operator allInstances, which is defined for all

object types. Given a metamodel specification definition p�M, rCq and an object type name CID, such that

CID P T
reflectMOFp rMq,Cid#M

, CID .allInstancesp rMq obtains the set of instances of a specific object type in

a given model definition rM , such that rM : M. The operator allInstances is defined in the MODEL{OBJ ::

TH-OBJECT} theory, in Maude notation, as follows:

var Obj : Object#OBJ .

var ObjCol : ObjectCollection{TH-OBJECT}{OBJ} .

op _.‘allInstances‘(_‘) : Cid#OBJ Configuration{TH-OBJECT}{OBJ}

-> Set{TH-OBJECT}{OBJ} .

ceq CID . allInstances(<< Obj ObjCol >>) =

(CID . allInstances(<< ObjCol >>)) -> including(Obj)

if Obj . oclIsKindOf(CID) .

eq CID . allInstances(<< ObjColl >>) = empty-set#OBJ [owise] .

where the operator

->includingp q : CollectiontOBJu �Object#OBJ ÝÑ CollectiontOBJu

permits adding an object to a collection of objects.

6In the algebraic specification, we use the mel reflective features that are implemented in Maude to define the
oclIsKind operator, instead of the sortOf operator. We have introduced this operator to make the definition of the
operator easier to understand.

124 Chapter 7. Algebraic Constrained Conformance Relation

7.3 Algebraic Semantics of the reflect Function

The reflect function provides the algebraic semantics for the OCL constraints C that are meaningful for a spe-

cific metamodelM in a metamodel specification definition p�M, rCq. The reflectp�M, rCq theory includes the the-

ory reflectMOFp�Mq, which provides the algebraic semantics of the OCL predefined operators, by including the

OCL-COLLECTIONS{TH-OBJECT}{M} and MODEL{M} theories. The reflectp�M, rCq theory also provides a mem-
bership axiom of the form

rM : M ^ condition1p rMq � true ^ � � � ^ conditionnp rMq � true ùñ rM : pM, Cq,

where each constraint definition rci, in rC � trc1, ..., rcnu, corresponds to a boolean function conditioni that

is evaluated over a model definition rM , such that rM : M, i.e., conditionip rMq. Therefore, when a model

definition rM , such that rM : M, satisfies all the constraints that are defined in rC, rM is considered a value of
the constrained model type vpM, CqwMOF.

The OCL expression that constitutes an OCL constraint is a user-defined expression that may involve
operators that are predefined for OCL types. The OCL expression that constitutes the OCL constraint that
is taken as example is shown, by using the textual concrete syntax of the OCL language, as

if (self.column-> size () = self.refersTo.column -> size ()) then

self.column-> forAll (c:Column |

self.refersTo.column-> at (self.column-> indexOf (c)).type

= c.type

)

else

false

endif

where predefined operators are boxed. OCL constraints are usually given in textual format, which are

parsed and expressed as model definitions rc, such that rc : OCL and rootprc,�OCLq : Constraint. An OCL

constraint rc preserves a tree structure that is given by treeprc,�OCLq.
An OCL constraint definition rc, such that rc : OCL, rootprc,�OCLq : OclConstraint, must be satisfied

for all instances of the contextual object type that is referenced by Constraint instance rootprc,�OCLq,
which is obtained by means of the expression rootprc,�OCLq.constrainedElementp�Mq. This semantics can be
defined by using the OCL language itself. Assume that the textual representation of rc is

context OT :

inv: <boolean-body-expression>

The OCL constraint rc can be defined by means of the OCL expression

OT.allInstances() -> forAll(self : OT | < boolean-body-expression >).

The function transform : vOCLwMOF ; vOCLwMOF provides this transformation for a given OCL constraint
definition rc.

The reflect function provides the semantics of OCL constraint definitions rc. On the one hand, the
semantics of the predefined operators that may be referenced in an OCL constraint definition rc is provided

by the reflectMOFp�Mq theory, as shown in Section 7.2. On the other hand, user defined expressions are

defined in the reflectp�M, rCq theory by means of two functions:

• getExpTheory: The function

getExpTheory :

vOclExpressionwMOF � vOCLwMOF � vMOFwMOF � vOCL0wMOF

; SpecMEL

provides the sorts and operators that are needed to define user-defined OCL expressions.

7.3. Algebraic Semantics of the reflect Function 125

• getExpTerm: The function

getExpTerm :

vOclExpressionwMOF � vOCLwMOF � vMOFwMOF � vOCL0wMOF

; Terms

represents a user-defined OCL expression as a term by using the predefined operators, which are

provided by the reflectMOFp�Mq theory, and the user-defined operators, which are provided by means
of the getExpTheory function. This function maps a specific object re, such that re : OclExpression
and re P rc, to a term. The equational simplification of this term, by using the equations of the

reflectp�M, rCq theory modulo the associativity and commutativity axioms, provides the evaluation of
the corresponding OCL expression.

Given a metamodel specification definition p�M, rCq, the reflect function is defined by the equalities

reflectp�M, rCq � reflectMOFp�Mq Y pH, H, H, Ereflectq Y¤
rc P trc:OCL |rc P rCu getExpTheoryprootptransformprcq,�OCLq, transformprcq, �M, empty-envq

when rC � H

reflectp�M, rCq � reflectMOFp�Mq Y pH, H, H, Ereflect
1q

when rC � H,

where

Ereflect �

tp rM : M ^©
rc P trc:OCL |rc P rCu

pgetExpTermprootptransformprcq,�OCLq,
transformprcq, �M, empty-envq � trueq

ùñ rM : pM, Cq
qu,

and
Ereflect

1 � tp rM : M ùñ rM : pM, Cqqu.
The getExpTheory and getExpTerm functions traverse all the objects that constitute an OCL constraintrc by means of the containment relation c prc,�OCLq. In subsequent sections, we provide a detailed definition

of both functions, indicating the subset of the OCL language that we have taken into account.

7.3.1 Preliminary concepts and functions

SpecMEL is the data type of finitely-presented mel theories, that is, theories of the form pS, ,Ω, E Y Aq,
where all the components are finite. Without loss of generality we assume countable sets Sorts, OpNames,
VarNames, Ops, and ViewNames, so that:

• each set of sorts S is a finite subset of Sorts;

• the operator names in Ω are a finite subset of OpNames;

• all variables appearing in E YA belong to the set Vars, where

Vars � tx : s | x P VarNames, s P Sortsu Y tx : rss | x P VarNames, s P Sortsu;

• Ops is the set of operators that can be defined in SpecMEL, which is defined by the equation

Ops � tpf : s1 � � � � � sn Ñ sq | f P OpNames ^ s, s1, . . . , sn P Sortsu;

• and ViewNames is the set of view names that can be used to instantiate a parameterized theory.

126 Chapter 7. Algebraic Constrained Conformance Relation

Given a metamodel specification definition p�M, rCq, we provide a set of functions that are used to define
the getExpTheory and getExpTerm functions. We define some common domains to define this functions:

• Recall the notation vOTwMOF b vMOFwMOF to define a subset of the cartesian product vOTwMOF �
vMOFwMOF, where OT is the sort of a specific object type, which is defined in the metamodel definition�MOF. pro, �Mq P vOTwMOF b vMOFwMOF iff ro : OT, �M : MOF and ro P �M.

• Given an object type OT, which is defined in the metamodel definition�OCL, the domain vOTwOclExp�OCL�MOF

is defined as a subset of the cartesian product

vOTwMOF � vOCLwMOF � vMOFwMOF

so that

pre,rc, �Mq P vOTwOclExp�OCL�MOF

ôre : OT ^ OT �
s OclExpression ^

rc : OCL ^ rootprc,�OCLq : IteratorExp ^ rootprc,�OCLq.name � ”forAll” ^

re P rc ^ �M : MOF ^ rootp�M,�MOFq : Package ^

rootprc,�OCLq.contextp�Mq.oclIsUndefined � false

where �
s is the reflexive-transitive closure of the specialization relation s that is defined in �OCL.

• The domain TypedVariables is defined as a subset of the cartesian product

vVariablewMOF � vMOFwMOF,

where prv, �Mq P TypedVariables iff rv : Variable, �M : MOF, andrv.typep�Mq.oclIsUndefined � false.

Given a pair prc, �Mq, where rc : OCL and �M : MOF, the functions that are used to define the getEx-
pTheory and getExpTerm functions are:

• getBodyExpName: An object re, such that re : LoopExp and re P rc, defines an OCL expression in which
a loop operator is referenced. In an object re, re.bodyprcq refers to the root object of the OCL expression
that constitutes the body of the operator. The function

getBodyExpName : vLoopExpwOclExp�OCL�MOF ÝÑ OpNames

maps a tuple pre,rc, �Mq, such that pre,rc, �Mq P vLoopExpwOclExp�OCL�MOF, to an operator name, which

constitutes a unique identifier for the body expression re.bodyprcq within the reflectp�M, rCq theory.

getBodyExpNamepre,rc, �Mq represents the name of the body expression re.bodyprcq. This function gen-
erates unique identifiers but this process is not detailed. In the examples, we will use intuitive names
for the sake of understanding.

• getViewName: The body of the iterate operator is specified by means of the operator

op . ‘(; ; ‘) :

Collection+{T} IterateBody{T} Variable Environment PreConfiguration{T}
~> Variable .

This operator is defined in the OCL-COLLECTIONS{T :: TRIV} theory, as shown in Section 7.2. The
sort of the operator name, IterateBody{T}, is qualified with the view, T, that is used to instantiate
the OCL-COLLECTIONS{T :: TRIV} theory. This view name depends on the type of the elements of
the source collection, to which the iterate operator is applied. This type can be obtained by querying
the type of the iterator variable of the iterator operator. The function

getViewName : TypedVariables ÝÑ ViewNames

maps a tuple pre, �Mq, such that pre, �Mq P TypedVariables, to a view name. Depending on the type of
the source collection of the Variable instance, the view name is generated as follows:

7.3. Algebraic Semantics of the reflect Function 127

getViewNamepre, �Mq �M

when re.typep�Mq : Class

getViewNamepre, �Mq � re.typep�Mq.name

when re.typep�Mq : Enumeration

getViewNamepre, �Mq � Bool

when re.typep�Mq � rootp �Boolean,�MOFq

getViewNamepre, �Mq � String

when re.typep�Mq � rootp�String,�MOFq

getViewNamepre, �Mq � Int

when re.typep�Mq � rootp �Integer,�MOFq

getViewNamepre, �Mq � Float

when re.typep�Mq � rootp�Real,�MOFq

• getBodyExpSort: The body of an iterator operator, such as forAll, is defined by means of the operator

op . ‘(; ‘) :

Collection+{T} BodyExpSort{T} Variable Environment Configuration{T}
~> Variable .

where the sort BodyExpSort{T} depends on both the type of the source collection, to which the iterator
operator is applied and the type of the value that is returned by the iterator operator. The function

getBodyExpSort : vIteratorExpwOclExp�OCL�MOF ÝÑ Sorts

generates the corresponding BodyExpSort{T} sort depending on both the type of the source collection
of an IteratorExp instance and the type of the returning value, as follows:

getBodyExpSortpre, rc, �Mq � Bodyt getV iewNamepre.iteratorprcq, �Mq u

when re.bodyprcq.typep�Mq : Class

getBodyExpSortpre, rc, �Mq � EnumBodyt getV iewNamepre.iteratorprcq, �Mq u

when re.bodyprcq.typep�Mq : Enumeration

getBodyExpSortpre, rc, �Mq � BoolBodyt getV iewNamepre.iteratorprcq, �Mq u

when re.bodyprcq.typep�Mq � rootp �Boolean,�MOFq

getBodyExpSortpre, rc, �Mq � StringBodyt getV iewNamepre.iteratorprcq, �Mq u

when re.bodyprcq.typep�Mq � rootp�String,�MOFq

getBodyExpSortpre, rc, �Mq � IntBodyt getV iewNamepre.iteratorprcq, �Mq u

when re.bodyprcq.typep�Mq � rootp �Integer,�MOFq

getBodyExpSortpre, rc, �Mq � FloatBodyt getV iewNamepre.iteratorprcq, �Mq u

when re.bodyprcq.typep�Mq � rootp�Real,�MOFq

Note that the type of the elements of the source collection coincides with the type of the iterator
variable.

128 Chapter 7. Algebraic Constrained Conformance Relation

• getPreConfigurationSort: In the reflectp�M, rCq theory, when the source collection of a loop operator is
a collection of objects, the body expression of the loop operator may need the metamodel definitionrM , such that rM : M, to enable the navigation through object-typed properties. The function

getPreConfigurationSort : vLoopExpwOclExp�OCL�MOF ÝÑ Vars

permits obtaining a variable for the source collection depending on its type as follows:

getPreConfigurationSortpre, rc, �Mq � model:ModelType{M}

when re.iteratorprcq.typep�Mq : Class

ModelTypepre, rc, �Mq � pc:PreConfiguration{

getV iewNamepre.iteratorprcq, �Mq

}
otherwise

• getSortedVariableValue: Given a variable of the form (FooVar = BarValue), where FooVar : Vari-

ableName and BarValue P D, where D represents the set of all definable values in the reflectp�M, rCq
theory. Variables of this kind are used to define the environment of an OCL expression in the

reflectp�M, rCq theory. To obtain the field BarValue of the previous variable, we use a typed vari-

able, which belongs to the set Vars. Given a pair pre, �Mq, such that pre, �Mq P TypedVariables and

pre,rc, �Mq P vVariablewOclExp�OCL�MOF, the function

getSortedVariableValue : TypedVariables ÝÑ Vars

obtains the corresponding variable as follows:

getSortedVariableValuepre, �Mq � re.name Value:Collection+{

getV iewNamepre.iteratorprcq, �Mq

}
where re : Variable

• getParameter : A variable of the form (FooVar = BarValue), such that FooVar : VariableName and

BarValue P D, can be used to define the environment of an OCL expression in the reflectp�M, rCq theory.

Given a pair pre, �Mq, such that pre, �Mq P TypedVariables and pre,rc, �Mq P vVariablewOclExp�OCL�MOF,
the function

getParameter : TypedVariables ÝÑ Vars

provides the OCL variable that corresponds to a Variable instance as follows:

getParameterpre, �Mq � re.name = getSortedV ariableV aluepre, �Mq

where re : Variable

For example, given a Variable instance rv such that rv.name � ”intV ar” and rv.typep�Mq � rootp �Integer,�MOFq,
getParameterpre, �Mq results in the expression: intVar = intVarValue:Collection+{Int}.

• getEnvironment: The function

getEnvironment : vOCL0wMOF � vMOFwMOF ; Terms

is defined for pairs of the form pEnvVars, �Mq, where EnvVars, such that EnvVars : OCL0, represents

a set of Variable instances, �M is the metamodel definition of the metamodel specification definition

p�M, rCq, and @rvprv : Variable ^ rv P EnvVars Ñ rv.typep�Mq � Hq. The getEnvironment function
defines a term of sort Environment from the set EnvVars of variables, which represents the environment
of an OCL expression. The getEnvironment function is defined as follows:

7.3. Algebraic Semantics of the reflect Function 129

getEnvironmentpEnvVars, �Mq �¤
rv P trv:VariableExp |rv P EnvVarsu

tgetParameterprv, �Mqu

when EnvVars � H

getEnvironmentpEnvVars, �Mq � empty-env

when EnvVars � H

• getPropertyCallSort: Given an object ro = < OID : CID | name : "Foo", PS>, such that ro P rM
and rM : M, the field value of the prop property is obtained by means of the expression o.prop,
where prop is defined as a constant prop : StringFun{M} for this example. Properties of this kind

are defined in �M by means of a Property instance rp. Given a pair prp, �Mq, such that prp, �Mq P
vPropertywMOF b vMOFwMOF, the function

getPropertyCallSort : vPropertywMOF b vMOFwMOF ÝÑ Sorts

obtains the sort of the constant that constitutes the property projector name, depending on the type
of the corresponding Property instance rp, as follows:

getPropertyCallSortprp, �Mq � FuntMu

when rp.typep�Mq : Class

getPropertyCallSortprp, �Mq � EnumFuntMu

when rp.typep�Mq : Enumeration

getPropertyCallSortprp, �Mq � BoolFuntMu

when rp.typep�Mq � rootp �Boolean,�MOFq

getPropertyCallSortprp, �Mq � StringFuntMu

when rp.typep�Mq � rootp�String,�MOFq

getPropertyCallSortprp, �Mq � IntFuntMu

when rp.typep�Mq � rootp �Integer,�MOFq

getPropertyCallSortprp, �Mq � FloatFuntMu

when rp.typep�Mq � rootp�Real,�MOFq

7.3.2 User-Defined OCL Type Operators: getExpTheory

The function

getExpTheory :

vOclExpressionwMOF � vOCLwMOF � vMOFwMOF � vOCL0wMOF

; SpecMEL

provides the sorts and operators that are needed to define user-defined OCL expressions. This function is

defined for tuples of the form pre,rc, �M,EnvVarsq, where:

pre,rc, �Mq P vOclExpressionwOclExp�OCL�MOF,

EnvVars : OCL0, and

@rvprv P T
reflectMOFp�OCLq,Object#OCL

^ rv P EnvVars Ñ rv : Variableq.

The semantics of the getExpTheory function is provided by means of mappings that project the OclEx-

pression instances that constitute an OCL constraint definition rc to sorts and operators in the reflectp�M, rCq

130 Chapter 7. Algebraic Constrained Conformance Relation

theory. The getExpTheory function traverses all the OclExpression instances that constitute rc by con-

sidering the containment relation that is defined by c prc,�OCLq, following a top-down strategy. The
getExpTheory function is defined for the following object types of the OCL metamodel: IfExp, Itera-
teExp, IteratorExp, LetExp, LiteralExp, OperationCallExp, PropertyCallExp, VariableExp,
and TypeExp; as described in subsequent paragraphs.

IfExp

An IfExp instance defines an OCL expression that results in one of two alternative expressions, thenExpres-
sion and elseExpression, depending on the evaluated value of a condition. No operators are generated for
an IfExp instance by means of the getExpTheory function. Instead its contained condition, thenExpression
and elseExpression OclExpression instances are processed:

getExpTheorypre,rc, �M,EnvVarsq �

getExpTheorypre.conditionprcq,rc, �M,EnvVarsq Y

getExpTheorypre.thenExpressionprcq,rc, �M,EnvVarsq Y

getExpTheorypre.elseExpressionprcq,rc, �M,EnvVarsq

where re : IfExp

IterateExp

An IterateExp instance represents an expression which evaluates its body expression for each element of
a source collection. It acts as a loop construct that iterates over the elements of its source collection and
results in a value. The evaluated value of the body expression in each iteration step becomes the new value
for the result variable for the next iteration step. The result can be of any type and is defined by the
result property. The body expression, and the iterator and result variables are defined by the user. An
IteratorExp instance adds the iterator and result variables to the environment of the OCL expression,

so that inner expressions in the tree treeprc,�OCLq can refer to them: the iterate body expression. An

IterateExp instance is represented in the reflectp�M, rCq theory by means of the mapping:

getExpTheorypre, rc, �M, EnvVarsq �

getExpTheorypre.sourceprcq, rc, �M, EnvVarsq Y

getExpTheorypre.bodyprcq, rc, �M, EnvVars Y ! re.iteratorprcq re.resultprcq "q Y
pH, H, ΩIterateExp , EIterateExpq

where re : IterateExp

where

ΩIterateExp � t

pop re.iteratorprcq.name : -> VariableName .q,

pop re.resultprcq.name : -> VariableName .q,

pop getBodyExpNamepre.bodyprcq, rc, �Mq : ->

IterateBody{ getViewNamepre.iteratorprcq, �Mq } .q

u

and

7.3. Algebraic Semantics of the reflect Function 131

EIterateExp � t

p

eq getSortedVariableValuepre.iteratorprcq, �Mq .

getBodyExpNamepre.bodyprcq, rc, �Mq

(

getParameterpre.resultprcq, �Mq ;

getEnvironmentpEnvVars, �Mq ;

getPreConfigurationSortpre, rc, �Mq

) =

(

pre.resultprcq.nameq

=

pgetExpTermpre.bodyprcq, rc, EnvVars Y ! re.iteratorprcq re.resultprcq "qq
) .

q

u

For example, the OCL expression that sums the integer values in a collection of integers is defined, in
OCL textual concrete syntax, as

Set{1, 2, 3} -> iterate(i: Integer, sum: Integer = 0 | sum + i).

The body expression of the IterateExp that represents this expression is represented in the reflectp�M, rCq
theory, in Maude notation, as

op i : -> VariableName .

op sum : -> VariableName .

op integerSum : -> iterateBody{Int} .

eq iValue:Collection+{Int} . integerSum(

sum = sumValue:Collection+{Int} ;

empty-env ;

pc:PreConfiguration{Int}

) = ...

IteratorExp

An IteratorExp instance represents an expression that evaluates its body expression for each element of
a source collection. It acts as a loop construct that iterates over the elements of its source collection and
results in a value. The type of the iterator expression depends on the name of the expression, and sometimes
on the type of the associated source expression. An IterateExp instance adds the iterator variable to the
environment of the OCL expression, so that this variable can be referenced in its body expression. The

operators that are generated for the body expression of an IterateExp instance in the reflectp�M, rCq theory
are given as follows:

132 Chapter 7. Algebraic Constrained Conformance Relation

getExpTheorypre, rc, �M, EnvVarsq �

getExpTheorypre.sourceprcq, rc, �M, EnvVarsq Y

getExpTheorypre.bodyprcq, rc, �M, EnvVars Y ! re.iteratorprcq "q Y
pH, H, ΩIterateExp , EIterateExpq

when re : IteratorExp ^ re.bodyprcq.typep�Mq � rootp �Boolean,�MOFq

getExpTheorypre, rc, �M, EnvVarsq �

getExpTheorypre.sourceprcq, rc, �M, EnvVarsq Y

getExpTheorypre.bodyprcq, rc, �M, EnvVars Y ! re.iteratorprcq "q Y
pH, H, ΩIterateExp , EIterateExp

1q

when re : IteratorExp ^ re.bodyprcq.typep�Mq � rootp �Boolean,�MOFq

where

ΩIteratorExp � t

pop re.iteratorprcq.name : -> VariableName .q,

pop getBodyExpNamepre.bodyprcq, rc, �Mq : -> getBodyExpSortpre, rc, �Mq .q

u

and

EIteratorExp � t

p

eq getSortedVariableValuepre.iteratorprcq, �Mq .

getBodyExpNamepre.bodyprcq, rc, �Mq

(

getEnvironmentpEnvVars, �Mq ;

getPreConfigurationSortpre, rc, �Mq

) =

pgetExpTermpre.bodyprcq, rc, EnvVars Y ! re.iteratorprcq "qq .

q

u

7.3. Algebraic Semantics of the reflect Function 133

EIteratorExp
1 � t

p

eq getSortedVariableValuepre.iteratorprcq, �Mq .

getBodyExpNamepre.bodyprcq, rc, �Mq

(

getEnvironmentpEnvVars, �Mq ;

getPreConfigurationSortpre, rc, �Mq

) =

pgetExpTermpre.bodyprcq, rc, EnvVars Y ! re.iteratorprcq "qq .

q,

p

eq getSortedVariableValuepre.iteratorprcq, �Mq .

getBodyExpNamepre.bodyprcq, rc, �Mq

(E:Environment ; getPreConfigurationSortpre, rc, �Mq) = false [owise] .

q

u

For example, we consider the metamodel definition that is shown in Fig. 7.7. The following OCL
expression checks that the value of the a property of any A instance in a model definition rM , such thatrM : �Example, is odd:

A.allInstances() -> forAll(objA : A | objA.a.mod(2) <> 0).

The operator that is needed to represent the body expression of the forAll operator is represented, in
Maude notation, as follows:

op isOdd : -> BoolBody{Example} .

eq objA:Collection+{Example} . isOdd (

empty-env ;

model:ModelType{Example}

) = ...

eq objA:Collection+{Example} . isOdd (

E:Environment;

model:ModelType{Example}

) = false [owise] .

LetExp

A LetExp instance represents a special expression that defines a new variable with an initial value. A
variable defined by a LetExp instance cannot change its value, which represents the evaluated value of an
initial expression. The variable is visible in the in expression. No operators are needed to represent a LetExp

instance in the reflectp�M, rCq theory. In our approach, the variable that is declared in a Let expression is

not added to the environment of the expression re.inp�Mq. Therefore, the getExpTerm function obtains the

term that represents the value of a let variable, re.variablep�Mq, by processing the initial expression that is

associated to the let variable, i.e., re.variablep�Mq.initExpressionp�Mq, as show in the following section. The
equation that defines the getExpTheory function for the LetExp object type is

134 Chapter 7. Algebraic Constrained Conformance Relation

getExpTheorypre, rc, �M, EnvVarsq �

getExpTheorypre.inp�Mq, rc, �M, EnvVarsq

where re : LetExp

LiteralExp

A LiteralExp instance represents an expression with no arguments producing a value. No operators are

needed to represent a LiteralExp instance in the reflectp�M, rCq theory.

getExpTheorypre, rc, �M, EnvVarsq � pH, H, H, Hq

where re : LiteralExp

OperationCallExp

An OperationCallExp instance refers to an operation, which is either predefined for the OCL types or

for an object type in �M. These operations are defined as data in the metamodel definition �OclStdLib, and
we have provided their algebraic semantics in Section 7.2. A OperationCallExp instance may contain a
list of argument expressions if the operation is defined to have parameters. No operators are generated for
an OperationCallExp instance. Instead, the getExpTheory processes the argument expressions that are
contained in it as follows:

getExpTheorypre, rc, �M, EnvVarsq �¤
�arg P t�arg:OclExpression |�arg Pre.argumentprcqu getExpTheoryp�arg , rc, �M, EnvVarsq

when re : OperationCallExp

PropertyCallExp

A PropertyCallExpression instance is a reference to a Property instance that is defined in the meta-
model definition �M. The operators that are needed to project the value of an object property in an OCL
expression are defined by means of the getExpTheory as follows:

getExpTheorypre, rc, �M, EnvVarsq �

pH, H, ΩPropertyCallExp , EPropertyCallExpq

when re : LetExp ^ re.referredPropertyp�Mq.typep�Mq : DataType

getExpTheorypre, rc, �M, EnvVarsq �

pH, H, ΩPropertyCallExp , EPropertyCallExp
1q

when re : LetExp ^ re.referredPropertyp�Mq.typep�Mq : Class

where

ΩPropertyCallExp � t

pop re.referredPropertyp�Mq.name : ->

getPropertyCallSortpre.referredPropertyp�Mq, �Mq .q

u

and

7.3. Algebraic Semantics of the reflect Function 135

EPropertyCallExp � t

p

eq < OID:Oid : CID: re.referredPropertyp�Mq.classp�Mq.name |

(re.referredPropertyp�Mq.name : Value:Collection+{ getViewNamepre, �Mq }),

PS:PropertySet#M> . referredPropertyp�Mq.name =

Value:Collection+{ getViewNamepre, �Mq } .

q,

p

< OID:Oid : CID: re.referredPropertyp�Mq.classp�Mq.name |

(re.referredPropertyp�Mq.name), PS:PropertySet#M> .

referredPropertyp�Mq.name =

defaultValuePropertypre.referredPropertyp�Mq, �Mq .

q

u

EPropertyCallExp
1 � t

p

eq < OID:Oid : CID: re.referredPropertyp�Mq.classp�Mq.name |

(re.referredPropertyp�Mq.name : Value:Collection+{Oid}),

PS:PropertySet#M> . referredPropertyp�Mq.name =

Value:Collection+{Oid} .

q,

p

eq < OID:Oid : CID: re.referredPropertyp�Mq.classp�Mq.name |

(re.referredPropertyp�Mq.name : Value:Collection+{Oid}),

PS:PropertySet#M> . referredPropertyp�Mq.name (model:ModelType{M}) =

search(Value:Collection+{Oid}, model:ModelType{M}) .

q

u

where the defaultValueProperty function obtains the default value that is defined for an object property
taking into account its meta-property values, and the search function projects objects of a model definition

given a specific collection of object identifiers. In the metamodel definition �RDBMS, shown in Fig. 6.7,
to query the name value-typed property of the RModelElement object type, the following operators are

defined in the reflectp�M, rCq theory:

op name : -> StringFun{rdbms} .

136 Chapter 7. Algebraic Constrained Conformance Relation

eq < OID:Oid : CID:RModelElement |

name : Value:Collection+{String}, PS:PropertySet#rdbms >

. name =

Value:Collection+{String} .

eq < OID:Oid : CID:RModelElement | name, PS:PropertySet#rdbms >

. name = "" .

On the other hand, to query the schema object-typed property of the Table object type, the following

operators are defined in the reflectp�M, rCq theory:

op schema : -> Fun{rdbms} .

eq < OID:Oid : CID:Table |

name : Value:Collection+{Oid}, PS:PropertySet#rdbms >

. schema =

Value:Collection+{Oid} .

eq < OID:Oid : CID:RModelElement |

name : Value:Collection+{Oid}, PS:PropertySet#rdbms >

. schema(model:ModelType{rdbms}) =

search(Value:Collection+{Oid}, model:ModelType{rdbms}) .

VariableExp

A VariableExp instance represents an expression that consists of a reference to a variable. References to
the variables self, the result variable of an iterate expression, or variables that are defined in Let expressions
are examples of such variable expressions. No operators are defined in this case.

getExpTheorypre, rc, �M, EnvVarsq � pH, H, H, Hq

when re : VariableExp

TypeExp

A TypeExp is an expression used to refer to an existing meta type within an expression. In this case, neither
sorts nor operators are generated.

getExpTheorypre, rc, �M, EnvVarsq � pH, H, H, Hq

when re : TypeExp

7.3.3 Algebraic Semantics of OCL Expressions: getExpTerm

We define the set Terms as the set of terms that can be defined by means of any mel theory in SpecMEL.
The function

getExpTerm : vOclExpressionwMOF � vOCLwMOF � vMOFwMOF � vOCL0wMOF

; Terms

represents an OCL expression as a term by using the predefined operators for OCL types, which are specified
in the OCL-COLLECTIONS{T :: TRIV} and MODEL{OBJ :: TH-OBJECT} theories, and user-defined operators,
which are provided by means of the getExpTheory function from a specific OCL expression. The operators

that are defined in the signature of the resulting reflectp�M, rCq theory are provided in mixfix notation and can
be regarded as the context-free grammar of the OCL language. Terms that are built using such operators can
be regarded as OCL expressions, whose semantics is provided by means of equations. An OCL expression is

evaluated by reducing a term of this type using the equations of the reflectp�M, rCq theory modulo associativity
and commutativity. The canonical form of a term that represents an OCL expression constitutes the resulting
value of the OCL expression.

7.3. Algebraic Semantics of the reflect Function 137

The getExpTerm function is defined for tuples of the form pre,rc, �M,EnvVarsq, where:

pre,rc, �Mq P vOclExpressionwOclExp�OCL�MOF,

EnvVars : OCL0, and

@rvprv P T
reflectMOFp�OCLq,Object#OCL

^ rv P EnvVars Ñ rv : Variableq.

The getExpTerm function traverses all the OclExpression instances that constitute a constraint defini-

tion rc by considering the containment relation that is defined by c prc,�OCLq, following a top-down strategy.
The getExpTerm function is defined for the following object types of the OCL metamodel: IfExp, Itera-
teExp, IteratorExp, LetExp, LiteralExp, OperationCallExp, PropertyCallExp,VariableExp,
and TypeExp; as described in subsequent paragraphs.

IfExp

An IfExp instance defines an OCL expression that results in one of two alternative expressions, thenExpres-
sion and elseExpression, depending on the evaluated value of a condition. Note that both the thenExpression
and the elseExpression are mandatory. The reason behind this is that an if expression should always result
in a value, which cannot be guaranteed if the else part is left out. An IfExp is represented by means of the
if then else fi operator that is defined in the BOOL theory, by means of the mapping

getExpTermpre, rc, �M, EnvVarsq �

if getExpTermpre.conditionprcq, rc, �M, EnvVarsq then

getExpTermpre.thenExpressionprcq, rc, �M, EnvVarsq

else

getExpTermpre.elseExpressionprcq, rc, �M, EnvVarsq

fi

where re : IfExp

IterateExp

An IterateExp instance represents an expression which evaluates its body expression for each element of
a source collection. The result can be of any type and is defined by the result property. An IterateExp

instance is represented in the reflectp�M, rCq theory by means of the mapping:

getExpTermpre, rc, �M, EnvVarsq �

getVariableValueProjectorpre, rc, �Mq (

getExpTermpre.sourceprcq, rc, �M, EnvVarsq -> iterate (

re.resultprcq.name =

getExpTermpre.resultprcq.initExpressionprcq, rc, �M, EnvVarsq |

getBodyExpNamepre.bodyprcq, rc, �Mq ;

getEnvironmentpEnvVars, �Mq ;

getPreConfigurationValuepre.iteratorp�Mq, �Mq

)

)

where re : IterateExp

138 Chapter 7. Algebraic Constrained Conformance Relation

where the function

getVariableValueProjector : vIterateExpwOclExp�OCL�MOF ÝÑ OpNames

obtains the operator symbol that projects the value of the result variable, depending on its type, as follows:

getVariableValueProjectorpre, rc, �Mq � getObjectVariableValue

when re.resultprcq.typep�Mq : Class

getVariableValueProjectorpre, rc, �Mq � getEnumVariableValue

when re.resultprcq.typep�Mq : Enumeration

getVariableValueProjectorpre, rc, �Mq � getBoolVariableValue

when re.resultprcq.typep�Mq � rootp �Boolean,�MOFq

getVariableValueProjectorpre, rc, �Mq � getStringVariableValue

when re.resultprcq.typep�Mq � rootp�String,�MOFq

getVariableValueProjectorpre, rc, �Mq � getIntVariableValue

when re.resultprcq.typep�Mq � rootp �Integer,�MOFq

getVariableValueProjectorpre, rc, �Mq � getFloatVariableValue

when re.resultprcq.typep�Mq � rootp�Real,�MOFq

The function getPreConfigurationValue : TypedVariables ÝÑ Terms obtains a term or a variable that
is used as the last argument of the operators ->iterate(| ;), -> (;) and ->sortedBy(; ;). This
function is defined as follows:

getPreConfigurationValuepre, �Mq � model:ModelType{M}

when re.typep�Mq : Class

getPreConfigurationValuepre, �Mq � nonePreConf#Enum

when re.typep�Mq : Enumeration

getPreConfigurationValuepre, �Mq � nonePreConf#Bool

when re.typep�Mq � rootp �Boolean,�MOFq

getPreConfigurationValuepre, �Mq � nonePreConf#String

when re.typep�Mq � rootp�String,�MOFq

getPreConfigurationValuepre, �Mq � nonePreConf#Int

when re.typep�Mq � rootp �Integer,�MOFq

getPreConfigurationValuepre, �Mq � nonePreConf#Float

when re.typep�Mq � rootp�Real,�MOFq

For example, the OCL expression that sums the integer values in a collection of integers can be, in OCL
textual concrete syntax,

Set{1, 2, 3} -> iterate(i: Integer, sum: Integer = 0 | sum + i).

The IterateExp that represents this expression is represented in the reflectp�M, rCq theory as the term

getIntVariableValue(Set{1, 2, 3} -> iterate (

sum = 0 |

integerSum ; empty-env ; nonePrConf#Int)

)

7.3. Algebraic Semantics of the reflect Function 139

IteratorExp

An IteratorExp instance represents an expression that evaluates its body expression for each element of
a source collection. It acts as a loop construct that iterates over the elements of its source collection and
results in a value. We consider the sortedBy iterator operator as a special case, as discussed in Section 7.2.

An IteratorExp instance is represented as a term in the reflectp�M, rCq theory as follows:

getExpTermpre, rc, �M, EnvVarsq �

getExpTermpre.sourceprcq, rc, �M, EnvVarsq -> re.name (

getBodyExpNamepre.bodyprcq, rc, �Mq ;

getEnvironmentpEnvVars, �Mq ;

getPreConfigurationValuepre.iteratorp�Mq, �Mq

q

when re : IteratorExp ^ re.name � ”sortedBy”

getExpTermpre, rc, �M, EnvVarsq �

getExpTermpre.sourceprcq, rc, �M, EnvVarsq -> re.name (

getBodyExpNamepre.bodyprcq, rc, �Mq ;

getEnvironmentpEnvVars, �Mq ;

getPreConfigurationValuepre.iteratorp�Mq, �Mq

)

when re : IteratorExp ^ re.name � ”sortedBy”

The forAll expression

A.allInstances() -> forAll(objA : A | objA.a.mod(2) <> 0)

is then defined by means of the term

... -> forAll(isOdd ; empty-env ; model:ModelType{Example}).

LetExp

A LetExp instance re is a special expression that defines a new variable with an initial value. A variable
defined by a LetExp instance cannot change its value, which represents the evaluated value of an initial
expression. The variable is visible in the in expression. A LetExp instance is not represented by any term.

When the variable, re.variablep�Mq that is declared in a let statement is used in an OCL expression, the
value of the variable is obtained by generating the term that represents the initialization expression of the

variable, i.e., re.variablep�Mq.initExpressionp�Mq, as shown below for the VariableExp object type.

LiteralExp

A LiteralExp instance represents an expression with no arguments producing a value. In general the
result value is identical with the expression symbol. For example, a LiteralExp instance may represent
the integer 1 or a literal string like ‘this is a LiteralExp’. When the literal value is not a collection value nor
an undefined value it is represented as indicated in the following equations:

140 Chapter 7. Algebraic Constrained Conformance Relation

getExpTermpre, rc, �M, EnvVarsq � re.booleanSymbol

when re : BooleanLiteralExp

getExpTermpre, rc, �M, EnvVarsq � re.stringSymbol

when re : StringLiteralExp

getExpTermpre, rc, �M, EnvVarsq � re.integerSymbol

when re : IntegerLiteralExp

getExpTermpre, rc, �M, EnvVarsq � re.realSymbol

when re : RealLiteralExp

getExpTermpre, rc, �M, EnvVarsq � re.literalExpprcq.name

when re : EnumLiteralExp

When the literal value is an undefined value, the corresponding null constant is generated as follows:

getExpTermpre, rc, �M, EnvVarsq � nullBool

when re : NullLiteralExp ^ re.typep�Mq � rootp �Boolean,�MOFq

getExpTermpre, rc, �M, EnvVarsq � nullString

when re : NullLiteralExp ^ re.typep�Mq � rootp�String,�MOFq

getExpTermpre, rc, �M, EnvVarsq � nullInt

when re : NullLiteralExp ^ re.typep�Mq � rootp �Integer,�MOFq

getExpTermpre, rc, �M, EnvVarsq � nullFloat

when re : NullLiteralExp ^ re.typep�Mq � rootp�Real,�MOFq

getExpTermpre, rc, �M, EnvVarsq � nullEnum

when re : NullLiteralExp ^ re.typep�Mq : Enumeration

getExpTermpre, rc, �M, EnvVarsq � nullObject#M

when re : NullLiteralExp ^ re.typep�Mq : Class

When the literal value represents a collection value, the term that represents the collection is generated
as follows:

7.3. Algebraic Semantics of the reflect Function 141

getExpTermpre, rc, �M, EnvVarsq � getCollectionOpNamepreq t
getCollectionItempre.partsprcq, rc, �M, falseq

u

when re : CollectionLiteralExp ^ re.partprcq � H

getExpTermpre, rc, �M, EnvVarsq � getEmptyCollectionOpNamepreq #M
when re : CollectionLiteralExp ^ re.partprcq � H ^

re.elementTypep�Mq : Class

getExpTermpre, rc, �M, EnvVarsq � getEmptyCollectionOpNamepreq #Enum
when re : CollectionLiteralExp ^ re.partprcq � H ^

re.elementTypep�Mq : Enumeration

getExpTermpre, rc, �M, EnvVarsq � getEmptyCollectionOpNamepreq #Bool
when re : CollectionLiteralExp ^ re.partprcq � H ^

re.elementTypep�Mq � rootp �Boolean,�MOFq

getExpTermpre, rc, �M, EnvVarsq � getEmptyCollectionOpNamepreq #String
when re : CollectionLiteralExp ^ re.partprcq � H ^

re.elementTypep�Mq � rootp�String,�MOFq

getExpTermpre, rc, �M, EnvVarsq � getEmptyCollectionOpNamepreq #Int
when re : CollectionLiteralExp ^ re.partprcq � H ^

re.elementTypep�Mq � rootp �Integer,�MOFq

getExpTermpre, rc, �M, EnvVarsq � getEmptyCollectionOpNamepreq #Float
when re : CollectionLiteralExp ^ re.partprcq � H ^

re.elementTypep�Mq � rootp�Real,�MOFq

where the function

getCollectionOpName : CollectionLiteralExp ; OpName

obtains the operator symbol to define a set, an ordered set, a bag or a sequence as follows:

getCollectionOpNamepreq � Set

when re : CollectionLiteralExp ^ re.kind � set

getCollectionOpNamepreq � OrderedSet

when re : CollectionLiteralExp ^ re.kind � orderedset

getCollectionOpNamepreq � Bag

when re : CollectionLiteralExp ^ re.kind � bag

getCollectionOpNamepreq � Sequence

when re : CollectionLiteralExp ^ re.kind � sequence

The function

getEmptyCollectionOpName : CollectionLiteralExp ; OpName

generates the corresponding constant to define an empty collection, depending on the collection type, as

142 Chapter 7. Algebraic Constrained Conformance Relation

follows:

getEmptyCollectionOpNamepreq � empty-set

when re : CollectionLiteralExp ^ re.kind � set

getEmptyCollectionOpNamepreq � empty-orderedset

when re : CollectionLiteralExp ^ re.kind � orderedset

getEmptyCollectionOpNamepreq � empty-bag

when re : CollectionLiteralExp ^ re.kind � bag

getEmptyCollectionOpNamepreq � empty-sequence

when re : CollectionLiteralExp ^ re.kind � sequence

The function

getCollectionItem : T
reflectMOFp rMq,SequencetMu

� vOCLwMOF � vMOFwMOF � vBooleanwMOF

; Terms

obtains a term of sort Magma{T} when the collection that is being represented as a term is a set or a bag, and
a term of sort OrderedMagma{T} when the collection that is being represented as a term is an ordered set

or a sequence. This function is defined for tuples of the form pseq,rc, �M, orderedq where seq is the sequence
of values that defines the items of the collection literal that is being processed, rc represents the constraint

definition in which the literal is defined, �M is the metamodel definition for which the constraint definitionrc is meaningful, and ordered indicates whether the collection literal is ordered, i.e., it is of type ordered set
or sequence, or not, i.e., it is of type set or bag. The getCollectionItem function is defined as follows:

getCollectionItempseq , rc, �M, orderedq �

getExpTermpre.itemprcq,rc, �M, empty-envq ,

getCollectionItempseq � Sequencetreu,rc, �M, empty-envq

when seq P T
reflectMOFp rMq,SequencetMu

^ pseq -> sizeq ¡ 1 ^ ordered � false ^

re : CollectionItem

getCollectionItempseq , rc, �M, orderedq �

getExpTermpre.itemprcq,rc, �M, empty-envq ::

getCollectionItempseq � Sequencetreu,rc, �M, empty-envq

when seq P T
reflectMOFp rMq,SequencetMu

^ pseq -> sizeq ¡ 1 ^ ordered � true ^

re : CollectionItem

getCollectionItempseq , rc, �M, orderedq �

getExpTermpre.itemprcq,rc, �M, empty-envq

when seq P T
reflectMOFp rMq,SequencetMu

^ pseq -> sizeq � 1 ^

re : CollectionItem

OperationCallExp

An OperationCallExp instance refers to an operation, which is predefined for either the OCL collection

types or an object type in �M. The OCL predefined operators are defined as Operation instances in the

metamodel definition �OclStdLib, such that �OclStdLib : MOF. This metamodel is defined as a constant,
because it is only used to be queried. Therefore, we do not need to pass it as an argument to the getExpTerm

function. We do not consider operations that are defined for object types in the metamodel definition �M.
A OperationCallExp instance may contain a list of argument expressions if the operation is defined to
have parameters. In this case, the number and types of the arguments must match the parameters. An
OperationCallExp instance is represented as a term in which a predefined operator, which has been

7.3. Algebraic Semantics of the reflect Function 143

defined in the OCL-COLLECTIONS{T :: TRIV} theory, is used. The definitions of the getExpTerm function
for each of the predefined operators of the OCL language are as follows:

• count :

getExpTermpre, rc, �M, EnvVarsq �

getExpTermpre.sourceprcq, rc, �M, EnvVarsq -> count(

getExpTermpre.argumentprcq, rc, �M, EnvVarsq

)

when re : OperationCallExp ^ re.referredOperation � H ^

re.referredOperationp �OclStdLibq.name � ”count”

• excludes :

getExpTermpre, rc, �M, EnvVarsq �

getExpTermpre.sourceprcq, rc, �M, EnvVarsq -> excludes(

getExpTermpre.argumentprcq, rc, �M, EnvVarsq

)

when re : OperationCallExp ^ re.referredOperation � H ^

re.referredOperationp �OclStdLibq.name � ”excludes”

• excludesAll :

getExpTermpre, rc, �M, EnvVarsq �

getExpTermpre.sourceprcq, rc, �M, EnvVarsq -> excludesAll(

getExpTermpre.argumentprcq, rc, �M, EnvVarsq

)

when re : OperationCallExp ^ re.referredOperation � H ^

re.referredOperationp �OclStdLibq.name � ”excludesAll”

• includes :

getExpTermpre, rc, �M, EnvVarsq �

getExpTermpre.sourceprcq, rc, �M, EnvVarsq -> includes(

getExpTermpre.argumentprcq, rc, �M, EnvVarsq

)

when re : OperationCallExp ^ re.referredOperation � H ^

re.referredOperationp �OclStdLibq.name � ”includes”

• includesAll :

144 Chapter 7. Algebraic Constrained Conformance Relation

getExpTermpre, rc, �M, EnvVarsq �

getExpTermpre.sourceprcq, rc, �M, EnvVarsq -> includesAll(

getExpTermpre.argumentprcq, rc, �M, EnvVarsq

)

when re : OperationCallExp ^ re.referredOperation � H ^

re.referredOperationp �OclStdLibq.name � ”includesAll”

• isEmpty :

getExpTermpre, rc, �M, EnvVarsq �

getExpTermpre.sourceprcq, rc, �M, EnvVarsq -> isEmpty

when re : OperationCallExp ^ re.referredOperation � H ^

re.referredOperationp �OclStdLibq.name � ”isEmpty”

• notEmpty :

getExpTermpre, rc, �M, EnvVarsq �

getExpTermpre.sourceprcq, rc, �M, EnvVarsq -> notEmpty

when re : OperationCallExp ^ re.referredOperation � H ^

re.referredOperationp �OclStdLibq.name � ”notEmpty”

• size :

getExpTermpre, rc, �M, EnvVarsq �

getExpTermpre.sourceprcq, rc, �M, EnvVarsq -> size

when re : OperationCallExp ^ re.referredOperation � H ^

re.referredOperationp �OclStdLibq.name � ”size”

• sum :

getExpTermpre, rc, �M, EnvVarsq �

getExpTermpre.sourceprcq, rc, �M, EnvVarsq -> sum

when re : OperationCallExp ^ re.referredOperation � H ^

re.referredOperationp �OclStdLibq.name � ”sum”

• - :

getExpTermpre, rc, �M, EnvVarsq �

getExpTermpre.sourceprcq, rc, �M, EnvVarsq --

getExpTermpre.argumentprcq, rc, �M, EnvVarsq

when re : OperationCallExp ^ re.referredOperation � H ^

re.referredOperationp �OclStdLibq.name � ”� ”

7.3. Algebraic Semantics of the reflect Function 145

• append :

getExpTermpre, rc, �M, EnvVarsq �

getExpTermpre.sourceprcq, rc, �M, EnvVarsq -> append(

getExpTermpre.argumentprcq, rc, �M, EnvVarsq

)

when re : OperationCallExp ^ re.referredOperation � H ^

re.referredOperationp �OclStdLibq.name � ”append”

• asBag :

getExpTermpre, rc, �M, EnvVarsq �

getExpTermpre.sourceprcq, rc, �M, EnvVarsq -> asBag

when re : OperationCallExp ^ re.referredOperation � H ^

re.referredOperationp �OclStdLibq.name � ”asBag”

• asOrderedSet : The asOrderedSet operator is not considered to avoid non-determinism, as discussed
below.

• asSequence : The asSequence operator is not considered to avoid non-determinism, as discussed
below.

• asSet :

getExpTermpre, rc, �M, EnvVarsq �

getExpTermpre.sourceprcq, rc, �M, EnvVarsq -> asSet

when re : OperationCallExp ^ re.referredOperation � H ^

re.referredOperationp �OclStdLibq.name � ”asSet”

• at :

getExpTermpre, rc, �M, EnvVarsq �

getExpTermpre.sourceprcq, rc, �M, EnvVarsq -> at(

getExpTermpre.argumentprcq, rc, �M, EnvVarsq

)

when re : OperationCallExp ^ re.referredOperation � H ^

re.referredOperationp �OclStdLibq.name � ”at”

• excluding :

getExpTermpre, rc, �M, EnvVarsq �

getExpTermpre.sourceprcq, rc, �M, EnvVarsq -> excluding(

getExpTermpre.argumentprcq, rc, �M, EnvVarsq

)

when re : OperationCallExp ^ re.referredOperation � H ^

re.referredOperationp �OclStdLibq.name � ”excluding”

146 Chapter 7. Algebraic Constrained Conformance Relation

• first :

getExpTermpre, rc, �M, EnvVarsq �

getExpTermpre.sourceprcq, rc, �M, EnvVarsq -> first

when re : OperationCallExp ^ re.referredOperation � H ^

re.referredOperationp �OclStdLibq.name � ”first”

• flatten :

getExpTermpre, rc, �M, EnvVarsq �

getExpTermpre.sourceprcq, rc, �M, EnvVarsq -> flatten

when re : OperationCallExp ^ re.referredOperation � H ^

re.referredOperationp �OclStdLibq.name � ”flatten”

• including :

getExpTermpre, rc, �M, EnvVarsq �

getExpTermpre.sourceprcq, rc, �M, EnvVarsq -> including(

getExpTermpre.argumentprcq, rc, �M, EnvVarsq

)

when re : OperationCallExp ^ re.referredOperation � H ^

re.referredOperationp �OclStdLibq.name � ”including”

• indexOf :

getExpTermpre, rc, �M, EnvVarsq �

getExpTermpre.sourceprcq, rc, �M, EnvVarsq -> indexOf(

getExpTermpre.argumentprcq, rc, �M, EnvVarsq

)

when re : OperationCallExp ^ re.referredOperation � H ^

re.referredOperationp �OclStdLibq.name � ”indexOf ”

• insertAt :

getExpTermpre, rc, �M, EnvVarsq �

getExpTermpre.sourceprcq, rc, �M, EnvVarsq -> insertAt(

getExpTermpre.argumentprcq -> atp1q, rc, �M, EnvVarsq ;

getExpTermpre.argumentprcq -> atp2q, rc, �M, EnvVarsq

)

when re : OperationCallExp ^ re.referredOperation � H ^

re.referredOperationp �OclStdLibq.name � ”insertAt”

7.3. Algebraic Semantics of the reflect Function 147

• intersection :

getExpTermpre, rc, �M, EnvVarsq �

getExpTermpre.sourceprcq, rc, �M, EnvVarsq -> intersection(

getExpTermpre.argumentprcq, rc, �M, EnvVarsq

)

when re : OperationCallExp ^ re.referredOperation � H ^

re.referredOperationp �OclStdLibq.name � ”intersection”

• last :

getExpTermpre, rc, �M, EnvVarsq �

getExpTermpre.sourceprcq, rc, �M, EnvVarsq -> last

when re : OperationCallExp ^ re.referredOperation � H ^

re.referredOperationp �OclStdLibq.name � ”last”

• prepend :

getExpTermpre, rc, �M, EnvVarsq �

getExpTermpre.sourceprcq, rc, �M, EnvVarsq -> prepend(

getExpTermpre.argumentprcq, rc, �M, EnvVarsq

)

when re : OperationCallExp ^ re.referredOperation � H ^

re.referredOperationp �OclStdLibq.name � ”prepend”

• union :

getExpTermpre, rc, �M, EnvVarsq �

getExpTermpre.sourceprcq, rc, �M, EnvVarsq -> union(

getExpTermpre.argumentprcq, rc, �M, EnvVarsq

)

when re : OperationCallExp ^ re.referredOperation � H ^

re.referredOperationp �OclStdLibq.name � ”union”

The operators that are defined for the OCL special types, OclAny and OclType, can be used in an
algebraic OCL expression as follows:

• = :

getExpTermpre, rc, �M, EnvVarsq �

getExpTermpre.sourceprcq, rc, �M, EnvVarsq =

getExpTermpre.argumentprcq, rc, �M, EnvVarsq

when re : OperationCallExp ^ re.referredOperation � H ^

re.referredOperationp �OclStdLibq.name � ” � ”

148 Chapter 7. Algebraic Constrained Conformance Relation

• <> :

getExpTermpre, rc, �M, EnvVarsq �

getExpTermpre.sourceprcq, rc, �M, EnvVarsq <>

getExpTermpre.argumentprcq, rc, �M, EnvVarsq

when re : OperationCallExp ^ re.referredOperation � H ^

re.referredOperationp �OclStdLibq.name � ” ¡ ”

• oclIsUndefined :

getExpTermpre, rc, �M, EnvVarsq �

getExpTermpre.sourceprcq, rc, �M, EnvVarsq -> oclIsUndefined

when re : OperationCallExp ^ re.referredOperation � H ^

re.referredOperationp �OclStdLibq.name � ”oclIsUndefined”

• oclIsKindOf :

getExpTermpre, rc, �M, EnvVarsq �

getExpTermpre.sourceprcq, rc, �M, EnvVarsq -> oclIsKindOf(

getExpTermpre.argumentprcq, rc, �M, EnvVarsq

)

when re : OperationCallExp ^ re.referredOperation � H ^

re.referredOperationp �OclStdLibq.name � ”oclIsKindOf ”

• oclIsTypeOf :

getExpTermpre, rc, �M, EnvVarsq �

getExpTermpre.sourceprcq, rc, �M, EnvVarsq -> oclIsTypeOf(

getExpTermpre.argumentprcq, rc, �M, EnvVarsq

)

when re : OperationCallExp ^ re.referredOperation � H ^

re.referredOperationp �OclStdLibq.name � ”oclIsTypeOf ”

• oclAsType :

getExpTermpre, rc, �M, EnvVarsq �

getExpTermpre.sourceprcq, rc, �M, EnvVarsq -> oclAsType(

getExpTermpre.argumentprcq, rc, �M, EnvVarsq

)

when re : OperationCallExp ^ re.referredOperation � H ^

re.referredOperationp �OclStdLibq.name � ”oclAsType”

7.3. Algebraic Semantics of the reflect Function 149

PropertyCallExp

A PropertyCallExp instance is a reference to a Property instance that is defined in the metamodel
definition �M. The term that represents a PropertyCallExp instance in an OCL expression is defined by
means of the getExpTerm function as follows:

getExpTermpre, rc, �M, EnvVarsq �

getExpTermpre.sourceprcq, rc, �M, EnvVarsq .

re.referredPropertyp�Mq.name

when re : PropertyCallExp ^ re.referredPropertyp�Mq.typep�Mq : DataType

getExpTermpre, rc, �M, EnvVarsq �

getExpTermpre.sourceprcq, rc, �M, EnvVarsq .

re.referredPropertyp�Mq.name (model:ModelType{M})

when re : PropertyCallExp ^ re.referredPropertyp�Mq.typep�Mq : Class

Given a model definition rM , such that rM : RDBMS, where RDBMS is the metamodel that is defined
in Fig. 6.7, to query the value-typed property name of a Table instance t, such that t P rM , we use the
term t . name. To query the object-typed property schema of the object t, we can use either the term t

. schema, obtaining an object identifier, or the term t . schema(rM), obtaining a Schema instance, in
case it is defined in rM .

VariableExp

A VariableExp instance represents an expression that consists of a reference to a variable. The variables
that can be referenced are: the self variable that contains the contextual instance; the iterator variable of a
loop operator; the result variable of an iterate operator; or a Let variable. When a VariableExp instance is
projected as a term by means of the getExpTerm function, the referred variable has always been previously
defined in the environment of the expression, so that the value of the variable has been already computed,
except for one case: for Let variables. For a Let variable, the getExpTerm represents its value by processing
the initial expression that is attached to it. Let variables are not added to the environment of the OCL
expressions, so that a VariableExp instance, whose referenced variable is not contained in the environment,
can only refer to a variable of this kind. The term that represents a VariableExp instance is a variable
that is given by the following equations:

getExpTermpre, rc, �M, EnvVarsq �

getSortedVariableValuepre.referredVariableprcq, �Mq

when re : VariableExp ^ re.referredVariableprcq P EnvVars

getExpTermpre, rc, �M, EnvVarsq �

getExpTermpre.referredVariableprcq.initExpressionprcq, rc, �M, EnvVarsq

when re : VariableExp ^ re.referredVariableprcq R EnvVars

TypeExp

A TypeExp instance is an expression used to refer to an existing meta-type within an expression. It is used
in particular to pass the reference of the meta-type when invoking the operations allInstances, oclIsKindOf,
oclIsTypeOf, and oclAsType. The term that represents a TypeExp instance is a constant of type Cid#M

150 Chapter 7. Algebraic Constrained Conformance Relation

when the type refers to an object type. The function getExpTerm is defined, for a TypeExp instance as
follows:

getExpTermpre, rc, �M, EnvVarsq � re.referredTypep�Mq.name

when re : TypeExp ^ re.referredTypep�Mq : Class

getExpTermpre, rc, �M, EnvVarsq � Bool

when re : TypeExp ^ re.referredTypep�Mq � rootp �Boolean,�MOFq

getExpTermpre, rc, �M, EnvVarsq � String

when re : TypeExp ^ re.referredTypep�Mq � rootp�String,�MOFq

getExpTermpre, rc, �M, EnvVarsq � Int

when re : TypeExp ^ re.referredTypep�Mq � rootp �Integer,�MOFq

getExpTermpre, rc, �M, EnvVarsq � Float

when re : TypeExp ^ re.referredTypep�Mq � rootp�Float,�MOFq

Note that in our specification these operators do not provide support for enumerations.

7.3.4 Name Strategy

The names that correspond to Class instances, EnumerationLiteral instances, and Property instances

are used to define operator symbols in a reflectp�M, rCq theory as shown before. These names are structured by

taking into account the containment relation that is defined for a metamodel definition �M as c p�M,�MOFq.
This strategy to structure names is achieved by means of the function buildName that is defined at the end
of Section 6.3. Therefore, we avoid name collisions when two properties have the same name within different
object types, for example. We have omitted this detail in the definition of the getExpTheory and getExpTerm
functions for the sake of a simpler exposition.

7.3.5 Complete Example

The constraint that is defined as example for the relational metamodel in Section 2.3, i.e.,

context ForeignKey:

inv:

if (self.column->size() = self.refersTo.column->size()) then

self.column->forAll(c:Column |

self.refersTo.column-> at(self.column->indexOf(c)).type

= c.type

)

else

false

endif

constitutes the single constraint that is defined in the set rCRDBSMS of OCL constraints. The type pRDBMS, CRDBSMSq
is defined in the reflectp �RDBMS, rCRDBSMSq theory by means of the following conditional membership:

cmb model:ModelType{rdbms} : ConsistentModelType{rdbms}

if

(

rdbms/ForeignKey . allInstances(model:ModelType{rdbms})

-> forAll (inv1 ; empty-env ; model:ModelType{rdbms})

) = true .

7.3. Algebraic Semantics of the reflect Function 151

where the operators that permit navigating through the object-typed properties that are used in the invariant
are:

op rdbms/Key/column : -> Fun{rdbms} .

eq < OID:Oid : CID:rdbms/Column | PS:PropertySet#rdbms,

rdbms/Key/column : Value:Collection+{Oid} > . rdbms/Key/column

= Value:Collection+{Oid} .

eq < OID:oid#rdbms/Column : CID:rdbms/Column | PS:PropertySet#rdbms,

rdbms/Key/column : Value:Collection+{Oid} >

. rdbms/Key/column(model:ModelType{rdbms})

= search(Value:Collection+{Oid}, model:ModelType{rdbms}) .

op rdbms/ForeignKey/column : -> Fun{rdbms} .

eq < OID:Oid : CID:rdbms/Column | PS:PropertySet#rdbms,

rdbms/ForeignKey/column : Value:Collection+{Oid} >

. rdbms/ForeignKey/column

= Value:Collection+{Oid} .

eq < OID:oid#rdbms/Column : CID:rdbms/Column | PS:PropertySet#rdbms,

rdbms/ForeignKey/column : Value:Collection+{Oid} >

. rdbms/ForeignKey/column(model:ModelType{rdbms})

= search(Value:Collection+{Oid}, model:ModelType{rdbms}) .

op rdbms/ForeignKey/refersTo : -> Fun{rdbms} .

eq < OID:Oid : CID:rdbms/Column | PS:PropertySet#rdbms,

rdbms/ForeignKey/refersTo : Value:Collection+{Oid} >

. rdbms/ForeignKey/refersTo

= Value:Collection+{Oid} .

eq < OID:oid#rdbms/Column : CID:rdbms/Column | PS:PropertySet#rdbms,

rdbms/ForeignKey/refersTo : Value:Collection+{Oid} >

. rdbms/ForeignKey/refersTo(model:ModelType{rdbms})

= search(Value:Collection+{Oid}, model:ModelType{rdbms}) .

op rdbms/Column/type : -> Fun{rdbms} .

eq < OID:Oid : CID:rdbms/Column | PS:PropertySet#rdbms,

rdbms/Column/type : Value:Collection+{Oid} > . rdbms/Column/type

= Value:Collection+{Oid} .

eq < OID:oid#rdbms/Column : CID:rdbms/Column | PS:PropertySet#rdbms,

rdbms/Column/type : Value:Collection+{Oid} >

. rdbms/Column/type(model:ModelType{rdbms})

= search(Value:Collection+{Oid}, model:ModelType{rdbms}) .

and the OCL expressions are defined by means of the reflect function as follows:

op self : -> VariableName [ctor] .

op inv1 : -> BoolBody{rdbms} [ctor] .

eq selfValue:Collection+{rdbms} . inv1 (

empty-env ; model:ModelType{rdbms}

) = (

if (

((selfValue:Collection+{rdbms}

. rdbms/ForeignKey/column (model:ModelType{rdbms})

) -> size)

=

(

(selfValue:Collection+{rdbms}

. rdbms/ForeignKey/refersTo (model:ModelType{rdbms})

. rdbms/Key/column (model:ModelType{rdbms})

) -> size

)

)

152 Chapter 7. Algebraic Constrained Conformance Relation

then

((selfValue:Collection+{rdbms}

. rdbms/ForeignKey/column (model:ModelType{rdbms}))

-> forAll (

inv::body0 ;

? self = selfValue:Collection+{rdbms} ;

rdbmsModel

)

)

else

false

fi

) .

eq self::0 . inv1 (E:Environment ; model:ModelType{rdbms})

= false [owise] .

op inv::body0 : -> BoolBody{rdbms} [ctor].

eq cValue:Collection+{rdbms} . inv::body0 (

? self = selfValue:Collection+{rdbms} ; model:ModelType{rdbms}

) =

(

(

(

(selfValue:Collection+{rdbms}

. rdbms/ForeignKey/refersTo (model:ModelType{rdbms})

. rdbms/Key/column (model:ModelType{rdbms})

)

-> at(

(

(selfValue:Collection+{rdbms}

. rdbms/ForeignKey/column (model:ModelType{rdbms}))

-> indexOf(cValue:Collection+{rdbms})

)

)

) . rdbms/Column/type

)

=

(cValue:Collection+{rdbms} . rdbms/Column/type)

) .

eq cValue:Collection+{rdbms}

. inv::body0 (E:Enviroment ; model:ModelType{rdbms}) = false [owise].

7.4 Algebraic Semantics of the Constrained Conformance
Relation

Given a metamodel specification definition p�M, rCq, the model type vMwMOF is defined in the reflectMOFp�Mq
theory. The model type vMwMOF is preserved in the reflectp�M, rCq theory by means of the subtheory inclusion

reflectMOFp�Mq � reflectp�M, rCq,
where the constrained model type vpM, CqwMOF is defined as a subset of the model type vMwMOF, i.e.,

vpM, CqwMOF � vMwMOF. Assuming that the reflectp�M, rCq theory is confluent, terminating and pre-regular,
the semantics of the constrained model type vpM, CqwMOF is defined by using the initial algebra of the

reflectp�M, rCq theory as

vpM, CqwMOF � T
reflectp rM,rCq,ConsistentModelTypetMu

;

the OCL constraint satisfaction is defined as

rM |ù C ðñ rM P vpM, CqwMOF;

7.4. Algebraic Semantics of the Constrained Conformance Relation 153

and the constrained conformance relation rM : pM, Cq is defined as

rM : pM, Cq ðñ rM P vpM, CqwMOF.

In addition, the reflectp�M, rCq theory constitutes a formal realization as a theory in mel of the metamodel

specification definition p�M, rCq. The theory reflectp�M, rCq satisfies some executability requirements: Church-

Rosser, termination and pre-regularity. Therefore, the metamodel specification realization reflectp�M, rCq is
executable, providing a formal decision procedure for the OCL constraint satisfaction relation, and is a mel
theory with initial algebra semantics, providing the algebraic semantics for the types that are defined as

data in p�M, rCq.
Given the data type Module whose terms, of the form pS, ,Ω, E YAq, metarepresent mel theories of

the form pS, ,Ω, E YAq, and the data type Term, whose terms, of the form t, metarepresent terms t for a
given mel theory pS, ,Ω, E Y Aq, the representation of the getExpTheory and getExpTerm functions can
be easily embedded into mel by using its reflective features as the following equationally-defined functions:

getExpTheory :

Object#OCL�ModelTypetOCLu �ModelTypetMOFu � ConfigurationtOCLu

; Module; and

getTermTheory :

Object#OCL�ModelTypetOCLu �ModelTypetMOFu � ConfigurationtOCLu

; Term.

In our formal framework, only part of the reflect function has been specified: the reflectMOF function,
which has been defined in Section 6. The formal definition of the reflect function, based on the getExpThe-
ory and getExpTerm functions, which has been provided in this Section, is based on the experience with a
previous prototype that provides OCL constraint validation by using Maude as a functional programming
language [11]. The mathematical definition of the reflect function permits using the MOF reflection mech-
anism for theoretical purposes. The complete specification of the reflect function is still not available in
our formal MOF framework, although large portions of its specification have already been implemented in
Maude. Finishing the rest of the reflect implementation is straightforward, since the formal semantics of the
reflect function has already been provided in this work.

In a metamodel specification definition p�M, rCq, �M is a metamodel that is defined by using the EMOF

metamodel and rC is a finite set of OCL constraints that are defined by using the OCL metamodel. Therefore,

any metamodel specification definition p�M, rCq that is defined by means of the standard metamodels EMOF
and OCL can be formally defined by means of the reflect function in our framework. Both the EMOF and

the OCL standard specifications provide a finite set of OCL constraints for the metamodel definitions �MOF

and �OCL, resulting in the metamodel specification definitions pMOF, CMOFq and pOCL, COCLq, respectively.

A metamodel definition �M satisfies the OCL constraints that are defined for the MOF metamodel iff�M : pMOF, CMOFq, and, likewise, an OCL constraint definition rc satisfies the constraints that are defined
for the OCL metamodel definition iff rc : pOCL, COCLq. Note that the

reflect : SpecMOF ; SpecMEL

is totally defined for pairs p�M, rCq such that

�M : pMOF, CMOFq ^rC P PfinpvpOCL, COCLqwMOFq ^

@rcprc : pOCL, COCLq ^ rc P COCL ^ rootprc,�OCLq : OclConstraint Ñ

rootprc,�OCLq.constrainedElementp�Mq � H

q.

7.4.1 Discussion: Non-Determinism in OCL Expressions

Given a metamodel specification definition p�M, rCq, the semantics of the metamodel specification pM, Cq
is provided by the carrier of the sort ConsistentModelTypetMu in the initial algebra of the reflectp�M, rCq

154 Chapter 7. Algebraic Constrained Conformance Relation

theory. The constrained model type vpM, CqwMOF is provided by means of the conditional membership
that is defined for the OCL constraint satisfaction relation. However, in order to ensure that all chains of

equational simplification in the reflectp�M, rCq theory end in a unique canonical form (modulo associativity

and commutativity), the reflectp�M, rCq theory must satisfy some executability requirements: the theory must
be Church-Rosser, terminating and pre-regular.

Non-determinism can be introduced in OCL expressions in several ways: by means of OCL operators
as indicated in [94], and by means of user-defined expressions. On the one hand, several predefined opera-
tors of the OCL language are non-deterministic: any, asOrderedSet and asSequence. The asOrderedSet

and asSequence operators transform a non-ordered collection into an ordered set and to a sequence, re-
spectively. For example, the expression Set{1,2}->asOrderedSet may result in either the collection literal
OrderedSet{1 :: 2} or the collection literal OrderedSet{2 :: 1}. In addition, the operator any can be
seen as an abbreviation for asSequence concatenated with first, another library operator which yields the
first element of a sequence if the sequence has at least one element and an undefined value otherwise. Since
the operator asSequence is non-deterministic, the operator any is not either.

This source of non-determinism cannot be specified by means of a function in a natural way. If these

functions were specified in MEL, the reflectp�M, rCq theory would not be confluent. Therefore, an invariant,
which contains non-deterministic constructs, that is evaluated over a model definition might yield more
than one result, for example, true and false. An invariant like this is completely useless. Without loss of
expressivity, we have omitted these operators from the OCL specification. When a non-ordered collection
needs to be ordered, we use the sortedBy operator. For example, the expression Set{1,2} -> sortedBy(

i : Integer | i) always result in the collection literal OrderedSet{1 :: 2}. On the other hand, the
evaluation of OCL expressions may also lead to non-deterministic results as stated in [93]. For example, we
can concatenate the strings that belong to a set by means of the following OCL expression:

Set{’a’,’b’,’c’} -> iterate(

s : String;

result : String = ’’ | result.concat(s))

The resulting value of this expression can be any string that is constituted by a permutation of the characters
’a’, ’b’ and ’c’. Non-determinism can be avoided in this case, by ordering non-sorted collections before
applying an OCL expression that may lead to non-deterministic results. In our formal framework only non-
deterministic OCL expressions can be used to define the constraints in a metamodel specification definition

p�M, rCq. Otherwise, the reflectp�M, rCq theory does not satisfy the Church-Rosser requirement. The user must
take into account that non-deterministic OCL expressions are not allowed.

7.4.2 Unspecified Part of the OCL Language

In our approach, OCL is used to define the static semantics of a specific language using a metamodeling
approach, for either a domain specific language or a general purpose language. Therefore, we have omitted the
object types of the OCL metamodel that permit specifying constraints over the dynamics of a specific UML
model. In our approach, only OCL expressions that are defined as invariants over object type definitions, in
a specific metamodel definition, are taken into account. Other concepts of the OCL language that we have
not considered yet are:

• Only predefined OCL operators can be used in OCL expressions. User-defined object type operations
are not taken into account.

• Tuple types are not supported.

• Association class navigation is not supported, because the EMOF metamodel does not provide support
for association classes.

• Collection literals cannot be defined by using number ranges.

• Loop iterators can only use a single iterator variable. In the OCL language the expression

Set{1,2,3} -> forAll(i1,i2|

((Set{1,2,3} -> excluding(i1)) -> includes(i2)) implies i1<>i2

),

which has two iterator variables, i1 and i2, can be equivalently defined as

7.4. Algebraic Semantics of the Constrained Conformance Relation 155

Set{1,2,3} -> forAll(i1|

Set{1,2,3} -> forAll(i2 |

((Set{1,2,3} -> excluding(i1)) -> includes(i2))

implies i1<>i2

)

).

• The oclIsTypeOf, oclIsKindOf, and oclAsType operations are not specified for enumerations.

Chapter 8

Formalizing the MOF Reflection
Facilities

Broadly speaking, reflection is the capacity to represent entities that have a formal semantics at a base
level, such as types, as data at a metalevel. Reflection is a very powerful computational feature because
metalevel entities, once metarepresented, can be computationally manipulated and transformed. Reflection
was defined in a general way by Brian Smith [95]:

”An entity’s integral ability to represent, operate on, and otherwise deal with its self in the same way that
it represents, operates on and deals with its primary subject matter.”

In programming languages, the incarnation of this definition appears as follows [96]:

”Reflection is the ability of a program to manipulate as data something representing the state of the
program during its own execution. There are two aspects of such manipulation: introspection and

intercession. Introspection is the ability for a program to observe and therefore reason about its own state.
Intercession is the ability of a program to modify its own execution state or alter its own interpretation or

meaning. Both aspects require a mechanism for encoding execution state as data; providing such an
encoding is called reification.”

Reflection is then usually achieved in three steps: reification, a program at the base level is represented as
metadata that can be queried and, probably, manipulated at the metalevel; absorption, the tasks that change
the program at the base level are performed by means of the operations of the metalevel, manipulating the
metarepresentation of the program; reflection, once the metarepresentation of a program is changed, the
new program is obtained at the base level again. There are several kinds of reflection [97]:

• Introspection: When a program has the capability to look at itself as data, and thereby to reason
about it. This is usually achieved by means of a reification process. In our approach, introspection

is achieved by the fact that the operators of a metamodel realization reflectMOFp�Mq can use the

metamodel definition �M.

• Structural Reflection: When a program has, in addition to introspection, the capability of modify

its static semantics. In our approach, this is achieved by modifying a metamodel definition �M, which

metarepresents a metamodel realization reflectMOFp�Mq at the metalevel, and then reflecting it back
again to the base level.

• Behavioral Reflection: When a program has, in addition to introspection and structural reflection,
the capability of modifying its dynamic semantics. Since the MOF meta-metamodel does not permit
defining the dynamic semantics of metamodels, we do not consider this kind of reflection.

In our approach, a metamodel definition �M constitutes the metarepresentation of a metamodel realiza-

tion reflectMOFp�Mq, so that reifypreflectMOFp�Mqq � �M, where the reflectMOF and reify functions constitute
the metarepresentation functions. In this section, we focus on the support for metarepresented entities ma-

nipulation that is provided in the MOF standard, which can be applied to both metamodel definitions �M
and model definitions rM .

158 Chapter 8. Formalizing the MOF Reflection Facilities

In the metamodel definition �MOF, the MOF reflection facilities are mainly provided by the Object
object type. The Object object type is defined as supertype of any object type that is defined in a

metamodel definition �M, including �MOF itself. Therefore, any object that can be defined in a model
definition rM , such that rM : M, is an instance of the Object object type. Note that a metamodel definition�M is also a model definition rM , where �M : MOF. The object type Object provides a set of operations
that permits the manipulation of the properties of a specific Object instance.

In this section, we give an algebraic semantics for the Object object type, and its operations, providing
full support for reflection in the MOF framework. At the M2 level of the MOF framework, the reification
mechanism, which is not provided in the MOF standard, is embodied by the reify function in our approach.

The reify function permits metarepresenting a metamodel realization reflectMOFp�Mq of the base level as

a metamodel definition �M, such that �M : MOF, at the metalevel. �M is a collection of typed objects,
where each object is an instance of an object type of the MOF meta-metamodel. The Object object type

introduces an untyped level where metamodel definitions �M can be represented as collections of untyped
objects, i.e., as Object instances. The instanceOf relation is also represented as data at the metalevel, so

that the manipulation of �M can be done independently of the object types that are defined in the realization

of the MOF meta-metamodel, which is the reflectMOFp�MOFq theory in our approach. If we move one level

down in the MOF framework to the M1 level, the untyped level is also present for model definitions rM .
In subsequent sections, we present a brief description of the Object object type and its operations,

and its representation in our algebraic MOF framework by extending the infrastructure of theories that has
been developed in Sections 6 and 7. We define the algebraic semantics of the Object object type and the
semantics of metarepresented model types. The semantics of the operations of the Object object type are
defined taking into account the semantics of the OCL types, so that Object operations can also be used in
terms that represent OCL expressions.

8.1 Informal Introduction to the MOF Reflective Facilities

In the MOF framework, any object that belongs to a model definition rM , such that rM : M, can be manip-
ulated by means of the operations of the Object object type. These operations can be applied without any

realization of the metamodel definition �M. The Object object type is defined in the MOF::Reflection

package, shown in Fig. 8.1, of the metamodel definition �MOF. To define collections of objects, the MOF stan-
dard provides the ReflectiveCollection and ReflectiveSequence object types in the MOF::Common

package, shown in Fig. 8.2, of the metamodel definition �MOF. In the MOF standard, the Element object
type is defined as a supertype of both the Object and ReflectCollection object types. An Element
instance may represent either an object, a data type value (string, integer,...), or a collection of Element
instances. However, the standard does not indicate how primitive types are related to the Element object
type.

In this section, we provide a brief description of the Object object type, and its operations, which
constitute the reflective capabilities of a MOF framework. These operations are defined in an informal way
in the MOF specification. We illustrate them by using examples in an object-oriented programming style.

The Object object type is defined as supertype of any object type that may be defined in a metamodel

definition �M, including �MOF itself. Therefore, any object type inherits its operations, which are informally
defined in the MOF standard, in an object-oriented programming style, as follows:

getMetaClass(): Class. Returns the class that describes this object. For example, the Table object

type that is defined as a tree of objects, �Table, such that �Table : MOF, in the metamodel defini-

tion �RDBMS, contains a Class instance, which we denote by TableClass, such that TableClass �
rootp�Table,�MOFq. Let PersonTable denote a Table instance, such that PersonTable : Table. The
metaclass of the PersonTable object is obtained by means of the following expression: PersonTable.getMetaClass(),
which results in the Class instance TableClass.

container(): Object. Returns the parent container of this element if any. Returns null if there is no
containing element.

equals(element: Element): Boolean. Determines if the element argument is equal to a given Object
instance. For instances of Class, returns true if the argument object and this Object instance are
references to the same Object.

set(property: Property, element: Element). If the property has multiplicity upper bound � 1, set()
atomically updates the value of the property to the element parameter. If the property multiplicity

8.1. Informal Introduction to the MOF Reflective Facilities 159

Figure 8.1: The MOF Reflection API

Figure 8.2: The MOF Reflection API

160 Chapter 8. Formalizing the MOF Reflection Facilities

upper bound is ¡ 1, the element argument must be a collection of values. An exception is thrown in
the following cases:

• The parameter property is not a member of the class that is obtained from getMetaClass().

• The parameter element is not an instance of the type of the parameter property and the param-
eter property has multiplicity upper bound � 1.

• The parameter element is not a collection of values and the parameter property has multiplicity
upper bound ¡ 1.

• The parameter element is null, the parameter property is of type Class, and the multiplicity
lower bound is ¥ 1.

For the example, we can set the attribute ”name” of the object PersonTable in an object-oriented
way by invoking:

PersonTable.set(TableNameProperty, "Person")

where TableNameProperty corresponds to an Object instance in the metamodel whose metaClass is
the MOF Property class, and it belongs to the collection of properties of the TableClass object.
We can create new columns for the table by instantiating the Column class and by initializing the
properties of the new instances:

Object nameColumn = create(ColumnClass)

nameColumn.set(ColumnNameProperty, "name")

nameColumn.set(ColumnTypeProperty, RDataType.VARCHAR)

Object ageColumn = create(ColumnClass)

ageColumn.set(ColumnNameProperty, "Age")

ageColumn.set(ColumnTypeProperty, RDataType.NUMBER)

where create(class : Class) is an operator of the Factory object type that creates a new instance,
given the Class instance class that represents the root of an object type definition. To add the
attributes that have been created above to the class Person in an object-oriented programming style,
we obtain its collection of properties and we add the new attributes to it:

ReflectiveSequence rs = new ReflectiveSequence()

rs.add(nameColumn)

rs.add(ageColumn)

PersonTable.set(ColumnProperty, rs)

where ColumnProperty is an Object instance that represents the column property of the Table class
in the relational metamodel.

get(property: Property): Element. Gets the value of the given property. If the property has multi-
plicity upper bound of 1, get() returns the value of the property. If the property has multiplicity
upper bound ¡ 1, get() returns a collection containing the values of the property. If there are no
values, the collection is empty. If the property that is passed as argument is not a member of the
Class of the Object instance, an exception is thrown. For example, person.get(nameProperty) =

"Person".

isSet(property: Property): Boolean. If the parameter property has multiplicity upper bound of 1,
isSet() returns true if the value of the property is different from the default value of that property.
If the parameter property has multiplicity upper bound ¡ 1, isSet() returns true if the number of
objects in the list is ¡ 0. If the parameter property is not a member of the class that is obtained from
the getMetaClass() method, an exception is thrown.

unset(property:Property). If the parameter property has multiplicity upper bound of 1, unset() atomi-
cally sets the value of the property to its default value for value-typed properties and null for object-
typed properties. If the property has multiplicity upper bound ¡ 1, unset() clears the collection of
values of the Property. After unset() is called, object.isSet(property) = false. If the parameter
property is not a member of the class that is obtained from getMetaClass(), an exception is thrown.

8.1.1 Discussion on the MOF Reflective Facilities

Although OCL and MOF are aligned in their respective versions 2.0, the reflective facilities of the MOF
framework cannot be used in OCL expressions. The MOF reflection facilities are provided by means of the

8.2. Semantics of the MOF Reflection Facilities 161

operations of the Object object type, which are defined with an informal object-oriented programming style
in the MOF standard. The object types, and their features (properties and operations), that are defined

in a metamodel definition �M can be referred to in an OCL expression. These object types specialize the
object type Object, inheriting its operations. However, these operations cannot be used in OCL expressions
because the OCL language is declarative and does not provide support for exceptions.

Enabling the use of Object operations within OCL constraints provides support to query the metamodel

definition �M, when an OCL constraint is evaluated over a model definition rM : M, so that much more
generic constraints can be defined. In this section, we discuss some issues that must be taken into account
in order to enable the use of the reflective facilities within OCL expressions.

Element object type

The Element type that is defined in the metamodel definition �MOF is similar to the OCL special type
OclAny, in the sense that it is the type of both objects and primitive type values. However, the Element
type does not provide any operation, and is used to define the operations of the Object operation in a
generic way. To provide the algebraic semantics of this type, we find the same problem that we found for
the OclAny type in Section 7: it collapses the hierarchy of sorts that represent types in a theory, producing
name collisions for ad-hoc overloaded operators. Therefore, we do not take this object type into account.
In other object-oriented implementations of the MOF framework, like the Eclipse Modeling Framework, the

supertype of all other object types in the metamodel definition �MOF is the Object type instead of the
Element type, and primitive types are defined independently. We also follow this approach.

ReflectiveCollection and ReflectiveSequence object types

These object types permit using collections of elements to manipulate an object by means of Object
operations. However, they are not so expressive as the collection types of the OCL language, because
they do not take the uniqueness feature into account . Furthermore, they constitute an alternative to OCL
collection types that makes the infrastructure of object types more complex. To achieve a complete alignment
with the OCL specification, we reuse the OCL collection types to deal with collections of either primitive
type values or Object instances.

Null values

Object operations may either return a null value or throw an exception when the corresponding operation
is not defined for the argument values. The OCL language is declarative and does not provide support for
exceptions. In order to align OCL and MOF, these error cases are considered as undefined values so that
they can be used in OCL expressions.

Only side-effect free operators

The OCL language is side-effect free, so that only the operators that do not change the property values of
an object are allowed in OCL expressions: getMetaClass, container, get, and isSet. However, we also provide
the semantics of the set and unset operations, in order to support model management. In addition, the
equals operator is replaced by the OCL operator =.

In the following section, we define the semantics of the Object object type and its operations. Given a

metamodel specification definition p�M, rCq, the Object operations that do not have side-effects can be used

to define terms that represent OCL expressions in a theory reflectp�M, rCq.
8.2 Semantics of the MOF Reflection Facilities

Given a metamodel specification definition p�M, rCq, the object types that are defined in �M specialize the MOF
Object object type, inheriting its operations. This specialization relationship is always defined implicitly

and never appears defined in �M. There is a subtheory, called META-MODEL, that is defined as subtheory

of the reflectp�M, rCq theory. The theory META-MODEL provides the sort MetaObject, whose terms represent
Object instances, and the sort ModelTypetMetaObjectu, whose terms represent model definitions that are
constituted of Object instances. A term of sort MetaObject is defined by means of a constructor that is
common to all metamodel specification realizations. This fact permits defining objects in model definitionsrM , such that rM : M, when the reflectp�M, rCq theory is not provided.

162 Chapter 8. Formalizing the MOF Reflection Facilities

untyped level po � pψ // po1_

downObject

��
typed level ro_

upObject

OO

� rψ // ro1
Figure 8.3: Manipulation of an object by means of the MOF Reflective Facilities.

untyped level xM � pφ // xM 1
_

downModel

��
typed level �M_

upModel

OO

� rφ // �M 1

Figure 8.4: Manipulation of a model definition by means of the MOF Reflective Facilities.

Given an object type OT, such that �OT : MOF, rootp�OT,�MOFq : Class and

rootp�OT,�MOFq � rootp�M,�MOFq, an object ro, such that ro : OT, that belongs to a model definitionrM , such that rM : M, can be queried and manipulated by means of Object operations. However, ro has to
be represented first as an Object instance, denoted by po. This syntactical representation change is obtained
by means of the equationally-defined functions

upObject : Object#M ÝÑ MetaObject

downObject : MetaObject �ModelTypetMOFu ; Object#M

so that downObjectpupObjectproq, �Mq � ro and upObjectpdownObjectppo, �Mqq � po. Therefore, an equationally-

defined function rψ : Object#M ÝÑ Object#M that manipulates an object ro can be defined, by using the
MOF reflection facilities, as a composite function rφ � downObject � pψ � upObject , where the equationally-
defined function pψ : MetaObject ÝÑ MetaObject manipulates the metarepresentation po of an object ro by
means of Object operations. This process is illustrated in Fig. 8.3.

At a coarser level of granularity, a model definition rM , such that rM : M, can be manipulated by means
of an equationally-defined function rφ : ModelTypetMu ÝÑ ModelTypetMu, which constitutes a model

transformation. The rφ function manipulates the objects that are defined in rM , so that Object operations
may also be used to manipulate them. To enable the application of Object operations to the objects ro that
constitute rM , the objects ro have to be represented as Object instances po. The upObject and downObject
functions are extended to consider model definitions as arguments, by means of the equationally-defined
functions

upModel : ModelTypetMu ÝÑ ModelTypetMetaObjectu

downModel : ModelTypetMetaObjectu �ModelTypetMOFu ; ModelTypetMu,

where downModelpupModelp rMq, �Mq � rM and upModelpdownModelp pM, �Mqq � pM . Therefore, the functionrφ can be defined as a composite function rφ � downModel � pφ � upModel , where the equationally-defined
function pφ : ModelTypetMetaObjectu ÝÑ ModelTypetMetaObjectu performs the model transformation at
the untyped metalevel. This process is illustrated in Fig. 8.4.

The META-MODEL theory, together with its subtheory inclusion in each theory

reflectp�M, rCq, formally defines the notion of MOF Reflection Facilities, that permit the manipulation of

the metarepresentation of model definitions rM . This theory introduces an extra sublevel, in the conceptual
levels M1, M2, and M3 of the MOF Framework, where the metarepresentation pM of a model definitionrM is performed in a type-agnostic way, i.e., without the corresponding metamodel specification realization

reflectp�M, rCq. We call typed level to the metalevel where objects are defined as objects ro of specific object
types, and we call untyped level to the metalevel where objects are defined as Object instances in an inde-

8.2. Semantics of the MOF Reflection Facilities 163

Figure 8.5: The MOF Reflection API

pendent way of the corresponding object type. Since metamodel definitions �M are also model definitions rM ,
such that rM : MOF, metamodel definitions can also be manipulated in a type-agnostic way. In subsequent
sections, (1) the META-MODEL theory is presented, completing the infrastructure of theories that has been
developed throughout the Sections 6 and 7; (2) the semantics of the Object type is provided; and (3) a
mathematical definition of the Object operations is given.

8.2.1 The META-MODEL theory

The META-MODEL theory permits representing model defintions rM , such that rM : M, in a type-agnostic way;

i.e., without taking the metamodel realization reflectMOF p�Mq into account. This theory is defined by the
equation

META-MODEL � MODEL{MetaObject},

where MetaObject is a view that maps the TH-OBJECT theory to the META-OBJECT theory. The META-OBJECT

theory provides the sort MetaObject, whose terms represent Object instances. The META-OBJECT and
META-MODEL theories complete the theory infrastructure of our MOF framework, as illustrated in Fig. 8.5.

The metarepresentation of any object ro, which is defined at the typed metalevel, as a MOF Object
instance at the untyped metalevel involves the metarepresentation of all of the values that can participate
in the definition of ro: primitive type values, enumeration literals, object identifiers, OCL collections of the
previous values, and the object itself. On the one hand, values of the OCL predefined types, such as the
primitive types and the OCL collection types, are metarepresented by means of the identity function. For
example, the value 1 that may be the property value of an object ro, at the typed metalevel, is also represented
as the value 1, at the MOF metalevel. On the other hand, values of user-defined types have a specific meta-
representation at the untyped metalevel. Enumeration literals and object identifiers are metarepresented by
taking into account the following sorts and operators:

• Enumeration Literals are metarepresented as terms of the sort MetaEnum, whose constructor is defined
in the following mel theory, shown in Maude notation as:

fmod META-ENUM is

protecting STRING .

sort MetaEnum .

op metaEEnumLiteral : String -> MetaEnum .

op nullMetaEEnumLiteral : -> [MetaEnum] .

endfm

The literal rdbms/RDataType/VARCHAR of the rdbms/RDataType enumeration type in the RDBMS meta-

164 Chapter 8. Formalizing the MOF Reflection Facilities

model is meta-represented as

metaEEnumLiteral("rdbms/RDataType/VARCHAR").

• Object identifiers are user-dependent, since their constructor is defined from a Class instance, as
shown in Section 6. Identifiers are metarepresented as terms of sort MetaOid, which is defined in the
following theory, in Maude notation,

fmod META-OID is

protecting QID .

protecting STRING .

sort MetaOid .

op metaOid : String Qid -> MetaOid .

op nullMetaOid : -> [MetaOid] .

endfm

An identifier oid#Class(’0) is metarepresented as metaOid("oid#Class", ’0).

These theories only permit metarepresenting enumeration literals and object identifiers at the MOF
metalevel. However, collections of literals or object identifiers cannot be metarepresented yet. To permit
their metarepresentation, we define the META-OBJECT theory, which instantiates the OCL-COLLECTIONS{X
:: TRIV} theory with the views MetaEnum and MetaOid. These views map the TRIV theory to the
corresponding theories as follows:

view MetaEnum from TRIV to META-ENUM is

sort Elt to MetaEnum .

endv

view MetaOid from TRIV to META-OID is

sort Elt to MetaOid .

endv

Therefore, in the META-MODEL theory, collections of literals and collections of object identifiers can also
be metarepresented. In addition, the META-MODEL theory permits meta-representing object properties and
objects. Object properties are metarepresented as terms of the sorts MetaProperty and MetaPropertySet

by means of the following set of sorts and constructors:

sorts MetaProperty MetaPropertySet .

subsort MetaProperty < MetaPropertySet .

op _‘,_ : MetaPropertySet MetaPropertySet -> MetaPropertySet

[assoc comm id: noneMetaProperty] .

op noneMetaProperty : -> MetaPropertySet .

Depending on the type of property, specific object properties are metarepresented as follows:

• Set properties: Properties that are initialized with a specific value are metarepresented by means of
the following constructors:

op property‘:_=_ : String Element{String} -> MetaProperty .

op property‘:_=_ : String Element{Int} -> MetaProperty .

op property‘:_=_ : String Element{Float} -> MetaProperty .

op property‘:_=_ : String Element{Bool} -> MetaProperty .

op property‘:_=_ : String Element{MetaOid} -> MetaProperty .

op property‘:_=_ : String Element{MetaEnum} -> MetaProperty .

For example, the property name : "Person" is metarepresented as property : "name" = "Person".

• Unset properties: Properties that have not been set with any value yet are metarepresented by means
of the constructor:

8.2. Semantics of the MOF Reflection Facilities 165

op property‘:_ : String -> MetaProperty .

For example, the property name is metarepresented as property : "name".

• Object type name: a special property is defined to metarepresent the object type name of a MOF
Object instance:

op class‘:_ : String -> MetaProperty .

For example, the constant rdbms/Table is metarepresented as class : "rdbms/Table".

The MOF Object object type is represented by means of the following sorts and constructors in the
META-OBJECT theory:

sorts MetaObject MetaCid .

op MOF/Object : -> MetaCid .

op <_:‘MOF/Object‘|_> : MetaOid MetaPropertySet -> MetaObject .

For example, the Table instance of the relational schema of the example

< oid#Table(’Table0) : Table |

name : "Person",

column : OrderedSet{ oid#Column(’Column0)

:: oid#Column(’Column1)

:: oid#Column(’Column2) },

primaryKey : OrderedSet{oid#PrimaryKey(’PK0)},

foreignKey,

schema : oid#Schema(’Schema0)

>

is metarepresented as a MOF Object instance as follows:

< metaOid("oid#Table", ’Table0) : Object |

class : "Table",

property : "name" = "Person",

property : "column" =

OrderedSet{ metaOid("oid#Column", ’Column0)

:: metaOid("oid#Column", ’Column1)

:: metaOid("oid#Column", ’Column2) },

property : "primaryKey" =

OrderedSet{metaOid("oid#PrimaryKey",’PK0)},

property : "foreignKey",

property : "schema" = metaOid("oid#Schema", ’Schema0)

>

We refer to terms of the sort MetaObject as MOF Object instances. This fact is indicated by means of the
MOF/Object object type name, which forms part of the constructor symbol for metaobjects. Terms of sort

MetaObject can be viewed as the data metarepresentation of the objects of a model definition rM . Several
projector operators are also provided to obtain the different subterms that constitute a MOFObject term.

op oid : MetaObject -> MetaOid .

eq oid(< MOID:MetaOid : MOF/Object | MPS:MetaPropertySet >) =

MOID:MetaOid .

op class : MetaObject -> MetaCid .

eq class(< MOID:MetaOid : MOF/Object | MPS:MetaPropertySet >) =

MOF/Object .

op getProperties : MetaObject -> MetaPropertySet .

eq getProperties(< MOID:MetaOid : MOF/Object | MPS:MetaPropertySet >) =

MPS:MetaPropertySet > .

166 Chapter 8. Formalizing the MOF Reflection Facilities

A metarepresented object po is defined in a way independent of its corresponding metamodel realization

reflectMOFp�Mq. However, the definition, as data, of the corresponding object type is still needed to check if
the metarepresented object is well-formed. A metarepresented object contains the name of its object type,
called meta object type, by means of the class property. We define a new operator that projects the name
of the meta object type as:

op metaClassName : MetaEObject -> String .

eq class(< MOID:MetaOid : ecore/Object |

class : name:String, MPS:MetaPropertySet >) =

name:String .

A model definition rM can be represented as a configuration pM of MOF Object instances. The
META-MODEL theory instantiates the MODEL{OBJ :: TH-OBJECT} theory by means of the expression
MODEL{MetaObject}, where the view MetaObject is defined as follows

view MetaObject from TH-EOBJECT to META-OBJECT is

sort Cid to MetaCid .

sort Object to MetaObject .

sort ObjectOid to MetaOid .

sort Property to MetaProperty .

sort PropertySet to MetaPropertySet .

op noneProperty to noneMetaProperty .

op nullObject to nullMetaObject .

endv

Therefore, the META-MODEL theory reuses the support for OCL, which is provided in the
OCL-COLLECTION-TYPES{T :: TRIV} and OCL-COLLECTIONS{T :: TRIV}, and the support for both defin-
ing collections of objects and navigating through object-typed properties, which is provided in the MODEL{OBJ
:: TH-OBJECT} theory.

Let ro be an object, at the typed metalevel, in a metamodel definition �M, such that �M : MOF, or in
a model definition rM , such that rM : M, and let po be its metarepresentation at the typed metalevel. The
mappings ro ÞÑ po and po ÞÑ ro are provided by two equationally-defined functions that are declared as follows:

upObject : Object#MÑ MetaObject

downObject : MetaObject �ModelTypetMOFu ; Object#M
The function upModel is defined as the extension of the upObject function by applying it to each object
in a model definition rM . Likewise, the function downModel is defined as the extension of the downObject
function by applying it to each MOF Object instance in a model pM , such that pM � upModelp rMq.

The MOF meta-metamodel realization is provided by the reflectMOFp�MOFq theory, in and adhoc way, due
to its self-recursive definition. The functions upObject/downObject and upModel/downModel are defined for
the MOF meta-metamodel in the
MOF-REFLECTION theory, as follows:

op upObject : Object#MOF -> MetaObject .

op downObject : MetaObject ModelType{MOF} [Object#MOF] ~>

Object#MOF .

op upModel : ModelType{MOF} -> ModelType{MetaObject} .

op downModel : ModelType{MetaObject} ModelType{MOF} [Object#MOF] ~>

ModelType{MOF} .

where the last argument of the downObject and downModel operators is a value of the kind of the correspond-
ing Object#M sort, so that the operator symbol downModel can be used for other metamodel realizations,

as shown below. For example, the term downModel(upModel(�MOF), �MOF , nullObject#MOF)

is reduced to �MOF. For any other metamodel, this functions are likewise defined generically in the
EXT-MODEL{OBJ :: TH-OBJECT} theory, as follows:

op upObject : Object#MOF -> MetaObject .

8.2. Semantics of the MOF Reflection Facilities 167

op downObject : MetaObject ModelType{MOF} [Object#OBJ] ~>

Object#MOF .

op upModel : ModelType{MOF} -> ModelType{MetaObject} .

op downObject : ModelType{MetaObject} ModelType{MOF} [Object#OBJ] ~>

ModelType{OBJ} .

8.2.2 Semantics of the MOF Object object type

In our framework, the semantics of the MOF Object object type is defined in the META-MODEL theory,

independently of any metamodel realization reflectMOFp�Mq, by means of the equation

vObjectwMOF � TMETA-MODEL,MetaObject

so that only metarepresentations po, at the untyped metalevel, of objects ro, at the typed metalevel, are
instances of the Object object type. The instanceOf relation is defined for the Object object type by the
equivalence po : Object ðñ po P vObjectwMOF .

The META-MODEL theory introduces three sorts to define metarepresented model definitions pM : Con-
figuration{MetaObject}, ModelType{MetaObject}, and ConsistentModelType{MetaObject}. Given a meta-

model specification definition p�M, rCq, and its realization reflectp�M, rCq, which is a theory that includes the
META-MODEL theory as shown in Fig. 8.5, the sorts that are provided in the META-MODEL theory are:

• Configuration{MetaModel}, also denoted by M0
M for short, whose terms represent collections of

metarepresented objects. The semantics of the M0
M sort is defined as follows:

vM0
MwMOF � t pM | pM P TMETA-MODEL,ConfigurationtMetaObjectu ^

downModelp pM, �Mq : M0u.

and the isTypeOf relation rM : M0 is metarepresented by the equivalence

pM : M0
M ðñ pM P vM0

MwMOF .

• ModelType{MetaModel}, also denoted by MM for short, whose terms represent metarepresented model

definitions rM . The semantics of the MM sort is defined as follows:

vMMwMOF � t pM | pM P TMETA-MODEL,ModelTypetMetaObjectu ^pM : M0
M ^ downModelp pM, �Mq : Mu

and the structural conformance relation rM : M is metarepresented by the equivalence

pM : MM ðñ pM P vMMwMOF .

• ConsistentModelType{MetaModel}, also denoted by pM, CqM for short, whose terms represent metarep-

resented model definitions rM that satisfy a set C of OCL constraints. The semantics of the MM sort
is defined as follows:

vpM, CqMwMOF � t pM | pM P TMETA-MODEL,ConsistentModelTypetMetaObjectu ^pM : MM ^ downModelp pM, �Mq : pM, Cqu

and the constrained conformance relation rM : pM, Cq is metarepresented by the equivalence

pM : pM, CqM ðñ pM P vpM, CqMwMOF .

168 Chapter 8. Formalizing the MOF Reflection Facilities

Given a metamodel specification definition p�M, rCq, the tree and graph structure of the metarepresentationpM of a model definition rM , such that rM : M, is checked by means of the corresponding metamodel

realization reflectMOFp�Mq. A metarepresentation pM of a model definition rM satisfies the set C of OCL

constraints iff rM : pM, Cq, as defined in the metamodel specification realization reflectp�M, rCq. However,

the structural conformance relation pM : MM, and the constrained conformance relation rM : pM, Cq, can

also be metarepresented at the MOF metalevel, so that the theories reflectMOFp�Mq and reflectp�M, rCq are
not needed. In the following sections we explain: (i) the semantics of the MOF Object operations, (ii)
how they can be used to traverse the graph and the tree structure of a metarepresented model definitionpM , such that pM : MM, in a generic way, and (iii) how OCL constraints can also be metarepresented at the

MOF metalevel, providing support for the structural conformance relation pM : MM and the constrained
conformance relation rM : pM, Cq at the MOF metalevel.

8.2.3 Semantics of the MOF Object Operations

Given a metamodel definition �M, such that �M : MOF, the MOF Object object type provides a set of
operations that permits querying and manipulating the properties of metarepresented objects po, such thatpo : Object, that belong to a metarepresented model definition pM , such that pM : MM. In this section, we
explain how these operations are specified as equationally-defined functions in the META-MODEL theory:

• get: This operation obtains the value of a metarepresented property. The get operation is defined
as two sets of equationally-defined functions in the META-MODEL theory, depending on the type of the
returning value:

– Returns a basic data type value or a collection of basic values: Given the set

T � tBool ,String , Int ,Float ,MetaEnum,MetaOidu

of sort names in the theory META-MODEL, we define a family of indexed functions

tgett :vObjectwMOF � vStringwMOF � vMOFMwMOF ;

TMETA-MODEL,Collection�ttuut P T ,

where each function gett obtains a value of sort Collection � ttu when the metarepresented
property is typed with the corresponding type t. This partial function is defined for tuples of

the form ppo,name, xMq, where po : Object, name : String, and xM : MOFM. In this case, the
gett function is defined by means the following equalities:

gettppo,name, xMq � value such that value P TMETA-MODEL,Collection�ttu

when pproperty : name � valueq P getPropertiesppoq
gettppo,name, xMq � defaultValuetppo,name, xMq

when pproperty : nameq P getPropertiesppoq
where each function in the family of indexed functions

tdefaultValuet :vObjectwMOF � vStringwMOF � vMOFMwMOF ;

TMETA-MODEL,CollectionttuutPT ,

obtains the default value for a metarepresented property, depending on its definition in xM. A
property of a metarepresented object po is defined by means of a Property instance rp that is

also metarepresented in xM. A Property instance rp is defined by means of multiplicity meta-
properties (lower, upper, ordered, unique), and the defaultValue and type meta-properties, as
indicated in Section 6. A defaultValuet function is only defined when the type of the metarepre-
sented property is neither a collection nor an object type, and its type meta-property corresponds
to t. In addition, the name meta-property of rp must coincide with the name argument. When
the meta-property defaultValue of rp is set, the returned value is the defaultValue meta-property
value. In any other case, the defaultValuet is defined as follows:

8.2. Semantics of the MOF Reflection Facilities 169

defaultValueBoolppo,name, xMq � false

defaultValueStringppo,name, xMq � ””

defaultValueIntppo,name, xMq � 0

defaultValueFloatppo,name, xMq � 0.0

These functions are provided as equationally-defined operators in the META-MODEL theory. These
operators are declared, in Maude notation, as follows:

op _.‘getBool‘(_,_‘) : MetaObject String

ModelType{MetaObject} ~> Collection+{Bool} .

op _.‘getString‘(_,_‘) : MetaObject String

ModelType{MetaObject} ~> Collection+{String} .

op _.‘getInt‘(_,_‘) : MetaObject String

ModelType{MetaObject} ~> Collection+{Int} .

op _.‘getFloat‘(_,_‘) : MetaObject String

ModelType{MetaObject} ~> Collection+{Float} .

op _.‘getMetaEnum‘(_,_‘) : MetaObject String

ModelType{MetaObject} ~> Collection+{MetaEnum} .

op _.‘getMetaOid‘(_,_‘) : MetaObject String

ModelType{MetaObject} ~> Collection+{MetaOid} .

These functions metarepresent, at the untyped metalevel, the projector functions that permit
obtaining property values from an object ro, such that ro P T

reflectMOFp rMq,Object#M
, and ro P rM

where rM : M, at the typed metalevel. For example, given an object rt that represents the
following Table instance

< oid#Table(’Table0) : Table |

name : "Person",

column : OrderedSet{ oid#Column(’Column0)

:: oid#Column(’Column1)

:: oid#Column(’Column2) },

primaryKey : OrderedSet{oid#PrimaryKey(’PK0)},

foreignKey,

schema : oid#Schema(’Schema0)

>

in a model definition rM , such that rM : RDBMS. The OCL expression rt . name is metarepre-
sented at the MOF metalevel as

upObject(rt) . getString("name", upModel(�RDBMS)).

Note that the last argument �RDBMS is needed to compute the default value of the property in
case the corresponding value-typed property is unset.

– Returns a metarepresented object or a collection of metarepresented objects: When the metarep-
resented property is typed with an object type and is set with a collection of metarepresented
object identifiers, the getMetaObject operation permits the navigation of the graph structure that

is kept in a metarepresented model definition pM . The function

getMetaObject :vObjectwMOF � vStringwMOF � vMMwMOF ;

TMETA-MODEL,CollectiontMetaObjectu,

permits navigating through metarepresented object-typed properties. This function is provided
as an equationally-defined function in the META-MODEL theory as:

op _.‘getMetaObject‘(_,_‘) :

MetaObject String ModelType{MetaObject}

~> Collection+{MetaObject}

170 Chapter 8. Formalizing the MOF Reflection Facilities

This function is defined for tuples of the form ppo,name, pMq, where po : Object, name : String,

and pM : MM. The getMetaObject operator metarepresents, at the untyped metalevel, the projec-
tor function that permits navigating the graph structure of a model definition through object-
typed properties at the typed metalevel. For the example given above, the OCL expression that
is represented by the term rt . schema(rM)

at the MOF base level, is metarepresented as the term

upObject(rt) . getMetaObject("schema", upModel(rM))

at the untyped metalevel.

• set: The set operation is used to assign a value to an object property. The set operation is defined as
a family of functions that are indexed by the type of the corresponding property to be initialized:

tsett : vObjectwMOF � vStringwMOF � TMETA-MODEL,Collection�ttu ; vObjectwMOFut P T .

A function sett is defined for tuples of the form ppo,name, valueq, where: po, such that po : Object, is
the metarepresented object that owns the property to be initialized; name, such that name : String,
is the name of the property to be initialized; and value, such that value P TMETA-MODEL,Collection�ttu, is
the new value for the property. To define a function sett, we find two cases:

– When the property to be initialized is still unset, i.e.,
pproperty : nameq P getPropertiesppoq, a sett function is defined by the equality:

settppo,name, valueq � po1,
where pproperty : name � valueq P getPropertiesppo1q and pproperty : nameq R getPropertiesppo1q.

– When the property to be initialized is already set, i.e.,
pproperty : name � oldValueq P getPropertiesppoq, where oldValue P TMETA-MODEL,Collection�ttu, a
sett function is defined by the equality:

settppo,name, valueq � po1,
where pproperty : name � valueq P getPropertiesppo1q and pproperty : name � oldValueq R
getPropertiesppo1q.

These functions are specified as equationally-defined operators in the META-MODEL theory, in Maude
notation, as follows:

op _.‘set‘(_‘,_‘) : MetaObject String Collection+{Bool}

~> MetaObject .

op _.‘set‘(_‘,_‘) : MetaObject String Collection+{String}

~> MetaObject .

op _.‘set‘(_‘,_‘) : MetaObject String Collection+{Int}

~> MetaObject .

op _.‘set‘(_‘,_‘) : MetaObject String Collection+{Float}

~> MetaObject .

op _.‘set‘(_‘,_‘) : MetaObject String Collection+{MetaEnum}

~> MetaObject .

op _.‘set‘(_‘,_‘) : MetaObject String Collection+{MetaOid}

~> MetaObject .

op _.‘set‘(_‘,_‘) : MetaObject String Collection+{MetaObject}

~> MetaObject .

The last operator permits initializing an object-typed property with the collection of object identifiers
that correspond to a given collection of objects. A sett function is not side-effect free, because
it manipulates a metarepresented object. A function of this kind does not metarepresent any OCL
operator but provides the capability to manipulate model definitions by manipulating their constituent
objects. For example, the property column of the Table instance rt, defined above, can be manipulated
by means of the following term:

upObject(rt).set("column",

OrderedSet{ metaOid("oid#Column", "Column0") }) .

8.2. Semantics of the MOF Reflection Facilities 171

• getMetaClass: The function

getMetaClass : vObjectwMOF � vMOFMwMOF ; vObjectwMOF.

is a partial function that provides metainformation about the object type of a given metarepresented
object po. Recall that given an object ro, such that ro P T

reflectMOFp rMq,Object#M
, at the typed met-

alevel, the Object instance po metarepresents ro at the untyped metalevel by means of the upObject
function, i.e., po � upObjectproq. The getMetaClass function obtains the metarepresentation pcl of the

Class instance rcl , such that rcl : Class and rcl P �M, that forms part of the object type defintion�OT, such that ro : OT. That is, there is an object type definition �OT, such that �OT : MOF,

treep�OT,�MOFq � treep�M,�MOFq, rootp�OT,�MOFq � rcl , and ro : OT. The getMetaClass function
provides the introspection capability to a MOF framework by bridging an arbitrary metarepresented
object po to the metadata that describes its object type in the corresponding metamodel definition.

The getMetaClass function is defined for pairs of the form ppo, xMq, where po : Object and downObjectppoq P
T

reflectMOFp rMq,Object#M
, and xM : MOFM. In this case, the semantics of the getMetaClass function is

defined by the equality:

getMetaClassppo, xMq � xmo,

such that

xmo : Object ^

xmo P xM ^

downObjectpxmoq : Class ^

getStringpxmo, ”name”,zMOFq � metaClassNameppoq.
This function is specified in the META-MODEL theory as the equationally-defined operator

op _.‘getMetaClass‘(_‘) : MetaObject ModelType{MetaObject}

~> MetaObject .

For example, the metarepresentation of the Class instance that constitutes the root object of the�Table object type definition in the metamodel definition �RDBMS is obtained from the Table instancert that is provided above, as follows:

upObject(rt).getMetaClass(upModel(�RDBMS))

Note that the instanceOf relation is reified as data at the untyped metalevel by means of the class

meta-property of Object instances. Given a model definition rM and a metamodel definition �M, this

meta-property constitutes an edge between the graphs graphp rM, �Mq and graphp�M,�MOFq, which are
meta-represented at the untyped metalevel. The getMetaClass function permits navigating edges of
this kind.

• container: A model definition rM , such that rM : M, can be viewed as a tree treep rM, �Mq. When rM
is metarepresented at the MOF metalevel as pM , such that pM � upObjectp rMq, the function

container : vObjectwMOF � vMMwMOF � vMOFMwMOF ; vObjectwMOF

permits traversing treep rM, �Mq at the untyped metalevel using a bottom-up strategy. The function

container is defined for tuples of the form ppo, pM, xMq, where:

po : Object ^ pM : MM ^ xM : MOFM ^

downObjectppo, �Mq � rootpdownModelp pM, �Mq, downModelpxM,�MOFqq.

The container function is defined by the equality

containerppo, pM, xMq � getMetaObjectppo, getStringpyprop, ”name”, xMq, pMq,

172 Chapter 8. Formalizing the MOF Reflection Facilities

where:

yprop : Object ^ yprop P xM ^

getBoolpyprop, ”isComposite”, xMq � true ^

getMetaObjectpyprop, ”class”, xMq P

BagtgetMetaClassppo, xMqu Y superClassespgetMetaClassppo, xMq, xMq;

and the function

superClasses : vObjectwMOF � vMOFMwMOF ; TMETA-MODEL,BagtMetaObjectu

obtains the supertypes of the corresponding object type, and is defined as follows:

superClassesppo, xMq � getMetaObjectppo, ”superClass”, xMq Y¤
po1 P ! po1 : Object |po1 P getMetaObject ppo, ”superClass”, pMq

) getMetaObjectppo1, ”superClass”, xMq;

We also consider the function

containments : vObjectwMOF � vMMwMOF � vMOFMwMOF ; TMETA-MODEL,BagtMetaObjectu

that permits traversing the tree structure of a model definition following a top-down strategy. The

containments function is defined for tuples of the form ppo, pM, xMq, where: po : Object, pM : MM,xM : MOFM, and downObjectppoq is not a leaf node in treep rM, �Mq. The containments function is
defined as follows:

containmentsppo, pM, xMq �¤
rp P

! rp : Property | upObjectprpq P pM ^

containmentprp, rMq � true

) asBagpgetMetaObjectppo,
getStringpupObjectprpq, ”name”, xMq, pMqq

where asBag corresponds to the OCL operation that converts a collection of elements into a bag of
elements, and the containment function checks whether a property is defined as the opposite property
of an isComposite property, as shown in Section 6.

The containment and containments functions are specified as equationally-defined operators in the
META-MODEL theory as follows:

op _.‘container‘(_,_‘) :

MetaObject ModelType{MetaObject} ModelType{MetaObject}

~> MetaObject .

op _.‘containments‘(_,_‘) :

MetaObject ModelType{MetaObject} ModelType{MetaObject}

~> Bag{MetaObject} .

Taking into account the relational schema �rsPerson, which is shown at level M1 of the MOF frame-

work in Fig. 2.2, such that �rsPerson : RDBMS, the container of the table rt, defined above, in�rsPerson is a Schema instance, which can be obtained by reducing the following term:

upObject(rt).container(�rsPerson , �RDBMS).

• isSet: The function

isSet : vObjectwMOF � vStringwMOF ; vBooleanwMOF

indicates whether a property is set in a specific Object instance or not. This function is defined
for pairs of the form ppo,nameq, where po : Object, name : String, and pproperty : nameq P
getPropertiesppoq or pproperty : name � valueq P getPropertiesppoq, where value is the value of the
property. The isSet function is defined by means of the equality:

8.2. Semantics of the MOF Reflection Facilities 173

po . isSetpPropNameq �

" true if pproperty : PropName � valueq P
getPropertiesppoq

false if pproperty : PropNameq P getPropertiesppoq
This function is specified in the META-MODEL theory as the equationally-defined operator

op _.‘isSet‘(_‘) : MetaObject String ~> Bool .

For the example, we can check whether the column property of the table t is set or not as follows:

upObject(rt) . isSet("column").

When the property that is checked does not belong to the object type of the corresponding object,
the isSet function remains undefined. For example, the property type does not belong to the Table
object type, so that the resulting value is considered an undefined value, i.e.,

upObject(rt) . isSet("type") . oclIsUndefined = true.

• unset: The function

unset : vObjectwMOF � vStringwMOF ; vObjectwMOF

deletes the value of a property, referred to by its name. This function is defined for pairs of the
form ppo,nameq, where po : Object, name : String, and pproperty : nameq P getPropertiesppoq or
pproperty : name � oldValueq P getPropertiesppoq, where oldValue is the value of the property. To
define the function unset , we find two cases:

– When the property to be unset is still unset, i.e.,

pproperty : nameq P getPropertiesppoq,
the unset function is defined by the equation:

unsetppo,nameq � po.
– When the property to be unset is already set, i.e.,

pproperty : name � oldValueq P getPropertiesppoq,
the unset function is defined by the equation:

unsetppo,nameq � po1,
where all the properties of po are copied to po1 but pproperty : nameq P getPropertiesppo1q and
pproperty : name � oldValueq R getPropertiesppo1q.

This function is specified in the META-MODEL theory as the equationally-defined operator

op _.‘unset‘(_‘) : MetaObject String ~> MetaObject .

In the example, the property column of the table t can be unset as follows:

upObject(rt) . unset("column")

• equals: This operator indicates if two MOF Object instances xo1 and xo2 are the same by com-
paring their identifiers. This operator is already provided as the OCL operator =. This operator
is equationally-defined in the MODEL{OBJ :: TH-OBJECT} theory for Object terms. Since the sort
Object of the TH-THEORY is mapped to the MetaObject sort of the META-OBJECT theory, by means
of the MetaObject view, this operator is already defined for Object instances, i.e., terms of sort
MetaObject. This fact applies to the rest of OCL operators as well.

174 Chapter 8. Formalizing the MOF Reflection Facilities

8.3 Summary

In this Section, we have formalized the MOF Reflection Facilities, which permit querying and manipulating
any model definition by means of the operations of the Object object type. This object type introduces a
metalevel, called untyped metalevel, where each model definition rM that is typed with a given model type
M, at the metalevel, can be metarepresented independently of the corresponding metamodel realization

reflectMOFp�Mq. Therefore, more generic functions can be defined at the untyped metalevel.
The operations of the Object object type are provided as equationally-defined operators in the META-MODEL

theory of our framework, where each operation has a specific purpose:

• getMetaObject: permits traversing the graph structure of a model definition rM ;

• container/containments: permit traversing the tree structure of a model definition rM ;

• getMetaClass: provides introspection, so that the metadata that describes the object type of a
given object can be queried; and

• set: provides structural reflection that permits manipulating a model definition rM .

In addition, the OCL-COLLECTIONS{TH-OBJECT}{MetaObject} and MODEL{MetaObject} theories are in-
cluded in the META-MODEL theory, so that OCL operators can also be evaluated over metarepresented model
definitions.

175

Part III

Applications

Chapter 9

Tools and Applications

In this Section, we provide a set of applications of the algebraic MOF framework that has been presented
throughout Sections 5-8. Some of these applications are other modeling environments where models are
managed as first-class citizens. These applications have provided the experimentation that is needed to
validate our approach.

Taking into account the formalization of the MOF framework that has been presented in this work,
we developed several tools for: (i) OCL constraint validation (MOMENT-OCL); (ii) model transformations
by means of the QVT Relations language (MOMENT-QVT); and (iii) a preliminary version of a model
management framework with traceability support (MOMENT). Some of these tools have been applied in
other universities for academical purposes, and the MOMENT-QVT engine has also been applied in industry.
The experience in the development of these tools and the experimentation with them has enabled the current
specification of the algebraic MOF framework. These tools are based on an algebraic representation of
metamodels that is introduced in [12]. The algebraic representation that has been presented in Section 6 is
slightly different: it has been redesigned to take advantage of the object-oriented programming support of
Maude, so that Maude-based formal verification facilities can be reused.

In subsequent sections, we describe: (i) the integration of the Algebraic MOF framework into informal
MOF metamodeling environments, such as the Eclipse Modeling Framework (EMF); (ii) a brief description
of the MOMENT-OCL tool; (iii) a brief description of the MOMENT-QVT tool, indicating its applications
to other areas; (iv) the first experiments with the model management framework; and (v) an example of a
graph rewriting system by using our algebraic MOF framework.

9.1 Interoperating Conventional and algebraic MOF frame-
works

Informal MOF-based modeling frameworks provide a MOF metamodel implementation MOFMOF that may
include the metamodel of OCL-like languages. Some of these modeling frameworks have an informal im-

plementation of the reflection mechanism �MMOF ÞÑ reflectMOFp�MMOFq, which realizes a metamodel as a
program in a conventional language. The resulting metamodel application usually consists of an editor for

models �MMOF : MMOF, having facilities for model serialization to XMI, repository functionality, graphical
representation, informal text generation or informal model transformations.

To formalize conventional modeling environments, we provide a generic bidirectional function σ that

merely performs a syntactic representation change for metamodel specification definitions p�MMOF,�CMOFq ÞÑ
p�M, rCq, where �M : pMOF, CMOFq and rC : pOCL, COCLq in our algebraic framework. Given a metamodel

definition �MMOF in an informal MOF framework and a model definition �MMOF that conforms to �MMOF,

the function σ is defined by the mapping �MMOF ÞÑ rM , where rM : M and M represents the model type

that corresponds to �MMOF. The function σ is extended to metamodel specification definitions of the form

p�MMOF,�CMOFq as follows:

σp�MMOF,�CMOFq � pσp�MMOFq, σp�CMOFqq.

178 Chapter 9. Tools and Applications

The function σ is also easily defined for sets of OCL constraint definitions �CMOF as follows:

σprCMOFq �
¤

rcMOF P rCMOF

σprcMOFq,

where rcMOF : OCLMOF, σprcMOFq : pOCL, COCLq, and OCLMOF is the definition of the OCL metamodel in
the informal MOF framework. Therefore, rcMOF can be translated by means of the function σ as any other

model definition. Once a metamodel specification definition p�MMOF,�CMOF q is formally represented as data

σp�MMOF ,�CMOFq, its algebraic semantics is provided by the mel theory reflectpσp�MMOF,�CMOFqq.
The function σ constitutes a bijection that can also map a formal data representation of a metamodel or

a model into their corresponding informal representation. This bidirectional bridge establishes a separation
layer between informal modeling frameworks and our MOF formal framework. On the one hand, σ and σ�1

provide a framework where theoreticians can work in the formalization of model-based techniques without
the requirement of knowing the ever-changing technology that is based on standards like MOF, UML, OCL,
XMI or XML. On the other hand, σ�1 and σ allow considering the mentioned standards as well-defined
interfaces to apply formal techniques in a transparent way.

9.1.1 Interoperating the EMF and our MOF Algebraic Framework

The Eclipse Modeling Framework (EMF) provides a close implementation to the MOF metamodel, which is
called the Ecore metamodel. The initial purpose of EMF was to unify XML, Java and UML technologies.
The EMF provides an informal implementation of the reflection mechanism that permits obtaining the meta-

model realization reflectMOFp�MEcoreq from an Ecore metamodel definition �MEcore. The EMF metamodel

realization reflectMOFp�MEcoreq also offers a tree-like editor to define models. The EMF implements the
MOF reflection facilities in the EObject and EFactory classes and provides XMI 2.0 serialization support.
Furthermore, the Eclipse Modeling Project provides OCL support for Ecore metamodels and the project
Graphical Modeling Framework permits attaching a graphical representation to a specific Ecore metamodel.

The mapping between the EMF and our Maude-based framework for MOF is provided by the bijection

σ. The σ function maps a model �MEMF that has been defined in the EMF to a term of sort Model-
Type{MetaObject}, i.e., to the metarepresentation pM of a model definition rM : M, where M is the cor-
responding model type that is defined as an Ecore model in the EMF. σ is implemented as a set of code
templates that are applied by a code template engine to obtain the term pM : MM. σ is a generic mapping
that can be applied to any Ecore metamodel:

• To obtain the data representation of a metamodel �M : Ecore.

• To obtain the data representation of an OCL constraint rc : OCL.

• To obtain the data representation of a model that conforms to another EMF metamodel rM : M.

Note that we use the Ecore metamodel as the implementation of the EMOF meta-metamodel.

Our algebraic MOF framework as an Eclipse plugin

The σ function is implemented in an Eclipse plugin, which permits representing an EMF model definition�MEMF as a term of sort ModelTypetMetaObjectu. This plugin is available in [92]. Once installed, the plugin
adds a menu, called AlgebraicMOF. When we choose a XMI file that contains an EMF model definition, this
menu provides several functionalities:

• ToMetaObjectConfiguration, (3) in Fig. 9.1: applies the σ function to an EMF model definition rM ,

such that �MEMF r: �MEMF , obtaining its metarepresentation pM : MM. In this case, �MEMF corresponds

to the metamodel definition in the EMF framework, and �M to the metamodel definition in the

algebraic MOF framework. Note that in the EMF, the conformance relation �MEMF r: �MEMF can only
be characterized as data.

• FromMetaObjectConfiguration, (2) in Fig. 9.1: applies the σ�1 function to a model definition rM : M
that is metarepresented as pM : MM in the algebraic MOF framework. This functionality is enabled
for files with extension .maude. A file of this kind must contain a first line with the URI that identifies
the corresponding metamodel definition, and the term representing pM . The uri has to be given using
a specific format:

***$ nsPrefix - " nsUri "

9.1. Interoperating Conventional and algebraic MOF frameworks 179

Figure 9.1: The algebraic MOF framework into the Eclipse platform.

where nsPrefix represents the value of the nsPrefix attribute of the root Package instance of the

metamodel definition �MEMF , and nsUri represents the value of its nsUri attribute. For example,
to parse a model definition rM : Ecore that is metarepresented as pM : EcoreM, we must add the
following line:

***$ ecore - "http://www.eclipse.org/emf/2002/Ecore"

• ToTheory, (1) in Fig. 9.1: applies the reflectMOF function to a metamodel definition �MEMF . In

fact, the obtained result corresponds to the theory reflectMOFpdownModelpσp�MEMF q,�Ecoreqq, which
is represented as a Maude module.

To apply the σ and σ�1 functions to a model definition �MEMF , such that �MEMF r: �MEMF , the

corresponding metamodel definition �MEMF must be available as a plugin, see [98] for further details on
using EMF.

Taking into account that we use the Ecore metamodel as the implementation of the MOF metamodel,

recall the metamodel definition �RDBMS, such that �RDBMS : Ecore, and the model definition �rsPerson,

such that �rsPerson : RDBMS, that were defined in Fig. 2.2.

On the one hand, to obtain the �RDBMS metamodel definition, we apply the ToMetaObjectConfig-
uration method to the file that contains its definition in EMF. This provides the metarepresentation{RDBMS : EcoreM of the model definition �RDBMS : Ecore, which is shown in Appendix B. If we apply the
FromMetaObjectConfiguration method to the file that is obtained by means of ToMetaObjectConfiguration,
we recover the original metamodel definition in EMF. Applying the method ToTheory obtains the theory

reflectMOFp �RDBMSq, so that model definitions rM : RDBMS can be defined. This theory is provided in

Appendix C. The Maude module that represents the mel theory reflectp�Ecore,Hq is provided in Appendix
A.

On the other hand, when we apply the ToMetaObjectConfiguration method to the model definition�rsPerson, we obtain the metarepresentation {rsPerson : RDBMSM, which is shown in Appendix E. If
we apply the FromMetaObjectConfiguration to the resulting file, we obtain the original model definition in
EMF.

Once the reflectMOFp �RDBMSq theory is obtained, we can apply the downModel operator as follows:

red downModel(model, mm(nullObject#rdbms), nullObject#rdbms) .

where model is a constant that represents the metarepresented model definition{rsPerson that is obtained by means of ToMetaObjectConfiguration.

180 Chapter 9. Tools and Applications

This plugin depends on another plugin, called Maude Development Tools, that integrates Maude into
the Eclipse platform. The Maude Development Tools plugin offers a Java library that permits interacting
with Maude from Java code, and a set of editing facilities to develop Maude programs within the Eclipse
platform. This plugin has been developed as part of the MOMENT Project and is available at [92].

Pending work

In this work, we have provided a detailed definition of the reflect function that permits projecting a meta-

model specification definition p�M, rCq as a theory, enabling the definition rM of models that both conform

to M, rM : M, and satisfy the OCL constraints rC, rM |ù C. In the current implementation, we provide an
specification of the reflectMOF function, which is used in the reflect function. The reflectMOF function is the
function used in the ToTheory method.

Despite the algebraic specification of the generic semantics of OCL operators and the mathematical
definition of the reflect function that is provided in Section 7, OCL constraint definitions cannot be given
using the concrete syntax of the OCL language in our current implementation. This feature is provided
by means of the reflect function. To define the reflect function, we have taken advantage of our previous
experience with a prototype for OCL constraint validation, called MOMENT-OCL [11]. MOMENT-OCL uses
the OCL support of the Kent Modeling Framework [99] to parse OCL expressions that are given in textual
format, and traverses the abstract syntax tree of an OCL expression, generating a term that represents the
OCL expression in Maude, in a similar way as we do in this work. In future work, we will define a new
version of the MOMENT-OCL tool, using the Algebraic MOF framework and specifying the reflect function
that we have defined in this work. As front-end, we will use the OCL support of the Model Development
Tools project [100], which defines the abstract syntax of the OCL language as an EMF metamodel, and
provides a parser for OCL expressions.

Another choice that we will also take into account to provide support for the concrete syntax of the
OCL language, consists in defining the semantics of the OCL language as indicated in the Rewriting Logic
Semantics project [101, 102]. The first choice permits defining the semantics of the OCL language following
a model-based approach, where the concrete syntax of the OCL language is provided by the EMF-based
front-end, OCL constraint definitions are provided as model definitions in EMF, and the formal semantics of
the OCL language is provided in mel and specified in Maude. However, if we want to reuse the specification
of the OCL language for other purposes, like formal analysis or model transformations, we depend on the
front-end implementation. The second choice permits defining both the syntax and semantics of the OCL
language in Rewriting Logic directly, and thereby has a direct implementation in Maude. In the latter case,
model-based support is not given directly but the concrete syntax of the OCL language is available as mel
signatures, so that OCL support can be easily reused for other purposes.

Considering other Modeling Frameworks

Not just the EMF can be mapped to our algebraic MOF framework by means of σ: other MOF-like modeling
frameworks based on similar concepts can also be mapped to our algebraic MOF framework. Their main
differences are usually syntactic. Two approaches can be followed to reuse our specification in other modeling
frameworks:

• Integrating Maude into the corresponding framework and redeveloping σ to map concepts from the
corresponding informal meta-metamodel to the formalization of the Ecore meta-metamodel.

• Defining a foreign meta-metamodel, MOF’, in EMF and defining a bidirectional model transforma-
tion between MOF’ and Ecore meta-metamodels. A model transformation can be viewed as an
equationally-defined function

f : ConsistentConfigurationtMOF’u Ñ ConsistentConfigurationtEcoreu

that changes the syntactical representation of a metamodel specification by means of the mapping f :�MMOF’ ÞÑ �MEcore, where �MMOF’ : MOF’ and �MEcore : Ecore. Some experiments in mapping meta-
metamodels have been already reported in [103], where the authors map the meta-metamodel of the
Domain-Specific Languages tools framework and the Ecore meta-metamodel of the EMF. Therefore,
Ecore is used as a pivot meta-metamodel and σ can be reused as is.

Both approaches should take into account the transformation of constraints that are specified in different
constraint definition languages. For example, LINQ in the DSL tools and OCL in the EMF. Nevertheless,

9.2. MOMENT-OCL 181

Figure 9.2: Tree editor of the MOMENT-OCL tool.

metamodel-based support is not always available for languages of this kind, which are usually grammar-
based. In these cases, alternative ad-hoc solutions to model transformations are needed to traverse the
corresponding abstract syntax trees of constraint expressions.

9.2 MOMENT-OCL

MOMENT-OCL [11] is a tool for OCL constraint validation and OCL query evaluation that is integrated

into the EMF. An EMF model definition rMEMF conforms to a metamodel definition �MEMF that is defined
as an Ecore model definition, where Ecore is the meta-metamodel of the EMF. MOMENT-OCL follows the
philosophy that has been presented in Section 7 to represent OCL expressions as terms in an algebraic theory.

This theory is generated from a pair (�MEMF , ocl-expression), where �MEMF is a metamodel definition in
the EMF, and ocl-expression is either an OCL constraint or an OCL query that is given in textual form.
MOMENT-OCL uses the OCL library of the Kent Modeling Framework [99] as front-end to parse OCL
expressions, and the EMF as the front-end for the metamodeling framework. MOMENT-OCL provides the
following functionality:

• Definition of OCL expressions, allowing the definition of OCL invariants and OCL queries. OCL
expressions are defined for a specific metamodel definition in EMF. Fig. 9.2 shows the tree editor that
constitutes the MOMENT-OCL tool interface. In the editor, we can add model nodes, representing
specific metamodel definitions. A model node has properties, by means of which the metamodel
definition and the model definition to be queried are referred to. These properties are shown in the
common EMF Properties view. Within a model node, the user can define context nodes, representing
the context of OCL expressions. In a context node, the user can add OCL invariants or OCL queries.
All the OCL expressions that are defined within a context node have the same contextual type,
indicated in a property of the corresponding context node.

• Syntactic and semantic analysis, indicating whether an OCL expression is well-formed or not, and
whether an OCL constraint is meaningful for a specific metamodel definition or not. These tasks are
performed by the OCL library of the Kent Modeling Framework.

• Generation of the algebraic representation of OCL expressions, providing the Maude code that repre-
sents the operators and terms that are generated for a given OCL expression. Note that the generated
code is not exactly the same that has been presented in Section 7, due to the aforementioned repre-
sentational differences.

182 Chapter 9. Tools and Applications

Figure 9.3: Evaluation of OCL expressions in the MOMENT-OCL tool.

Figure 9.4: Console view of the MOMENT-OCL tool.

• Execution of OCL invariants and OCL queries. In the tree view, when an OCL invariant is evaluated
over a specific model definition rM , referred to in the corresponding model node, the icon of the
corresponding OCL invariant node in the tree view changes its color indicating the result, as shown
in Fig. 9.3: red if the invariant has failed, green if the invariant has succeeded, and yellow if there
has been an error during the evaluation of the OCL constraint. As explained in Section 7, an OCL
expression is represented by a term, whose equational simplification, by using the equations that are

generated for the pair (�MEMF , ocl-expression) results in a canonical form that represents the resulting
value of the OCL expression. The result that is obtained by the evaluation of an OCL invariant or
an OCL query, i.e., the resulting term, is shown in the console view of the tool, shown in Fig. 9.4.
Despite the algebraic representation of the resulting term, it is shown in the concrete syntax format
of the OCL language, thanks to the mixfix notation that is supported by Maude.

• Persistence of OCL expressions, in textual format.

Fig. 9.5 shows the components of the MOMENT-OCL prototype that permit the execution of algebraic
OCL expressions over EMF model definitions:

• The OCL Projector component is the module that projects the OCL expression to Maude code. It
makes use of the Kent OCL library [99] to validate the syntax and the semantics of the expression.
The process of compilation from OCL to Maude follows the typical structure of a language processor.
The process is divided in two phases: an initial analysis phase and a second synthesis phase.

In the first phase, we have reused the OCL support of the Kent Modeling Framework (KMF), which
provides lexical, syntactic and semantic analysis of OCL expressions over an EMF model definition.
KMF analyzes an OCL expression, taking into account the semantics of the model definition, and
produces an Abstract Syntax Tree (AST) to represent the data that is needed in the synthesis phase.

In the second phase, once an OCL expression has been analyzed by KMF correctly, the AST is traversed
and Maude code for body expressions, queries and invariants, is produced in order to evaluate OCL
expressions over EMF model definitions. In MOMENT-OCL, the functions getExpTheory and getEx-
pTerm that are defined in Section 7 are likewise implemented in Java. However, instead of traversing

9.3. MOMENT-QVT 183

Figure 9.5: Overview of the architecture of the MOMENT-OCL tool.

a model definition rc : OCL that represents the corresponding OCL expression, MOMENT-OCL tra-
verses the AST of the OCL expression, provided by KMF. Another difference with the specification
of the OCL language that is given in Section 7 is that MOMENT-OCL does not support undefined
values in OCL expressions.

• The Module Loader component obtains the algebraic specification from an EMF metamodel. This
algebraic specification is extended with the Maude code obtained from the compilation of OCL expres-
sions by means of the OCL Projector component. The Module Loader uses three other components:
the M2 Projector, which obtains the algebraic representation of a metamodel definition; the M1 Bridge,
which projects a model definition rM as a term of the corresponding algebraic theory; and the Kernel
Loader, which loads the corresponding Maude modules, providing the formal environment where OCL
expressions can be evaluated over the model definition rM .

• The OCL Editor permits the definition of OCL queries and invariants over EMF model definitions,
and provides syntactic and semantic analysis of the expressions by reusing this functionality from the
KMF, as indicated above.

9.3 MOMENT-QVT

In MDA, model transformations have become a relevant issue by means of the standard
Query/Views/Transformations (QVT) [23]. As indicated in [104], since a software artifact can be viewed as
a model definition, model transformation is the basic mechanism that permits the manipulation of software
artifacts.

In this section, we focus on the MOMENT-QVT tool, a model transformation engine that provides partial
support for the QVT Relations language. This tool is based on an algebraic operator, the ModelGen operator,
whose axioms are generated from a model transformation defined by using the QVT Relations language.
Some first experiments with model transformations were provided in [3], and the model transformation
engine was proposed in [5, 6]. Since the ModelGen operator is algebraically specified in Maude, this term
rewriting system is used as the underlying runtime environment for model transformations in MOMENT.
This fact provides an efficient environment to execute the ModelGen operator.

9.3.1 The QVT Relations Language and the ModelGen Operator

In the QVT Relations language, a model transformation is defined among several metamodels, which are
called the domains of the transformation. A QVT transformation is constituted by QVT relations, which
become declarative transformation rules. A QVT relation specifies a relationship that must hold between
the model objects of different candidate model definitions. The direction of the transformation is defined
when it is invoked by choosing a specific domain as target. If the target domain is defined in the QVT
transformation as enforce, a transformation is performed by creating the corresponding elements in the
target model definition. If the target domain is defined as checkonly, just a checking is performed, without
creating any new element in the target model definition. Both kinds of transformations are used in our
approach.

A relation can also be constrained by two sets of predicates, a when clause and a where clause. The
when clause specifies the conditions under which the relation needs to hold. The where clause specifies the
condition that must be satisfied by all model objects participating in the relation.

A transformation contains two kinds of relations: top-level (marked with the top keyword) and non-top-
level. The execution of a transformation requires that all its top-level relations hold, whereas non-top-level

184 Chapter 9. Tools and Applications

relations are required to hold only when they are invoked directly or transitively from the where clause of
another relation.

As example, we have taken the UmlToRdbms transformation that is presented in the MOF QVT final
specification1. The top relation below specifies the transformation of a Class into a Table. By means of
the where clause, the relation ClassToTable needs to hold only when the PackageToSchema relation holds
between the package containing the class and the schema containing the table. By means of the when clause,
the ClassToTable relation holds, the relation AttributeToColumn must also hold.

top relation ClassToTable {
className: String;
checkonly domain ecoreDomain c: EClass {

ePackage = p:EPackage {},
name=className

};
enforce domain rdbmsDomain t: Table {

schema = s:Schema {},
name = className,
column = cl:Column {

name = className + ’ tid’,
type = ’NUMBER’

},
key = k:Key {

name = className + ’ pk’,
column=cl

}
};
when {

PackageToSchema(p, s);
}
where {

AttributeToColumn(c, t, className);
}

}
In MOMENT-QVT, a model transformation can be applied to several source model definitions, which

may or may not conform to the same metamodel. When the transformation is invoked, it generates one
target model definition and a set of traceability model definitions. A traceability model definition contains
a set of traces that relate the elements of the source model definition to the elements of the target model
definition, indicating which transformation rule has been applied to each source element. A QVT Relations
enforced transformation is executed by means of the ModelGen operator as follows:

 output model, trac1, ..., tracn ¡� ModelGenptransformation, input model1, ..., input modelnq

where transformation is the name of the QVT transformation; input model1, ..., input modeln are
the input model definitions, which may conform to different metamodels; output model is the generated
model definition; and trac1, ..., tracn are the trace model definitions that are generated for each one of the
corresponding input model definitions.

9.3.2 Overview of a model transformation in MOMENT-QVT

In the QVT Relations language, a model transformation is defined among several metamodels, which are
called the domains of the transformation. A QVT transformation is constituted by QVT relations, which
become declarative transformation rules. A QVT relation specifies a relationship that must hold between
the model objects of different candidate model definitions. The direction of the transformation is defined
when it is invoked by choosing a specific domain as target. If the target domain is defined in the QVT
transformation as enforceable, a transformation is performed. If the target domain is defined as checkonly,
just a checking is performed.

In MOMENT, a QVT transformation is defined by means of the ModelGen operator. QVT relations are
defined by means of the ModelGenRule operator , which is used by the former operator. The generation of the
axioms for the ModelGen operator and ModelGenRule operator are provided in [9]. A model transformation
can be applied to several source model definitions, which may or may not conform to the same metamodel.
It generates one target model definition and a set of traceability model definitions. A traceability model

1We used a version of this transformation in which we consider Ecore as an implementation of the UML Class
Diagram metamodel.

9.3. MOMENT-QVT 185

Figure 9.6: Example of Model Transformation.

Figure 9.7: Example of Model Transformation.

definition contains a set of traces that relate the elements of the source model definition to the elements of
the target model definition, indicating which transformation rule has been applied to each source element.

We have chosen the UmlToRdbms transformation that is presented in the QVT final adopted specification
[23] as an example to illustrate the use of the ModelGen operator in the MOMENT Framework. The Ecore
metamodel [98] has been used as implementation of the UML metamodel. The RDMBS metamodel of
the QVT proposal has been specified as an EMF metamodel. Using both metamodels, the UmlToRdbms
transformation is applied to the source Ecore model definition in Fig. 9.6 to obtain the target relational
schema, which is shown in the figure by using the default EMF graphical modeler.

In this section, we present how MOMENT executes the ModelGen operator, transforming the UML
model definition of the example in Section 2 into a relational schema. Fig. 3 shows the two MOF layers
involved in a model transformation: the M2-layer, where the metamodels are defined; and the M1-layer,
where the model transformation and the model definitions are defined and manipulated. The front part
of the figure represents the front-end of the MOMENT framework, i.e., EMF and all the plugins that are
built on it. The back part of the figure represents the formal back-end of the MOMENT Framework, where
Maude is used. Traceability support has not been taken into account in the figure.

Fig. 9.7 represents the transformation of the UML model definition by using the ModelGen operator.
The steps that are automatically performed by the MOMENT Framework when the ModelGen operator is
applied to the source UML model definition are the following:

• (1) and (2): We specify both UML and RelationalDMBS metamodels at the M2-layer by means of
the EMF or graphical editors based on this modelling framework. For instance, we can also consider

186 Chapter 9. Tools and Applications

XML schemas and Rational Rose model definitions as metamodels.

• (3): The QVT transformation is defined as a model definition at the M1-layer, but it relates the
constructs of the source to the constructs of the target metamodels. The transformation has to be
defined as a model definition that conforms the QVT Relations metamodel by means of a graphical
interface or as a program using the Relations language. The transformation model definition can
either be defined by the user or be automatically produced by another transformation.

• (4): We define a UML model definition using a UML graphical editor based on EMF.

• (5) and (6): Both UML and RDBMS metamodels, respectively, are projected as algebraic spec-
ifications by means of the interoperability bridges that have been implemented in the MOMENT
framework. This bridge corresponds to the Java implementation of the reflectMOF function, presented
in Section 6. However, the obtained syntactic representation of metamodels is different as indicated
above.

• (7): The model that defines the QVT transformation is projected into the Maude code as the
UmlToRdbms module, which contains the specification of the ModelGen and ModelGenRule operators.

• (8): The source UML model definition, which is defined in step (4) at the M1-layer, is projected as
a term of the UML theory (9).

• (10): Maude applies the ModelGen operator through its equational deduction mechanism, obtaining
a term of the RDBMS theory (11). Thus, Maude constitutes the runtime engine for the MOMENT
transformation mechanism.

• (12): This is the last step of the model transformation process. It parses the term (11), defining an
EMF model definition (13) in the M1-layer, which conforms to the target metamodel defined at the
M2-layer.

In the model transformation process, the user only interacts with the MOMENT framework when defining
the source and target metamodels (steps (1) and (2)), the QVT transformation between both metamodels
(step (3)) and the source model definition (step (4)). The other steps are automatically carried out by the
framework. The output model definition can also be manually manipulated from a graphical editor.

9.3.3 MOMENT-QVT

MOMENT-QVT implements the metamodel definition �QVT, given in the QVT standard, and provides
an editor for the QVT Relations language, which permits defining model transformations between EMF
metamodels. Fig. 9.8 shows the editor of the MOMENT-QVT tool which provides: syntax coloring, editing
facilities and parsing facilities. For example, when a model transformation definition is not well-defined, the
editor indicates which line contains the error.

Once the model transformation is defined by using the concrete syntax of the QVT Relations language,
we have to parse it as shown in Fig. 9.9, generating a QVT model definition rM : QVT. QVT is the model

type that corresponds to the metamodel definition �QVT.
After obtaining the model definition rM : QVT that corresponds to the user-defined model transforma-

tion, the user can invoke the model transformation by using the invocation wizard that is shown in Fig.
9.10. To invoke a model transformation, the user has to choose the ModelGen operator in the Operator name
panel. After this, the user has to provide the file that contains the model definition rM : QVT. Depending
on the definition of the model transformation, the user has to provide the input parameters and the output
parameters. For the example, the input parameter is the source Ecore model definition that represents the
source UML model definition, and the output parameters are the file that will contain the resulting RDBMS
model definition and the traceability model definition.

MOMENT-QVT provides support for traceability, in the sense that a traceability model definition,
which records what objects of the target model definition have been generated from objects of the source
model definition, is generated in an automated way during a model transformation. Fig. 9.11 presents
the traceability editor of the MOMENT framework. This editor shows the traceability model definition
that is generated by the UmlToRdbms transformation. The traceability editor is constituted by three main
frames, the left frame shows an input model definition of the transformation, the right frame shows the
output generated model definition, and the frame in the middle shows the traces that relate elements of the
input model definition to elements of the target model definition. Traces also provide information about
the transformation rule (or relation) that has been applied to source objects to generate the corresponding
target objects.

9.3. MOMENT-QVT 187

Figure 9.8: Defining a model transformation.

Figure 9.9: Parsing a model transformation definition.

Figure 9.10: Invocation of a model transformation.

188 Chapter 9. Tools and Applications

Figure 9.11: Traceability editor.

9.3.4 Applications

A prototype of the MOMENT-QVT tool has been applied in the development process of several modeling
frameworks. Some of these applications are becoming collaborations with other universities. We provide a
brief introduction to these applications:

MOMENT Case

MOMENT Case [14] is a modeling framework that provides support for the UML2 metamodel and a rela-
tional metamodel. This prototype has been developed for the CapGemini S.L. company and provides the
following features:

• UML2 modeling facilities, reused from the UML2 Tools Project [105].

• Graphical support for defining relational schemas of a given relational metamodel. An screenshot of
this graphical editor is provided in Fig. 9.12.

• Automated generation of a relational schema from a UML class diagram. MOMENT Case provides
facilities to add persistence information to a UML class diagram, indicating what elements in a class
diagram will be persisted in a relational schema by means of the transformation process. This auto-
mated generation process is based on a model transformation that uses the MOMENT-QVT engine.

• Support for traceability, indicating what objects of the resulting relational schema have been generated
from the objects of the source class diagram.

• Documentation generation from the different model definitions that may be defined in the tool: UML
class diagrams, relational schemas, and traceability model definitions.

• Generation of a script in standard SQL to create the relational schema that corresponds to a model
definition rM : RDBMS.

Bioinformatics

The tremendous growth of genomic sequence information combined with technological advances in the
analysis of global gene expression has revolutionized research in biology and biomedicine [106]. However,
the vast amounts of experimental data and associated analyses now being produced are usually persisted in
heterogeneous data sources. This fact implies an urgent need for new ways of integrating this information.

A signaling pathway is constituted by a sequence of biochemical reactions by means of which a cell
converts one kind of signal or stimulus into another by using genomic information. Information about
processes of this kind is usually stored in relational databases, such as TRANSPATH . This information
can be used for studying and simulating reactions that may occur in a specific signaling pathway. Some
formalisms have been used for this purpose: π-calculus, ambient calculus, life sequence charts or Petri nets.
An automated migration process that permits representing data from an heterogeneous data source into a

9.4. MOMENT: Model Management within the EMF. 189

Figure 9.12: Graphical editor for the RDBMS metamodel in MOMENT Case.

target formalism is desirable in order to enhance analysis and simulation techniques. This migration process
must face heterogeneity and interoperability challenges.

In [?], a migration process for representing information from the TRANSPATH database as coloured
Petri nets has been developed. In this framework, EMF is used as the modeling framework that enhances
interoperability and MOMENT-QVT as the underlying model transformation engine that automates the
migration process. This work is based on previous experiments [107, 108], where the migration process was
performed manually.

Software Metrics

Software measurement plays a fundamental role in Software Engineering [109]. Measurement can help to
address some critical issues in software development and maintenance by facilitating the making of decisions.
Software measurement supports planning, monitoring, controlling and evaluating the software process. In
[?], a model-based generic framework for evaluating software metrics is presented. This framework permits
the evaluation of metrics over EMF model definitions. In this approach, metrics are evaluated by means of
model transformations and OCL queries, and the results of a measurement evaluation are defined in the form
of a model definition rM that conforms to a given metamodel. The MOMENT-OCL and MOMENT-QVT
tools have been used to study the feasibility of the approach.

9.4 MOMENT: Model Management within the EMF.

The Model Management discipline, proposed in [110], considers model definitions as first-class citizens and
provides a set of generic operators to deal with them: Merge, Diff, ModelGen, etc. These operators permit
the direct manipulation of model definitions, instead of working on the internal representation of a model
definition at a programming level. Several approaches to this discipline [111, 112] specify operators that
are based on mappings to deal with model definitions. A mapping is a relationship between an object of a
domain model definition and an object of a range model definition that indicates that they represent the
same object in different model definitions. This means that mappings between two model definitions must
be explicitly defined in order to apply an operator to them.

The MOMENT project [92] aims at the development of a model management framework that provides
generic operators to manipulate MOF model definitions as first-class citizens. Some experiments have been
already studied as indicated below. We informally present some of the model management operators that
we use in our approach by indicating their inputs, outputs and semantics:

1. Cross and Merge: These operators correspond to well-defined set operations: intersection and disjoint
union, respectively. Both operators receive two model definitions (A and B) as input and produce a
third model definition (C). The Cross operator returns a model definition C that contains objects that
participate in both the A and B input model definitions; while the Merge operator returns a model
definition C that contains objects that belong to either the input model definition A or the input
model definition B, deleting duplicated objects. Both operators also return two model definitions of
links (mapAC and mapBC) that relate the objects of each input model definition to the objects of the

190 Chapter 9. Tools and Applications

Figure 9.13: Traceability Management Operators.

output model definition. Example:

 C,mapAC ,mapBC ¡� CrosspA,Bq.

2. Diff: This operator performs the difference between two input model definitions (A and B). The
difference between the two model definitions (C) is the set of objects in model definition A that does
not correspond to any element in model definition B. The Diff operator also returns a traceability
model definition that maps the objects of the model definition A to the objects of the model definition
C. Example:

 C,mapAC ¡� Diff pA,Bq.

3. ModelGen: ModelGen performs the translation of a model definition A, which conforms to a source
metamodel MMA, into a target metamodel MMB, obtaining model definition B. This operator has
been presented above, in the MOMENT-QVT tool This operator also produces a model definition of
links (mapAB) relating the objects of the input model definition to the objects of the generated model
definition. Example:

 B,mapAB ¡� ModelGenMMA2MMB pAq.

Each simple operator carries out a manipulation over a set of input model definitions. An operator
invokes a model transformation that is defined at the metamodel level. The semantics of this model trans-
formation is defined axiomatically in equational logic as indicated above, and each one of its axioms is called
a manipulation rule. To register the task performed over a model definition, each operator automatically
produces a set of links between the objects of a source model definition and the objects of the resulting
model definition. Such links are stored in traceability model definitions and are used to provide support for
traceability. A mechanism to extract information from a traceability model definition, independently of the
metamodel used, is needed. This mechanism consists of two kinds of operators:

• Query operators, that provide forward and backward navigation through a traceability model defini-
tion.

• Traceability management operators, to manipulate the traceability model definitions in order to au-
tomate the reasoning over traceability links. For instance, the Compose operator permits chaining
traceability links in order to make implicit traceability links explicit; and the Match operator per-
mits the inference of traceability model definitions between two model definitions. Furthermore, a
traceability model definition can also be manipulated by model management operators.

We define the operators that provide navigability through a traceability model definition with the follow-
ing elements: two input model definitions (A and B); a traceability model definition (mapAB) that relates
the objects of the two input model definitions and that has been automatically produced by an operator or
manually produced by a user; a model definition (A1) that is a sub-model of A (i.e. A1 only contains objects
that also belong to A); and a model definition (B1) that is a sub-model of B. The traceability operators
that are considered here are:

• Domain and Range: These operators provide the backward and forward navigation through a trace-
ability model definition, respectively. Both operators obtain a model definition as output, which is
not a traceability model definition.

The operator Domain takes three model definitions as input: a traceability model definition (mapAB),
a domain model definition (A), and a range model definition (B1). The operator navigates the trace-
ability links of the traceability model definition that have objects of B1 as target objects, and returns
a sub-model of A (A1), as shown in Fig. 9.13.a.

The operator Range also receives three inputs: a traceability model definition (mapAB), a domain
model definition (A1), and a range model definition (B). This operator performs the opposite task
to the previous one: it navigates the traceability links that have objects of A1 as domain objects and
returns a sub-model of the range model definition B (B1), as shown in Fig. 9.13.b.

9.4. MOMENT: Model Management within the EMF. 191

• SelectMappingsByDomain and SelectMappingsByRange : These operators produce a traceability model
definition as output and permit selection of parts of a traceability model definition.

The operator SelectMappingsByDomain receives two input model definitions: a domain model defi-
nition (A1) and a traceability model definition (mapAB). The operator extracts the traceability links
of the mapAB traceability model definition that have objects of the model definition A1 as domain
objects and returns this sub-model. The traceability links that are added to the output traceability
model definition are highlighted by a dotted line in Fig. 9.13.c.

The operator SelectMappingsByRange receives two input model definitions: a range model definition
(B1) and a traceability model definition (mapAB). In this case, the operator extracts the traceability
links of the mapAB traceability model definition that have objects of the model definition B1 as range
objects, and returns this sub-model, as shown in Fig. 9.13.d.

In the current state of the work, the MOMENT framework permits the application of model management
operators to Ecore model definitions and to RDBMS model definitions.

9.4.1 Case studies

In subsequent paragraphs we present some case studies in which we have experimented with some model
management operators. Despite the algebraic manner in which the operators are used, the experiments
show promising results in which the algebraic operators can be applied to model definitions that are defined
in metamodeling environments like the EMF. These results validate the philosophy that has been used to
define the algebraic MOF framework in this work.

Change propagation

In this case study, we use the change propagation scenario that was introduced in [111]. We illustrate it by
means of a specific example shown in Fig. 9.14. We have defined the information structure of an application
in a XML schema (XSD). To build a new application that stores the information in a relational database,
we reuse the metainformation that describes the XML schema. By applying a transformation mechanism
(step 1), we obtain the new relational database (RDB). The transformation mechanism also generates a set
of links between the new generated RDB relational schema and the source XML schema in order to provide
traceability support (mapXSD2RDB).

After obtaining a relational database from the original XML schema, we continue with the development
of the new system. This may involve changes in the application and in the database (step 2), obtaining
the relational schema (RDB’). These changes are traced and stored by the tool that manages the model
manipulation or by the user directly (mapRDB2RDB 1).

Once the new system is developed, changes may occur in the requirements of the system, necessitating
modifications. It is easier to extend the XML schema than to modify the RDB database. At this point, the
application of the transformation mechanism used in step 1 will discard the changes applied from RDB to
RDB’.

A solution to this change propagation example can be performed by using model management operators.
In our approach, traceability links are used to automate the propagation of changes that were applied to
the RDB relational schema, for the new system C.

The problem explained in the case study can be simplified as shown in Fig. 9.15, where the mapXSD2RDB 1

traceability model definition can be easily obtained from the mapXSD2RDB and mapRDB2RDB 1 traceability
model definitions by means of the Compose operator. Therefore, the problem can be enunciated as follows:

We have the following model definitions: an original XML schema (XSD); a XML schema (XSD’), which
has been evolved from XSD; a relational database RDB’, which has been generated from the XML schema
XSD and modified afterwards; and a traceability model definition between XSD and RDB’ (mapXSD2RDB 1).
The goal is to obtain a relational database from the XML schema XSD’ that preserves the changes applied

to RDB’.

This problem can be solved by means of an operator that is defined by using other model management
operators as follows:

192 Chapter 9. Tools and Applications

Figure 9.14: An example of change propagation.

Figure 9.15: Schematization of the case study problem.

9.4. MOMENT: Model Management within the EMF. 193

Figure 9.16: Solution of the case study problem.

operatorPropagateChangespXSD ,XSD 1,RDB 1,mapXSD2RDB 1q �

 Unmodified ,mapXSD2Unmodified ,mapXSD12Unmodified ¡�

CrosspXSD ,XSD 1q (1)

RDB2 � RangepmapXSD2RDB 1 ,Unmodified ,RDB 1q (2)

 newXSD ¡� Diff pXSD 1,Unmodifiedq (3)

 newRDB ,mapnewXSD2newRDB ¡� ModelGenXSD2RDB pnewXSDq (4)

 C,mapRDB22C ,mapnewRDB2C ¡� MergepRDB2,newRDBq (5)

returnpCq

This operator is made up of simple model management operators and the steps followed in the script
are represented in Fig. 9.16. These steps are the following:

1. Unmodified is the part of the XSD model definition that remains unmodified in the XSD’ model
definition.

2. RDB” is the sub-model of RDB’ that corresponds to the unmodified part of XSD’.

3. newXSD is the part of XSD’ that has been added to the XSD model definition.

4. newRDB is the relational schema obtained from the translation of newXSD into the relational meta-
model.

5. C is the final model definition obtained from the integration of the relational databases that we have
obtained in steps 2 and 4.

If we want to add traceability support to this operator in order to generate the traceability model
definition that relates the XSD’ model definition to the new model definition (C) as well, we only have to
add the next step after step 5:

 mapXSD12C ,mapmapUnmodified2C2mapXSD12C ,mapmapnewXSD2C2mapXSD12C ¡�

Mergep

Composep

Unmodified ,

SelectMappingsByDomainpUnmodified ,mapXSD2RDB 1q,

RDB2,mapRDB22C , Cq,

ComposepnewXSD ,mapnewXSD2newRDB ,newRDB ,mapnewRDB2C , Cqq

This step merges two traceability model definitions: one is defined between the unmodified part of XSD’
and C, and the other is defined between the new part of XSD’ and C. This step merges both traceability
model definitions by means of the Merge operator, in the same way that any two model definitions that
belong to the same metamodel are merged. The model definition mapXSD12C has to be added as a return
value in the script.

The resulting composite operator solves the change propagation problem of the case study independently
of the metamodels involved, so that we can apply it to any combination of metamodels, instead of using the
XSD and the relational metamodels.

194 Chapter 9. Tools and Applications

Merging UML Class Diagrams

Software development methodologies based on UML propose an approach where the process is Use Case
Driven [113, 114]. This means that all artifacts (including the Analysis and Design Model, its implementation
and the associated test specifications) have traceability links from Use Cases. These artifacts are refined
through several transformation steps. Obtaining the Analysis Model from the Use Case Model is possibly
the transformation that has the least chance of achieving total automation. The Use Case Model must
sacrifice precision in order to facilitate readability and validation, so that the analysis of use cases is mainly
a manual activity.

When the Use Case Model has many use cases, managing traceability between each use case and the
corresponding objects in the resulting class diagram can be a difficult task. In this scenario, it seems
reasonable to work with each use case separately and to register its partial class diagram (which is a piece
of the resulting class diagram that represents the Analysis Model). Regarding traceability, this strategy is a
pragmatic solution, but when several team members work in parallel with different use cases, inconsistencies
or conflicts among partial model definitions often arise, which must be solved when obtaining the integrated
model.

In [10], we present a case study that illustrates how our operator Merge can be used effectively to deal
with the required needs established above. In this work, we provide the semantics of the Merge operator
from an algebraic point of view and we apply it to a case study: the development of part of a system for
managing paper submissions that are received in a conference.

Exogenous Model Merging

In Model-Driven Engineering, model merging plays a relevant role in the maintenance and evolution of
model-based software. Depending on the amount of metamodels involved in a model merging process, we
can classify model merging techniques in two categories: endogenous merging, when all the model definitions
to be merged conform to the same metamodel; and exogenous merging, when the model definitions to be
merged conform to different metamodels.

As stated in [115], a model merging process consists of three main phases: (i) a model comparison phase,
where objects of different model definitions that are equivalent are found; (ii) a consistency checking phase,
where conflicts that may appear if we merge equivalent objects are identified, defining a conflict resolution
strategy to eliminate them; and (iii) a merging phase, where the equivalent objects that are found in the
first step are merged taking into account the conflict strategy defined in the second step.

In [13], we propose a set of model management operators that use the QVT Relations language to perform
model comparison and model transformation. In a model merging process where two model definitions are
involved, the comparison phase is achieved by defining relations between elements of the same metamodel.
The consistency phase is solved by defining a model transformation that takes the two model definitions to
be merged as input model definitions. Finally, the merging phase is performed by a generic operator that
uses the QVT Relations programs defined in the previous phases. In this paper, we show how this approach
can be used by providing an example of exogenous model merging, where the model definitions to be merged
conform to different metamodels.

9.4.2 Pending work

The tools MOMENT-OCL, MOMENT-QVT and MOMENT are experimental environments where algebraic
operators can be applied to EMF model definitions. In the current state of the work, these three tools are
based on a previous specification of the algebraic MOF framework. Although the metamodeling philosophy
is similar, the new specification that has been presented throughout Sections 5-8 enhances the reuse of
Maude-based formal verification techniques. Therefore, in future work, we will base these tools on the new
specification.

In addition, during the development of the tools MOMENT-OCL, MOMENT-QVT and MOMENT, we
have kept the premise of reusing other tools as front-ends for our tools. For example, the OCL parsing
facilities of the Kent Modeling Framework. In future versions of these tools, we will consider the reuse of
Maude-based parsing facilities to avoid useless dependencies with complex front-ends.

In the MOMENT-QVT tool, only part of the semantics of the QVT Relation language is currently
specified. For example, the checkonly semantics is still not available. In future work, we will consider
specifying a complete version of the semantics of the QVT Relations language.

Finally, in the current state of the MOMENT framework, the model management operators are available
from an algebraic point of view. However, the QVT Relations language cannot be used to refine them for a

9.5. Relationships to Graph Rewriting 195

given metamodel yet, as indicated in [13]. After completing the semantics of the QVT Relations language,
this task will be addressed.

9.5 Relationships to Graph Rewriting

In this section, we explain, in an illustrative, informal way, how notions of a graph rewriting system are
captured by our algebraic MOF framework. In our approach, we have formalized the notions of the MOF
and OCL standards in Membership Equational Logic (MEL). More specifically, a model definition rM is
algebraically represented as a graph whose structure can be traversed by using AC pattern matching, i.e.,
pattern matching modulo associativity and commutativity [116]. Our approach then combines the notions
of several research fields:

• Model-Driven Development: we provide the formalization of some fundamental notions that are
provided in the MOF and OCL standards.

• Formal Metamodeling Frameworks: we provide an algebraic executable metamodeling environment,
which is plugged into the Eclipse platform, on top of the Eclipse Modeling Framework (EMF), which is
used as front-end. The EMF can be regarded as an implementation of the MOF, so that the notions of
the MOF standard that are formalized are mapped to the concepts of the EMF. This feature permits

a graphical visualization of terms that represent model definitions rM or metamodel definitions �M. In
addition, the Graphical Modeling Framework [117] can be used to attach new graphical notations to
metamodel definitions.

• Term rewriting: in our approach we can use formal analysis techniques based on mel and Rewriting
Logic. In this section, we provide some examples.

• Graph rewriting: our algebraic metamodeling framework can be viewed as an executable specification
of a graph rewriting system with reflection and OCL support. Graphs in our algebraic framework have
an additional feature: they can be viewed as trees by considering containment properties.

In subsequent sections, we illustrate how our algebraic framework captures concepts of a graph rewriting
system, and we indicate how automated analysis techniques can be applied in our framework, thanks to
the underlying Rewriting Logic. The goal of this section focuses on showing applications of our framework,
motivating future work.

9.5.1 Graph Rewriting Concepts in our Algebraic Framework

Graph rewriting is becoming popular as a meta-language to specify and implement visual modeling tech-
niques [118, 119]. It may be used for parsing visual languages [120], for automated translation of visual
models into code or semantics domains [121, 122], or as a semantic domain itself [123, 124]. In [125], an
attributed graph is defined as a graph where nodes represent objects or data values. Edges between objects
are called links, and edges between an object and a data value are called attributes. There are no edges
from data vertices. The vertices of an attributed graph are typed. The corresponding types are defined in
a type graph. In our approach, a typed attributed graph is represented by a model definition rM , as shown
in Section 6, where objects constitute the nodes of the graph, object-typed properties represent directed
links between objects, and value-typed properties represent attributes. A type graph is represented by a

metamodel definition �M, such that �M : MOF, whose semantics is provided by the reflectMOF function.
In [126], typed attributed graphs are extended with node inheritance. Subtype relationships can be

defined between the nodes of a type graph, where types can be defined as concrete or abstract, in the sense
of a concrete or an abstract object type in UML. In our approach, we consider the EMOF metamodel
constructs, where inheritance can be defined between object types, and an object type can be defined as
abstract too. The reflectMOF function provides the algebraic semantics of the specialization relation, as
shown in Section 6.

Typed attributed graphs with node inheritance permit defining model definitions rM , considering that the
corresponding metamodel is defined as a type graph. However, OCL constraints can also be used in a MOF

framework to define structural conditions rC over metamodel definitions �M so that model definitions rM , such
that rM : M, must satisfy them. In [127], the authors present a formal framework where type inheritance,
constraints and graph transformation concepts are integrated. In particular, constraints are enforced by
means of application conditions in the rules of a typed graph rewriting system, as shown in [53]. In our

framework, the notion of constrained model type pM, Cq is provided by the reflectp�M, rCq theory. Values
of the type pM, Cq are typed attributed graphs that satisfy the OCL constraints C. The OCL constraint

196 Chapter 9. Tools and Applications

Figure 9.17: The �PacMan metamodel.

satisfaction relation is given by a membership that ensures that a well-typed model definition satisfies the
OCL constraint of the corresponding metamodel.

In [62], the authors describe a precise framework for metamodeling based on MOF concepts and graph
transformation, although they do not deal with constraints. This framework considers the containment
relation that can be provided in a metamodel definition. The authors discuss that containment properties are
redundant notions in the MOF meta-metamodel, which can be expressed by means of package containments.
However, we have chosen containment properties to define the containment relation in a metamodel definition
because they can be depicted in a MOF class diagram as composite aggregations. The containment relation
permits considering a model definition as a tree, enabling formal reasoning on the depth of the tree.

In addition, our framework provides a specification of the MOF Reflection Facilities, which enable the
representation of typed attributed graphs independently of the corresponding type graph, as shown in Section
8. The MOF Reflection Facilities enable introspection, so that the metadata that defines the type graph
can be used in the rewriting process of an instance graph. This feature is also present in the VIATRA2 tool
[128], as discussed in Section 3.

9.5.2 Graph Rewriting as Term Rewriting Modulo AC

In this section, we use a small example, borrowed from [129], to show how graph rewriting can be performed
by means of term rewriting modulo AC, as introduced in [116]. The example consists in a näıve version of
the PacMan game, where there is a board with fields that may contain marbles. PacMan tries to eat marbles
and a ghost tries to eat PacMan. The main concepts of the game are represented as object type definitions

in the metamodel definition �PacMan, shown as a MOF class diagram in Fig. 9.17. Each model definitionrM , such that rM : PacMan, corresponds to a state of the game, which is denoted by a typed attributed
graph. For example the initial state is defined as an object diagram in Fig. 9.18. For the sake of simplicity,
we depict a state as a board, as shown in Fig. 9.19, where each field appears numbered and has its own
adjacent fields. A field may have a marble. The ghost is in field 1 and PacMan is in field 10.

Roughly speaking, a graph rewriting rule ρ is a rule of the form ρ : L Ñ R, where the left-hand side
L refers to the items that must be present in a model definition for an application of the rule, and the
right-hand side R refers to the items that are present afterwards. Graph rewriting rules are defined in a
graph grammar as production rules, and can be applied to a host graph by means of the double-pushout
approach [130]. The movements of PacMan are defined as two graph rewriting rules: collect, shown in Fig.
9.20, which moves PacMan to an adjacent field with a marble and the marble disappears once Pacman moves
there; and movePM, shown in Fig. 9.21, which moves PacMan to an adjacent field without marble. In a
graph rewriting rule, a negative application condition (NAC) refers to a subgraph that must not exist in
the host graph in order to apply the rule. In the graphical representation of production rules, NAC’s are
represented as crossed out objects.

The movements of the ghost are likewise defined by means of two production rules: kill, shown in Fig.
9.22, which moves the ghost to an adjacent field where PacMan is, and PacMan is killed by the application
of the rule; and moveGhost, shown in Fig. 9.23, which moves the ghost to an adjacent field where PacMan
is not located. The game is over when PacMan is deleted from the board by means of the kill rule.

Rewriting Logic [26] extends mel with (possibly conditional) rewriting rules. A rewrite theory, specified
in Maude as a system module, provides an executable mathematical model of a concurrent system. Mathe-

9.5. Relationships to Graph Rewriting 197

Figure 9.18: Typed attributed graph representing the initial state of a PacMan game.

Figure 9.19: Three solutions of the PacMan game.

Figure 9.20: Graphical representation of the collect production rule of the PacMan game.

Figure 9.21: Graphical representation of the movePM production rule of the PacMan game.

198 Chapter 9. Tools and Applications

Figure 9.22: Graphical representation of the kill production rule of the PacMan game.

Figure 9.23: Graphical representation of the moveGhost production rule of the PacMan game.

matically, an unconditional rewrite rule has the form l : tÑ t1, where t, t1 are terms of the same kind, which
may contain variables, and l is the label of the rule. Intuitively, a rule describes a local concurrent transition
in a system. Conditional rewrite rules can have very general conditions involving equations, memberships,
and other rewrites. In their Maude representation, conditional rules are declared with syntax

crl [Label] : Term-1 => Term-2

if Condition-1 {z ... {z Condition-k

[StatementAttributes] .

A graph rewriting rule can be encoded as a rewriting rule in a natural way. Specifically, we can use
the algebraic semantics that we have defined in this work to encode such graph rewriting rules. Using
our algebraic semantics, the left-hand side of the rule is a term t of sort ObjectCollectiontMetaObjectu,
such that << t >> is a term of sort ModelTypetMetaObjectu, and the right-hand side is a term t’ of sort
ObjectCollectiontMetaObjectu, such that << t’ >> is a term of sort
ModelTypetMetaObjectu. In the example, both terms represent values ! t " and ! t1 " that keep a
graph structure, i.e., ! t ",! t1 ": PacManM. The rules of the PacMan game are then defined in Maude
notation as follows:

mod PACMAN is

inc META-MODEL .

vars MatchingConf Conf : ObjectCollection{MetaEObject} .

vars GameOid PacmanOid CurrentFieldOid NextFieldOid

MarbleOid GhostOid : MetaOid .

vars GameMPS PacmanMPS CurrentFieldMPS NextFieldMPS

MarbleMPS GhostMPS : MetaPropertySet .

vars CurrentFieldTo NextFieldFrom : OrderedSet{MetaOid} .

crl [collect] :

< GameOid : ecore/EObject |

class : "pacman/Game",

(property : "marbles" = GameMarbles:OrderedSet{MetaOid}),

GameMPS >

< PacmanOid : ecore/EObject |

class : "pacman/PacMan",

9.5. Relationships to Graph Rewriting 199

(property : "in" = CurrentFieldOid),

(property : "marbles" = PacmanMarbles:Int),

PacmanMPS >

< CurrentFieldOid : ecore/EObject |

(class : "pacman/Field"),

(property : "to" = CurrentFieldTo),

CurrentFieldMPS >

< NextFieldOid : ecore/EObject |

(class : "pacman/Field"),

(property : "from" = NextFieldFrom),

NextFieldMPS >

< MarbleOid : ecore/EObject |

(class : "pacman/Marble"),

(property : "in" = NextFieldOid),

MarbleMPS >

=>

< GameOid : ecore/EObject |

(class : "pacman/Game"),

(property : "marbles" =

(GameMarbles:OrderedSet{MetaOid} -> excluding(MarbleOid))),

GameMPS >

< PacmanOid : ecore/EObject |

(class : "pacman/PacMan"),

(property : "in" = NextFieldOid),

(property : "marbles" = PacmanMarbles:Int + 1),

PacmanMPS >

< CurrentFieldOid : ecore/EObject |

(class : "pacman/Field"),

(property : "to" = CurrentFieldTo),

CurrentFieldMPS >

< NextFieldOid : ecore/EObject |

(class : "pacman/Field"),

(property : "from" = NextFieldFrom),

NextFieldMPS >

if

(CurrentFieldTo -> includes (NextFieldOid))

/\

(NextFieldFrom -> includes (CurrentFieldOid))

.

crl [movePM] :

< PacmanOid : ecore/EObject |

class : "pacman/PacMan",

(property : "in" = CurrentFieldOid),

PacmanMPS >

< CurrentFieldOid : ecore/EObject |

(class : "pacman/Field"),

(property : "to" = CurrentFieldTo),

CurrentFieldMPS >

< NextFieldOid : ecore/EObject |

(class : "pacman/Field"),

(property : "from" = NextFieldFrom),

NextFieldMPS >

Conf

=>

< PacmanOid : ecore/EObject |

(class : "pacman/PacMan"),

(property : "in" = NextFieldOid),

200 Chapter 9. Tools and Applications

PacmanMPS >

< CurrentFieldOid : ecore/EObject |

(class : "pacman/Field"),

(property : "to" = CurrentFieldTo),

CurrentFieldMPS >

< NextFieldOid : ecore/EObject |

(class : "pacman/Field"),

(property : "from" = NextFieldFrom),

NextFieldMPS >

Conf

if

(CurrentFieldTo -> includes (NextFieldOid))

/\

(NextFieldFrom -> includes (CurrentFieldOid))

/\

(noMatchMovePM(Conf, NextFieldOid)) .

crl [kill] :

< GameOid : ecore/EObject |

class : "pacman/Game",

(property : "pacman" = PacmanOid),

GameMPS >

< GhostOid : ecore/EObject |

class : "pacman/Ghost",

(property : "in" = CurrentFieldOid),

GhostMPS >

< CurrentFieldOid : ecore/EObject |

(class : "pacman/Field"),

(property : "to" = CurrentFieldTo),

CurrentFieldMPS >

< NextFieldOid : ecore/EObject |

(class : "pacman/Field"),

(property : "from" = NextFieldFrom),

NextFieldMPS >

< PacmanOid : ecore/EObject |

(class : "pacman/PacMan"),

(property : "in" = NextFieldOid),

PacmanMPS >

=>

< GameOid : ecore/EObject |

(class : "pacman/Game"),

(property : "pacman"),

GameMPS >

< GhostOid : ecore/EObject |

(class : "pacman/Ghost"),

(property : "in" = NextFieldOid),

GhostMPS >

< CurrentFieldOid : ecore/EObject |

(class : "pacman/Field"),

(property : "to" = CurrentFieldTo),

CurrentFieldMPS >

< NextFieldOid : ecore/EObject |

(class : "pacman/Field"),

(property : "from" = NextFieldFrom),

NextFieldMPS >

if

(CurrentFieldTo -> includes (NextFieldOid))

/\

9.5. Relationships to Graph Rewriting 201

(NextFieldFrom -> includes (CurrentFieldOid)) .

crl [moveGhost] :

< GameOid : ecore/EObject |

class : "pacman/Game",

(property : "pacman" = PacmanOid),

GameMPS >

< GhostOid : ecore/EObject |

class : "pacman/Ghost",

(property : "in" = CurrentFieldOid),

GhostMPS >

< CurrentFieldOid : ecore/EObject |

(class : "pacman/Field"),

(property : "to" = CurrentFieldTo),

CurrentFieldMPS >

< NextFieldOid : ecore/EObject |

(class : "pacman/Field"),

(property : "from" = NextFieldFrom),

NextFieldMPS >

Conf

=>

< GameOid : ecore/EObject |

class : "pacman/Game",

(property : "pacman" = PacmanOid),

GameMPS >

< GhostOid : ecore/EObject |

(class : "pacman/Ghost"),

(property : "in" = NextFieldOid),

GhostMPS >

< CurrentFieldOid : ecore/EObject |

(class : "pacman/Field"),

(property : "to" = CurrentFieldTo),

CurrentFieldMPS >

< NextFieldOid : ecore/EObject |

(class : "pacman/Field"),

(property : "from" = NextFieldFrom),

NextFieldMPS >

Conf

if

(CurrentFieldTo -> includes (NextFieldOid))

/\

(NextFieldFrom -> includes (CurrentFieldOid))

/\

(noMatchMoveGhost(Conf, NextFieldOid)) .

endm

NACs can also be defined in a simple way by means of equationally-defined functions. The func-
tions noMatchMovePM and noMatchMoveGhost define the negative application conditions for the movePM and
moveGhost rules.

op noMatchMovePM : Configuration{MetaEObject} MetaOid -> Bool .

ceq noMatchMovePM(MatchingConf, NextFieldOid) = false

if < MarbleOid : ecore/EObject |

(class : "pacman/Marble"),

(property : "in" = NextFieldOid),

MarbleMPS > Conf := MatchingConf .

eq noMatchMovePM(MatchingConf, NextFieldOid) = true [owise] .

202 Chapter 9. Tools and Applications

op noMatchMoveGhost : Configuration{MetaEObject} MetaOid -> Bool .

ceq noMatchMoveGhost(MatchingConf, NextFieldOid) = false

if < PacmanOid : ecore/EObject |

(class : "pacman/PacMan"),

(property : "in" = NextFieldOid),

MarbleMPS > Conf := MatchingConf .

eq noMatchMoveGhost(MatchingConf, NextFieldOid) = true [owise] .

The above rewrite theory describes a transition system, where states are defined as model definitionspM , such that pM : PacManM, and one-step transition between two states pM and pM 1, such that pM, pM 1 :
PacManM, exists if pM ÝÑ1 pM 1, where ÝÑ1 denotes the single-step application of a rewriting rule. In
Maude, given an initial state, we can use the search command to explore the graph state that is generated
for the transition system. For example, if we want to obtain three states in which the ghost has killed
PacMan, we can use the command

search [3] in PACMAN-CONF : model =>+

< GameOid:MetaOid : ecore/EObject |

(class : "pacman/Game"),

(property : "pacman"),

GameMPS:MetaPropertySet > #

Conf:Configuration{MetaEObject} .

This command returns three solutions, where each one consists in a metarepresented model definition pM .
The resulting solutions for the example are graphically shown in Fig. 9.19. Maude provides other commands
to query the resulting state graph. For example, the command show path state , where state is a number
that identifies a specific state in the graph, provides the path between the initial state and the given state
by means of rule applications. The resulting paths for the three solutions of the example are depicted in
Fig. 9.19 by means of numbered arrows. A comprehensive definition of these commands, with examples,
can be found in [75]. In this Section, we have shown how graph rewriting concepts can be represented in
our Algebraic MOF framework. In future work, we will consider our framework as a graph rewriting system
as indicated in Section 10.

9.5. Relationships to Graph Rewriting 203

Conclusions

Chapter 10

Conclusions and Future Work

This work has been inspired by the success of graph rewriting in Model-Driven Engineering and the fact that
graph rewriting can be performed from an algebraic point of view in Rewriting Logic [116]. In this work,
we have provided the algebraic specification of a MOF-based metamodeling framework, formalizing notions
that are not clear in other approaches yet. Our work is based on the MOF and OCL standards, providing
an algebraic formalization that can be reused for free, in standard-compliant frameworks, for example the
Eclipse Modeling Framework (EMF) [25] and the OCL implementation of the Model Development Tools
project (MDT) [100].

In our approach, we give an explicit formal representation for each of the different notions that may be
involved in a metamodeling framework:

• A model definition rM and a metamodel definition �M are syntactically represented as terms, and

they are both semantically interpreted as elements in the initial algebras of the reflectMOFp�Mq and

reflectMOFp�MOFq theories, respectively.

• The model type M is a type model that is defined as data in a metamodel definition �M. The semantics
of the model type M, vMwMOF, is given by the carrier of the sort ModelTypetMu in the initial algebra

of the reflectMOFp�Mq theory, corresponding to all possible model definitions rM such that rM : M.

• The metamodel realization reflectMOFp�Mq is a theory that syntactically defines the model type M
and the operators that are needed to define model definitions rM , such that rM : M. The notion of
metamodel realization can also be used in informal approaches to refer to the program that implements

the metamodel definition �M, enabling the definition of models rM as data structures.

In our framework, we distinguish between object types and model types. We say that an object is
an instance of a given object type but that a model definition conforms to its model type, following the
terminology used in [35, 131]. We keep this distinction to indicate that an object type is not a model type.
Independently of the conceptual levels of the MOF framework, a model is formalized in our framework
as a model definition rM , such that rM : M, where M is the corresponding model type, defined in the

reflectMOFp�Mq theory. If there is a reflection function

reflect : vMwMOF ; SpecMEL

that provides the semantics of a model definition rM as a theory reflectp rMq, M is the model type, rM is a

model definition such that rM : M, and reflectp rMq is the model theory or model realization.
In our framework, such a function is given for the MOF meta-metamodel as the reflectMOF equationally-

defined function. This function, together with the Object object type operations and the reify function,

provides complete reflection support for metamodel definitions. Thus, �MOF is considered a language defini-

tion, in the sense of [39]. Note that this is a powerful notion: when a metamodel definition �M is manipulated,

the corresponding theory reflectMOFp�Mq is also manipulated. Therefore, a metamodel definition �M can-
not only be syntactically manipulated as data, but its semantics also evolve in accordance. This notion of
reflection also takes into account constraint definitions by means of the reflect function.

The model type MOF classifies all possible metamodel definitions �M, whose algebraic semantics is given

by the theory reflectMOFp�Mq, so that model definitions that represent a system under study can be defined

as rM , such that rM : M. In [39], Rensink discusses that MOF is not a language, because the reflection

206 Chapter 10. Conclusions and Future Work

mappings are not provided in the standard. In this work, we have provided a formal version of the reflection

mechanism for the metamodel definition �MOF. However, this reflection mechanism is only defined for the
MOF meta-metamodel, i.e., for the domain type MOF. It cannot be reused for any metamodel definition�M such that �M � �MOF. In these cases, a specific reflect function must be defined depending on the
corresponding domain types M or pM, Cq.

In subsequent sections, we: (i) discuss some of the advantages of our metamodeling framework due to
the underlying formalism, MEL; (ii) summarize the main contributions of this work; and (iii) outline some
future work and open research areas.

10.1 The Advantages of Rewriting Logic and Maude

The algebraic MOF semantics reflect that we have explained in Sections 6-7 has two complementary aspects,
one mathematical and the other operational. From the mathematical point of view, what reflect provides
is a rigorous standard, assigning mathematical meaning to key MOF notions such as: metamodel, model,
the conformance relation, and the OCL constraint satisfaction relation. There is, however, a second, very
important, semantic aspect. A mel specification pΣ, Eq satisfying a few natural executability requirements
can be viewed not only as a mathematical theory, but also as a declarative program, which can be efficiently
executed by term rewriting in languages like Maude. In other words, the theory pΣ, Eq has not only a
mathematical, initial algebra semantics TpΣ,Eq, but also an operational semantics, in which execution is
achieved by efficient term rewriting deduction.

What all this means for our algebraic MOF semantics reflect is that, since the mel theories reflectp�M, rCq
all satisfy the executability requirements needed to use them as declarative programs, reflect provides not
only a MOF semantics, but also a MOF modeling environment, in which metamodels and models can be

queried and manipulated. Simply because of the executability of the modules reflectp�M, rCq, this modeling
environment provides the following features for free:

• Data representation for metamodels, models and OCL constraints, as elements of appropriate algebraic
data types.

• A reflective API to manipulate data elements such as models and metamodels in a type-agnostic way.

• Support for OCL both as a query language for the MOF framework and as a constraint language.

• In particular, this provides decision procedures for checking the conformance relation rM : M, and the
OCL constraint satisfaction relation rM |ù C.

Furthermore, the fact that, thanks to the algebraic semantics of reflect , all MOF concepts have a precise
mathematical semantics makes now possible formal reasoning about MOF metamodels. Since reflect has
been specified in Maude, this formal reasoning can be supported by the various formal tools in the Maude
environment, including an inductive theorem prover, a model checker, and tools for checking sufficient
completeness, confluence, and termination of specifications.

For example, we can use Maude’s inductive theorem prover to reason about the OCL semantic conse-
quences of a given metamodel, and about metamodel equivalence. Given a MOF metamodel specification

p�M, rCq and a set C1 of OCL constraints, we say that the constraints C1 are a semantic consequence of the

metamodel specification p�M, rCq, written p�M, rCq |ù C1 if and only if, by definition, for each model rM , we
have the implication

rM : p�M, rCq ñ rM |ù C1.
These semantic satisfaction properties can be equivalently expressed as inductive theorems in the initial

model associated to reflectp�M, rCq, and can be semi-automatically proved using Maude’s inductive theorem
prover. In particular, we can reason in this way about the semantic equivalence between two different

metamodel specifications, where, by definition, we say that p�M, rCq and p�M, rC1q are semantically equivalent,

written p�M, rCq � p�M, rC1q, if and only if we have

p�M, rCq |ù C1 ^ p�M, rC1q |ù C.

On the other hand, graph rewriting can be easily obtained by means of term rewriting, as discussed
in [116] and in Section 9.5. Rewriting Logic constitutes a formal framework where graph transformation
concepts can be specified. If we only consider Membership Equational Logic, graph transformations can also
be specified as functions, as shown in [9]. Furthermore, automated formal verification techniques for term
rewriting can then be reused for graph rewriting.

10.2. Summary of Contributions 207

10.2 Summary of Contributions

From a theoretical point of view, our work constitutes an algebraic metamodeling framework where the
following notions, which are present in a MOF metamodeling approach, have been defined in a precise way:

• the MOF meta-metamodel realization as the reflectp�MOF,Hq theory;

• �M : metamodel definition, or model type definition;

• reflectp�M,Hq : metamodel realization;

• M : metamodel (in the mel theory reflectp�M,Hq, M is represented by the ModelTypetMu sort);

• rM : M : structural conformance relation;

• vMwMOF : semantics of the model type M;

• p�M, rCq : metamodel specification definition;

• reflectp�M, rCq : metamodel specification realization;

• pM, Cq : metamodel specification (in the mel theory reflectp�M, rCq, pM, Cq is represented by the
ConsistentModelTypetMu sort);

• rM |ù C : OCL constraint satisfaction relation;

• rM : pM, Cq : constrained conformance relation; and

• vpM, CqwMOF : semantics of the consistent model type pM, Cq;
• the MOF Object type and its operations.

In addition, we have aligned the system of types of the MOF and OCL metamodels so that OCL
expressions can be algebraically defined with introspection facilities, and properties of object types can be

defined in a metamodel definition �M by means of OCL collection types. From an executability point of view,
we have extended the existing support for object-oriented programming in Maude, enabling model-oriented
programming by:

• introducing notions of Model-Driven Development;

• introducing notions of the MOF and OCL metamodels, such as enumeration types, object-typed
properties, containment properties, and OCL collection types;

• providing support for querying the graph and tree views of a model definition;

• providing support for structural OCL constraints;

• introducing MOF-based reflection, which provides the algebraic semantics of a metamodel definition
and introspection facilities; and

• providing an Eclipse plugin that maps EMF models to terms that represent a model definition rM .

10.3 Future Work

In this work, we have given a detailed definition of the reflect function that permits projecting a metamodel

specification definition p�M, rCq as a theory, enabling the definition rM of models that both conform to M,rM : M, and satisfy the OCL constraints rC, rM |ù C.
The algebraic MOF framework has been specified in Maude and has been integrated into the EMF. The

specification includes the infrastructure of mel theories that has been presented throughout the Sections
6-8. As indicated in Section 9, in the current implementation only metamodel realizations that provide
support for the structural conformance relation are supported by means of the reflectMOF function. In future
work, we will consider the complete definition of the reflect function, providing support for the constrained
conformance relation. This function has been mathematically defined in this work based on the experience
in a previous prototype for OCL constraint validation [11]. However, the support for OCL expressions is
already available in the algebraic framework, although the concrete syntax for the OCL language is still
not supported. Another choice to provide support for the OCL constraint satisfaction relation consists in
defining the syntax and the semantics of the OCL language as indicated in the Rewriting Logic Semantics
project [101, 102]. We will also consider this second choice.

Furthermore, introspection is already available in algebraic OCL expressions in our algebraic MOF
framework. However, the concrete syntax of OCL does not support the use of the Object object type
operations in an OCL expression. To support this feature, the Object object type has to be included in
the OCL standard library, enabling introspection facilities for OCL.

208 Chapter 10. Conclusions and Future Work

10.4 Open Research Areas

The metamodeling framework that has been presented in this work opens several research areas, which involve
either extending the current framework with new notions or using it as the kernel of a model management
framework. In this section, we outline some of these open research areas.

10.4.1 Metamodeling Aspects

A metamodel definition �M constitutes a reusable container of type definitions rT that can be enriched

or extended by other metamodel definitions. For example, the metamodel definition �OCL imports the

metamodel definition �MOF to enable the use of user-defined types rT of a metamodel definition �M : MOF
in specific OCL expressions rc : OCL.

The metamodel extension mechanism can be studied in two different cases: (i) when metamodels are

given as data �M, and (ii) when metamodels are given as semantically-defined entities M. At present, the

MOF standard only provides extension metamodel mechanisms on the data version �M of metamodels. When

a metamodel definition �M is realized as a program in a specific MOF-based modeling environment, these
mechanisms depend on the environment-specific semantics that is given by code generation from a MOF

metamodel definition �M to a target (OO) programming language. In these cases, the semantics that is
provided for M is not formal, and depends on specific implementation details. Furthermore, although OCL

constraints can be used to define well-formed requirements in a MOF metamodel definition �M, these are not
taken into account explicitly in the metamodel extension mechanism. A formal definition of an extension
relation between model types M and/or between constrained model types pM, Cq would allow supporting
polymorphism in functions that are typed with such model types, like model transformations. In [37], the
authors provide a formal extension relation between metamodels discussing its advantages.

On the other hand, some metamodeling frameworks, like the Eclipse Modeling Framework, also provide
support for defining parameterized object types in a metamodel definition. Providing the formal semantics
of this feature would allow a more expressive metamodeling framework. Maude already provides support
for theories that are parameterized with objects [75], so that the formalization of this notion is also feasible.
EMF also provides support for XML, so that an XML schema can be automatically imported as a metamodel
definition. However, the Ecore meta-metamodel provides constructs to deal with XML features that are
not considered yet in our framework. This second feature would allow the direct, automated formalization
of a broader set of metamodels, provided as XML schemas.

10.4.2 Precise Model Transformation and Model Management

Our metamodeling framework permits using model definitions rM as first-class citizens, rising the level of
abstraction of model-based tasks, where the internals of a specific model remain hidden. For example, a

model transformation that is defined at level M2 between a source metamodel specification definition p rA,�CAq
and a target metamodel specification definition p rB,�CBq can be mathematically defined in our framework as
a function

f : vpA, CAqwMOF Ñ vpB, CBqwMOF.

Given a model definition rM : pA, CAq, we can then use the model fp rMq, where fp rMq : pB, CBq without any

need for knowing the specific objects that constitute either rM or fp rMq. Note that, in addition, the sets
CA and CB of OCL constraints are implicitly taken into account without any need for performing additional
checking tasks.

10.4.3 Model-based Formal Verification Techniques

In our approach, we are using Maude’s implementation of Rewriting Logic, so that we can reuse all Maude-
based facilities for automated formal verification. A rewrite theory, specified in Maude as a system module,
provides an executable mathematical model of a concurrent system. Mathematically, an unconditional
rewrite rule has the form l : t Ñ t1, where t, t1 are terms of the same kind, which may contain variables,
and l is the label of the rule. Intuitively, a rule describes a local concurrent transition in a system, where
the terms t and t1 form part of different states. As indicated in [75], the search command that is provided
in Maude can be used to apply (bounded) model checking of invariants. Such invariants can be defined as
OCL constraints in our MOF framework. In addition, [132] provides a simple method to define finite-state
abstractions of a state space, i.e., an appropriate quotient of the original system whose set of reachable

10.4. Open Research Areas 209

states is finite, by just adding equations. We leave a comparison of these techniques with other graph
rewriting-based model checking techniques for future work.

10.4.4 Bridging the Gap Between Grammarware and Modelware

(Forward) Model-Driven Engineering (MDE) [21] increases the level of abstraction of software artifacts in a
software development process, enhancing interoperability and productivity. A huge effort is being done in
applying MDE to industry practices through initiatives such as OMG’s Model-Driven Architecture (MDA)
[18] and the Modelware Project [133]. Despite these efforts, industry may remain code-centric for a long
time, as stated in [134], since large industrial software products are still mostly made out of raw software
items using legacy technology. Therefore, Model-Driven reverse Engineering (MDrE) processes are needed
to enable the use of such legacy software within model-based software artifacts.

Grammarware comprises grammars and all grammar-dependent software, i.e., software artifacts that
directly involve grammar knowledge, playing a key role in Reverse Model-Driven Engineering. In [135], a
survey of techniques that are applied to grammar-based languages is provided. Grammarware involves both
general purpose languages (GPLs), such as C#, Java or XML (among many others), and Domain Specific
Languages (DSLs) [136]. DSLs are languages tailored to a specific application domain. They increase the
expressiveness and ease of use compared with GPLs in the corresponding domain of application. There are
several proposals to bridge model-based languages and grammar-based languages so that MDrE processes
can be made feasible [137, 138, 139, 140, 141].

In MEL, a context-free grammar G can be represented as an order-sorted signature ΣG with mix-fix
syntax operators [142]. For example, given a production rule,

 A ¡ ::� C ¡ bc A ¡ b A ¡ a

with a, b, c terminal symbols and A, C non-terminals, we obtain a corresponding operator declaration

bc b a : C A A Ñ A.

Due to the reflective features of MEL, bridging grammar-based languages and model-based languages is
feasible in our algebraic metamodeling framework by means of the following steps:

From grammar to metamodel (G2MM): generation of one and only one metamodel definition �M for
a context-free grammar G that defines the concrete syntax of a language. Let Module be the sort of
metarepresented mel theories in MEL, G2MM can be represented as an equationally-defined function:

G2MM : Module ÝÑ ConsistentModelTypetMOFu.

From metamodel to grammar (MM2G): generation of a context-free grammar from a metamodel defi-

nition �M that defines the abstract syntax of a language. MM2G can be represented as an equationally-
defined function:

MM2G : ConsistentModelTypetMOFu ÝÑ Module.

From program to model (P2M): generation of one and only one model definition rM , such that rM :
M, from a given program P , which is based on the grammar G. The generated model definitionrM represents the abstract syntax tree of the corresponding program P . Let Term be the sort of
metarepresented terms in MEL, M2P can be represented as an equationally-defined function:

P2M : Term ÝÑ ConsistentModelTypetMu.

From model to program (M2P): generation of a program P based on a grammar G from a model

definition rM that conforms to the corresponding model type M. This generation process constitutes a
backward mechanism from a model to code (forwards in the sense of MDA), which can be equationally-
defined as a function:

M2P : ConsistentModelTypetMu ÝÑ Term.

Functions of this kind, which relate grammars to metamodels and programs to models, provide formal
support to MDrE processes. Model-driven processes that can be supported by this approach include:

Automated generation of model-based languages. From any kind of language that is based on a
context-free grammar G, either a general purpose language (such as Java) or a DSL, the function

G2MM generates a MOF metamodel definition �M, such that �M � G2MM pΣGq. Through the func-
tion P2M, a program P that is well-formed in the language (LG), which is defined by G, corresponds to

210 Chapter 10. Conclusions and Future Work

exactly one model definition rM so that rM : M. Both the G2MM and P2M functions provide support
for a reverse MDE process allowing the recovery of (possibly legacy) programs into models and the
automated generation of documentation for legacy code. Furthermore, visual concrete syntax can be
attached to elements of the metamodel by means of MOF-based technology, such as the Graphical
Modeling Framework, endowing formal languages with visual facilities.

Formal semantic definition of EMOF-based languages. Both syntax and semantics of a program-
ming language LG based on a grammar G can be defined in rewriting logic, as described in [101, 102].

By means of the function M2P , a model definition rM that conforms to the generated metamodel
definition G2MM pΣGq correspond to exactly one program P that is well-formed in the language LG.
Thus, the program P can be interpreted by means of the semantics defined for LG. The operational
semantics of the rewriting logic definition of a grammar-based language, in a rewriting logic implemen-
tation like Maude, together with the bridges that have been introduced in this paper, not only provide
an efficient interpreter for models that conform to MOF metamodels, but also enable the application
of powerful program analysis techniques, such as model checking, to such models.

Automated code generation for models. A lightweight process can be easily obtained from the pre-
vious one by only defining the syntax of the language LG as an order-sorted signature. Since the
function G2MM does not take into account the rewriting logic semantic definition of LG, a well-
formed MOF metamodel definition G2MM pΣGq is obtained. In this case, the function M2P acts as
an automated code generator, since the term that is generated from a model that conforms to the
metamodel definition G2MM pΣGq represents the concrete syntax of a program in LG.

Formal Reasoning over PIMs. Model transformations can be used to provide support for a MDE pro-
cess, where a Platform Independent Model (PIM), such as a UML model, can be transformed into a
Platform Specific Model (PSM), such as a Java model. If the platform specific metamodel corresponds
to a grammar-based language LG, whose semantics has been defined in rewriting logic, the resulting
PSM is directly executable. Furthermore, if the rewriting logic definition of a model transformation
language is also provided, the formal semantics of the PIM model could be defined by composing
the semantics of the PIM-to-PSM transformation definition and the rewriting logic definition of the
language LG. This fact will enable the application of program analysis techniques to PIM models, en-
hancing the formal specification of software artifacts in the early stages of a model-driven development
process.

Round-trip. The functions P2M and M2P provide round-trip support, so that manual changes to code
can be directly reflected into the corresponding PSM, and changes to a PSM can be automatically
reflected into changes to the corresponding code. Model transformation engines with support for
traceability can also be used to complete a round-trip process from a PIM to code. Indeed, model
management frameworks provide support for tasks of this kind by means of generic, composable
operators that can manipulate and query models. In [7], an example of how these operators can be
used to solve a change propagation scenario is provided.

References

[1] Boronat, A., Carśı, J.A., Ramos, I.: Una plataforma semántica para la gestión de modelos. In
Pimentel, E., Brisaboa, N.R., Gómez, J., eds.: JISBD. (2003) 167–176

[2] Boronat, A., Pérez, J., Carśı, J.A., Ramos, I.: Two experiences in software dynamics. Journal of
Universal Computer Science 10(4) (2004) 428–453

[3] Boronat, A., Ramos, I., Carśı, J.A.: Automatic model generation in model management. In Das, G.,
Gulati, V.P., eds.: CIT. Volume 3356 of Lecture Notes in Computer Science., Springer (2004) 326–335

[4] Boronat, A., Carśı, J.A., Ramos, I., Pedrós, J.: An Approach for Cross-Model Semantic Transfor-
mation on the .NET Framework. In: .NET Technologies2005 conference proceedings. Plzen, Czech
Republic. (2005)

[5] Boronat, A., Carśı, J.A., Ramos, I.: Automatic reengineering in mda using rewriting logic as trans-
formation engine. In: CSMR, IEEE Computer Society (2005) 228–231

[6] Boronat, A., Carśı, J.A., Ramos, I.: An algebraic baseline for automatic transformations in mda.
Electr. Notes Theor. Comput. Sci. 127(3) (2005) 31–47

[7] Boronat, A., Carśı, J.A., Ramos, I.: Automatic support for traceability in a generic model manage-
ment framework. In Hartman, A., Kreische, D., eds.: Model Driven Architecture - Foundations and
Applications, First European Conference, ECMDA-FA 2005, Nuremberg, Germany, November 7-10,
2005. Volume 3748 of Lecture Notes in Computer Science., Springer (2005) 316–330

[8] Boronat, A., Iborra, J., Carśı, J.A., Ramos, I., Gómez, A.: Del método formal a la aplicación industrial
en gestión de modelos: Maude aplicado a eclipse modeling framework. In Álvarez, J.A.T., Núñez, J.H.,
eds.: JISBD, Thomson (2005) 253–258

[9] Boronat, A., Carśı, J.A., Ramos, I.: Algebraic specification of a model transformation engine. In
Baresi, L., Heckel, R., eds.: FASE. Volume 3922 of Lecture Notes in Computer Science., Springer
(2006) 262–277

[10] Boronat, A., Carśı, J.A., Ramos, I., Letelier, P.: Formal model merging applied to class diagram
integration. Electr. Notes Theor. Comput. Sci. 166 (2007) 5–26

[11] Boronat, A., Oriente, J., Gómez, A., Ramos, I., Carśı, J.A.: An algebraic specification of generic
ocl queries within the eclipse modeling framework. In Rensink, A., Warmer, J., eds.: ECMDA-FA.
Volume 4066 of Lecture Notes in Computer Science., Springer (2006) 316–330

[12] Boronat, A., , Ramos, I., Carśı, J.A.: Definition of ocl 2.0 operational semantics by means of a
parameterized algebraic specification. In Ramos, I., Carśı, J.A., Boronat, A., eds.: 1st International
Workshop on Algebraic Foundations for OCL and Applications, Technical University of Valencia (2006)

[13] Boronat, A., Carśı, J.A., Ramos, I.: Exogenous model merging by means of model management
operators. Electronic Communications of the EASST 3 (2006) http://eceasst.cs.tu-berlin.de/

index.php/eceasst/article/view/8.

[14] Gómez, A., Boronat, A., Carśı, J.A., Ramos, I.: MOMENT CASE: Un prototipo de herramienta
CASE (Demo) (to appear - in Spanish). [143]

[15] Mora, B., Garćıa, F., Ruiz, F., Piattini, M., Boronat, A., Gómez, A., Carśı, J.A., Ramos, I.: Marco
de Trabajo basado en MDA para la Medicin Genérica del Software (to appear - in Spanish). [143]

http://eceasst.cs.tu-berlin.de/index.php/eceasst/article/view/8
http://eceasst.cs.tu-berlin.de/index.php/eceasst/article/view/8

212 References

[16] Gómez, A., Boronat, A., Carśı, J.A., Ramos, I.: Recuperación y procesado de datos biológicos
mediante Ingenieŕıa Dirigida por Modelos (to appear - in Spanish). [143]

[17] Sztipanovits, J., Karsai, G.: Model-integrated computing. Computer 30(4) (1997) 110–111

[18] Object Management Group: MDA Guide Version 1.0.1. (2003) http://www.omg.org/docs/omg/

03-06-01.pdf.

[19] Frankel, D.: Model Driven Architecture: Applying MDA to Enterprise Computing. John Wiley and
Sons, Inc., New York, NY, USA (2002)

[20] Greenfield, J., Short, K., Cook, S., Kent, S.: Software Factories: Assembling Applications with
Patterns, Models, Frameworks, and Tools. John Wiley and Sons (2004)

[21] Schmidt, D.C.: Model-driven engineering. IEEE Computer 39(2) (2006)

[22] Object Management Group: Meta Object Facility (MOF) 2.0 Core Specification (ptc/06-01-01) (2006)
http://www.omg.org/cgi-bin/doc?formal/2006-01-01.

[23] Object Management Group: MOF 2.0 QVT final adopted specification (ptc/05-11-01) (2005) http:

//www.omg.org/cgi-bin/doc?ptc/2005-11-01.

[24] Object Management Group: OCL 2.0 Specification (2006) http://www.omg.org/cgi-bin/doc?

formal/2006-05-01.

[25] Eclipse Organization: The eclipse modeling framework (2007) http://www.eclipse.org/emf/.

[26] Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theoretical Computer
Science 96(1) (1992) 73–155

[27] Meseguer, J.: Membership algebra as a logical framework for equational specification. In Parisi-
Presicce, F., ed.: Proc. WADT’97, Springer LNCS 1376 (1998) 18–61

[28] NetBeans: Netbeans metadata repository (2007) http://mdr.netbeans.org/.

[29] Microsoft Corp.: The DSL tools (2007) http://msdn.microsoft.com/vstudio/DSLTools/.

[30] Metacase, Corp.: Metaedit web site (2007) http://www.metacase.com/.

[31] Warmer, J., Kleppe, A.: The Object Constraint Language, Second Edition, Getting Your Models
Ready for MDA. Addison-Wesley (2004)

[32] Richters, M.: A Precise Approach to Validating UML Models and OCL Constraints. PhD thesis,
Universität Bremen, Logos Verlag, Berlin, BISS Monographs, No. 14 (2002)

[33] Java Community Process: The Java Metadata Interface (JMI) Specification (JSR 40) (2002) http:

//www.jcp.org/en/jsr/detail?id=40.

[34] Selic, B.: The pragmatics of model-driven development. IEEE Softw. 20(5) (2003) 19–25

[35] Bezivin, J.: On the unification power of models. Software and System Modeling (SoSym) 4(2) (2005a)
171–188

[36] Poernomo, I.: The meta-object facility typed. [144] 1845–1849

[37] Steel, J., Jézéquel, J.M.: On model typing. Journal of Software and Systems Modeling (SoSyM)
(2006)

[38] Seidewitz, E.: What models mean. Software, IEEE 20(5) (2003) 26–32

[39] Rensink, A.: Subjects, models, languages, transformations. In Bézivin, J., Heckel, R., eds.: Language
Engineering for Model-Driven Software Development. Volume 04101 of Dagstuhl Seminar Proceed-
ings., Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl,
Germany (2004)

http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/cgi-bin/doc?formal/2006-01-01
http://www.omg.org/cgi-bin/doc?ptc/2005-11-01
http://www.omg.org/cgi-bin/doc?ptc/2005-11-01
http://www.omg.org/cgi-bin/doc?formal/2006-05-01
http://www.omg.org/cgi-bin/doc?formal/2006-05-01
http://www.eclipse.org/emf/
http://mdr.netbeans.org/
http://msdn.microsoft.com/vstudio/DSLTools/
http://www.metacase.com/
http://www.jcp.org/en/jsr/detail?id=40
http://www.jcp.org/en/jsr/detail?id=40

References 213

[40] Kuhne, T.: Matters of (meta-) modeling. Software and Systems Modeling (SoSyM) 5 (December
2006) 369–385(17)

[41] Hesse, W.: More matters on (meta-)modelling: remarks on thomas kuhnes matters. Software and
Systems Modeling (SoSyM) 5(4) (2006) 387–394

[42] Kuhne, T.: Clarifying matters of (meta-) modeling: an authors reply. Software and Systems Modeling
(SoSyM) 5(4) (2006) 395–401

[43] Ludewig, J.: Models in software engineering - an introduction. Inform., Forsch. Entwickl. 18(3-4)
(2004) 105–112

[44] Atkinson, C., Kühne, T.: The essence of multilevel metamodeling. [145] 19–33

[45] The MOVA group: The MOVA tool: a validation tool for UML (2006) http://maude.sip.ucm.es/

mova/.

[46] Basin, D.A., Doser, J., Lodderstedt, T.: Model driven security: From UML models to access control
infrastructures. ACM Trans. Softw. Eng. Methodol. 15(1) (2006) 39–91

[47] Clavel, M., Egea, M.: ITP/OCL: A rewriting-based validation tool for uml+ocl static class diagrams.
In Johnson, M., Vene, V., eds.: AMAST. Volume 4019 of Lecture Notes in Computer Science., Springer
(2006) 368–373

[48] Clavel, M., Egea, M.: Equational specification of uml+ocl static class diagrams (2006) http://maude.
sip.ucm.es/~clavel/pubs/clavel-egea06a.pdf.

[49] Taentzer, G., Ehrig, K., Guerra, E., de Lara, J., Lengyel, L., Levendovszky, T., Prange, U., Varró,
D., , Varró-Gyapay, S.: Model transformation by graph transformation: A comparative study. In:
ACM/IEEE 8th International Conference on Model Driven Engineering Languages and Systems, Mon-
tego Bay, Jamaica (2005)

[50] (AGG Homepage) http://tfs.cs.tu-berlin.de/agg/.

[51] Bardohl, R., Ehrig, H., de Lara, J., Taentzer, G.: Integrating meta-modelling aspects with graph
transformation for efficient visual language definition and model manipulation. [146] 214–228

[52] Ehrig, H., Prange, U., Taentzer, G.: Fundamental theory for typed attributed graph transformation.
[147] 161–177

[53] Ehrig, H., Ehrig, K., Habel, A., Pennemann, K.H.: Theory of constraints and application conditions:
From graphs to high-level structures. Fundam. Inform. 74(1) (2006) 135–166

[54] Ehrig, H., Ehrig, K., de Lara, J., Taentzer, G., Varró, D., Varró-Gyapay, S.: Termination criteria for
model transformation. [148] 49–63

[55] Bottoni, P., Koch, M., Parisi-Presicce, F., Taentzer, G.: Termination of high-level replacement units
with application to model transformation. Electr. Notes Theor. Comput. Sci. 127(4) (2005) 71–86

[56] de Lara, J., Vangheluwe, H.: Atom3: A tool for multi-formalism and meta-modelling. In Kutsche,
R.D., Weber, H., eds.: FASE. Volume 2306 of Lecture Notes in Computer Science., Springer (2002)
174–188

[57] Rozenberg, G., ed.: Handbook of graph grammars and computing by graph transformation: volume
I. foundations. World Scientific Publishing Co., Inc., River Edge, NJ, USA (1997)

[58] Guerra, E., de Lara, J.: Event-driven grammars: Towards the integration of meta-modelling and
graph transformation. [147] 54–69

[59] Guerra, E., Dı́az, P., de Lara, J.: A formal approach to the generation of visual language environments
supporting multiple views. In: VL/HCC, IEEE Computer Society (2005) 284–286

[60] Schürr, A.: Specification of graph translators with triple graph grammars. In Mayr, E.W., Schmidt,
G., Tinhofer, G., eds.: WG. Volume 903 of Lecture Notes in Computer Science., Springer (1994)
151–163

http://maude.sip.ucm.es/mova/
http://maude.sip.ucm.es/mova/
http://maude.sip.ucm.es/~clavel/pubs/clavel-egea06a.pdf
http://maude.sip.ucm.es/~clavel/pubs/clavel-egea06a.pdf
http://tfs.cs.tu-berlin.de/agg/

214 References

[61] Budapest University of Technology and Economics: Viatra2 (2007) http://dev.eclipse.org/

viewcvs/indextech.cgi/gmt-home/subprojects/VIATRA2/index.html.

[62] Varró, D., Pataricza, A.: Vpm: A visual, precise and multilevel metamodeling framework for describing
mathematical domains and uml (the mathematics of metamodeling is metamodeling mathematics).
Software and System Modeling 2(3) (2003) 187–210

[63] Varró, D., Pataricza, A.: Generic and meta-transformations for model transformation engineering. In
Baar, T., Strohmeier, A., Moreira, A., Mellor, S., eds.: Proc. UML 2004: 7th International Conference
on the Unified Modeling Language. Volume 3273 of LNCS., Lisbon, Portugal, Springer (2004) 290–304

[64] Heckel, R.: Compositional verification of reactive systems specified by graph transformation. In:
FASE. (1998) 138–153

[65] Rensink, A., Schmidt, Á., Varró, D.: Model checking graph transformations: A comparison of two
approaches. [147] 226–241

[66] Schmidt, Á., Varró, D.: Checkvml: A tool for model checking visual modeling languages. In Stevens,
P., Whittle, J., Booch, G., eds.: UML. Volume 2863 of Lecture Notes in Computer Science., Springer
(2003) 92–95

[67] Varró, D.: Towards symbolic analysis of visual modeling languages. Electr. Notes Theor. Comput.
Sci. 72(3) (2003)

[68] Varró, D.: Automated formal verification of visual modeling languages by model checking. Software
and System Modeling 3(2) (2004) 85–113

[69] Holzmann, G.J.: The model checker spin. IEEE Trans. Software Eng. 23(5) (1997) 279–295

[70] Dániel Varró, András Balogh, A.P.: The VIATRA2 Transformation Framework: Model
transformation by Graph Transformation. In: Eclipse Modeling Symposium. (2006) http:

//www.eclipsecon.org/summiteurope2006/presentations/ESE2006-EclipseModelingSymposium7_

VIATRA2TransformationFramework.pdf.

[71] Rensink, A.: Groove: GRaphs for Object-Oriented VErification (2007) http://janus.cs.utwente.

nl/~groove/wordpress/groove-home/.

[72] Ehrig, K., Ermel, C., Hänsgen, S., Taentzer, G.: Generation of visual editors as eclipse plug-ins. In
Redmiles, D.F., Ellman, T., Zisman, A., eds.: ASE, ACM (2005) 134–143

[73] Winkelmann, J., Taentzer, G., Ehrig, K., Küster, J.M.: Translation of restricted ocl constraints into
graph constraints for generating meta model instances by graph grammars. In: 5th International
Workshop on Graph Transformation and Visual Modeling Techniques. GT-VMT 2006. April 1 - 2
2006, Vienna, Austria. In proceedings. (To Appear). (2006)

[74] Ehrig, K., Winkelmann, J.: Model transformation from visualocl to ocl using graph transformation.
Electr. Notes Theor. Comput. Sci. 152 (2006) 23–37

[75] Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott, C.: All About
Maude: a High-Performance Logical Framework. Springer (2007)

[76] Meseguer, J.: A logical theory of concurrent objects and its realization in the Maude language.
In Agha, G., Wegner, P., Yonezawa, A., eds.: Research Directions in Concurrent Object-Oriented
Programming. MIT Press (1993) 314–390

[77] Fernández, J.L., Toval, A.: Seamless Formalizing the UML Semantics through Metamodels. Unified
Modeling Language: Systems Analysis, Design, and Development Issues. Idea Group Publishing (2001)

[78] Fernández, J.L., Toval, A.: Can intuition become rigorous? foundations for uml model verification
tools. In: International Symposium on Software Reliability Engineering (ISSRE 2000), IEEE (2000)
San Jose, California, USA.

[79] Alemán, J.L.F.: A formalization proposal of the UML four-layered architecture. PhD thesis, Murcia
University (2002) (In Spanish).

http://dev.eclipse.org/viewcvs/indextech.cgi/gmt-home/subprojects/VIATRA2/index.html
http://dev.eclipse.org/viewcvs/indextech.cgi/gmt-home/subprojects/VIATRA2/index.html
http://www.eclipsecon.org/summiteurope2006/presentations/ESE2006-EclipseModelingSymposium7_VIATRA2TransformationFramework.pdf
http://www.eclipsecon.org/summiteurope2006/presentations/ESE2006-EclipseModelingSymposium7_VIATRA2TransformationFramework.pdf
http://www.eclipsecon.org/summiteurope2006/presentations/ESE2006-EclipseModelingSymposium7_VIATRA2TransformationFramework.pdf
http://janus.cs.utwente.nl/~groove/wordpress/groove-home/
http://janus.cs.utwente.nl/~groove/wordpress/groove-home/

References 215

[80] Toval, A., Fernández, J.L.: Formally modeling uml and its evolution: a holistic approach. Kluwer Aca-
demic Publishers (2000) FMOODS’00, Formal Methods for Open Object-Based Distributed Systems.
Stanford, California, USA.

[81] Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Quesada, J.: Maude:
specification and programming in rewriting logic. Theoretical Computer Science 285 (2002) 187–243

[82] Clavel, M., Meseguer, J., Palomino, M.: Reflection in membership equational logic, many-sorted
equational logic, Horn logic with equality, and rewriting logic. In Gadducci, F., Montanari, U., eds.:
Proc. 4th. Intl. Workshop on Rewriting Logic and its Applications. Volume 71., ENTCS, Elsevier
(2002)

[83] Clavel, M.: Reflection in Rewriting Logic: Metalogical Foundations and Metaprogramming Applica-
tions. CSLI Publications (2000)

[84] Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J.: Metalevel computation in
Maude. Volume 15., Elsevier (1998) 3–24 http://www.elsevier.nl/locate/entcs/volume15.html.

[85] Burstall, R.M., Goguen, J.A.: The semantics of clear, a specification language. In Bjørner, D., ed.:
Abstract Software Specifications. Volume 86 of Lecture Notes in Computer Science., Springer (1979)
292–332

[86] Goguen, J.A., Winkler, T., Meseguer, J., Futatsugi, K., Jouannaud, J.P.: Introducing OBJ. In
Goguen, J.A., Malcolm, G., eds.: Software Engineering with OBJ: Algebraic Specification in Action.
Advances in Formal Methods. Kluwer Academic Publishers (2000) 3–167

[87] Poernomo, I.: The meta-object facility typed. [144] 1845–1849

[88] Brucker, A.D., Wolff, B.: The HOL-OCL book. Technical Report 525, ETH Zürich (2006)

[89] Object Management Group: UML 2.0 superstructure specification (formal/05-07-04) (2004) http:

//www.omg.org/cgi-bin/doc?formal/05-07-04.

[90] Object Management Group: UML 2.0 infrastructure specification (formal/05-07-05) (2004) http:

//www.omg.org/cgi-bin/doc?formal/05-07-05.

[91] Gerber, A., Raymond, K.: Mof to emf: there and back again. In: eclipse ’03: Proceedings of the 2003
OOPSLA workshop on eclipse technology eXchange, New York, NY, USA, ACM Press (2003) 60–64

[92] The ISSI Research Group: (The MOMENT Project) http://moment.dsic.upv.es.

[93] Richters, M.: A Precise Approach to Validating UML Models and OCL Constraints. PhD thesis,
Universität Bremen, Logos Verlag, Berlin, BISS Monographs, No. 14 (2002)

[94] Baar, T.: Non-deterministic constructs in ocl - what does any() mean. In Prinz, A., Reed, R., Reed,
J., eds.: SDL Forum. Volume 3530 of Lecture Notes in Computer Science., Springer (2005) 32–46

[95] Smith, B.: Informal proceedings first workshop on reflection and metalevel architectures in object-
oriented programming, oopsla/ecoop’90 (1990)

[96] Bobrow, D.G., Gabriel, R.P., White, J.L.: Clos in context: the shape of the design space. (1993)
29–61

[97] Demers, F.N., Malenfant, J.: Reflection in logic, functional and object-oriented programming: a
short comparative study. In: Proceedings of the IJCAI’95 Workshop on Reflection and Metalevel
Architectures and their Applications in AI. (1995)

[98] Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse Modeling Framework: A
Developer’s Guide. Pearson Education (2003)

[99] Akehurst, D., Patrascoiu, O., Smith, R.: Kent Modeling Framework (2006) http://www.cs.kent.ac.
uk/projects/ocl/.

[100] Eclipse Organization: Model development tools (2007) http://www.eclipse.org/modeling/mdt/.

http://www.elsevier.nl/locate/entcs/volume15.html
http://www.omg.org/cgi-bin/doc?formal/05-07-04
http://www.omg.org/cgi-bin/doc?formal/05-07-04
http://www.omg.org/cgi-bin/doc?formal/05-07-05
http://www.omg.org/cgi-bin/doc?formal/05-07-05
http://moment.dsic.upv.es
http://www.cs.kent.ac.uk/projects/ocl/
http://www.cs.kent.ac.uk/projects/ocl/
http://www.eclipse.org/modeling/mdt/

216 References

[101] Meseguer, J., Rosu, G.: The rewriting logic semantics project. Electr. Notes Theor. Comput. Sci.
156(1) (2006) 27–56

[102] Meseguer, J., Rosu, G.: Rewriting logic semantics: From language specifications to formal analysis
tools. In Basin, D.A., Rusinowitch, M., eds.: IJCAR. Volume 3097 of Lecture Notes in Computer
Science., Springer (2004) 1–44

[103] Bézivin, J., Hillairet, G., Jouault, F., Kurtev, I., Piers, W.: Bridging the ms/dsl tools and the eclipse
modeling framework. In: OOPSLA Int. Workshop on Software Factories. (2005)

[104] Sendall, S., Kozaczynski, W.: Model transformation: The heart and soul of model-driven software
development. IEEE Software 20(5) (2003) 42–45

[105] Eclipse Org.: UML2 Project (2007) http://www.eclipse.org/modeling/mdt/?project=uml2tools#

uml2tools.

[106] Vukmirovic, O., Tilghman, S.: Exploring genome space. Nature 405(6788) (2000) 820–2

[107] Täubner, C., Mathiak, B., Kupfer, A., Fleischer, N., Eckstein, S.: Modelling and simulation of the tlr4
pathway with coloured petri nets. In: EMBS’06. 28th Annual International Conference of the IEEE.
(2006) 2009–2012

[108] Täubner, C., Merker, T.: Discrete modelling of the ethylene-pathway. In: ICDE Workshops. (2005)
1152

[109] Fenton, N.E., Neil, M.: Software metrics: roadmap. In: ICSE - Future of SE Track. (2000) 357–370

[110] Bernstein, P.A., Halevy, A.Y., Pottinger, R.A.: A vision for management of complex models. SIGMOD
Record (ACM Special Interest Group on Management of Data) 29(4) (2000) 55–63

[111] Melnik, S., Rahm, E., Bernstein, P.A.: Rondo: a programming platform for generic model man-
agement. In: SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD international conference on
Management of data, New York, NY, USA, ACM Press (2003) 193–204

[112] Song, G., Zhang, K., Kong, J.: Model management through graph transformation. In: VLHCC
’04: Proceedings of the 2004 IEEE Symposium on Visual Languages - Human Centric Computing
(VLHCC’04), Washington, DC, USA, IEEE Computer Society (2004) 75–82

[113] Kruchten, P.: The Rational Unified Process: an introduction. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA (1999)

[114] Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design
and the Unified Process. Prentice Hall PTR, Upper Saddle River, NJ, USA (2001)

[115] Batini, C., Lenzerini, M., Navathe, S.B.: A comparative analysis of methodologies for database schema
integration. ACM Comput. Surv. 18(4) (1986) 323–364

[116] Meseguer, J.: Rewriting logic as a semantic framework for concurrency: a progress report. In: Proc.
CONCUR’96, Pisa, August 1996, Springer LNCS 1119 (1996) 331–372

[117] Eclipse Organization: The graphical modeling framework (2006) http://www.eclipse.org/gmf/.

[118] Varró, D.: Model transformation by example. In Nierstrasz, O., Whittle, J., Harel, D., Reggio, G.,
eds.: MoDELS. Volume 4199 of Lecture Notes in Computer Science., Springer (2006) 410–424

[119] Bardohl, R., Ehrig, H., de Lara, J., Taentzer, G.: Integrating meta-modelling aspects with graph
transformation for efficient visual language definition and model manipulation. [146] 214–228

[120] Bottoni, P., Taentzer, G., Schürr, A.: Efficient parsing of visual languages based on critical pair analysis
and contextual layered graph transformation. In: VL ’00: Proceedings of the 2000 IEEE International
Symposium on Visual Languages (VL’00), Washington, DC, USA, IEEE Computer Society (2000) 59

[121] Engels, G., Heckel, R., Küster, J.M.: Rule-based specification of behavioral consistency based on
the uml meta-model. In: UML ’01: Proceedings of the 4th International Conference on The Unified
Modeling Language, Modeling Languages, Concepts, and Tools, London, UK, Springer-Verlag (2001)
272–286

http://www.eclipse.org/modeling/mdt/?project=uml2tools#uml2tools
http://www.eclipse.org/modeling/mdt/?project=uml2tools#uml2tools
http://www.eclipse.org/gmf/

References 217

[122] Varró, D., Varró, G., Pataricza, A.: Designing the automatic transformation of visual languages. Sci.
Comput. Program. 44(2) (2002) 205–227

[123] Kuske, S.: A formal semantics of uml state machines based on structured graph transformation. [145]
241–256

[124] Hausmann, J.H., Heckel, R., Taentzer, G.: Detection of conflicting functional requirements in a use
case-driven approach: a static analysis technique based on graph transformation. In: ICSE, ACM
(2002) 105–115

[125] Heckel, R., Küster, J.M., Taentzer, G.: Confluence of typed attributed graph transformation systems.
In Corradini, A., Ehrig, H., Kreowski, H.J., Rozenberg, G., eds.: ICGT. Volume 2505 of Lecture Notes
in Computer Science., Springer (2002) 161–176

[126] de Lara, J., Bardohl, R., Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Attributed graph transfor-
mation with node type inheritance. Theor. Comput. Sci. 376(3) (2007) 139–163

[127] Taentzer, G., Rensink, A.: Ensuring structural constraints in graph-based models with type inheri-
tance. [148] 64–79

[128] Balogh, A., Varró, D.: Advanced model transformation language constructs in the viatra2 framework.
[144] 1280–1287

[129] Heckel, R.: Introductory tutorial on foundations and applications of graph transformation. In Corra-
dini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G., eds.: ICGT. Volume 4178 of Lecture
Notes in Computer Science., Springer (2006) 461–462

[130] Ehrig, H., Pfender, M., Schneider, H.J.: Graph-grammars: An algebraic approach. In: FOCS, IEEE
(1973) 167–180

[131] Towards a Basic Theory to Model Model Driven Engineering. In: Workshop on Software Model
Engineering, WISME 2004, joint event with UML2004,Lisboa, Portugal, October 11, 2004. (2004)

[132] Meseguer, J., Palomino, M., Mart́ı-Oliet, N.: Equational abstractions. In Baader, F., ed.: CADE.
Volume 2741 of Lecture Notes in Computer Science., Springer (2003) 2–16

[133] Modelware Consortium: The modelware project (2006) http://www.modelware-ist.org/.

[134] Favre, J.M.: Cacophony: Metamodel-driven architecture recovery. In: WCRE, IEEE Computer
Society (2004) 204–213

[135] Klint, P., Lämmel, R., Verhoef, C.: Towards an engineering discipline for grammarware. ACM
Transactions on Software Engineering Methodology 14(3) (2005) 331–380

[136] Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific languages. ACM
Comput. Surv. 37(4) (2005) 316–344

[137] Alanen, M., Porres, I.: A relation between context-free grammars and meta object facility metamodels.
Technical Report 606, TUCS - Turku Centre for Computer Science, Turku, Finland (2004)

[138] Jouault, F., Bézivin, J., Kurtev, I.: TCS: a DSL for the specification of textual concrete syntaxes
in model engineering. In: GPCE’06: Proceedings of the fifth international conference on Generative
programming and Component Engineering. (2006) To appear.

[139] Muller, P.A., Fleurey, F., Fondement, F., Hassenforder, M., Schnekenburger, R., Gérard, S., Jézéquel,
J.M.: Model-driven analysis and synthesis of concrete syntax. In: ACM/IEEE 9th International
Conference on Model-Driven Engineering Languages and Systems (MODELS’06). (2006) To appear.

[140] Wimmer, M., Kramler, G.: Bridging grammarware and modelware. In Bruel, J.M., ed.: MoDELS
Satellite Events. Volume 3844 of Lecture Notes in Computer Science., Springer (2005) 159–168

[141] Kunert, A.: Semi-automatic generation of metamodels and models from grammars and programs. In:
Fifth International Workshop on Graph Transformation and Visual Modeling Techniques (GT-VMT).
ETAPS. (2006)

http://www.modelware-ist.org/

218 References

[142] Goguen, J.A., Thatcher, J.W., Wagner, E.G., Wright, J.B.: Initial algebra semantics and continuous
algebras. J. ACM 24(1) (1977) 68–95

[143] Actas de las XII Jornadas de Ingenieŕıa del Software y Bases de Datos (JISBD 2007), September 11-14,
2005, Zaragoza, Spain. In: JISBD. (2007)

[144] Haddad, H., ed.: Proceedings of the 2006 ACM Symposium on Applied Computing (SAC), Dijon,
France, April 23-27, 2006. In Haddad, H., ed.: SAC, ACM (2006)

[145] Gogolla, M., Kobryn, C., eds.: UML 2001 - The Unified Modeling Language, Modeling Languages,
Concepts, and Tools, 4th International Conference, Toronto, Canada, October 1-5, 2001, Proceedings.
In Gogolla, M., Kobryn, C., eds.: UML. Volume 2185 of Lecture Notes in Computer Science., Springer
(2001)

[146] Wermelinger, M., Margaria, T., eds.: Fundamental Approaches to Software Engineering, 7th Interna-
tional Conference, FASE 2004, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2004 Barcelona, Spain, March 29 - april 2, 2004, Proceedings. In Wermelinger,
M., Margaria, T., eds.: FASE. Volume 2984 of Lecture Notes in Computer Science., Springer (2004)

[147] Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G., eds.: Graph Transformations, Second
International Conference, ICGT 2004, Rome, Italy, September 28 - October 2, 2004, Proceedings.
In Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G., eds.: ICGT. Volume 3256 of Lecture
Notes in Computer Science., Springer (2004)

[148] Cerioli, M., ed.: Fundamental Approaches to Software Engineering, 8th International Conference,
FASE 2005, Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings. In Cerioli, M., ed.: FASE. Volume 3442
of Lecture Notes in Computer Science., Springer (2005)

References 219

Appendixes

Appendix A

The MOF Theory

mod mod#ecore is
including OCL-DATATYPE-COLLECTIONS .
protecting BOOL .
sorts Cid#ecore EObject#ecore Oid#ecore Property#ecore

PropertySet#ecore ecore/EAnnotation ecore/EAttribute ecore/EClass
ecore/EClassifier ecore/EDataType ecore/EEnum ecore/EEnumLiteral
ecore/EFactory ecore/EModelElement ecore/ENamedElement ecore/EObject
ecore/EOperation ecore/EPackage ecore/EParameter ecore/EReference
ecore/EStringToStringMapEntry ecore/EStructuralFeature ecore/ETypedElement
oid#ecore/EAnnotation oid#ecore/EAttribute oid#ecore/EClass
oid#ecore/EClassifier oid#ecore/EDataType oid#ecore/EEnum
oid#ecore/EEnumLiteral oid#ecore/EFactory oid#ecore/EModelElement
oid#ecore/ENamedElement oid#ecore/EObject oid#ecore/EOperation
oid#ecore/EPackage oid#ecore/EParameter oid#ecore/EReference
oid#ecore/EStringToStringMapEntry oid#ecore/EStructuralFeature
oid#ecore/ETypedElement .

subsorts Cid#ecore < ecore/EObject .
subsorts Oid#ecore < oid#ecore/EObject .
subsorts Property#ecore < PropertySet#ecore .
subsorts ecore/EAnnotation < ecore/EModelElement .
subsorts ecore/EAttribute < ecore/EStructuralFeature .
subsorts ecore/EClass < ecore/EClassifier .
subsorts ecore/EClassifier < ecore/ENamedElement .
subsorts ecore/EDataType < ecore/EClassifier .
subsorts ecore/EEnum < ecore/EDataType .
subsorts ecore/EEnumLiteral < ecore/ENamedElement .
subsorts ecore/EFactory < ecore/EModelElement .
subsorts ecore/EModelElement < Cid#ecore .
subsorts ecore/ENamedElement < ecore/EModelElement .
subsorts ecore/EOperation < ecore/ETypedElement .
subsorts ecore/EPackage < ecore/ENamedElement .
subsorts ecore/EParameter < ecore/ETypedElement .
subsorts ecore/EReference < ecore/EStructuralFeature .
subsorts ecore/EStringToStringMapEntry < Cid#ecore .
subsorts ecore/EStructuralFeature < ecore/ETypedElement .
subsorts ecore/ETypedElement < ecore/ENamedElement .
subsorts oid#ecore/EAnnotation < oid#ecore/EModelElement .
subsorts oid#ecore/EAttribute < oid#ecore/EStructuralFeature .
subsorts oid#ecore/EClass < oid#ecore/EClassifier .
subsorts oid#ecore/EClassifier < oid#ecore/ENamedElement .
subsorts oid#ecore/EDataType < oid#ecore/EClassifier .
subsorts oid#ecore/EEnum < oid#ecore/EDataType .
subsorts oid#ecore/EEnumLiteral < oid#ecore/ENamedElement .
subsorts oid#ecore/EFactory < oid#ecore/EModelElement .
subsorts oid#ecore/EModelElement < Oid#ecore .
subsorts oid#ecore/ENamedElement < oid#ecore/EModelElement .
subsorts oid#ecore/EObject < AbstractOid .
subsorts oid#ecore/EOperation < oid#ecore/ETypedElement .
subsorts oid#ecore/EPackage < oid#ecore/ENamedElement .
subsorts oid#ecore/EParameter < oid#ecore/ETypedElement .
subsorts oid#ecore/EReference < oid#ecore/EStructuralFeature .
subsorts oid#ecore/EStringToStringMapEntry < Oid#ecore .
subsorts oid#ecore/EStructuralFeature < oid#ecore/ETypedElement .
subsorts oid#ecore/ETypedElement < oid#ecore/ENamedElement .

--- this constant is needed to apply downTerm to a constant that represents the name of a class
op ecore/EObject : -> ecore/EObject [ctor] .
op nullOid#ecore : -> [Oid#ecore] .

222 Appendix A. The MOF Theory

op class : EObject#ecore -> Cid#ecore .
op getPropertySet : EObject#ecore -> PropertySet#ecore .
op noneProperty#ecore : -> PropertySet#ecore .
op nullEObject#ecore : -> [EObject#ecore] .
op oid : EObject#ecore -> Oid#ecore .
op <_:_|_> : Oid#ecore Cid#ecore PropertySet#ecore -> EObject#ecore [obj ctor

format (d n++i ni ni ni ni n--i d)] .
op _‘,_ : PropertySet#ecore PropertySet#ecore -> PropertySet#ecore [assoc

comm id: noneProperty#ecore ctor format (d d ni d)] .
op ecore/EAnnotation : -> ecore/EAnnotation [ctor] .
op ecore/EAnnotation/contents/0 : -> Property#ecore [ctor] .
op ecore/EAnnotation/contents‘:_ : OrderedSet{Oid} -> Property#ecore [ctor] .
op ecore/EAnnotation/details/0 : -> Property#ecore [ctor] .
op ecore/EAnnotation/details‘:_ : OrderedSet{Oid} -> Property#ecore [ctor] .
op ecore/EAnnotation/eModelElement/0 : -> Property#ecore [ctor] .
op ecore/EAnnotation/eModelElement‘:_ : [Oid#ecore] -> Property#ecore [ctor] .
op ecore/EAnnotation/references/0 : -> Property#ecore [ctor] .
op ecore/EAnnotation/references‘:_ : OrderedSet{Oid} -> Property#ecore [ctor]

.
op ecore/EAnnotation/source/0 : -> Property#ecore [ctor] .
op ecore/EAnnotation/source‘:_ : String -> Property#ecore [ctor] .
op ecore/EAttribute : -> ecore/EAttribute [ctor] .
op ecore/EAttribute/eAttributeType/0 : -> Property#ecore [ctor] .
op ecore/EAttribute/eAttributeType‘:_ : Oid#ecore -> Property#ecore [ctor] .
op ecore/EAttribute/iD/0 : -> Property#ecore [ctor] .
op ecore/EAttribute/iD‘:_ : Bool -> Property#ecore [ctor] .
op ecore/EClass : -> ecore/EClass [ctor] .
op ecore/EClass/abstract/0 : -> Property#ecore [ctor] .
op ecore/EClass/abstract‘:_ : Bool -> Property#ecore [ctor] .
op ecore/EClass/eAllAttributes/0 : -> Property#ecore [ctor] .
op ecore/EClass/eAllAttributes‘:_ : OrderedSet{Oid} -> Property#ecore [ctor]

.
op ecore/EClass/eAllContainments/0 : -> Property#ecore [ctor] .
op ecore/EClass/eAllContainments‘:_ : OrderedSet{Oid} -> Property#ecore [

ctor] .
op ecore/EClass/eAllOperations/0 : -> Property#ecore [ctor] .
op ecore/EClass/eAllOperations‘:_ : OrderedSet{Oid} -> Property#ecore [ctor]

.
op ecore/EClass/eAllReferences/0 : -> Property#ecore [ctor] .
op ecore/EClass/eAllReferences‘:_ : OrderedSet{Oid} -> Property#ecore [ctor]

.
op ecore/EClass/eAllStructuralFeatures/0 : -> Property#ecore [ctor] .
op ecore/EClass/eAllStructuralFeatures‘:_ : OrderedSet{Oid} -> Property#ecore

[ctor] .
op ecore/EClass/eAllSuperTypes/0 : -> Property#ecore [ctor] .
op ecore/EClass/eAllSuperTypes‘:_ : OrderedSet{Oid} -> Property#ecore [ctor]

.
op ecore/EClass/eAttributes/0 : -> Property#ecore [ctor] .
op ecore/EClass/eAttributes‘:_ : OrderedSet{Oid} -> Property#ecore [ctor] .
op ecore/EClass/eIDAttribute/0 : -> Property#ecore [ctor] .
op ecore/EClass/eIDAttribute‘:_ : [Oid#ecore] -> Property#ecore [ctor] .
op ecore/EClass/eOperations/0 : -> Property#ecore [ctor] .
op ecore/EClass/eOperations‘:_ : OrderedSet{Oid} -> Property#ecore [ctor] .
op ecore/EClass/eReferences/0 : -> Property#ecore [ctor] .
op ecore/EClass/eReferences‘:_ : OrderedSet{Oid} -> Property#ecore [ctor] .
op ecore/EClass/eStructuralFeatures/0 : -> Property#ecore [ctor] .
op ecore/EClass/eStructuralFeatures‘:_ : OrderedSet{Oid} -> Property#ecore [

ctor] .
op ecore/EClass/eSuperTypes/0 : -> Property#ecore [ctor] .
op ecore/EClass/eSuperTypes‘:_ : OrderedSet{Oid} -> Property#ecore [ctor] .
op ecore/EClass/interface/0 : -> Property#ecore [ctor] .
op ecore/EClass/interface‘:_ : Bool -> Property#ecore [ctor] .
op ecore/EClassifier : -> ecore/EClassifier [ctor] .
op ecore/EClassifier/defaultValue/0 : -> Property#ecore [ctor] .
op ecore/EClassifier/defaultValue‘:_ : String -> Property#ecore [ctor] .
op ecore/EClassifier/ePackage/0 : -> Property#ecore [ctor] .
op ecore/EClassifier/ePackage‘:_ : [Oid#ecore] -> Property#ecore [ctor] .
op ecore/EClassifier/instanceClass/0 : -> Property#ecore [ctor] .
op ecore/EClassifier/instanceClassName/0 : -> Property#ecore [ctor] .
op ecore/EClassifier/instanceClassName‘:_ : String -> Property#ecore [ctor] .
op ecore/EClassifier/instanceClass‘:_ : String -> Property#ecore [ctor] .
op ecore/EDataType : -> ecore/EDataType [ctor] .
op ecore/EDataType/serializable/0 : -> Property#ecore [ctor] .
op ecore/EDataType/serializable‘:_ : Bool -> Property#ecore [ctor] .
op ecore/EEnum : -> ecore/EEnum [ctor] .
op ecore/EEnum/eLiterals/0 : -> Property#ecore [ctor] .
op ecore/EEnum/eLiterals‘:_ : OrderedSet{Oid} -> Property#ecore [ctor] .
op ecore/EEnumLiteral : -> ecore/EEnumLiteral [ctor] .
op ecore/EEnumLiteral/eEnum/0 : -> Property#ecore [ctor] .
op ecore/EEnumLiteral/eEnum‘:_ : [Oid#ecore] -> Property#ecore [ctor] .

223

op ecore/EEnumLiteral/instance/0 : -> Property#ecore [ctor] .
op ecore/EEnumLiteral/instance‘:_ : String -> Property#ecore [ctor] .
op ecore/EEnumLiteral/literal/0 : -> Property#ecore [ctor] .
op ecore/EEnumLiteral/literal‘:_ : String -> Property#ecore [ctor] .
op ecore/EEnumLiteral/value/0 : -> Property#ecore [ctor] .
op ecore/EEnumLiteral/value‘:_ : Int -> Property#ecore [ctor] .
op ecore/EFactory : -> ecore/EFactory [ctor] .
op ecore/EFactory/ePackage/0 : -> Property#ecore [ctor] .
op ecore/EFactory/ePackage‘:_ : Oid#ecore -> Property#ecore [ctor] .
op ecore/EModelElement : -> ecore/EModelElement [ctor] .
op ecore/EModelElement/eAnnotations/0 : -> Property#ecore [ctor] .
op ecore/EModelElement/eAnnotations‘:_ : OrderedSet{Oid} -> Property#ecore [

ctor] .
op ecore/ENamedElement : -> ecore/ENamedElement [ctor] .
op ecore/ENamedElement/name/0 : -> Property#ecore [ctor] .
op ecore/ENamedElement/name‘:_ : String -> Property#ecore [ctor] .
op ecore/EOperation : -> ecore/EOperation [ctor] .
op ecore/EOperation/eContainingClass/0 : -> Property#ecore [ctor] .
op ecore/EOperation/eContainingClass‘:_ : [Oid#ecore] -> Property#ecore [ctor] .
op ecore/EOperation/eExceptions/0 : -> Property#ecore [ctor] .
op ecore/EOperation/eExceptions‘:_ : OrderedSet{Oid} -> Property#ecore [ctor]

.
op ecore/EOperation/eParameters/0 : -> Property#ecore [ctor] .
op ecore/EOperation/eParameters‘:_ : OrderedSet{Oid} -> Property#ecore [ctor]

.
op ecore/EPackage : -> ecore/EPackage [ctor] .
op ecore/EPackage/eClassifiers/0 : -> Property#ecore [ctor] .
op ecore/EPackage/eClassifiers‘:_ : OrderedSet{Oid} -> Property#ecore [ctor]

.
op ecore/EPackage/eFactoryInstance/0 : -> Property#ecore [ctor] .
op ecore/EPackage/eFactoryInstance‘:_ : Oid#ecore -> Property#ecore [ctor] .
op ecore/EPackage/eSubpackages/0 : -> Property#ecore [ctor] .
op ecore/EPackage/eSubpackages‘:_ : OrderedSet{Oid} -> Property#ecore [ctor]

.
op ecore/EPackage/eSuperPackage/0 : -> Property#ecore [ctor] .
op ecore/EPackage/eSuperPackage‘:_ : [Oid#ecore] -> Property#ecore [ctor] .
op ecore/EPackage/nsPrefix/0 : -> Property#ecore [ctor] .
op ecore/EPackage/nsPrefix‘:_ : String -> Property#ecore [ctor] .
op ecore/EPackage/nsURI/0 : -> Property#ecore [ctor] .
op ecore/EPackage/nsURI‘:_ : String -> Property#ecore [ctor] .
op ecore/EParameter : -> ecore/EParameter [ctor] .
op ecore/EParameter/eOperation/0 : -> Property#ecore [ctor] .
op ecore/EParameter/eOperation‘:_ : [Oid#ecore] -> Property#ecore [ctor] .
op ecore/EReference : -> ecore/EReference [ctor] .
op ecore/EReference/container/0 : -> Property#ecore [ctor] .
op ecore/EReference/container‘:_ : Bool -> Property#ecore [ctor] .
op ecore/EReference/containment/0 : -> Property#ecore [ctor] .
op ecore/EReference/containment‘:_ : Bool -> Property#ecore [ctor] .
op ecore/EReference/eOpposite/0 : -> Property#ecore [ctor] .
op ecore/EReference/eOpposite‘:_ : [Oid#ecore] -> Property#ecore [ctor] .
op ecore/EReference/eReferenceType/0 : -> Property#ecore [ctor] .
op ecore/EReference/eReferenceType‘:_ : Oid#ecore -> Property#ecore [ctor] .
op ecore/EReference/resolveProxies/0 : -> Property#ecore [ctor] .
op ecore/EReference/resolveProxies‘:_ : Bool -> Property#ecore [ctor] .
op ecore/EStringToStringMapEntry : -> ecore/EStringToStringMapEntry [ctor] .
op ecore/EStringToStringMapEntry/key/0 : -> Property#ecore [ctor] .
op ecore/EStringToStringMapEntry/key‘:_ : String -> Property#ecore [ctor] .
op ecore/EStringToStringMapEntry/value/0 : -> Property#ecore [ctor] .
op ecore/EStringToStringMapEntry/value‘:_ : String -> Property#ecore [ctor] .
op ecore/EStructuralFeature : -> ecore/EStructuralFeature [ctor] .
op ecore/EStructuralFeature/changeable/0 : -> Property#ecore [ctor] .
op ecore/EStructuralFeature/changeable‘:_ : Bool -> Property#ecore [ctor] .
op ecore/EStructuralFeature/defaultValue/0 : -> Property#ecore [ctor] .
op ecore/EStructuralFeature/defaultValueLiteral/0 : -> Property#ecore [ctor]

.
op ecore/EStructuralFeature/defaultValueLiteral‘:_ : String -> Property#ecore

[ctor] .
op ecore/EStructuralFeature/defaultValue‘:_ : String -> Property#ecore [ctor]

.
op ecore/EStructuralFeature/derived/0 : -> Property#ecore [ctor] .
op ecore/EStructuralFeature/derived‘:_ : Bool -> Property#ecore [ctor] .
op ecore/EStructuralFeature/eContainingClass/0 : -> Property#ecore [ctor] .
op ecore/EStructuralFeature/eContainingClass‘:_ : [Oid#ecore] -> Property#ecore [

ctor] .
op ecore/EStructuralFeature/transient/0 : -> Property#ecore [ctor] .
op ecore/EStructuralFeature/transient‘:_ : Bool -> Property#ecore [ctor] .
op ecore/EStructuralFeature/unsettable/0 : -> Property#ecore [ctor] .
op ecore/EStructuralFeature/unsettable‘:_ : Bool -> Property#ecore [ctor] .
op ecore/EStructuralFeature/volatile/0 : -> Property#ecore [ctor] .
op ecore/EStructuralFeature/volatile‘:_ : Bool -> Property#ecore [ctor] .
op ecore/ETypedElement : -> ecore/ETypedElement [ctor] .

224 Appendix A. The MOF Theory

op ecore/ETypedElement/eType/0 : -> Property#ecore [ctor] .
op ecore/ETypedElement/eType‘:_ : [Oid#ecore] -> Property#ecore [ctor] .
op ecore/ETypedElement/lowerBound/0 : -> Property#ecore [ctor] .
op ecore/ETypedElement/lowerBound‘:_ : Int -> Property#ecore [ctor] .
op ecore/ETypedElement/many/0 : -> Property#ecore [ctor] .
op ecore/ETypedElement/many‘:_ : Bool -> Property#ecore [ctor] .
op ecore/ETypedElement/ordered/0 : -> Property#ecore [ctor] .
op ecore/ETypedElement/ordered‘:_ : Bool -> Property#ecore [ctor] .
op ecore/ETypedElement/required/0 : -> Property#ecore [ctor] .
op ecore/ETypedElement/required‘:_ : Bool -> Property#ecore [ctor] .
op ecore/ETypedElement/unique/0 : -> Property#ecore [ctor] .
op ecore/ETypedElement/unique‘:_ : Bool -> Property#ecore [ctor] .
op ecore/ETypedElement/upperBound/0 : -> Property#ecore [ctor] .
op ecore/ETypedElement/upperBound‘:_ : Int -> Property#ecore [ctor] .
op oid#ecore/EAnnotation : Qid -> oid#ecore/EAnnotation [ctor] .
op oid#ecore/EAttribute : Qid -> oid#ecore/EAttribute [ctor] .
op oid#ecore/EClass : Qid -> oid#ecore/EClass [ctor] .
op oid#ecore/EClassifier : Qid -> oid#ecore/EClassifier [ctor] .
op oid#ecore/EDataType : Qid -> oid#ecore/EDataType [ctor] .
op oid#ecore/EEnum : Qid -> oid#ecore/EEnum [ctor] .
op oid#ecore/EEnumLiteral : Qid -> oid#ecore/EEnumLiteral [ctor] .
op oid#ecore/EFactory : Qid -> oid#ecore/EFactory [ctor] .
op oid#ecore/EModelElement : Qid -> oid#ecore/EModelElement [ctor] .
op oid#ecore/ENamedElement : Qid -> oid#ecore/ENamedElement [ctor] .
op oid#ecore/EObject : Qid -> oid#ecore/EObject [ctor] .
op oid#ecore/EOperation : Qid -> oid#ecore/EOperation [ctor] .
op oid#ecore/EPackage : Qid -> oid#ecore/EPackage [ctor] .
op oid#ecore/EParameter : Qid -> oid#ecore/EParameter [ctor] .
op oid#ecore/EReference : Qid -> oid#ecore/EReference [ctor] .
op oid#ecore/EStringToStringMapEntry : Qid ->

oid#ecore/EStringToStringMapEntry [ctor] .
op oid#ecore/EStructuralFeature : Qid -> oid#ecore/EStructuralFeature [ctor]

.
op oid#ecore/ETypedElement : Qid -> oid#ecore/ETypedElement [ctor] .
eq class (< Oid:Oid#ecore : CID:Cid#ecore | PS:PropertySet#ecore >) =

CID:Cid#ecore .
eq getPropertySet (< Oid:Oid#ecore : CID:Cid#ecore | PS:PropertySet#ecore >)

= PS:PropertySet#ecore .
eq oid (< Oid:Oid#ecore : CID:Cid#ecore | PS:PropertySet#ecore >) =

Oid:Oid#ecore .
endm

view ecore from TH-EOBJECT to mod#ecore is
sort EObject to EObject#ecore .
sort Oid to Oid#ecore .
sort Cid to Cid#ecore .
sort Property to Property#ecore .
sort PropertySet to PropertySet#ecore .
op nullOid to nullOid#ecore .
op noneProperty to noneProperty#ecore .
op nullEObject to nullEObject#ecore .

endv

Appendix B

The RDBMS Metamodel
Definition

<< <
oid#ecore/EAttribute(

’#//Column/nnv)
:
ecore/EAttribute
|
ecore/EAttribute/iD,
ecore/EModelElement/eAnnotations,
ecore/EStructuralFeature/defaultValueLiteral,
ecore/EStructuralFeature/derived,
ecore/EStructuralFeature/transient,
ecore/EStructuralFeature/unsettable,
ecore/EStructuralFeature/volatile,
ecore/ETypedElement/many,
ecore/EAttribute/eAttributeType : oid#ecore/EDataType(

’http://www.eclipse.org/emf/2002/Ecore#//EBoolean),
ecore/ENamedElement/name : "nnv",
ecore/EStructuralFeature/changeable : true,
ecore/EStructuralFeature/defaultValue : "false",
ecore/EStructuralFeature/eContainingClass : oid#ecore/EClass(

’#//Column),
ecore/ETypedElement/eType : oid#ecore/EDataType(

’http://www.eclipse.org/emf/2002/Ecore#//EBoolean),
ecore/ETypedElement/lowerBound : 1,
ecore/ETypedElement/ordered : true,
ecore/ETypedElement/required : true,
ecore/ETypedElement/unique : true,
ecore/ETypedElement/upperBound : 1

>
<

oid#ecore/EAttribute(
’#//Column/type)

:
ecore/EAttribute
|
ecore/EAttribute/iD,
ecore/EModelElement/eAnnotations,
ecore/EStructuralFeature/defaultValueLiteral,
ecore/EStructuralFeature/derived,
ecore/EStructuralFeature/transient,
ecore/EStructuralFeature/unsettable,
ecore/EStructuralFeature/volatile,
ecore/ETypedElement/many,
ecore/EAttribute/eAttributeType : oid#ecore/EEnum(

’#//RDataType),
ecore/ENamedElement/name : "type",
ecore/EStructuralFeature/changeable : true,
ecore/EStructuralFeature/defaultValue : "VARCHAR",
ecore/EStructuralFeature/eContainingClass : oid#ecore/EClass(

’#//Column),
ecore/ETypedElement/eType : oid#ecore/EEnum(

’#//RDataType),
ecore/ETypedElement/lowerBound : 1,
ecore/ETypedElement/ordered : true,
ecore/ETypedElement/required : true,

226 Appendix B. The RDBMS Metamodel Definition

ecore/ETypedElement/unique : true,
ecore/ETypedElement/upperBound : 1

>
<

oid#ecore/EAttribute(
’#//RModelEment/name)

:
ecore/EAttribute
|
ecore/EAttribute/iD,
ecore/EModelElement/eAnnotations,
ecore/EStructuralFeature/defaultValueLiteral,
ecore/EStructuralFeature/derived,
ecore/EStructuralFeature/transient,
ecore/EStructuralFeature/unsettable,
ecore/EStructuralFeature/volatile,
ecore/ETypedElement/lowerBound,
ecore/ETypedElement/many,
ecore/ETypedElement/required,
ecore/EAttribute/eAttributeType : oid#ecore/EDataType(

’http://www.eclipse.org/emf/2002/Ecore#//EString),
ecore/ENamedElement/name : "name",
ecore/EStructuralFeature/changeable : true,
ecore/EStructuralFeature/defaultValue : "0",
ecore/EStructuralFeature/eContainingClass : oid#ecore/EClass(

’#//RModelEment),
ecore/ETypedElement/eType : oid#ecore/EDataType(

’http://www.eclipse.org/emf/2002/Ecore#//EString),
ecore/ETypedElement/ordered : true,
ecore/ETypedElement/unique : true,
ecore/ETypedElement/upperBound : 1

>
<

oid#ecore/EClass(’#//Column)
:
ecore/EClass
|
ecore/EClass/abstract,
ecore/EClass/eAllContainments,
ecore/EClass/eAllOperations,
ecore/EClass/eIDAttribute,
ecore/EClass/eOperations,
ecore/EClass/interface,
ecore/EClassifier/instanceClassName,
ecore/EModelElement/eAnnotations,
ecore/EClass/eAllAttributes : OrderedSet{oid#ecore/EAttribute(

’#//RModelEment/name) ::
oid#ecore/EAttribute(
’#//Column/nnv) ::
oid#ecore/EAttribute(
’#//Column/type)},

ecore/EClass/eAllReferences : OrderedSet{oid#ecore/EReference(
’#//Column/foreignKey) ::
oid#ecore/EReference(
’#//Column/key) ::
oid#ecore/EReference(
’#//Column/owner)},

ecore/EClass/eAllStructuralFeatures : OrderedSet{oid#ecore/EAttribute(
’#//RModelEment/name) ::
oid#ecore/EAttribute(
’#//Column/nnv) ::
oid#ecore/EAttribute(
’#//Column/type) ::
oid#ecore/EReference(
’#//Column/foreignKey) ::
oid#ecore/EReference(
’#//Column/key) ::
oid#ecore/EReference(
’#//Column/owner)},

ecore/EClass/eAllSuperTypes : OrderedSet{oid#ecore/EClass(
’#//RModelEment)},

ecore/EClass/eAttributes : OrderedSet{oid#ecore/EAttribute(
’#//Column/nnv) ::
oid#ecore/EAttribute(
’#//Column/type)},

ecore/EClass/eReferences : OrderedSet{oid#ecore/EReference(
’#//Column/foreignKey) ::
oid#ecore/EReference(
’#//Column/key) ::
oid#ecore/EReference(
’#//Column/owner)},

227

ecore/EClass/eStructuralFeatures : OrderedSet{oid#ecore/EAttribute(
’#//Column/nnv) ::
oid#ecore/EAttribute(
’#//Column/type) ::
oid#ecore/EReference(
’#//Column/foreignKey) ::
oid#ecore/EReference(
’#//Column/key) ::
oid#ecore/EReference(
’#//Column/owner)},

ecore/EClass/eSuperTypes : OrderedSet{oid#ecore/EClass(
’#//RModelEment)},

ecore/EClassifier/defaultValue : "0",
ecore/EClassifier/ePackage : oid#ecore/EPackage(

’#/),
ecore/EClassifier/instanceClass : "0",
ecore/ENamedElement/name : "Column"

>
<

oid#ecore/EClass(’#//ForeignKey)
:
ecore/EClass
|
ecore/EClass/abstract,
ecore/EClass/eAllContainments,
ecore/EClass/eAllOperations,
ecore/EClass/eAttributes,
ecore/EClass/eIDAttribute,
ecore/EClass/eOperations,
ecore/EClass/interface,
ecore/EClassifier/instanceClassName,
ecore/EModelElement/eAnnotations,
ecore/EClass/eAllAttributes : OrderedSet{oid#ecore/EAttribute(

’#//RModelEment/name)},
ecore/EClass/eAllReferences : OrderedSet{oid#ecore/EReference(

’#//ForeignKey/refersTo) ::
oid#ecore/EReference(
’#//ForeignKey/column) ::
oid#ecore/EReference(
’#//ForeignKey/owner)},

ecore/EClass/eAllStructuralFeatures : OrderedSet{oid#ecore/EAttribute(
’#//RModelEment/name) ::
oid#ecore/EReference(
’#//ForeignKey/refersTo) ::
oid#ecore/EReference(
’#//ForeignKey/column) ::
oid#ecore/EReference(
’#//ForeignKey/owner)},

ecore/EClass/eAllSuperTypes : OrderedSet{oid#ecore/EClass(
’#//RModelEment)},

ecore/EClass/eReferences : OrderedSet{oid#ecore/EReference(
’#//ForeignKey/refersTo) ::
oid#ecore/EReference(
’#//ForeignKey/column) ::
oid#ecore/EReference(
’#//ForeignKey/owner)},

ecore/EClass/eStructuralFeatures : OrderedSet{oid#ecore/EReference(
’#//ForeignKey/refersTo) ::
oid#ecore/EReference(
’#//ForeignKey/column) ::
oid#ecore/EReference(
’#//ForeignKey/owner)},

ecore/EClass/eSuperTypes : OrderedSet{oid#ecore/EClass(
’#//RModelEment)},

ecore/EClassifier/defaultValue : "0",
ecore/EClassifier/ePackage : oid#ecore/EPackage(

’#/),
ecore/EClassifier/instanceClass : "0",
ecore/ENamedElement/name : "ForeignKey"

>
<

oid#ecore/EClass(’#//Key)
:
ecore/EClass
|
ecore/EClass/abstract,
ecore/EClass/eAllContainments,
ecore/EClass/eAllOperations,
ecore/EClass/eAttributes,
ecore/EClass/eIDAttribute,
ecore/EClass/eOperations,

228 Appendix B. The RDBMS Metamodel Definition

ecore/EClass/interface,
ecore/EClassifier/instanceClassName,
ecore/EModelElement/eAnnotations,
ecore/EClass/eAllAttributes : OrderedSet{oid#ecore/EAttribute(

’#//RModelEment/name)},
ecore/EClass/eAllReferences : OrderedSet{oid#ecore/EReference(

’#//Key/owner) ::
oid#ecore/EReference(
’#//Key/column)},

ecore/EClass/eAllStructuralFeatures : OrderedSet{oid#ecore/EAttribute(
’#//RModelEment/name) ::
oid#ecore/EReference(
’#//Key/owner) ::
oid#ecore/EReference(
’#//Key/column)},

ecore/EClass/eAllSuperTypes : OrderedSet{oid#ecore/EClass(
’#//RModelEment)},

ecore/EClass/eReferences : OrderedSet{oid#ecore/EReference(
’#//Key/owner) ::
oid#ecore/EReference(
’#//Key/column)},

ecore/EClass/eStructuralFeatures : OrderedSet{oid#ecore/EReference(
’#//Key/owner) ::
oid#ecore/EReference(
’#//Key/column)},

ecore/EClass/eSuperTypes : OrderedSet{oid#ecore/EClass(
’#//RModelEment)},

ecore/EClassifier/defaultValue : "0",
ecore/EClassifier/ePackage : oid#ecore/EPackage(

’#/),
ecore/EClassifier/instanceClass : "0",
ecore/ENamedElement/name : "Key"

>
<

oid#ecore/EClass(’#//RModelEment)
:
ecore/EClass
|
ecore/EClass/abstract,
ecore/EClass/eAllContainments,
ecore/EClass/eAllOperations,
ecore/EClass/eAllReferences,
ecore/EClass/eAllSuperTypes,
ecore/EClass/eIDAttribute,
ecore/EClass/eOperations,
ecore/EClass/eReferences,
ecore/EClass/eSuperTypes,
ecore/EClass/interface,
ecore/EClassifier/instanceClassName,
ecore/EModelElement/eAnnotations,
ecore/EClass/eAllAttributes : OrderedSet{oid#ecore/EAttribute(

’#//RModelEment/name)},
ecore/EClass/eAllStructuralFeatures : OrderedSet{oid#ecore/EAttribute(

’#//RModelEment/name)},
ecore/EClass/eAttributes : OrderedSet{oid#ecore/EAttribute(

’#//RModelEment/name)},
ecore/EClass/eStructuralFeatures : OrderedSet{oid#ecore/EAttribute(

’#//RModelEment/name)},
ecore/EClassifier/defaultValue : "0",
ecore/EClassifier/ePackage : oid#ecore/EPackage(

’#/),
ecore/EClassifier/instanceClass : "0",
ecore/ENamedElement/name : "RModelEment"

>
<

oid#ecore/EClass(’#//Schema)
:
ecore/EClass
|
ecore/EClass/abstract,
ecore/EClass/eAllOperations,
ecore/EClass/eAttributes,
ecore/EClass/eIDAttribute,
ecore/EClass/eOperations,
ecore/EClass/interface,
ecore/EClassifier/instanceClassName,
ecore/EModelElement/eAnnotations,
ecore/EClass/eAllAttributes : OrderedSet{oid#ecore/EAttribute(

’#//RModelEment/name)},
ecore/EClass/eAllContainments : OrderedSet{oid#ecore/EReference(

’#//Schema/tables)},

229

ecore/EClass/eAllReferences : OrderedSet{oid#ecore/EReference(
’#//Schema/tables)},

ecore/EClass/eAllStructuralFeatures : OrderedSet{oid#ecore/EAttribute(
’#//RModelEment/name) ::
oid#ecore/EReference(
’#//Schema/tables)},

ecore/EClass/eAllSuperTypes : OrderedSet{oid#ecore/EClass(
’#//RModelEment)},

ecore/EClass/eReferences : OrderedSet{oid#ecore/EReference(
’#//Schema/tables)},

ecore/EClass/eStructuralFeatures : OrderedSet{oid#ecore/EReference(
’#//Schema/tables)},

ecore/EClass/eSuperTypes : OrderedSet{oid#ecore/EClass(
’#//RModelEment)},

ecore/EClassifier/defaultValue : "0",
ecore/EClassifier/ePackage : oid#ecore/EPackage(

’#/),
ecore/EClassifier/instanceClass : "0",
ecore/ENamedElement/name : "Schema"

>
<

oid#ecore/EClass(’#//Table)
:
ecore/EClass
|
ecore/EClass/abstract,
ecore/EClass/eAllOperations,
ecore/EClass/eAttributes,
ecore/EClass/eIDAttribute,
ecore/EClass/eOperations,
ecore/EClass/interface,
ecore/EClassifier/instanceClassName,
ecore/EModelElement/eAnnotations,
ecore/EClass/eAllAttributes : OrderedSet{oid#ecore/EAttribute(

’#//RModelEment/name)},
ecore/EClass/eAllContainments : OrderedSet{oid#ecore/EReference(

’#//Table/key) ::
oid#ecore/EReference(
’#//Table/foreignKey) ::
oid#ecore/EReference(
’#//Table/column)},

ecore/EClass/eAllReferences : OrderedSet{oid#ecore/EReference(
’#//Table/key) ::
oid#ecore/EReference(
’#//Table/foreignKey) ::
oid#ecore/EReference(
’#//Table/column) ::
oid#ecore/EReference(
’#//Table/schema)},

ecore/EClass/eAllStructuralFeatures : OrderedSet{oid#ecore/EAttribute(
’#//RModelEment/name) ::
oid#ecore/EReference(
’#//Table/key) ::
oid#ecore/EReference(
’#//Table/foreignKey) ::
oid#ecore/EReference(
’#//Table/column) ::
oid#ecore/EReference(
’#//Table/schema)},

ecore/EClass/eAllSuperTypes : OrderedSet{oid#ecore/EClass(
’#//RModelEment)},

ecore/EClass/eReferences : OrderedSet{oid#ecore/EReference(
’#//Table/key) ::
oid#ecore/EReference(
’#//Table/foreignKey) ::
oid#ecore/EReference(
’#//Table/column) ::
oid#ecore/EReference(
’#//Table/schema)},

ecore/EClass/eStructuralFeatures : OrderedSet{oid#ecore/EReference(
’#//Table/key) ::
oid#ecore/EReference(
’#//Table/foreignKey) ::
oid#ecore/EReference(
’#//Table/column) ::
oid#ecore/EReference(
’#//Table/schema)},

ecore/EClass/eSuperTypes : OrderedSet{oid#ecore/EClass(
’#//RModelEment)},

ecore/EClassifier/defaultValue : "0",
ecore/EClassifier/ePackage : oid#ecore/EPackage(

230 Appendix B. The RDBMS Metamodel Definition

’#/),
ecore/EClassifier/instanceClass : "0",
ecore/ENamedElement/name : "Table"

>
<

oid#ecore/EEnum(’#//RDataType)
:
ecore/EEnum
|
ecore/EClassifier/instanceClassName,
ecore/EModelElement/eAnnotations,
ecore/EClassifier/defaultValue : "VARCHAR",
ecore/EClassifier/ePackage : oid#ecore/EPackage(

’#/),
ecore/EClassifier/instanceClass : "0",
ecore/EDataType/serializable : true,
ecore/EEnum/eLiterals : OrderedSet{oid#ecore/EEnumLiteral(

’#//RDataType/VARCHAR) ::
oid#ecore/EEnumLiteral(
’#//RDataType/NUMBER) ::
oid#ecore/EEnumLiteral(
’#//RDataType/BOOLEAN) ::
oid#ecore/EEnumLiteral(
’#//RDataType/DATE) ::
oid#ecore/EEnumLiteral(
’#//RDataType/DECIMAL)},

ecore/ENamedElement/name : "RDataType"
>
<

oid#ecore/EEnumLiteral(
’#//RDataType/BOOLEAN)

:
ecore/EEnumLiteral
|
ecore/EEnumLiteral/value,
ecore/EModelElement/eAnnotations,
ecore/EEnumLiteral/eEnum : oid#ecore/EEnum(

’#//RDataType),
ecore/EEnumLiteral/instance : "BOOLEAN",
ecore/EEnumLiteral/literal : "BOOLEAN",
ecore/ENamedElement/name : "BOOLEAN"

>
<

oid#ecore/EEnumLiteral(
’#//RDataType/DATE)

:
ecore/EEnumLiteral
|
ecore/EEnumLiteral/value,
ecore/EModelElement/eAnnotations,
ecore/EEnumLiteral/eEnum : oid#ecore/EEnum(

’#//RDataType),
ecore/EEnumLiteral/instance : "DATE",
ecore/EEnumLiteral/literal : "DATE",
ecore/ENamedElement/name : "DATE"

>
<

oid#ecore/EEnumLiteral(
’#//RDataType/DECIMAL)

:
ecore/EEnumLiteral
|
ecore/EEnumLiteral/value,
ecore/EModelElement/eAnnotations,
ecore/EEnumLiteral/eEnum : oid#ecore/EEnum(

’#//RDataType),
ecore/EEnumLiteral/instance : "DECIMAL",
ecore/EEnumLiteral/literal : "DECIMAL",
ecore/ENamedElement/name : "DECIMAL"

>
<

oid#ecore/EEnumLiteral(
’#//RDataType/NUMBER)

:
ecore/EEnumLiteral
|
ecore/EEnumLiteral/value,
ecore/EModelElement/eAnnotations,
ecore/EEnumLiteral/eEnum : oid#ecore/EEnum(

’#//RDataType),
ecore/EEnumLiteral/instance : "NUMBER",

231

ecore/EEnumLiteral/literal : "NUMBER",
ecore/ENamedElement/name : "NUMBER"

>
<

oid#ecore/EEnumLiteral(
’#//RDataType/VARCHAR)

:
ecore/EEnumLiteral
|
ecore/EEnumLiteral/value,
ecore/EModelElement/eAnnotations,
ecore/EEnumLiteral/eEnum : oid#ecore/EEnum(

’#//RDataType),
ecore/EEnumLiteral/instance : "VARCHAR",
ecore/EEnumLiteral/literal : "VARCHAR",
ecore/ENamedElement/name : "VARCHAR"

>
<

oid#ecore/EPackage(’#/)
:
ecore/EPackage
|
ecore/EModelElement/eAnnotations,
ecore/EPackage/eFactoryInstance,
ecore/EPackage/eSubpackages,
ecore/EPackage/eSuperPackage,
ecore/ENamedElement/name : "rdbms",
ecore/EPackage/eClassifiers : OrderedSet{oid#ecore/EClass(

’#//Schema) ::
oid#ecore/EClass(
’#//RModelEment) ::
oid#ecore/EClass(’#//Table) ::
oid#ecore/EClass(’#//Column) ::
oid#ecore/EClass(
’#//ForeignKey) ::
oid#ecore/EClass(’#//Key) ::
oid#ecore/EEnum(
’#//RDataType)},

ecore/EPackage/nsPrefix : "rdbms",
ecore/EPackage/nsURI : "http:///es.upv.dsic.issi/moment/rdbms"

>
<

oid#ecore/EReference(
’#//Column/foreignKey)

:
ecore/EReference
|
ecore/EModelElement/eAnnotations,
ecore/EReference/container,
ecore/EReference/containment,
ecore/EStructuralFeature/defaultValueLiteral,
ecore/EStructuralFeature/derived,
ecore/EStructuralFeature/transient,
ecore/EStructuralFeature/unsettable,
ecore/EStructuralFeature/volatile,
ecore/ETypedElement/lowerBound,
ecore/ETypedElement/required,
ecore/ENamedElement/name : "foreignKey",
ecore/EReference/eOpposite : oid#ecore/EReference(

’#//ForeignKey/column),
ecore/EReference/eReferenceType : oid#ecore/EClass(

’#//ForeignKey),
ecore/EReference/resolveProxies : true,
ecore/EStructuralFeature/changeable : true,
ecore/EStructuralFeature/defaultValue : "0",
ecore/EStructuralFeature/eContainingClass : oid#ecore/EClass(

’#//Column),
ecore/ETypedElement/eType : oid#ecore/EClass(

’#//ForeignKey),
ecore/ETypedElement/many : true,
ecore/ETypedElement/ordered : true,
ecore/ETypedElement/unique : true,
ecore/ETypedElement/upperBound : -1

>
<

oid#ecore/EReference(
’#//Column/key)

:
ecore/EReference
|
ecore/EModelElement/eAnnotations,

232 Appendix B. The RDBMS Metamodel Definition

ecore/EReference/container,
ecore/EReference/containment,
ecore/EStructuralFeature/defaultValueLiteral,
ecore/EStructuralFeature/derived,
ecore/EStructuralFeature/transient,
ecore/EStructuralFeature/unsettable,
ecore/EStructuralFeature/volatile,
ecore/ETypedElement/lowerBound,
ecore/ETypedElement/required,
ecore/ENamedElement/name : "key",
ecore/EReference/eOpposite : oid#ecore/EReference(

’#//Key/column),
ecore/EReference/eReferenceType : oid#ecore/EClass(

’#//Key),
ecore/EReference/resolveProxies : true,
ecore/EStructuralFeature/changeable : true,
ecore/EStructuralFeature/defaultValue : "0",
ecore/EStructuralFeature/eContainingClass : oid#ecore/EClass(

’#//Column),
ecore/ETypedElement/eType : oid#ecore/EClass(

’#//Key),
ecore/ETypedElement/many : true,
ecore/ETypedElement/ordered : true,
ecore/ETypedElement/unique : true,
ecore/ETypedElement/upperBound : -1

>
<

oid#ecore/EReference(
’#//Column/owner)

:
ecore/EReference
|
ecore/EModelElement/eAnnotations,
ecore/EReference/containment,
ecore/EStructuralFeature/defaultValueLiteral,
ecore/EStructuralFeature/derived,
ecore/EStructuralFeature/unsettable,
ecore/EStructuralFeature/volatile,
ecore/ETypedElement/many,
ecore/ENamedElement/name : "owner",
ecore/EReference/container : true,
ecore/EReference/eOpposite : oid#ecore/EReference(

’#//Table/column),
ecore/EReference/eReferenceType : oid#ecore/EClass(

’#//Table),
ecore/EReference/resolveProxies : true,
ecore/EStructuralFeature/changeable : true,
ecore/EStructuralFeature/defaultValue : "0",
ecore/EStructuralFeature/eContainingClass : oid#ecore/EClass(

’#//Column),
ecore/EStructuralFeature/transient : true,
ecore/ETypedElement/eType : oid#ecore/EClass(

’#//Table),
ecore/ETypedElement/lowerBound : 1,
ecore/ETypedElement/ordered : true,
ecore/ETypedElement/required : true,
ecore/ETypedElement/unique : true,
ecore/ETypedElement/upperBound : 1

>
<

oid#ecore/EReference(
’#//ForeignKey/column)

:
ecore/EReference
|
ecore/EModelElement/eAnnotations,
ecore/EReference/container,
ecore/EReference/containment,
ecore/EStructuralFeature/defaultValueLiteral,
ecore/EStructuralFeature/derived,
ecore/EStructuralFeature/transient,
ecore/EStructuralFeature/unsettable,
ecore/EStructuralFeature/volatile,
ecore/ETypedElement/lowerBound,
ecore/ETypedElement/required,
ecore/ENamedElement/name : "column",
ecore/EReference/eOpposite : oid#ecore/EReference(

’#//Column/foreignKey),
ecore/EReference/eReferenceType : oid#ecore/EClass(

’#//Column),
ecore/EReference/resolveProxies : true,

233

ecore/EStructuralFeature/changeable : true,
ecore/EStructuralFeature/defaultValue : "0",
ecore/EStructuralFeature/eContainingClass : oid#ecore/EClass(

’#//ForeignKey),
ecore/ETypedElement/eType : oid#ecore/EClass(

’#//Column),
ecore/ETypedElement/many : true,
ecore/ETypedElement/ordered : true,
ecore/ETypedElement/unique : true,
ecore/ETypedElement/upperBound : -1

>
<

oid#ecore/EReference(
’#//ForeignKey/owner)

:
ecore/EReference
|
ecore/EModelElement/eAnnotations,
ecore/EReference/containment,
ecore/EStructuralFeature/defaultValueLiteral,
ecore/EStructuralFeature/derived,
ecore/EStructuralFeature/unsettable,
ecore/EStructuralFeature/volatile,
ecore/ETypedElement/many,
ecore/ENamedElement/name : "owner",
ecore/EReference/container : true,
ecore/EReference/eOpposite : oid#ecore/EReference(

’#//Table/foreignKey),
ecore/EReference/eReferenceType : oid#ecore/EClass(

’#//Table),
ecore/EReference/resolveProxies : true,
ecore/EStructuralFeature/changeable : true,
ecore/EStructuralFeature/defaultValue : "0",
ecore/EStructuralFeature/eContainingClass : oid#ecore/EClass(

’#//ForeignKey),
ecore/EStructuralFeature/transient : true,
ecore/ETypedElement/eType : oid#ecore/EClass(

’#//Table),
ecore/ETypedElement/lowerBound : 1,
ecore/ETypedElement/ordered : true,
ecore/ETypedElement/required : true,
ecore/ETypedElement/unique : true,
ecore/ETypedElement/upperBound : 1

>
<

oid#ecore/EReference(
’#//ForeignKey/refersTo)

:
ecore/EReference
|
ecore/EModelElement/eAnnotations,
ecore/EReference/container,
ecore/EReference/containment,
ecore/EReference/eOpposite,
ecore/EStructuralFeature/defaultValueLiteral,
ecore/EStructuralFeature/derived,
ecore/EStructuralFeature/transient,
ecore/EStructuralFeature/unsettable,
ecore/EStructuralFeature/volatile,
ecore/ETypedElement/many,
ecore/ENamedElement/name : "refersTo",
ecore/EReference/eReferenceType : oid#ecore/EClass(

’#//Key),
ecore/EReference/resolveProxies : true,
ecore/EStructuralFeature/changeable : true,
ecore/EStructuralFeature/defaultValue : "0",
ecore/EStructuralFeature/eContainingClass : oid#ecore/EClass(

’#//ForeignKey),
ecore/ETypedElement/eType : oid#ecore/EClass(

’#//Key),
ecore/ETypedElement/lowerBound : 1,
ecore/ETypedElement/ordered : true,
ecore/ETypedElement/required : true,
ecore/ETypedElement/unique : true,
ecore/ETypedElement/upperBound : 1

>
<

oid#ecore/EReference(
’#//Key/column)

:
ecore/EReference

234 Appendix B. The RDBMS Metamodel Definition

|
ecore/EModelElement/eAnnotations,
ecore/EReference/container,
ecore/EReference/containment,
ecore/EStructuralFeature/defaultValueLiteral,
ecore/EStructuralFeature/derived,
ecore/EStructuralFeature/transient,
ecore/EStructuralFeature/unsettable,
ecore/EStructuralFeature/volatile,
ecore/ETypedElement/lowerBound,
ecore/ETypedElement/required,
ecore/ENamedElement/name : "column",
ecore/EReference/eOpposite : oid#ecore/EReference(

’#//Column/key),
ecore/EReference/eReferenceType : oid#ecore/EClass(

’#//Column),
ecore/EReference/resolveProxies : true,
ecore/EStructuralFeature/changeable : true,
ecore/EStructuralFeature/defaultValue : "0",
ecore/EStructuralFeature/eContainingClass : oid#ecore/EClass(

’#//Key),
ecore/ETypedElement/eType : oid#ecore/EClass(

’#//Column),
ecore/ETypedElement/many : true,
ecore/ETypedElement/ordered : true,
ecore/ETypedElement/unique : true,
ecore/ETypedElement/upperBound : -1

>
<

oid#ecore/EReference(
’#//Key/owner)

:
ecore/EReference
|
ecore/EModelElement/eAnnotations,
ecore/EReference/containment,
ecore/EStructuralFeature/defaultValueLiteral,
ecore/EStructuralFeature/derived,
ecore/EStructuralFeature/unsettable,
ecore/EStructuralFeature/volatile,
ecore/ETypedElement/many,
ecore/ENamedElement/name : "owner",
ecore/EReference/container : true,
ecore/EReference/eOpposite : oid#ecore/EReference(

’#//Table/key),
ecore/EReference/eReferenceType : oid#ecore/EClass(

’#//Table),
ecore/EReference/resolveProxies : true,
ecore/EStructuralFeature/changeable : true,
ecore/EStructuralFeature/defaultValue : "0",
ecore/EStructuralFeature/eContainingClass : oid#ecore/EClass(

’#//Key),
ecore/EStructuralFeature/transient : true,
ecore/ETypedElement/eType : oid#ecore/EClass(

’#//Table),
ecore/ETypedElement/lowerBound : 1,
ecore/ETypedElement/ordered : true,
ecore/ETypedElement/required : true,
ecore/ETypedElement/unique : true,
ecore/ETypedElement/upperBound : 1

>
<

oid#ecore/EReference(
’#//Schema/tables)

:
ecore/EReference
|
ecore/EModelElement/eAnnotations,
ecore/EReference/container,
ecore/EStructuralFeature/defaultValueLiteral,
ecore/EStructuralFeature/derived,
ecore/EStructuralFeature/transient,
ecore/EStructuralFeature/unsettable,
ecore/EStructuralFeature/volatile,
ecore/ETypedElement/lowerBound,
ecore/ETypedElement/required,
ecore/ENamedElement/name : "tables",
ecore/EReference/containment : true,
ecore/EReference/eOpposite : oid#ecore/EReference(

’#//Table/schema),
ecore/EReference/eReferenceType : oid#ecore/EClass(

235

’#//Table),
ecore/EReference/resolveProxies : true,
ecore/EStructuralFeature/changeable : true,
ecore/EStructuralFeature/defaultValue : "0",
ecore/EStructuralFeature/eContainingClass : oid#ecore/EClass(

’#//Schema),
ecore/ETypedElement/eType : oid#ecore/EClass(

’#//Table),
ecore/ETypedElement/many : true,
ecore/ETypedElement/ordered : true,
ecore/ETypedElement/unique : true,
ecore/ETypedElement/upperBound : -1

>
<

oid#ecore/EReference(
’#//Table/column)

:
ecore/EReference
|
ecore/EModelElement/eAnnotations,
ecore/EReference/container,
ecore/EStructuralFeature/defaultValueLiteral,
ecore/EStructuralFeature/derived,
ecore/EStructuralFeature/transient,
ecore/EStructuralFeature/unsettable,
ecore/EStructuralFeature/volatile,
ecore/ETypedElement/lowerBound,
ecore/ETypedElement/required,
ecore/ENamedElement/name : "column",
ecore/EReference/containment : true,
ecore/EReference/eOpposite : oid#ecore/EReference(

’#//Column/owner),
ecore/EReference/eReferenceType : oid#ecore/EClass(

’#//Column),
ecore/EReference/resolveProxies : true,
ecore/EStructuralFeature/changeable : true,
ecore/EStructuralFeature/defaultValue : "0",
ecore/EStructuralFeature/eContainingClass : oid#ecore/EClass(

’#//Table),
ecore/ETypedElement/eType : oid#ecore/EClass(

’#//Column),
ecore/ETypedElement/many : true,
ecore/ETypedElement/ordered : true,
ecore/ETypedElement/unique : true,
ecore/ETypedElement/upperBound : -1

>
<

oid#ecore/EReference(
’#//Table/foreignKey)

:
ecore/EReference
|
ecore/EModelElement/eAnnotations,
ecore/EReference/container,
ecore/EStructuralFeature/defaultValueLiteral,
ecore/EStructuralFeature/derived,
ecore/EStructuralFeature/transient,
ecore/EStructuralFeature/unsettable,
ecore/EStructuralFeature/volatile,
ecore/ETypedElement/lowerBound,
ecore/ETypedElement/required,
ecore/ENamedElement/name : "foreignKey",
ecore/EReference/containment : true,
ecore/EReference/eOpposite : oid#ecore/EReference(

’#//ForeignKey/owner),
ecore/EReference/eReferenceType : oid#ecore/EClass(

’#//ForeignKey),
ecore/EReference/resolveProxies : true,
ecore/EStructuralFeature/changeable : true,
ecore/EStructuralFeature/defaultValue : "0",
ecore/EStructuralFeature/eContainingClass : oid#ecore/EClass(

’#//Table),
ecore/ETypedElement/eType : oid#ecore/EClass(

’#//ForeignKey),
ecore/ETypedElement/many : true,
ecore/ETypedElement/ordered : true,
ecore/ETypedElement/unique : true,
ecore/ETypedElement/upperBound : -1

>
<

oid#ecore/EReference(

236 Appendix B. The RDBMS Metamodel Definition

’#//Table/key)
:
ecore/EReference
|
ecore/EModelElement/eAnnotations,
ecore/EReference/container,
ecore/EStructuralFeature/defaultValueLiteral,
ecore/EStructuralFeature/derived,
ecore/EStructuralFeature/transient,
ecore/EStructuralFeature/unsettable,
ecore/EStructuralFeature/volatile,
ecore/ETypedElement/lowerBound,
ecore/ETypedElement/required,
ecore/ENamedElement/name : "key",
ecore/EReference/containment : true,
ecore/EReference/eOpposite : oid#ecore/EReference(

’#//Key/owner),
ecore/EReference/eReferenceType : oid#ecore/EClass(

’#//Key),
ecore/EReference/resolveProxies : true,
ecore/EStructuralFeature/changeable : true,
ecore/EStructuralFeature/defaultValue : "0",
ecore/EStructuralFeature/eContainingClass : oid#ecore/EClass(

’#//Table),
ecore/ETypedElement/eType : oid#ecore/EClass(

’#//Key),
ecore/ETypedElement/many : true,
ecore/ETypedElement/ordered : true,
ecore/ETypedElement/unique : true,
ecore/ETypedElement/upperBound : -1

>
<

oid#ecore/EReference(
’#//Table/schema)

:
ecore/EReference
|
ecore/EModelElement/eAnnotations,
ecore/EReference/containment,
ecore/EStructuralFeature/defaultValueLiteral,
ecore/EStructuralFeature/derived,
ecore/EStructuralFeature/unsettable,
ecore/EStructuralFeature/volatile,
ecore/ETypedElement/many,
ecore/ENamedElement/name : "schema",
ecore/EReference/container : true,
ecore/EReference/eOpposite : oid#ecore/EReference(

’#//Schema/tables),
ecore/EReference/eReferenceType : oid#ecore/EClass(

’#//Schema),
ecore/EReference/resolveProxies : true,
ecore/EStructuralFeature/changeable : true,
ecore/EStructuralFeature/defaultValue : "0",
ecore/EStructuralFeature/eContainingClass : oid#ecore/EClass(

’#//Table),
ecore/EStructuralFeature/transient : true,
ecore/ETypedElement/eType : oid#ecore/EClass(

’#//Schema),
ecore/ETypedElement/lowerBound : 1,
ecore/ETypedElement/ordered : true,
ecore/ETypedElement/required : true,
ecore/ETypedElement/unique : true,
ecore/ETypedElement/upperBound : 1

> >>

Appendix C

The RDBMS theory

mod mod#rdbms/RDataType is
sorts rdbms/RDataType .
op null#rdbms/RDataType : -> [rdbms/RDataType] .
op rdbms/RDataType/BOOLEAN : -> rdbms/RDataType .
op rdbms/RDataType/DATE : -> rdbms/RDataType .
op rdbms/RDataType/DECIMAL : -> rdbms/RDataType .
op rdbms/RDataType/NUMBER : -> rdbms/RDataType .
op rdbms/RDataType/VARCHAR : -> rdbms/RDataType .

endm

view rdbms/RDataType from TRIV to mod#rdbms/RDataType is
sort Elt to rdbms/RDataType .

endv

mod mod#rdbms is
including OCL-DATATYPE-COLLECTIONS .
protecting BOOL .
including OCL-COLLECTIONS{rdbms/RDataType} * (op empty-bag to

empty-bag#rdbms/RDataType, op empty-orderedset to
empty-orderedset#rdbms/RDataType, op empty-sequence to
empty-sequence#rdbms/RDataType, op empty-set to empty-set#rdbms/RDataType)
.

sorts Cid#rdbms EObject#rdbms Oid#rdbms Property#rdbms PropertySet#rdbms
oid#rdbms/Column oid#rdbms/ForeignKey oid#rdbms/Key oid#rdbms/RModelEment
oid#rdbms/Schema oid#rdbms/Table rdbms/Column rdbms/ForeignKey rdbms/Key
rdbms/RModelEment rdbms/Schema rdbms/Table .

subsorts Oid#rdbms < AbstractOid .
subsorts Property#rdbms < PropertySet#rdbms .
subsorts oid#rdbms/Column < oid#rdbms/RModelEment .
subsorts oid#rdbms/ForeignKey < oid#rdbms/RModelEment .
subsorts oid#rdbms/Key < oid#rdbms/RModelEment .
subsorts oid#rdbms/RModelEment < Oid#rdbms .
subsorts oid#rdbms/Schema < oid#rdbms/RModelEment .
subsorts oid#rdbms/Table < oid#rdbms/RModelEment .
subsorts rdbms/Column < rdbms/RModelEment .
subsorts rdbms/ForeignKey < rdbms/RModelEment .
subsorts rdbms/Key < rdbms/RModelEment .
subsorts rdbms/RModelEment < Cid#rdbms .
subsorts rdbms/Schema < rdbms/RModelEment .
subsorts rdbms/Table < rdbms/RModelEment .
op class : EObject#rdbms -> Cid#rdbms .
op getPropertySet : EObject#rdbms -> PropertySet#rdbms .
op noneProperty#rdbms : -> PropertySet#rdbms .
op nullEObject#rdbms : -> [EObject#rdbms] .
op nullOid#rdbms : -> [Oid#rdbms] .
op oid : EObject#rdbms -> Oid#rdbms .
op <_:_|_> : Oid#rdbms Cid#rdbms PropertySet#rdbms -> EObject#rdbms [obj ctor

format (d n++i ni ni ni ni n--i d)] .
op _‘,_ : PropertySet#rdbms PropertySet#rdbms -> PropertySet#rdbms [assoc

comm id: noneProperty#rdbms ctor format (d d ni d)] .
op oid#rdbms/Column : Qid -> oid#rdbms/Column [ctor] .
op oid#rdbms/ForeignKey : Qid -> oid#rdbms/ForeignKey [ctor] .
op oid#rdbms/Key : Qid -> oid#rdbms/Key [ctor] .
op oid#rdbms/RModelEment : Qid -> oid#rdbms/RModelEment [ctor] .
op oid#rdbms/Schema : Qid -> oid#rdbms/Schema [ctor] .
op oid#rdbms/Table : Qid -> oid#rdbms/Table [ctor] .
op rdbms/Column : -> rdbms/Column [ctor] .
op rdbms/Column/foreignKey/0 : -> Property#rdbms [ctor] .
op rdbms/Column/foreignKey‘:_ : OrderedSet{Oid} -> Property#rdbms [ctor] .

238 Appendix C. The RDBMS theory

op rdbms/Column/key/0 : -> Property#rdbms [ctor] .
op rdbms/Column/key‘:_ : OrderedSet{Oid} -> Property#rdbms [ctor] .
op rdbms/Column/nnv/0 : -> Property#rdbms [ctor] .
op rdbms/Column/nnv‘:_ : Bool -> Property#rdbms [ctor] .
op rdbms/Column/owner/0 : -> Property#rdbms [ctor] .
op rdbms/Column/owner‘:_ : Oid#rdbms -> Property#rdbms [ctor] .
op rdbms/Column/type/0 : -> Property#rdbms [ctor] .
op rdbms/Column/type‘:_ : rdbms/RDataType -> Property#rdbms [ctor] .
op rdbms/ForeignKey : -> rdbms/ForeignKey [ctor] .
op rdbms/ForeignKey/column/0 : -> Property#rdbms [ctor] .
op rdbms/ForeignKey/column‘:_ : OrderedSet{Oid} -> Property#rdbms [ctor] .
op rdbms/ForeignKey/owner/0 : -> Property#rdbms [ctor] .
op rdbms/ForeignKey/owner‘:_ : Oid#rdbms -> Property#rdbms [ctor] .
op rdbms/ForeignKey/refersTo/0 : -> Property#rdbms [ctor] .
op rdbms/ForeignKey/refersTo‘:_ : Oid#rdbms -> Property#rdbms [ctor] .
op rdbms/Key : -> rdbms/Key [ctor] .
op rdbms/Key/column/0 : -> Property#rdbms [ctor] .
op rdbms/Key/column‘:_ : OrderedSet{Oid} -> Property#rdbms [ctor] .
op rdbms/Key/owner/0 : -> Property#rdbms [ctor] .
op rdbms/Key/owner‘:_ : Oid#rdbms -> Property#rdbms [ctor] .
op rdbms/RModelEment : -> rdbms/RModelEment [ctor] .
op rdbms/RModelEment/name/0 : -> Property#rdbms [ctor] .
op rdbms/RModelEment/name‘:_ : String -> Property#rdbms [ctor] .
op rdbms/Schema : -> rdbms/Schema [ctor] .
op rdbms/Schema/tables/0 : -> Property#rdbms [ctor] .
op rdbms/Schema/tables‘:_ : OrderedSet{Oid} -> Property#rdbms [ctor] .
op rdbms/Table : -> rdbms/Table [ctor] .
op rdbms/Table/column/0 : -> Property#rdbms [ctor] .
op rdbms/Table/column‘:_ : OrderedSet{Oid} -> Property#rdbms [ctor] .
op rdbms/Table/foreignKey/0 : -> Property#rdbms [ctor] .
op rdbms/Table/foreignKey‘:_ : OrderedSet{Oid} -> Property#rdbms [ctor] .
op rdbms/Table/key/0 : -> Property#rdbms [ctor] .
op rdbms/Table/key‘:_ : OrderedSet{Oid} -> Property#rdbms [ctor] .
op rdbms/Table/schema/0 : -> Property#rdbms [ctor] .
op rdbms/Table/schema‘:_ : Oid#rdbms -> Property#rdbms [ctor] .
eq class (< Oid:Oid#rdbms : CID:Cid#rdbms | PS:PropertySet#rdbms >) =

CID:Cid#rdbms .
eq getPropertySet (< Oid:Oid#rdbms : CID:Cid#rdbms | PS:PropertySet#rdbms >)

= PS:PropertySet#rdbms .
eq oid (< Oid:Oid#rdbms : CID:Cid#rdbms | PS:PropertySet#rdbms >) =

Oid:Oid#rdbms .
endm

view rdbms from TH-EOBJECT to mod#rdbms is
sort Cid to Cid#rdbms .
sort EObject to EObject#rdbms .
sort Oid to Oid#rdbms .
sort Property to Property#rdbms .
sort PropertySet to PropertySet#rdbms .
op noneProperty to noneProperty#rdbms .
op nullEObject to nullEObject#rdbms .
op nullOid to nullOid#rdbms .

endv

Appendix D

The rsPerson relational schema
definition

<< <
oid#rdbms/Column(’’#//@tables.0/@column.0)
:
rdbms/Column
|
rdbms/Column/foreignKey/0,
rdbms/Column/key/0,
rdbms/Column/nnv : true,
rdbms/Column/owner : oid#rdbms/Table(’’#//@tables.0),
rdbms/Column/type : rdbms/RDataType/VARCHAR,
rdbms/RModelEment/name : "name"

>
<

oid#rdbms/Column(’’#//@tables.0/@column.1)
:
rdbms/Column
|
rdbms/Column/foreignKey/0,
rdbms/Column/key/0,
rdbms/Column/nnv/0,
rdbms/Column/owner : oid#rdbms/Table(’’#//@tables.0),
rdbms/Column/type : rdbms/RDataType/NUMBER,
rdbms/RModelEment/name : "age"

>
<

oid#rdbms/Column(’’#//@tables.0/@column.2)
:
rdbms/Column
|
rdbms/Column/foreignKey/0,
rdbms/Column/key : OrderedSet{oid#rdbms/Key(’’#//@tables.0/@key.0)},
rdbms/Column/nnv : true,
rdbms/Column/owner : oid#rdbms/Table(’’#//@tables.0),
rdbms/Column/type : rdbms/RDataType/VARCHAR,
rdbms/RModelEment/name : "person_PK"

>
<

oid#rdbms/Column(’’#//@tables.1/@column.0)
:
rdbms/Column
|
rdbms/Column/foreignKey/0,
rdbms/Column/key/0,
rdbms/Column/nnv : true,
rdbms/Column/owner : oid#rdbms/Table(’’#//@tables.1),
rdbms/Column/type : rdbms/RDataType/DATE,
rdbms/RModelEment/name : "date"

>
<

oid#rdbms/Column(’’#//@tables.1/@column.1)
:
rdbms/Column
|
rdbms/Column/foreignKey/0,
rdbms/Column/key/0,

240 Appendix D. The rsPerson relational schema definition

rdbms/Column/nnv/0,
rdbms/Column/owner : oid#rdbms/Table(’’#//@tables.1),
rdbms/Column/type : rdbms/RDataType/DECIMAL,
rdbms/RModelEment/name : "cost"

>
<

oid#rdbms/Column(’’#//@tables.1/@column.2)
:
rdbms/Column
|
rdbms/Column/foreignKey/0,
rdbms/Column/key : OrderedSet{oid#rdbms/Key(’’#//@tables.1/@key.0)},
rdbms/Column/nnv : true,
rdbms/Column/owner : oid#rdbms/Table(’’#//@tables.1),
rdbms/Column/type : rdbms/RDataType/VARCHAR,
rdbms/RModelEment/name : "invoice_PK"

>
<

oid#rdbms/Column(’’#//@tables.1/@column.3)
:
rdbms/Column
|
rdbms/Column/key/0,
rdbms/Column/foreignKey : OrderedSet{oid#rdbms/ForeignKey(

’’#//@tables.1/@foreignKey.0)},
rdbms/Column/nnv : true,
rdbms/Column/owner : oid#rdbms/Table(’’#//@tables.1),
rdbms/Column/type : rdbms/RDataType/VARCHAR,
rdbms/RModelEment/name : "person_FK"

>
<

oid#rdbms/Column(’’#//@tables.2/@column.0)
:
rdbms/Column
|
rdbms/Column/foreignKey/0,
rdbms/Column/key/0,
rdbms/Column/nnv : true,
rdbms/Column/owner : oid#rdbms/Table(’’#//@tables.2),
rdbms/Column/type : rdbms/RDataType/VARCHAR,
rdbms/RModelEment/name : "name"

>
<

oid#rdbms/Column(’’#//@tables.2/@column.1)
:
rdbms/Column
|
rdbms/Column/foreignKey/0,
rdbms/Column/key/0,
rdbms/Column/nnv : true,
rdbms/Column/owner : oid#rdbms/Table(’’#//@tables.2),
rdbms/Column/type : rdbms/RDataType/DECIMAL,
rdbms/RModelEment/name : "price"

>
<

oid#rdbms/Column(’’#//@tables.2/@column.2)
:
rdbms/Column
|
rdbms/Column/foreignKey/0,
rdbms/Column/nnv/0,
rdbms/Column/key : OrderedSet{oid#rdbms/Key(’’#//@tables.2/@key.0)},
rdbms/Column/owner : oid#rdbms/Table(’’#//@tables.2),
rdbms/Column/type : rdbms/RDataType/VARCHAR,
rdbms/RModelEment/name : "item_PK"

>
<

oid#rdbms/Column(’’#//@tables.2/@column.3)
:
rdbms/Column
|
rdbms/Column/key/0,
rdbms/Column/foreignKey : OrderedSet{oid#rdbms/ForeignKey(

’’#//@tables.2/@foreignKey.0)},
rdbms/Column/nnv : true,
rdbms/Column/owner : oid#rdbms/Table(’’#//@tables.2),
rdbms/Column/type : rdbms/RDataType/VARCHAR,
rdbms/RModelEment/name : "invoice_FK"

>
<

oid#rdbms/ForeignKey(’’#//@tables.1/@foreignKey.0)

241

:
rdbms/ForeignKey
|
rdbms/ForeignKey/column : OrderedSet{oid#rdbms/Column(

’’#//@tables.1/@column.3)},
rdbms/ForeignKey/owner : oid#rdbms/Table(’’#//@tables.1),
rdbms/ForeignKey/refersTo : oid#rdbms/Key(’’#//@tables.0/@key.0),
rdbms/RModelEment/name : "Invoice_Person_FK"

>
<

oid#rdbms/ForeignKey(’’#//@tables.2/@foreignKey.0)
:
rdbms/ForeignKey
|
rdbms/ForeignKey/column : OrderedSet{oid#rdbms/Column(

’’#//@tables.2/@column.3)},
rdbms/ForeignKey/owner : oid#rdbms/Table(’’#//@tables.2),
rdbms/ForeignKey/refersTo : oid#rdbms/Key(’’#//@tables.1/@key.0),
rdbms/RModelEment/name : "Item_Invoice_FK"

>
<

oid#rdbms/Key(’’#//@tables.0/@key.0)
:
rdbms/Key
|
rdbms/Key/column : OrderedSet{oid#rdbms/Column(’’#//@tables.0/@column.2)},
rdbms/Key/owner : oid#rdbms/Table(’’#//@tables.0),
rdbms/RModelEment/name : "Person_PK"

>
<

oid#rdbms/Key(’’#//@tables.1/@key.0)
:
rdbms/Key
|
rdbms/Key/column : OrderedSet{oid#rdbms/Column(’’#//@tables.1/@column.2)},
rdbms/Key/owner : oid#rdbms/Table(’’#//@tables.1),
rdbms/RModelEment/name : "Invoice_PK"

>
<

oid#rdbms/Key(’’#//@tables.2/@key.0)
:
rdbms/Key
|
rdbms/Key/column : OrderedSet{oid#rdbms/Column(’’#//@tables.2/@column.2)},
rdbms/Key/owner : oid#rdbms/Table(’’#//@tables.2),
rdbms/RModelEment/name : "Item_PK"

>
<

oid#rdbms/Schema(’platform:/resource/metamodels/qvtrdbms/rsInvoice.xmi#/)
:
rdbms/Schema
|
rdbms/RModelEment/name : "rsInvoice",
rdbms/Schema/tables : OrderedSet{oid#rdbms/Table(’’#//@tables.0) ::

oid#rdbms/Table(’’#//@tables.1) :: oid#rdbms/Table(’’#//@tables.2)}
>
<

oid#rdbms/Table(’’#//@tables.0)
:
rdbms/Table
|
rdbms/Table/foreignKey/0,
rdbms/RModelEment/name : "Person",
rdbms/Table/column : OrderedSet{oid#rdbms/Column(’’#//@tables.0/@column.0) ::

oid#rdbms/Column(’’#//@tables.0/@column.1) :: oid#rdbms/Column(
’’#//@tables.0/@column.2)},

rdbms/Table/key : OrderedSet{oid#rdbms/Key(’’#//@tables.0/@key.0)},
rdbms/Table/schema : oid#rdbms/Schema(

’platform:/resource/metamodels/qvtrdbms/rsInvoice.xmi#/)
>
<

oid#rdbms/Table(’’#//@tables.1)
:
rdbms/Table
|
rdbms/RModelEment/name : "Invoice",
rdbms/Table/column : OrderedSet{oid#rdbms/Column(’’#//@tables.1/@column.0) ::

oid#rdbms/Column(’’#//@tables.1/@column.1) :: oid#rdbms/Column(
’’#//@tables.1/@column.2) :: oid#rdbms/Column(’’#//@tables.1/@column.3)},

rdbms/Table/foreignKey : OrderedSet{oid#rdbms/ForeignKey(
’’#//@tables.1/@foreignKey.0)},

242 Appendix D. The rsPerson relational schema definition

rdbms/Table/key : OrderedSet{oid#rdbms/Key(’’#//@tables.1/@key.0)},
rdbms/Table/schema : oid#rdbms/Schema(

’platform:/resource/metamodels/qvtrdbms/rsInvoice.xmi#/)
>
<

oid#rdbms/Table(’’#//@tables.2)
:
rdbms/Table
|
rdbms/RModelEment/name : "Item",
rdbms/Table/column : OrderedSet{oid#rdbms/Column(’’#//@tables.2/@column.0) ::

oid#rdbms/Column(’’#//@tables.2/@column.1) :: oid#rdbms/Column(
’’#//@tables.2/@column.2) :: oid#rdbms/Column(’’#//@tables.2/@column.3)},

rdbms/Table/foreignKey : OrderedSet{oid#rdbms/ForeignKey(
’’#//@tables.2/@foreignKey.0)},

rdbms/Table/key : OrderedSet{oid#rdbms/Key(’’#//@tables.2/@key.0)},
rdbms/Table/schema : oid#rdbms/Schema(

’platform:/resource/metamodels/qvtrdbms/rsInvoice.xmi#/)
> >>

Appendix E

The metarepresented rsPerson
relational schema definition

<< < metaOid("oid#rdbms/Column", ’’#//@tables.0/@column.0) :
ecore/EObject |
property :

"foreignKey"
,
property :

"key"
,
class : "rdbms/Column",
(property :

"name"
=
"name"

),
(property :

"nnv"
=
true

),
(property :

"owner"
=
metaOid("oid#rdbms/Table",
’’#//@tables.0)

),
property :

"type"
=
metaEEnumLiteral("rdbms/RDataType/VARCHAR")

>
< metaOid("oid#rdbms/Column", ’’#//@tables.0/@column.1) :

ecore/EObject |
property :

"foreignKey"
,
property :

"key"
,
property :

"nnv"
,
class : "rdbms/Column",
(property :

"name"
=
"age"

),
(property :

"owner"
=
metaOid("oid#rdbms/Table",
’’#//@tables.0)

),
property :

244 Appendix E. The metarepresented rsPerson relational schema definition

"type"
=
metaEEnumLiteral("rdbms/RDataType/NUMBER")

>
< metaOid("oid#rdbms/Column", ’’#//@tables.0/@column.2) :

ecore/EObject |
property :

"foreignKey"
,
class : "rdbms/Column",
(property :

"name"
=
"person_PK"

),
(property :

"nnv"
=
true

),
(property :

"key"
=
OrderedSet{metaOid("oid#rdbms/Key",
’’#//@tables.0/@key.0)}

),
(property :

"owner"
=
metaOid("oid#rdbms/Table",
’’#//@tables.0)

),
property :

"type"
=
metaEEnumLiteral("rdbms/RDataType/VARCHAR")

>
< metaOid("oid#rdbms/Column", ’’#//@tables.1/@column.0) :

ecore/EObject |
property :

"foreignKey"
,
property :

"key"
,
class : "rdbms/Column",
(property :

"name"
=
"date"

),
(property :

"nnv"
=
true

),
(property :

"owner"
=
metaOid("oid#rdbms/Table",
’’#//@tables.1)

),
property :

"type"
=
metaEEnumLiteral("rdbms/RDataType/DATE")

>
< metaOid("oid#rdbms/Column", ’’#//@tables.1/@column.1) :

ecore/EObject |
property :

"foreignKey"
,
property :

"key"
,
property :

"nnv"
,

245

class : "rdbms/Column",
(property :

"name"
=
"cost"

),
(property :

"owner"
=
metaOid("oid#rdbms/Table",
’’#//@tables.1)

),
property :

"type"
=
metaEEnumLiteral("rdbms/RDataType/DECIMAL")

>
< metaOid("oid#rdbms/Column", ’’#//@tables.1/@column.2) :

ecore/EObject |
property :

"foreignKey"
,
class : "rdbms/Column",
(property :

"name"
=
"invoice_PK"

),
(property :

"nnv"
=
true

),
(property :

"key"
=
OrderedSet{metaOid("oid#rdbms/Key",
’’#//@tables.1/@key.0)}

),
(property :

"owner"
=
metaOid("oid#rdbms/Table",
’’#//@tables.1)

),
property :

"type"
=
metaEEnumLiteral("rdbms/RDataType/VARCHAR")

>
< metaOid("oid#rdbms/Column", ’’#//@tables.1/@column.3) :

ecore/EObject |
property :

"key"
,
class : "rdbms/Column",
(property :

"name"
=
"person_FK"

),
(property :

"nnv"
=
true

),
(property :

"foreignKey"
=
OrderedSet{metaOid("oid#rdbms/ForeignKey", ’’#//@tables.1/@foreignKey.0)}

),
(property :

"owner"
=
metaOid("oid#rdbms/Table",
’’#//@tables.1)

),
property :

"type"

246 Appendix E. The metarepresented rsPerson relational schema definition

=
metaEEnumLiteral("rdbms/RDataType/VARCHAR")

>
< metaOid("oid#rdbms/Column", ’’#//@tables.2/@column.0) :

ecore/EObject |
property :

"foreignKey"
,
property :

"key"
,
class : "rdbms/Column",
(property :

"name"
=
"name"

),
(property :

"nnv"
=
true

),
(property :

"owner"
=
metaOid("oid#rdbms/Table",
’’#//@tables.2)

),
property :

"type"
=
metaEEnumLiteral("rdbms/RDataType/VARCHAR")

>
< metaOid("oid#rdbms/Column", ’’#//@tables.2/@column.1) :

ecore/EObject |
property :

"foreignKey"
,
property :

"key"
,
class : "rdbms/Column",
(property :

"name"
=
"price"

),
(property :

"nnv"
=
true

),
(property :

"owner"
=
metaOid("oid#rdbms/Table",
’’#//@tables.2)

),
property :

"type"
=
metaEEnumLiteral("rdbms/RDataType/DECIMAL")

>
< metaOid("oid#rdbms/Column", ’’#//@tables.2/@column.2) :

ecore/EObject |
property :

"foreignKey"
,
property :

"nnv"
,
class : "rdbms/Column",
(property :

"name"
=
"item_PK"

),
(property :

247

"key"
=
OrderedSet{metaOid("oid#rdbms/Key",
’’#//@tables.2/@key.0)}

),
(property :

"owner"
=
metaOid("oid#rdbms/Table",
’’#//@tables.2)

),
property :

"type"
=
metaEEnumLiteral("rdbms/RDataType/VARCHAR")

>
< metaOid("oid#rdbms/Column", ’’#//@tables.2/@column.3) :

ecore/EObject |
property :

"key"
,
class : "rdbms/Column",
(property :

"name"
=
"invoice_FK"

),
(property :

"nnv"
=
true

),
(property :

"foreignKey"
=
OrderedSet{metaOid("oid#rdbms/ForeignKey", ’’#//@tables.2/@foreignKey.0)}

),
(property :

"owner"
=
metaOid("oid#rdbms/Table",
’’#//@tables.2)

),
property :

"type"
=
metaEEnumLiteral("rdbms/RDataType/VARCHAR")

>
< metaOid("oid#rdbms/ForeignKey", ’’#//@tables.1/@foreignKey.0) :

ecore/EObject |
class : "rdbms/ForeignKey",
(property :

"name"
=
"Invoice_Person_FK"

),
(property :

"column"
=
OrderedSet{metaOid("oid#rdbms/Column", ’’#//@tables.1/@column.3)}

),
(property :

"owner"
=
metaOid("oid#rdbms/Table",
’’#//@tables.1)

),
property :

"refersTo"
=
metaOid("oid#rdbms/Key",
’’#//@tables.0/@key.0)

>
< metaOid("oid#rdbms/ForeignKey", ’’#//@tables.2/@foreignKey.0) :

ecore/EObject |
class : "rdbms/ForeignKey",
(property :

"name"

248 Appendix E. The metarepresented rsPerson relational schema definition

=
"Item_Invoice_FK"

),
(property :

"column"
=
OrderedSet{metaOid("oid#rdbms/Column", ’’#//@tables.2/@column.3)}

),
(property :

"owner"
=
metaOid("oid#rdbms/Table",
’’#//@tables.2)

),
property :

"refersTo"
=
metaOid("oid#rdbms/Key",
’’#//@tables.1/@key.0)

>
< metaOid("oid#rdbms/Key",

’’#//@tables.0/@key.0) :
ecore/EObject |
class : "rdbms/Key",
(property :

"name"
=
"Person_PK"

),
(property :

"column"
=
OrderedSet{metaOid("oid#rdbms/Column", ’’#//@tables.0/@column.2)}

),
property :

"owner"
=
metaOid("oid#rdbms/Table",
’’#//@tables.0)

>
< metaOid("oid#rdbms/Key",

’’#//@tables.1/@key.0) :
ecore/EObject |
class : "rdbms/Key",
(property :

"name"
=
"Invoice_PK"

),
(property :

"column"
=
OrderedSet{metaOid("oid#rdbms/Column", ’’#//@tables.1/@column.2)}

),
property :

"owner"
=
metaOid("oid#rdbms/Table",
’’#//@tables.1)

>
< metaOid("oid#rdbms/Key",

’’#//@tables.2/@key.0) :
ecore/EObject |
class : "rdbms/Key",
(property :

"name"
=
"Item_PK"

),
(property :

"column"
=
OrderedSet{metaOid("oid#rdbms/Column", ’’#//@tables.2/@column.2)}

),
property :

"owner"
=
metaOid("oid#rdbms/Table",

249

’’#//@tables.2)

>
< metaOid("oid#rdbms/Schema",

’platform:/resource/metamodels/qvtrdbms/rsInvoice.xmi#/) :
ecore/EObject |
class : "rdbms/Schema",
(property :

"name"
=
"rsInvoice"

),
property :

"tables"
=
OrderedSet{metaOid("oid#rdbms/Table",
’’#//@tables.0) ::
metaOid("oid#rdbms/Table",
’’#//@tables.1) ::
metaOid("oid#rdbms/Table",
’’#//@tables.2)}

>
< metaOid("oid#rdbms/Table",

’’#//@tables.0) :
ecore/EObject |
property :

"foreignKey"
,
class : "rdbms/Table",
(property :

"name"
=
"Person"

),
(property :

"column"
=
OrderedSet{metaOid("oid#rdbms/Column", ’’#//@tables.0/@column.0) :: metaOid("oid#rdbms/Column", ’’#//@tables.0/@column.1) :: metaOid(
"oid#rdbms/Column", ’’#//@tables.0/@column.2)}

),
(property :

"key"
=
OrderedSet{metaOid("oid#rdbms/Key",
’’#//@tables.0/@key.0)}

),
property :

"schema"
=
metaOid("oid#rdbms/Schema",
’platform:/resource/metamodels/qvtrdbms/rsInvoice.xmi#/)

>
< metaOid("oid#rdbms/Table",

’’#//@tables.1) :
ecore/EObject |
class : "rdbms/Table",
(property :

"name"
=
"Invoice"

),
(property :

"column"
=
OrderedSet{metaOid("oid#rdbms/Column", ’’#//@tables.1/@column.0) :: metaOid("oid#rdbms/Column", ’’#//@tables.1/@column.1) :: metaOid(
"oid#rdbms/Column", ’’#//@tables.1/@column.2) :: metaOid("oid#rdbms/Column", ’’#//@tables.1/@column.3)}

),
(property :

"foreignKey"
=
OrderedSet{metaOid("oid#rdbms/ForeignKey", ’’#//@tables.1/@foreignKey.0)}

),
(property :

"key"
=
OrderedSet{metaOid("oid#rdbms/Key",
’’#//@tables.1/@key.0)}

),
property :

250 Appendix E. The metarepresented rsPerson relational schema definition

"schema"
=
metaOid("oid#rdbms/Schema",
’platform:/resource/metamodels/qvtrdbms/rsInvoice.xmi#/)

>
< metaOid("oid#rdbms/Table",

’’#//@tables.2) :
ecore/EObject |
class : "rdbms/Table",
(property :

"name"
=
"Item"

),
(property :

"column"
=
OrderedSet{metaOid("oid#rdbms/Column", ’’#//@tables.2/@column.0) ::
metaOid("oid#rdbms/Column", ’’#//@tables.2/@column.1) :: metaOid(
"oid#rdbms/Column", ’’#//@tables.2/@column.2) ::
metaOid("oid#rdbms/Column", ’’#//@tables.2/@column.3)}

),
(property :

"foreignKey"
=
OrderedSet{metaOid("oid#rdbms/ForeignKey", ’’#//@tables.2/@foreignKey.0)}

),
(property :

"key"
=
OrderedSet{metaOid("oid#rdbms/Key",
’’#//@tables.2/@key.0)}

),
property :

"schema"
=
metaOid("oid#rdbms/Schema",
’platform:/resource/metamodels/qvtrdbms/rsInvoice.xmi#/)

> >>

Appendix F

Algebraic Specification of OCL
Collection Operators

fmod OCL-COLLECTIONS{T :: TRIV} is
pr OCL-COLLECTION-TYPES{T} .

*** user functions that return a boolean value
*** Body: function that manipulates an element of a Collection{T}
*** BoolBody: function that queries an element of a Collection{T} and returns a boolean value
sorts Body{T} BoolBody{T} .
sort IterateBody{T} .

sort PreConfiguration{T} .
op nonePreConf : -> PreConfiguration{T} .

*** VARIABLE SUPPORT FOR THE ENVIRONMENT
op _=_ : OclVariableName Collection+{T} -> OclVariable .

*** ***
*** ***

*** COMMON OPERATORS

*** ***
*** ***
op _ocl=_ : Collection+{T} Collection+{T} -> Bool .
eq (N1 ocl= N2) = N1 == N2 .
eq (undefN1 ocl= undefN2) =

not(undefN1 :: Collection+{T}) and not(undefN2 :: Collection+{T}) [owise] .

op _ocl<>_ : Collection+{T} Collection+{T} -> Bool .
eq undefN1 ocl<> undefN2 = not(undefN1 ocl= undefN2) .

op _.‘oclIsUndefined : [Collection+{T}] -> Bool .
eq N:[Collection+{T}] . oclIsUndefined = not(N:[Collection+{T}] :: Collection+{T}) .

*** ***
*** ***

*** Collection{T} OPERATIONS

*** ***
*** ***

*** **
*** Collection{T} conversions

var E E’ : Collection+{T} .
vars undefN1 undefN2 : Collection+{T} .
vars N N1 N2 : Collection+{T} .
vars M M1 M2 M3 M4 M11 M22 : Magma{T} .

252 Appendix F. Algebraic Specification of OCL Collection Operators

vars OM OM1 OM2 : OrderedMagma{T} .
vars Col : Collection{T} .
vars PreConf : PreConfiguration{T} .
vars Set Set1 Set2 Set11 Set22 : Set{T} .
vars OSet OSet1 OSet2 OSet11 OSet22 : OrderedSet{T} .
vars Bag Bag1 Bag2 Bag11 Bag22 : Bag{T} .
vars Seq Seq1 Seq2 Seq11 Seq22 : Sequence{T} .

vars i j : Int .

var B : Body{T} .
var BB : BoolBody{T} .
var IF : IterateBody{T} .
var Env : Environment .
var acc : OclVariable .
var MinorOperator : BoolBody{T} .
var I : Int .
var SortingCriteria : BoolBody{T} .

var VName : OclVariableName .

*** **
*** **
*** **
*** Collection{T} conversions

*** asSet(): Set(T)
op _->‘asSet : Collection{T} -> Set{T} [prec 35] .

*** asOrderedSet(): OrderedSet(T)
*** only defined for OrderedSet and Sequence
*** and for collections of basic data types (string, int, float)
op _->‘asOrderedSet : Collection{T} -> OrderedSet{T} [prec 35] .

*** asBag() : Bag(T)
op _->‘asBag : Collection{T} -> Bag{T} [prec 35] .

*** asSequence(): Sequence(T)
*** only defined for OrderedSet and Sequence
*** and for collections of basic data types (string, int, float)
op _->‘asSequence : Collection{T} -> Sequence{T} [prec 35] .

*** **
*** **
*** **
*** Collection{T} Operations

*** size() : Integer
op _->‘size : Collection{T} -> Int . *** size

*** count(object: T): Integer
op _->‘count‘(_‘) : Collection{T} Collection{T} -> Int [memo] .

*** includes(object: T): Boolean
op _->‘includes‘(_‘) : Collection{T} Collection{T} -> Bool [memo] .

*** excludes(object: T): Boolean
op _->‘excludes‘(_‘) : Collection{T} Collection{T} -> Bool [memo] .

*** includesAll(c2: Collection{T}(T)): Boolean
op _->‘includesAll‘(_‘) : Collection{T} Collection{T} -> Bool [memo] .

*** excludesAll(c2: Collection{T}(T)): Boolean
op _->‘excludesAll‘(_‘) : Collection{T} Collection{T} -> Bool [memo] .

*** isEmpty(): Boolean
op _->‘isEmpty : Collection{T} -> Bool . *** isEmpty notEmpty

*** notEmpty(): Boolean
op _->‘notEmpty : Collection{T} -> Bool . *** isEmpty notEmpty

253

*** sum(): T

*** product(c2: Collection{T}(T2)) : Set(Tuple(first: T, second: T2))

*** union
op _->‘union‘(_‘) : Collection{T} Collection{T} -> Collection{T} [memo] .

*** intersection
op _->‘intersection‘(_‘) : Collection{T} Collection{T} -> Collection{T} [memo] .

*** append(object: T): OrderedSet(T)
op _->‘append‘(_‘) : OrderedSet{T} Collection{T} -> OrderedSet{T} [memo] .
op _->‘append‘(_‘) : OrderedSet{T} Collection{T} -> OrderedSet{T} [memo] .

*** prepend(object: T): OrderedSet(T)
op _->‘prepend‘(_‘) : OrderedSet{T} Collection{T} -> OrderedSet{T} [memo] .
op _->‘prepend‘(_‘) : OrderedSet{T} Collection{T} -> OrderedSet{T} [memo] .

*** ***
*** NOT IN OCL
*** appendCol(c2: OrderedSet(T1)) : OrderedSet(T1) --> not in OCL
op _->‘appendCol‘(_‘) : OrderedSet{T} Collection{T} -> OrderedSet{T} [memo] .
op _->‘appendCol‘(_‘) : OrderedSet{T} Collection{T} -> OrderedSet{T} [memo] .

*** prependCol(c2: OrderedSet(T1)) : OrderedSet(T1) --> not in OCL
op _->‘prependCol‘(_‘) : OrderedSet{T} Collection{T} -> OrderedSet{T} [memo] .
op _->‘prependCol‘(_‘) : OrderedSet{T} Collection{T} -> OrderedSet{T} [memo] .
*** ***

*** including excluding
op _->‘including‘(_‘) : Collection{T} Collection+{T} -> Collection{T} [memo] .
op _->‘excluding‘(_‘) : Collection{T} Collection+{T} -> Collection{T} [memo] .

*** ***
*** NOT IN OCL
op _->‘includingCol‘(_‘) : Collection{T} Collection{T} -> Collection{T} [memo] .
*** ***

*** first() : T
op _->‘first : OrderedSet{T} -> Collection+{T} .
op _->‘first : Sequence{T} -> Collection+{T} .

*** last() : T
op _->‘last : OrderedSet{T} -> Collection+{T} .
op _->‘last : Sequence{T} -> Collection+{T} .

*** flatten
*** this operator can only flatten a set or a bag into
*** an ordered collection automatically if the collection
*** only contains basic data types (int, float or string)
op _->‘flatten : Collection{T} -> Collection{T} .

*** at(i: Integer) : T
op _->‘at‘(_‘) : OrderedSet{T} Int -> Collection+{T} [memo] .
op _->‘at‘(_‘) : Sequence{T} Int -> Collection+{T} [memo] .

*** indexOf(obj : T) : Integer
op _->‘indexOf‘(_‘) : OrderedSet{T} Collection+{T} -> Int [memo] .
op _->‘indexOf‘(_‘) : Sequence{T} Collection+{T} -> Int [memo] .

*** insertAt(index: Integer, object: T) : OrderedSet(T)
op _->‘insertAt‘(_;_‘) : OrderedSet{T} Int Collection+{T} -> OrderedSet{T} .
op _->‘insertAt‘(_;_‘) : Sequence{T} Int Collection+{T} -> Sequence{T} .

*** ***
*** ***
*** ITERATOR OPERATIONS

op _->‘forAll‘(_;_;_‘) : Collection{T} BoolBody{T} Environment
PreConfiguration{T} -> Bool .

op _->‘forAll2‘(_;_;_‘) : Collection{T} BoolBody{T} Environment
PreConfiguration{T} -> Bool .

op _->‘exists‘(_;_;_‘) : Collection{T} BoolBody{T} Environment
PreConfiguration{T} -> Bool .

op _->‘one‘(_;_;_‘) : Collection{T} BoolBody{T} Environment
PreConfiguration{T} -> Bool .

254 Appendix F. Algebraic Specification of OCL Collection Operators

op _->‘isUnique‘(_;_;_‘) : Collection{T} Body{T} Environment
PreConfiguration{T} -> Bool .

op _->‘select‘(_;_;_‘) : Collection{T} BoolBody{T} Environment
PreConfiguration{T} -> Collection{T} .

op _->‘reject‘(_;_;_‘) : Collection{T} BoolBody{T} Environment
PreConfiguration{T} -> Collection{T} .

*** any can only be used when the boolean body expression returns a collection
*** of int, float or string (otherwise it is not confluent)
op _->‘any‘(_;_;_‘) : Collection{T} BoolBody{T} Environment

PreConfiguration{T} -> Collection{T} .

op _->‘sortedBy‘(_;_;_‘) : Collection{T} BoolBody{T} Environment
PreConfiguration{T} -> Collection{T} .

op _->‘collect‘(_;_;_‘) : Collection{T} Body{T} Environment
PreConfiguration{T} -> Collection{T} .

op _->‘collectNested‘(_;_;_‘) : Collection{T} Body{T} Environment
PreConfiguration{T} -> Collection{T} .

*** USER Body{T} FUNCTIONS
*** without parameters
op _._‘(_‘) : Magma{T} BoolBody{T} PreConfiguration{T} -> Bool .
op _._‘(_‘) : OrderedMagma{T} BoolBody{T} PreConfiguration{T} -> Bool .
op _._‘(_‘) : Magma{T} Body{T} PreConfiguration{T} -> Collection{T} .
op _._‘(_‘) : OrderedMagma{T} Body{T} PreConfiguration{T} -> Collection{T} .
*** with parameters
op _._‘(_;_‘) : Magma{T} BoolBody{T} Environment PreConfiguration{T} -> Bool .
op _._‘(_;_‘) : OrderedMagma{T} BoolBody{T} Environment PreConfiguration{T} -> Bool .
op _._‘(_;_‘) : Magma{T} Body{T} Environment PreConfiguration{T} -> Collection{T} .
op _._‘(_;_‘) : OrderedMagma{T} Body{T} Environment PreConfiguration{T}

-> Collection{T} .

*** ***
*** Collection{T} iterators

*** iterate
*** 1: set
*** 2: iterate
*** 3: accumulator. It is a OclVariable: ? T where T can be an String, an Integer, a Set...
*** 4: funcio
*** 5: parameters
*** 6: set -> the whole model
*** This function returns a parameter, i.e. its return value is
*** polymorphic (it can be String, Int, Set...)
op _->‘iterate‘(_|_;_;_‘) : Collection{T} OclVariable IterateBody{T}

Environment PreConfiguration{T} -> OclVariable [prec 40 gather (E & & & e)] .

*** poly can only be used for constructors and builtins, not for operations
*** 1: Collection+{T}
*** 2: IterateBody
*** 3: accumulator: initial value
*** [4] : OclParameters for the iterate function
*** 5: NodeSet -> the whole model
*** the return type is the same of the accumulator: it is a parameter
*** (integer, string, set, ...)
*** with parameters
op _._‘(_;_;_‘) : Collection+{T} IterateBody{T} OclVariable

Environment PreConfiguration{T} -> OclVariable .

*** ***
*** ***
*** SET

*** Duplicates are not allowed: this should be check by the user
*** for the sake of efficiency

*** ***
*** ***

*** **

255

*** Collection{T} conversions

*** asSet(): Set(T)
eq Set -> asSet = Set .

*** asOrderedSet(): OrderedSet(T)
*** including does not take into account uniqueness but if we come from a set,
*** this is not required

*** asBag() : Bag(T)
eq Set{ M } -> asBag = Bag{ M } .
eq empty-set -> asBag = empty-bag .

*** asSequence(): Sequence(T)

*** **
*** Collection{T} OPERATIONS

*** size
eq empty-set -> size = 0 .
eq Set{ N } -> size = 1 .
eq Set{ N , M } -> size = (Set{ M } -> size) + 1 .

*** count
eq empty-set -> count (N2) = 0 .
eq Set{ N1 } -> count (N1) = 1 .
eq Set{ N1 } -> count (N2) = 0 .
eq Set{ N1 , M } -> count (N1) =

1 + (Set{ M } -> count (N1)) .
eq Set{ M } -> count (N1) = 0 [owise] .

*** includes(object: T): Boolean
eq empty-set -> includes (N) = false .
eq Set -> includes (N) = (Set -> count (N)) > 0 .

*** excludes(object: T): Boolean
eq empty-set -> excludes (N) = true .
eq Set -> excludes (N) = (Set -> count (N)) == 0 .

*** includesAll -> defined for all Collections

*** excludesAll -> defined for all Collections

*** isEmpty(): Boolean
eq empty-set -> isEmpty = true .
eq Col -> isEmpty = false [owise] .

*** notEmpty(): Boolean
eq empty-set -> notEmpty = false .
eq Col -> notEmpty = true [owise] .

*** sum(): T
*** only for rationals (integers)
*** product(c2: Collection{T}(T2)) : Set(Tuple(first: T, second: T2))

*** **
*** SET OPERATIONS

*** union(s: Set(T)): Set(T) --> only for sorts that have defined ==
*** to apply the union of models we have to use the MERGE operator
*** that takes into account the conflict resolution strategy
*** equivalence relationships, traceability

eq empty-set -> union (Set) = Set .
eq Set -> union (empty-set) = Set .

eq Set{ N1 } -> union (Set{ N1 }) = Set{ N1 } .
eq Set{ N1 } -> union (Set{ N1 , M22 }) = Set{ N1, M22 } .
eq Set{ N1 , M11 } -> union (Set{ N1 }) = Set{ N1, M11 } .
eq Set{ N1 , M11 } -> union (Set{ N1 , M22 }) =

Set{ N1 } -> includingCol (Set{ M11 } -> union (Set{ M22 })) .

eq Set{ M1 } -> union (Set{ M2 }) = Set{ M1 , M2 } [owise] .

*** union(bag: Bag(T)): Bag(T)

256 Appendix F. Algebraic Specification of OCL Collection Operators

eq empty-set -> union (Bag) = Bag .
eq Set -> union (empty-bag) = Set -> asBag .
eq Set{M1} -> union (Bag{M2}) = Bag{M1,M2} [owise] .

*** = (s: Set(T)) : Boolean --> ==

*** intersection(s: Set(T)) : Set(T)
*** intersection(s: Set(T)): Set(T) --> only for sorts that have defined ==
*** to apply the intersection of models we have to use the CROSS operator
*** that takes into account the conflict resolution strategy
*** equivalence relationships, traceability

eq empty-set -> intersection (Set) = empty-set .
eq Set -> intersection (empty-set) = empty-set .

eq Set{ N1 } -> intersection (Set{ N1 }) = Set{ N1 } .
eq Set{ N1, M1 } -> intersection (Set{ N1 }) = Set{ N1 } .
eq Set{ N1 } -> intersection (Set{ N1, M2 }) = Set{ N1 } .
eq Set{ N1 , M11 } -> intersection (Set{ N1 , M22 }) =

Set{ N1 } -> includingCol (Set{ M11 } -> intersection (Set{ M22 })) .
eq Set{ M1 } -> intersection (Set{ M2 }) = empty-set [owise] .

*** intersection(bag : Bag(T)): Set(T)
eq empty-set -> intersection (Bag) = empty-set .
eq Set -> intersection (empty-bag) = empty-set .

eq Set{ N1 } -> intersection (Bag{ N1 }) = Set{ N1 } .
eq Set{ N1, M1 } -> intersection (Bag{ N1 }) = Set{ N1 } .
eq Set{ N1 } -> intersection (Bag{ N1, M1 }) = Set{ N1 } .
eq Set{ N1 , M11 } -> intersection (Bag{ N1 , M22 }) =

Set{ N1 } -> includingCol (Set{ M11 } -> intersection (Bag{ M22 })) .

eq Set{ M1 } -> intersection (Bag{ M2 }) = empty-set [owise] .

*** difference
*** - (s : Set(T)) : Set(T)
*** - (s: Set(T)): Set(T) --> only for sorts that have defined ==
*** to apply the intersection of models we have to use the DIFF operator
*** that takes into account the conflict resolution strategy
*** equivalence relationships, traceability
op _--_ : Set{T} Set{T} -> Set{T} [prec 33 gather (E e)] .

eq Set{ N1 } -- Set{ N1 } = empty-set .
eq Set{ N1, M1 } -- Set{ N1 } = Set{ M1 } .
eq Set{ N1 } -- Set{ N1, M2 } = empty-set .
eq Set{ N1 , M11 } -- Set{ N1 , M22 } =

Set{ M11 } -- Set{ M22 }
.
eq Set1 -- Set2 = Set1 [owise] .

eq Set1 -- OSet2 = Set1 -- (OSet2 -> asSet) .

*** including(object: T) : Set(T)
*** including(s : Set(T)) : Set(T)
*** including does not follow the standard. It does not care about
*** uniqueness for the sake of efficiency
eq Set{ M1 } -> including (M2) = Set{ M1 , M2 } .
eq empty-set -> including (M2) = Set{ M2 } .
eq Set{ M1 } -> including (Col) = Set{ M1 , Col } .
eq empty-set -> including (Col) = Set{ Col } .

*** includingCol: for internal use. it performs the same funcionality
*** that including but takes
*** into account the internal elements of the other collection
eq Set{ M1 } -> includingCol (Set{ M2 }) = Set{ M1 , M2 } .
eq empty-set -> includingCol (Set) = Set .
eq Set -> includingCol (empty-set) = Set .

eq Set -> includingCol (OSet) = Set -> includingCol (OSet -> asSet) .
eq Set -> includingCol (Bag) = Set -> includingCol (Bag -> asSet) .
eq Set -> includingCol (Seq) = Set -> includingCol (Seq -> asSet) .

*** excluding(object: T): Set(T)
eq Set{N} -> excluding(N) = empty-set .
eq Set{N,M} -> excluding(N) = Set{M} .
eq Set -> excluding(N) = Set [owise] .

257

*** symmetricDifference(s: Set(T)): Set(T)
*** XOR semantics

*** flatten(): Set(T2)
op Flatten : Collection{T} Collection{T} -> Collection{T} .

eq Flatten(Set{Col}, Set) = Set -> union (Flatten(Col -> asSet, empty-set)) .
eq Flatten(Set{Col, M1}, Set) =

Flatten(Set{ M1 }, Set -> union (Flatten(Col -> asSet, empty-set))) .
eq Flatten(Set1, Set2) = Set1 -> union(Set2) [owise] .

eq Set -> flatten = Flatten(Set, empty-set) .

*** ***
*** Collection{T} iterators

*** iterate

eq Set{ N , M } -> iterate (acc | IF ; Env ; PreConf) =
N . IF ((Set{ M } -> iterate (acc | IF ; Env ; PreConf)) ; Env ; PreConf) .

eq Set{ N } -> iterate (acc | IF ; Env ; PreConf) =
N . IF (acc ; Env ; PreConf) .

eq empty-set -> iterate (acc | IF ; Env ; PreConf) = acc .

*** exists
eq Set{ N , M } -> exists (BB ; Env ; PreConf) =

(N . BB (Env ; PreConf)) or-else (Set{ M } -> exists (BB ; Env ; PreConf)) .
eq Set{ N } -> exists (BB ; Env ; PreConf) =

N . BB (Env ; PreConf) .
eq empty-set -> exists (BB ; Env ; PreConf) = false .

*** forAll
eq Set{ N , M } -> forAll (BB ; Env ; PreConf) =

(N . BB (Env ; PreConf)) and-then (Set{ M } -> forAll (BB ; Env ; PreConf)) .
eq Set{ N } -> forAll (BB ; Env ; PreConf) = N . BB (Env ; PreConf) .
eq empty-set -> forAll (BB ; Env ; PreConf) = true .

*** forAll2
eq empty-set -> forAll2 (BB ; Env ; PreConf) = true .
eq Set{ N1 , N2 , M } -> forAll2 (BB ; Env ; PreConf) =

((N1, N2) . BB (Env ; PreConf)) and-then
(Set{ N1 , M } -> forAll2 (BB ; Env ; PreConf)) and-then
(Set{ N2 , M } -> forAll2 (BB ; Env ; PreConf)) .

eq Set{ N1, N2 } -> forAll2 (BB ; Env ; PreConf) = (N1, N2) . BB (Env ; PreConf) .
eq Set{ N1 } -> forAll2 (BB ; Env ; PreConf) = (N1) . BB (Env ; PreConf) .

*** isUnique
op different : -> BoolBody{T} .
eq (N1, N2) . different (Env ; PreConf) = (N1 =/= N2) .
eq N1 . different (Env ; PreConf) = true .

eq Set -> isUnique (B ; Env ; PreConf) =
(Set -> collect (B ; Env ; PreConf)) -> forAll2 (different ; Env ; PreConf) .

*** any
eq Set -> any (BB ; Env ; PreConf) =

((Set -> select (BB ; Env ; PreConf)) -> asSequence) -> first .

*** one
eq Set -> one (BB ; Env ; PreConf) =

((Set -> select (BB ; Env ; PreConf)) -> size) == 1 .

*** collect
eq Col -> collect (B ; Env ; PreConf) =

(Col -> collectNested (B ; Env ; PreConf)) -> flatten .

*** ***
*** SET ITERATOR OPERATIONS

*** select: Set(T)
op $select : Collection{T} BoolBody{T} Environment PreConfiguration{T}

258 Appendix F. Algebraic Specification of OCL Collection Operators

Collection{T} -> Collection{T} .
var ResultCol : Collection{T} .

eq $select(Set{N,M}, BB, Env, PreConf , ResultCol) =
if (N . BB (Env ; PreConf)) then

$select(Set{ M }, BB, Env, PreConf, ResultCol -> including(N))
else

$select(Set{ M }, BB, Env, PreConf, ResultCol)
fi .

eq $select(Set{N}, BB, Env, PreConf, ResultCol) =
if (N . BB (Env ; PreConf)) then

ResultCol -> including(N)
else

ResultCol
fi .

eq $select(empty-set, BB, Env, PreConf, ResultCol) = ResultCol .

eq Set -> select (BB ; Env ; PreConf) =
$select(Set, BB, Env, PreConf, empty-set) .

*** reject: Set(T)
eq Set{ N , M } -> reject (BB ; Env ; PreConf) =
if not(N . BB (Env ; PreConf)) then

Set{ N } -> includingCol ((Set{ M } -> reject (BB ; Env ; PreConf)))
else

(Set{ M } -> reject (BB ; Env ; PreConf))
fi .

eq Set{ N } -> reject (BB ; Env ; PreConf) =
if not(N . BB (Env ; PreConf)) then

Set{ N }
else

empty-set
fi .

eq empty-set -> reject (BB ; Env ; PreConf) = empty-set .

*** collectNested: Bag(T)
eq Set{ N , M } -> collectNested (B ; Env ; PreConf) =

Bag{ (N . B (Env ; PreConf)) }
-> includingCol ((Set{ M } -> collectNested (B ; Env ; PreConf))) .

eq Set{ N } -> collectNested (B ; Env ; PreConf) = Bag{ (N . B (Env ; PreConf)) } .
eq empty-set -> collectNested (B ; Env ; PreConf) = empty-bag .

*** ***
*** ***
*** ***
*** ***

*** ORDEREDSET ORDERING AUXILIAR OPERATORS
*** Based on Maude list sorting

vars A A’ L L’ : OrderedMagma{T} .

op merge : OrderedSet{T} OrderedSet{T} BoolBody{T} -> OrderedSet{T} .
eq merge (OSet1, OSet2, SortingCriteria) = $merge (OSet1, OSet2, empty-orderedset, SortingCriteria) .

op $merge : OrderedSet{T} OrderedSet{T} OrderedSet{T} BoolBody{T} -> OrderedSet{T} .
eq $merge (OrderedSet{L}, empty-orderedset, OrderedSet{A}, SortingCriteria) = OrderedSet{ A :: L } .
eq $merge (empty-orderedset, OrderedSet{L}, OrderedSet{A}, SortingCriteria) = OrderedSet{A :: L} .

eq $merge (OrderedSet{ E } , OrderedSet{E’}, OrderedSet{A}, SortingCriteria) =
if ((E . SortingCriteria (VariableNameAux = E’ ; nonePreConf)) == true) then

$merge (empty-orderedset, OrderedSet{E’}, OrderedSet{A :: E}, SortingCriteria)
else

$merge (OrderedSet{E}, empty-orderedset, OrderedSet{A :: E’}, SortingCriteria)
fi .

eq $merge (OrderedSet{ E } , OrderedSet{E’}, empty-orderedset, SortingCriteria) =
if ((E . SortingCriteria (VariableNameAux = E’ ; nonePreConf)) == true) then

$merge (empty-orderedset, OrderedSet{E’}, OrderedSet{E}, SortingCriteria)
else

259

$merge (OrderedSet{E}, empty-orderedset, OrderedSet{E’}, SortingCriteria)
fi .

eq $merge (OrderedSet{ E } , OrderedSet{E’ :: L’}, OrderedSet{A}, SortingCriteria) =
if ((E . SortingCriteria (VariableNameAux = E’ ; nonePreConf)) == true) then

$merge (empty-orderedset, OrderedSet{E’ :: L’}, OrderedSet{A :: E}, SortingCriteria)
else

$merge (OrderedSet{E}, OrderedSet{L’}, OrderedSet{A :: E’}, SortingCriteria)
fi .

eq $merge (OrderedSet{ E } , OrderedSet{E’ :: L’}, empty-orderedset, SortingCriteria) =
if ((E . SortingCriteria (VariableNameAux = E’ ; nonePreConf)) == true) then

$merge (empty-orderedset, OrderedSet{E’ :: L’}, OrderedSet{E}, SortingCriteria)
else

$merge (OrderedSet{E}, OrderedSet{L’}, OrderedSet{E’}, SortingCriteria)
fi .

eq $merge (OrderedSet{ E :: L} , OrderedSet{E’}, OrderedSet{A}, SortingCriteria) =
if ((E . SortingCriteria (VariableNameAux = E’ ; nonePreConf)) == true) then

$merge (OrderedSet{L}, OrderedSet{E’}, OrderedSet{A :: E}, SortingCriteria)
else

$merge (OrderedSet{E :: L}, empty-orderedset, OrderedSet{A :: E’}, SortingCriteria)
fi .

eq $merge (OrderedSet{ E :: L} , OrderedSet{E’ }, empty-orderedset, SortingCriteria) =
if ((E . SortingCriteria (VariableNameAux = E’ ; nonePreConf)) == true) then

$merge (OrderedSet{L}, OrderedSet{E’}, OrderedSet{E}, SortingCriteria)
else

$merge (OrderedSet{E :: L}, empty-orderedset, OrderedSet{E’}, SortingCriteria)
fi .

eq $merge (OrderedSet{ E :: L} , OrderedSet{E’ :: L’}, OrderedSet{A}, SortingCriteria) =
if ((E . SortingCriteria (VariableNameAux = E’ ; nonePreConf)) == true) then

$merge (OrderedSet{L}, OrderedSet{E’ :: L’}, OrderedSet{A :: E}, SortingCriteria)
else

$merge (OrderedSet{E :: L}, OrderedSet{L’}, OrderedSet{A :: E’}, SortingCriteria)
fi .

eq $merge (OrderedSet{ E :: L} , OrderedSet{E’ :: L’}, empty-orderedset, SortingCriteria) =
if ((E . SortingCriteria (VariableNameAux = E’ ; nonePreConf)) == true) then

$merge (OrderedSet{L}, OrderedSet{E’ :: L’}, OrderedSet{E}, SortingCriteria)
else

$merge (OrderedSet{E :: L}, OrderedSet{L’}, OrderedSet{E’}, SortingCriteria)
fi .

sorts $OrderedSplit{T} .
op $orderedsetsplit : OrderedSet{T} OrderedSet{T} OrderedSet{T} -> $OrderedSplit{T} [ctor] .
eq $orderedsetsplit (OrderedSet{E}, OrderedSet{A}, OSet1) =

$orderedsetsplit (empty-orderedset, OrderedSet{A :: E}, OSet1) .
eq $orderedsetsplit (OrderedSet{E}, empty-orderedset, OSet1) =

$orderedsetsplit (empty-orderedset, OrderedSet{E}, OSet1) .

eq $orderedsetsplit (OrderedSet{E :: E’}, OrderedSet{A}, OrderedSet{A’}) =
$orderedsetsplit (empty-orderedset, OrderedSet{A :: E}, OrderedSet{E’ :: A’}) .

eq $orderedsetsplit (OrderedSet{E :: E’}, empty-orderedset, OrderedSet{A’}) =
$orderedsetsplit (empty-orderedset, OrderedSet{E}, OrderedSet{E’ :: A’}) .

eq $orderedsetsplit (OrderedSet{E :: E’}, OrderedSet{A}, empty-orderedset) =
$orderedsetsplit (empty-orderedset, OrderedSet{A :: E}, OrderedSet{E’}) .

eq $orderedsetsplit (OrderedSet{E :: E’}, empty-orderedset, empty-orderedset) =
$orderedsetsplit (empty-orderedset, OrderedSet{E}, OrderedSet{E’}) .

eq $orderedsetsplit (OrderedSet{E :: L :: E’}, OrderedSet{A}, OrderedSet{A’}) =
$orderedsetsplit (OrderedSet{L}, OrderedSet{A :: E}, OrderedSet{E’ :: A’}) .

eq $orderedsetsplit (OrderedSet{E :: L :: E’}, empty-orderedset, OrderedSet{A’}) =
$orderedsetsplit (OrderedSet{L}, OrderedSet{E}, OrderedSet{E’ :: A’}) .

eq $orderedsetsplit (OrderedSet{E :: L :: E’}, OrderedSet{A}, empty-orderedset) =
$orderedsetsplit (OrderedSet{L}, OrderedSet{A :: E}, OrderedSet{E’}) .

eq $orderedsetsplit (OrderedSet{E :: L :: E’}, empty-orderedset, empty-orderedset) =
$orderedsetsplit (OrderedSet{L}, OrderedSet{E}, OrderedSet{E’}) .

op sort : OrderedSet{T} BoolBody{T} -> OrderedSet{T} .
eq sort (empty-orderedset, SortingCriteria) = empty-orderedset .
eq sort (OrderedSet{E}, SortingCriteria) = OrderedSet{E} .
eq sort (OrderedSet{E :: OM}, SortingCriteria) =

$sort (
$orderedsetsplit (OrderedSet{E :: OM}, empty-orderedset, empty-orderedset),
SortingCriteria
) .

op $sort : $OrderedSplit{T} BoolBody{T} -> OrderedSet{T} .

260 Appendix F. Algebraic Specification of OCL Collection Operators

eq $sort ($orderedsetsplit (empty-orderedset, OSet1, OSet2), SortingCriteria) =
$merge (

sort (OSet1, SortingCriteria),
sort (OSet2, SortingCriteria),
empty-orderedset,
SortingCriteria

) .

*** ***
*** The operator orderedCollection is not confluent.
*** However, it is only used in the sortedBy operator so that
*** the resulting ordered collection will always be sorted.

op orderedCollection : Collection{T} -> Collection{T} .
eq orderedCollection(Set) = $orderedCollection(Set, empty-orderedset) .
eq orderedCollection(OSet) = OSet .
eq orderedCollection(Bag) = $orderedCollection(Bag, empty-sequence) .
eq orderedCollection(Seq) = Seq .

op $orderedCollection : Collection{T} Collection{T} -> Collection{T} .
--- set
eq $orderedCollection(Set{ N1, M1 }, empty-orderedset) =

$orderedCollection(Set{ M1 }, OrderedSet{ N1 }) .
eq $orderedCollection(Set{ N1, M1 }, OrderedSet{ OM }) =

$orderedCollection(Set{ M1 }, OrderedSet{ OM :: N1 }) .
eq $orderedCollection(Set{ N1 }, empty-orderedset) =

OrderedSet{ N1 } .
eq $orderedCollection(Set{ N1 }, OrderedSet{ OM }) =

OrderedSet{ OM :: N1 } .
--- bag
eq $orderedCollection(Bag{ N1, M1 }, empty-sequence) =

$orderedCollection(Bag{ M1 }, Sequence{ N1 }) .
eq $orderedCollection(Bag{ N1, M1 }, Sequence{ OM }) =

$orderedCollection(Bag{ M1 }, Sequence{ OM :: N1 }) .
eq $orderedCollection(Bag{ N1 }, empty-sequence) =

Sequence{ N1 } .
eq $orderedCollection(Bag{ N1 }, Sequence{ OM }) =

Sequence{ OM :: N1 } .

--- sortedBy: OrderedSet(T)
--- indicates that the first element is < than the second one
--- eq N1 . MinorOperator (N2, Env ; PreConf) = N1 < N2
eq Set -> sortedBy (SortingCriteria ; Env ; PreConf) =

sort(orderedCollection(Set), SortingCriteria) .

*** ***
*** ***
*** ORDEREDSET

*** Duplicates are not allowed: this should be check by the user
*** for the sake of efficiency

*** ***
*** ***

*** **
*** Collection{T} conversions

*** asSet(): Set(T)
op $asSet : Collection{T} Set{T} -> Set{T} .

eq OSet -> asSet =
$asSet(OSet, empty-set) .

eq $asSet(OrderedSet{ N :: OM }, empty-set) =
$asSet(OrderedSet{OM}, Set{N}) .

eq $asSet(OrderedSet{N}, empty-set) = Set{N} .
eq $asSet(OrderedSet{N :: OM }, Set{M}) =

$asSet(OrderedSet{OM}, Set{ N,M }) .
eq $asSet(OrderedSet{N}, Set{M}) = Set{N,M} .
eq $asSet(empty-orderedset, Set) = Set .

261

*** asOrderedSet(): OrderedSet(T)
eq OSet -> asOrderedSet = OSet .

*** asBag() : Bag(T)
eq OSet -> asBag = (OSet -> asSet) -> asBag .

*** asSequence(): Sequence(T)
eq OrderedSet{ OM } -> asSequence = Sequence{ OM } .
eq empty-orderedset -> asSequence = empty-sequence .

*** **
*** Collection{T} OPERATIONS

*** size
eq OrderedSet{ N :: OM } -> size = (OrderedSet{ OM } -> size) + 1 .
eq OrderedSet{ N } -> size = 1 .
eq empty-orderedset -> size = 0 .

*** count
eq OSet -> count (N2) = (OSet -> asSet) -> count (N2) .

*** includes(object: T): Boolean
eq OSet -> includes (N) =

(OSet -> count (N)) > 0 .

*** excludes(object: T): Boolean
eq OSet -> excludes (N) =

(OSet -> count (N)) == 0 .

*** includesAll(c2: Collection{T}(T)): Boolean

*** excludesAll(c2: Collection{T}(T)): Boolean

*** isEmpty(): Boolean
eq empty-orderedset -> isEmpty = true .

*** notEmpty(): Boolean
eq empty-orderedset -> notEmpty = false .

*** sum(): T

*** product(c2: Collection{T}(T2)) : Set(Tuple(first: T, second: T2))

*** **
*** ORDEREDSET OPERATIONS

*** union(s: OrderedSet(T)) : OrderedSet(T)
eq OSet1 -> union (OSet2) = OSet1 -> appendCol (OSet2) .

eq empty-orderedset -> union (Seq2) = Seq2 .
eq OrderedSet{ OM1 } -> union (empty-sequence) = Sequence{ OM1 } .
eq OrderedSet{ OM1 } -> union (Sequence{ OM2 }) = Sequence{ OM1 :: OM2 } .

*** flatten() : OrderedSet(T2)
*** OrderedSet
eq Flatten(OrderedSet{Col :: OM1}, OSet2) =

Flatten(OrderedSet{ OM1 },
(

OSet2 -> appendCol (
Flatten(Col -> asOrderedSet, empty-orderedset)

)
)

) .

eq Flatten(OrderedSet{Col}, OSet2) =
OSet2 -> appendCol (

Flatten(Col -> asOrderedSet, empty-orderedset)
) .

ceq Flatten(OrderedSet{N :: OM1}, OSet2) =
Flatten(OrderedSet{ OM1 }, OSet2 -> append(N))

if not (N :: Collection{T}) .

ceq Flatten(OrderedSet{N}, OSet2) =
OSet2 -> append(N)

if not (N :: Collection{T}) .

262 Appendix F. Algebraic Specification of OCL Collection Operators

eq Flatten(empty-orderedset, Col) = Col .

eq OSet -> flatten = Flatten(OSet, empty-orderedset) .

*** append(object: T): OrderedSet(T)
ceq OrderedSet{ OM } -> append (N) = OrderedSet{ OM :: N } if OrderedSet{ OM } -> excludes (N) .
ceq OrderedSet{ OM } -> append (N) = OrderedSet{ OM } if OrderedSet{ OM } -> includes (N) .
eq empty-orderedset -> append (N) = OrderedSet{ N } .
ceq OrderedSet{ OM } -> append (Col) = OrderedSet{ OM :: Col } if OrderedSet{ OM } -> excludes (Col) .
ceq OrderedSet{ OM } -> append (Col) = OrderedSet{ OM } if OrderedSet{ OM } -> includes (Col) .
eq empty-orderedset -> append (Col) = OrderedSet{ Col } .

*** appendCol(c2: OrderedSet(T1)) : OrderedSet(T1)
eq OrderedSet{ N1 } -> appendCol (OrderedSet{ N2 }) = OrderedSet{ N1 } -> append (N2) .
eq OrderedSet{ N1 } -> appendCol (OrderedSet{ N2 :: OM2 }) =

(OrderedSet{ N1 } -> append (N2)) -> appendCol(OrderedSet{ OM2 }) .
eq OrderedSet{ N1 :: OM1 } -> appendCol (OrderedSet{ N2 }) = OrderedSet{ N1 :: OM1 } -> append (N2) .
eq OrderedSet{ N1 :: OM1 } -> appendCol (OrderedSet{ N2 :: OM2 }) =

(OrderedSet{ N1 :: OM1 } -> append (N2)) -> appendCol (OrderedSet{ OM2 }) .
eq empty-orderedset -> appendCol (OrderedSet{ OM2 }) = OrderedSet{ OM2 } .
eq OrderedSet{ OM1 } -> appendCol (empty-orderedset) = OrderedSet{ OM1 } .
eq empty-orderedset -> appendCol (empty-orderedset) = empty-orderedset .

*** prepend(object: T): OrderedSet(T)
ceq OrderedSet{ OM } -> prepend (N) = OrderedSet{ N :: OM } if OrderedSet{ OM } -> excludes (N) .
ceq OrderedSet{ OM } -> prepend (N) = OrderedSet{ OM } if OrderedSet{ OM } -> includes (N) .
eq empty-orderedset -> prepend (N) = OrderedSet{ N } .
ceq OrderedSet{ OM } -> prepend (Col) = OrderedSet{ Col :: OM } if OrderedSet{ OM } -> excludes (Col) .
ceq OrderedSet{ OM } -> prepend (Col) = OrderedSet{ OM } if OrderedSet{ OM } -> includes (Col) .
eq empty-orderedset -> prepend (Col) = OrderedSet{ Col } .

*** prependCol(c2: OrderedSet(T1)) : OrderedSet(T1)
eq OrderedSet{ N1 } -> prependCol (OrderedSet{ N2 }) = OrderedSet{ N1 } -> prepend (N2) .
eq OrderedSet{ N1 } -> prependCol (OrderedSet{ N2 :: OM2 }) =

(OrderedSet{ N1 } -> prepend (N2)) -> prependCol(OrderedSet{ OM2 }) .
eq OrderedSet{ N1 :: OM1 } -> prependCol (OrderedSet{ N2 }) = OrderedSet{ N1 :: OM1 } -> prepend (N2) .
eq OrderedSet{ N1 :: OM1 } -> prependCol (OrderedSet{ N2 :: OM2 }) =

(OrderedSet{ N1 :: OM1 } -> prepend (N2)) -> prependCol (OrderedSet{ OM2 }) .
eq empty-orderedset -> prependCol (OrderedSet{ OM2 }) = OrderedSet{ OM2 } .
eq OrderedSet{ OM1 } -> prependCol (empty-orderedset) = OrderedSet{ OM1 } .
eq empty-orderedset -> prependCol (empty-orderedset) = empty-orderedset .

*** insertAt(index: Integer, object: T) : OrderedSet(T)
ceq OSet -> insertAt (i ; N) =

OSet -> prepend (N)
if i == 0 .
ceq OrderedSet{ N1 :: OM } -> insertAt (i ; N2) =

(OrderedSet{ OM } -> insertAt ((i - 1) ; N2)) -> prepend (N1)
if i > 0 .
ceq OrderedSet{ N1 } -> insertAt (i ; N2) =

OrderedSet{ N2 } -> prepend (N1)
if i > 0 .
eq empty-orderedset -> insertAt (i ; N) = OrderedSet{ N } .

*** subOrderedSet(lower: integer, upper : Integer) : OrderedSet(T)

*** at(i: Integer) : T
ceq OrderedSet{ N :: OM } -> at (i) =

N
if i == 0 .
ceq OrderedSet{ N } -> at (i) =

N
if i == 0 .
ceq OrderedSet{ N :: OM } -> at (i) =

OrderedSet{ OM } -> at ((i - 1))
if i > 0 .

*** indexOf(obj : T) : Integer
op _->‘computeIndexOf‘(_;_‘) : Collection{T} Int Collection+{T} -> Int .
ceq OrderedSet{ N1 :: OM } -> computeIndexOf (i ; N2) =

i
if (N1 == N2) .
ceq OrderedSet{ N1 } -> computeIndexOf (i ; N2) =

i
if (N1 == N2) .
ceq OrderedSet{ N1 :: OM } -> computeIndexOf (i ; N2) =

263

OrderedSet{ OM } -> computeIndexOf ((i + 1) ; N2)
if (N1 =/= N2) .

eq OSet -> indexOf (N2) =
OSet -> computeIndexOf (0 ; N2) .

*** first() : T
eq OrderedSet{ N1 :: OM } -> first = N1 .
eq OrderedSet{ N1 } -> first = N1 .

--- eq empty-orderedset -> first = empty-orderedset .

*** last() : T
eq OrderedSet{ OM :: N1 } -> last = N1 .
eq OrderedSet{ N1 } -> last = N1 .

--- eq empty-orderedset -> last = empty-orderedset .

*** difference
eq OSet1 -- OSet2 = minus(OSet1, OSet2 -> asSet, empty-orderedset) .
eq OSet1 -- Set2 = minus(OSet1, Set2, empty-orderedset) .

op minus : Collection{T} Collection{T} Collection{T} -> Collection{T} .
eq minus(OSet1, empty-set, OSet2) = OSet1 .
eq minus(empty-orderedset, Set, OSet2) = OSet2 .
eq minus(OrderedSet{N}, Set{N,M}, OSet) = empty-orderedset .
eq minus(OrderedSet{N :: OM}, Set{N}, OSet) = OrderedSet{ OM } .
eq minus(OrderedSet{N :: OM}, Set{N,M}, OSet) =

minus(OrderedSet{OM}, Set{M}, OSet) .
eq minus(OSet, Set, OSet2) = OSet2 [owise] .

*** including(object: T): OrderedSet(T)
*** does not take uniqueness into account for the sake efficiency,
*** allowing the insertion of one element when it is known that the element
*** is not in the orderedset already
*** eq OSet -> including (N) = OSet -> prepend (N) . *** this axiom forces uniqueness

eq OrderedSet{ OM } -> including (N) = OrderedSet{ N :: OM } .
eq empty-orderedset -> including (N) = OrderedSet{ N } .

*** includingCol: for internal use
*** does not take uniqueness into account
eq OrderedSet{ OM1 } -> includingCol (OrderedSet{ OM2 }) = OrderedSet{ OM1 :: OM2 } .
eq empty-orderedset -> includingCol (OSet) = OSet .
eq OSet -> includingCol (empty-orderedset) = OSet .

*** eq OSet -> includingCol (Set) = OSet -> includingCol (Set -> asOrderedSet) .
*** eq OSet -> includingCol (Bag) = OSet -> includingCol (Bag -> asOrderedSet) .

eq OSet -> includingCol (Seq) = OSet -> includingCol (Seq -> asOrderedSet) .

*** excluding(object: T): OrderedSet(T)
*** when we exclude one element
eq OSet -> excluding (N1) =

excludingHidden(OSet, N1, empty-orderedset) .

op excludingHidden : Collection{T} Collection+{T} Collection{T} -> Collection{T} .
eq excludingHidden(OrderedSet{ N1 :: OM1 }, N1, OrderedSet{ OM2 }) = OrderedSet{ OM2 :: OM1 } .
eq excludingHidden(OrderedSet{ N1 }, N1, OrderedSet{ OM2 }) = OrderedSet{ OM2 } .
eq excludingHidden(OrderedSet{ N1 :: OM1 }, N1, empty-orderedset) = OrderedSet{ OM1 } .
eq excludingHidden(OrderedSet{ N1 }, N1, empty-orderedset) = empty-orderedset .
eq excludingHidden(OSet1, N2, OSet2) = OSet2 -> appendCol (OSet1) [owise] .

*** ***
*** Collection{T} iterators

*** iterate
eq OrderedSet{ OM :: N } -> iterate (acc | IF ; Env ; PreConf) =

N . IF ((OrderedSet{ OM } -> iterate (acc | IF ; Env ; PreConf)) ; Env ; PreConf) .
eq OrderedSet{ N } -> iterate (acc | IF ; Env ; PreConf) =

N . IF (acc ; Env ; PreConf) .
eq empty-orderedset -> iterate (acc | IF ; Env ; PreConf) = acc .

264 Appendix F. Algebraic Specification of OCL Collection Operators

*** exists
eq OrderedSet{ N :: OM } -> exists (BB ; Env ; PreConf) =

(N . BB (Env ; PreConf)) or-else (OrderedSet{ OM } -> exists (BB ; Env ; PreConf)) .
eq OrderedSet{ N } -> exists (BB ; Env ; PreConf) =

N . BB (Env ; PreConf) .
eq empty-orderedset -> exists (BB ; Env ; PreConf) = false .

*** forAll
eq OrderedSet{ N :: OM } -> forAll (BB ; Env ; PreConf) =

(N . BB (Env ; PreConf)) and-then (OrderedSet{ OM } -> forAll (BB ; Env ; PreConf)) .
eq OrderedSet{ N } -> forAll (BB ; Env ; PreConf) = N . BB (Env ; PreConf) .
eq empty-orderedset -> forAll (BB ; Env ; PreConf) = true .

*** forAll2
eq OSet -> forAll2 (BB ; Env ; PreConf) =

OSet -> asSet -> forAll2(BB ; Env ; PreConf) .

*** isUnique
eq OSet -> isUnique (B ; Env ; PreConf) =

(OSet -> collect (B ; Env ; PreConf)) -> forAll2 (different ; Env ; PreConf) .

*** any
eq OSet -> any (BB ; Env ; PreConf) =

(OSet -> select (BB ; Env ; PreConf)) -> first .

*** one
eq OSet -> one (BB ; Env ; PreConf) =

((OSet -> select (BB ; Env ; PreConf)) -> size) == 1 .

*** ***
*** OrderedSet iterators

*** select: OrderedSet(T)
*** eq OSet -> select (BB ; Env ; PreConf) = OSet -> asSet -> select (BB ; Env ; PreConf) .

*** select: OrderedSet(T)
eq OrderedSet{ N :: OM } -> select (BB ; Env ; PreConf) =

if (N . BB (Env ; PreConf)) then
(((OrderedSet{ OM } -> select (BB ; Env ; PreConf))) -> prepend (N))

else
(OrderedSet{ OM } -> select (BB ; Env ; PreConf))

fi .

eq OrderedSet{ N } -> select (BB ; Env ; PreConf) =
if (N . BB (Env ; PreConf)) then

OrderedSet{ N }
else

empty-orderedset
fi .

eq empty-orderedset -> select (BB ; Env ; PreConf) = empty-orderedset .

*** reject: OrderedSet(T)
eq OrderedSet{ N :: OM } -> reject (BB ; Env ; PreConf) =

if not (N . BB (Env ; PreConf)) then
(((OrderedSet{ OM } -> reject (BB ; Env ; PreConf))) -> prepend (N))

else
(OrderedSet{ OM } -> reject (BB ; Env ; PreConf))

fi .

eq OrderedSet{ N } -> reject (BB ; Env ; PreConf) =
if not(N . BB (Env ; PreConf)) then

(OrderedSet{ N })
else

empty-orderedset
fi .

eq empty-orderedset -> reject (BB ; Env ; PreConf) = empty-orderedset .

*** collectNested: Sequence(T)
eq OrderedSet{ N :: OM } -> collectNested (B ; Env ; PreConf) =

265

Sequence{ (N . B (Env ; PreConf)) }
-> appendCol ((OrderedSet{ OM } -> collectNested (B ; Env ; PreConf))) .

eq OrderedSet{ N } -> collectNested (B ; Env ; PreConf) =
Sequence{ (N . B (Env ; PreConf)) } .

eq empty-orderedset -> collectNested (B ; Env ; PreConf) = empty-sequence .

*** sortedBy: OrderedSet(T)
eq OSet -> sortedBy (SortingCriteria ; Env ; PreConf) =

sort(OSet, SortingCriteria) .

*** ***
*** ***
*** BAG
*** ***
*** ***

*** **
*** Collection{T} conversions

*** asSet(): Set(T)
eq Bag{ N , M } -> asSet = (Bag{ M } -> asSet) -> union (Set{ N }) .
eq Bag{ N } -> asSet = Set{ N } .
eq empty-bag -> asSet = empty-set .

*** asOrderedSet(): OrderedSet(T)

*** asBag() : Bag(T)
eq Bag -> asBag = Bag .

*** asSequence(): Sequence(T)

*** **
*** Collection{T} OPERATIONS

*** size
eq Bag{ N , M } -> size = (Bag{ M } -> size) + 1 .
eq Bag{ N } -> size = 1 .
eq empty-bag -> size = 0 .

*** count
eq Bag{ N1 , M } -> count (N1) =

1 + (Bag{ M } -> count (N1)) .
eq Bag{ N1 } -> count (N1) = 1 .
eq empty-bag -> count (N1) = 0 .
eq Bag -> count (N1) = 0 [owise] .

*** includes(object: T): Boolean
eq Bag -> includes (N) =

(Bag -> count (N)) > 0 .
eq empty-bag -> includes (N) = false .

*** excludes(object: T): Boolean
eq Bag -> excludes (N) =

(Bag -> count (N)) == 0 .
eq empty-bag -> excludes (N) = true .

*** includesAll(c2: Collection{T}(T)): Boolean

*** excludesAll(c2: Collection{T}(T)): Boolean

*** isEmpty(): Boolean
eq empty-bag -> isEmpty = true .

*** notEmpty(): Boolean
eq empty-bag -> notEmpty = false .

*** sum(): T

*** product(c2: Collection{T}(T2)) : Set(Tuple(first: T, second: T2))

*** **
*** BAG OPERATIONS

266 Appendix F. Algebraic Specification of OCL Collection Operators

*** = (bag : Bag(T)) : Boolean

*** union(bag : Bag(T)) : Bag(T)
eq empty-bag -> union (Bag) = Bag .
eq Bag -> union (empty-bag) = Bag .
eq Bag{ M1 } -> union (Bag{ M2 }) = Bag{ M1 , M2 } .

*** union (set: Set(T)) : Bag(T)
eq empty-bag -> union (Set) = Set -> asBag .
eq Bag -> union (empty-set) = Bag .
eq Bag{ M1 } -> union (Set{ M2 }) = Bag{ M1 , M2 } .

*** intersection(bag: Bag(T)) : Bag(T)
eq empty-bag -> intersection (Bag) = empty-bag .
eq Bag -> intersection (empty-bag) = empty-bag .

eq Bag{ N1 } -> intersection (Bag{ N1 }) = Bag{ N1 } .

eq Bag{ N1, M11 } -> intersection (Bag{ N1 }) = Bag{ N1 } .

eq Bag{ N1 } -> intersection (Bag{ N2, M22 }) = Bag{ N1 } .

eq Bag{ N1, M11 } -> intersection (Bag{ N1, M22 }) =
Bag{ N1 } -> includingCol (Bag{ M11 } -> intersection (Bag{ M22 })) .

eq Bag1 -> intersection (Bag2) = empty-bag [owise] .

*** intersection(set : Set(T)) : Set(T)
eq empty-bag -> intersection (Set) = empty-set .
eq Bag -> intersection (empty-set) = empty-set .

eq Bag{ N1 } -> intersection (Set{ N1 }) = Set{ N1 } .

eq Bag{ N1, M11 } -> intersection (Set{ N1 }) = Set{ N1} .

eq Bag{ N1 } -> intersection (Set{ N1, M22 }) = Set{ N1 } .

eq Bag{ N1, M11 } -> intersection (Set{ N1, M22 }) =
Set{ N1 } -> includingCol (Set{ M11 } -> intersection (Set{ M22 })) .

eq Bag -> intersection (Set) = empty-set [owise] .

*** including(object : T) : Bag(T)
eq Bag{ M1 } -> including (M2) = Bag{ M1 , M2 } .
eq empty-bag -> including (M2) = Bag{ M2 } .
eq Bag{ M1 } -> including (Col) = Bag{ M1 , Col } .
eq empty-bag -> including (Col) = Bag{ Col } .

*** includingCol
eq Bag{ M1 } -> includingCol (Bag{ M2 }) = Bag{ M1 , M2 } .
eq empty-bag -> includingCol (Bag) = Bag .
eq Bag -> includingCol (empty-bag) = Bag .

eq Bag -> includingCol (Set) = Bag -> includingCol (Set -> asBag) .
eq Bag -> includingCol (OSet) = Bag -> includingCol (OSet -> asBag) .
eq Bag -> includingCol (Seq) = Bag -> includingCol (Seq -> asBag) .

*** excluding(object : T) : Bag(T)
*** when we exclude one element
ceq Bag{ N1 , M } -> excluding (N1) =

Bag{ M } -> excluding (N1)
if not(N1 :: Collection{T}) .

ceq Bag{ N1 } -> excluding (N1) =
empty-bag

if not(N1 :: Collection{T}) .

eq empty-bag -> excluding (N2) = empty-bag .

ceq Bag -> excluding (N2) = Bag
if not(N2 :: Collection{T}) [owise] .

*** to exclude a bag of elements
eq Bag -> excluding (Bag{ N , M }) =

Bag -> excluding (N) -> excluding (Bag{ M }) .

267

eq Bag -> excluding (Bag{ N }) =
Bag -> excluding (N) .

eq empty-bag -> excluding (Bag) = empty-bag .
eq Bag -> excluding (empty-bag) = Bag .

*** flatten(): Bag(T2)
eq Flatten(Bag{Col, M1}, Bag) =

Flatten(Bag{ M1 }, Bag -> includingCol (Flatten(Col -> asBag, empty-bag))) .

eq Flatten(Bag{Col}, Bag) =
Bag -> includingCol (Flatten(Col -> asBag, empty-bag)) .

eq Flatten(Bag1, Bag2) = Bag1 -> includingCol(Bag2) [owise] .

eq Bag -> flatten = Flatten(Bag, empty-bag) .

*** ***
*** Collection{T} iterators

*** iterate
*** Semantics of the operator iterate for a function that manipulates Set(vString)
eq Bag{ N , M } -> iterate (acc | IF ; Env ; PreConf) =

N . IF ((Bag{ M } -> iterate (acc | IF ; Env ; PreConf)) ; Env ; PreConf) .
eq Bag{ N } -> iterate (acc | IF ; Env ; PreConf) =

N . IF (acc ; Env ; PreConf) .
eq empty-bag -> iterate (acc | IF ; Env ; PreConf) = acc .

*** exists
eq Bag{ N , M } -> exists (BB ; Env ; PreConf) =

(N . BB (Env ; PreConf)) or-else (Bag{ M } -> exists (BB ; Env ; PreConf)) .
eq Bag{ N } -> exists (BB ; Env ; PreConf) =

N . BB (Env ; PreConf) .
eq empty-bag -> exists (BB ; Env ; PreConf) = false .

*** forAll
eq Bag{ N , M } -> forAll (BB ; Env ; PreConf) =

(N . BB (Env ; PreConf)) and-then (Bag{ M } -> forAll (BB ; Env ; PreConf)) .
eq Bag{ N } -> forAll (BB ; Env ; PreConf) = N . BB (Env ; PreConf) .
eq empty-bag -> forAll (BB ; Env ; PreConf) = true .

*** forAll2
eq Bag{ N1 , N2 , M } -> forAll2 (BB ; Env ; PreConf) =

((N1 , N2) . BB (Env ; PreConf)) and-then
(Bag{ N1 , M } -> forAll2 (BB ; Env ; PreConf)) and-then
(Bag{ N2 , M } -> forAll2 (BB ; Env ; PreConf)) .

eq Bag{ N1, N2 } -> forAll2 (BB ; Env ; PreConf) = (N1, N2) . BB (Env ; PreConf) .
eq Bag{ N1 } -> forAll2 (BB ; Env ; PreConf) = (N1) . BB (Env ; PreConf) .
eq empty-bag -> forAll2 (BB ; Env ; PreConf) = true .

*** isUnique
eq Bag -> isUnique (B ; Env ; PreConf) =

(Bag -> collect (B ; Env ; PreConf)) -> forAll2 (different ; Env ; PreConf) .

*** any
eq Bag -> any (BB ; Env ; PreConf) =

((Bag -> select (BB ; Env ; PreConf)) -> asSequence) -> first .

*** one
eq Bag -> one (BB ; Env ; PreConf) =

((Bag -> select (BB ; Env ; PreConf)) -> size) == 1 .

*** ***
*** BAG iterators

*** select: Bag(T)
eq Bag{ N , M } -> select (BB ; Env ; PreConf) =

if (N . BB (Env ; PreConf)) then
Bag{ N } -> includingCol ((Bag{ M } -> select (BB ; Env ; PreConf)))

else
(Bag{ M } -> select (BB ; Env ; PreConf))

fi .

eq Bag{ N } -> select (BB ; Env ; PreConf) =

268 Appendix F. Algebraic Specification of OCL Collection Operators

if (N . BB (Env ; PreConf)) then
Bag{ N }

else
empty-bag

fi .

eq empty-bag -> select (BB ; Env ; PreConf) = empty-bag .

*** reject: Bag(T)
eq Bag{ N , M } -> reject (BB ; Env ; PreConf) =

if not(N . BB (Env ; PreConf)) then
Bag{ N } -> includingCol ((Bag{ M } -> reject (BB ; Env ; PreConf)))

else
(Bag{ M } -> reject (BB ; Env ; PreConf))

fi .

eq Bag{ N } -> reject (BB ; Env ; PreConf) =
if not(N . BB (Env ; PreConf)) then

Bag{ N }
else

empty-bag
fi .

eq empty-bag -> reject (BB ; Env ; PreConf) = empty-bag .

*** collectNested: Bag(T)
eq Bag{ N , M } -> collectNested (B ; Env ; PreConf) =

Bag{ (N . B (Env ; PreConf)) }
-> includingCol ((Bag{ M } -> collectNested (B ; Env ; PreConf))) .

eq Bag{ N } -> collectNested (B ; Env ; PreConf) = Bag{ (N . B (Env ; PreConf)) } .
eq empty-bag -> collectNested (B ; Env ; PreConf) = empty-bag .

*** ***
*** ***
*** ***
*** ***

*** SEQUENCE ORDERING AUXILIAR OPERATORS
*** Based on Maude list sorting

op merge : Sequence{T} Sequence{T} BoolBody{T} -> Sequence{T} .
eq merge (Seq1, Seq2, SortingCriteria) = $merge (Seq1, Seq2, empty-sequence, SortingCriteria) .

op $merge : Sequence{T} Sequence{T} Sequence{T} BoolBody{T} -> Sequence{T} .
eq $merge (Sequence{L}, empty-sequence, Sequence{A}, SortingCriteria) = Sequence{ A :: L } .
eq $merge (empty-sequence, Sequence{L}, Sequence{A}, SortingCriteria) = Sequence{A :: L} .

eq $merge (Sequence{ E } , Sequence{E’}, Sequence{A}, SortingCriteria) =
if ((E . SortingCriteria (VariableNameAux = E’ ; nonePreConf)) == true) then

$merge (empty-sequence, Sequence{E’}, Sequence{A :: E}, SortingCriteria)
else

$merge (Sequence{E}, empty-sequence, Sequence{A :: E’}, SortingCriteria)
fi .

eq $merge (Sequence{ E } , Sequence{E’}, empty-sequence, SortingCriteria) =
if ((E . SortingCriteria (VariableNameAux = E’ ; nonePreConf)) == true) then

$merge (empty-sequence, Sequence{E’}, Sequence{E}, SortingCriteria)
else

$merge (Sequence{E}, empty-sequence, Sequence{E’}, SortingCriteria)
fi .

eq $merge (Sequence{ E } , Sequence{E’ :: L’}, Sequence{A}, SortingCriteria) =
if ((E . SortingCriteria (VariableNameAux = E’ ; nonePreConf)) == true) then

$merge (empty-sequence, Sequence{E’ :: L’}, Sequence{A :: E}, SortingCriteria)
else

$merge (Sequence{E}, Sequence{L’}, Sequence{A :: E’}, SortingCriteria)
fi .

eq $merge (Sequence{ E } , Sequence{E’ :: L’}, empty-sequence, SortingCriteria) =
if ((E . SortingCriteria (VariableNameAux = E’ ; nonePreConf)) == true) then

$merge (empty-sequence, Sequence{E’ :: L’}, Sequence{E}, SortingCriteria)

269

else
$merge (Sequence{E}, Sequence{L’}, Sequence{E’}, SortingCriteria)

fi .

eq $merge (Sequence{ E :: L} , Sequence{E’}, Sequence{A}, SortingCriteria) =
if ((E . SortingCriteria (VariableNameAux = E’ ; nonePreConf)) == true) then

$merge (Sequence{L}, Sequence{E’}, Sequence{A :: E}, SortingCriteria)
else

$merge (Sequence{E :: L}, empty-sequence, Sequence{A :: E’}, SortingCriteria)
fi .

eq $merge (Sequence{ E :: L} , Sequence{E’ }, empty-sequence, SortingCriteria) =
if ((E . SortingCriteria (VariableNameAux = E’ ; nonePreConf)) == true) then

$merge (Sequence{L}, Sequence{E’}, Sequence{E}, SortingCriteria)
else

$merge (Sequence{E :: L}, empty-sequence, Sequence{E’}, SortingCriteria)
fi .

eq $merge (Sequence{ E :: L} , Sequence{E’ :: L’}, Sequence{A}, SortingCriteria) =
if ((E . SortingCriteria (VariableNameAux = E’ ; nonePreConf)) == true) then

$merge (Sequence{L}, Sequence{E’ :: L’}, Sequence{A :: E}, SortingCriteria)
else

$merge (Sequence{E :: L}, Sequence{L’}, Sequence{A :: E’}, SortingCriteria)
fi .

eq $merge (Sequence{ E :: L} , Sequence{E’ :: L’}, empty-sequence, SortingCriteria) =
if ((E . SortingCriteria (VariableNameAux = E’ ; nonePreConf)) == true) then

$merge (Sequence{L}, Sequence{E’ :: L’}, Sequence{E}, SortingCriteria)
else

$merge (Sequence{E :: L}, Sequence{L’}, Sequence{E’}, SortingCriteria)
fi .

sorts $SequenceSplit{T} .
op $sequencesplit : Sequence{T} Sequence{T} Sequence{T} -> $SequenceSplit{T} [ctor] .
eq $sequencesplit (Sequence{E}, Sequence{A}, Seq1) =

$sequencesplit (empty-sequence, Sequence{A :: E}, Seq1) .
eq $sequencesplit (Sequence{E}, empty-sequence, Seq1) =

$sequencesplit (empty-sequence, Sequence{E}, Seq1) .

eq $sequencesplit (Sequence{E :: E’}, Sequence{A}, Sequence{A’}) =
$sequencesplit (empty-sequence, Sequence{A :: E}, Sequence{E’ :: A’}) .

eq $sequencesplit (Sequence{E :: E’}, empty-sequence, Sequence{A’}) =
$sequencesplit (empty-sequence, Sequence{E}, Sequence{E’ :: A’}) .

eq $sequencesplit (Sequence{E :: E’}, Sequence{A}, empty-sequence) =
$sequencesplit (empty-sequence, Sequence{A :: E}, Sequence{E’}) .

eq $sequencesplit (Sequence{E :: E’}, empty-sequence, empty-sequence) =
$sequencesplit (empty-sequence, Sequence{E}, Sequence{E’}) .

eq $sequencesplit (Sequence{E :: L :: E’}, Sequence{A}, Sequence{A’}) =
$sequencesplit (Sequence{L}, Sequence{A :: E}, Sequence{E’ :: A’}) .

eq $sequencesplit (Sequence{E :: L :: E’}, empty-sequence, Sequence{A’}) =
$sequencesplit (Sequence{L}, Sequence{E}, Sequence{E’ :: A’}) .

eq $sequencesplit (Sequence{E :: L :: E’}, Sequence{A}, empty-sequence) =
$sequencesplit (Sequence{L}, Sequence{A :: E}, Sequence{E’}) .

eq $sequencesplit (Sequence{E :: L :: E’}, empty-sequence, empty-sequence) =
$sequencesplit (Sequence{L}, Sequence{E}, Sequence{E’}) .

op sort : Sequence{T} BoolBody{T} -> Sequence{T} .
eq sort (empty-sequence, SortingCriteria) = empty-sequence .
eq sort (Sequence{E}, SortingCriteria) = Sequence{E} .
eq sort (Sequence{E :: OM}, SortingCriteria) =

$sort (
$sequencesplit (Sequence{E :: OM}, empty-sequence, empty-sequence),
SortingCriteria
) .

op $sort : $SequenceSplit{T} BoolBody{T} -> Sequence{T} .
eq $sort ($sequencesplit (empty-sequence, Seq1, Seq2), SortingCriteria) =

$merge (
sort (Seq1, SortingCriteria),
sort (Seq2, SortingCriteria),
empty-sequence,
SortingCriteria

) .

*** sortedBy: Sequence(T)
eq Bag -> sortedBy (SortingCriteria ; Env ; PreConf) =

sort(orderedCollection(Bag), SortingCriteria) .

270 Appendix F. Algebraic Specification of OCL Collection Operators

*** ***
*** ***
*** SEQUENCE
*** ***
*** ***

*** **
*** Collection{T} conversions

*** asSet(): Set(T)
eq Sequence{ N :: OM } -> asSet = (Sequence{ OM } -> asSet) -> union (Set{ N }) .
eq Sequence{ N } -> asSet = Set{ N } .
eq empty-sequence -> asSet = empty-set .

*** asOrderedSet(): OrderedSet(T)
eq Sequence{ N :: OM } -> asOrderedSet = (Sequence{ OM } -> asOrderedSet) -> prepend (N) .
eq Sequence{ N } -> asOrderedSet = OrderedSet{ N } .
eq empty-sequence -> asOrderedSet = empty-orderedset .

*** asBag() : Bag(T)
eq Sequence{ N :: OM } -> asBag = (Sequence{ OM } -> asBag) -> including (N) .
eq Sequence{ N } -> asBag = Bag{ N } .
eq empty-sequence -> asBag = empty-bag .

*** asSequence(): Sequence(T)
eq Seq -> asSequence = Seq .

*** **
*** Collection{T} OPERATIONS

*** size
eq Sequence{ N :: OM } -> size = (Sequence{ OM } -> size) + 1 .
eq Sequence{ N } -> size = 1 .
eq empty-sequence -> size = 0 .

*** count
eq Seq -> count (N1) = (Seq -> asBag) -> count (N1) .

*** includes(object: T): Boolean
eq Seq -> includes (N) =

(Seq -> count (N)) > 0 .
eq empty-sequence -> includes (N) = false .

*** excludes(object: T): Boolean
eq Seq -> excludes (N) =

(Seq -> count (N)) == 0 .
eq empty-sequence -> excludes (N) = true .

*** includesAll(c2: Collection{T}(T)): Boolean

*** excludesAll(c2: Collection{T}(T)): Boolean

*** isEmpty(): Boolean
eq empty-sequence -> isEmpty = true .

*** notEmpty(): Boolean
eq empty-sequence -> notEmpty = false .

*** sum(): T

*** product(c2: Collection{T}(T2)) : Set(Tuple(first: T, second: T2))

*** ***
*** SEQUENCE OPERATIONS

*** = (s: Sequence(T)) : Boolean

*** union(s: Sequence(T)) : Sequence(T)
eq empty-sequence -> union (Seq2) = Seq2 .

271

eq Seq1 -> union (empty-sequence) = Seq1 .
eq Sequence{ OM1 } -> union (Sequence{ OM2 }) = Sequence{ OM1 :: OM2 } .

eq empty-sequence -> union (OrderedSet{OM2}) = Sequence{OM2} .
eq Seq1 -> union (empty-orderedset) = Seq1 .
eq Sequence{ OM1 } -> union (OrderedSet{ OM2 }) = Sequence{ OM1 :: OM2 } .

*** appendCol(c2: Sequence(T1)) : OrderedSet(T1)
eq Sequence{ OM1 } -> appendCol (Sequence{ OM2 }) = Sequence{ OM1 :: OM2 } .
eq empty-sequence -> appendCol (Sequence{ OM2 }) = Sequence{ OM2 } .
eq Sequence{ OM1 } -> appendCol (empty-sequence) = Sequence{ OM1 } .
eq empty-sequence -> appendCol (empty-sequence) = empty-sequence .

*** append(object: T): Sequence(T)
eq Sequence{ OM } -> append (N) = Sequence{ OM :: N } .
eq empty-sequence -> append (N) = Sequence{ N } .
eq Sequence{ OM } -> append (Col) = Sequence{ OM :: Col } .
eq empty-sequence -> append (Col) = Sequence{ Col } .

*** prependCol(c2: Sequence(T1)) : Sequence(T1)
eq Sequence{ OM1 } -> prependCol (Sequence{ OM2 }) = Sequence{ OM2 :: OM1 } .
eq empty-sequence -> prependCol (Sequence{ OM2 }) = Sequence{ OM2 } .
eq Sequence{ OM1 } -> prependCol (empty-sequence) = Sequence{ OM1 } .
eq empty-sequence -> prependCol (empty-sequence) = empty-sequence .

*** prepend(object: T): Sequence(T)
eq Sequence{ OM } -> prepend (N) = Sequence{ N :: OM } .
eq empty-sequence -> prepend (N) = Sequence{ N } .
eq Sequence{ OM } -> prepend (Col) = Sequence{ Col :: OM } .
eq empty-sequence -> prepend (Col) = Sequence{ Col } .

*** insertAt(index: Integer, object : T): Sequence(T)
ceq Seq -> insertAt (i ; N) =

Seq -> prepend (N)
if i == 0 .
ceq Sequence{ N1 :: OM } -> insertAt (i ; N2) =

(Sequence{ OM } -> insertAt ((i - 1) ; N2)) -> prepend (N1)
if i > 0 .
ceq Sequence{ N1 } -> insertAt (i ; N2) =

Sequence{ N2 } -> prepend (N1)
if i > 0 .
eq empty-sequence -> insertAt (i ; N) = Sequence{ N } .

*** subSequence(lower: Integer, upper: Integer) : Sequence(T)

*** at(i: Integer) : T
ceq Sequence{ N :: OM } -> at (i) =

N
if i == 0 .
ceq Sequence{ N } -> at (i) =

N
if i == 0 .
ceq Sequence{ N :: OM } -> at (i) =

Sequence{ OM } -> at ((i - 1))
if i > 0 .

*** indexOf(obj : T) : Integer

ceq Sequence{ N1 :: OM } -> computeIndexOf (i ; N2) =
i

if (N1 == N2) .
ceq Sequence{ N1 } -> computeIndexOf (i ; N2) =

i
if (N1 == N2) .
ceq Sequence{ N1 :: OM } -> computeIndexOf (i ; N2) =

Sequence{ OM } -> computeIndexOf ((i + 1) ; N2)
if (N1 =/= N2) .

eq Seq -> indexOf (N2) =
Seq -> computeIndexOf (0 ; N2) .

*** first() : T
eq Sequence{ N1 :: OM } -> first = N1 .
eq Sequence{ N1 } -> first = N1 .

272 Appendix F. Algebraic Specification of OCL Collection Operators

*** last() : T
eq Sequence{ OM :: N1 } -> last = N1 .
eq Sequence{ N1 } -> last = N1 .

*** including(object: T): Sequence(T)
eq Seq -> including (N) = Seq -> append (N) .

*** includingCol: for internal use
eq Sequence{ OM1 } -> includingCol (Sequence{ OM2 }) = Sequence{ OM1 :: OM2 } .
eq empty-sequence -> includingCol (Seq) = Seq .
eq Seq -> includingCol (empty-sequence) = Seq .

eq Seq -> includingCol (OSet) = Seq -> includingCol (OSet -> asSequence) .

*** excluding(object: T): Sequence(T)
*** when we exclude one element
ceq Sequence{ N1 :: OM } -> excluding (N1) =

Sequence{ OM } -> excluding (N1)
if not(N1 :: Collection{T}) .

ceq Sequence{ N1 } -> excluding (N1) =
empty-sequence

if not(N1 :: Collection{T}) .

eq empty-sequence -> excluding (N2) = empty-sequence .

ceq Seq -> excluding (N2) = Seq
if not(N2 :: Collection{T}) [owise] .

*** to exclude a sequence of elements
eq Seq -> excluding (Sequence{ N :: OM }) =

Seq -> excluding (N) -> excluding (Sequence{ OM }) .

eq Seq -> excluding (Sequence{ N }) =
Seq -> excluding (N) .

eq empty-sequence -> excluding (Seq) = empty-sequence .
eq Seq -> excluding (empty-sequence) = Seq .

*** flatten() : Sequence(T2)
*** Sequence
eq Flatten(Sequence{Col :: OM1}, Seq2) =

Flatten(Sequence{ OM1 },
(

Seq2 -> appendCol (
Flatten(Col -> asSequence, empty-sequence)

)
)

) .

eq Flatten(Sequence{Col}, Seq2) =
Seq2 -> appendCol (

Flatten(Col -> asSequence, empty-sequence)
) .

ceq Flatten(Sequence{N :: OM1}, Seq2) =
Flatten(Sequence{ OM1 }, Seq2 -> append(N))

if not (N :: Collection{T}) .

ceq Flatten(Sequence{N}, Seq2) =
Seq2 -> append(N)

if not (N :: Collection{T}) .

eq Flatten(empty-sequence, Col) = Col .

eq Seq -> flatten = Flatten(Seq, empty-sequence) .

*** ***
*** Collection{T} iterators

*** iterate
eq Sequence{ OM :: N } -> iterate (acc | IF ; Env ; PreConf) =

N . IF ((Sequence{ OM } -> iterate (acc | IF ; Env ; PreConf)) ; Env ; PreConf) .

273

eq Sequence{ N } -> iterate (acc | IF ; Env ; PreConf) =
N . IF (acc ; Env ; PreConf) .

eq empty-sequence -> iterate (acc | IF ; Env ; PreConf) = acc .

*** exists
eq Sequence{ N :: OM } -> exists (BB ; Env ; PreConf) =

(N . BB (Env ; PreConf)) or-else (Sequence{ OM } -> exists (BB ; Env ; PreConf)) .
eq Sequence{ N } -> exists (BB ; Env ; PreConf) =

N . BB (Env ; PreConf) .
eq empty-sequence -> exists (BB ; Env ; PreConf) = false .

*** forAll
eq Sequence{ N :: OM } -> forAll (BB ; Env ; PreConf) =

(N . BB (Env ; PreConf)) and-then (Sequence{ OM } -> forAll (BB ; Env ; PreConf)) .
eq Sequence{ N } -> forAll (BB ; Env ; PreConf) = N . BB (Env ; PreConf) .
eq empty-sequence -> forAll (BB ; Env ; PreConf) = true .

*** forAll2
eq Seq -> forAll2 (BB ; Env ; PreConf) =

Seq -> asBag -> forAll2(BB ; Env ; PreConf) .

*** isUnique
eq Seq -> isUnique (B ; Env ; PreConf) =

(Seq -> collect (B ; Env ; PreConf)) -> forAll2 (different ; Env ; PreConf) .

*** any
eq Seq -> any (BB ; Env ; PreConf) =

(Seq -> select (BB ; Env ; PreConf)) -> first .

*** one
eq Seq -> one (BB ; Env ; PreConf) =

((Seq -> select (BB ; Env ; PreConf)) -> size) == 1 .

*** collect

*** ***
*** Sequence iterators

*** select: Sequence(T)
eq Sequence{ N :: OM } -> select (BB ; Env ; PreConf) =

if (N . BB (Env ; PreConf)) then
(((Sequence{ OM } -> select (BB ; Env ; PreConf))) -> prepend (N))

else
(Sequence{ OM } -> select (BB ; Env ; PreConf))

fi .

eq Sequence{ N } -> select (BB ; Env ; PreConf) =
if (N . BB (Env ; PreConf)) then

Sequence{ N }
else

empty-sequence
fi .

eq empty-sequence -> select (BB ; Env ; PreConf) = empty-sequence .

*** reject: Sequence(T)
eq Sequence{ N :: OM } -> reject (BB ; Env ; PreConf) =

if not(N . BB (Env ; PreConf)) then
(((Sequence{ OM } -> reject (BB ; Env ; PreConf))) -> prepend (N))

else
(Sequence{ OM } -> reject (BB ; Env ; PreConf))

fi .

eq Sequence{ N } -> reject (BB ; Env ; PreConf) =
if not(N . BB (Env ; PreConf)) then

(Sequence{ N })
else

empty-sequence
fi .

eq empty-sequence -> reject (BB ; Env ; PreConf) = empty-sequence .

*** collectNested: Sequence(T)

274 Appendix F. Algebraic Specification of OCL Collection Operators

eq Sequence{ N :: OM } -> collectNested (B ; Env ; PreConf) =
Sequence{ (N . B (Env ; PreConf)) }

-> appendCol ((Sequence{ OM } -> collectNested (B ; Env ; PreConf))) .
eq Sequence{ N } -> collectNested (B ; Env ; PreConf) = Sequence{ (N . B (Env ; PreConf)) } .
eq empty-sequence -> collectNested (B ; Env ; PreConf) = empty-sequence .

*** sortedBy: Sequence(T) --> inherited
eq Seq -> sortedBy (SortingCriteria ; Env ; PreConf) =

sort(Seq, SortingCriteria) .

*** ***
*** ***
*** OPERATIONS DEFINED FOR ALL COLLECTIONS
*** ***
*** ***

*** includesAll(c2: Collection{T}(T)): Boolean
eq Col -> includesAll(empty-set) = true .
eq Col -> includesAll(Set{N2,M2}) =

Col -> includes(N2) and-then Col -> includesAll(Set{ M2 }) .
eq Col -> includesAll(Set{N2}) = Col -> includes(N2) .

eq Col -> includesAll(empty-orderedset) = true .
eq Col -> includesAll(OrderedSet{N2 :: OM2}) =

Col -> includes(N2) and-then Col -> includesAll(OrderedSet{ OM2 }) .
eq Col -> includesAll(OrderedSet{N2}) = Col -> includes(N2) .

eq Col -> includesAll(empty-bag) = true .
eq Col -> includesAll(Bag{N2,M2}) =

Col -> includes(N2) and-then Col -> includesAll(Bag{ M2 }) .
eq Col -> includesAll(Bag{N2}) = Col -> includes(N2) .

eq Col -> includesAll(empty-sequence) = true .
eq Col -> includesAll(Sequence{N2 :: OM2}) =

Col -> includes(N2) and-then Col -> includesAll(Sequence{ OM2 }) .
eq Col -> includesAll(Sequence{N2}) = Col -> includes(N2) .

*** excludesAll(c2: Collection{T}(T)): Boolean
eq Col -> excludesAll(empty-set) = false .
eq Col -> excludesAll(Set{N2,M2}) =

Col -> excludes(N2) and-then Col -> excludesAll(Set{ M2 }) .
eq Col -> excludesAll(Set{N2}) = Col -> excludes(N2) .

eq Col -> excludesAll(empty-orderedset) = false .
eq Col -> excludesAll(OrderedSet{N2 :: OM2}) =

Col -> excludes(N2) and-then Col -> excludesAll(OrderedSet{ OM2 }) .
eq Col -> excludesAll(OrderedSet{N2}) = Col -> excludes(N2) .

eq Col -> excludesAll(empty-bag) = false .
eq Col -> excludesAll(Bag{N2,M2}) =

Col -> excludes(N2) and-then Col -> excludesAll(Bag{ M2 }) .
eq Col -> excludesAll(Bag{N2}) = Col -> excludes(N2) .

eq Col -> excludesAll(empty-sequence) = false .
eq Col -> excludesAll(Sequence{N2 :: OM2}) =

Col -> excludes(N2) and-then Col -> excludesAll(Sequence{ OM2 }) .
eq Col -> excludesAll(Sequence{N2}) = Col -> excludes(N2) .

endfm

	Chapter 1: Introduction
	Introduction
	Structure of the Document

	I Foundations
	Chapter 2: Presentation of the Problem
	The MOF Modeling Framework
	Discussion on the Current MOF Standard
	OCL Constraints in MOF Metamodels
	A Brief Overview of OCL
	Context of OCL Expressions
	OCL Constraint Satisfaction

	Open Problems

	Chapter 3: Related Work
	Formal Semantics of Concepts in Model-Driven Development
	Model
	Metamodel

	Formal Metamodeling Approaches
	Formal UML Modeling Environments: The MOVA Framework
	Graph-based Metamodeling Frameworks
	AGG
	AToM3
	VIATRA2

	Model Checking Graph Transformations
	Discussion: Motivating our Approach

	Antecedents

	Chapter 4: Preliminary Concepts
	Membership Equational Logic
	Reflection
	Maude
	Parameterized programming

	II A Formal MOF Framework
	Chapter 5: A High-Level View of the MOF Algebraic Semantics
	Informal Semantics of MOF
	A High-Level View of the MOF Metamodel Algebraic Semantics
	Formalization of the MOF Reflection support
	Discussion about the Algebraic Semantics of MOF Metamodels

	Chapter 6: An Algebraic Structural Conformance Relation
	A Generic Infrastructure of Parameterized Theories
	Primitive Type Theories
	OCL Collection Types
	Undefined Values

	The OCL-DATATYPE-COLLECTIONS theory
	The MODEL theory
	The EXT-MODEL theory

	Algebraic Semantics of the MOF Metamodel
	Algebraic Semantics of MOF Object Types
	NamedElement
	Type
	Class
	Property
	DataType
	PrimitiveType
	Enumeration and EnumerationLiteral
	Package

	Algebraic Semantics of MOF Model Types
	Structure of a Metamodel Definition
	Graph structure
	Tree structure
	Type Definitions in
	The Specialization Relation <s
	Additional Semantics

	Graphical Representation of MOF Metamodel Definitions

	Algebraic Semantics of MOF Metamodels Static Structure
	Generic Semantics of any Metamodel Definition
	Graph Structure
	Tree structure
	Structure Definition

	Specific Semantics of a Metamodel Definition
	Package
	Enumeration Types
	Primitive Types
	Object Types
	Algebraic Semantics of Object Types OT
	Object Type Names
	Object Type Identifiers
	Object Type Properties
	Object Type Specialization Relation <s
	Algebraic Semantics of the Specialization Relation <s

	Name Strategy

	Reflecting the Algebraic Semantics: the Reflect Operator.
	Reifying the Algebraic Semantics: the Inverse Step.
	Summary

	Chapter 7: Algebraic Constrained Conformance Relation
	Algebraic Semantics of the OCL Metamodel
	Abstract Syntax of the OCL Language

	Algebraic Semantics of OCL Predefined Operators
	Primitive Type Theories
	The ENVIRONMENT Theory
	The OCL-COLLECTIONS{T :: TRIV} Theory
	Common Operators
	Regular Collection Operators
	Iterator Operators
	Iterate Operator

	The MODEL{OBJ :: TH-OBJECT} Theory
	Common Operations
	User-defined Operations
	OclAny
	OclType

	Algebraic Semantics of the reflect Function
	Preliminary concepts and functions
	User-Defined OCL Type Operators: getExpTheory
	IfExp
	IterateExp
	IteratorExp
	LetExp
	LiteralExp
	OperationCallExp
	PropertyCallExp
	VariableExp
	TypeExp

	Algebraic Semantics of OCL Expressions: getExpTerm
	IfExp
	IterateExp
	IteratorExp
	LetExp
	LiteralExp
	OperationCallExp
	PropertyCallExp
	VariableExp
	TypeExp

	Name Strategy
	Complete Example

	Algebraic Semantics of the Constrained Conformance Relation
	Discussion: Non-Determinism in OCL Expressions
	Unspecified Part of the OCL Language

	Chapter 8: Formalizing the MOF Reflection Facilities
	Informal Introduction to the MOF Reflective Facilities
	Discussion on the MOF Reflective Facilities
	Element object type
	ReflectiveCollection and ReflectiveSequence object types
	Null values
	Only side-effect free operators

	Semantics of the MOF Reflection Facilities
	The META-MODEL theory
	Semantics of the MOF Object object type
	Semantics of the MOF Object Operations

	Summary

	III Applications
	Chapter 9: Tools and Applications
	Interoperating Conventional and algebraic MOF frameworks
	Interoperating the EMF and our MOF Algebraic Framework
	Our algebraic MOF framework as an Eclipse plugin
	Pending work
	Considering other Modeling Frameworks

	MOMENT-OCL
	MOMENT-QVT
	The QVT Relations Language and the ModelGen Operator
	Overview of a model transformation in MOMENT-QVT
	MOMENT-QVT
	Applications
	MOMENT Case
	Bioinformatics
	Software Metrics

	MOMENT: Model Management within the EMF.
	Case studies
	Change propagation
	Merging UML Class Diagrams
	Exogenous Model Merging

	Pending work

	Relationships to Graph Rewriting
	Graph Rewriting Concepts in our Algebraic Framework
	Graph Rewriting as Term Rewriting Modulo AC

	Conclusions
	Chapter 10: Conclusions and Future Work
	The Advantages of Rewriting Logic and Maude
	Summary of Contributions
	Future Work
	Open Research Areas
	Metamodeling Aspects
	Precise Model Transformation and Model Management
	Model-based Formal Verification Techniques
	Bridging the Gap Between Grammarware and Modelware

	References

	Appendixes
	Appendix A: The MOF Theory
	Appendix B: The RDBMS Metamodel Definition
	Appendix C: The RDBMS theory
	Appendix D: The rsPerson relational schema definition
	Appendix E: The metarepresented rsPerson relational schema definition
	Appendix F: Algebraic Specification of OCL Collection Operators

