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Abstract

Seed dispersion and consequent plant propagation depend on
the success of fruit ripening. Thus, ripening is a highly regulated
developmental process aiming to maximize fruit organoleptic
traits to attract herbivores. During ripening, the developing fruit
experiences dramatic modifications, including color change,
flavor improvement, and loss of firmness that are remarkably
coordinated. Dynamic interactions between multiple hormones,
transcription factors, and epigenetic modifications establish the
complex regulatory network that controls the expression levels
of ripening-related genes. Tomato, as a climacteric fruit, displays
a burst of respiration once the seeds mature, followed by an
increase in ethylene that regulates ripening. The accepted
paradigm of the ripening transcriptional regulation has been
recently challenged by the generation of true-null mutants of the
previously considered master regulators of ripening. In addition
to hormonal and transcriptional control, epigenetic shifts regu-
late the ripening process. Future research will contribute to
better understanding the factors regulating fruit ripening.
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Introduction
Angiosperm plants produce fruits that fulfill two key
functions: the protection of developing seeds by the
immature fruit and the dispersal improvement of

mature seeds by the ripe fruit. According to these
purposes, fruits experience physiological and meta-
bolic modifications during their development, which
www.sciencedirect.com
encompasses three main phases: fruit set, growth, and
ripening. Tomato (Solanum lycopersicum) has become
the major fleshy fruit model to study development
and ripening for several reasons, straightforward
diploid genetics, autogamy, short life cycle, efficient
transformation and greenhouse propagation, accessi-
bility to germplasm resources including mutant lines,
availability of a high-quality reference genome, and
several RNA-seq approaches that have provided gene
expression data at the genome-wide scale during the
entire ripening process with specific tissue resolution
[1e6].

Fruit ripening requires the fine-synchronization of
various independent processes that cause change of
color triggered by chlorophyll degradation and pigments
accumulation, flavor improvement as a result of sugars,
acids, and volatile compounds production, and fruit
softening promoted by cell wall remodeling. Fruit
ripening comprises all these specific processes that are
spatiotemporally regulated and exceptionally organized
by an interacting set of plant hormones, transcriptional
regulators, and epigenomic modifications that ulti-

mately define fruit quality. Control of ripening is a
dynamic process coordinated by the effects of multiple
hormones at many different levels, including chromatin
accessibility, transcription, translation, and post-
translational modifications.

This review summarizes the current understanding of
the most important aspects that regulate fruit
ripening, such as the key impact of ethylene produc-
tion and response, the redefined roles of previously
considered Transcription Factor (TF) master regula-

tors, and the effect of major epigenetic modifications
at the DNA and histone levels.
Hormonal regulation of the fruit ripening
The orchestrated activities of auxin (IAA), gibberellic

acid (GA), and cytokinin (CK) are key to modulate fruit
set [7e9]. Fruit growth is mainly regulated by IAA and
CK [10e13]. Ethylene (ET) plays a central role in
initiating and governing fruit ripening. Additional hor-
mones control particular features of the ripening pro-
cess. Abscisic acid (ABA) is a major fruit ripening and
senescence regulator [14e18]. IAA promotes the
growth-to-ripening shift [19e22]. Methyl-jasmonate
(MeJA) and brassinosteroids (BRs) also contribute to
specific aspects of fruit ripening (Figure 1).
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Figure 1

Hormone effect on fruit transition. At the onset of ripening, the transi-
tion from System 1 to System 2 is promoted by ethylene, abscisic acid,
jasmonate, and brassinosteroids. Conversely auxin, gibberellic acid, and
cytokinin repress the shift. The check mark (green square) denotes pro-
motion of the transition by the hormones present on the right side of the
figure. The cross mark (red square) signifies repression of the transition
by the hormones present on the left side of the figure. Hormones are
denoted by the following color pallet: ABA is light green, BR is blue, CK is
pink, ET is grey, GA is purple, IAA is red, and JA is brown. Black arrow-
head represents positive regulation, and black blunt arrow represents
negative regulation.

Figure 2

Hormone levels during fruit set, growth, and ripening. GA and CK
levels decline after fruit set. IAA accumulation in the fruit is reduced in
concert with the transition to fruit maturation. Exogenous applications of
GA, CK, or IAA at the immature stage inhibit fruit ripening progression.
The transition to System 2 and the boost of ET biosynthesis are preceded
by the highest ABA contents in the fruit. Similarly, JA exhibits a peak
before the rapid accumulation of ethylene. Together with ABA and ET, the
second JA wave might be associated with the fine-tuning of fruit quality
parameters. Exogenous treatments with ABA, JA, ET, or BR stimulate fruit
ripening. Hormone levels are displayed as relative values and denoted by
the following color pallet: ABA is light green, BR is blue, CK is pink, ET is
grey, GA is purple, IAA is red, and JA is brown.

2 Cell signaling and gene regulation
In tomato, fruit ripening is tightly regulated by different
hormonal signaling pathways, yet as a climacteric fruit,
tomato requires ET for ripening [20e28]. The levels of
ET synthesis, sensitivity, and response are determined

by the fruit developmental stage. During vegetative
growth and immature stages, the fruit ET production is
limited to low-basal levels and regulated in an auto-
inhibitory manner. During this phase, known as System
1, treatments with exogenous ET have negative effects
on ripening. Fruits experience a burst of respiration
accompanied by a large increase in the fruit endogenous
ETsynthesis, exhibiting more than a 100-fold rise in ET
concentration during this transition phase to System 2,
characterized by autocatalytic ET production (Figures 1
and 2) [28e30]. This transition triggers the onset of
Current Opinion in Plant Biology 2021, 63:102042
ripening at the mature green stage, once seed matura-
tion is complete and the locule surrounding the seeds
liquefied. Interestingly, parthenocarpic fruits (with no
seeds) undergo a similar series of events, suggesting that
signals coming from the seeds are not required for the
onset of ripening. The well-established association, at

the physiological level, between the sequential increase
of respiration and ethylene production is the most
important step to initiate the ripening process. How-
ever, at the molecular level, the players controlling the
transition from System 1 to System 2 remain unidenti-
fied. The interaction between IAA and ET is crucial for
this transition [31,32]. Application of exogenous IAA on
immature fruits causes a delay in the transition to the
ET autocatalytic production phase having an obvious
effect on the fruit color changes, preserving high levels
of xanthophylls and chlorophyll, and repressing the
www.sciencedirect.com
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production of pigment compounds, including caroten-
oids and anthocyanins [33]. At this stage, IAA and ET
display clear antagonistic effects on ripening (Figure 1)
[17,18,34].

Ethylene induces the expression of cell wallemodifying
enzymes, pectin methyl esterase, pectate lyase (PL),
and polygalacturonase (PG) that catalyze pectin

depolymerization resulting in gradual fruit softening
[34e36]. ABA also affects various aspects of fruit
ripening. Silencing of the SlNCED1 gene, encoding a
9-cis-epoxycarotenoid dioxygenase involved in ABA
biosynthesis, compromises ABA production causing the
transcriptional downregulation of different ripening-
related cell wall enzymes, including the aforemen-
tioned PL and PG. Low ABA levels slow down softening
and therefore extend fruit shelf-life [37]. The climac-
teric respiration boost and the transition to System 2 of
ET production are preceded by the highest ABA levels

in the fruit. ABA is also able to stimulate ripening by
inducing ethylene biosynthesis [37]. Conversely, exog-
enous application of GA delays ripening [38e41].
Consistently, reduction of endogenous GA levels in the
fruit through overexpression of GA2OX1, a gibberellin 2-
oxidase key for GA catabolism, triggers early ripening.
ET biosynthesis is promoted in GA-deficient fruits [28].
As the fruit ripens, endogenous MeJA accumulates [42],
contributing, in collaboration with ET and ABA, to
regulate the production of sugars, acids, pigments, and
volatile organic compounds that define fruit quality

[43]. BRs are also synthesized during ripening
(Figure 2). Overexpression of CYP90B3, a cytochrome
P450 monooxygenase that catalyzes the rate-limiting
step of BRs biosynthesis, promotes BRs accumulation,
which was positively correlated with fruit softening and
elevated levels of soluble sugars, carotenoids, and vola-
tile compounds. BRs seem to work in cooperation with
ethylene to stimulate fruit ripening [44].
Transcriptional regulation of the fruit
ripening
At the onset of ripening, ET triggers major ripening-
associated changes, including extensive modifications
of gene transcription caused by several TFs that pro-
mote fruit softening, production of sugars, acids, pig-
ments, and volatile compounds. Various of these TFs
controlling fruit ripening have been identified to date.

Spontaneous occurring and gene-edited mutations in
some of these TFs, and/or transgenic approaches upre-
gulating or downregulating their expression have
revealed the involvement of particular TFs in the
tomato ripening process. Among the traditional mu-
tants, rin (ripening-inhibitor), nor (nonripening), and Cnr
(colourless nonripening) have been widely studied because
of their strong phenotypes. These mutants’ fruits are
unable to transition from System 1 to System 2 of ET
production after mature green stage exhibiting a clear
www.sciencedirect.com
arrest of the ripening initiation that severely impacts
color, flavor, and texture of the fruit [45e47]. RIN codes
for a member of the SEPALLATA4 (SEP4) group of
MADS-box transcription factor genes. NOR is a member
of the NAC domain transcription factor gene family,
whereas CNR encodes a transcription factor of the
SQUAMOSA PROMOTER BINDING PROTEIN
(SPBP) family. For a long time, these TFs have been

accepted as classic master regulators of the ripening
process [48e50]. However, the activity of these TFs as
master regulators have been reconsidered after the
characterization of recently CRISPR-Cas9-generated
null mutant alleles (CRISPR KO) of these genes and
the comprehensive re-examination of the traditional
spontaneous mutants (rin, nor, and Cnr), which actually
harbor gain-of-function mutations coding for dominant
repressor TFs. The new RIN and NOR CRISPR KO
mutant lines showed partial induction of ripening,
displaying milder phenotypes than the traditional mu-

tants, including the development of orange fruits rather
than the green fruits borne by the original mutant [51e
53]. The causal mutation on Cnr was identified by po-
sitional cloning and mapped to a region in the CNR
promoter that was hypermethylated in the Cnr mutant
blocking the transcription of the CNR gene [54]. The
fruits of this traditional Cnr mutant exhibited a strong
nonripening phenotype. In contrast, the fruits from the
new CNR CRISPR KO alleles showed a slight delay in
ripening [55], a much lighter effect than the pleiotropic
phenotype displayed by fruits of the original Cnr
(Figure 3).

The traditional mutants exhibited strong nonripening
phenotypes because of the now recognized gain-of-
function mutations harbored by these classic lines. For
example, in the rin mutant, the spontaneous deletion of
a genomic DNA fragment between RIN and the down-
stream gene MC produced a chimeric TF missing the
RIN activation-domain and acquiring the EAR motif-
like repression-domain from MC (Figure 3). The tradi-
tional chimeric rin exhibits a dominant-repressor activity
able to inhibit the expression of the RIN paralogs’ (ho-

mologous members of the RIN TF-family) target genes.
Conversely, CRISPR KO mutations on these previously
considered master regulator TFs only partially affected
fruit ripening. For example, in the RIN KO mutant,
RIN-target genes remained expressed due to the ac-
tivity of RIN paralogs that assume some of the RIN roles
in establishing TF-complexes able to recognize RIN
binding motifs. These observations support the concept
of RIN and NOR being required to achieve full ripening
[56], but also suggest that RIN, NOR, and CNR activity
is partially redundant to the activity of their paralogs.

These classic TFs, believed to be master regulators of
the ripening process and absolutely required for the
transition from System 1 into System 2 phase of ET
production, have to be considered members of a robust
Current Opinion in Plant Biology 2021, 63:102042
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Figure 3

Reevaluation of the role of ripening master regulators. In the spontaneous rin mutant, a chimeric F(DRIN-DMC) gene is generated by the deletion of
the genomic DNA between these two genes positioned in tandem on the chromosome. The resulting chimeric gene retains the 50 end of RIN (DRIN),
coding for the first 215 of the total 242 amino acids and the 30 end of MACROCALYX (DMC), missing the first 62 of the total 219 amino acids. The fruits
from the lines harboring the CRISPR-Cas9 null (DRIN) mutation exhibit a milder phenotype than the fruits from the traditional rin. Many genes repressed
in the rin mutant presented normal expression levels in the CRISPR-Cas9 null DRIN. These differences might be caused by the presence of the MC
repressor domain and the absence of the RIN activator domain in the chimeric TF F(DRIN-DMC). Thus, the spontaneous rin is a gain-of-function mutation
producing a dominant repressor TF instead of a null mutation. The spontaneous nor mutation presents a two base pair (bp) deletion in the coding region,
that causes a frameshift resulting in a premature stop codon. The truncated protein produced by the nor mutant still harbors the DNA-binding domain, but
has lost the activation domain. The fruits of the nor mutant show a more severe phenotype than the fruits from the CRISPR-Cas9 null that codes for a
short peptide missing all DNA-binding domains. As rin, nor is also a gain-of-function mutation coding for a dominant repressor TF that can bind its target
genes but represses their transcription. The spontaneous Cnr mutation is located in a 286 bp hypermethylated region in the CNR promoter. This epiallele
is associated with a reduced expression of CNR that causes a pleiotropic phenotype in the fruit. The fruits of the CRISPR-Cas9 null CNR lines display a
much milder phenotype. As in rin, numerous ripening-related genes differentially expressed in Cnr are not in the CRISPR-Cas9 null DCNR.

4 Cell signaling and gene regulation
transcriptional regulation network that possesses high
functional redundancy.

ET not only induces the expression of RIN, but also
other paralogs, members of the MADS-box family of
TFs, including TOMATO AGAMOUS-LIKE 1 (TAGL1),
FRUITFULL 1 (FUL1), and FUL2 [25,57,58], as well as,
members of the APETALA2/ethylene response factors
(AP2/ERFs) family that comprise the transcriptional
Current Opinion in Plant Biology 2021, 63:102042
network regulation of ET-responsive genes harboring
GCC-box motifs where ERFs are able to bind [59].
Although ERFs were initially identified as ET-
responding TFs, some ERFs can also be activated by
IAA, or by both hormones ETand IAA. ABA and BRs can
also act on the ET signal transduction and transcrip-
tional pathways to stimulate fruit ripening progress
[60e63]. As mentioned earlier, ET induces the
expression of RIN that directly targets SAUR69, which
www.sciencedirect.com
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Figure 4
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in turn alters IAA transport and reinforces ET produc-
tion and sensitivity during the fruit shift to the breaker
stages [4,5,32,64]. Both ET and IAA are able to upre-
gulate the expression of ET RESPONSE FACTOR.B3
(SlERF.B3), a TF that modulates ETresponses and fruit
ripening [65]. SlERF.B3 integrates ethylene and auxin
signals by directly binding to the promoter and inducing
the expression of SlIAA27 [61].

Expression of RIN and NOR has been recently reported
to be upregulated in fruits of the GRAS4 TF over-
expression lines. GRAS4 is induced during ripening and
is able to directly bind ACO1 and ACO3 promoters
to induce their transcription and consequently,
promote ethylene biosynthesis that in turn triggers the
PHYTOENE SYNTHASE 1 (PSY1) upregulation and the
accumulation of carotenoids. GRAS4 also directly tar-
gets the promoter of MADS1, a negative regulator of
tomato fruit ripening, but in this case, GRAS4 represses

the expression of MADS1. Thus, GRAS4 performs
diverse regulatory activities that globally promote
ripening [66]. In addition, NOR can also undergo post-
translational modifications that are pivotal to regulate its
activity. Oxidized NOR possesses low DNA-binding
capacity that compromises its transcriptional regulato-
ry abilities. E4 and MsrB2, two met sulfoxide re-
ductases, are able to reduce the oxidized-NOR
improving its DNA-binding and transcriptional regula-
tory capacities on ripening-related genes [67].

In tomato, 2026 genes are annotated as TFs and 516 of
them are expressed in the ripening fruit [55], suggesting
that the TFregulatory network modulating the ripening
process is more intricate and robust than anticipated.
Thus, fruit ripening regulation represents an intricate
system that integrates diverse hormonal cues on a
complex transcriptional network where the ability of
TFs to reach and interact with target DNA regions lastly
determine the expression levels of ripening-related
genes.
Progression of epigenetic modifications during fruit ripening. DNA
methylation experiences a global decrease. DNA demethylation is
induced with the expression of DML2, a DNA demethylase, drastically
induced at the onset of ripening. Genome-wide DNA hypomethylation
promotes ripening. Before ripening, histone trimethylation H3K27me3, a
repressive epigenetic modification, marks ripening-related genes
suppressing their expression. As the fruit ripens, the H3K27me3 marks
are removed from these genes, linking the loss of H3K27me3 with the
upregulation of these genes and ripening stimulation.
Epigenetic regulation of the fruit ripening
As mentioned earlier, in addition to hormonal and
transcriptional control, epigenetic modifications also
regulate ripening progression by modulating chromatin
accessibility and binding of key TFs to DNA. The major
effects are caused by the DNA methylation levels and

histone modifications. A series of findings revealed that
DNA methylation levels were gradually being reduced
as the fruit ripening process advanced. Immature tomato
fruits treated with 5-azacitidine, an inhibitor of cytosine
DNA METHYLTRANSFERASE (MET) activity,
caused a whole-genome hypomethylation affecting the
expression of specific ripening-related genes, such as
key TFs, genes involved in cell wall remodeling, and
ethylene and carotenoid production that triggered pre-
mature ripening [65,68]. The homeostasis of DNA
www.sciencedirect.com
methylation is not only modulated by methylation, but
also demethylation [69,70]. In tomato, among the four
DNA DEMETHYLASE (DML) genes, DML2 is sharply
induced at the onset of ripening [25,69]. Consistently,
the downregulation of DML2 affects the methylation
status of key ripening genes resulting in delayed fruit
ripening [25,69]. In wild-type fruits, the promoter of
CNR is demethylated during ripening. In Cnr mutant

fruits, however, the promoter region remains methylated
blocking the transcription of CNR causing the classic
nonripening fruit phenotype of Cnr mutant. The
CHROMOMETHYLASE3 (CMT3) contributes to
maintain high methylation levels on the Cnr mutant
promoter. Knocking down the expression of CMT3
allows Cnr mutant fruits to ripen [71]. In addition to
DNA methylation levels, RNA methylation has been
identified as an important regulator of transcript sta-
bility. During tomato fruit ripening, mRNA N6-
methyladenosine (m6A) methylation displays similar
Current Opinion in Plant Biology 2021, 63:102042
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6 Cell signaling and gene regulation
patterns as the DNA methylation. In tomato, ALKBH2,
a m6A RNA demethylase, controls the ripening-
associated modifications of transcript methylation.
ALKBH2 binds and regulates the stability of DML2
mRNAs [72]. This mechanism establishes a dynamic
relationship between mRNA and DNA methylation
levels that ultimately promotes ripening [73].

Epigenetic modifications experienced by histones have
relevant effects on ripening. The trimethylation of
histone H3 at Lys27 (H3K27me3), a repressive
epigenetic mark, plays a key role in different develop-
mental processes [74]. fruitENCODE data have
revealed an association between the loss of the
H3K27me3 mark in particular genes and the progress of
ripening. This association is conserved among the 147
histone modification profiles analyzed [6]. During
vegetative growth and System 1 of ET production,
H3K27me3 was detected on ripening-related TFs and

genes involved in ET production repressing their
expression and thus blocking ripening (Figure 4). As
the fruit ripens, the H3K27me3 marks are progressively
lost, suggesting that the release of key ripening genes
from these repressing epigenetic marks could be
required to promote ripening [6,75]. A wide range of
epigenetic modifications is involved in the expression
regulation of ripening-related genes [73].
Concluding remarks
Large-data approaches examining fruit transcriptomes,
proteomes, and metabolomes together with the char-
acterization of specific molecular mechanisms have
undoubtedly improved our perception of the ripening
process. However, we are only starting to understand
the global regulatory network including hormonal
interactions that coordinate transcriptional and

epigenetic factors that ultimately modulate gene
expression. Ripening is composed of discrete processes
that take place in different tissues with a highly refine
synchronization that is determined by the fruit
ripening stage.

Future efforts on the implementation of new method-
ologies to carefully dissect the ripening process will
certainly provide innovative outcomes. The utilization
of single-cell RNA-seq combined with the available
tissue-specific transcriptomic data can provide high-

resolution information throughout the ripening process
of individual cells’ transcriptomes that can unveil novel
cell/tissue-specific regulatory networks. This high-
resolution transcriptomic data can aid in defining the
primary tissues and genes responsible to trigger the
transition to the fruit ripening phase. Technologies for
studying TFs are on the rise. To understand the robust
and complex TF ripening regulatory network, an in-
crease on TF ChiP-Seq assays performed in ripening
Current Opinion in Plant Biology 2021, 63:102042
fruit tissues is required to better define TF binding
motifs, generate a comprehensive TF target-genes
database, and identify connections between down-
stream genes being multitargeted by redundant TF
groups. Similarly, optimization of the ribosome foot-
printing technology in ripening fruits complemented
with proteomics data can uncover a totally unexplored
layer of gene expression regulation at the translational

level. The development of new molecular tools to
visualize in real-time sites of hormone synthesis and
response is key to establish with high resolution the
spatiotemporal distribution of hormones that regulate
particular aspects of the ripening process. The ease of
genome editing provided by CRISPR-Cas tools is revo-
lutionizing the use of reverse-genetic approaches in
tomato fruit ripening. Cutting-edge metabolomics
techniques can evaluate the subcellular distribution of
metabolites and clearly determine the metabolic shifts
that take place during ripening. Further research is

needed to ascertain the factors regulating the produc-
tion and accumulation of flavor-related secondary me-
tabolites throughout the ripening process. Additional
work on other climacteric fruit species is required to test
the conservation of the regulatory mechanisms reported
in this review and mostly characterized in tomato.

The identification of additional ‘regulatory pieces’ in
the ‘fruit ripening puzzle’ is required to build a holistic
view of the process and advance toward the objective of
establishing straightforward breeding programs to obtain

elite varieties that boast not only improved traits such as
flavor and quality but also acquired features to cope with
the climate change conditions our planet is facing.
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