

UNIVERSITAT POLITÈCNICA DE VALÈNCIA

Escuela Técnica Superior de Ingeniería Industrial

Analysis of feedforward and LSTM deep neural network

architectures for self-supervised regression of sEMG signals
for multi-grasp robot hand control

Trabajo Fin de Grado

Grado en Ingeniería en Tecnologías Industriales

AUTOR/A: Soto Alapont, Josep

Tutor/a: Picó Marco, Jesús Andrés

CURSO ACADÉMICO: 2022/2023

Index

1. Introduction ... 1

1.1 Research context and motivation .. 1

1.2 Research questions and objectives .. 2

1.3 Scope and limitations .. 2

1.4 Methodology and approach ... 3

2. Theoretical Framework ... 3

2.1 Human-robot interaction/interface (HRI) .. 4

2.2 Surface Electromyography (sEMG)-based interfaces ... 5

2.2.1 sEMG signal acquisition .. 6

2.2.2 sEMG feature labeling ... 7

2.2.3 sEMG-based control of robotic hands .. 9

2.3 Machine learning algorithms ... 9

2.4.1 Non-negative Matrix Factorization (NMF) .. 10

2.4.2 Deep Feedforward Neural Network (DFNN) ... 12

2.4.3 Long Short-Term Memory Neural Network (LSTM) 14

3. Materials and Methods .. 16

3.1 Experimental setup .. 17

3.2 Data acquisition and preprocessing ... 19

3.3 Non-negative matrix factorization for sEMG signals ... 20

3.3.1 Algorithm implementation ... 20

3.3.2 Parameters selection and optimization ... 25

3.4 Deep Feedforward and Long Short-Term Memory Neural Networks 26

3.4.1 Deep Feedforward model implementation ... 27

3.4.2 Long Short-Term Memory model implementation .. 28

3.4.3 Neural Networks’ training .. 30

3.4.4 Performance evaluation .. 34

4. Results ... 35

4.1 Performance of ML models on sEMG signals .. 35

4.2 Comparison of the machine learning algorithms .. 39

5. Discussion ... 41

5.1 Implications of the findings .. 41

5.2 Future research directions ... 44

6. Conclusion ... 45

6.1 Summary of the key findings .. 45

6.2 Practical applications and contributions to the field ... 46

7. References ... 47

8. Appendices .. 48

8.1 Code implementation and description of dataset building and preprocessing 48

8.2 Code implementation of factorization and deep learning algorithms 53

8.3 Code implementation of NN models’ performance evaluation 66

 1

1. Introduction

In recent years, the area of robotics has made major advances, changing a variety

of sectors and domains. Robots have stopped being limited to regulated environments,

and are already being used in real-world circumstances to aid people in a variety of jobs.

The design and implementation of functional and accessible human-robot interfaces

(HRIs) is critical for enabling fluid communication and cooperation between people and

robots [1].

This chapter provides the thesis's introduction, offering the relevant background,

research context, and motivation for the study of surface Electromyography (sEMG)-

based interfaces for operating robotic hands. It describes the scope and boundaries of the

study, as well as the methodology and approach that will be used to attain the research

aims, and it specifies the research issues and goals that will lead the thesis. A summary of

the thesis is given, laying the groundwork for the next chapters, which will go further into

the theoretical foundations, experimental procedures, and data analysis.

1.1 Research context and motivation

The study background is based on the growing need in the field of robotics for

intuitive and natural control platforms. Traditional HRIs frequently employ sophisticated

manual input devices like joysticks that need substantial training and coordination,

restricting their usability and preventing widespread adoption [1].

sEMG-based interfaces, on the other hand, allow users to operate robotic hands

using their own neurological signals by monitoring and interpreting muscle electrical

responses. However, developing accurate and stable control algorithms remains difficult,

necessitating sophisticated machine learning approaches that are able to address the

computational complexity required for the implementation of this technology [2].

This technique has great potential for numerous engineering and medical

applications, such as enhancing the quality of life for people with motor impairments or

assistive technologies that can be used in hazardous situations, where human workers'

 2

security cannot be guaranteed, as well as the enhancement of productivity systems in the

industrial production sector.

1.2 Research questions and objectives

The purpose of this thesis is to assess and contrast the effectiveness of two deep neural

network architectures, particularly Feedforward Neural Networks (FNNs) and Long

Short-Term Memory Neural Networks (LSTMs), for self-supervised regression of sEMG

signals in the context of multi-grasp robotic hand control. The following are the major

research questions that will lead this study:

• How successfully can FNNs and LSTMs map the relationship between sEMG

signals and robotic hand movements?

• What are the advantages and disadvantages of FNNs and LSTMs for self-

supervised regression of sEMG signals?

• Which design outperforms the other in terms of accuracy for robotic hand control?

By answering these questions, this study hopes to provide light on the feasibility and

efficacy of various deep neural network designs for sEMG-based robotic hand control,

therefore contributing to the evolution of human-robot interface technologies.

1.3 Scope and limitations

To guarantee reasonable expectations and attainable outcomes, the extent and

constraints of the study must be established. The scope of this research is to examine and

compare FNNs and LSTMs as deep neural network architectures for self-supervised

regression of sEMG data. The study makes use of a collection of sEMG signals acquired

from human individuals while doing multi-grasp activities.

However, certain limits have to be acknowledged. The primary focus of the

research case will be on three types of grasping activities: tripodal grip, ulnar grasp, and

power grasp. These grasping activities are a subset of the extensive spectrum of hand

movements and allow for a decrease in computer analysis complexity, simplifying the

control task. Furthermore, the study does not implement alternate signal processing

 3

approaches for sEMG feature extraction other than the Non-Negative Factorization

Matrix (NMF) algorithm, nor does it investigate other machine learning algorithms

beyond FNNs and LSTMs. Additionally, the study is restricted to offline evaluation of the

algorithms' performance and does not take into account real-time implementation

concerns.

1.4 Methodology and approach

The approach adopted for tackling this study case is based on a systematic

methodology that addresses the proposed research questions for completing the general

objectives of the research, which comprises the following main steps:

1. Reviewing pertinent literature on human-robot interaction, sEMG-based

interfaces, and sEMG signal analysis machine learning methods.

2. Creating and executing a data collecting experimental setup for multi-grasp

activities.

3. Using non-negative matrix factorization (NMF) to extract features and reduce the

dimensionality of sEMG signals.

4. Using both FNN and LSTM models to perform self-supervised regression on

preprocessed sEMG data.

5. Once both algorithms are trained and optimized, the performance evaluation and

comparison between FNN and LSTM is carried out in terms of their accuracy.

6. Finally, analyzing the findings and evaluating the study's implications, limits, and

potential future directions.

Overall, this research seeks to contribute to current knowledge in the field and give

significant understanding into the application of deep neural networks for sEMG-based

multi-grasp robotic hand control by employing the proposed methodology.

2. Theoretical Framework

This thesis' theoretical framework chapter provides a detailed summary of the

concepts and theories that constitute the foundation of the research analysis. This chapter

 4

looks into the theoretical elements of human-robot interaction/interface (HRI), surface

electromyography (sEMG)-based interfaces, and machine learning methods, all of which

are necessary for understanding the next chapters.

First, the HRI domain is investigated, which is concerned with the creation of a

platform that enables users and robots to interact. It will be addressed the concept of

human-robot interaction (HRI) and its importance to this study, emphasizing the

challenges and possibilities involved with building successful interfaces for human-robot

cooperation.

Following that, sEMG-based interfaces will be explored, which are used to

operate robotic equipment via muscle activity. It is explained in detail how to acquire

sEMG signals, identify features, and operate robotic hands with sEMG signals.

Finally, the machine learning methods that are used to interpret sEMG data and

generate the appropriate commands to operate robotic devices are looked over in detail.

The focus is on the Non-negative Matrix Factorization (NMF), Feedforward Deep Neural

Network (FDNN), and Long Short-Term Memory Deep Neural Network (LSTM)

algorithms, which are typically used in sEMG-based investigations. The ideas underlying

each algorithm are explained, as well as their benefits and drawbacks.

Overall, this chapter establishes the foundations for the rest of the thesis, giving a

theoretical foundation for the empirical work in the coming chapters. This chapter

attempts to create a basis for the succeeding chapters' research and analysis by reviewing

the present level of knowledge in the domains of HRI, sEMG-based interfaces, and

machine learning techniques.

2.1 Human-robot interaction/interface (HRI)

Because of the growing interest in integrating robots in a variety of applications,

the topic of human-robot interaction (HRI) has received a lot of attention in recent years.

HRI refers to the collaboration of human operators and robots in industrial and service

environments to execute tasks; these platforms can be used to control robots, supply

feedback from their activities and supervise their performance. Surface electromyography

 5

(sEMG) technology is one of the most promising ways for achieving effective HRI, but

it has considerable practical difficulties [3].

The detection of electrical signals generated by muscular contractions allows

sEMG technology to assess muscle activity. It is feasible to deduce human operator

motions from sEMG signals and make use of this knowledge to operate robotic

equipment. This technology has the potential to improve HRI significantly by allowing

for more natural and intuitive communication between people and robots [2],[4].

However, developing viable interfaces for sEMG-based HRIs requires

overcoming a number of obstacles. One of the most challenging difficulties is creating

simple and user-friendly interfaces that allow operators to properly manage robots.

Furthermore, the complexity of sEMG signals, as well as individual variability, offer

obstacles in effectively understanding the signals and converting them into robot control

[3].

Despite these obstacles, the potential for sEMG-based HRIs is immense. sEMG

technology, for example, may be used to operate prosthetic devices, allowing persons

with impairments to regain movement and freedom. Furthermore, sEMG-based HRIs can

be utilized to improve production processes by allowing robots to adapt to human

operators' preferences and motions [3].

Finally, sEMG-based HRIs provide a viable option for furthering the study of

human-robot interaction. Building viable interfaces for sEMG-based HRIs, on the other

hand, necessitates tackling considerable issues in interface design, signal interpretation,

and feature recognition precision. By addressing these obstacles, the potential benefits of

sEMG-based HRIs can be achieved, resulting in safer, more efficient, and intuitive

human-robot collaboration [2],[4].

2.2 Surface Electromyography (sEMG)-based interfaces

Surface electromyography (sEMG) is a non-invasive method that has grown in

popularity in the field of human-robot interaction (HRI) because of its use as a tool for

human intention identification and gesture-based control. sEMG is a method that uses

 6

surface electrodes put on the skin to collect and record the electrical activity of skeletal

muscle contractions. The analysis of sEMG signals has been demonstrated to be an

excellent method for building intuitive and natural control interfaces for robotic devices,

particularly for applications requiring a high level of skills in performing certain manual

tasks, such as multi-grasp hand control [1].

The usage of sEMG-based interfaces has grown in popularity in recent years,

thanks to developments in technology and algorithms that enable real-time processing

and interpretation of sEMG signals. The desire to build natural, intuitive control interfaces

for robotic systems, particularly for those with motor impairments or disabilities, has

fueled the development of sEMG-based interfaces[1].

Figure 1: sEMG-based HRI diagram [2]

This part of the thesis gives an overview of sEMG-based interfaces, such as signal

collection, feature labeling, and robotic hand control. The section looks at the several

methods for acquiring and processing sEMG signals, such as signal filtering, noise

reduction, and feature extraction. Its overall goal is to give a thorough knowledge of

sEMG-based interfaces and their potential for designing natural, intuitive control

interfaces for robotic systems.

2.2.1 sEMG signal acquisition

Data gathering is essential in sEMG-based human-robot interaction (HRI)

systems. The quality of sEMG signals is significant for the robotic control precision.

Hence, it is critical to employ reliable acquisition equipment that can effectively enhance

the signal-to-noise ratio (SNR). To keep as much relevant signal information as possible,

the acquisition frequency is often adjusted to 500–1000 Hz [1].

 7

The location of the sEMG signal acquisition is also crucial. The midline of the

muscular belly between the closest innervation zone and the myotendinous junction is the

preferred position. To decrease noise, the skin in this region should be washed with

alcohol before signal collection, and hair should be removed if necessary. The electrodes

used in sEMG signal collection are also important. Wet electrodes, which require an

electrogel layer between the skin and the electrode, are better suited for fundamental

theoretical study, whereas dry electrodes, which are put directly on the skin, are more

suited for practical applications [1].

The number of electrode channels used for sEMG signal capture is determined by

the number of muscles associated with the desired human limb motions. It is critical to

choose an appropriate number of electrode channels to achieve adequate recognition

accuracy for human movement intentions while minimizing the amount of calculation

necessary [1].

In a nutshell, the quality of the obtained sEMG signals has a significant impact on

the precision of robotic control in sEMG-based HRI systems. High-quality sEMG signals

may be acquired by employing reliable collection equipment and following precise

acquisition protocols, providing a solid data foundation for future pattern identification

and robotic control in sEMG-based HRI systems [1].

2.2.2 sEMG feature labeling

The act of giving semantic meaning to sEMG signals, known as feature labeling,

is critical for detecting specific gestures or motions. This entails matching certain sEMG

patterns to related hand motions.

The Non-Negative Matrix Factorization algorithm (NMF) is one way for

collecting grip labels. For this particular study case, NMF is based on the concept of

muscular synergies, which are patterns of coordinated muscle activation that are related

with specific motions or grasps. The underlying muscle activation patterns may be

recovered by decomposing the sEMG signals into a linear combination of muscle

synergies using the NMF factorization method (the technical aspects about how the

algorithm works will be explained in the following sections). Each muscular synergy is a

 8

unique mix of muscle activations linked with a certain grip. These muscle synergies may

subsequently be associated with certain grasps, thereby labeling the sEMG signals. This

method has the benefit of capturing the underlying interdependence of muscle activations,

resulting in a more robust and interpretable grip categorization [4].

For sEMG categorization, the NMF method has some particular characteristics that

makes them to outperform conventional factorization-based labeling algorithms in

various ways:

• Non-Negativity Constraint: since muscle activations are intrinsically non-

negative, it matches well with the physiological features of sEMG signals; it gives

a more interpretable and valid depiction of muscle synergies.

• Shortened representation: it tends to employ a small number of muscle synergies

for analyzing the sEMG signals; it is favorable in terms of computing efficiency

and interpretability (more compact data representation and lower dimensionality

of the feature space).

• Computational efficiency: it is especially important in real-time applications

where low-latency processing is critical for responsive control of robotic devices;

the NMF algorithm allows quicker analysis and identification of sEMG signals,

enabling real-time control and interaction between humans and robots.

Overall, the specific properties of the NMF algorithm makes it a suitable method for this

particular study case, as its performance for different error metrics when carrying out the

grasps’ labeling beats those of other possible algorithms as showed in [4].

Furthermore, since they record the interaction between muscle activations and

joint configurations, postural synergies can aid in the learning of grab labels. Substantial

relationships can be established by studying this connection throughout various gripping

activities. According to [4], it is reasonable to suppose that a unique synergistic DoF is

generated during the opening/closing action of a hand, which significantly decreases the

level of sophistication of the sEMG generative model.

 9

2.2.3 sEMG-based control of robotic hands

Regarding the control of the robotic device, several stages must be completed

before the sEMG-based HRI can get the correct commands to operate the robotic hand.

First, the neural drives that are triggered to perform the various movements must

be identified. They correspond to the labels created by the NMF algorithm, as described

in the preceding section. Once the various grasping motions have been encoded, a Deep

Neural Network may be trained using the obtained labels to learn the mappings for the

defined grasps [5].

This step will be addressed with two different approaches, using two supervised

machine learning algorithms whose performance will be compared to determine the best

solution; the mappings will be computed using first a typical Feedforward DNN and then

a Long-Short Term Memory NN; this second choice is justified due to the time-series

nature of the sEMG dataset being used. Finally, once trained, the NN-based grip

classification model may be used to categorize real-time sEMG signals and control the

robotic hand accordingly. The anticipated grasp labels are converted into control

commands, which activate the robotic hand and allow it to make the necessary grasping

actions.

2.3 Machine learning algorithms

Surface electromyography-based interfaces for human-robot interaction systems

rely heavily on machine learning techniques. These methods allow relevant information

to be extracted from sEMG signals, allowing for reliable interpretation and control of

robotic equipment. This paper focuses on the following machine learning algorithms due

to their notorious compatibility with the study case that it addresses: Non-negative Matrix

Factorization, Feedforward Deep Neural Networks, and Long Short-Term Memory

Neural Networks.

NMF, a matrix factorization approach, has recently acquired prominence for its

capacity to breakdown sEMG signals into their underlying components, known as muscle

synergies. This method results in a more compact representation of the sEMG data and

 10

makes it easier to extract useful characteristics for control purposes. The use of NMF in

sEMG-based HRI systems has led to encouraging results in terms of enhancing control

interface accuracy and resilience [4].

Feedforward Deep Neural Networks have also been widely used in sEMG-based

HRI systems. These neural networks may learn complicated correlations between sEMG

signal patterns and associated robotic operations. They can accurately categorize and

interpret sEMG signals by training DNNs on huge datasets, allowing precise control of

robotic equipment. DNNs have made significant advances in the field, notably in the areas

of motion control [2].

Long Short-Term Memory Neural Networks have also developed as a strong tool

for processing time series data, making them well-suited to studying sEMG signals. The

temporal relationships contained in sequential sEMG data may be successfully captured

by LSTM networks, allowing for reliable prediction and control of robotic devices across

time. Because of this, LSTM networks are particularly useful for applications involving

dynamic and continuous movement [6].

It can be improved the performance and usability of sEMG-based HRI systems by

evaluating and comprehending these machine learning methods. This section will dive

into the concepts, implementation, and possible uses of NMF, Feedforward DNNs, and

LSTM networks in the context of sEMG-based interfaces, emphasizing their value to the

field of HRI and their potential to strengthen human-robot control and communication

capacities.

2.4.1 Non-negative Matrix Factorization (NMF)

Non-Negative Matrix Factorization (NMF) is a technique for reducing

dimensionality in machine learning and data analysis. Its goal is to decompose a given

matrix into two smaller matrices with non-negative entries. NMF seeks a low-rank

estimate of the initial matrix which reflects relevant trends or characteristics in the data

[7].

 11

NMF works on the principle of representing the starting matrix as a linear

combination of non-negative basis vectors, each weighted by non-negative coefficients.

Assume an input matrix X with dimensions m x n, where m is the number of samples or

observations, and n is the number of features or variables. NMF's purpose is to factorize

X into two non-negative matrices, W and H, such that X≈W·H. This enables a

representation by parts of the data, in which each basis vector records a separate feature

or pattern, and the coefficients indicate the contribution of each feature to reconstructing

the original matrix [7].

The NMF algorithm is generally updated in an iterative way. The process begins

by randomly initializing the matrices W and H, which contain the basis vectors and

coefficients, with non-negative values. The matrices are then iteratively updated to reduce

the reconstruction error between the original matrix and its estimate. The update

procedure involves optimizing one matrix while correcting the other: first, fix H to update

W by reducing the reconstruction error among X and WH, and then, fix W to update H

by lowering the reconstruction error among X and WH. Optimization methods such as

multiplicative updates and gradient descent can be used. The method updates the matrices

until convergence, or a predetermined stopping condition happens; NMF converges when

the matrices W and H have been modified to as nearly approach the input matrix X as

feasible while ensuring non-negativity [4],[7].

The generated basis vectors and coefficients can be understood once the NMF

algorithm has converged: matrix W (m x r) represents the basis vectors or components

that capture the underlying structure or features in the data, with each column of W

corresponding to a different feature; matrix H (r x n) contains the weights that determine

the contribution of each basis vector in reconstructing the original matrix X, with each

row of H corresponding to the activation of the associated basis vector [4],[7].

In a nutshell, NMF can find relevant patterns or features in data by deconstructing

the original matrix X into non-negative components. It has been employed in tasks such

as feature extraction and pattern recognition.

 12

2.4.2 Deep Feedforward Neural Network (DFNN)

Deep Feedforward Neural Networks (DFNNs), which are also referred to as

multilayer perceptrons (MLPs), have become known as effective models for tackling

challenging machine learning problems. DFNNs have transformed the area of machine

learning by discovering detailed patterns and correlations in data.

DFNNs are made up of numerous layers of artificial neurons that are linked together.

A DFNN architecture has three basic components [8]:

• The input layer is made up of neurons that receive input data. Each neuron reflects

a different aspect or characteristic of the input. The dimensionality of the input

data determines the number of neurons in the input layer.

• One or more hidden layers can be placed between the input and output layers in

DFNNs. Each hidden layer is made up of several neurons that analyze and

transform data from the preceding layer. These layers are in charge of identifying

and learning complex trends and representations from input data.

• The output layer is responsible for the network's final predictions or outputs. The

amount of neurons in the output layer is determined by the type of problem being

handled. A binary classification job, for example, requires a single neuron, but

multi-class job classification may require several neurons, each representing a

different class.

Figure 2: Deep Neural Network diagram [8]

 13

A supervised learning strategy is widely used to train a DFNN. It entails feeding the

network a labeled dataset and repeatedly changing the weights to minimize the

discrepancy between the network's anticipated outputs and the real labels. The training

procedure may be broken down into the phases that follow [8]:

• Forward Propagation: The input data is supplied into the network during forward

propagation, and the activations of every neuron in consecutive layers are

calculated. Each neuron computes the weighted total of its inputs, implements a

function of activation, and sends the result to neurons in the following layer. This

procedure is continued up to the output layer has been reached, at which point the

final predictions are generated.

• Loss Calculation: The activations of the output layer are evaluated against the

ground truth labels employing a specified loss function. Mean squared error

(MSE) is a common loss function for regression tasks and cross-entropy for

classification tasks. The loss measures the difference between the expected and

real labels.

• Backpropagation: Applying the chain rule of calculus, the loss is transmitted

backwards across the network's structure, layer by layer. This procedure

determines how much each weight contributes to the total inaccuracy. The

gradients of the loss are computed with respect to the weights, and the weights are

changed as needed to minimize the loss.

• Weight Update: Optimization methods like as stochastic gradient descent (SGD)

or its derivatives (e.g., Adam) are used to update the weights linking neurons.

These techniques gradually improve the network's capacity to generate correct

predictions by updating the weights according to the gradients obtained during

backpropagation.

Activation functions are important in DFNNs because they introduce non-linearities

into the network's structure. They enable the network to simulate complicated and

nonlinear data interactions. Among the most commonly utilized activation functions are

[8]:

 14

• The sigmoid function converts the weighted total of inputs into a number between

0 and 1. It is smooth and limited, making it suitable for binary classification jobs

at the output layer.

• The Rectified Linear Unit (ReLU), when activated, sets negative inputs to zero

while positive inputs remain intact. Its appeal stems from its simplicity and

computing effectiveness; ReLU activation is frequently used in the hidden layers

of DFNNs.

• The hyperbolic tangent (tanh) function, similarly to the sigmoid function,

translates values to an interval between -1 and 1. It has greater gradients than the

sigmoid function, which makes it helpful in situations when stronger activations

are requested.

In summary, Deep Feedforward Neural Networks (DFNNs) have showed outstanding

potential by enabling the effective modeling of complicated connections in data through

their layered design, iterative training process, and integration of activation functions.

2.4.3 Long Short-Term Memory Neural Network (LSTM)

Long Short-Term Memory (LSTM) neural networks are establishing themselves

as a strong tool for processing sequential data in the field of artificial intelligence and

machine learning. When faced with long-term dependencies, LSTM networks are meant

to overcome the constraints of classic neural networks, such as Feedforward NNs, by

using their capacity to acquire and store information over long periods of time [9].

Feedforward neural networks, for example, struggle to grasp long-term

dependencies in sequential input. LSTM networks solve this issue by including memory

cells and gating systems that allow for long-term information retention as well as efficient

transmission and control of the flow [9].

An LSTM network is made up of linked memory cells that function as

independent processing units. Each memory cell must have three components: an input

gate, a forget gate, and an output gate; they control the flow of data into and out of

memory cells, allowing for selective memory preservation and access [9].

 15

Figure 3: LSTM Neural Network diagram [6]

The LSTM memory cell gets two inputs at each time step: the present input data

and the prior memory cell state, which includes short-term as well as long-term memory.

The input gate sends them via a sigmoid activation function, and the result is multiplied

by a candidate cell state, representing the new information that might be added to the

memory cell; it preferentially saves new information by weighing the relevance of the

current input [9].

The forget gate controls what information from the memory cell state should be

deleted, enabling the system to forget useless or obsolete information. It uses the prior

hidden state and the current input, runs them across a sigmoid activation function, and

returns a value between 0 and 1 for each cell state item. Depending on the forget gate's

outcome, multiplying this forget gate value component by component with the prior cell

state eliminates or maintains the necessary information [9].

The output gate determines the amount of data gathered from the memory cell

state is accessible to the following layers. It considers the current input and the prior

hidden state, runs them through a sigmoid activation function, then multiplies the result

 16

by the candidate cell state that has been run through a tanh activation function. This gating

method can regulate the quantity of information that a memory cell provides to the

broader prediction process [9].

LSTM networks use backpropagation through time (BPTT) during the training

phase to adjust the network's parameters and maximize its performance. The error signals

are transmitted not just from the current time step but also from subsequent time steps,

complicating the learning process but allowing the network to successfully understand

long-term dependencies [9].

To summarize, LSTM networks provide selective information storage and

retrieval by adding memory cells and gating processes, allowing for greater modeling of

complicated temporal interactions.

3. Materials and Methods

The materials and methods chapter describes in detail the experimental setup, data

gathering, and preprocessing methods, as well as the development and assessment of the

machine learning models used in this work. The goal of this chapter is to discuss the

techniques used to acquire and process data, as well as the algorithms used to evaluate

sEMG signals and operate the robotic hand.

First, the experimental setup, including some general aspects about hardware and

software components employed to gather the sEMG signals, will be described. The

processes performed to preprocess the sEMG data, including filtering and normalization

approaches, will be next explained.

The chapter will next go into the various machine learning techniques employed

in this work, beginning with non-negative matrix factorization (NMF) for feature

extraction and dimensionality reduction. The implementation of the NMF algorithm,

including the selection and optimization of algorithm parameters, will be described.

 17

Finally, it will also go through the implementation and training of the feedforward

deep neural network (DNN) and long short-term memory (LSTM) NN models, which are

exploited for performing a self-supervised regression of the sEMG data to compute the

mapping of the different grasp gestures. Each model's performance evaluation, including

the measures employed, will be discussed.

3.1 Experimental setup

A sEMG acquisition system was built in order to collect the user’s data for

developing the sEMG-based HRI for the control of a robotic hand. In the purpose of this

project, eight sEMG channels (eight pairs of electrodes in differential arrangement) from

the user's forearm muscles are collected. Disposable surface skin electrodes with

conductive gel are employed. The electrodes are spread evenly across the forearm,

making an armband (gForcePro). The sEMG bracelet is designed to offer data on hand

movements as well as grip closure. As a result, it is focused on the Flexor Digitorum

Superficialis and Extensor Digitorum Communis muscles, which play a role in digit

flexion and extension [2].

Figure 4: sEMG electrodes placement representation [4]

This application's wearable sensor node is built on a 6-layer printed circuit board.

The node is intended for the capture of analog biological signals in wearable multisensory

technologies using Cerebro, a high-performance analog front end (AFE) coupled to an

ARM Cortex M4 microprocessor via serial peripheral interface. Data is collected at 1 kHz

and sent to a PC using an average 2.0 Bluetooth interface [2].

 18

Figure 5: Circuit board architecture diagram [2]

Finally, this particular study case is developed for a subsequent experimental

simulation to try the designed sEMG-based HRI using the AR10 Robot Hand by Activat8

Robots, a lightweight anthropomorphic robot hand with 5 fingers and 10 degrees of

freedom (DoFs), as mentioned in [10].

Figure 6: sEMG armband for data acquisition and AR10 robot hand simulative setup [10]

This section seeks to lay a strong basis for the following examination and

understanding of the collected sEMG data by providing a complete review of the

 19

experimental setup. It emphasizes the significance of proper experiment design and

execution in delivering trustworthy and relevant results.

3.2 Data acquisition and preprocessing

Acquiring and preparing sEMG data correctly is critical for getting reliable and

useful information regarding muscle activation. These processes set the groundwork for

further analysis, feature extraction, and control algorithms.

The wearable sensor node mentioned in the preceding section is used to collect

the electrical activity of the muscles during the data acquisition step. The acquisition

system captures analog sEMG signals, which are subsequently transformed to digital

signals using the previously stated Cerebro AFE. Afterwards, a preprocessing procedure

based on signals’ filtering is applied to the input data to enhance the quality of the readings

[2].

A training session is required to acquire the raw data for building subsequently a

training dataset, which is consisting of 8-dimensional samples of the RMS values of the

sEMG channels, in order to develop the classifier. Open hand, three fingers position, fist,

ulnar squeeze, and neutral pose are the five motions to be categorized. A grab transition

logic is utilized to employ two motions that are not related with any form (open hand and

neutral position). The training dataset to be gathered consists of 6 repetitions of each

motion (excluding the neutral stance). Every move must be performed for 3 seconds,

followed by 3 seconds in which the user must rest his fingers (neutral position). Between

two separate gesture repetition groups, the neutral stance length becomes 6 s. This

procedure is done by 5 different subjects to have a more diverse dataset to cover the

possible discrepancies that could appear due to the users’ physiological variability [2].

The filtering method, applied in the preprocessing stage, that is built for every

input channel of the sEMG data consists on: 1) a 50-Hz notch filter for powerline

interference cancellation; 2) a 20-Hz band-pass filter that achieves the best compromise

between reducing initial noise (primarily thermal, chemical, and motion item noises) and

obtaining the intended data material; and 3) the signal's root mean square (RMS) value

estimated on a 200-ms window with no overlap [2].

 20

3.3 Non-negative matrix factorization for sEMG signals

In the following section, it will be examined how NMF may be used to analyze

and decode sEMG signals in the framework of human-robot interaction (HRI) systems.

NMF is an effective method for collecting relevant information from sEMG data,

interpreting muscle activity patterns, and improving instinctive control of robotic systems

[7].

NMF can be used in the context of sEMG-based HRI systems to decipher the

user's intended motions or gestures from the captured sEMG signals. NMF facilitates the

conversion of sEMG data into control commands for robotic devices by detecting the

underlying muscle synergies and their activation levels. This opens the door to the

development of more accessible and productive control interfaces, hence improving the

usability and efficacy of HRI systems [4].

In this chapter, it will be analyzed how NMF may be used for sEMG signal

breakdown and feature extraction from the point of view of the algorithm implementation.

Moreover, NMF algorithmic intricacies will be addressed, such as optimization

approaches and parameter choices. This section tries to illustrate the value of NMF in

sEMG-based HRI systems by exploiting its power. The use of NMF in sEMG signal

processing helps to develop HRI systems by allowing for more organic and smooth

interactions among humans and robots.

3.3.1 Algorithm implementation

The complete Python script of the NMF algorithm implemented (labeling script)

for carrying out the feature labeling of the sEMG dataset can be found in the

corresponding appendices’ subsection (see Section 8.2). Subsequently, the script is broken

down step by step to explain how it works:

The following needed libraries and modules are imported: numpy for numerical

computations [11], matplotlib.pyplot for plotting [12], sklearn.decomposition for the

 21

NMF (Non-negative Matrix Factorization) algorithm [13], pickle for object serialization

[14], os for operating system-related operations [15], scipy.io for loading MATLAB files

[16], and random for random number generation [17]. It also loads the AlphaMatrix

module from the mapping file (see section 8.2 for a detailed description of the script

functioning and the nature of its content).

The NMF_Routine class handles Non-Negative Matrix Factorization (NMF) on

a specified input matrix X. The NMF approach transforms a matrix into two non-negative

matrices: the basis matrix (W) and the coefficient matrix (H). The following methods are

available in the NMF_Routine class:

• _nmf(X): it is a method for performing NMF on the input matrix X. The NMF

class from the sklearn.decomposition package is used. It creates an NMF model

with n_components=2, implying that it attempts to breakdown X into two

components. The init argument is set to ‘random’ to randomly initialize the

factorization. The solver parameter is set to mu to represent the multiplicative

updating algorithm. To utilize the Kullback-Leibler divergence as the goal

function, the beta_loss option is set to kullback-leibler. The maximum number

of iterations for the NMF method is specified by the max_iter option, which is

set to 1000. The basis matrix W and the coefficient matrix H are returned by the

procedure [13].

• compute(X, n_rep=10, diff_signal=True): this method performs the NMF

routine on the input matrix X for feature extraction. It takes additional parameters

n_rep and diff_signal which control the number of repetitions of the NMF routine

and whether to compute the difference signal or not. The method first calls the

_nmf method to obtain the coefficient matrix H by applying NMF to X.

Next, the NMF routine is repeated n_rep times for better smoothing of the

features. Each repetition applies NMF to the current coefficient matrix H to obtain

the updated H.

Following the repetitions, the approach evaluates the shape of H to confirm that

the signal order is correct (high, low, high). If it is incorrect, it swaps the rows of

H to restore the right order.

The normalization step scales each signal in H to a value between 0 and 1; Hn

then, stores the normalized matrix.

 22

The technique either computes the difference signal (S = Hn[1,:] - Hn[0,:]) or

utilizes Hn directly as the extracted features, depending on the value of

diff_signal.

Finally, the calculated features are normalized to a range of 0-1 before being

returned.

Overall, the NMF_Routine class's aim is to wrap the NMF feature extraction

procedure, offering a reusable and modular method for computing features from

myoelectric measurements.

The script defines another class named Labeler. This class is in charge of labeling

the features retrieved from myoelectric data using the NMF_Routine class’s Non-

Negative Matrix Factorization (NMF) procedure. It handles signal merging and

normalization of input data, labels, and reference signals. The following methods are

available in the Labeler class:

• __init__(self, data_path, alpha_type, diff_signal, n_rep_nmf): this is the

Labeler class's constructor function. It initializes the Labeler object with the

following parameters: data_path (path to the dataset), alpha_type (type of alpha

matrix for signal merging), diff_signal (boolean indicating whether the difference

signal should be computed or not), and n_rep_nmf (number of repetitions for the

NMF routine). The alpha property is also set relying on the alpha_type option.

• merge_1_signal(self, H_pn, H_ul): using a predetermined alpha matrix, this

approach blends the labeled signals for power, pinch, and ulnar grasps. It accepts

as input the retrieved characteristics for power (H_pw), pinch (H_pn), and ulnar

(H_ul). The alpha matrix is chosen depending on the Labeler object's alpha

property. The approach multiplies each signal element by element with the

relevant alpha values and concatenates the results to generate the merged signal

matrix T, which is then returned by the method.

• merge_2_signals(self, H_pn, H_ul): using a modified alpha matrix, this

approach integrates the labeled signals for power, pinch, and ulnar grasps. It

accepts as input the retrieved characteristics for power (H_pw), pinch (H_pn),

and ulnar (H_ul). The alpha_bar modified alpha matrix is constructed by

duplicating rows of the original alpha matrix. The procedure multiplies each

signal element by element with the matching alpha values from alpha_bar and

 23

concatenates the results to generate the merged signal matrix T, which is then

returned by the method.

• load_data(self, subj_id): Loads the myoelectric measurements and reference

signals for a certain subject ID. Using the scipy.io package, it reads data from the

MATLAB (.mat) files that contain arrays of the acquired sEMG data. The loaded

data is returned in the form of NumPy arrays [11],[16].

• run_subj(self, subj_id, plot=True): This function does the feature labeling for a

given individual’s readings. The subject ID and an optional parameter plot are

used to determine whether or not to plot the signals. The method initially invokes

the load_data function to load the subject's myoelectric values and reference

signals. It then iterates through each iteration of the data, doing the following

steps:

1. Uses the NMF_routine.compute method to extract characteristics for

power, pinch, and ulnar grasps. The procedure receives the arguments

diff_signal and n_rep_nmf.

2. It invokes the merge_1_signal or merge_2_signals method to merge the

labeled signals depending on the diff_signal value.

3. Normalizes the input, merged and reference signals to a range between 0

and 1.

4. Saves the data in a dictionary with multiple signal versions.

5. If plot is set to True, the plot technique is used to depict the signals.

6. Finally, for each repeat, it provides the dictionary containing the labeled

and normalized data.

• plot(self, X, T, R, title): For visualization, this method graphs the myoelectric

measurements (X), merged signals (T), and reference signals (R). It employs the

matplotlib library to generate line plots with labels and legends [12].

Summarizing, the Labeler class offers an interface for labeling myoelectric

characteristics using NMF and merging the labeled signals for further analysis or robotic

device control. It contains the essential stages and allows for the selection of several alpha

matrices for signal merging.

Finally, the if __name__ == "__main__" block is the entry point of the script. It

configures PLOT (whether to plot the signals), SEED (random seed), N_REP_NMF

 24

(number of repetitions for NMF), ALPHA (alpha matrix type), and DATA_PATH (path

to the dataset). Then, it generates an output directory in which to save the labeled dataset

and, afterwards, it iterates through each subject from 1 to 5 and labels them using the

Labeler class. Each subject's labeled data is subsequently saved in a pickle file.

Overall, the script applies NMF to the myoelectric readings, merges and labels the

signals, and stores the labeled dataset for further analysis and usage. In the following

figure, it can be found an example of the graphical representation of the myoelectric

readings, as well as the generated labels for the three different grasps with their

corresponding reference signals:

Figure 7: Myoelectric readings and grasps’ labels from subject 1 (1st repetition)

 25

3.3.2 Parameters selection and optimization

Several settings in the feature labeling script may be adjusted and tweaked to enhance

the labeling process. Here's a more detailed explanation of these parameters and how they

might be chosen and optimized [13]:

• n_components: This parameter determines the number of components (or

features) to be extracted by NMF. It represents the desired dimensionality of the

latent matrix. In this particular case, the sEMG generative model considers only

2 muscular synergies. Therefore, this parameter has to be set to take the same

value in order to fix the synergistic matrix dimensionality.

• solver: The algorithm used to solve the NMF problem is determined by this

parameter. It can be set to "cd" for coordinate descent or "mu" for multiplicative

update. The solver selected is determined by the size of the dataset and the unique

characteristics of the problem. Coordinate descent is faster for sparse data, but

multiplicative updating is more efficient for dense data. Taking into account the

time series nature of the ME signals read at a high frequency, a multiplicative

approach seems to be a more suitable choice.

• max_iter: It sets the maximum number of iterations required for the NMF

algorithm to converge. Increasing the number of iterations can enhance

decomposition quality, but it also increases computing time. A reasonable amount

of 1000 iterations were chosen that allowed the method to converge to a good

answer without requiring excessive computation.

• beta_loss: The beta divergence utilized as the cost function in the NMF method

is determined by this parameter. It can be adjusted to different choices like

"kullback-leibler", "frobenius" or "itakura-saito". This parameter is dependent on

the individual features of the data and the desired decomposition qualities, but

since the "kullback-leibler" divergence is generally employed for non-negative

data, it was the most logical option to settle on.

• n_rep_nmf: It defines the number of repetitions for the Non-Negative Matrix

Factorization procedure. The NMF routine is used to smooth the data and improve

the label quality. More steady and dependable results can be achieved by

performing the NMF method several times. It is possible to experiment with

different N_REP_NMF values to achieve the best balance of computing resources

 26

and labeling accuracy. Low values were taken as a starting point, and they were

progressively increased until a total of 10 repetitions, where the labeling quality

was substantially improved.

• seed: It controls the script's random seed. Randomness is used in several

processes, including initialization and random selection. Setting a specified

integer value of the seed ensures that the labeling procedure is reproducible in

order to iteratively tune other parameters. Different seed values can be tested to

observe how they affect the final labeled data. In this particular study case, the

seed value of 1 worked reasonably good for the labeling of the sEMG signals.

3.4 Deep Feedforward and Long Short-Term Memory Neural Networks

When it comes to feedforward DNNs, it is well known that they have great

learning capabilities for complicated mappings between sEMG signals and related control

inputs, making them a potential solution for improving HRI system performance and

usability. Training a feedforward DNN entails optimizing the network's parameters for

minimizing the difference between expected control instructions and ground truth values.

The DNN eventually develops the ability to identify the complicated mappings between

the input sEMG signals and the intended control outputs through recurrent optimization

[5].

LSTM NNs, on the other hand, have grown in popularity because to their ability

to handle sequential and temporal data. Unlike standard feedforward neural networks,

they have a memory component that allows them to store information over long time

periods. LSTM NNs are well-suited for modeling complicated temporal relationships in

sequential data because of this memory mechanism and the capacity to selectively forget

and update information. They may provide a helpful way for capturing the temporal

dynamics and patterns inherent in muscle activation sequences in the context of sEMG-

based HRI systems, allowing for more accurate and precise control of robotic devices [6].

In this chapter, it will be explored how feedforward DNNs and LSTM NNs may

be used to decode sEMG signals and provide intuitive control of robotic equipment. How

to construct and train these network architectures for sEMG signal processing will be

explained; network structure layout, hyperparameter selection, and training techniques

 27

will be covered. In addition, the assessment measures used to analyze the precision,

reliability, and responsiveness of the models will be presented.

3.4.1 Deep Feedforward model implementation

The complete Python script of both Feedforward and LSTM NN algorithms

implemented (models script) can be found in the corresponding appendices’ subsection

(see Section 8.2). Subsequently, the script is broken down step by step to explain how it

works.

The models script defines first a feedforward neural network algorithm using the

PyTorch library, an established deep learning tool for creating and training neural

networks [18]. Before anything else, it imports the mentioned library and then, it

constructs a class called NN, which derives from the torch.nn.Module class; it serves as

the neural network model's template. The following methods are available in the NN class

[18]:

• The __init__ function is the class’s constructor. It demands various arguments:

o input_dim: It corresponds to the input dimension or the number of

features in the dataset (the default value is set to 8, since the acquiring

system has 8 built-in input channels).

o hidden_units: It defines the number of neurons or units in the hidden

layers (the default value is set to 32).

o out_dim: It matches the number of output dimensions or classes to use

(the default value is fixed to 3, since the NN is designed to learn the

mappings for 3 different grasps).

o num_layers: The total number of neural network layers, including input

and output layers (the default value is set to 3).

The super().__init__() line invokes the parent class’s constructor

(torch.nn.Module). The next lines assign the specified values for input

dimensions, hidden units, output dimensions, and the number of layers to instance

variables of the NN class. Afterwards, the layers variable is initialized as an empty

list and them, layers are added based on the number of levels and dimensions

initially defined [18]:

 28

o The first layer is built, which is a fully connected layer that maps the input

dimensions to the hidden units; this layer's activation function is ReLU.

o The same fully linked layer is added num_layers - 2 times for the

intermediate layers (except the first and last layers), and ReLU activation

is done after each layer.

o The final layer is then generated, which represents the completely linked

layer that maps the hidden units to the output dimensions; this layer's

activation function is Sigmoid.

• The forward method implements the neural network's forward pass function. It

starts with an input tensor x and successively sends it across each layer, applying

the layer's transformation on the input. The ultimate output of the forward pass is

the output of the final layer.

In a nutshell, this part of the models script constructs a feedforward neural network

with adjustable input dimensions, hidden units, output dimensions, and layer count. It

employs fully linked layers for the hidden layers with ReLU activation functions and a

Sigmoid activation function for the output layer, while the forward method executes the

network's forward pass.

3.4.2 Long Short-Term Memory model implementation

The models script defines a Long Short-Term Memory neural network using the

PyTorch library imported [18]. First, it defines the LSTM class, which derives from the

torch.nn.Module class. It serves as the LSTM network model's foundation. The

following methods are available in the LSTM class [18]:

• The LSTM class's constructor is the __init__ function. It demands various

arguments:

1. input_dim: It corresponds to the expected number of features in the

dataset (the default value is set to 8, since the acquiring system has 8 built-

in input channels).

2. hidden_units: It defines the number of features contained in the hidden

state (the default value is set to 32).

 29

3. out_dim: It matches the number of output dimensions or classes to be

returned (the default value is fixed to 3, since the NN is designed to learn

the mappings for 3 different grasps).

4. num_layers: The total number of repeating layers in the neural network

(the default value is set to 1).

The super().__init__() line invokes the parent class’s constructor

(torch.nn.Module). The next lines assign the specified values for input

dimensions, hidden units and the number of layers to instance variables of the

LSTM class [18].

Afterwards, the lstm variable is initialized as an instance of torch.nn.LSTM,

which represents the network's LSTM layer. While created, the input_dim,

hidden_units and num_layers parameters are passed, as well as batch_first is

set to true, meaning that the batch dimension of the input tensor will be the first

dimension [18].

Moreover, as an instance of torch.nn.Linear, the linear variable is initialized,

denoting a completely linked layer. Because the output of the LSTM layer is

transmitted through this linear layer, the in_features is set to hidden_units. Also,

the out_features parameter has been set to out_dim, which represents the number

of output classes [18].

• The forward method implements the neural network's forward pass computation.

It takes a tensor x as input and performs the following:

1. Based on the geometry of the input tensor, determine the batch size.

2. Initialize the original hidden state h0 and cell state c0 to zeroes; the LSTM

layer requires these states in order to maintain track of the temporal

dependencies.

3. The input tensor and starting states are passed to the LSTM layer

(self.lstm). The result is a tuple that contains the output tensor as well as

the final hidden and cell states.

4. To retrieve the final output, extract the final hidden state hn from the tuple

and feed it through the linear layer (self.linear).

5. The output tensor is returned.

Overall, this part of the models script constructs an LSTM network with

adjustable input dimensions, hidden units, output dimensions, and layer count. For feature

 30

labeling in the myoelectric dataset, it employs an LSTM layer followed by a linear layer,

while the forward method executes the network's forward pass.

3.4.3 Neural Networks’ training

The complete Python script containing the code corresponding to the training of

both Feedforward and LSTM NN algorithms (train script) can be found in the

corresponding appendices’ subsection (see Section 8.2). Subsequently, the script is broken

down step by step to explain how it works.

The train script is developed so that a predefined NN can learn the mappings of the

sEMG signals from different grasping actions, given a training dataset (this script is

shared for both Feedforward and LSTM training implementation). The script first

imports the necessary modules and classes for the model training and assessment; it

imports modules such as numpy for numerical computations [11], torch for neural

network training [18], random for random number generation [17], and tqdm for

progress bars [19], as well as essential classes defined in the models and dataset scripts

(the dataset script can be found at the section 8.1 from the appendices chapter, with an

attached description of its purpose). Then we can find the following methods for

performing the NN training:

• The set_seeds function is in charge of generating random seeds for various

libraries in order to assure repeatability of findings. The following random

seeds have been defined [11],[17],[18]:

o torch.backends.cudnn.deterministic = True: This line assures that

CuDNN (CUDA Deep Neural Network library) actions are

deterministic; it is a GPU-accelerated deep neural network library used

by PyTorch. By setting this value to True, it makes cuDNN operations

predictable, which means that the same input will yield the same result

every time the code is performed, which is critical for repeatability.

o torch.backends.cudnn.benchmark = False: Disables the benchmark

mode in cuDNN, which automatically identifies the optimum method

for the present hardware configuration and input size. However, the

method used may differ across runs, resulting in non-deterministic

 31

behavior. Therefore, the benchmark mode is disabled, providing

consistent behavior across runs.

o torch.manual_seed(seed): It sets the random seed for PyTorch's

CPU-based random number generator. By using the same seed, the

sequence of random integers created by PyTorch will be consistent

between code runs.

o torch.cuda.manual_seed_all(seed): It configures the random number

generator used by PyTorch on the GPU (if one is available). By using

the same seed, it assures that the random number generation on the

GPU is likewise repeatable.

o np.random.seed(seed): It sets the random seed for NumPy's random

number generator. Because many operations in the code use NumPy

functions, establishing the seed guarantees that these actions provide

consistent results across runs.

o random.seed(seed): Sets the random seed for Python's built-in

random number generator. It assures that any further operations in the

code involving random integers that are not covered by the preceding

seeds are repeatable.

Overall, the set_seeds function generates a deterministic environment for

random number generation by establishing the seeds in this manner,

guaranteeing that the results acquired during model training and assessment

are consistent and reproducible.

• The train_model function is in charge of training the neural network model

using the training data given. Four arguments are required by the function: the

data_loader object that performs batch iterations on the training dataset, the

model object, which corresponds to the neural network model that will be

trained, the loss_function that is used to compute the training loss and the

optimizer, that is in charge of adjusting the model's parameters depending on

the obtained gradients.

To begin, the function determines the total number of batches in the training

data (num_batches). It also creates the variable total_loss to keep track of the

entire loss during training. The model.train() call places the model in training

mode, allowing features such as dropout and batch normalization if they are

present [18].

 32

Afterwards, the function runs a training loop across the data loader's batches

of data. It iterates through the following stages for each batch [18]:

1. By running the input data (x) through the model, the model's output

(output) is computed.

2. Using the supplied loss function, computes the loss between the

model's output and the target labels (y).

3. The gradients of the model's parameters are reset

(optimizer.zero_grad()).

4. The loss is backpropagated to compute the gradients of the model's

parameters (loss.backward()).

5. The model's parameters are updated depending on the estimated

gradients (optimizer.step()).

6. The loss value (loss.item()) is added to the total_loss variable.

The function determines then, the average training loss after finishing the

training loop by dividing the total_loss by the total number of batches

(num_batches), which is finally printed and returned.

In summary, the train_model function trains the neural network model using

the training data supplied. It iterates over the data batches, computes the

model's output, calculates the loss, backpropagates, and adjusts the model's

parameters using the supplied optimizer. It adds the loss values together and

delivers the average training loss.

Finally, the if __name__ == "__main__" block is the entry point of the script. It

comprises the fundamental logic that is implemented when the script is run right away.

The block begins by establishing a base configuration in the form of a dictionary: the

batch size, learning rate, number of hidden units, random seed, number of training

iterations, device used (CPU or GPU), downsample rate, dataset name, subject, and

network type (either "lstm" or "nn") are all included. These settings can be changed for

customizing the training process.

Then, the random seed from the basic configuration is sent to the set_seeds method. This

assures that the script's random number generation is repeatable, as mentioned in the

earlier description of the set_seeds function. Afterwards, the pickle file path for uploading

the dataset is defined using the dataset name and subject from the basic configuration.

 33

Once the previous steps are completed, both training and validation datasets can be

generated using the cross_validation_out function included in the DataPreProcessing

class in a “for loop”, which allows to create different divisions of the whole available

data, providing every time one of the six different gestures’ repetitions as the validation

dataset and the other five as the training set. The processed datasets are then returned and

assigned to the variables dataset_train and dataset_val according to the selected

network type, which are generated with the corresponding imported classes from the

dataset generator script.

Moreover, the DataLoader class from PyTorch is used to develop data loaders. They

perform batch iterations on the training and validation datasets, being the batch size

determined by the initial setup. The num_workers option sets the number of

subprocesses used for data loading, and shuffle controls whether or not the data is

shuffled during training [18].

Subsequently, an NN (feedforward) or LSTM model is constructed based on the network

type chosen in the basic configuration, as well as the number of hidden units and layers

supplied. Then, Torch.nn.MSELoss() is used to generate the mean squared error (MSE)

loss function, as well as the model's parameters, that are defined to be optimized using

the Adam criterion, where the learning rate is set by the base configuration [18].

To finish the loop, depending on the number of training iterations (base_config["iters"])

and the size of the training dataset, the total number of epochs is determined. To keep the

training and validation losses for each epoch, a dictionary log_dict is established.

Using the range function, the script begins a loop across the epochs. The train_model

function is invoked for each epoch to train the model on the training data, passing the data

loader, model, loss function, and optimizer, while the training loss is saved in loss_train.

Similarly, the val_model function is invoked to assess the model against the validation

data, and the validation loss is saved in loss_val; training and validation losses are stored

in the log_dict dictionary for each epoch.

Last but not least, the script generates a dictionary state that includes both model's state

and training log dictionaries as well as the basic initial configuration and, employs

torch.save to store this state dictionary as a checkpoint file [18].

After executing the train script successfully, the chosen neural network can be

considered to be trained, generating six different trained models where each one was

trained using a different training dataset created with the cross_validation_out function.

 34

The performance of this process is measured throughout the training loop, and it is

addressed in the next section.

3.4.4 Performance evaluation

The script's training procedure focuses on developing a neural network model for

sEMG-based myoelectric control of a robotic hand. To ensure the efficacy of the training,

the performance of the training process must be evaluated.

The training process is evaluated by computing two essential metrics: the training

loss and the validation loss. These metrics indicate how effectively the model learns

during training and how well it generalizes to previously unknown data (note that this

evaluation is done in order to have an instant insight of the model’s performance so that

it can be easily tuned after running the script, a further general analysis of the models’

performance after the training process is done in the following results chapter).

The training loss, calculated within the train_model function, quantifies the

difference between the model's anticipated outputs and the true labels for the training

data. It is calculated using the Mean Squared Error (MSE) loss function in the script; it is

calculated batch per batch, and the average loss across all batches is presented for the six

different generated models after training them.

The validation loss, evaluated by the val_model function, measures how well the

model performs on a different validation dataset that is not used for training. It provides

an assessment of how effectively the model generalizes to previously unknown data. The

MSE loss function, similar to the training loss, is used to compute the validation loss; it

is also calculated batch by batch, with the average loss provided across all batches for the

six different generated models after training them.

Furthermore, the training and validation losses for each epoch are saved in a log

dictionary, which documents the training process's progress. This log keeps a thorough

record of how the losses change over time, providing insights into the model's learning

dynamics which will be used later to determine if the model actually learns the mappings

improving the labeling predictions after more epochs are performed.

 35

In a nutshell, the script's evaluation of training process performance is based on a

study of training and validation loss. By monitoring these losses throughout the training

loop, it is possible to make educated judgments about model selection, hyperparameter

tuning, and the overall performance of the myoelectric control neural network for

controlling a robotic hand using sEMG signals.

4. Results

In this chapter, the outcomes of the machine learning algorithms mentioned in the

previous chapter's implementation are provided; there can be found the findings of the

conducted experiments and analyses. The chapter is divided into two sections, given in

the following order: the performance on sEMG signals of the developed machine learning

models, and afterwards, the comparison of both machine learning techniques’

performance.

The first part exposes the evaluation results of Feedforward and LSTM deep

neural networks performance for the self-supervised regression of sEMG data, separately.

On the other hand, the second part compares both machine learning methods’ functioning

in order to decide which would be a better approach for the given study case.

Overall, this chapter gives a thorough analysis of the findings from the tests

carried out in this study. This work adds to the understanding of the effectiveness of

machine learning methods for self-supervised regression of sEMG signals and its possible

potential in robotic hand control.

4.1 Performance of ML models on sEMG signals

The whole Python script containing the code corresponding to the evaluation of

the trained NNs’ performance for predicting the neural drive features given a validation

sEMG signals dataset (predict script) can be found in the corresponding appendices’

 36

subsection (see Section 8.3). Subsequently, the graphical results generated by the script

are displayed for their analysis.

First, the training and validation losses from the last trained Feedforward model

evaluation are plotted, as well as the actual and predicted labels by the algorithm,

generating the following graphs:

Figure 8: Actual vs Predicted neural drives for trained Feedforward DNN

 37

Figure 9: Training vs validation RMSE losses for Feedforward DNN

In the plot shown in figure 9, a decreasing tendency of the computed training and

validation MSE losses can be seen, meaning that the algorithm actually works as it should,

improving the feature extraction’s precision between epochs of the method. The fact that

the algorithm indeed does the job reasonably is also depicted in the plot of figure 8, where

the generated neural drive follows the tendency of the label previously generated with the

NMF method, that is considered the ground-truth for the ML application.

It is noticeable that the training loss starts at bigger values than the validation loss

which actually makes sense, taking into account that, even though the validation dataset

contains completely new data that is given to the algorithm for the first time, the NN has

already been trained with “similar” data that can differ due to the nature of the signals,

such as the physiological variability for the different sEMG recordings, making it easier

for the ML method at the beginning, while having a similar precision outcome at the end.

Afterwards, the performance assessment of the Long Short-Term Memory

algorithm is done in the same way as described for the Feedforward algorithm’s analysis,

leading to generate the following plots:

 38

Figure 10: Actual vs Predicted neural drives for trained LSTM NN

Figure 11: Training vs validation RMSE losses for LSTM NN

In the plot shown in figure 11, a decreasing tendency of the computed training and

validation MSE losses is also seen as in the case of the DFNN, meaning that the algorithm

 39

actually works as well, enhancing the feature extraction’s accuracy between epochs of the

method. The fact that the algorithm does a reasonable job is also demonstrated in figure

10, where the produced neural drive is comparable to the label previously created using

the NMF approach, which serves as the verification fact for the ML application.

Similarly to the DFNN performance, the training loss begins at larger values than

the validation loss, which has again a logical reasoning considering that, while the

validation dataset includes completely new data that is provided to the algorithm for the

first time, the NN has already been trained with "comparable" data that can diverge

because of the characteristics of the signals, such as physiological variability for the

different subjects' sEMG recordings, making it more simple for the ML method to learn

at the starting point, while achieving a similar level of accuracy in the final stages.

 Overall, both ML algorithms have been able to compute a suitable mapping for

decoding the neural drives given a set of sEMG signals for a posterior control of a robotic

hand. In the next section, both performances will be compared in order to make a founded

decision about which method would be more fitting in order to tackle this particular study

case.

4.2 Comparison of the machine learning algorithms

The predict script performs a validation test on both Feedforward and LSTM

algorithms, where the Root-Mean-Square Error is computed for each different trained

models and the average value of the six results is then represented as a bar plot for each

algorithm, as well as a confidence interval that is displayed in black for both cases,

allowing a graphical comparison of both machine learning algorithms’ performance by

means of the validation loss parameter. Subsequently, the graphical results generated by

the script are displayed for their analysis.

 40

Figure 12: Feedforward vs LSTM NNs’ average RMSE Loss

 As it can be seen in figure 12, both algorithms performed pretty similarly, even

though they have such different architectures. On the one hand, the typical Deep

Feedforward Neural Network was able to predict the neural drives from the sEMG signals

with a precision higher than 95% with respect to the actual one, which is indeed reflected

in the blue bar plot where the average RMSE loss is lower than 0.05 (5% error). On the

other hand, the proposed alternative of the Long Short-Term Memory Neural Network

actually scored a slightly higher average RMSE loss, of value barely higher than 0.05 (5%

error), meaning that the algorithm almost reached a 95% precision in predicting the neural

drives from the sEMG signals that would be then translated into control commands for a

robotic hand.

 To sum up, it was shown that given the hyperparameters’ selection and the number

of epochs performed during the training sessions among other factors, both neural

architectures were able to learn the mappings for predicting the desired neural drives from

sEMG readings with a remarkable accuracy, giving a special mention to the Feedforward

NN for achieving a hardly better performance doing this job. In the following section, the

 41

results that were just exposed will be discussed for providing an answer to this study case,

which will lead then to concluding the work done.

5. Discussion

The present chapter of the thesis, which refers to the discussion, acts as a complete

examination of the research project's important results. It strives to critically examine the

experimental data and offer a detailed interpretation of their relevance, while taking into

account the study's limitations.

The relevance of the findings acquired from the various machine learning

algorithms examined in the previous chapter will be investigated. The causes behind the

observed performance variations across the algorithms will be studied, while

recommending areas for development.

Furthermore, this chapter recognizes the study's shortcomings and proposes

possible topics for further research in the subject. Overall, this chapter presents a critical

assessment on the research effort and its consequences, with the goal of adding to the

knowledge in the field of sEMG-based robotics.

5.1 Implications of the findings

When it comes to the findings previously exposed about the training of both

Feedforward and LSTM Neural Networks, an exponential decay of the training loss can

be seen (as shown in figures 9 and 11), meaning that epoch after epoch that was performed

throughout the architecture of the algorithms, a substantial improvement was achieved

when it comes to learning the mappings between the provided sEMG signals and the

desired neural drives’ predictions.

On the one hand, the Feedforward NN architecture was comprised of the

following elements (notice that the following parameters’ definition is flexible depending

 42

on the algorithm’s application and the selection criteria should be focused on the

optimization of the output’s precision):

• An input layer with a dimension of 8, meaning that it contains 8 different

nodes where each one represents one input channel corresponding to the 8

pairs of electrodes that were used for the data acquisition.

• A hidden layer containing a total of 32 units, meaning that the intermediate

step for learning the mappings of the signals contains 32 neurons that are used

to compute the weights associated with the relationship between the input and

output values.

• An output layer with a dimension of 3, where each node represents a neural

drive corresponding to the 3 different grasp motions that are considered in the

study to be then performed by a robotic hand.

By defining this structure in particular, the algorithm was able to be trained progressively

in such a way that when a different/new set of data was provided (that is the validation

dataset generated during the training process), it was able to predict also with an

improving accuracy over the iterative process, meaning a decrease of the computed loss

between the output and the provided labels for each grasp, the wanted neural drives (as

shown in figure 9).

On the other hand, the Long Short-Term Memory NN architecture was comprised

of the following elements (again, notice that the following parameters’ definition is

flexible depending on the algorithm’s application and the selection criteria should be

focused on the optimization of the output’s precision):

• An input layer with a dimension of 8, meaning that there are 8 different features

or input values in the NN where each one represents one input channel

corresponding to the 8 pairs of electrodes that were used for the data acquisition.

• An LSTM layer containing a total of 32 units, meaning that the intermediate step

for learning the mappings of the signals contains 32 memory cells that are used to

analyze the sequential input data and record the data's long-term relationships for

computing the final output values of the algorithm.

• An output layer with a dimension of 3, where the hidden states returned by the

LSTM layer are received to generate 3 different final outputs that represent the

 43

neural drives corresponding to the 3 different grasp motions that are considered

in the study to be then performed by a robotic hand.

By establishing this structure specifically, the algorithm managed to be trained gradually

in such a manner that when a different/new set of data was given (that is, the validation

dataset generated during the training process), it also became able to predict with

an increasing precision over the course of the iterations, indicating a decrease in the

estimated loss between the output and the provided labels for each grasp, the desired

neural drives (as shown in figure 11).

Overall, both algorithms showed a reasonable capacity to learn the mappings

between the acquired sEMG signals and the neural drives corresponding to the performed

grasp activities, making them possible solutions to tackle the problem of sEMG signals

regression for the control of a robotic hand.

Finally, a graphical comparison of both architectures’ performance was generated

in order to discriminate between them to decide which would be a better fit for achieving

the goal of a robotic hand control with the best possible accuracy.

According to the bar plot showed in figure 12, the prediction’s precision of the

neural drives executed by both algorithms is tightly similar, with a slight advantage of the

Feedforward NN that scored a hardly lower Root-Mean-Square Error loss in average

between the six different trained models for each case.

Apparently, the LSTM NN architecture would be less appropriate for this study

case, but given the fact that several factors regarding the particular structure selection

may have a decisive impact on the results, which did not differ that much from the ones

obtained by the Feedforward NN, there is no clear and absolute proof that the latter is

indeed the best option. Nevertheless, strictly analyzing the obtained results, it could be

said that the Feedforward algorithm may be the best approach given the limitations of the

study, with room for improvement in both cases that will be discussed throughout the

following section.

 44

5.2 Future research directions

According to the performed work along with its limitations, an extended

refinement of several aspects regarding the architectures’ structure, algorithms

implementation and parameters’ selection could be carried out in succeeding research

efforts about the sEMG-based control of robotic hands using the proposed approach.

Some directions to be taken into account could be the following:

• The general architecture of both algorithms could be improved by increasing the

number of hidden layers, as well as the number of neurons/units with which these

are constituted, for creating deeper networks capable of learning more complex

mappings for the neural drives’ regression. Notice that this approach could

escalate the computational cost for training the algorithm, to an extent in which it

could be unviable to generate a response feasibly.

• The implementation of an inner cross-validation loop would be the next step when

it comes to selecting the algorithms’ parameters, since it would allow the

optimization of the values that take the variables defining the structure of the

selected methods.

• Another sensitive factor to take into account would be the sequence length with

which the time series dataset is broken down into batches to be fed to the LSTM

algorithm. A fine tuning of this parameter could lead to an enhancement of the

neural network’s outcome quality.

• Moreover, regarding the LSTM algorithm implemented in this study case, a basic

version of the architecture was taken into account but, according to [9], several

variations have been developed which have shown an enhanced performance in a

variety of applications. This path could also be explored for trying to implement

a version that better fits the nature of sEMG signals.

Overall, several possible directions have been stated for improving the performance

of both algorithms and carrying out a more precise analysis and educated judgement of

which approach could be more suitable for this particular study case.

 45

6. Conclusion

This final chapter summarizes the discussion of the introduction's questions and

objectives of the study, being the main goal of the section to expose if these aims were

met. It also intends to show how the research findings contribute to the area of sEMG-

based robotics, as well as how the insights acquired from this study may be used to actual

real-world applications.

6.1 Summary of the key findings

The research efforts accomplished in this paper focus on the report of the

performance achieved by the proposed Machine Learning algorithms, both a Feedforward

Neural Network and a Long Short-Term Memory Neural Network, in the job of carrying

out a regression technique on a pre-acquired set of surface electromyographic signals for

the further estimation of the neural drives corresponding to different hand-grasping

movements for the myoelectric control of a robotic hand.

The obtained sEMG dataset, containing the readings of the electrodes’ input

channels, was divided in both training and a validation sets by means of an outer cross-

validation loop. Several models based on the intended ML algorithms were trained with

the corresponding datasets, which showed a promising ability learning the mappings

between the sEMG signals and the expected neural drives’ labels that would be then used

for predicting neural drives given a new validation dataset.

Once the models were trained, the performance of both architectures was then

measured by means of the average between the Root-Mean-Square Error losses of the

different models’ outputs when predicting the neural drives given the mentioned sEMG

validation dataset. A high and consistent accuracy was shown by both ML algorithms,

where the Feedforward NN barely outperformed the LSTM NN for the particular

architecture design and parameters’ selection done in this study case.

To conclude, the experimental evaluation of the algorithms’ performance was

utterly useful to shed light on the profitability and convenience that can be gained from

 46

the usage of the proposed architectures for the task of regression regarding sEMG signals

for developing a natural and user-friendly Human-Robot Interface capable of controlling

a robotic hand’s multi-grasp gestures.

6.2 Practical applications and contributions to the field

The development of this thesis is intended to have a positive impact on the topic

of sEMG-based robotic hand control, expanding the current knowledge available for the

community and promoting the persistence in developing new interfaces that achieve

greater results.

Regarding the functional applications that could benefit from the stated

implementation and analysis of the chosen Machine Learning architectures, several fields

of domain can be taken into account: prosthetic devices and assistive technologies, where

enhanced control algorithms can increase the efficiency and naturalness of prosthetic

hands, allowing for a wider range of grip patterns with more precision, making patients'

everyday tasks easier and thereby enhancing their quality of life; industrial production

systems in which the profitability, precision, and quality of automated operations in

industrial settings that demand dexterous manipulation may be improved while

decreasing recurring human labor, resulting in cost savings and overall production

enhancement; finally, teleoperation in hazardous environments, in which the algorithms

might enable and improve an accurate remote control of robotic hands for functioning in

potentially dangerous environments for people, such as radioactive locations, disaster

response scenarios, underwater operations, or space exploration.

Weighing up the facts stated throughout the preceding chapters, some

contributions that could be extracted from this thesis work may be the following: the

design of more accurate and solid feature extraction algorithms for sEMG-based control

interfaces, an understanding of the appropriateness and efficacy of the chosen algorithms

in multi-grasp robotic hand control, and the statement that applying deep neural networks

to sEMG-based control can result in more smooth and sensitive interactions, improving

the overall user experience and accessibility of the systems.

 47

7. References

[1] LI, Kexiang, et al. A review of the key technologies for sEMG-based human-

robot interaction systems. Biomedical Signal Processing and Control, 2020, vol.

62, p. 102074.

[2] MEATTINI, Roberto, et al. An sEMG-based human–robot interface for robotic

hands using machine learning and synergies. IEEE Transactions on Components,

Packaging and Manufacturing Technology, 2018, vol. 8, no 7, p. 1149-1158.

[3] BERG, Julia; LU, Shuang. Review of interfaces for industrial human-robot

interaction. Current Robotics Reports, 2020, vol. 1, p. 27-34.

[4] MEATTINI, Roberto, et al. Design and evaluation of a factorization-based grasp

myoelectric control founded on synergies. En 2019 12th International Workshop

on Robot Motion and Control (RoMoCo). IEEE, 2019. p. 252-257.

[5] KANG, Tae Gyoon, et al. NMF-based target source separation using deep neural

network. IEEE Signal Processing Letters, 2014, vol. 22, no 2, p. 229-233.

[6] HUA, Yuxiu, et al. Deep learning with long short-term memory for time series

prediction. IEEE Communications Magazine, 2019, vol. 57, no 6, p. 114-119.

[7] SEUNG, D.; LEE, L. Algorithms for non-negative matrix

factorization. Advances in neural information processing systems, 2001, vol. 13,

p. 556-562.

[8] NIELSEN, Michael A. Neural networks and deep learning. San Francisco, CA,

USA: Determination press, 2015.

[9] CHRISTOPHER, Olah. Understanding LSTM networks

[online]. Understanding LSTM Networks - Colah's Blog. (August 27, 2015).

Available: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

[10] MEATTINI, Roberto, et al. Self-supervised regression of sEMG signals

combining non-negative matrix factorization with deep neural networks for robot

hand multi-grasp control. IEEE Robotics and Automation Letters, 2023.

[11] NumPy Reference [online]. numpy.org, December 18, 2022. Available:

https://numpy.org/doc/stable/reference/index.html#reference

[12] Matplotlib API Reference [online]. matplotlib.org, 2023. Available:

https://matplotlib.org/stable/api/index.html

 48

[13] Scikit-learn API Reference [online]. scikit-learn.org, 2023. Available:

https://scikit-learn.org/stable/modules/classes.html

[14] pickle - Python object serialization [online]. docs.python.org, 2023. Available:

https://docs.python.org/3/library/pickle.html

[15] os - Miscellaneous operating system interfaces [online]. docs.python.org, 2023.

Available: https://docs.python.org/3/library/os.html

[16] Input and output (scipy.io) [online]. docs.scipy.org, 2023. Available:

https://docs.scipy.org/doc/scipy/reference/io.html

[17] random – Generate pseudo-random numbers [online]. docs.python.org, 2023.

Available: https://docs.python.org/3/library/random.html

[18] PyTorch Documentation [online]. pytorch.org, 2023. Available:

https://pytorch.org/docs/stable/index.html

[19] tqdm documentation [online]. tqdm.github.io, 2022. Available:

https://tqdm.github.io

8. Appendices

8.1 Code implementation and description of dataset building and preprocessing

Dataset Python script (Dataset generation and prior preprocessing)

import numpy as np

import torch, pickle, copy

import matplotlib.pyplot as plt

class DataPreProcessing(object):

 def __init__(self, pickle_path):

 self.data_dict = self.load(pickle_path)

 def get_data(self):

 data = np.hstack([self.data_dict[k]["Xn"] for k in self.data_dict.keys()])

 49

 label = np.hstack([self.data_dict[k]["Tn"] for k in self.data_dict.keys()])

 return data, label

 def cross_validation_out(self):

 keys = list(self.data_dict.keys())

 for k in keys:

 train_data, val_data, train_label, val_label = [], [], [], []

 for z in keys:

 if z != k:

 train_data.append(self.data_dict[z]["Xn"])

 train_label.append(self.data_dict[z]["Tn"])

 else:

 val_data = self.data_dict[z]["Xn"]

 val_label = self.data_dict[z]["Tn"]

 yield copy.deepcopy(train_data), copy.deepcopy(val_data),

copy.deepcopy(train_label), copy.deepcopy(val_label)

 def load(self, path):

 with open(path, "rb") as handle:

 b = pickle.load(handle)

 return b

class EMGData(torch.utils.data.Dataset):

 def __init__(self, data, label, downsample=True, rate=4):

 self.data = data

 self.label = label

 if downsample:

 self.data, self.label = self.downsample(self.data, self.label, rate)

 self.data = copy.deepcopy(self.data.T)

 self.label = copy.deepcopy(self.label.T)

 def downsample(self, data, label, rate):

 50

 data = data[:, ::rate]

 label = label[:, ::rate]

 return data, label

 def __len__(self):

 return len(self.data)

 def __getitem__(self, idx):

 datum = torch.from_numpy(self.data[idx].T).float().unsqueeze(0)

 label = torch.from_numpy(self.label[idx].T).float().unsqueeze(0)

 return datum, label

class EMGDataSeq(torch.utils.data.Dataset):

 def __init__(self, data, label, downsample=True, rate=10, sequence_length=64):

 self.data = data

 self.label = label

 self.sequence_length = sequence_length

 if downsample:

 self.data, self.label = self.downsample(self.data, self.label, rate)

 self.data_ready = []

 self.label_ready = []

 for i in range(self.data.shape[2]):

 i_end = i + self.sequence_length

 if i_end < self.data.shape[2]:

 x = self.data[:, i:i_end]

 y = self.label[:, i_end]

 self.data_ready.append(x)

 self.label_ready.append(y)

 self.data_ready = np.array(self.data_ready).T

 self.label_ready = np.array(self.label_ready).T

 def downsample(self, data, label, rate):

 51

 data = data[:, ::rate]

 label = label[:, ::rate]

 return data, label

 def load(self, path):

 with open(path, "rb") as handle:

 b = pickle.load(handle)

 return b

 def __len__(self):

 return self.data_ready.shape[-1]

 def __getitem__(self, idx):

 x = self.data_ready[:, :, idx]

 y = self.label_ready[:, idx]

 x = torch.from_numpy(x).float()

 y = torch.from_numpy(y).float()

 return x, y

if __name__ == "__main__":

 # DATA

 with open("dataset_ar10/subj1.pickle", "rb") as f:

 data_subj = pickle.load(f)

 data = data_subj[0]["Xn"]

 label = data_subj[0]["Tn"]

 print(f"data shape: {data.shape}, label shape: {label.shape}")

 # DATASET LSTM

 dataset = EMGDataSeq(data, label, downsample=True, rate=10, sequence_length=64)

 print("dataset length: ", len(dataset))

 # DATASET NN

 dataset = EMGData(data, label, downsample=True, rate=10)

 print("dataset length: ", len(dataset))

 52

The supplied Python script addresses data preparation and dataset generation for

training the ML algorithms used for the sEMG-based myoelectric control of robotic

hands. Following that, the various elements of the script are discussed in order to

comprehend how they work.

The script begins by loading the required libraries, which include numpy for

numerical calculations [11], torch for deep learning [18], pickle for serialization [14],

and matplotlib for charting [12]. Data loading and preparation are handled by the

DataPreProcessing class. During the initial setup, it accepts a path to a pickle file as

input. The pickle file contains a data dictionary as well as labels for various samples. The

following methods are available in the class:

• get_data(): Concatenates the data and labels from all the pickle file samples and

returns them as independent arrays.

• cross_validation_out(): A cross-validation outer loop is implemented. It

generates six different training and validation data packages, as well as labels,

where out of the six available recorded grasp repetitions, one is taken as the

validation recording and the other five as the training recording, varying within

the loop which one is the validation one.

• load(): Loads the pickle file from the specified directory and returns the data as a

dictionary.

The dataset generation for training a neural network is represented by the

EMGData class. During startup, it accepts preprocessed data and labels as the input. It

employs the following techniques:

• downsample(): By a given factor, reduces the sampling rate of the data and labels.

• __len__(): This function returns the number of samples in the dataset.

• __getitem__(): It retrieves a single sample from the dataset.

The EMGDataSeq class provides a sequential dataset used to train an LSTM

recurrent neural network. During startup, it accepts preprocessed data and labels as input,

along with additional settings such as downsampling rate and sequence length. It employs

the following methods:

• downsample(): By a given factor, reduces the sampling rate of the data and labels.

 53

• load(): Loads the pickle file from the specified directory and returns the data as a

dictionary.

• __len__(): This function returns the number of sequences in the dataset.

• __getitem__(): Retrieves a particular sequence from the dataset.

Finally, the main script gets started by reading data and labels from a pickle file and

then, they are extracted and printed. Afterwards, the data and labels are sent to an instance

of the EMGDataSeq class, along with additional parameters such as downsampling rate

and sequence length. Then, using the same data and labels but without the sequence

information, an instance of the EMGData class is constructed, executing the building of

a dataset for both LSTM and Feedforward NNs.

8.2 Code implementation of factorization and deep learning algorithms

Mapping Python script (Precalculated synergy matrix and activation vectors)

import numpy as np

class AlphaMatrix():

 ar10 = np.array([[4.0504, 2.5198, 2.5198],

 [-0.0000, -1.5981, 1.1627],

 [0.7030, 1.5981, 1.1627]])

class SynMatrix():

 ar10 = np.array([[0.3386, 0.3536, -0.1017],

 [0.3386, 0.3536, -0.1017],

 [0.3386, 0.3536, -0.1017],

 [0.3386, 0.3536, -0.1017],

 [0.3386, -0.3536, -0.1017],

 [0.3386, -0.3536, -0.1017],

 [0.3386, -0.3536, -0.1017],

 [0.3386, -0.3536, -0.1017],

 [0.2649, -0.0000, 0.8819],

 [0.1122, -0.0000, 0.3735]])

 54

These arrays correspond to a previous necessary analysis of the robotic hand that

is intended to be used after developing the sEMG-based HRI, which in this case is the

AR10 Hand as mentioned in the experimental setup section (see section 3.1).

According to [10], the grasp synergy matrix (stored in the ar10 variable inside the

SynMatrix() class) was computed in line with the notion of postural synergies in order

to allow management of the closure level of power, tripodal and ulnar grasps. This was

done by applying a method called Principal Component Analysis on a matrix containing

the vectors corresponding to the different joint angles configurations of each maximum

closure level regarding each grasp type.

Since, the synergy matrix corresponds to an orthonormal basis of the robot hand

configuration space, the vectors of synergy activations corresponding to the maximum

closure level of power, tripodal and ulnar grasps (stored in the ar10 variable inside the

AlphaMatrix() class) can be then computed as the product between the pseudo-inverse

of the synergy matrix and the joint angles configuration matrix [10].

This script is intended to contain the synergy and synergy activation matrixes for

different robotic hands, so that a customized study can be performed as it is reflected in

the subsequent scripts, where different alpha_types can be used according to the desired

robotic hand analysis implementation.

Labeling Python script (NMF algorithm implementation)

import numpy as np

import matplotlib.pyplot as plt

from sklearn.decomposition import NMF

import pickle, os, scipy.io, random

import copy

from mapping import AlphaMatrix

class NMF_Routine():

 55

 @staticmethod

 def _nmf(X):

 model = NMF(n_components=2, init='random', random_state=None, solver="mu",

max_iter=1000, beta_loss="kullback-leibler")

 W = model.fit_transform(X)

 return W, model.components_ # latent

 @staticmethod

 def compute(X, n_rep=10, diff_signal=True):

 _, H = NMF_Routine._nmf(X)

 # repeat NMF routine n_rep times for better smoothing

 for _ in range(n_rep):

 _, H = NMF_Routine._nmf(H)

 # check shape H high/low -> signal should be high -> low -> high

 if H[0, 0] - H[1, 0] < 0:

 H = H[[1, 0], :] # swap

 # normalization of each signal

 Hn = (H.T / np.max(H, axis=1)).T # 2 x timestep

 if diff_signal:

 S = Hn[1, :] - Hn[0, :]

 else:

 S = Hn

 # normalization 0-1

 Sn = (S - np.min(S)) / np.ptp(S)

 return Sn

class Labeler():

 def __init__(self, data_path, alpha_type, diff_signal, n_rep_nmf):

 56

 if "ar10" in alpha_type:

 self.alpha = AlphaMatrix.ar10

 elif "ub" in alpha_type:

 self.alpha = AlphaMatrix.ub

 elif "berrett" in alpha_type:

 self.alpha = AlphaMatrix.berrett

 else:

 NotImplementedError("AlphaMatrix type not available!")

 self.diff_signal = diff_signal

 self.n_rep_nmf = n_rep_nmf

 self.data_path = data_path

 def merge_1_signal(self, H_pw, H_pn, H_ul):

 # column 1 of T

 alpha1 = np.repeat(self.alpha[:, 0].reshape(-1, 1), repeats=H_pw.shape[-1], axis=1) #

repeat signal k times along columns to match h1 dims

 T1 = np.multiply(alpha1, np.tile(H_pw, (3, 1)))

 # column 2 of T

 alpha2_rep = np.repeat(self.alpha[:, 1].reshape(-1, 1), repeats=H_pn.shape[-1], axis=1)

 T2 = np.multiply(alpha2_rep, np.tile(H_pn, (3, 1)))

 # column 3 of T

 alpha3_rep = np.repeat(self.alpha[:, 2].reshape(-1, 1), repeats=H_ul.shape[-1], axis=1)

 T3 = np.multiply(alpha3_rep, np.tile(H_ul, (3, 1)))

 return np.hstack([T1, T2, T3])

 def merge_2_signals(self, H_pw, H_pn, H_ul):

 alpha_bar = np.zeros((self.alpha.shape[0] * 2, self.alpha.shape[2]))

 alpha_bar[0:2, :] = np.repeat(self.alpha[0, :].reshape(1, -1), repeats=2, axis=0)

 alpha_bar[2:4, :] = np.repeat(self.alpha[1, :].reshape(1, -1), repeats=2, axis=0)

 alpha_bar[-2:, :] = np.repeat(self.alpha[2, :].reshape(1, -1), repeats=2, axis=0)

 57

 # column 1 of T

 alpha1 = np.repeat(alpha_bar[:, 0].reshape(-1, 1), repeats=H_pw.shape[-1], axis=1) #

repeat signal k times along columns to match h1 dims

 T1 = np.multiply(alpha1, np.tile(H_pw, (3, 1)))

 # column 2 of T

 alpha2_rep = np.repeat(alpha_bar[:, 1].reshape(-1, 1), repeats=H_pn.shape[-1], axis=1)

 T2 = np.multiply(alpha2_rep, np.tile(H_pn, (3, 1)))

 # column 3 of T

 alpha3_rep = np.repeat(alpha_bar[:, 2].reshape(-1, 1), repeats=H_ul.shape[-1], axis=1)

 T3 = np.multiply(alpha3_rep, np.tile(H_ul, (3, 1)))

 # T

 T = np.hstack([T1, T2, T3])

 print("T matrix: ", T.shape)

 return T

 def load_data(self, subj_id):

 # load mat files

 F_pw =

np.array(scipy.io.loadmat(f"{self.data_path}/subj{subj_id}_pwr.mat")[f"subj{subj_id}_pwr"

]).squeeze() # 6 x 1 -> 6 repetitions

 F_pn =

np.array(scipy.io.loadmat(f"{self.data_path}/subj{subj_id}_pin.mat")[f"subj{subj_id}_pin"])

.squeeze()

 F_ul =

np.array(scipy.io.loadmat(f"{self.data_path}/subj{subj_id}_uln.mat")[f"subj{subj_id}_uln"])

.squeeze()

 F_pw_ref =

np.array(scipy.io.loadmat(f"{self.data_path}/subj{subj_id}_pwr_ref.mat")[f"subj{subj_id}_p

wr_ref"]).squeeze() # 6 x 1 -> 6 ripetizioni

 F_pn_ref =

np.array(scipy.io.loadmat(f"{self.data_path}/subj{subj_id}_pin_ref.mat")[f"subj{subj_id}_pi

 58

n_ref"]).squeeze()

 F_ul_ref =

np.array(scipy.io.loadmat(f"{self.data_path}/subj{subj_id}_uln_ref.mat")[f"subj{subj_id}_ul

n_ref"]).squeeze()

 return F_pw, F_pn, F_ul, F_pw_ref, F_pn_ref, F_ul_ref

 def run_subj(self, subj_id, plot=True):

 F_pw, F_pn, F_ul, F_pw_ref, F_pn_ref, F_ul_ref = self.load_data(subj_id)

 data_dict = {}

 for rep in range(len(F_pw)):

 print("-> rep =", rep)

 print("X | power: {}, pinch: {}, ulnar: {}".format(F_pw[rep].shape, F_pn[rep].shape,

F_ul[rep].shape))

 print("R | power: {}, pinch: {}, ulnar: {}".format(F_pw_ref[rep].shape,

F_pn_ref[rep].shape, F_ul_ref[rep].shape))

 assert F_pw[rep].shape[2] == F_pw_ref[rep].shape[2] and F_pn[rep].shape[2] ==

F_pn_ref[rep].shape[2] and F_ul[rep].shape[2] == F_ul_ref[rep].shape[2]

 # NMF LABELING

 H_pw = NMF_Routine.compute(F_pw[rep], n_rep=self.n_rep_nmf,

diff_signal=self.diff_signal) # power

 H_pn = NMF_Routine.compute(F_pn[rep], n_rep=self.n_rep_nmf,

diff_signal=self.diff_signal) # pinch

 H_ul = NMF_Routine.compute(F_ul[rep], n_rep=self.n_rep_nmf,

diff_signal=self.diff_signal) # ulnar

 # merge label signals

 if self.diff_signal:

 T = labeler.merge_1_signal(H_pw, H_pn, H_ul)

 else:

 T = labeler.merge_2_signals(H_pw, H_pn, H_ul)

 # emg input signals

 X = np.hstack([F_pw[rep], F_pn[rep], F_ul[rep]])

 59

 # REFERENCE SIGNAL

 # normalize REF to 0-1 and flip

 R_pw = 1 - (F_pw_ref[rep] - np.min(F_pw_ref[rep])) / np.ptp(F_pw_ref[rep])

 R_pn = 1 - (F_pn_ref[rep] - np.min(F_pn_ref[rep])) / np.ptp(F_pn_ref[rep])

 R_ul = 1 - (F_ul_ref[rep] - np.min(F_ul_ref[rep])) / np.ptp(F_ul_ref[rep])

 R = labeler.merge_1_signal(R_pw, R_pn, R_ul)

 # NORMALIZE X, T and R

 Xn = (X - np.min(X)) / np.ptp(X)

 Tn = (T - np.min(T)) / np.ptp(T)

 Rn = (R - np.min(R)) / np.ptp(R)

 data_dict[rep] = {"X": copy.deepcopy(X), "T": copy.deepcopy(T), "R":

copy.deepcopy(R), "Xn": copy.deepcopy(Xn), "Tn": copy.deepcopy(Tn), "Rn":

copy.deepcopy(Rn)}

 if plot: self.plot(X, T, R, Xn, Tn, Rn)

 return data_dict

 def plot(self, X, T, R, Xn, Tn, Rn):

 fig, axs = plt.subplots(4, 2, figsize=(15, 8))

 axs[0, 0].set_title("Not normalized")

 axs[0, 1].set_title("Normalized")

 axs[0, 0].plot(X.T)

 axs[1, 0].plot(T[0, :].T)

 axs[1, 0].plot(R[0, :].T)

 axs[2, 0].plot(T[1, :].T)

 axs[2, 0].plot(R[1, :].T)

 axs[3, 0].plot(T[2, :].T)

 axs[3, 0].plot(R[2, :].T)

 60

 axs[0, 1].plot(Xn.T)

 axs[1, 1].plot(Tn[0, :].T)

 axs[1, 1].plot(Rn[0, :].T)

 axs[2, 1].plot(Tn[1, :].T)

 axs[2, 1].plot(Rn[1, :].T)

 axs[3, 1].plot(Tn[2, :].T)

 axs[3, 1].plot(Rn[2, :].T)

 axs[3, 0].set_xlabel("Number of samples")

 axs[3, 1].set_xlabel("Number of samples")

 axs[0, 0].set_ylabel("Myoelectric Reading (mV)")

 axs[1, 0].set_ylabel("Neural Drive Label\n(Power Grasp)")

 axs[2, 0].set_ylabel("Neural Drive Label\n(Pinch Grasp)")

 axs[3, 0].set_ylabel("Neural Drive Label\n(Ulnar Grasp)")

 plt.tight_layout()

 plt.show()

if __name__ == "__main__":

 PLOT = True

 SEED = 1

 N_REP_NMF = 10

 ALPHA = "ar10"

 DATA_PATH = "datasets/data_6"

 np.random.seed(SEED)

 random.seed(SEED)

 OUTPUT_PATH = "datasets/dataset_{}".format(ALPHA)

 labeler = Labeler(data_path=DATA_PATH, alpha_type=ALPHA, diff_signal=True,

n_rep_nmf=N_REP_NMF)

 61

 os.makedirs(OUTPUT_PATH, exist_ok=True)

 for subj_id in range(1, 6):

 print("***** subj {} *****".format(subj_id))

 data = labeler.run_subj(subj_id, plot=PLOT)

 with open(f'{OUTPUT_PATH}/subj{subj_id}.pickle', 'wb') as handle:

 pickle.dump(data, handle)

Models Python script (Feedforward and LSTM algorithms implementation)

import torch

class NN(torch.nn.Module):

 # Simple feedforward neural network.

 def __init__(self, input_dim=8, hidden_units=32, out_dim=3, num_layers=3):

 super().__init__()

 self.in_dim = input_dim

 self.mid_dim = hidden_units

 self.out_dim = out_dim

 self.num_layers = num_layers

 self.layers = torch.nn.ModuleList([])

 self.layers.extend([torch.nn.Linear(self.in_dim, self.mid_dim), torch.nn.ReLU()])

 for _ in range(self.num_layers - 2):

 self.layers.extend([torch.nn.Linear(self.mid_dim, self.mid_dim), torch.nn.ReLU()])

 self.layers.extend([torch.nn.Linear(self.mid_dim, self.out_dim), torch.nn.Sigmoid()])

 def forward(self, x):

 for layer in self.layers:

 x = layer(x)

 return x

 62

class LSTM(torch.nn.Module):

 # Simple LSTM network.

 def __init__(self, input_dim=8, hidden_units=32, out_dim=3, num_layers=1):

 super().__init__()

 self.input_dim = input_dim

 self.hidden_units = hidden_units

 self.num_layers = num_layers

 self.lstm = torch.nn.LSTM(

 input_size=input_dim, hidden_size=hidden_units, batch_first=True,

num_layers=self.num_layers)

 self.linear = torch.nn.Linear(in_features=self.hidden_units, out_features=out_dim)

 def forward(self, x):

 batch_size = x.shape[0]

 h0 = torch.zeros(self.num_layers, batch_size, self.hidden_units).requires_grad_()

 c0 = torch.zeros(self.num_layers, batch_size, self.hidden_units).requires_grad_()

 _, (hn, _) = self.lstm(x, (h0, c0))

 out = self.linear(hn[0])

 return out

Train Python script (Feedforward and LSTM NNs training):

import numpy as np

from dataset import EMGDataSeq, EMGData, DataPreProcessing

from models import LSTM, NN

import torch, random

from torch.utils.data import DataLoader

from tqdm import tqdm

 63

def set_seeds(seed):

 torch.backends.cudnn.deterministic = True

 torch.backends.cudnn.benchmark = False

 torch.manual_seed(seed)

 torch.cuda.manual_seed_all(seed)

 np.random.seed(seed)

 random.seed(seed)

def train_model(data_loader, model, loss_function, optimizer):

 num_batches = len(data_loader)

 total_loss = 0

 model.train()

 for x, y in data_loader:

 output = model(x)

 loss = loss_function(output, y)

 optimizer.zero_grad()

 loss.backward()

 optimizer.step()

 total_loss += loss.item()

 avg_loss = total_loss / num_batches

 print(f"Train loss: {avg_loss}")

 return avg_loss

def val_model(data_loader, model, loss_function):

 num_batches = len(data_loader)

 total_loss = 0

 model.eval()

 with torch.no_grad():

 64

 for x, y in data_loader:

 output = model(x)

 total_loss += loss_function(output, y).item()

 avg_loss = total_loss / num_batches

 print(f"Test loss: {avg_loss}")

 return avg_loss

if __name__ == "__main__":

 base_config = dict(

 batch_size=32,

 lr=1e-3,

 hidden_units=32,

 seed=0,

 iters=15000,

 device="cpu",

 downsample_rate=10,

 dataset_name="dataset_ar10",

 subject=1,

 network_type="lstm", # lstm or nn

)

 set_seeds(base_config["seed"])

 pickle_path = "{}/subj{}.pickle".format(base_config["dataset_name"],

base_config["subject"])

 dataset = DataPreProcessing(pickle_path=pickle_path)

 counter = 0

 for data in dataset.cross_validation_out():

 train_data, val_data, train_label, val_label = data

 if base_config["network_type"] == "lstm":

 dataset_train = EMGDataSeq(np.hstack(train_data), np.hstack(train_label),

 65

rate=base_config["downsample_rate"])

 dataset_val = EMGDataSeq(np.array(val_data), np.array(val_label),

rate=base_config["downsample_rate"])

 elif base_config["network_type"] == "nn":

 dataset_train = EMGData(np.hstack(train_data), np.hstack(train_label),

rate=base_config["downsample_rate"])

 dataset_val = EMGData(np.array(val_data), np.array(val_label),

rate=base_config["downsample_rate"])

 else:

 raise NotImplementedError

 # DATASET

 loader_train = DataLoader(dataset_train, batch_size=base_config["batch_size"],

num_workers=0, shuffle=False)

 loader_val = DataLoader(dataset_val, batch_size=base_config["batch_size"],

num_workers=0, shuffle=False)

 print("train set: ", len(dataset_train))

 print("val set: ", len(dataset_val))

 if base_config["network_type"] == "lstm":

 model = LSTM(hidden_units=base_config["hidden_units"], num_layers=1)

 elif base_config["network_type"] == "nn":

 model = NN(hidden_units=base_config["hidden_units"], num_layers=3)

 else:

 raise NotImplementedError

 loss_function = torch.nn.MSELoss()

 optimizer = torch.optim.Adam(model.parameters(), lr=base_config["lr"])

 epochs = base_config["iters"] // (len(dataset_train) // base_config["batch_size"])

 log_dict = {}

 for epoch in tqdm(range(epochs)):

 loss_train = train_model(loader_train, model, loss_function, optimizer)

 66

 loss_val = val_model(loader_val, model, loss_function)

 log_dict[epoch] = {"train": loss_train, "val": loss_val}

 state = dict(base_config)

 state["model"] = model.state_dict()

 state["log"] = log_dict

 torch.save(state, f"model_{counter}_{base_config['network_type']}.pt")

 counter += 1

8.3 Code implementation of NN models’ performance evaluation

Predict Python script (Feedforward and LSTM NNs’ performance evaluation)

import numpy as np

from models import LSTM, NN

import torch

from torch.utils.data import DataLoader

from dataset import EMGDataSeq, EMGData, DataPreProcessing

import matplotlib.pyplot as plt

@torch.no_grad()

def test_model(data_loader, model):

 pred_list = []

 label_list = []

 for x, y in data_loader:

 output = model(x)

 pred_list.append(output.detach().numpy())

 label_list.append(y.detach().numpy())

 return np.vstack(pred_list), np.vstack(label_list)

if __name__ == "__main__":

 67

 num_models = 6 #Number of trained models

 #Validation loss computation for Feedforward models

 val_losses_nn = []

 for i in range(num_models):

 checkpoint = f"model_{i}_nn.pt"

 state = torch.load(checkpoint)

 log_dict = state["log"]

 # MODEL

 model = NN(hidden_units=state["hidden_units"], num_layers=3)

 model.load_state_dict(state["model"])

 model.eval()

 # DATASET

 pickle_path = "{}/subj{}.pickle".format(state["dataset_name"], state["subject"])

 dataset = DataPreProcessing(pickle_path=pickle_path)

 dataset_cv_out = dataset.cross_validation_out()

 train_data, val_data, train_label, val_label= next(dataset_cv_out)

 dataset_train = EMGData(np.hstack(train_data), np.hstack(train_label),

rate=state["downsample_rate"])

 dataset_val = EMGData(np.array(val_data), np.array(val_label),

rate=state["downsample_rate"])

 loader_val = DataLoader(dataset_val, batch_size=1, num_workers=0, shuffle=False)

 pred, label = test_model(loader_val, model)

 pred = pred.squeeze()

 label = label.squeeze()

 val_loss = np.sqrt(np.mean((pred - label) ** 2))

 val_losses_nn.append(val_loss)

 plt.figure() #Algorithm performance: training vs validation of 6th trained NN model

 68

 train_loss = [[k, v["train"]] for k, v in log_dict.items()]

 val_loss = [[k, v["val"]] for k, v in log_dict.items()]

 train_loss = np.array(train_loss)

 val_loss = np.array(val_loss)

 plt.plot(train_loss[:, 0], train_loss[:, 1], label="train")

 plt.plot(val_loss[:, 0], val_loss[:, 1], label="val")

 plt.xlabel("Number of epochs")

 plt.ylabel("Root-Mean-Square Error")

 plt.title("Training vs Validation performance for Feedforward NN")

 plt.legend()

 plt.tight_layout()

 fig, axs = plt.subplots(3, 1) # Actual vs Predicted labels of 6th trained NN model

 axs[0].plot(pred[:, 0], label="pred")

 axs[0].plot(label[:, 0], label="label")

 axs[2].plot(pred[:, 1], label="pred")

 axs[2].plot(label[:, 1], label="label")

 axs[4].plot(pred[:, 2], label="pred")

 axs[4].plot(label[:, 2], label="label")

 axs[0].set_ylim = (0, 1)

 axs[2].set_ylim = (0, 1)

 axs[4].set_ylim = (0, 1)

 axs[4].set_xlabel("Number of samples")

 axs[2].set_ylabel("Normalized Activation Values")

 fig.suptitle("Actual vs Predicted labels for Feedforward NN")

 plt.legend()

 plt.tight_layout()

 # Validation loss computation for LSTM models

 val_losses_lstm = []

 for i in range(num_models):

 69

 checkpoint = f"model_{i}_lstm.pt"

 state = torch.load(checkpoint)

 log_dict = state["log"]

 # MODEL

 model = LSTM(hidden_units=state["hidden_units"], num_layers=1)

 model.load_state_dict(state["model"])

 model.eval()

 # DATASET

 pickle_path = "{}/subj{}.pickle".format(state["dataset_name"], state["subject"])

 dataset = DataPreProcessing(pickle_path=pickle_path)

 dataset_cv_out = dataset.cross_validation_out()

 train_data, val_data, train_label, val_label = next(dataset_cv_out)

 dataset_train = EMGDataSeq(np.hstack(train_data), np.hstack(train_label),

rate=state["downsample_rate"])

 dataset_val = EMGDataSeq(np.array(val_data), np.array(val_label),

rate=state["downsample_rate"])

 loader_val = DataLoader(dataset_val, batch_size=1, num_workers=0, shuffle=False)

 pred, label = test_model(loader_val, model)

 pred = pred.squeeze()

 label = label.squeeze()

 val_loss = np.sqrt(np.mean((pred - label) ** 2))

 val_losses_lstm.append(val_loss)

 plt.figure() # Algorithm performance: training vs validation of 6th trained LSTM model

 train_loss = [[k, v["train"]] for k, v in log_dict.items()]

 val_loss = [[k, v["val"]] for k, v in log_dict.items()]

 train_loss = np.array(train_loss)

 val_loss = np.array(val_loss)

 70

 plt.plot(train_loss[:, 0], train_loss[:, 1], label="train")

 plt.plot(val_loss[:, 0], val_loss[:, 1], label="val")

 plt.xlabel("Number of epochs")

 plt.ylabel("Root-Mean-Square Error")

 plt.title("Training vs Validation performance for LSTM NN")

 plt.legend()

 plt.tight_layout()

 fig, axs = plt.subplots(3, 1) # Actual vs Predicted labels of 6th trained LSTM model

 axs[0].plot(pred[:, 0], label="pred")

 axs[0].plot(label[:, 0], label="label")

 axs[2].plot(pred[:, 1], label="pred")

 axs[2].plot(label[:, 1], label="label")

 axs[4].plot(pred[:, 2], label="pred")

 axs[4].plot(label[:, 2], label="label")

 axs[0].set_ylim = (0, 1)

 axs[2].set_ylim = (0, 1)

 axs[4].set_ylim = (0, 1)

 axs[4].set_xlabel("Number of samples")

 axs[2].set_ylabel("Normalized Activation Values")

 fig.suptitle("Actual vs Predicted labels for LSTM NN")

 plt.legend()

 plt.tight_layout()

 #Barplot for comparing Feedforward and LSTM performance

 fig, ax = plt.subplots()

 ax.bar(0, np.mean(val_losses_nn), yerr=np.std(val_losses_nn), color='blue', alpha=0.5,

capsize=4, label='Feedforward')

 ax.bar(1, np.mean(val_losses_lstm), yerr=np.std(val_losses_lstm), color='orange',

alpha=0.5, capsize=4, label='LSTM')

 71

 ax.set_xticks([0, 1])

 ax.set_xticklabels(['Feedforward', 'LSTM'])

 ax.set_ylabel('Average RMSE Loss')

 legend=False

 plt.title("Feedforward vs LSTM algorithms' prediction performance")

 plt.tight_layout()

 plt.show()

In summary, this script loads the checkpoints corresponding to the different

trained models, infers on a validation dataset and performs a graphical evaluation of the

algorithms performance, first individually and afterwards a general comparison of both

ML algorithms’ predictions. The script works in the following way:

First, the necessary libraries and modules in order to perform the model’s

evaluation are imported, such as numpy for numerical operations [11], LSTM and NN

from the models module, torch for deep learning tools [18], DataLoader from

torch.utils.data to create data loaders for the datasets and matplotlib.pyplot for graph

charting [12].

Then, the function test_model is defined. It accepts data_loader and model as

input and does inference on the data given by the data loader using the model. It loops

over the data loader, runs the model on the input data x, appends the predictions (output)

and labels (y) to separate lists, and eventually returns the forecasts and labels as NumPy

arrays using np.vstack to vertically stack the lists.

Afterwards, inside the main block, a “for loop” is first defined for performing the

evaluation of the trained Feedforward NNs by computing the validation loss resulting

from testing the models on a validation dataset. This cannot be done without first

importing the checkpoint file which is used for loading the chosen model’s state that

comprises the data about the trained model.

 72

The dictionary log_dict is then given the "log" key value from the loaded state,

which contains the training and validation loss values obtained when the models were

trained for evaluating the degree of accuracy achievement during this process.

Furthermore, the number of hidden units and number of layers collected from the loaded

state are used to create the respective model classes. Then, model.load_state_dict is used

to load the model's state dictionary from the loaded state and model.eval() is used to

switch the model to evaluation mode, which inhibits gradient calculation and triggers

evaluation-specific activities.

Moreover, the dataset is created by loading the pickle file supplied by pickle_path

and creating a dataset object using the DataPreProcessing class for performing the outer

cross-validation process the same way as in the training script. Once the datasets and data

loader are built, the loader_val and model are sent to the test_model function for the

predictions and labels to be generated and set to the pred and label variables, respectively.

This allows to compute the RMSE validation loss for each available trained model, which

are all then stored in the val_losses_nn variable so that they can be later used for the

algorithms’ performance comparison.

Once the validation loss computation loop has finished, the training and validation

losses from the last model evaluated are plotted, as well as the actual and predicted labels,

so that a graphical representation of its performance is generated.

The same validation loop is performed for the LSTM trained models, generating

the vector called val_losses_lstm that contains the RMSE validation losses of the

different evaluated models, as well as the equivalent plots that were just explained for the

Feedforward algorithm.

Finally, a bar plot is generated with the average value of the mentioned vectors

containing the RMSE losses for both algorithms, as well as a confidence interval resulting

form calculating the standard deviation between the computed losses of the different

trained models, so that a fair comparison can be performed between both Feedforward

and LSTM algorithms (all graphical results are shown in the results subsections).

