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1. Introduction 

 

In recent years, the area of robotics has made major advances, changing a variety 

of sectors and domains. Robots have stopped being limited to regulated environments, 

and are already being used in real-world circumstances to aid people in a variety of jobs. 

The design and implementation of functional and accessible human-robot interfaces 

(HRIs) is critical for enabling fluid communication and cooperation between people and 

robots [1]. 

 

This chapter provides the thesis's introduction, offering the relevant background, 

research context, and motivation for the study of surface Electromyography (sEMG)-

based interfaces for operating robotic hands. It describes the scope and boundaries of the 

study, as well as the methodology and approach that will be used to attain the research 

aims, and it specifies the research issues and goals that will lead the thesis. A summary of 

the thesis is given, laying the groundwork for the next chapters, which will go further into 

the theoretical foundations, experimental procedures, and data analysis. 

 

1.1 Research context and motivation 

 

The study background is based on the growing need in the field of robotics for 

intuitive and natural control platforms.  Traditional HRIs frequently employ sophisticated 

manual input devices like joysticks that need substantial training and coordination, 

restricting their usability and preventing widespread adoption [1].  

 

sEMG-based interfaces, on the other hand, allow users to operate robotic hands 

using their own neurological signals by monitoring and interpreting muscle electrical 

responses.  However, developing accurate and stable control algorithms remains difficult, 

necessitating sophisticated machine learning approaches that are able to address the 

computational complexity required for the implementation of this technology [2].  

 

This technique has great potential for numerous engineering and medical 

applications, such as enhancing the quality of life for people with motor impairments or 

assistive technologies that can be used in hazardous situations, where human workers' 
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security cannot be guaranteed, as well as the enhancement of productivity systems in the 

industrial production sector. 

 

1.2 Research questions and objectives 

 

The purpose of this thesis is to assess and contrast the effectiveness of two deep neural 

network architectures, particularly Feedforward Neural Networks (FNNs) and Long 

Short-Term Memory Neural Networks (LSTMs), for self-supervised regression of sEMG 

signals in the context of multi-grasp robotic hand control. The following are the major 

research questions that will lead this study: 

• How successfully can FNNs and LSTMs map the relationship between sEMG 

signals and robotic hand movements? 

• What are the advantages and disadvantages of FNNs and LSTMs for self-

supervised regression of sEMG signals? 

• Which design outperforms the other in terms of accuracy for robotic hand control? 

 

By answering these questions, this study hopes to provide light on the feasibility and 

efficacy of various deep neural network designs for sEMG-based robotic hand control, 

therefore contributing to the evolution of human-robot interface technologies. 

 

1.3 Scope and limitations  

 

To guarantee reasonable expectations and attainable outcomes, the extent and 

constraints of the study must be established. The scope of this research is to examine and 

compare FNNs and LSTMs as deep neural network architectures for self-supervised 

regression of sEMG data. The study makes use of a collection of sEMG signals acquired 

from human individuals while doing multi-grasp activities. 

 

However, certain limits have to be acknowledged. The primary focus of the 

research case will be on three types of grasping activities: tripodal grip, ulnar grasp, and 

power grasp. These grasping activities are a subset of the extensive spectrum of hand 

movements and allow for a decrease in computer analysis complexity, simplifying the 

control task. Furthermore, the study does not implement alternate signal processing 
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approaches for sEMG feature extraction other than the Non-Negative Factorization 

Matrix (NMF) algorithm, nor does it investigate other machine learning algorithms 

beyond FNNs and LSTMs. Additionally, the study is restricted to offline evaluation of the 

algorithms' performance and does not take into account real-time implementation 

concerns. 

 

1.4 Methodology and approach 

 

The approach adopted for tackling this study case is based on a systematic 

methodology that addresses the proposed research questions for completing the general 

objectives of the research, which comprises the following main steps: 

1. Reviewing pertinent literature on human-robot interaction, sEMG-based 

interfaces, and sEMG signal analysis machine learning methods. 

2. Creating and executing a data collecting experimental setup for multi-grasp 

activities. 

3. Using non-negative matrix factorization (NMF) to extract features and reduce the 

dimensionality of sEMG signals. 

4. Using both FNN and LSTM models to perform self-supervised regression on 

preprocessed sEMG data. 

5. Once both algorithms are trained and optimized, the performance evaluation and 

comparison between FNN and LSTM is carried out in terms of their accuracy. 

6. Finally, analyzing the findings and evaluating the study's implications, limits, and 

potential future directions. 

 

Overall, this research seeks to contribute to current knowledge in the field and give 

significant understanding into the application of deep neural networks for sEMG-based 

multi-grasp robotic hand control by employing the proposed methodology. 

 

 

2. Theoretical Framework 

 

This thesis' theoretical framework chapter provides a detailed summary of the 

concepts and theories that constitute the foundation of the research analysis. This chapter 
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looks into the theoretical elements of human-robot interaction/interface (HRI), surface 

electromyography (sEMG)-based interfaces, and machine learning methods, all of which 

are necessary for understanding the next chapters. 

 

First, the HRI domain is investigated, which is concerned with the creation of a 

platform that enables users and robots to interact. It will be addressed the concept of 

human-robot interaction (HRI) and its importance to this study, emphasizing the 

challenges and possibilities involved with building successful interfaces for human-robot 

cooperation. 

 

Following that, sEMG-based interfaces will be explored, which are used to 

operate robotic equipment via muscle activity. It is explained in detail how to acquire 

sEMG signals, identify features, and operate robotic hands with sEMG signals. 

 

Finally, the machine learning methods that are used to interpret sEMG data and 

generate the appropriate commands to operate robotic devices are looked over in detail. 

The focus is on the Non-negative Matrix Factorization (NMF), Feedforward Deep Neural 

Network (FDNN), and Long Short-Term Memory Deep Neural Network (LSTM) 

algorithms, which are typically used in sEMG-based investigations. The ideas underlying 

each algorithm are explained, as well as their benefits and drawbacks. 

 

Overall, this chapter establishes the foundations for the rest of the thesis, giving a 

theoretical foundation for the empirical work in the coming chapters. This chapter 

attempts to create a basis for the succeeding chapters' research and analysis by reviewing 

the present level of knowledge in the domains of HRI, sEMG-based interfaces, and 

machine learning techniques. 

 

2.1 Human-robot interaction/interface (HRI) 

 

Because of the growing interest in integrating robots in a variety of applications, 

the topic of human-robot interaction (HRI) has received a lot of attention in recent years. 

HRI refers to the collaboration of human operators and robots in industrial and service 

environments to execute tasks; these platforms can be used to control robots, supply 

feedback from their activities and supervise their performance. Surface electromyography 
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(sEMG) technology is one of the most promising ways for achieving effective HRI, but 

it has considerable practical difficulties [3]. 

 

The detection of electrical signals generated by muscular contractions allows 

sEMG technology to assess muscle activity. It is feasible to deduce human operator 

motions from sEMG signals and make use of this knowledge to operate robotic 

equipment. This technology has the potential to improve HRI significantly by allowing 

for more natural and intuitive communication between people and robots [2],[4].  

 

However, developing viable interfaces for sEMG-based HRIs requires 

overcoming a number of obstacles. One of the most challenging difficulties is creating 

simple and user-friendly interfaces that allow operators to properly manage robots. 

Furthermore, the complexity of sEMG signals, as well as individual variability, offer 

obstacles in effectively understanding the signals and converting them into robot control 

[3]. 

 

Despite these obstacles, the potential for sEMG-based HRIs is immense. sEMG 

technology, for example, may be used to operate prosthetic devices, allowing persons 

with impairments to regain movement and freedom. Furthermore, sEMG-based HRIs can 

be utilized to improve production processes by allowing robots to adapt to human 

operators' preferences and motions [3]. 

 

Finally, sEMG-based HRIs provide a viable option for furthering the study of 

human-robot interaction. Building viable interfaces for sEMG-based HRIs, on the other 

hand, necessitates tackling considerable issues in interface design, signal interpretation, 

and feature recognition precision. By addressing these obstacles, the potential benefits of 

sEMG-based HRIs can be achieved, resulting in safer, more efficient, and intuitive 

human-robot collaboration [2],[4]. 

 

2.2 Surface Electromyography (sEMG)-based interfaces 

 

Surface electromyography (sEMG) is a non-invasive method that has grown in 

popularity in the field of human-robot interaction (HRI) because of its use as a tool for 

human intention identification and gesture-based control. sEMG is a method that uses 
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surface electrodes put on the skin to collect and record the electrical activity of skeletal 

muscle contractions. The analysis of sEMG signals has been demonstrated to be an 

excellent method for building intuitive and natural control interfaces for robotic devices, 

particularly for applications requiring a high level of skills in performing certain manual 

tasks, such as multi-grasp hand control [1]. 

 

The usage of sEMG-based interfaces has grown in popularity in recent years, 

thanks to developments in technology and algorithms that enable real-time processing 

and interpretation of sEMG signals. The desire to build natural, intuitive control interfaces 

for robotic systems, particularly for those with motor impairments or disabilities, has 

fueled the development of sEMG-based interfaces[1]. 

 

 
Figure 1: sEMG-based HRI diagram [2] 

 

This part of the thesis gives an overview of sEMG-based interfaces, such as signal 

collection, feature labeling, and robotic hand control. The section looks at the several 

methods for acquiring and processing sEMG signals, such as signal filtering, noise 

reduction, and feature extraction. Its overall goal is to give a thorough knowledge of 

sEMG-based interfaces and their potential for designing natural, intuitive control 

interfaces for robotic systems. 

 

2.2.1 sEMG signal acquisition 

 

Data gathering is essential in sEMG-based human-robot interaction (HRI) 

systems. The quality of sEMG signals is significant for the robotic control precision. 

Hence, it is critical to employ reliable acquisition equipment that can effectively enhance 

the signal-to-noise ratio (SNR). To keep as much relevant signal information as possible, 

the acquisition frequency is often adjusted to 500–1000 Hz [1]. 
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The location of the sEMG signal acquisition is also crucial. The midline of the 

muscular belly between the closest innervation zone and the myotendinous junction is the 

preferred position. To decrease noise, the skin in this region should be washed with 

alcohol before signal collection, and hair should be removed if necessary. The electrodes 

used in sEMG signal collection are also important. Wet electrodes, which require an 

electrogel layer between the skin and the electrode, are better suited for fundamental 

theoretical study, whereas dry electrodes, which are put directly on the skin, are more 

suited for practical applications [1]. 

  

The number of electrode channels used for sEMG signal capture is determined by 

the number of muscles associated with the desired human limb motions. It is critical to 

choose an appropriate number of electrode channels to achieve adequate recognition 

accuracy for human movement intentions while minimizing the amount of calculation 

necessary [1]. 

 

In a nutshell, the quality of the obtained sEMG signals has a significant impact on 

the precision of robotic control in sEMG-based HRI systems. High-quality sEMG signals 

may be acquired by employing reliable collection equipment and following precise 

acquisition protocols, providing a solid data foundation for future pattern identification 

and robotic control in sEMG-based HRI systems [1]. 

 

2.2.2 sEMG feature labeling 

 

The act of giving semantic meaning to sEMG signals, known as feature labeling, 

is critical for detecting specific gestures or motions. This entails matching certain sEMG 

patterns to related hand motions. 

 

The Non-Negative Matrix Factorization algorithm (NMF) is one way for 

collecting grip labels. For this particular study case, NMF is based on the concept of 

muscular synergies, which are patterns of coordinated muscle activation that are related 

with specific motions or grasps. The underlying muscle activation patterns may be 

recovered by decomposing the sEMG signals into a linear combination of muscle 

synergies using the NMF factorization method (the technical aspects about how the 

algorithm works will be explained in the following sections). Each muscular synergy is a 
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unique mix of muscle activations linked with a certain grip. These muscle synergies may 

subsequently be associated with certain grasps, thereby labeling the sEMG signals. This 

method has the benefit of capturing the underlying interdependence of muscle activations, 

resulting in a more robust and interpretable grip categorization [4]. 

 

For sEMG categorization, the NMF method has some particular characteristics that 

makes them to outperform conventional factorization-based labeling algorithms in 

various ways: 

• Non-Negativity Constraint: since muscle activations are intrinsically non-

negative, it matches well with the physiological features of sEMG signals; it gives 

a more interpretable and valid depiction of muscle synergies. 

• Shortened representation: it tends to employ a small number of muscle synergies 

for analyzing the sEMG signals; it is favorable in terms of computing efficiency 

and interpretability (more compact data representation and lower dimensionality 

of the feature space). 

• Computational efficiency: it is especially important in real-time applications 

where low-latency processing is critical for responsive control of robotic devices; 

the NMF algorithm allows quicker analysis and identification of sEMG signals, 

enabling real-time control and interaction between humans and robots. 

Overall, the specific properties of the NMF algorithm makes it a suitable method for this 

particular study case, as its performance for different error metrics when carrying out the 

grasps’ labeling beats those of other possible algorithms as showed in [4]. 

 

Furthermore, since they record the interaction between muscle activations and 

joint configurations, postural synergies can aid in the learning of grab labels. Substantial 

relationships can be established by studying this connection throughout various gripping 

activities. According to [4], it is reasonable to suppose that a unique synergistic DoF is 

generated during the opening/closing action of a hand, which significantly decreases the 

level of sophistication of the sEMG generative model. 
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2.2.3 sEMG-based control of robotic hands 

 

Regarding the control of the robotic device, several stages must be completed 

before the sEMG-based HRI can get the correct commands to operate the robotic hand.  

 

First, the neural drives that are triggered to perform the various movements must 

be identified. They correspond to the labels created by the NMF algorithm, as described 

in the preceding section. Once the various grasping motions have been encoded, a Deep 

Neural Network may be trained using the obtained labels to learn the mappings for the 

defined grasps [5]. 

 

This step will be addressed with two different approaches, using two supervised 

machine learning algorithms whose performance will be compared to determine the best 

solution; the mappings will be computed using first a typical Feedforward DNN and then 

a Long-Short Term Memory NN; this second choice is justified due to the time-series 

nature of the sEMG dataset being used. Finally, once trained, the NN-based grip 

classification model may be used to categorize real-time sEMG signals and control the 

robotic hand accordingly. The anticipated grasp labels are converted into control 

commands, which activate the robotic hand and allow it to make the necessary grasping 

actions. 

 

2.3 Machine learning algorithms 

 

Surface electromyography-based interfaces for human-robot interaction systems 

rely heavily on machine learning techniques. These methods allow relevant information 

to be extracted from sEMG signals, allowing for reliable interpretation and control of 

robotic equipment. This paper focuses on the following machine learning algorithms due 

to their notorious compatibility with the study case that it addresses: Non-negative Matrix 

Factorization, Feedforward Deep Neural Networks, and Long Short-Term Memory 

Neural Networks. 

 

NMF, a matrix factorization approach, has recently acquired prominence for its 

capacity to breakdown sEMG signals into their underlying components, known as muscle 

synergies. This method results in a more compact representation of the sEMG data and 
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makes it easier to extract useful characteristics for control purposes. The use of NMF in 

sEMG-based HRI systems has led to encouraging results in terms of enhancing control 

interface accuracy and resilience [4]. 

 

Feedforward Deep Neural Networks have also been widely used in sEMG-based 

HRI systems. These neural networks may learn complicated correlations between sEMG 

signal patterns and associated robotic operations. They can accurately categorize and 

interpret sEMG signals by training DNNs on huge datasets, allowing precise control of 

robotic equipment. DNNs have made significant advances in the field, notably in the areas 

of motion control [2]. 

 

Long Short-Term Memory Neural Networks have also developed as a strong tool 

for processing time series data, making them well-suited to studying sEMG signals. The 

temporal relationships contained in sequential sEMG data may be successfully captured 

by LSTM networks, allowing for reliable prediction and control of robotic devices across 

time. Because of this, LSTM networks are particularly useful for applications involving 

dynamic and continuous movement [6]. 

 

It can be improved the performance and usability of sEMG-based HRI systems by 

evaluating and comprehending these machine learning methods. This section will dive 

into the concepts, implementation, and possible uses of NMF, Feedforward DNNs, and 

LSTM networks in the context of sEMG-based interfaces, emphasizing their value to the 

field of HRI and their potential to strengthen human-robot control and communication 

capacities. 

 

2.4.1 Non-negative Matrix Factorization (NMF) 

 

Non-Negative Matrix Factorization (NMF) is a technique for reducing 

dimensionality in machine learning and data analysis. Its goal is to decompose a given 

matrix into two smaller matrices with non-negative entries. NMF seeks a low-rank 

estimate of the initial matrix which reflects relevant trends or characteristics in the data 

[7]. 
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NMF works on the principle of representing the starting matrix as a linear 

combination of non-negative basis vectors, each weighted by non-negative coefficients. 

Assume an input matrix X with dimensions m x n, where m is the number of samples or 

observations, and n is the number of features or variables. NMF's purpose is to factorize 

X into two non-negative matrices, W and H, such that X≈W·H. This enables a 

representation by parts of the data, in which each basis vector records a separate feature 

or pattern, and the coefficients indicate the contribution of each feature to reconstructing 

the original matrix [7]. 

 

The NMF algorithm is generally updated in an iterative way.  The process begins 

by randomly initializing the matrices W and H, which contain the basis vectors and 

coefficients, with non-negative values. The matrices are then iteratively updated to reduce 

the reconstruction error between the original matrix and its estimate. The update 

procedure involves optimizing one matrix while correcting the other: first, fix H to update 

W by reducing the reconstruction error among X and WH, and then, fix W to update H 

by lowering the reconstruction error among X and WH. Optimization methods such as 

multiplicative updates and gradient descent can be used. The method updates the matrices 

until convergence, or a predetermined stopping condition happens; NMF converges when 

the matrices W and H have been modified to as nearly approach the input matrix X as 

feasible while ensuring non-negativity [4],[7]. 

 

The generated basis vectors and coefficients can be understood once the NMF 

algorithm has converged: matrix W (m x r) represents the basis vectors or components 

that capture the underlying structure or features in the data, with each column of W 

corresponding to a different feature; matrix H (r x n) contains the weights that determine 

the contribution of each basis vector in reconstructing the original matrix X, with each 

row of H corresponding to the activation of the associated basis vector [4],[7]. 

 

In a nutshell, NMF can find relevant patterns or features in data by deconstructing 

the original matrix X into non-negative components. It has been employed in tasks such 

as feature extraction and pattern recognition. 
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2.4.2 Deep Feedforward Neural Network (DFNN) 

 

Deep Feedforward Neural Networks (DFNNs), which are also referred to as 

multilayer perceptrons (MLPs), have become known as effective models for tackling 

challenging machine learning problems. DFNNs have transformed the area of machine 

learning by discovering detailed patterns and correlations in data.  

 

DFNNs are made up of numerous layers of artificial neurons that are linked together. 

A DFNN architecture has three basic components [8]: 

• The input layer is made up of neurons that receive input data. Each neuron reflects 

a different aspect or characteristic of the input. The dimensionality of the input 

data determines the number of neurons in the input layer. 

• One or more hidden layers can be placed between the input and output layers in 

DFNNs. Each hidden layer is made up of several neurons that analyze and 

transform data from the preceding layer. These layers are in charge of identifying 

and learning complex trends and representations from input data. 

• The output layer is responsible for the network's final predictions or outputs. The 

amount of neurons in the output layer is determined by the type of problem being 

handled. A binary classification job, for example, requires a single neuron, but 

multi-class job classification may require several neurons, each representing a 

different class. 

 

 
Figure 2: Deep Neural Network diagram [8] 



 13 

 

A supervised learning strategy is widely used to train a DFNN. It entails feeding the 

network a labeled dataset and repeatedly changing the weights to minimize the 

discrepancy between the network's anticipated outputs and the real labels. The training 

procedure may be broken down into the phases that follow [8]: 

• Forward Propagation: The input data is supplied into the network during forward 

propagation, and the activations of every neuron in consecutive layers are 

calculated. Each neuron computes the weighted total of its inputs, implements a 

function of activation, and sends the result to neurons in the following layer. This 

procedure is continued up to the output layer has been reached, at which point the 

final predictions are generated. 

• Loss Calculation: The activations of the output layer are evaluated against the 

ground truth labels employing a specified loss function. Mean squared error 

(MSE) is a common loss function for regression tasks and cross-entropy for 

classification tasks. The loss measures the difference between the expected and 

real labels. 

• Backpropagation: Applying the chain rule of calculus, the loss is transmitted 

backwards across the network's structure, layer by layer. This procedure 

determines how much each weight contributes to the total inaccuracy. The 

gradients of the loss are computed with respect to the weights, and the weights are 

changed as needed to minimize the loss. 

• Weight Update: Optimization methods like as stochastic gradient descent (SGD) 

or its derivatives (e.g., Adam) are used to update the weights linking neurons. 

These techniques gradually improve the network's capacity to generate correct 

predictions by updating the weights according to the gradients obtained during 

backpropagation. 

 

Activation functions are important in DFNNs because they introduce non-linearities 

into the network's structure.  They enable the network to simulate complicated and 

nonlinear data interactions. Among the most commonly utilized activation functions are 

[8]: 
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• The sigmoid function converts the weighted total of inputs into a number between 

0 and 1. It is smooth and limited, making it suitable for binary classification jobs 

at the output layer. 

• The Rectified Linear Unit (ReLU), when activated, sets negative inputs to zero 

while positive inputs remain intact. Its appeal stems from its simplicity and 

computing effectiveness; ReLU activation is frequently used in the hidden layers 

of DFNNs. 

• The hyperbolic tangent (tanh) function, similarly to the sigmoid function, 

translates values to an interval between -1 and 1. It has greater gradients than the 

sigmoid function, which makes it helpful in situations when stronger activations 

are requested. 

 

In summary, Deep Feedforward Neural Networks (DFNNs) have showed outstanding 

potential by enabling the effective modeling of complicated connections in data through 

their layered design, iterative training process, and integration of activation functions. 

 

2.4.3 Long Short-Term Memory Neural Network (LSTM) 

 

Long Short-Term Memory (LSTM) neural networks are establishing themselves 

as a strong tool for processing sequential data in the field of artificial intelligence and 

machine learning. When faced with long-term dependencies, LSTM networks are meant 

to overcome the constraints of classic neural networks, such as Feedforward NNs, by 

using their capacity to acquire and store information over long periods of time [9]. 

 

Feedforward neural networks, for example, struggle to grasp long-term 

dependencies in sequential input. LSTM networks solve this issue by including memory 

cells and gating systems that allow for long-term information retention as well as efficient 

transmission and control of the flow [9]. 

 

An LSTM network is made up of linked memory cells that function as 

independent processing units. Each memory cell must have three components: an input 

gate, a forget gate, and an output gate; they control the flow of data into and out of 

memory cells, allowing for selective memory preservation and access [9]. 
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Figure 3: LSTM Neural Network diagram [6] 

 

The LSTM memory cell gets two inputs at each time step: the present input data 

and the prior memory cell state, which includes short-term as well as long-term memory.  

The input gate sends them via a sigmoid activation function, and the result is multiplied 

by a candidate cell state, representing the new information that might be added to the 

memory cell; it preferentially saves new information by weighing the relevance of the 

current input [9]. 

 

The forget gate controls what information from the memory cell state should be 

deleted, enabling the system to forget useless or obsolete information. It uses the prior 

hidden state and the current input, runs them across a sigmoid activation function, and 

returns a value between 0 and 1 for each cell state item.  Depending on the forget gate's 

outcome, multiplying this forget gate value component by component with the prior cell 

state eliminates or maintains the necessary information [9]. 

 

The output gate determines the amount of data gathered from the memory cell 

state is accessible to the following layers. It considers the current input and the prior 

hidden state, runs them through a sigmoid activation function, then multiplies the result 
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by the candidate cell state that has been run through a tanh activation function. This gating 

method can regulate the quantity of information that a memory cell provides to the 

broader prediction process [9]. 

 

LSTM networks use backpropagation through time (BPTT) during the training 

phase to adjust the network's parameters and maximize its performance. The error signals 

are transmitted not just from the current time step but also from subsequent time steps, 

complicating the learning process but allowing the network to successfully understand 

long-term dependencies [9]. 

 

To summarize, LSTM networks provide selective information storage and 

retrieval by adding memory cells and gating processes, allowing for greater modeling of 

complicated temporal interactions. 

 

 

3. Materials and Methods 

 

The materials and methods chapter describes in detail the experimental setup, data 

gathering, and preprocessing methods, as well as the development and assessment of the 

machine learning models used in this work. The goal of this chapter is to discuss the 

techniques used to acquire and process data, as well as the algorithms used to evaluate 

sEMG signals and operate the robotic hand. 

 

First, the experimental setup, including some general aspects about hardware and 

software components employed to gather the sEMG signals, will be described. The 

processes performed to preprocess the sEMG data, including filtering and normalization 

approaches, will be next explained. 

 

The chapter will next go into the various machine learning techniques employed 

in this work, beginning with non-negative matrix factorization (NMF) for feature 

extraction and dimensionality reduction. The implementation of the NMF algorithm, 

including the selection and optimization of algorithm parameters, will be described. 
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Finally, it will also go through the implementation and training of the feedforward 

deep neural network (DNN) and long short-term memory (LSTM) NN models, which are 

exploited for performing a self-supervised regression of the sEMG data to compute the 

mapping of the different grasp gestures. Each model's performance evaluation, including 

the measures employed, will be discussed. 

 

3.1 Experimental setup 

 

A sEMG acquisition system was built in order to collect the user’s data for 

developing the sEMG-based HRI for the control of a robotic hand. In the purpose of this 

project, eight sEMG channels (eight pairs of electrodes in differential arrangement) from 

the user's forearm muscles are collected. Disposable surface skin electrodes with 

conductive gel are employed. The electrodes are spread evenly across the forearm, 

making an armband (gForcePro). The sEMG bracelet is designed to offer data on hand 

movements as well as grip closure. As a result, it is focused on the Flexor Digitorum 

Superficialis and Extensor Digitorum Communis muscles, which play a role in digit 

flexion and extension [2]. 

 
Figure 4: sEMG electrodes placement representation [4] 

 

This application's wearable sensor node is built on a 6-layer printed circuit board. 

The node is intended for the capture of analog biological signals in wearable multisensory 

technologies using Cerebro, a high-performance analog front end (AFE) coupled to an 

ARM Cortex M4 microprocessor via serial peripheral interface. Data is collected at 1 kHz 

and sent to a PC using an average 2.0 Bluetooth interface [2].  
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Figure 5: Circuit board architecture diagram [2] 

 

Finally, this particular study case is developed for a subsequent experimental 

simulation to try the designed sEMG-based HRI using the AR10 Robot Hand by Activat8 

Robots, a lightweight anthropomorphic robot hand with 5 fingers and 10 degrees of 

freedom (DoFs), as mentioned in [10].  

 

 
Figure 6: sEMG armband for data acquisition and AR10 robot hand simulative setup [10] 

 

This section seeks to lay a strong basis for the following examination and 

understanding of the collected sEMG data by providing a complete review of the 
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experimental setup. It emphasizes the significance of proper experiment design and 

execution in delivering trustworthy and relevant results. 

 

3.2 Data acquisition and preprocessing 

 

Acquiring and preparing sEMG data correctly is critical for getting reliable and 

useful information regarding muscle activation. These processes set the groundwork for 

further analysis, feature extraction, and control algorithms. 

 

The wearable sensor node mentioned in the preceding section is used to collect 

the electrical activity of the muscles during the data acquisition step. The acquisition 

system captures analog sEMG signals, which are subsequently transformed to digital 

signals using the previously stated Cerebro AFE. Afterwards, a preprocessing procedure 

based on signals’ filtering is applied to the input data to enhance the quality of the readings 

[2]. 

 

A training session is required to acquire the raw data for building subsequently a 

training dataset, which is consisting of 8-dimensional samples of the RMS values of the 

sEMG channels, in order to develop the classifier. Open hand, three fingers position, fist, 

ulnar squeeze, and neutral pose are the five motions to be categorized. A grab transition 

logic is utilized to employ two motions that are not related with any form (open hand and 

neutral position). The training dataset to be gathered consists of 6 repetitions of each 

motion (excluding the neutral stance). Every move must be performed for 3 seconds, 

followed by 3 seconds in which the user must rest his fingers (neutral position). Between 

two separate gesture repetition groups, the neutral stance length becomes 6 s. This 

procedure is done by 5 different subjects to have a more diverse dataset to cover the 

possible discrepancies that could appear due to the users’ physiological variability [2]. 

 

The filtering method, applied in the preprocessing stage, that is built for every 

input channel of the sEMG data consists on: 1) a 50-Hz notch filter for powerline 

interference cancellation; 2) a 20-Hz band-pass filter that achieves the best compromise 

between reducing initial noise (primarily thermal, chemical, and motion item noises) and 

obtaining the intended data material; and 3) the signal's root mean square (RMS) value 

estimated on a 200-ms window with no overlap [2]. 
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3.3 Non-negative matrix factorization for sEMG signals 

 

In the following section, it will be examined how NMF may be used to analyze 

and decode sEMG signals in the framework of human-robot interaction (HRI) systems. 

NMF is an effective method for collecting relevant information from sEMG data, 

interpreting muscle activity patterns, and improving instinctive control of robotic systems 

[7]. 

 

NMF can be used in the context of sEMG-based HRI systems to decipher the 

user's intended motions or gestures from the captured sEMG signals. NMF facilitates the 

conversion of sEMG data into control commands for robotic devices by detecting the 

underlying muscle synergies and their activation levels. This opens the door to the 

development of more accessible and productive control interfaces, hence improving the 

usability and efficacy of HRI systems [4]. 

 

In this chapter, it will be analyzed how NMF may be used for sEMG signal 

breakdown and feature extraction from the point of view of the algorithm implementation. 

Moreover, NMF algorithmic intricacies will be addressed, such as optimization 

approaches and parameter choices. This section tries to illustrate the value of NMF in 

sEMG-based HRI systems by exploiting its power. The use of NMF in sEMG signal 

processing helps to develop HRI systems by allowing for more organic and smooth 

interactions among humans and robots. 

 

3.3.1 Algorithm implementation 

 

The complete Python script of the NMF algorithm implemented (labeling script) 

for carrying out the feature labeling of the sEMG dataset can be found in the 

corresponding appendices’ subsection (see Section 8.2). Subsequently, the script is broken 

down step by step to explain how it works: 

 

The following needed libraries and modules are imported: numpy for numerical 

computations [11], matplotlib.pyplot for plotting [12], sklearn.decomposition for the 
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NMF (Non-negative Matrix Factorization) algorithm [13], pickle for object serialization 

[14], os for operating system-related operations [15], scipy.io for loading MATLAB files 

[16], and random for random number generation [17]. It also loads the AlphaMatrix 

module from the mapping file (see section 8.2 for a detailed description of the script 

functioning and the nature of its content). 

 

The NMF_Routine class handles Non-Negative Matrix Factorization (NMF) on 

a specified input matrix X. The NMF approach transforms a matrix into two non-negative 

matrices: the basis matrix (W) and the coefficient matrix (H). The following methods are 

available in the NMF_Routine class: 

• _nmf(X): it is a method for performing NMF on the input matrix X. The NMF 

class from the sklearn.decomposition package is used. It creates an NMF model 

with n_components=2, implying that it attempts to breakdown X into two 

components. The init argument is set to ‘random’ to randomly initialize the 

factorization. The solver parameter is set to mu to represent the multiplicative 

updating algorithm. To utilize the Kullback-Leibler divergence as the goal 

function, the beta_loss option is set to kullback-leibler. The maximum number 

of iterations for the NMF method is specified by the max_iter option, which is 

set to 1000. The basis matrix W and the coefficient matrix H are returned by the 

procedure [13]. 

• compute(X, n_rep=10, diff_signal=True): this method performs the NMF 

routine on the input matrix X for feature extraction. It takes additional parameters 

n_rep and diff_signal which control the number of repetitions of the NMF routine 

and whether to compute the difference signal or not. The method first calls the 

_nmf method to obtain the coefficient matrix H by applying NMF to X. 

Next, the NMF routine is repeated n_rep times for better smoothing of the 

features. Each repetition applies NMF to the current coefficient matrix H to obtain 

the updated H.  

Following the repetitions, the approach evaluates the shape of H to confirm that 

the signal order is correct (high, low, high). If it is incorrect, it swaps the rows of 

H to restore the right order. 

The normalization step scales each signal in H to a value between 0 and 1; Hn 

then, stores the normalized matrix. 
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The technique either computes the difference signal (S = Hn[1,:] - Hn[0,:]) or 

utilizes Hn directly as the extracted features, depending on the value of 

diff_signal. 

Finally, the calculated features are normalized to a range of 0-1 before being 

returned. 

 

Overall, the NMF_Routine class's aim is to wrap the NMF feature extraction 

procedure, offering a reusable and modular method for computing features from 

myoelectric measurements. 

 

The script defines another class named Labeler. This class is in charge of labeling 

the features retrieved from myoelectric data using the NMF_Routine class’s Non-

Negative Matrix Factorization (NMF) procedure. It handles signal merging and 

normalization of input data, labels, and reference signals. The following methods are 

available in the Labeler class: 

• __init__(self, data_path, alpha_type, diff_signal, n_rep_nmf): this is the 

Labeler class's constructor function. It initializes the Labeler object with the 

following parameters: data_path (path to the dataset), alpha_type (type of alpha 

matrix for signal merging), diff_signal (boolean indicating whether the difference 

signal should be computed or not), and n_rep_nmf (number of repetitions for the 

NMF routine). The alpha property is also set relying on the alpha_type option. 

• merge_1_signal(self, H_pn, H_ul): using a predetermined alpha matrix, this 

approach blends the labeled signals for power, pinch, and ulnar grasps. It accepts 

as input the retrieved characteristics for power (H_pw), pinch (H_pn), and ulnar 

(H_ul). The alpha matrix is chosen depending on the Labeler object's alpha 

property. The approach multiplies each signal element by element with the 

relevant alpha values and concatenates the results to generate the merged signal 

matrix T, which is then returned by the method. 

• merge_2_signals(self, H_pn, H_ul): using a modified alpha matrix, this 

approach integrates the labeled signals for power, pinch, and ulnar grasps. It 

accepts as input the retrieved characteristics for power (H_pw), pinch (H_pn), 

and ulnar (H_ul). The alpha_bar modified alpha matrix is constructed by 

duplicating rows of the original alpha matrix. The procedure multiplies each 

signal element by element with the matching alpha values from alpha_bar and 
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concatenates the results to generate the merged signal matrix T, which is then 

returned by the method. 

• load_data(self, subj_id): Loads the myoelectric measurements and reference 

signals for a certain subject ID. Using the scipy.io package, it reads data from the 

MATLAB (.mat) files that contain arrays of the acquired sEMG data. The loaded 

data is returned in the form of NumPy arrays [11],[16]. 

• run_subj(self, subj_id, plot=True): This function does the feature labeling for a 

given individual’s readings. The subject ID and an optional parameter plot are 

used to determine whether or not to plot the signals. The method initially invokes 

the load_data function to load the subject's myoelectric values and reference 

signals. It then iterates through each iteration of the data, doing the following 

steps: 

1. Uses the NMF_routine.compute method to extract characteristics for 

power, pinch, and ulnar grasps. The procedure receives the arguments 

diff_signal and n_rep_nmf. 

2. It invokes the merge_1_signal or merge_2_signals method to merge the 

labeled signals depending on the diff_signal value. 

3. Normalizes the input, merged and reference signals to a range between 0 

and 1. 

4. Saves the data in a dictionary with multiple signal versions. 

5. If plot is set to True, the plot technique is used to depict the signals. 

6. Finally, for each repeat, it provides the dictionary containing the labeled 

and normalized data. 

• plot(self, X, T, R, title): For visualization, this method graphs the myoelectric 

measurements (X), merged signals (T), and reference signals (R). It employs the 

matplotlib library to generate line plots with labels and legends [12]. 

 

Summarizing, the Labeler class offers an interface for labeling myoelectric 

characteristics using NMF and merging the labeled signals for further analysis or robotic 

device control. It contains the essential stages and allows for the selection of several alpha 

matrices for signal merging. 

 

Finally, the if __name__ == "__main__" block is the entry point of the script. It 

configures PLOT (whether to plot the signals), SEED (random seed), N_REP_NMF 
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(number of repetitions for NMF), ALPHA (alpha matrix type), and DATA_PATH (path 

to the dataset). Then, it generates an output directory in which to save the labeled dataset 

and, afterwards, it iterates through each subject from 1 to 5 and labels them using the 

Labeler class. Each subject's labeled data is subsequently saved in a pickle file. 

 

Overall, the script applies NMF to the myoelectric readings, merges and labels the 

signals, and stores the labeled dataset for further analysis and usage. In the following 

figure, it can be found an example of the graphical representation of the myoelectric 

readings, as well as the generated labels for the three different grasps with their 

corresponding reference signals: 

 

 
Figure 7: Myoelectric readings and grasps’ labels from subject 1 (1st repetition) 
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3.3.2 Parameters selection and optimization 

 

Several settings in the feature labeling script may be adjusted and tweaked to enhance 

the labeling process. Here's a more detailed explanation of these parameters and how they 

might be chosen and optimized [13]: 

• n_components: This parameter determines the number of components (or 

features) to be extracted by NMF. It represents the desired dimensionality of the 

latent matrix. In this particular case, the sEMG generative model considers only 

2 muscular synergies. Therefore, this parameter has to be set to take the same 

value in order to fix the synergistic matrix dimensionality. 

• solver: The algorithm used to solve the NMF problem is determined by this 

parameter. It can be set to "cd" for coordinate descent or "mu" for multiplicative 

update. The solver selected is determined by the size of the dataset and the unique 

characteristics of the problem. Coordinate descent is faster for sparse data, but 

multiplicative updating is more efficient for dense data. Taking into account the 

time series nature of the ME signals read at a high frequency, a multiplicative 

approach seems to be a more suitable choice. 

• max_iter: It sets the maximum number of iterations required for the NMF 

algorithm to converge. Increasing the number of iterations can enhance 

decomposition quality, but it also increases computing time. A reasonable amount 

of 1000 iterations were chosen that allowed the method to converge to a good 

answer without requiring excessive computation. 

• beta_loss: The beta divergence utilized as the cost function in the NMF method 

is determined by this parameter. It can be adjusted to different choices like 

"kullback-leibler", "frobenius" or "itakura-saito". This parameter is dependent on 

the individual features of the data and the desired decomposition qualities, but 

since the "kullback-leibler" divergence is generally employed for non-negative 

data, it was the most logical option to settle on. 

• n_rep_nmf: It defines the number of repetitions for the Non-Negative Matrix 

Factorization procedure. The NMF routine is used to smooth the data and improve 

the label quality. More steady and dependable results can be achieved by 

performing the NMF method several times. It is possible to experiment with 

different N_REP_NMF values to achieve the best balance of computing resources 
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and labeling accuracy. Low values were taken as a starting point, and they were 

progressively increased until a total of 10 repetitions, where the labeling quality 

was substantially improved. 

• seed: It controls the script's random seed. Randomness is used in several 

processes, including initialization and random selection. Setting a specified 

integer value of the seed ensures that the labeling procedure is reproducible in 

order to iteratively tune other parameters. Different seed values can be tested to 

observe how they affect the final labeled data. In this particular study case, the 

seed value of 1 worked reasonably good for the labeling of the sEMG signals. 

 

3.4 Deep Feedforward and Long Short-Term Memory Neural Networks 

 

When it comes to feedforward DNNs, it is well known that they have great 

learning capabilities for complicated mappings between sEMG signals and related control 

inputs, making them a potential solution for improving HRI system performance and 

usability. Training a feedforward DNN entails optimizing the network's parameters for 

minimizing the difference between expected control instructions and ground truth values.  

The DNN eventually develops the ability to identify the complicated mappings between 

the input sEMG signals and the intended control outputs through recurrent optimization 

[5]. 

 

LSTM NNs, on the other hand, have grown in popularity because to their ability 

to handle sequential and temporal data. Unlike standard feedforward neural networks, 

they have a memory component that allows them to store information over long time 

periods. LSTM NNs are well-suited for modeling complicated temporal relationships in 

sequential data because of this memory mechanism and the capacity to selectively forget 

and update information. They may provide a helpful way for capturing the temporal 

dynamics and patterns inherent in muscle activation sequences in the context of sEMG-

based HRI systems, allowing for more accurate and precise control of robotic devices [6]. 

 

In this chapter, it will be explored how feedforward DNNs and LSTM NNs may 

be used to decode sEMG signals and provide intuitive control of robotic equipment. How 

to construct and train these network architectures for sEMG signal processing will be 

explained; network structure layout, hyperparameter selection, and training techniques 
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will be covered. In addition, the assessment measures used to analyze the precision, 

reliability, and responsiveness of the models will be presented. 

 

3.4.1 Deep Feedforward model implementation 

 

The complete Python script of both Feedforward and LSTM NN algorithms 

implemented (models script) can be found in the corresponding appendices’ subsection 

(see Section 8.2). Subsequently, the script is broken down step by step to explain how it 

works. 

 

The models script defines first a feedforward neural network algorithm using the 

PyTorch library, an established deep learning tool for creating and training neural 

networks [18]. Before anything else, it imports the mentioned library and then, it 

constructs a class called NN, which derives from the torch.nn.Module class; it serves as 

the neural network model's template. The following methods are available in the NN class 

[18]: 

• The __init__ function is the class’s constructor. It demands various arguments: 

o input_dim: It corresponds to the input dimension or the number of 

features in the dataset (the default value is set to 8, since the acquiring 

system has 8 built-in input channels). 

o hidden_units: It defines the number of neurons or units in the hidden 

layers (the default value is set to 32). 

o out_dim: It matches the number of output dimensions or classes to use 

(the default value is fixed to 3, since the NN is designed to learn the 

mappings for 3 different grasps). 

o num_layers: The total number of neural network layers, including input 

and output layers (the default value is set to 3). 

The super().__init__() line invokes the parent class’s constructor 

(torch.nn.Module). The next lines assign the specified values for input 

dimensions, hidden units, output dimensions, and the number of layers to instance 

variables of the NN class. Afterwards, the layers variable is initialized as an empty 

list and them, layers are added based on the number of levels and dimensions 

initially defined [18]: 



 28 

o The first layer is built, which is a fully connected layer that maps the input 

dimensions to the hidden units; this layer's activation function is ReLU. 

o The same fully linked layer is added num_layers - 2 times for the 

intermediate layers (except the first and last layers), and ReLU activation 

is done after each layer. 

o The final layer is then generated, which represents the completely linked 

layer that maps the hidden units to the output dimensions; this layer's 

activation function is Sigmoid. 

• The forward method implements the neural network's forward pass function. It 

starts with an input tensor x and successively sends it across each layer, applying 

the layer's transformation on the input. The ultimate output of the forward pass is 

the output of the final layer. 

 

In a nutshell, this part of the models script constructs a feedforward neural network 

with adjustable input dimensions, hidden units, output dimensions, and layer count. It 

employs fully linked layers for the hidden layers with ReLU activation functions and a 

Sigmoid activation function for the output layer, while the forward method executes the 

network's forward pass. 

 

3.4.2 Long Short-Term Memory model implementation 

 

The models script defines a Long Short-Term Memory neural network using the 

PyTorch library imported [18]. First, it defines the LSTM class, which derives from the 

torch.nn.Module class. It serves as the LSTM network model's foundation. The 

following methods are available in the LSTM class [18]: 

• The LSTM class's constructor is the __init__ function. It demands various 

arguments: 

1. input_dim: It corresponds to the expected number of features in the 

dataset (the default value is set to 8, since the acquiring system has 8 built-

in input channels). 

2. hidden_units: It defines the number of features contained in the hidden 

state (the default value is set to 32). 
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3. out_dim: It matches the number of output dimensions or classes to be 

returned (the default value is fixed to 3, since the NN is designed to learn 

the mappings for 3 different grasps). 

4. num_layers: The total number of repeating layers in the neural network 

(the default value is set to 1). 

The super().__init__() line invokes the parent class’s constructor 

(torch.nn.Module). The next lines assign the specified values for input 

dimensions, hidden units and the number of layers to instance variables of the 

LSTM class [18]. 

Afterwards, the lstm variable is initialized as an instance of torch.nn.LSTM, 

which represents the network's LSTM layer. While created, the input_dim, 

hidden_units and num_layers parameters are passed, as well as batch_first is 

set to true, meaning that the batch dimension of the input tensor will be the first 

dimension [18]. 

Moreover, as an instance of torch.nn.Linear, the linear variable is initialized, 

denoting a completely linked layer. Because the output of the LSTM layer is 

transmitted through this linear layer, the in_features is set to hidden_units. Also, 

the out_features parameter has been set to out_dim, which represents the number 

of output classes [18]. 

• The forward method implements the neural network's forward pass computation. 

It takes a tensor x as input and performs the following: 

1. Based on the geometry of the input tensor, determine the batch size. 

2. Initialize the original hidden state h0 and cell state c0 to zeroes; the LSTM 

layer requires these states in order to maintain track of the temporal 

dependencies. 

3. The input tensor and starting states are passed to the LSTM layer 

(self.lstm). The result is a tuple that contains the output tensor as well as 

the final hidden and cell states. 

4. To retrieve the final output, extract the final hidden state hn from the tuple 

and feed it through the linear layer (self.linear). 

5. The output tensor is returned. 

 

Overall, this part of the models script constructs an LSTM network with 

adjustable input dimensions, hidden units, output dimensions, and layer count. For feature 
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labeling in the myoelectric dataset, it employs an LSTM layer followed by a linear layer, 

while the forward method executes the network's forward pass. 

 

3.4.3 Neural Networks’ training 

 

The complete Python script containing the code corresponding to the training of 

both Feedforward and LSTM NN algorithms (train script) can be found in the 

corresponding appendices’ subsection (see Section 8.2). Subsequently, the script is broken 

down step by step to explain how it works. 

 

The train script is developed so that a predefined NN can learn the mappings of the 

sEMG signals from different grasping actions, given a training dataset (this script is 

shared for both Feedforward and LSTM training implementation). The script first 

imports the necessary modules and classes for the model training and assessment; it 

imports modules such as numpy for numerical computations [11], torch for neural 

network training [18], random for random number generation [17], and tqdm for 

progress bars [19], as well as essential classes defined in the models and dataset scripts 

(the dataset script can be found at the section 8.1 from the appendices chapter, with an 

attached description of its purpose). Then we can find the following methods for 

performing the NN training: 

• The set_seeds function is in charge of generating random seeds for various 

libraries in order to assure repeatability of findings. The following random 

seeds have been defined [11],[17],[18]: 

o torch.backends.cudnn.deterministic = True: This line assures that 

CuDNN (CUDA Deep Neural Network library) actions are 

deterministic; it is a GPU-accelerated deep neural network library used 

by PyTorch. By setting this value to True, it makes cuDNN operations 

predictable, which means that the same input will yield the same result 

every time the code is performed, which is critical for repeatability. 

o torch.backends.cudnn.benchmark = False: Disables the benchmark 

mode in cuDNN, which automatically identifies the optimum method 

for the present hardware configuration and input size. However, the 

method used may differ across runs, resulting in non-deterministic 
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behavior. Therefore, the benchmark mode is disabled, providing 

consistent behavior across runs. 

o torch.manual_seed(seed): It sets the random seed for PyTorch's 

CPU-based random number generator. By using the same seed, the 

sequence of random integers created by PyTorch will be consistent 

between code runs. 

o torch.cuda.manual_seed_all(seed): It configures the random number 

generator used by PyTorch on the GPU (if one is available). By using 

the same seed, it assures that the random number generation on the 

GPU is likewise repeatable. 

o np.random.seed(seed): It sets the random seed for NumPy's random 

number generator. Because many operations in the code use NumPy 

functions, establishing the seed guarantees that these actions provide 

consistent results across runs. 

o random.seed(seed): Sets the random seed for Python's built-in 

random number generator. It assures that any further operations in the 

code involving random integers that are not covered by the preceding 

seeds are repeatable. 

Overall, the set_seeds function generates a deterministic environment for 

random number generation by establishing the seeds in this manner, 

guaranteeing that the results acquired during model training and assessment 

are consistent and reproducible. 

• The train_model function is in charge of training the neural network model 

using the training data given. Four arguments are required by the function: the 

data_loader object that performs batch iterations on the training dataset, the 

model object, which corresponds to the neural network model that will be 

trained, the loss_function that is used to compute the training loss and the 

optimizer, that is in charge of adjusting the model's parameters depending on 

the obtained gradients. 

To begin, the function determines the total number of batches in the training 

data (num_batches). It also creates the variable total_loss to keep track of the 

entire loss during training. The model.train() call places the model in training 

mode, allowing features such as dropout and batch normalization if they are 

present [18]. 
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Afterwards, the function runs a training loop across the data loader's batches 

of data. It iterates through the following stages for each batch [18]: 

1. By running the input data (x) through the model, the model's output 

(output) is computed. 

2. Using the supplied loss function, computes the loss between the 

model's output and the target labels (y). 

3. The gradients of the model's parameters are reset 

(optimizer.zero_grad()). 

4. The loss is backpropagated to compute the gradients of the model's 

parameters (loss.backward()). 

5. The model's parameters are updated depending on the estimated 

gradients (optimizer.step()). 

6. The loss value (loss.item()) is added to the total_loss variable. 

The function determines then, the average training loss after finishing the 

training loop by dividing the total_loss by the total number of batches 

(num_batches), which is finally printed and returned. 

In summary, the train_model function trains the neural network model using 

the training data supplied. It iterates over the data batches, computes the 

model's output, calculates the loss, backpropagates, and adjusts the model's 

parameters using the supplied optimizer. It adds the loss values together and 

delivers the average training loss. 

 

Finally, the if __name__ == "__main__" block is the entry point of the script. It 

comprises the fundamental logic that is implemented when the script is run right away. 

The block begins by establishing a base configuration in the form of a dictionary: the 

batch size, learning rate, number of hidden units, random seed, number of training 

iterations, device used (CPU or GPU), downsample rate, dataset name, subject, and 

network type (either "lstm" or "nn") are all included. These settings can be changed for 

customizing the training process. 

Then, the random seed from the basic configuration is sent to the set_seeds method. This 

assures that the script's random number generation is repeatable, as mentioned in the 

earlier description of the set_seeds function. Afterwards, the pickle file path for uploading 

the dataset is defined using the dataset name and subject from the basic configuration.   
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Once the previous steps are completed, both training and validation datasets can be 

generated using the cross_validation_out function included in the DataPreProcessing 

class in a “for loop”, which allows to create different divisions of the whole available 

data, providing every time one of the six different gestures’ repetitions as the validation 

dataset and the other five as the training set. The processed datasets are then returned and 

assigned to the variables dataset_train and dataset_val according to the selected 

network type, which are generated with the corresponding imported classes from the 

dataset generator script. 

Moreover, the DataLoader class from PyTorch is used to develop data loaders. They 

perform batch iterations on the training and validation datasets, being the batch size 

determined by the initial setup. The num_workers option sets the number of 

subprocesses used for data loading, and shuffle controls whether or not the data is 

shuffled during training [18].  

Subsequently, an NN (feedforward)  or LSTM model is constructed based on the network 

type chosen in the basic configuration, as well as the number of hidden units and layers 

supplied. Then, Torch.nn.MSELoss() is used to generate the mean squared error (MSE) 

loss function, as well as the model's parameters, that are defined to be optimized using 

the Adam criterion, where the learning rate is set by the base configuration [18]. 

To finish the loop, depending on the number of training iterations (base_config["iters"]) 

and the size of the training dataset, the total number of epochs is determined. To keep the 

training and validation losses for each epoch, a dictionary log_dict is established. 

Using the range function, the script begins a loop across the epochs. The train_model 

function is invoked for each epoch to train the model on the training data, passing the data 

loader, model, loss function, and optimizer, while the training loss is saved in loss_train. 

Similarly, the val_model function is invoked to assess the model against the validation 

data, and the validation loss is saved in loss_val; training and validation losses are stored 

in the log_dict dictionary for each epoch. 

Last but not least, the script generates a dictionary state that includes both model's state 

and training log dictionaries as well as the basic initial configuration and, employs 

torch.save to store this state dictionary as a checkpoint file [18]. 

 

After executing the train script successfully, the chosen neural network can be 

considered to be trained, generating six different trained models where each one was 

trained using a different training dataset created with the cross_validation_out function. 



 34 

The performance of this process is measured throughout the training loop, and it is 

addressed in the next section. 

 

3.4.4 Performance evaluation 

 

The script's training procedure focuses on developing a neural network model for 

sEMG-based myoelectric control of a robotic hand. To ensure the efficacy of the training, 

the performance of the training process must be evaluated.  

 

The training process is evaluated by computing two essential metrics: the training 

loss and the validation loss. These metrics indicate how effectively the model learns 

during training and how well it generalizes to previously unknown data (note that this 

evaluation is done in order to have an instant insight of the model’s performance so that 

it can be easily tuned after running the script, a further general analysis of the models’ 

performance after the training process is done in the following results chapter). 

 

The training loss, calculated within the train_model function, quantifies the 

difference between the model's anticipated outputs and the true labels for the training 

data. It is calculated using the Mean Squared Error (MSE) loss function in the script; it is 

calculated batch per batch, and the average loss across all batches is presented for the six 

different generated models after training them. 

 

The validation loss, evaluated by the val_model function, measures how well the 

model performs on a different validation dataset that is not used for training. It provides 

an assessment of how effectively the model generalizes to previously unknown data. The 

MSE loss function, similar to the training loss, is used to compute the validation loss; it 

is also calculated batch by batch, with the average loss provided across all batches for the 

six different generated models after training them. 

 

Furthermore, the training and validation losses for each epoch are saved in a log 

dictionary, which documents the training process's progress. This log keeps a thorough 

record of how the losses change over time, providing insights into the model's learning 

dynamics which will be used later to determine if the model actually learns the mappings 

improving the labeling predictions after more epochs are performed. 
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In a nutshell, the script's evaluation of training process performance is based on a 

study of training and validation loss. By monitoring these losses throughout the training 

loop, it is possible to make educated judgments about model selection, hyperparameter 

tuning, and the overall performance of the myoelectric control neural network for 

controlling a robotic hand using sEMG signals. 

 

 

4. Results 

 

In this chapter, the outcomes of the machine learning algorithms mentioned in the 

previous chapter's implementation are provided; there can be found the findings of the 

conducted experiments and analyses. The chapter is divided into two sections, given in 

the following order: the performance on sEMG signals of the developed machine learning 

models, and afterwards, the comparison of both machine learning techniques’ 

performance. 

 

The first part exposes the evaluation results of Feedforward and LSTM deep 

neural networks performance for the self-supervised regression of sEMG data, separately. 

On the other hand, the second part compares both machine learning methods’ functioning 

in order to decide which would be a better approach for the given study case. 

 

Overall, this chapter gives a thorough analysis of the findings from the tests 

carried out in this study. This work adds to the understanding of the effectiveness of 

machine learning methods for self-supervised regression of sEMG signals and its possible 

potential in robotic hand control. 

 

4.1 Performance of ML models on sEMG signals 

 

The whole Python script containing the code corresponding to the evaluation of 

the trained NNs’ performance for predicting the neural drive features given a validation 

sEMG signals dataset (predict script) can be found in the corresponding appendices’ 
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subsection (see Section 8.3). Subsequently, the graphical results generated by the script 

are displayed for their analysis. 

 

First, the training and validation losses from the last trained Feedforward model 

evaluation are plotted, as well as the actual and predicted labels by the algorithm, 

generating the following graphs: 

 

 
Figure 8: Actual vs Predicted neural drives for trained Feedforward DNN 
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Figure 9: Training vs validation RMSE losses for Feedforward DNN 

 

In the plot shown in figure 9, a decreasing tendency of the computed training and 

validation MSE losses can be seen, meaning that the algorithm actually works as it should, 

improving the feature extraction’s precision between epochs of the method. The fact that 

the algorithm indeed does the job reasonably is also depicted in the plot of figure 8, where 

the generated neural drive follows the tendency of the label previously generated with the 

NMF method, that is considered the ground-truth for the ML application. 

 

It is noticeable that the training loss starts at bigger values than the validation loss 

which actually makes sense, taking into account that, even though the validation dataset 

contains completely new data that is given to the algorithm for the first time, the NN has 

already been trained with “similar” data that can differ due to the nature of the signals, 

such as the physiological variability for the different sEMG recordings, making it easier 

for the ML method at the beginning, while having a similar precision outcome at the end. 

 

Afterwards, the performance assessment of the Long Short-Term Memory 

algorithm is done in the same way as described for the Feedforward algorithm’s analysis, 

leading to generate the following plots: 
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Figure 10: Actual vs Predicted neural drives for trained LSTM NN 

 

 
Figure 11: Training vs validation RMSE losses for LSTM NN 

 

In the plot shown in figure 11, a decreasing tendency of the computed training and 

validation MSE losses is also seen as in the case of the DFNN, meaning that the algorithm 
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actually works as well, enhancing the feature extraction’s accuracy between epochs of the 

method. The fact that the algorithm does a reasonable job is also demonstrated in figure 

10, where the produced neural drive is comparable to the label previously created using 

the NMF approach, which serves as the verification fact for the ML application. 

 

Similarly to the DFNN performance, the training loss begins at larger values than 

the validation loss, which has again a logical reasoning considering that, while the 

validation dataset includes completely new data that is provided to the algorithm for the 

first time, the NN has already been trained with "comparable" data that can diverge 

because of the characteristics of the signals, such as physiological variability for the 

different subjects' sEMG recordings, making it more simple for the ML method to learn 

at the starting point, while achieving a similar level of accuracy in the final stages. 

 

 Overall, both ML algorithms have been able to compute a suitable mapping for 

decoding the neural drives given a set of sEMG signals for a posterior control of a robotic 

hand. In the next section, both performances will be compared in order to make a founded 

decision about which method would be more fitting in order to tackle this particular study 

case. 

 

4.2 Comparison of the machine learning algorithms 

 

The predict script performs a validation test on both Feedforward and LSTM 

algorithms, where the Root-Mean-Square Error is computed for each different trained 

models and the average value of the six results is then represented as a bar plot for each 

algorithm, as well as a confidence interval that is displayed in black for both cases,  

allowing a graphical comparison of both machine learning algorithms’ performance by 

means of the validation loss parameter. Subsequently, the graphical results generated by 

the script are displayed for their analysis. 
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Figure 12: Feedforward vs LSTM NNs’ average RMSE Loss 

 

 As it can be seen in figure 12, both algorithms performed pretty similarly, even 

though they have such different architectures. On the one hand, the typical Deep 

Feedforward Neural Network was able to predict the neural drives from the sEMG signals 

with a precision higher than 95% with respect to the actual one, which is indeed reflected 

in the blue bar plot where the average RMSE loss is lower than 0.05 (5% error). On the 

other hand, the proposed alternative of the Long Short-Term Memory Neural Network 

actually scored a slightly higher average RMSE loss, of value barely higher than 0.05 (5% 

error), meaning that the algorithm almost reached a 95% precision in predicting the neural 

drives from the sEMG signals that would be then translated into control commands for a 

robotic hand. 

 

 To sum up, it was shown that given the hyperparameters’ selection and the number 

of epochs performed during the training sessions among other factors, both neural 

architectures were able to learn the mappings for predicting the desired neural drives from 

sEMG readings with a remarkable accuracy, giving a special mention to the Feedforward 

NN for achieving a hardly better performance doing this job. In the following section, the 
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results that were just exposed will be discussed for providing an answer to this study case, 

which will lead then to concluding the work done.  

 

 

5. Discussion 

 

The present chapter of the thesis, which refers to the discussion, acts as a complete 

examination of the research project's important results. It strives to critically examine the 

experimental data and offer a detailed interpretation of their relevance, while taking into 

account the study's limitations. 

 

The relevance of the findings acquired from the various machine learning 

algorithms examined in the previous chapter will be investigated. The causes behind the 

observed performance variations across the algorithms will be studied, while 

recommending areas for development. 

 

Furthermore, this chapter recognizes the study's shortcomings and proposes 

possible topics for further research in the subject. Overall, this chapter presents a critical 

assessment on the research effort and its consequences, with the goal of adding to the 

knowledge in the field of sEMG-based robotics. 

 

5.1 Implications of the findings 

  

When it comes to the findings previously exposed about the training of both 

Feedforward and LSTM Neural Networks, an exponential decay of the training loss can 

be seen (as shown in figures 9 and 11), meaning that epoch after epoch that was performed 

throughout the architecture of the algorithms, a substantial improvement was achieved 

when it comes to learning the mappings between the provided sEMG signals and the 

desired neural drives’ predictions. 

 

On the one hand, the Feedforward NN architecture was comprised of the 

following elements (notice that the following parameters’ definition is flexible depending 
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on the algorithm’s application and the selection criteria should be focused on the 

optimization of the output’s precision): 

• An input layer with a dimension of 8, meaning that it contains 8 different 

nodes where each one represents one input channel corresponding to the 8 

pairs of electrodes that were used for the data acquisition. 

• A hidden layer containing a total of 32 units, meaning that the intermediate 

step for learning the mappings of the signals contains 32 neurons that are used 

to compute the weights associated with the relationship between the input and 

output values. 

• An output layer with a dimension of 3, where each node represents a neural 

drive corresponding to the 3 different grasp motions that are considered in the 

study to be then performed by a robotic hand. 

By defining this structure in particular, the algorithm was able to be trained progressively 

in such a way that when a different/new set of data was provided (that is the validation 

dataset generated during the training process), it was able to predict also with an 

improving accuracy over the iterative process, meaning a decrease of the computed loss 

between the output and the provided labels for each grasp, the wanted neural drives (as 

shown in figure 9). 

 

On the other hand, the Long Short-Term Memory NN architecture was comprised 

of the following elements (again, notice that the following parameters’ definition is 

flexible depending on the algorithm’s application and the selection criteria should be 

focused on the optimization of the output’s precision): 

• An input layer with a dimension of 8, meaning that there are 8 different features 

or input values in the NN where each one represents one input channel 

corresponding to the 8 pairs of electrodes that were used for the data acquisition. 

• An LSTM layer containing a total of 32 units, meaning that the intermediate step 

for learning the mappings of the signals contains 32 memory cells that are used to 

analyze the sequential input data and record the data's long-term relationships for 

computing the final output values of the algorithm. 

• An output layer with a dimension of 3, where the hidden states returned by the 

LSTM layer are received to generate 3 different final outputs that represent the 
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neural drives corresponding to the 3 different grasp motions that are considered 

in the study to be then performed by a robotic hand. 

By establishing this structure specifically, the algorithm managed to be trained gradually 

in such a manner that when a different/new set of data was given (that is, the validation 

dataset generated during the training process), it also became able to predict with 

an increasing precision over the course of the iterations, indicating a decrease in the 

estimated loss between the output and the provided labels for each grasp, the desired 

neural drives (as shown in figure 11). 

 

Overall, both algorithms showed a reasonable capacity to learn the mappings 

between the acquired sEMG signals and the neural drives corresponding to the performed 

grasp activities, making them possible solutions to tackle the problem of sEMG signals 

regression for the control of a robotic hand. 

 

Finally, a graphical comparison of both architectures’ performance was generated 

in order to discriminate between them to decide which would be a better fit for achieving 

the goal of a robotic hand control with the best possible accuracy.  

 

According to the bar plot showed in figure 12, the prediction’s precision of the 

neural drives executed by both algorithms is tightly similar, with a slight advantage of the 

Feedforward NN that scored a hardly lower Root-Mean-Square Error loss in average 

between the six different trained models for each case. 

 

Apparently, the LSTM NN architecture would be less appropriate for this study 

case, but given the fact that several factors regarding the particular structure selection 

may have a decisive impact on the results, which did not differ that much from the ones 

obtained by the Feedforward NN, there is no clear and absolute proof that the latter is 

indeed the best option. Nevertheless, strictly analyzing the obtained results, it could be 

said that the Feedforward algorithm may be the best approach given the limitations of the 

study, with room for improvement in both cases that will be discussed throughout the 

following section. 
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5.2 Future research directions 

 

According to the performed work along with its limitations, an extended 

refinement of several aspects regarding the architectures’ structure, algorithms 

implementation and parameters’ selection could be carried out in succeeding research 

efforts about the sEMG-based control of robotic hands using the proposed approach. 

Some directions to be taken into account could be the following: 

• The general architecture of both algorithms could be improved by increasing the 

number of hidden layers, as well as the number of neurons/units with which these 

are constituted, for creating deeper networks capable of learning more complex 

mappings for the neural drives’ regression. Notice that this approach could 

escalate the computational cost for training the algorithm, to an extent in which it 

could be unviable to generate a response feasibly. 

• The implementation of an inner cross-validation loop would be the next step when 

it comes to selecting the algorithms’ parameters, since it would allow the 

optimization of the values that take the variables defining the structure of the 

selected methods. 

• Another sensitive factor to take into account would be the sequence length with 

which the time series dataset is broken down into batches to be fed to the LSTM 

algorithm. A fine tuning of this parameter could lead to an enhancement of the 

neural network’s outcome quality. 

• Moreover, regarding the LSTM algorithm implemented in this study case, a basic 

version of the architecture was taken into account but, according to [9], several 

variations have been developed which have shown an enhanced performance in a 

variety of applications. This path could also be explored for trying to implement 

a version that better fits the nature of sEMG signals. 

 

Overall, several possible directions have been stated for improving the performance 

of both algorithms and carrying out a more precise analysis and educated judgement of 

which approach could be more suitable for this particular study case. 
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6. Conclusion 

  

This final chapter summarizes the discussion of the introduction's questions and 

objectives of the study, being the main goal of the section to expose if these aims were 

met. It also intends to show how the research findings contribute to the area of sEMG-

based robotics, as well as how the insights acquired from this study may be used to actual 

real-world applications. 

 

6.1 Summary of the key findings 
 

The research efforts accomplished in this paper focus on the report of the 

performance achieved by the proposed Machine Learning algorithms, both a Feedforward 

Neural Network and a Long Short-Term Memory Neural Network, in the job of carrying 

out a regression technique on a pre-acquired set of surface electromyographic signals for 

the further estimation of the neural drives corresponding to different hand-grasping 

movements for the myoelectric control of a robotic hand. 

 

The obtained sEMG dataset, containing the readings of the electrodes’ input 

channels, was divided in both training and a validation sets by means of an outer cross-

validation loop. Several models based on the intended ML algorithms were trained with 

the corresponding datasets, which showed a promising ability learning the mappings 

between the sEMG signals and the expected neural drives’ labels that would be then used 

for predicting neural drives given a new validation dataset. 

 

Once the models were trained, the performance of both architectures was then 

measured by means of the average between the Root-Mean-Square Error losses of the 

different models’ outputs when predicting the neural drives given the mentioned sEMG 

validation dataset. A high and consistent accuracy was shown by both ML algorithms, 

where the Feedforward NN barely outperformed the LSTM NN for the particular 

architecture design and parameters’ selection done in this study case. 

 

To conclude, the experimental evaluation of the algorithms’ performance was 

utterly useful to shed light on the profitability and convenience that can be gained from 
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the usage of the proposed architectures for the task of regression regarding sEMG signals 

for developing a natural and user-friendly Human-Robot Interface capable of controlling 

a robotic hand’s multi-grasp gestures. 

 

6.2 Practical applications and contributions to the field 

 

The development of this thesis is intended to have a positive impact on the topic 

of sEMG-based robotic hand control, expanding the current knowledge available for the 

community and promoting the persistence in developing new interfaces that achieve 

greater results. 

 

Regarding the functional applications that could benefit from the stated 

implementation and analysis of the chosen Machine Learning architectures, several fields 

of domain can be taken into account: prosthetic devices and assistive technologies, where 

enhanced control algorithms can increase the efficiency and naturalness of prosthetic 

hands, allowing for a wider range of grip patterns with more precision, making patients' 

everyday tasks easier and thereby enhancing their quality of life; industrial production 

systems in which the profitability, precision, and quality of automated operations in 

industrial settings that demand dexterous manipulation may be improved while 

decreasing recurring human labor, resulting in cost savings and overall production 

enhancement; finally, teleoperation in hazardous environments, in which the algorithms 

might enable and improve an accurate remote control of robotic hands for functioning in 

potentially dangerous environments for people, such as radioactive locations, disaster 

response scenarios, underwater operations, or space exploration.  

 

Weighing up the facts stated throughout the preceding chapters, some 

contributions that could be extracted from this thesis work may be the following: the 

design of more accurate and solid feature extraction algorithms for sEMG-based control 

interfaces, an understanding of the appropriateness and efficacy of the chosen algorithms 

in multi-grasp robotic hand control, and the statement that applying deep neural networks 

to sEMG-based control can result in more smooth and sensitive interactions, improving 

the overall user experience and accessibility of the systems. 
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8. Appendices 

 

8.1 Code implementation and description of dataset building and preprocessing 

 

Dataset Python script (Dataset generation and prior preprocessing) 

 

import numpy as np 

import torch, pickle, copy 

import matplotlib.pyplot as plt 

 

 

class DataPreProcessing(object): 

    def __init__(self, pickle_path): 

        self.data_dict = self.load(pickle_path) 

 

    def get_data(self): 

        data = np.hstack([self.data_dict[k]["Xn"] for k in self.data_dict.keys()]) 
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        label = np.hstack([self.data_dict[k]["Tn"] for k in self.data_dict.keys()]) 

        return data, label 

 

    def cross_validation_out(self): 

        keys = list(self.data_dict.keys()) 

        for k in keys: 

            train_data, val_data, train_label, val_label = [], [], [], [] 

            for z in keys: 

                if z != k: 

                    train_data.append(self.data_dict[z]["Xn"]) 

                    train_label.append(self.data_dict[z]["Tn"]) 

                else: 

                    val_data = self.data_dict[z]["Xn"] 

                    val_label = self.data_dict[z]["Tn"] 

 

            yield copy.deepcopy(train_data), copy.deepcopy(val_data), 

copy.deepcopy(train_label), copy.deepcopy(val_label) 

 

    def load(self, path): 

        with open(path, "rb") as handle: 

            b = pickle.load(handle) 

            return b 

 

 

class EMGData(torch.utils.data.Dataset): 

    def __init__(self, data, label, downsample=True, rate=4): 

        self.data = data 

        self.label = label 

 

        if downsample: 

            self.data, self.label = self.downsample(self.data, self.label, rate) 

 

        self.data = copy.deepcopy(self.data.T) 

        self.label = copy.deepcopy(self.label.T) 

 

    def downsample(self, data, label, rate): 
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        data = data[:, ::rate] 

        label = label[:, ::rate] 

        return data, label 

 

    def __len__(self): 

        return len(self.data) 

 

    def __getitem__(self, idx): 

        datum = torch.from_numpy(self.data[idx].T).float().unsqueeze(0) 

        label = torch.from_numpy(self.label[idx].T).float().unsqueeze(0) 

        return datum, label 

 

 

class EMGDataSeq(torch.utils.data.Dataset): 

    def __init__(self, data, label, downsample=True, rate=10, sequence_length=64): 

        self.data = data 

        self.label = label 

        self.sequence_length = sequence_length 

 

        if downsample: 

            self.data, self.label = self.downsample(self.data, self.label, rate) 

 

        self.data_ready = [] 

        self.label_ready = [] 

        for i in range(self.data.shape[2]): 

            i_end = i + self.sequence_length 

            if i_end < self.data.shape[2]: 

                x = self.data[:, i:i_end] 

                y = self.label[:, i_end] 

                self.data_ready.append(x) 

                self.label_ready.append(y) 

 

        self.data_ready = np.array(self.data_ready).T 

        self.label_ready = np.array(self.label_ready).T 

 

    def downsample(self, data, label, rate): 
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        data = data[:, ::rate] 

        label = label[:, ::rate] 

        return data, label 

 

    def load(self, path): 

        with open(path, "rb") as handle: 

            b = pickle.load(handle) 

            return b 

 

    def __len__(self): 

        return self.data_ready.shape[-1] 

 

    def __getitem__(self, idx): 

        x = self.data_ready[:, :, idx] 

        y = self.label_ready[:, idx] 

 

        x = torch.from_numpy(x).float() 

        y = torch.from_numpy(y).float() 

        return x, y 

 

 

if __name__ == "__main__": 

    # DATA 

    with open("dataset_ar10/subj1.pickle", "rb") as f: 

        data_subj = pickle.load(f) 

    data = data_subj[0]["Xn"] 

    label = data_subj[0]["Tn"] 

    print(f"data shape: {data.shape}, label shape: {label.shape}") 

 

    # DATASET LSTM 

    dataset = EMGDataSeq(data, label, downsample=True, rate=10, sequence_length=64) 

    print("dataset length: ", len(dataset)) 

 

    # DATASET NN 

    dataset = EMGData(data, label, downsample=True, rate=10) 

    print("dataset length: ", len(dataset)) 
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The supplied Python script addresses data preparation and dataset generation for 

training the ML algorithms used for the sEMG-based myoelectric control of robotic 

hands. Following that, the various elements of the script are discussed in order to 

comprehend how they work.  

 

The script begins by loading the required libraries, which include numpy for 

numerical calculations [11], torch for deep learning [18], pickle for serialization [14], 

and matplotlib for charting [12]. Data loading and preparation are handled by the 

DataPreProcessing class. During the initial setup, it accepts a path to a pickle file as 

input. The pickle file contains a data dictionary as well as labels for various samples. The 

following methods are available in the class: 

• get_data(): Concatenates the data and labels from all the pickle file samples and 

returns them as independent arrays. 

• cross_validation_out(): A cross-validation outer loop is implemented. It 

generates six different training and validation data packages, as well as labels, 

where out of the six available recorded grasp repetitions, one is taken as the 

validation recording and the other five as the training recording, varying within 

the loop which one is the validation one. 

• load(): Loads the pickle file from the specified directory and returns the data as a 

dictionary. 

 

The dataset generation for training a neural network is represented by the 

EMGData class. During startup, it accepts preprocessed data and labels as the input. It 

employs the following techniques: 

• downsample(): By a given factor, reduces the sampling rate of the data and labels. 

• __len__(): This function returns the number of samples in the dataset. 

• __getitem__(): It retrieves a single sample from the dataset. 

 

The EMGDataSeq class provides a sequential dataset used to train an LSTM 

recurrent neural network. During startup, it accepts preprocessed data and labels as input, 

along with additional settings such as downsampling rate and sequence length. It employs 

the following methods: 

• downsample(): By a given factor, reduces the sampling rate of the data and labels. 
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• load(): Loads the pickle file from the specified directory and returns the data as a 

dictionary. 

• __len__(): This function returns the number of sequences in the dataset. 

• __getitem__(): Retrieves a particular sequence from the dataset. 

 

Finally, the main script gets started by reading data and labels from a pickle file and 

then, they are extracted and printed. Afterwards, the data and labels are sent to an instance 

of the EMGDataSeq class, along with additional parameters such as downsampling rate 

and sequence length. Then, using the same data and labels but without the sequence 

information, an instance of the EMGData class is constructed, executing the building of 

a dataset for both LSTM and Feedforward NNs. 

 

8.2 Code implementation of factorization and deep learning algorithms 

 

Mapping Python script ( Precalculated synergy matrix and activation vectors ) 

 

import numpy as np 

 

class AlphaMatrix(): 

    ar10 = np.array([[4.0504, 2.5198, 2.5198], 

                     [-0.0000, -1.5981, 1.1627], 

                     [0.7030, 1.5981, 1.1627]]) 

 

class SynMatrix(): 

    ar10 = np.array([[0.3386, 0.3536, -0.1017], 

                     [0.3386, 0.3536, -0.1017], 

                     [0.3386, 0.3536, -0.1017], 

                     [0.3386, 0.3536, -0.1017], 

                     [0.3386, -0.3536, -0.1017], 

                     [0.3386, -0.3536, -0.1017], 

                     [0.3386, -0.3536, -0.1017], 

                     [0.3386, -0.3536, -0.1017], 

                     [0.2649, -0.0000, 0.8819], 

                     [0.1122, -0.0000, 0.3735]]) 
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These arrays correspond to a previous necessary analysis of the robotic hand that 

is intended to be used after developing the sEMG-based HRI, which in this case is the 

AR10 Hand as mentioned in the experimental setup section (see section 3.1).  

 

According to [10], the grasp synergy matrix (stored in the ar10 variable inside the 

SynMatrix() class) was computed in line with the notion of postural synergies in order 

to allow management of the closure level of power, tripodal and ulnar grasps. This was 

done by applying a method called Principal Component Analysis on a matrix containing 

the vectors corresponding to the different joint angles configurations of each maximum 

closure level regarding each grasp type. 

 

Since, the synergy matrix corresponds to an orthonormal basis of the robot hand 

configuration space, the vectors of synergy activations corresponding to the maximum 

closure level of power, tripodal and ulnar grasps (stored in the ar10 variable inside the 

AlphaMatrix() class) can be then computed as the product between the pseudo-inverse 

of the synergy matrix and the joint angles configuration matrix [10].  

 

This script is intended to contain the synergy and synergy activation matrixes for 

different robotic hands, so that a customized study can be performed as it is reflected in 

the subsequent scripts, where different alpha_types can be used according to the desired 

robotic hand analysis implementation. 

 

Labeling Python script (NMF algorithm implementation) 

 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn.decomposition import NMF 

import pickle, os, scipy.io, random 

import copy 

 

from mapping import AlphaMatrix 

 

 

class NMF_Routine(): 
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    @staticmethod 

    def _nmf(X): 

        model = NMF(n_components=2, init='random', random_state=None, solver="mu", 

max_iter=1000, beta_loss="kullback-leibler") 

        W = model.fit_transform(X) 

        return W, model.components_  # latent 

 

    @staticmethod 

    def compute(X, n_rep=10, diff_signal=True): 

 

        _, H = NMF_Routine._nmf(X) 

 

        # repeat NMF routine n_rep times for better smoothing 

        for _ in range(n_rep): 

            _, H = NMF_Routine._nmf(H) 

 

        # check shape H high/low -> signal should be high -> low -> high 

        if H[0, 0] - H[1, 0] < 0: 

            H = H[[1, 0], :]  # swap 

 

        # normalization of each signal 

        Hn = (H.T / np.max(H, axis=1)).T  # 2 x timestep 

 

        if diff_signal: 

            S = Hn[1, :] - Hn[0, :] 

        else: 

            S = Hn 

 

        # normalization 0-1 

        Sn = (S - np.min(S)) / np.ptp(S) 

        return Sn 

 

class Labeler(): 

 

    def __init__(self, data_path, alpha_type, diff_signal, n_rep_nmf): 
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        if "ar10" in alpha_type: 

            self.alpha = AlphaMatrix.ar10 

        elif "ub" in alpha_type: 

            self.alpha = AlphaMatrix.ub 

        elif "berrett" in alpha_type: 

            self.alpha = AlphaMatrix.berrett 

        else: 

            NotImplementedError("AlphaMatrix type not available!") 

 

        self.diff_signal = diff_signal 

        self.n_rep_nmf = n_rep_nmf 

        self.data_path = data_path 

 

    def merge_1_signal(self, H_pw, H_pn, H_ul): 

        # column 1 of T 

        alpha1 = np.repeat(self.alpha[:, 0].reshape(-1, 1), repeats=H_pw.shape[-1], axis=1)  # 

repeat signal k times along columns to match h1 dims 

        T1 = np.multiply(alpha1, np.tile(H_pw, (3, 1))) 

 

        # column 2 of T 

        alpha2_rep = np.repeat(self.alpha[:, 1].reshape(-1, 1), repeats=H_pn.shape[-1], axis=1) 

        T2 = np.multiply(alpha2_rep, np.tile(H_pn, (3, 1))) 

 

        # column 3 of T 

        alpha3_rep = np.repeat(self.alpha[:, 2].reshape(-1, 1), repeats=H_ul.shape[-1], axis=1) 

        T3 = np.multiply(alpha3_rep, np.tile(H_ul, (3, 1))) 

 

        return np.hstack([T1, T2, T3]) 

 

    def merge_2_signals(self, H_pw, H_pn, H_ul): 

 

        alpha_bar = np.zeros((self.alpha.shape[0] * 2, self.alpha.shape[2])) 

        alpha_bar[0:2, :] = np.repeat(self.alpha[0, :].reshape(1, -1), repeats=2, axis=0) 

        alpha_bar[2:4, :] = np.repeat(self.alpha[1, :].reshape(1, -1), repeats=2, axis=0) 

        alpha_bar[-2:, :] = np.repeat(self.alpha[2, :].reshape(1, -1), repeats=2, axis=0) 
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        # column 1 of T 

        alpha1 = np.repeat(alpha_bar[:, 0].reshape(-1, 1), repeats=H_pw.shape[-1], axis=1)  # 

repeat signal k times along columns to match h1 dims 

        T1 = np.multiply(alpha1, np.tile(H_pw, (3, 1))) 

 

        # column 2 of T 

        alpha2_rep = np.repeat(alpha_bar[:, 1].reshape(-1, 1), repeats=H_pn.shape[-1], axis=1) 

        T2 = np.multiply(alpha2_rep, np.tile(H_pn, (3, 1))) 

 

        # column 3 of T 

        alpha3_rep = np.repeat(alpha_bar[:, 2].reshape(-1, 1), repeats=H_ul.shape[-1], axis=1) 

        T3 = np.multiply(alpha3_rep, np.tile(H_ul, (3, 1))) 

 

        # T 

        T = np.hstack([T1, T2, T3]) 

        print("T matrix: ", T.shape) 

        return T 

 

    def load_data(self, subj_id): 

        # load mat files 

        F_pw = 

np.array(scipy.io.loadmat(f"{self.data_path}/subj{subj_id}_pwr.mat")[f"subj{subj_id}_pwr"

]).squeeze()  # 6 x 1 -> 6 repetitions 

        F_pn = 

np.array(scipy.io.loadmat(f"{self.data_path}/subj{subj_id}_pin.mat")[f"subj{subj_id}_pin"])

.squeeze() 

        F_ul = 

np.array(scipy.io.loadmat(f"{self.data_path}/subj{subj_id}_uln.mat")[f"subj{subj_id}_uln"])

.squeeze() 

 

        F_pw_ref = 

np.array(scipy.io.loadmat(f"{self.data_path}/subj{subj_id}_pwr_ref.mat")[f"subj{subj_id}_p

wr_ref"]).squeeze()  # 6 x 1 -> 6 ripetizioni 

        F_pn_ref = 

np.array(scipy.io.loadmat(f"{self.data_path}/subj{subj_id}_pin_ref.mat")[f"subj{subj_id}_pi
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n_ref"]).squeeze() 

        F_ul_ref = 

np.array(scipy.io.loadmat(f"{self.data_path}/subj{subj_id}_uln_ref.mat")[f"subj{subj_id}_ul

n_ref"]).squeeze() 

        return F_pw, F_pn, F_ul, F_pw_ref, F_pn_ref, F_ul_ref 

 

    def run_subj(self, subj_id, plot=True): 

        F_pw, F_pn, F_ul, F_pw_ref, F_pn_ref, F_ul_ref = self.load_data(subj_id) 

        data_dict = {} 

        for rep in range(len(F_pw)): 

            print("-> rep =", rep) 

 

            print("X | power: {}, pinch: {}, ulnar: {}".format(F_pw[rep].shape, F_pn[rep].shape, 

F_ul[rep].shape)) 

            print("R | power: {}, pinch: {}, ulnar: {}".format(F_pw_ref[rep].shape, 

F_pn_ref[rep].shape, F_ul_ref[rep].shape)) 

            assert F_pw[rep].shape[2] == F_pw_ref[rep].shape[2] and F_pn[rep].shape[2] == 

F_pn_ref[rep].shape[2] and F_ul[rep].shape[2] == F_ul_ref[rep].shape[2] 

 

            # NMF LABELING 

            H_pw = NMF_Routine.compute(F_pw[rep], n_rep=self.n_rep_nmf, 

diff_signal=self.diff_signal)  # power 

            H_pn = NMF_Routine.compute(F_pn[rep], n_rep=self.n_rep_nmf, 

diff_signal=self.diff_signal)  # pinch 

            H_ul = NMF_Routine.compute(F_ul[rep], n_rep=self.n_rep_nmf, 

diff_signal=self.diff_signal)  # ulnar 

 

            # merge label signals 

            if self.diff_signal: 

                T = labeler.merge_1_signal(H_pw, H_pn, H_ul) 

            else: 

                T = labeler.merge_2_signals(H_pw, H_pn, H_ul) 

 

            # emg input signals 

            X = np.hstack([F_pw[rep], F_pn[rep], F_ul[rep]]) 
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            # REFERENCE SIGNAL 

            # normalize REF to 0-1 and flip 

            R_pw = 1 - (F_pw_ref[rep] - np.min(F_pw_ref[rep])) / np.ptp(F_pw_ref[rep]) 

            R_pn = 1 - (F_pn_ref[rep] - np.min(F_pn_ref[rep])) / np.ptp(F_pn_ref[rep]) 

            R_ul = 1 - (F_ul_ref[rep] - np.min(F_ul_ref[rep])) / np.ptp(F_ul_ref[rep]) 

            R = labeler.merge_1_signal(R_pw, R_pn, R_ul) 

 

            # NORMALIZE X, T and R 

            Xn = (X - np.min(X)) / np.ptp(X) 

            Tn = (T - np.min(T)) / np.ptp(T) 

            Rn = (R - np.min(R)) / np.ptp(R) 

 

            data_dict[rep] = {"X": copy.deepcopy(X), "T": copy.deepcopy(T), "R": 

copy.deepcopy(R), "Xn": copy.deepcopy(Xn), "Tn": copy.deepcopy(Tn), "Rn": 

copy.deepcopy(Rn)} 

 

            if plot: self.plot(X, T, R, Xn, Tn, Rn) 

        return data_dict 

 

    def plot(self, X, T, R, Xn, Tn, Rn): 

        fig, axs = plt.subplots(4, 2, figsize=(15, 8)) 

 

        axs[0, 0].set_title("Not normalized") 

        axs[0, 1].set_title("Normalized") 

 

        axs[0, 0].plot(X.T) 

 

        axs[1, 0].plot(T[0, :].T) 

        axs[1, 0].plot(R[0, :].T) 

 

        axs[2, 0].plot(T[1, :].T) 

        axs[2, 0].plot(R[1, :].T) 

 

        axs[3, 0].plot(T[2, :].T) 

        axs[3, 0].plot(R[2, :].T) 
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        axs[0, 1].plot(Xn.T) 

 

        axs[1, 1].plot(Tn[0, :].T) 

        axs[1, 1].plot(Rn[0, :].T) 

 

        axs[2, 1].plot(Tn[1, :].T) 

        axs[2, 1].plot(Rn[1, :].T) 

 

        axs[3, 1].plot(Tn[2, :].T) 

        axs[3, 1].plot(Rn[2, :].T) 

 

        axs[3, 0].set_xlabel("Number of samples") 

        axs[3, 1].set_xlabel("Number of samples") 

        axs[0, 0].set_ylabel("Myoelectric Reading (mV)") 

        axs[1, 0].set_ylabel("Neural Drive Label\n(Power Grasp)") 

        axs[2, 0].set_ylabel("Neural Drive Label\n(Pinch Grasp)") 

        axs[3, 0].set_ylabel("Neural Drive Label\n(Ulnar Grasp)") 

 

        plt.tight_layout() 

        plt.show() 

 

 

if __name__ == "__main__": 

 

    PLOT = True 

    SEED = 1 

    N_REP_NMF = 10 

    ALPHA = "ar10" 

    DATA_PATH = "datasets/data_6" 

 

    np.random.seed(SEED) 

    random.seed(SEED) 

 

    OUTPUT_PATH = "datasets/dataset_{}".format(ALPHA) 

    labeler = Labeler(data_path=DATA_PATH, alpha_type=ALPHA, diff_signal=True, 

n_rep_nmf=N_REP_NMF) 
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    os.makedirs(OUTPUT_PATH, exist_ok=True) 

    for subj_id in range(1, 6): 

        print("***** subj {} *****".format(subj_id)) 

 

        data = labeler.run_subj(subj_id, plot=PLOT) 

 

        with open(f'{OUTPUT_PATH}/subj{subj_id}.pickle', 'wb') as handle: 

            pickle.dump(data, handle) 

 

 

Models Python script (Feedforward and LSTM algorithms implementation) 

 

import torch 

 

class NN(torch.nn.Module): 

    # Simple feedforward neural network.  

 

    def __init__(self, input_dim=8, hidden_units=32, out_dim=3, num_layers=3): 

        super().__init__() 

        self.in_dim = input_dim 

        self.mid_dim = hidden_units 

        self.out_dim = out_dim 

        self.num_layers = num_layers 

 

        self.layers = torch.nn.ModuleList([]) 

        self.layers.extend([torch.nn.Linear(self.in_dim, self.mid_dim), torch.nn.ReLU()]) 

        for _ in range(self.num_layers - 2): 

            self.layers.extend([torch.nn.Linear(self.mid_dim, self.mid_dim), torch.nn.ReLU()]) 

        self.layers.extend([torch.nn.Linear(self.mid_dim, self.out_dim), torch.nn.Sigmoid()]) 

 

    def forward(self, x): 

        for layer in self.layers: 

            x = layer(x) 

        return x 
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class LSTM(torch.nn.Module): 

     

    # Simple LSTM network. 

    def __init__(self, input_dim=8, hidden_units=32, out_dim=3, num_layers=1): 

        super().__init__() 

        self.input_dim = input_dim 

        self.hidden_units = hidden_units 

        self.num_layers = num_layers 

 

        self.lstm = torch.nn.LSTM( 

            input_size=input_dim, hidden_size=hidden_units, batch_first=True, 

num_layers=self.num_layers) 

        self.linear = torch.nn.Linear(in_features=self.hidden_units, out_features=out_dim) 

 

    def forward(self, x): 

        batch_size = x.shape[0] 

        h0 = torch.zeros(self.num_layers, batch_size, self.hidden_units).requires_grad_() 

        c0 = torch.zeros(self.num_layers, batch_size, self.hidden_units).requires_grad_() 

 

        _, (hn, _) = self.lstm(x, (h0, c0)) 

        out = self.linear(hn[0]) 

 

        return out 

 

 

Train Python script (Feedforward and LSTM NNs training): 

 

import numpy as np 

from dataset import EMGDataSeq, EMGData, DataPreProcessing 

from models import LSTM, NN 

import torch, random 

from torch.utils.data import DataLoader 

from tqdm import tqdm 
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def set_seeds(seed): 

    torch.backends.cudnn.deterministic = True 

    torch.backends.cudnn.benchmark = False 

    torch.manual_seed(seed) 

    torch.cuda.manual_seed_all(seed) 

    np.random.seed(seed) 

    random.seed(seed) 

 

 

def train_model(data_loader, model, loss_function, optimizer): 

    num_batches = len(data_loader) 

    total_loss = 0 

    model.train() 

 

    for x, y in data_loader: 

        output = model(x) 

        loss = loss_function(output, y) 

 

        optimizer.zero_grad() 

        loss.backward() 

        optimizer.step() 

 

        total_loss += loss.item() 

 

    avg_loss = total_loss / num_batches 

    print(f"Train loss: {avg_loss}") 

 

    return avg_loss 

 

 

def val_model(data_loader, model, loss_function): 

    num_batches = len(data_loader) 

    total_loss = 0 

 

    model.eval() 

    with torch.no_grad(): 
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        for x, y in data_loader: 

            output = model(x) 

            total_loss += loss_function(output, y).item() 

 

    avg_loss = total_loss / num_batches 

    print(f"Test loss: {avg_loss}") 

 

    return avg_loss 

 

 

if __name__ == "__main__": 

    base_config = dict( 

        batch_size=32, 

        lr=1e-3, 

        hidden_units=32, 

        seed=0, 

        iters=15000, 

        device="cpu", 

        downsample_rate=10, 

        dataset_name="dataset_ar10", 

        subject=1, 

        network_type="lstm",  # lstm or nn 

    ) 

 

    set_seeds(base_config["seed"]) 

 

    pickle_path = "{}/subj{}.pickle".format(base_config["dataset_name"], 

base_config["subject"]) 

 

    dataset = DataPreProcessing(pickle_path=pickle_path) 

    counter = 0 

    for data in dataset.cross_validation_out(): 

        train_data, val_data, train_label, val_label = data 

 

        if base_config["network_type"] == "lstm": 

            dataset_train = EMGDataSeq(np.hstack(train_data), np.hstack(train_label), 
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rate=base_config["downsample_rate"]) 

            dataset_val = EMGDataSeq(np.array(val_data), np.array(val_label), 

rate=base_config["downsample_rate"]) 

        elif base_config["network_type"] == "nn": 

            dataset_train = EMGData(np.hstack(train_data), np.hstack(train_label), 

rate=base_config["downsample_rate"]) 

            dataset_val = EMGData(np.array(val_data), np.array(val_label), 

rate=base_config["downsample_rate"]) 

        else: 

            raise NotImplementedError 

 

        # DATASET 

        loader_train = DataLoader(dataset_train, batch_size=base_config["batch_size"], 

num_workers=0, shuffle=False) 

        loader_val = DataLoader(dataset_val, batch_size=base_config["batch_size"], 

num_workers=0, shuffle=False) 

 

        print("train set: ", len(dataset_train)) 

        print("val set: ", len(dataset_val)) 

         

 

        if base_config["network_type"] == "lstm": 

            model = LSTM(hidden_units=base_config["hidden_units"], num_layers=1) 

        elif base_config["network_type"] == "nn": 

            model = NN(hidden_units=base_config["hidden_units"], num_layers=3) 

        else: 

            raise NotImplementedError 

 

        loss_function = torch.nn.MSELoss() 

        optimizer = torch.optim.Adam(model.parameters(), lr=base_config["lr"]) 

 

        epochs = base_config["iters"] // (len(dataset_train) // base_config["batch_size"]) 

 

        log_dict = {} 

        for epoch in tqdm(range(epochs)): 

            loss_train = train_model(loader_train, model, loss_function, optimizer) 
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            loss_val = val_model(loader_val, model, loss_function) 

 

            log_dict[epoch] = {"train": loss_train, "val": loss_val} 

 

        state = dict(base_config) 

        state["model"] = model.state_dict() 

        state["log"] = log_dict 

        torch.save(state, f"model_{counter}_{base_config['network_type']}.pt") 

        counter += 1 

 

 

8.3 Code implementation of NN models’ performance evaluation 

 

Predict Python script (Feedforward and LSTM NNs’ performance evaluation) 

 

import numpy as np 

from models import LSTM, NN 

import torch 

from torch.utils.data import DataLoader 

from dataset import EMGDataSeq, EMGData, DataPreProcessing 

import matplotlib.pyplot as plt 

 

@torch.no_grad() 

def test_model(data_loader, model): 

    pred_list = [] 

    label_list = [] 

    for x, y in data_loader: 

        output = model(x) 

        pred_list.append(output.detach().numpy()) 

        label_list.append(y.detach().numpy()) 

 

    return np.vstack(pred_list), np.vstack(label_list) 

 

 

if __name__ == "__main__": 
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    num_models = 6  #Number of trained models 

    #Validation loss computation for Feedforward models 

    val_losses_nn = [] 

    for i in range(num_models): 

        checkpoint = f"model_{i}_nn.pt" 

        state = torch.load(checkpoint) 

        log_dict = state["log"] 

 

        # MODEL 

        model = NN(hidden_units=state["hidden_units"], num_layers=3) 

        model.load_state_dict(state["model"]) 

        model.eval() 

 

        # DATASET 

        pickle_path = "{}/subj{}.pickle".format(state["dataset_name"], state["subject"]) 

 

        dataset = DataPreProcessing(pickle_path=pickle_path) 

        dataset_cv_out = dataset.cross_validation_out() 

        train_data, val_data, train_label, val_label= next(dataset_cv_out) 

 

        dataset_train = EMGData(np.hstack(train_data), np.hstack(train_label), 

rate=state["downsample_rate"]) 

        dataset_val = EMGData(np.array(val_data), np.array(val_label), 

rate=state["downsample_rate"]) 

 

        loader_val = DataLoader(dataset_val, batch_size=1, num_workers=0, shuffle=False) 

 

        pred, label = test_model(loader_val, model) 

 

        pred = pred.squeeze() 

        label = label.squeeze() 

 

        val_loss = np.sqrt(np.mean((pred - label) ** 2)) 

        val_losses_nn.append(val_loss) 

 

    plt.figure() #Algorithm performance: training vs validation of 6th trained NN model 
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    train_loss = [[k, v["train"]] for k, v in log_dict.items()] 

    val_loss = [[k, v["val"]] for k, v in log_dict.items()] 

    train_loss = np.array(train_loss) 

    val_loss = np.array(val_loss) 

    plt.plot(train_loss[:, 0], train_loss[:, 1], label="train") 

    plt.plot(val_loss[:, 0], val_loss[:, 1], label="val") 

    plt.xlabel("Number of epochs") 

    plt.ylabel("Root-Mean-Square Error") 

    plt.title("Training vs Validation performance for Feedforward NN") 

    plt.legend() 

    plt.tight_layout() 

 

    fig, axs = plt.subplots(3, 1)  # Actual vs Predicted labels of 6th trained NN model 

    axs[0].plot(pred[:, 0], label="pred") 

    axs[0].plot(label[:, 0], label="label") 

 

    axs[2].plot(pred[:, 1], label="pred") 

    axs[2].plot(label[:, 1], label="label") 

 

    axs[4].plot(pred[:, 2], label="pred") 

    axs[4].plot(label[:, 2], label="label") 

 

    axs[0].set_ylim = (0, 1) 

    axs[2].set_ylim = (0, 1) 

    axs[4].set_ylim = (0, 1) 

 

    axs[4].set_xlabel("Number of samples") 

    axs[2].set_ylabel("Normalized Activation Values") 

    fig.suptitle("Actual vs Predicted labels for Feedforward NN") 

 

    plt.legend() 

    plt.tight_layout() 

 

    # Validation loss computation for LSTM models 

    val_losses_lstm = [] 

    for i in range(num_models): 
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        checkpoint = f"model_{i}_lstm.pt" 

        state = torch.load(checkpoint) 

        log_dict = state["log"] 

 

        # MODEL 

        model = LSTM(hidden_units=state["hidden_units"], num_layers=1) 

        model.load_state_dict(state["model"]) 

        model.eval() 

 

        # DATASET 

        pickle_path = "{}/subj{}.pickle".format(state["dataset_name"], state["subject"]) 

 

        dataset = DataPreProcessing(pickle_path=pickle_path) 

        dataset_cv_out = dataset.cross_validation_out() 

        train_data, val_data, train_label, val_label = next(dataset_cv_out) 

 

        dataset_train = EMGDataSeq(np.hstack(train_data), np.hstack(train_label), 

rate=state["downsample_rate"]) 

        dataset_val = EMGDataSeq(np.array(val_data), np.array(val_label), 

rate=state["downsample_rate"]) 

 

        loader_val = DataLoader(dataset_val, batch_size=1, num_workers=0, shuffle=False) 

 

        pred, label = test_model(loader_val, model) 

 

        pred = pred.squeeze() 

        label = label.squeeze() 

 

        val_loss = np.sqrt(np.mean((pred - label) ** 2)) 

        val_losses_lstm.append(val_loss) 

 

    plt.figure()  # Algorithm performance: training vs validation of 6th trained LSTM model 

    train_loss = [[k, v["train"]] for k, v in log_dict.items()] 

    val_loss = [[k, v["val"]] for k, v in log_dict.items()] 

    train_loss = np.array(train_loss) 

    val_loss = np.array(val_loss) 
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    plt.plot(train_loss[:, 0], train_loss[:, 1], label="train") 

    plt.plot(val_loss[:, 0], val_loss[:, 1], label="val") 

    plt.xlabel("Number of epochs") 

    plt.ylabel("Root-Mean-Square Error") 

    plt.title("Training vs Validation performance for LSTM NN") 

    plt.legend() 

    plt.tight_layout() 

 

    fig, axs = plt.subplots(3, 1)  # Actual vs Predicted labels of 6th trained LSTM model 

    axs[0].plot(pred[:, 0], label="pred") 

    axs[0].plot(label[:, 0], label="label") 

 

    axs[2].plot(pred[:, 1], label="pred") 

    axs[2].plot(label[:, 1], label="label") 

 

    axs[4].plot(pred[:, 2], label="pred") 

    axs[4].plot(label[:, 2], label="label") 

 

    axs[0].set_ylim = (0, 1) 

    axs[2].set_ylim = (0, 1) 

    axs[4].set_ylim = (0, 1) 

 

    axs[4].set_xlabel("Number of samples") 

    axs[2].set_ylabel("Normalized Activation Values") 

    fig.suptitle("Actual vs Predicted labels for LSTM NN") 

 

    plt.legend() 

    plt.tight_layout() 

 

    #Barplot for comparing Feedforward and LSTM performance 

 

    fig, ax = plt.subplots() 

    ax.bar(0, np.mean(val_losses_nn), yerr=np.std(val_losses_nn), color='blue', alpha=0.5, 

capsize=4, label='Feedforward') 

    ax.bar(1, np.mean(val_losses_lstm), yerr=np.std(val_losses_lstm), color='orange', 

alpha=0.5, capsize=4, label='LSTM') 
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    ax.set_xticks([0, 1]) 

    ax.set_xticklabels(['Feedforward', 'LSTM']) 

    ax.set_ylabel('Average RMSE Loss') 

    legend=False 

    plt.title("Feedforward vs LSTM algorithms' prediction performance") 

 

    plt.tight_layout() 

    plt.show() 

 

In summary, this script loads the checkpoints corresponding to the different 

trained models, infers on a validation dataset and performs a graphical evaluation of the 

algorithms performance, first individually and afterwards a general comparison of both 

ML algorithms’ predictions. The script works in the following way: 

 

First, the necessary libraries and modules in order to perform the model’s 

evaluation are imported, such as numpy for numerical operations [11], LSTM and NN 

from the models module, torch for deep learning tools [18], DataLoader from 

torch.utils.data to create data loaders for the datasets and matplotlib.pyplot for graph 

charting [12]. 

 

Then, the function test_model is defined. It accepts data_loader and model as 

input and does inference on the data given by the data loader using the model. It loops 

over the data loader, runs the model on the input data x, appends the predictions (output) 

and labels (y) to separate lists, and eventually returns the forecasts and labels as NumPy 

arrays using np.vstack to vertically stack the lists. 

 

Afterwards, inside the main block, a “for loop” is first defined for performing the 

evaluation of the trained Feedforward NNs by computing the validation loss resulting 

from testing the models on a validation dataset. This cannot be done without first 

importing the checkpoint file which is used for loading the chosen model’s state that 

comprises the data about the trained model. 
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The dictionary log_dict is then given the "log" key value from the loaded state, 

which contains the training and validation loss values obtained when the models were 

trained for evaluating the degree of accuracy achievement during this process. 

Furthermore, the number of hidden units and number of layers collected from the loaded 

state are used to create the respective model classes. Then, model.load_state_dict is used 

to load the model's state dictionary from the loaded state and model.eval() is used to 

switch the model to evaluation mode, which inhibits gradient calculation and triggers 

evaluation-specific activities. 

 

Moreover, the dataset is created by loading the pickle file supplied by pickle_path 

and creating a dataset object using the DataPreProcessing class for performing the outer 

cross-validation process the same way as in the training script. Once the datasets and data 

loader are built, the loader_val and model are sent to the test_model function for the 

predictions and labels to be generated and set to the pred and label variables, respectively. 

This allows to compute the RMSE validation loss for each available trained model, which 

are all then stored in the val_losses_nn variable so that they can be later used for the 

algorithms’ performance comparison. 

 

Once the validation loss computation loop has finished, the training and validation 

losses from the last model evaluated are plotted, as well as the actual and predicted labels, 

so that a graphical representation of its performance is generated. 

 

The same validation loop is performed for the LSTM trained models, generating 

the vector called val_losses_lstm that contains the RMSE validation losses of the 

different evaluated models, as well as the equivalent plots that were just explained for the 

Feedforward algorithm. 

 

Finally, a bar plot is generated with the average value of the mentioned vectors 

containing the RMSE losses for both algorithms, as well as a confidence interval resulting 

form calculating the standard deviation between the computed losses of the different 

trained models, so that a fair comparison can be performed between both Feedforward 

and LSTM algorithms (all graphical results are shown in the results subsections). 


