
UNIVERSITAT POLITÈCNICA DE VALÈNCIA

School of Informatics

Model robustness under data distribution shifts: analysing
and predicting the impact of text perturbations on NLP

models.

End of Degree Project

Bachelor's Degree in Data Science

AUTHOR: Romero Alvarado, Daniel

Tutor: Hernández Orallo, José

Cotutor: Martínez Plumed, Fernando

ACADEMIC YEAR: 2022/2023

Resumen
Los grandes modelos de lenguaje natural suelen ser entrenados con datasets pretratados y

limpiados de impurezas como faltas de ortografía, contracciones, etc. Por lo tanto, existe una

diferencia entre los datos de entrenamiento de estos modelos y los datos que se encuentra en

entornos de despliegue. En este trabajo se evalúa la robustez de cuatro modelos de lenguaje en

cinco tareas de lenguaje natural frente a entradas perturbadas. Para ello, se analizan tres tipos

de perturbaciones: a nivel de carácter, a nivel de palabra, y otros tipos. Los conjuntos de datos

son perturbados y sus predicciones se comparan con las predicciones en los conjuntos de datos

sin alterar. Los resultados muestran que los modelos son sensibles a las entradas perturbadas,

con algunos modelos siendo más sensibles qué otros dependiendo de la tarea y del tipo de

perturbación. En concreto, el modelo XLNet es el más robusto en general, y la tarea más sensible

es la de coherencia gramatical.

Palabras clave: Procesamiento del Lenguaje Natural, perturbaciones de texto, robustez,

transformers, inferencia de lenguaje natural, análisis de emociones, lenguaje ofensivo y discurso

de odio, similitud semántica, aceptabilidad lingüística

Abstract
Large language models are usually trained using curated datasets, which lack impurities such

as typographic errors, contractions, etc. Therefore, there is a gap between the training data of

these models and the data they encounter in deployment situations. This work evaluates the

robustness of four models in five different Natural Language Processing tasks against perturbed

inputs. For that purpose, three perturbations type are analysed: character level perturbations,

word level perturbations, and other types of perturbations. Datasets are perturbed and their

predictions are compared against those of the unaltered datasets. Results show that models are

sensitive to perturbed inputs, with some models being more sensitive that others depending on

the task and the perturbation type. Precisely, the XLNet model is in general the most robust, and

the most sensitive task is grammatical coherence.

Keywords : Natural Language Processing, text perturbation, robustness, transformers,

natural language inference, sentiment analysis, hate speech and offensive language, semantic

similarity, linguistic acceptability

Analysis and predicting the impact of text perturbations on NLP

2

3

Table of contents

1. Introduction .. 6

1.1. Motivation ... 7

1.2. Objectives ... 8

1.3. Expected impact ... 9

1.4. Ethical and legal implications .. 10

2. State of the art and background... 11

3. Methodology .. 16

3.1. Models .. 16

3.2. NLP tasks ... 20

3.3. Perturbations .. 24

3.3.1. Character-level perturbations: ... 24

3.3.2. Word-level perturbations ... 25

3.3.3. Other perturbations .. 25

3.4. The finetuning process: hyperparameter optimisation .. 27

3.5. The evaluation process: perturbing and predicting sentences ... 28

3.6. Hardware, reproducibility and reporting results .. 30

4. Results ... 31

4.1. Finetuning results: finding the best hyperparameters ... 31

4.2. Evaluation results ... 32

4.2.1. Some clarifying examples .. 32

4.2.2. Detailed analysis ... 35

4.2.3. Aggregated analysis .. 49

5. Conclusions ... 52

6. Legacy and relationship with studies ... 54

7. Future work and improvements ... 56

8. Acknowledgments .. 57

9. Bibliography ... 58

Analysis and predicting the impact of text perturbations on NLP

4

List of tables
Table 1. Summary of the characteristics of the four models: DistilBERT, ELECTRA, XLnet and

Funnel Transformer __ 20

Table 2. Examples for the Stanford Sentiment Treebank with their corresponding label ___ 21

Table 3. Examples for the Corpus of Linguistic Acceptability with their corresponding label 21

Table 4. Examples of the Paraphrase Adversaries from Word Scrambling dataset with their

corresponding label __ 22

Table 5. Examples of the Multi-Genre Natural Language Inference Corpus dataset with their

corresponding label __ 22

Table 6. Examples of the Multi-Genre Natural Language Inference Corpus dataset with their

corresponding label __ 23

Table 7. Summary of the five datasets: CoLA, HSOL; MNLI, SST2 and PAWS __________ 23

Table 8. Dummary of the perturbations with a short example _____________________ 26

Table 9. Hyperparameters employed in the finetuning phase ______________________ 28

Table 10. Example of the finetuning scores for DistilBERT in GC ___________________ 31

Table 11. Best combination of hyperparemeters _______________________________ 31

Table 12. Cohen’s kappa scores for character level perturbations in GC _______________ 35

Table 13. Cohen’s kappa scores for word level perturbations in GC __________________ 36

Table 14. Cohen’s kappa scores for other perturbations in GC _____________________ 38

Table 15. Cohen’s kappa scores for character level perturbations in HSOL _____________ 39

Table 16. Cohen’s kappa scores for word level perturbations in HSOL ________________ 40

Table 17. Cohen’s kappa scores for other perturbations in HSOL ___________________ 41

Table 18. Cohen’s kappa scores for character level perturbations in NLI ______________ 41

Table 19. Cohen’s kappa scores for word level perturbations in NLI _________________ 42

Table 20. Cohen’s kappa scores for other perturbations in NLI _____________________ 43

Table 21. Cohen’s kappa scores for character level perturbations in SA _______________ 43

Table 22. Cohen’s kappa scores for word level perturbations in SA __________________ 45

Table 23. Cohen’s kappa scores for other perturbations in SA _____________________ 45

Table 24. Cohen’s kappa scores for character level perturbations in SS _______________ 46

Table 25. Cohen’s kappa scores for character word perturbations in SS ______________ 47

Table 26. Cohen’s kappa scores for ither perturbations in SS ______________________ 48

Table 27. From left to right, average kappa score per model, per NLP task and per perturbation

 __ 49

Table 28. From left to right, average kappa score for character level, word level and other

perturbations __ 50

Table 29. Average kappa score per type of perturbation when non-represented perturbations

are removed ___ 50

5

List of figures
Figure 1. Example of distributions shifts _____________________________________ 8

Figure 2. Visual representation of attention and self-attention _____________________ 13

Figure 3. The DistilBERT model and its components ____________________________ 17

Figure 4. The ELECTRA model and its components ____________________________ 18

Figure 5. The XLNet model and its components _______________________________ 18

Figure 6. The funnel transformer model and its components ______________________ 19

Figure 7. Confusion matrix to explain the computation of the Kappa Cohen’s score _______ 29

Figure 8. Cohen’s kappa evaluation for character level perturbations of ELECTRA in GC __ 36

Figure 9. Cohen’s kappa evaluation for word level perturbations of DistilBERT in GC _____ 37

Figure 10. Cohen’s kappa evaluation for character level perturbations of XLNet in HSOL __ 40

Figure 11. Cohen’s kappa evaluation for character level perturbations of XLNet in NLI ____ 42

Figure 12. Cohen’s kappa evaluation for character level perturbations of DistilBERT in SA _ 44

Figure 13. Cohen’s kappa evaluation for character level perturbations of XLNet in SS_____ 47

Analysis and predicting the impact of text perturbations on NLP

6

1. Introduction

Data Science and related technologies are constantly evolving, and especially in the

area of Machine Learning (ML), and Artificial Intelligence (AI) more broadly. What began

with feed-forward neural networks has rapidly developed in new ways of processing,

computing, and understanding large amounts of data in order to extract patterns and aid

in decision-making.

This paradigm has led to significant advances in multiple fields, including healthcare

(Yu, Beam, & Kohane, 2018), marketing (Brei, 2020) and computer vision (Voulodimos,

Doulamis, Doulamis, Protopapadakis, & others, 2018), among others. One of the key

areas where the most remarkable improvements have been made is Natural Language

Processing (NLP), which is the domain of processing, interpreting, and comprehending

natural language (Reshamwala, Mishra, & Prajakta, 2013). The huge success in this

discipline has contributed to lowering the barrier for some complex tasks, such as

programming, with popular models like GPT-3 (Brown, et al., 2020) and GPT-4 (OpenAI,

GPT-4 Technical Report, 2023) (and their implementations in ChatGPT (OpenAI,

Introducing ChatGPT, 2022)) allowing for all kinds of users to perform certain specific

tasks without having that much expertise using natural and comprehensive language.

Pre-trained Large Language Models (LLMs) in Natural Language Processing have

transformed the field by providing models that can automatically learn from large

amounts of raw data in a self-supervised manner, generalise well, and perform efficiently

in various downstream NLP tasks. Pre-trained LLMs, such as BERT and GPT, are

characterised by their ability to extract representational structures from raw text data that

encapsulate semantic and syntactic information, producing coherent output, such as

grammatically correct text. These models have undoubtedly advanced the state of the

art in NLP tasks such as language translation, sentiment analysis, question answering

and speech recognition, which are critical in applications such as customer service,

marketing and healthcare.

However, even though pre-trained LLMs promise efficient and optimal performance

in most NLP tasks, there are still challenges that need to be addressed. It is usually the

case that LLMs rely on well-curated and pre-processed datasets that do not reflect the

noisy and diverse nature of real-world text. These models may thus be susceptible to

7

perturbations that can affect their performance. Perturbations can appear in all shapes

and forms: they can happen at a character level, where individual characters are

inserted, deleted, or replaced by others; they can happen at a word level, where for

instance a word is replaced by a synonym; and finally, there are other types of

perturbations, like common expressions being contracted (they are → they’re).

Depending on the model or the tokenisation process, some types of perturbations may

affect the models more than others. Perturbed inputs can thus range from something as

simple as a typo to completely out-of-vocabulary (OOV) words or phrases. A good LLM

should be able to process and understand these perturbations and produce meaningful

outputs. The specific tasks LLM are trained on can also affect the impact of the

perturbations: some tasks may rely more on specific details in the words, and as such

character level perturbations may be more detrimental, while others may have more

trouble generalising concepts, so word level perturbation such as synonym replacement

may change the output more drastically.

A good LLM should be able to process and understand these perturbations and

produce meaningful outputs. Therefore, understanding the robustness of LLMs to

distributional shifts and perturbations in the data is of paramount importance. This is

essential to ensure that these models maintain their efficiency and accuracy when used

in real-world applications.

This work addresses these challenges, focusing on the impact of perturbations on

LLMs. We will discuss how LLMs are pre-processed and curated to reduce noise and

erroneous inputs that lead to poor performance in real-world environments. We will also

examine how specific language tasks can affect LLM performance in the presence of

perturbations. We will also present approaches and methodologies to evaluate the

robustness of LLMs.

1.1. Motivation

The increasing use of large language models for various applications and domains

makes it crucial to assess their robustness under different data distribution shifts. To

achieve this, it is essential to investigate how different algorithms and models are

affected by these variations.

Analysis and predicting the impact of text perturbations on NLP

8

Current evaluation methods assess the offline performance metrics of models based

on held-out test sets, typically with the same distribution as the training data. However,

in real-world scenarios, the distribution often shifts between the development and

deployment environments, leading to significant performance impacts. Therefore,

assessing the robustness of a model to distribution shifts becomes critical.

Figure 1. example of distributions shifts. In controlled environments, typos and perturbations are rare:
however, in real world contexts, they are really common, producing shifts in data distributions

This work addresses this challenge by analysing the effects of ML algorithm, task,

perturbation/transformation on model robustness. We focus on common NLP tasks like

grammatical coherence, hate speech and offensive language, natural language

inference, sentiment analysis and semantic similarity, and evaluate model robustness in

the context of distribution shifts induced by transformation-based perturbations. Overall,

this project aims to contribute to improve reliability and performance of large language

models, which will benefit their widespread use in various application areas.

1.2. Objectives

 The aim of this project is to perform a comprehensive evaluation of the robustness of

different large language models (LLMs) under different types of perturbed inputs. For this

purpose, we will fine-tune four LLMs on five different tasks, predicting both perturbed

and unperturbed sentences. By measuring the difference between the predictions made

on perturbed and unperturbed sentences, we will compare the robustness of different

models.

Our project aims to address three key research questions related to the robustness

of LLMs:

9

1. Which LLMs are more robust, and which are more vulnerable to perturbed inputs?

2. Which NLP tasks are more sensitive to perturbations? Understanding the effect

of perturbations on different NLP tasks can help identify task-specific

vulnerabilities and inform the choice of robust models for specific applications.

3. Which perturbation types and their level of accumulation (characters, words, or

other) have a greater impact on model predictions? A better understanding of the

perturbations that have a greater impact on model predictions can further help to

refine evaluation metrics and develop more robust models.

To achieve our research objectives, we will conduct extensive experimentation and

evaluation using various benchmark datasets and state-of-the-art LLM algorithms. Our

research will use a diverse set of perturbation methods, including insertion, deletion,

synonym substitution, among others, to simulate distribution shifts and evaluate model

robustness under these scenarios.

1.3. Expected impact

The impact of this research project lies in the effect of text perturbations on large

language models robustness. Understanding which perturbations affect models the most

can lead to the development of new models or the improvement of existing ones with

higher robustness and better performance even in the face of corrupted inputs.

In addition, this work could have real-world applications in tasks such as machine

translation, sentiment analysis and text classification. Identifying which types of

perturbations have the greatest impact on these tasks could lead to the development of

targeted methods for data augmentation or model training, thereby improving accuracy

and efficiency. By gaining a deeper understanding of the inner workings of NLP models,

this work could also pave the way for future innovations and advances in the field. For

example, the insights gained from this research could inspire the development of new

architectures or pre-training approaches that deal with the perturbation types to which

models are most susceptible.

Analysis and predicting the impact of text perturbations on NLP

10

1.4. Ethical and legal implications

Regarding data protection and availability, all the models and datasets were obtained

from HugginFace (Wolf, et al., 2020), a company that aims to democratise AI through

open source, so all datasets and models are open data. Furthermore, all data generated

in this project will also be publicly available and free.

The relationship between this project and the Sustainable Development Goals can be

found in Annex I.

11

2. State of the art and background

The history of Large Language Models (LLMs) in Natural Language Processing (NLP)

has witnessed significant advancements over the years, driven by breakthroughs in

machine learning and the availability of vast amounts of textual data.

In the beginning, NLP was approached in the same as fashion as other Machine

Learning problems that required the analysis of sequences: Hidden Markov Models

(Rabiner & Juang, 1986) (HMM) in combination with n-grams (sequence of characters

or words of length n) were used to determine the probability of a sequence appearing

given a certain distribution that could be derived from some data. These models had

limited context awareness and struggled with capturing complex linguistic patterns.

Later, with the rise of neural networks, more complex models than HMM were

developed: the neural language model was born (Bengio, Ducharme, & Vincent, 2000),

which used a neural network architecture to capture dependencies between words and

generate more fluent text. However, at the time these types of models required excessive

data and computation to yield significant results.

Recurrent Neural Networks (RNNs) became popular for language modelling due to

their ability to capture sequential dependencies in text. In 2010, Mikolov et al. introduced

the Recurrent Neural Network Language Model (Mikolov, Karafiát, Burget, Cernocký, &

Khudanpur, 2010), which achieved improved performance in generating coherent and

contextually appropriate text. However, RNN-based models still faced challenges with

long-term dependencies and suffered from vanishing or exploding gradients.

Some of these problems were mitigated by specific types of RNNs such as Long

Short-Term Memories (Hochreiter & Schmidhuber, 1997) (LSTM) and Gated Recurrent

Units (Cho, et al., 2014) (GRU). Finally, the encoder-decoder architecture (Sutskever,

Vinyals, & Le, 2014), in conjunction with attention mechanisms (Vaswani, et al., 2017),

gave birth to the transformer (Vaswani, et al., 2017), the most used type of model

nowadays.

LLMs are usually pretrained in the following fashion: first, the sentence is divided in a

process called tokenisation, which consists of breaking down the input into smaller parts,

usually words, subwords or even characters, called “tokens”. Next, the sequence of

Analysis and predicting the impact of text perturbations on NLP

12

tokens is usually normalised and processed, with operations such as lowercasing if

needed or removing punctuation and stop words. Finally, these curated tokens are

converted into numerical vectors that try to capture the context of words (for example,

words like “house” and “home” may have similar representations in these numerical

spaces). A popular technique to discover these representations is embeddings (Mikolov,

Sutskever, Chen, Corrado, & Dean, 2013).

As such, NLP models take sequences as input: hence, the order of the series is

important. The most common architecture used in LLMs is the encoder-decoder, which

is divided into two parts. The encoder receives a variable-length input sequence and

returns a fixed length vector that tries to capture the contextual information of the

sentence. The decoder then takes this context vector and outputs a variable-length

sequence that can be reconverted into tokens and thus an output sentence. This

framework is used in sequence-to-sequence tasks, such as text summarisation, text

generation or translation.

There is more to NLP models: for instance, the encoder-decoder architecture alone

is not able to handle long sentences, where the dependencies and relationships between

words in the text may be distant, and so, other mechanisms such as attention and self-

attention (Vaswani, et al., 2017) complement encoder-decoder by mitigating this

problem.

Broadly speaking, attention allows the model to determine, for a given token, which

other parts in the sentence are more related to that token. For example, in Spanish, the

word “las” may be more related to the word “comen”, since there is a concordance in

number. Self-attention is used within the same sentence, while attention helps determine

which parts of the encoded input are more relevant for predicting the token in the

decoded output:

13

Figure 2. on the left, visual representation of self-attention. On the right, visual representation of
attention. Attention matrices help visualise syntactic relationships, such as the dependency of the subject

("el chico") and their passive mention ("con él")

Figure 1 illustrates how attention and self-attention function. For each row, in the

matrices, a greener colour indicates more relevance: for example, the words “chico” and

“El” are the most important to predict the word “lleva”, since they dictate the number of

the subject (singular). This in an example of self-attention. For attention, the words “El”,

“chico” and “él” help the model the most to predict the word “him”, mainly because the

word “him” refers to the subject of the sentence (“el chico” – “él”).

This mechanism, in conjunction with the encoder-decoder architecture and some

additional features to help improve the efficiency of the model like positional encoding,

form the most popular type of NLP model nowadays: the transformer.

Transformers are pretrained to generate outputs in the form of sequences: that is,

they do not generate a single label or number, but rather, as discussed earlier, an

ordered sequence of tokens. However, they can be finetuned in specific tasks to produce

any kind of output, be it sequences or single outputs1. This flexibility makes NLP models

useful and applicable in a variety of domains, especially the ones where unstructured

data is common, such as in medicine and disease diagnosis.

One state of the art example of a transformer is Bidirectional Encoder

Representations from Transformers, or for short, BERT (Devlin, Chang, Lee, &

Toutanova, 2019). This model played a pivotal point in shaping the NLP landscape,

1 This is usually accomplished by replacing the last layer of the decoder on the model by a fully connected

layer whose inputs are the hidden states of the decoder.

Analysis and predicting the impact of text perturbations on NLP

14

proving the efficacy of the transformer architecture and popularising it. BERT uses a

pretraining approach called masked language modelling (MLM), which consists of hiding

(masking) some of the tokens to the transformer. Then the model must predict the

sentence and those masked inputs.

This technique helps the model learn the intricacies of the language. However, it

ignores the dependency between the masked inputs. For instance, a sentence like “I’m

going to New York” with two masked tokens could be “I’m going to [MASK] [MASK]”.

BERT does not retain any dependencies between the two words, so a valid (and more

probable that “New York”) prediction would be “I’m going to Paris [MASK]” → “I’m going

to Paris tomorrow”.

This is the general outlook of modern large language models, and NLP is constantly

evolving with the proposal of new techniques and approaches. However, even though

the capabilities of modern artificial intelligence are remarkable, they can underperform

with noisy data in real world contexts.

The discrepancy in performance of NLP models between benchmarks and real word

applications has been discussed in other works (Ribeiro, Wu, Guestrin, & Singh, 2020),

with the results indicating that there is a significant gap, where sentences with typos that

are insignificant for humans are difficult for LLMs.

There is a distinction to be made between natural noise and synthetic noise in NLP:

natural noise is derived from perturbations that can occur organically in real world

environments, such as common typos and contractions found in raw datasets. Synthetic

noise, on the other hand, refers to artificially produced perturbations, usually with the

purpose of evaluating the robustness of NLP models. This synthetic noise can be used

to create adversarial examples with tools like OpenAttack (Zeng, et al., 2021). Both types

of noise have been proven to greatly impact predictions in some tasks like translation

(Belinkov & Bisk, 2018).

However, despite the availability of technology to generate synthetic noise, its

utilisation in benchmarks remains limited, and applying these perturbations could

complement and improve them (Moradi & Samwald, 2021).

Moradi and Samwald (2021) studied the performance of different LLMs for different

types of perturbations, specifically at the character and word level. They reported a

15

decrease in performance between 8 and 18 points2, depending on the model, the task,

and the number of perturbations per sample, concluding that models are more sensitive

to character level perturbations than word level ones.

However, there a few considerations to take into account: firstly, other types of

perturbations were not employed, such as contractions, additions of punctuation or more

specific ones like addition of links or usernames similar to those founds on social media

(like “@username789”). Moreover, the hyperparameter Perturbations Per Sample (PPS)

is a flat number of perturbations allowed in a sentence. This choice can scale poorly with

inputs of significantly varying length.

Furthermore, it is worth noting that due to the potential alteration of input meaning

caused by certain word perturbations, the authors opted to manually select up to 200

perturbed samples to evaluate on the test size. This could affect the previous conclusion

regarding character level perturbations being more impactful than word level ones, since

character level ones did not pose this additional challenge. Enhancing the size of the test

datasets could significantly bolster the validity of the obtained results.

Therefore, despite the existence of previous work regarding the evaluation of model

robustness against perturbations, the research is not complete, and some additions and

improvements can be made to ascertain previous results and discover new ones.

2 “Points” indicating not percentual, but absolute decrease in the task chosen metric (for example, a decrease

of 10 points in a task that uses accuracy as the main evaluation metric would imply a 0.1 decrease in
accuracy)

Analysis and predicting the impact of text perturbations on NLP

16

3. Methodology

 In order to achieve the stated objectives, we chose and followed a comprehensive

methodology, which involved finetuning four different large language models on five

distinct natural language processing (NLP) tasks.

Firstly, the models were subjected to finetuning and hyperparameter optimisation to

ensure optimal performance. Then, this dataset was perturbed by different types of

perturbations and was used to get alternative predictions. Two sets of predictions were

obtained: one from the original, unaltered test dataset and the other from the same

dataset subjected to different types of perturbations. These perturbations ranged from

simple changes in words to more complex grammatical and semantic alterations. Then

we measured the degree of disagreement between the two sets of predictions as an

indicative of the model's overall robustness. To achieve this, a detailed evaluation

process was implemented.

In what follows, each phase of the workflow will be described in detail, mainly the

datasets, models and perturbations we used, a description of the finetuning process and

how the main objectives were evaluated.

3.1. Models

Some of the models chosen are inspired by the previously described BERT but

provide different alternatives, either to the original architecture or the pretraining

approach, that circumvent these limitations. All models were obtained and finetuned via

the HuggingFace transformers (Wolf, et al., 2020) library and the Python library for deep

learning PyTorch (Paszke, et al., 2017).

In order to offer more comprehensive assessments of large language models, this

study deliberately selected a diverse set of models that exhibited variations in their

architecture, preprocessing methodologies, and pretraining techniques.

- DistilBERT (Sanh, Debut, Chaumond, & Wolf, 2019): a distilled version of BERT,

designed to retain its language understanding capabilities while being smaller and

17

therefore less computationally expensive. This is achieved by adopting a teacher-

student relationship, where the larger, more expensive model (the teacher), must

educate the smaller model (the student) and transfer its knowledge. This

technique is called knowledge distillation. The version “distilbert-base-cased”3

was used in this work.

Figure 3. the DistilBERT model and its components. Source: (Adel, et al., 2022)

- ELECTRA (Clark, Luong, Le, & Manning, 2020): another variant of BERT with a

unique and interesting pretraining approach: two transformer models are used

(the generator and the discriminator), and instead of masking some tokens of the

input sentence, they are replaced by plausible alternatives provided by the

generator. The discriminator then learns to determine which tokens were replaced

by the generator (to discriminate). This pretraining approach is less demanding

on resources and leads to equal or even better results than models like the original

BERT or large-scale models like XLNet 4 . The version “google/electra-base-

discriminator” was used in this work.

3 “cased” means it distinguishes between lower case and upper-case characters.
4 When using the same amount of compute as XLNet.

Analysis and predicting the impact of text perturbations on NLP

18

Figure 4. the ELECTRA model and its components. Source: (Zhang, Yu, & Zhu, 2021)

- XLNet (Yang, et al., 2019): an extension of the Transformer-XL (Dai, et al., 2019)

model that, unlike BERT, does not neglect dependency between masked inputs,

and by permuting the tokens of its inputs it learns bidirectionally. Given this

pretraining approach, it is the larger model utilised in this work. The version “xlnet-

base-cased” was used in this work.

Figure 5. the XLNet model and its components. Source: (Yang, et al., 2019)

19

- Funnel Transformer (Zihang, Guokun, Yiming, & Quoc, 2020): bidirectional

transformer that uses a pooling5 operation at the end of each block of layers,

reducing its size and therefore the number of operations. If a sequence of the of

a specific size is needed, there is an optional layer that upsamples the final hidden

states. The version “funnel-transformer/small” was used in this work.

Figure 6. the funnel transformer model and its components. Source: (Zihang, Guokun, Yiming, & Quoc,

2020)

Basically, DistilBERT is a smaller and computationally cheaper version of BERT,

achieved by using knowledge distillation through a teacher-student relationship.

ELECTRA has a unique pre-training approach that uses two transformer models, a

generator and a discriminator, to replace tokens with plausible alternatives, and trains

the discriminator to determine which tokens have been replaced. XLNet pre-trains

bidirectionally and does not neglect dependencies between masked inputs. Funnel

Transformer uses a pooling operation to reduce its size and an optional upsampling layer

to produce the desired sequence length. All models were extended with a final

classification layer for single label classification tasks. A summary of the characteristics

of each model is given in Table 1.

5 Pooling is a technique mainly used in convolutional neural networks (CNN) that reduces the size of the

output.

Analysis and predicting the impact of text perturbations on NLP

20

Table 1. Summary of the characteristics of the four models: DistilBERT, ELECTRA, XLnet and Funnel

Transformer

For more information about specific parameters and hyperparameters such as the

number of heads, dropout use, or size of input tokens, we refer to Annex II, although

most values are the ones used by default.

3.2. NLP tasks

To ensure that the discoveries of this work are applicable to a multitude of fields in

NLP, a selection of five different NLP tasks were chosen. These five tasks are supervised

(classification): the model predicts a categorical label for each example. All datasets are

in English and, like the models, were obtained via HuggingFace:

- Sentiment Analysis (SA): a task to determine the sentiment or opinion about a

topic given a text. The output can be binary (like vs do not like) or ordinal, such as

rating from 1 to 5. For this task, the Stanford Sentiment Treebank (Socher, et al.,

2013) was chosen, which consists of sentences from movie reviews, and it is a

binary classification task. An example of this dataset would be:

Model Based of
Pretraining approach /

Architecture
Computation cost Year

DistilBERT BERT Knowledge distilation Cheap 2019

ELECTRA BERT

Discrimnation based of

generator-discriminator models

rather than generation

Cheap 2020

XLNet Transformer-XL Permutation of tokens Expensive 2020

Funnel Transformer -
Reducing size at each block by

pooling
Cheap 2020

21

Table 2. Examples for the Stanford Sentiment Treebank with their corresponding label

- Grammatical Acceptability (GA): a task determining the grammatical validity of

a sentence, which is really useful to assess if a model has grasped the rules of a

language. For this work, the Corpus of Linguistic Acceptability (Warstadt, Singh,

& Bowman, 2018) (CoLA) was chosen, which consists of sentences from books

and journal articles on linguistic theory. It is also a binary classification task.

Table 3. Examples for the Corpus of Linguistic Acceptability with their corresponding label

- Semantic similarity (SS): task to determine the likeliness of similarity between

sentences or texts. In this case, the Paraphrase Adversaries from Word

Scrambling (Zhang, Baldridge, & He, 2019) (PAWS) dataset was utilised and

consists of pairs of paraphrase sentences from Wikipedia generated by word

swapping and back translation methods. Like the previous tasks, this is a binary

classification task.

Sentence Label

cold movie 0 (negative)

with his usual intelligence and subtlety 1 (positive)

will find little of interest in this film, which is

often preachy and poorly acted
0 (negative)

a $ 40 million version of a game 0 (negative)

gorgeous and deceptively minimalist 1 (positive)

Analysis and predicting the impact of text perturbations on NLP

22

Table 4. Examples of the Paraphrase Adversaries from Word Scrambling dataset with their
corresponding label

- Natural Language Inference (NLI): task about logical inference relation of a pair

of sentences: either entailment, contradiction or neither (neutral). We used the

Multi-Genre Natural Language Inference Corpus (Williams, Nangia, & Bowman,

2018) (MNLI), which consists of pair of sentences from different sources such as

transcribed speech, fiction, and government reports. Contrary to the previous

tasks, there are three classes instead of two.

Table 5. Examples of the Multi-Genre Natural Language Inference Corpus dataset with their
corresponding label

- Hate Speech and Offensive Language (HSOL): task to determine whether a

sentence or comment (most datasets are created from social media posts) can be

considered as hate speech or offensive language. In this case, the dataset

employed in the paper “Automated Hate Speech Detection and the Problem of

Offensive Language” (Davidson, Warmsley, Macy, & Weber, 2017) was used,

which consists of tweets with three possible labels: hate speech, offensive

language or neither.

23

Table 6. Examples of the Multi-Genre Natural Language Inference Corpus dataset with their
corresponding label

A brief summary of the five datasets used can be found in Table 7. Overall, the

selection of these five NLP tasks ensures that the findings of this study can be applied

to various domains.

Table 7. Summary of the five datasets: CoLA, HSOL; MNLI, SST2 and PAWS

To improve the speed of the finetuning phase, datasets with more than 15,000

examples in the training set were reduced to that number of sentences. Validation and

test sets were not altered since their size never exceeded this number.

Dataset NLP Task Size Nº labels

Train: 8 550 sentences

Validation: 1 040 sentences

Test: 1 060 sentences

Train: 13 878 tweets

Validation: 5 948 tweets

Test: 4 957 tweets

Train: 15 000 pairs of senteces

Validation: 9 820 pairs of sentences

Test: 9800 pairs of sentences

Train: 15 000 sentences

Validation: 872 sentences

Test: 1820 sentences

Train: 15 000 pairs of senteces

Validation: 8 000 pairs of sentences

Test: 8 000 paris of sentences

SST2 Sentiment Analysis

PAWS Semantic Similarity

2

3

3

2

2

Grammatical

Acceptability

Hate Speech and

Offensive Language

Natural Language

Inference

CoLA

HSOL

MNLI

Analysis and predicting the impact of text perturbations on NLP

24

In the case of the HSOL dataset, only the train set was provided, so the data was

partitioned with stratification into train-validation-test (55-25-20). To find more

information and details about the datasets, refer to Annex II.

3.3. Perturbations

There were three different types of perturbation levels used: character-level

perturbations (inserting, deleting or substituting a character in the sentence), word-level

ones (substituting a word in the sentence), and other types of perturbation (adding

punctuation marks, applying common contractions, inserting adverbs, etc.). These types

will be evaluated separately.

3.3.1. Character-level perturbations:

• Keyboard: replaces characters with other characters that are close in a

keyboard with QWERTY layout.

• OCR: replaces characters to simulate Optical Character Recognition (OCR)

mistakes.

• Spelling error: transformation that leverages a predefined spelling mistake

dictionary to simulate common spelling mistakes.

• Typos: randomly inserts, deletes, swaps or replaces characters.

Instead of the Perturbations Per Sample (PPS) hyperparameter (Moradi & Samwald,

2021) we use the percentage of perturbation of the sample: for instance, a sentence with

20 characters and a character perturbation percentage of 10% should have around 2

characters affected. Using percentages instead of absolute values helps scale the

perturbation effect to variable-length sentences. The values used for character

perturbation percentage were 1%, 5% and 10%.

25

3.3.2. Word-level perturbations

• SwapSynWordEmbedding: replaces a word with a synonym derived from

the GloVE (Pennington, Socher, & Manning, 2014) (word embeddings).

• SwapSynWordNet: replaces a word with a synonym derived from the

WordNet (Fellbaum, 1998) project.

Similar to character-level perturbations, there is a hyperparameter named word

perturbation percentage: a sentence with 10 words and a word perturbation percentage

of 10% should have the 1 word altered. Since sentences in the datasets used have from

5 to 20 words, the values for this hyperparameter were 10%, 20% and 30%.

3.3.3. Other perturbations

• Contraction: replaces phrases like “will not” and “he has” with contracted

forms, namely, “won’t” and “he’s”.

• InsertAdv: adds and adverb before a verb.

• Prejudice: replaces a location (a country, a city, etc.) with another location

that could cause prejudice or bias (such as a city or a country in a poor area).

• Punctuation: adds punctuation at the end of the sentence.

• SwapNum: replaces digit numbers (4, 10, 1048) by other numbers.

• VerbTense: changes the tense of a verb in a sentence.

• Twitter: adds mentions to usernames (@username789) or short links

(http://t.co/blS7dalMiF) similar to those found in Twitter.

• WordCase: changes all the characters in a sentence to be upper case.

Analysis and predicting the impact of text perturbations on NLP

26

It is clear from the above that even for a perfectly robust models some perturbations

should change the output (e.g., a question that depends on the numbers when using

SwapNum, such as “this film scores 10 out 10” instead of “this film scores 0 out of 10”

may affect sentiment although not grammatical acceptability). The incorporation of

perturbations into the models was carried out using the powerful Python library textflint

(Wang, et al., 2021). This library was developed specifically for evaluating the robustness

of natural language processing and provides a variety of techniques for each of the

perturbations mentioned.

A summary and an example of each perturbation can be found in Table 8.

Table 8. Summary of the perturbations with a short example

It is likely that some of these transformations are not applicable to all sentences: for

instance, not all texts have digit numbers in them, so the perturbation SwapNum will not

perturb those sentences. For that reason, after each sample is perturbed, it is checked

whether this new perturbed sample is actually different from the original one, and a tally

is made. When the whole dataset is processed, the percentage of total perturbed

samples is returned. This value can be used to ascertain the level of validity of the results,

since very few conclusions can be made if the dataset was perturbed, for example, only

by 10%. This also gives some insight into how frequent that perturbation can appear in

real contexts.

Level Perturbation Original Perturbed

Keyboard hand hanf

Ocr hello hellu

SpellingError achieve acheive

Typos random andom

SwapSynWordEmbedding It is nothing but a caricature It is nothing but an imitation

SwapSynWordNet I'd like some pie, please I'd like some cake, please

Contraction They are coming, run! They're coming, run!

InsertAdv He jumped the fence He quickly jumped the fence

Prejudice I'm moving to Canada next month I'm moving to Morocco next month

Punctuation The film was quite good The film was quite good!

SwapNum 3 people attended the meeting 15 people attended the metting

VerbTense He started slow but ended up winning He starts slow but ends up winning

Twitter Good premise, bad ending Good premise, bad ending @username789

WordCase I'm not angry, not at all I'M NOT ANGRY, NOT AT ALL

Character

Word

Other

27

It is important to note that, since some types of perturbations can lead to logical

changes in the outcome (e.g., replacing a word with its antonym can change a positive

review into a negative review), the main objective is not to measure the performance

degradation (such as drop in accuracy) of these models, but rather the number of

changed predictions.

3.4. The finetuning process: hyperparameter optimisation

Even though the models we have used have great performance on their own, their

real potential can be attained only if they are finetuned for a specific dataset or task.

Therefore, every model was trained on each one of the previously mentioned datasets,

giving a total of 20 training processes.

For each of these processes, some level of hyperparameter optimisation was

performed: specifically, the hyperparameters that were altered were the initial learning

rate (all models use a learning rate scheduler with linear decay each epoch) and the

number of epochs. The values for the initial learning rate were 0.00001, 0.0005 and

0.0001. The models were trained for 5, 7 and 10 epochs. This means every model was

trained 9 different times, leading up to 180 different training sessions.

Even though more hyperparameters could have been tuned, the number of training

sessions increases drastically for every new combination of them. Considering more

hyperparameters turned out to be prohibitive for the time frame of the project.

The models were trained using the training partition of the datasets. At the end of

each training session, the accuracy and f1 score of both the training and validation sets

were computed, and the model checkpoint (weights, biases, random states, etc.) was

saved for later use in the evaluation phase.

The score for determining which combination of hyperparameters is better was

obtained using the following formula:

𝑠𝑐𝑜𝑟𝑒 = 0.2 · 𝑓1𝑡𝑟𝑎𝑖𝑛 + 0.8 · 𝑓1𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛

Analysis and predicting the impact of text perturbations on NLP

28

This custom calculation was chosen because in rare occasions, especially when

training on a low number of epochs, the f1 score of the validation dataset can be higher

due to pure randomness, distorting the real capability of the model. Furthermore, even

though the accuracy and f1-score are calculated, this custom score only employs the f1

score due to being a more robust metric, effective against imbalanced datasets, contrary

to the accuracy, which is highly sensitive to asymmetric class distributions.

All training processes used a batch size of 32, except XLNet sessions, which, due to

the limited size of the GPU, used a batch size of 16.

Table 9. Hyperparameters employed in the finetuning phase. The only two who take various values are
the initial learning rate and the number of epochs

3.5. The evaluation process: perturbing and predicting

sentences

In order to identify discrepancies in model predictions, the test portion of each dataset

was subjected to a series of perturbations as outlined previously, resulting in a collection

of perturbed datasets that can now be accessed on HuggingFace6.

Once the best combination of hyperparameters was found, the models were loaded

thanks to the checkpoint system previously mentioned. Each original (unaltered) test set

was then fed into the model, returning some label predictions. As many of the datasets

used in this study are also used in popular benchmarks such as the GLUE benchmark

(Wang, et al., 2019), test labels were often unavailable, making it impossible to calculate

6 https://huggingface.co/DaniFrame

29

evaluation metrics such as accuracy or f1 score. With this in mind, the perturbed datasets

were loaded and fed into the model, generating alternative predictions for each perturbed

dataset. To quantify the degree of disagreement between the two sets of predictions,

Cohen's kappa coefficient (Cohen, 1960) was used, which accounts for the possibility of

random disagreement. The Cohen’s kappa formula is as follows:

𝜅 =
𝑝0 − 𝑝𝑒

1 − 𝑝𝑒

Where 𝑝0 is the relative observed agreement among raters (accuracy), and 𝑝𝑒 is the

hypothetical probability of chance agreement. To give an example, given the following

confusion matrix:

Figure 7. Confusion matrix to explain the computation of the Kappa Cohen’s score

The observed agreement among raters is:

𝑝0 =
40 + 30

100
= 0.7

To compute the probability of change agreement, note that Rater 1 predicted Class A

60 (40+20) out of 100 times (0.6), and Rater 2 predicted Class A 50 (40+10) out of 100

times (0.5). So, the chance that both raters predict Class A is 0.6 · 0.5 = 0.3.

Similarly, for Class B, the chance that both raters predict said class is:

𝑝𝐵 =
40

100
·

50

100
= 0.4 · 0.5 = 0.2

Finally, the change that the raters agree by chance in any class is 0.3 + 0.2 = 0.5.

Applying the definition of the Cohen’s kappa formula, we get that the kappa score is:

𝜅 =
0.7 − 0.5

1 − 0.5
= 0.4

Analysis and predicting the impact of text perturbations on NLP

30

Values of Cohen's kappa coefficient close to 1 indicate a high degree of agreement

between the predictions for most samples, while values close to -1 indicate the opposite.

A value around 0 indicates that the number of prediction disagreements is as expected

by chance. It should be noted that predictions are deterministic: as such, the Cohen’s

kappa between the predictions unperturbed and themselves is 1.

When aggregating results across datasets and perturbations, the proportion of

perturbed examples in each perturbed dataset was taken into account to calculate the

'robustness score', rather than relying solely on Cohen's kappa coefficient. This was

done to prevent models from receiving inflated scores when the dataset had minimal

perturbations, such as in SwapNum.

3.6. Hardware, reproducibility and reporting results

Both finetuning and evaluation were performed in a server with an Intel® Core™ i9-

10920X at 3.5 GHz, a 126 GB memory, and 2 NVIDIA GeForce RTX 3090 GPUs with

24GB of dedicated memory each. The perturbations were made in CPU while the

finetuning and prediction were performed in GPU.

To ensure reproducibility and in compliance with the recommendations of the Science

paper about reporting of evaluation results in AI (Burnell, et al., 2023), all finetuning and

evaluation results are included in the following repository7 to avoid recomputation and

therefore avoidable energy consumption. Various seeds that control different random

processes (mainly from the libraries transformers, PyTorch and NumPy) in the finetuning

phase were fixed, but there are still some random processes in GPU that are not fixable,

so upon reproducing the code results may vary slightly, although the conclusions should

be the same. This repository also contains all the instances-level results of the finetuning

phase, as well as the results for Cohen’s kappa from the perturbations.

7 https://github.com/Daniframe/TFG-GCD

https://github.com/Daniframe/TFG-GCD

31

4. Results

The following sections contain the different results for the finetuning phase as well as

the evaluation phase. Let us remember that the three objectives this work depend on the

variations of models, NLP tasks (represented by datasets) and perturbations.

4.1. Finetuning results: finding the best hyperparameters

Table 10. Example of the scores obtained for the finetuning phase in the case of finetuning DistilBERT
for the Grammatical Coherence task. The highest score (optimal combination of hyperparameters) is
highlighted

Table 10 illustrates the results of the fine-tuning phase. Each model-task pair (such

as DistilBERT with Grammatical Coherence and ELECTRA with Sentiment Analysis)

was evaluated with different hyperparameter combinations to determine their respective

scores. The hyperparameter combination that produced the highest score was selected

as the final model for the evaluation phase. Table 11 shows the results for all models

and tasks, including the best number of epochs (left) and the optimal initial learning rate

(right) for each pairing.

Table 11. Best number of epochs (left) and initial learning rate (right) for each combination of model and
NLP task.

Analysis and predicting the impact of text perturbations on NLP

32

Several notable trends emerge from the results. The initial learning rate of 0.00005

generally produced the best results, while 0.0001 was never the optimal choice and

sometimes produced vanishing or exploding gradients. It is also worth noting that the

Grammatical Coherence task had the same number of training epochs for all models,

highlighting its greater complexity compared to the other tasks.

In summary, the results vary depending on the hyperparameters, task and model.

However, some trade-offs can be found. For instance, an initial learning rate between

0.00005 and 0.00001 seems to be the best value, since learning rates higher than that,

such as 0.0001, lead to worse results overall.

4.2. Evaluation results

Although the fine-tuning process may not require extensive discussion, the

perturbation evaluation process offers a wealth of analysis opportunities as it

incorporates all three dimensions of the objectives of this project. In order to gain a full

understanding of the impact of these perturbations and how they can affect the output of

the model, we will examine several examples of these modified sets. We will then

examine the results obtained from various model-task pairings, highlighting noteworthy

details and attempting to explain them in terms of model or task characteristics. Finally,

we will perform an aggregate analysis to determine which model, perturbation, and NLP

task have the most significant reduction in robustness.

4.2.1. Some clarifying examples

To comprehend the final form of this analysis, a few examples will be shown next: the

original and perturbed sample are contrasted, marking differences between them, and

next to it the model prediction will be displayed. Remember that the main goal is not to

measure whether this prediction is correct (performance), but rather if the model output

changes at all (robustness, non-volatility). If the output changes, it indicates that the

model is sensitive to small input variations.

33

These are some examples where altered sentences change the model’s prediction:

Grammatical Coherence

John left orders for Bill not to leave (predicted as grammatically coherent)

John left ordsrs for Bill not to leave (predicted as not grammatically coherent)

Grammatical Coherence determines the grammatical validity of a sentence: that is,

verbs tenses, gender to verb concordance, etc. But it should be able to ignore typos and

obvious spelling mistakes. In this example, a human can derive from the rest of the

sentence that “ordsrs” refers to “orders”, and therefore the sentence is still grammatically

correct. The model (in this instance DistilBERT) is not able to do this.

Hate Speech and Offensive Language

@Oskzilla go to sleep you fag! (predicted as offensive language)

@Oskzilla go to sleeping you fag! (predicted as hate speech)

In this case, a simple change in verb tense (which does not change the meaning of

the sentence at all) is enough to change the label from offensive language (rude

statements, profanities that can offend others) to hate speech (statements that promote

discrimination against groups based on their race, gender, sexual orientation, etc.).

Natural Language Inference

Premise: Greuze gave a slow sigh

Hypothesis: Greuze jumped forth as a new idea sparked in his head

(predicted as neutral)

Premise: Greuze establish a slow sigh

Hypothesis: Greuze jumped forth as a new thought sparked in his head

(predicted as entailment)

Analysis and predicting the impact of text perturbations on NLP

34

Even though the coherence of the perturbed premise could be debated, it is

undeniable that there is still no logical relationship between the premise and the

hypothesis, and therefore a synonym via WordNet should not change the prediction from

neutral to entailment.

Sentiment Analysis

vile and tacky are the two best adjectives to describe ghost ship (predicted as positive)

@nWV8 vile and tacky are the two best adjectives to describe ghost ship (predicted as
negative)

The Twitter perturbation type is one of the most powerful to illustrate how brittle LLMs

can be under specific conditions. The addition of noise like links or mentions to

usernames adds nothing regarding a movie review, yet it can change the model’s

prediction. This is also an example where the perturbed phrase actually “helps” the

model predict the correct label (since this review is evidently negative). Nonetheless, it

still shows that the model (XLNet in this case) is volatile.

Semantic Similarity

Sentence 1: The Sunset Sunset Road comes from right and becomes Briscoe Mountain Road

Sentence 2: Sunset Road comes in from the right and becomes Briscoe Mountain Road

(predicted as semantically similar sentences)

Sentence 1: The Sunset Road cames from raight and becoms Briscoe Mountain Road

Sentence 2: Sunset Road comes in from the right and becomes Briscoe Montain Road

(predicted as not semantically similar sentences)

Another example where character perturbations alter the prediction. In this case, the

words “comes”, “right”, “becomes” and “Mountain” contain easily spotted spelling

mistakes that a human can recognise and correct, whereas for the model they change

their output from semantically similar to not semantically similar.

35

These are some of the examples that show the results that will be analysed. Looking

at specific instances can help understand whether the perturbations are applied in critical

parts of the sentence, such as the subject or the verb, and to which degree humans can

derive the original, unaltered sentence from the perturbed one.

4.2.2. Detailed analysis

Next, each NLP task will be discussed in detail, evaluating which model yielded better

scores and which perturbations were more detrimental.

Grammatical Coherence

The results for the CoLA dataset can be found in Table 12.

Table 12. Cohen’s kappas scores for each model and character level perturbation type for the
Grammatical Coherence task. The best score for each perturbation is highlighted

As Table 12 shows, the scores are around 0.10 and 0.50, indicating an agreement

between the predictions not produced by chance. However, this level of agreement is

not very substantial, showing that character level perturbations do affect the robustness

of the models, at least in this NLP task.

Something to highlight is that ELECTRA is generally more robust than the other

models, especially in the Keyboard and Typos perturbations. ELECTRA also better

Analysis and predicting the impact of text perturbations on NLP

36

handles highly perturbed inputs, as the model has better scores than the other models

when the percentage of altered characters is high (10%), contrary to Funnel Transformer,

which is highly volatile in these conditions.

Figure 8. Cohen’s kappa coefficient for character level perturbations in the finetuned ELECTRA model
on the CoLA dataset. The value above the bars indicates the percentage of perturbed samples in the dataset.

Looking closely at the ELECTRA model, the relationship between the character

perturbation percentage and the Cohen’s kappa seems to be mostly linear, except in

OCR, where the decrease from 1% to 5% is far less than the decrease from 5% to 10%,

although more measurements should be made to support this claim.

Table 13. Cohen’s kappa scores for each model and word level perturbation type for the Grammatical

Coherence task. The best score for each perturbation is highlighted

37

Regarding word level perturbations, Table 13 shows that ELECTRA does not perform

as well as in character level perturbations. In this case, DistilBERT is the most robust

model, with a kappa score that goes from 0.46 in low perturbed inputs to 0.27 in high

perturbed ones.

The high scores near 0.9 in the Swap Synonym Word Embedding perturbation are

due to the low proportion of examples perturbed in the dataset. This is why this metric

was tracked, because it can uncover false good results: in this case, the high kappa

values are because most examples were not perturbed at all, not altering the predictions.

Even though the scores when the perturbation percentage is low are similar to

character level perturbations, the scores against highly perturbed inputs are much

higher. This shows that models seem to be more sensitive towards character level

perturbations.

As shown in Figure 3, the Cohen’s kappa value does not seem to be influenced by

the percentage of perturbed words in the case of Swap Synonym Embeddings, although

this could be explained by the low number of altered samples. In the other perturbation,

the relationship is not clear.

Figure 9. Cohen’s kappa coefficient for word level perturbations in the finetuned DistilBERT model on

the CoLA dataset. The value above the bars indicates the percentage of perturbed samples in the dataset

Analysis and predicting the impact of text perturbations on NLP

38

When analysing other types of perturbations, the results are much more mixed,

especially due to some perturbations barely perturbing the sentences. Table 14

illustrates it perfectly, with perturbations such as Contraction, Prejudice and SwapNum

having low proportions of perturbed samples. Discarding those, DistilBERT is also the

most robust model, although ELECTRA and XLNet are close to it in some alterations like

Contraction and Twitter.

Table 14. Cohen’s kappa scores for each model and other types of perturbations for the Grammatical
Coherence task. The best score for each perturbation is highlighted

Another thing to consider is the perturbation WordCase, which changes all the

characters in a sentence to be upper case. Notice how DistilBERT and XLNet have very

low scores while ELECTRA and Funnel Transformer have perfect kappas (total

agreement). This is probably due to the tokenisation process of the models: DistilBERT

and XLNet distinguish between upper case and lower case characters, while ELECTRA

and Funnel Transformer convert all characters to lower case. This might imply that case

sensitive tokenisers are less robust, while models that do not differentiate between upper

case and lower case can mitigate more effectively the impact of this type of perturbation.

The most detrimental alterations are InsertAdv and VerbTense, with scores between

0.22 and 0.38, while Punctuation and Twitter affect less all models.

39

Hate Speech and Offensive Language

Table 15. Cohen’s kappa for each model and character level perturbation type for the Hate Speech and
Offensive Language task. The best score for each perturbation is highlighted

There is a clear contrast between Grammatical Coherence and Hate Speech and

Offensive Language when it comes to Cohen’s kappa values. While in the previous tasks

the scores oscillated between 0.10 and 0.50, in HSOL the values are generally much

higher, going from 0.3 at worst to almost 0.9 at best. Therefore, models are more robust

against this task than Grammatical Coherence, probably because the language

knowledge is not that demanding in HSOL.

The Cohen’s kappa coefficients between models are more equal, but XLNet is the

most robust model by a slight margin in almost every perturbation.

Analysis and predicting the impact of text perturbations on NLP

40

Figure 10. Cohen’s kappa coefficient for character level perturbations in the finetuned XLNet model on
the hate_speech_offensive dataset. The value above the bars indicates the percentage of perturbed
samples in the dataset

Regarding word level perturbations, the same tendency as character level

perturbations can be seen: all models present higher scores than in Grammatical

Coherence. In this case, Funnel Transformer presents far better results than the rest of

the models.

Table 16. Cohen’s kappa scores for each model and word level perturbation type for the Grammatical
Coherence task. The best score for each perturbation is highlighted

This is also true for other types of perturbations, as shown in Table 17. In this case,

there is not any transformation that greatly alters the predictions of the models, with

values as high as 0.96.

41

Table 17. Cohen’s kappa scores for each model and other types of perturbations for the Hate Speech
and Offensive Language task. The best score for each perturbation is highlighted

Natural Language Inference

The results for character level perturbation in this task fall between Grammatical

Coherence and Hate Speech and Offensive Language in terms of kappa score:

Table 18. Cohen’s kappa scores for each model and character level perturbation type for the Natural

Language Inference task. The best score for each perturbation is highlighted

The scores are between 0.3 and 0.75, indicating substantial agreement, especially

when the inputs are perturbed only in 1%. Similar to HSOL, XLNet is more resilient to

perturbed inputs. The drop in kappa score for DistilBERT and ELECTRA is greater than

in Funnel Transformer.

Analysis and predicting the impact of text perturbations on NLP

42

Similar to the previous tasks, the type of relationship between the percentage of

perturbed characters and Cohen’s kappa is not clear, although it seems linear like in

Grammatical Coherence.

Figure 11. Cohen’s kappa coefficient for character level perturbations in the finetuned XLNet model on
the MNLI Corpus dataset. The value above the bars indicates the percentage of perturbed samples in the
dataset

The results for word level perturbations are the best ones so far, with values around

0.6 and 0.75. DistilBERT is the most fragile model, with ELECTRA being superior to

Funnel Transformer. XLNet is at the same level as ELECTRA.

Table 19. Cohen’s kappa scores for each model and word level perturbation type for the Natural
Language Inference task. The best score for each perturbation is highlighted

The same observations can be made for other types of perturbations. XLNet and

Funnel Transformer obtain similar kappas in all perturbations except Twitter, where

43

XLNet is superior. In the case of WordCase, the scores are better than in Grammatical

Coherence and HSOL.

Table 20. Cohen’s kappa scores for each model and other types of perturbations for the Natural
Language Inference task. The best score for each perturbation is highlighted

Sentiment Analysis

Table 21. Cohen’s kappa scores for each model and character level perturbation type for the Sentiment
Analysis task. The best score for each perturbation is highlighted

According to Table 21, Sentiment Analysis yields similar results to Hate Speech and

Offensive Language. There is a clear distinction, though, and that is the fact that there is

no clear dominant model: except DistilBERT, the other three models have a higher score

Analysis and predicting the impact of text perturbations on NLP

44

in certain perturbations, and it is not even consistent, since the best model for a

perturbation varies depending on the percentage of perturbed characters.

However, XLNet seems to be the best model when the degree of perturbation is high,

since it is the best model in all four character perturbations with a 10% of perturbed

characters. DistilBERT is in the other end, keeping similar scores when the degree of

perturbation is low, but failing to keep up when it is high. Figure 6 shows this, and it also

shows that the previously mentioned linear relationship is not that clear in this task.

Figure 12. Cohen’s kappa coefficient for character level perturbations in the finetuned DistilBERT model
on the SST2 dataset. The value above the bars indicates the percentage of perturbed samples in the

dataset.

The results for word level perturbations are different, though: Funnel Transformer is

much more robust than XLNet, independently of the percentage of perturbed words.

45

Table 22. Cohen’s kappa scores for each model and word level perturbation type for the Sentiment
Analysis task. The best score for each perturbation is highlighted

This is also the task where the proportion of perturbed samples in the dataset altered

with the Swap Synonym Word Embedding perturbation is the least, indicating that this

perturbation was not successful for the analysis: for instance, in this task the kappa

coefficient for all the models is 1 in that perturbation, indicating perfect agreement, which

is easy to achieve as barely any samples are being perturbed.

Regarding other perturbations, ELECTRA is again the model with the best scores,

although Funnel Transformer yields similar scores. Once again, DistilBERT is the most

sensitive model, but overall, except for the WordCase perturbation, the models are

capable of outputting consistent predictions.

Table 23. Cohen’s kappa scores for each model and other types of perturbations for Sentiment Analysis
task. The best score for each perturbation is highlighted

Analysis and predicting the impact of text perturbations on NLP

46

Semantic Similarity

Table 24. Cohen’s kappa scores for each model and character level perturbation type for the Semantic
Similarity task. The best score for each perturbation is highlighted

Semantic Similarity yields similar results as Natural Language Inference in terms of

Cohen’s kappa coefficient. However, the drop from a perturbation percentage of 1% to

5% is much greater than from 5% to 10%, contrary to all previous tasks. This is shown

in Figure 7.

XLNet is far superior than the rest of the models, surpassing Funnel Transformer (the

second best model) sometimes by 0.1 or even almost 0.2. ELECTRA is more robust than

DistilBERT when the degree of perturbation is low, but it quickly falls to more perturbed

inputs.

47

Figure 13. Cohen’s kappa coefficient for character level perturbations in the finetuned DistilBERT model
on the PAWS dataset. The value above the bars indicates the percentage of perturbed samples in the
dataset. Opposite to previous tasks, the bigger drop in kappa score is from 1% to 5% perturbation percentage

When talking about word level perturbations, PAWS is the only dataset where the

perturbation Swap Synonym Word Embedding has a significant proportion of perturbed

samples, and therefore greatly affects the level of agreement between the predictions of

the normal dataset and the perturbed dataset.

Table 25. Cohen’s kappa scores for each model and word level perturbation type for the Semantic
Similarity task. The best score for each perturbation is highlighted

Once again, XLNet obtains better scores, although in Swap Synonym Word

Embedding there is no difference in the percentage of perturbed words per sample. The

same tendency as with character level perturbations appears in Swap Synonym

Analysis and predicting the impact of text perturbations on NLP

48

WordNet, although the overall drop in kappa is not that high, with the biggest difference

being from 0.76 to 0.59 (-0.15) from DistilBERT.

The XLNet dominance breaks when analysing other perturbations, since ELECTRA

and Funnel Transformer obtain better scores in Punctuation, VerbTense and Twitter, as

shown in Table 26. The WordCase perturbation seems to affect DistilBERT much more

detrimentally than XLNet, which gets a Cohen’s kappa of 0.64, the highest value for the

model in any dataset perturbed with this type of perturbation. It looks like Semantic

Similarity deviates from the common patterns the previous NLP tasks showed.

Table 26. Cohen’s kappa scores for each model and other types of perturbations for the Semantic

Similarity task. The best score for each perturbation is highlighted

In summary, the different tasks provide different levels of agreement, with

Grammatical Coherence being the most disruptive one, yielding the lowest Cohen’s

kappa score of all five datasets, and Sentiment Analysis being the most consistent one

with high kappa values near to 0.9.

 XLNet is generally the most robust model, especially in character level perturbations

and challenging datasets like PAWS. However, ELECTRA and Funnel Transformer also

present high values when the datasets are perturbed with other types of perturbations,

such as TwitterType or Punctuation. DistilBERT seems to be more sensitive to perturbed

inputs, particularly when the percentage of perturbed characters or words is high.

49

4.2.3. Aggregated analysis

To provide a comprehensive analysis, this section presents aggregated calculations

that answer the three main objectives of this project, aligning with the three dimensions

studied: models, tasks, and perturbations. It is important to note that the score presented

in the following tables takes into account the proportion of perturbed samples in the

datasets. This approach prevents datasets with minimal perturbations, such as the

Contraction or Prejudice perturbations, from inflating the final scores.

Also, the WordCase perturbation was not employed to compute these totals, since,

as explained previously, DistilBERT and XLNet are highly affected by it due to their

tokenisation processes.

 The group of tables 27 shows the average kappa score per model, per NLP task and

per type of perturbation.

Table 27. From left to right, average kappa score per model, per NLP task and per perturbation

In concordance with the detailed analysis performed, the results indicate that XLNet

is the most robust of the four models evaluated, with an average kappa score of 0.487.

Funnel Transformer and ELECTRA follow behind close with 0.472 and 0.464,

respectively. Finally, DistilBERT is more sensitive to perturbed inputs, having a score of

0.445.

Regarding NLP tasks, Grammatical Coherence is by far the most challenging task to

the models, with a low 0.297, indicating a very low level of agreement. In contrast,

Sentiment Analysis and Hate Speech and Offensive Language have less impact on the

models, with scores of 0.536 and 0.564 respectively. Meanwhile, Semantic Similarity and

Natural Language Inference land in the middle with averages of 0.487 and 0.451.

 Finally, the results suggest that word-level perturbations are more detrimental to

language models than character-level or other types of perturbations, although the

difference in average kappa is not significant. The group of tables 28 shows the average

Analysis and predicting the impact of text perturbations on NLP

50

kappa values for character-level, word-level and other perturbations respectively.

Perturbations in red indicate that the proportion of perturbed samples in the dataset is

less than 50%.

Table 28. From left to right, average kappa score for character level, word level and other perturbations.
Values in red indicate that the mean proportion of perturbed samples in the dataset is less than 50%

However, it is worth noting that character-level perturbations were the most

challenging for the models when analysed in isolation and not as a group of

perturbations. The models produced more consistent outputs with inputs perturbed by

punctuation and Twitter. This finding seems to contradict the previous statement that

word-level perturbations have the greatest impact. Upon further investigation, this

discrepancy could be attributed to the fact that word-level and other types of

perturbations have lower scores due to less common perturbations, such as Contraction,

Prejudice and SwapNum for other perturbations, and Swap Synonym Word Embeddings

for word-level perturbations. Consequently, these anomalies lowered the average kappa

values for the corresponding perturbation types.

To address this issue, we removed unrepresentative perturbations and recalculated

the average kappa scores per perturbation type. The results are shown in Table 29,

which changes which type of perturbation has the most significant effect.

Table 29. Average kappa score per type of perturbation when non-represented perturbations are
removed

In summary, the results suggest that XLNet is the most robust model, while

Grammatical Coherence is the most challenging NLP task. Furthermore, while word-

51

level perturbations are generally more detrimental to language models, character-level

perturbations may be more difficult to analyse in isolation. Therefore, researchers and

developers should carefully consider the type of perturbation applied in their evaluation

strategy in order to obtain accurate evaluation results.

Analysis and predicting the impact of text perturbations on NLP

52

5. Conclusions

This works proves that Large Language Models, although powerful and able to remain

consistent in their predictions in some specific circumstances (like with some

perturbations such as adding punctuation marks, links or usernames), can still become

volatile when the input data is noisy or altered by some kind of natural perturbation.

This volatility is not the same in all models: XLNet is the more resilient one, being able

to achieve Cohen’s kappa values of 0.15 at worst and 0.9 at best. Funnel Transformer

and ELECTRA follow close, and the most affected model is DistilBERT.

One aspect to consider is that XLNet takes much more time to finetune than the other

models, so the advantage in robustness comes at the cost of time and energy resources.

In specific scenarios or concrete NLP tasks, a smaller model with almost similar results

like ELECTRA or Funnel Transformer could be a better choice.

Regarding NLP tasks, Grammatical Coherence is the most brittle one, achieving

average Cohen’s kappa values of 0.29. No model is able to achieve a score of 0.50 in

the CoLA corpus, especially with character level perturbations. This could be explained

by assuming that current LLMs overfit for this task, not fully understanding the

grammatical rules of a language and wildly changing their output if an insignificant

change like a typo occurs.

On the other hand, tasks with much broader goals such as the identification of

emotions (Sentiment Analysis) and the detection of strong negative emotions (Hate

Speech and Offensive Language) seem less affected by perturbations. Models finetuned

for these tasks understand the key components that help make a prediction, and

therefore are less volatile.

Tasks involving a logical reasoning of the language such as Semantic Similarity and

Natural Language Inference land somewhere in the middle, with values close to 0.48 in

some cases.

Perturbation-wise, and in agreement with (Moradi & Samwald, 2021) some character

level perturbations are more detrimental to the models’ robustness. The most natural

ones such as common spelling mistakes can lead to kappa scores of 0.4 and 0.5, even

when the sentence is highly perturbed (10% of characters are misspelled).

53

Miscellaneous perturbations vary in success: adding punctuation marks and links and

usernames similar to those found on Twitter do not have that much of an impact, with

models reaching high scores of 0.8 and 0.9. In contrast, the insertion of adverbs before

verbs and the capitalisation of letters makes the models less robust.

In conclusion, the different characteristics of each model provide a series of strengths

and weaknesses that help or detriment their robustness against different types of

perturbations: in some cases, they are able to maintain great levels of consistency in

their predictions, but most times Large Language Models succumb to reality of non-

curated, real world natural data.

Analysis and predicting the impact of text perturbations on NLP

54

6. Legacy and relationship with studies

This work has studied the robustness of modern Large Language Models in common

NLP tasks. As such, the findings can help model designers create architectures that

mitigate the impact of these perturbations.

All the results about the finetuning and the evaluation phase, as well as the code to

produce them can be found in this repository. The perturbed datasets are publicly

available and uploaded to HuggingFace in the username DaniFrame. The rest of

materials used in this report (such as tables, figures and additional information) are

provided in Annex I, II and III: Annex I is about the relationship of this project with the

Sustainable Development Goals (SDG); Annex II has additional information regarding

the datasets and the models; and Annex III contains all figures and tables regarding the

finetuning and evaluation phase.

Regarding the relationship between this work and the studies in the Degree of Data

Science, the main connection is clearly the discipline of Natural Language Processing,

which is one of the main subjects in the third year of the degree.

There are other parts of the studies that have significantly helped with the conception

and execution of this project: from the basics of programming in Python to the use of

Machine Learning and Deep Leaning libraries like transformers and PyTorch. There is

also a high degree of project methodology, organisation and planning achieved thanks

to the subjects of Project I, II and III. Overall, this project really relies on a varied set of

skills developed during the studies.

Furthermore, soft skills have also been necessary to successfully complete this

project. Even though practically all of them were applied to an extent, those that have

been put into practice to a higher extent were the following:

• CT 01 – Understanding and integration: the integration of two different

technologies (training of LLMs and creation of perturbations) through libraries

such as transformers, PyTorch and textflint is the heart of the implementation

of this project.

55

• CT 02 – Application and practical thinking: this work heavily relies on empirical

results derived from experiments, and as such the theoretical knowledge

obtained in the degree has been applied to various components such as the

finetuning of models or making sure the perturbations were being applied

correctly.

• CT 11 – Continuous learning: this project has demanded great adaptation

capabilities and the ability to continuously gain more knowledge: libraries such

as transformers and textflint were new to me and had to be learnt. Moreover,

the initial implementation of the finetuning phase was made using tensorflow,

another Deep Learning framework, but unsurpassable errors led to the change

to PyTorch.

Analysis and predicting the impact of text perturbations on NLP

56

7. Future work and improvements

Even though this word sheds light on the robustness of modern LLMs, there is still

much more room for improvement considering the limitations of time and resources

imposed by the nature of this Final Year Project.

One aspect to upgrade would be the finetuning phase: due to time constraints, only

two hyperparameters were optimised. Other options such as the batch size, different

regulations techniques such as L1 (Ranstam & Cook, 2018) and L2 (Hilt & Seegrist,

1977), the use of dropout, etc., given more time and better hardware, could have been

optimised. The use of cross validation could have also been beneficial.

This idea of “more and better” is also applicable to the perturbations: textflint has 20

general transformations (a subset of them were used in this project), but also has 60

task-specific transformations, including perturbations for Sentiment Analysis and Natural

Language Inference, that could be used to complete the analysis of this project.

Futures lines of development may also go in the direction of implementing this type of

perturbation robustness into the evaluation of new models. It would also be interesting

to analyse very powerful models with and without finetuning, such as the GPT family,

Bard or Palm, as they become available.

All this could be facilitated in two non-exclusive ways:

• Create a database of perturbed datasets, where different curated datasets and

their altered counterparts could be stored to be used as benchmarks for

different tasks. My repository at Hugging Face is a starting point.

• Upon creating a new model, create (or obtain from the database) a perturbed

dataset and evaluate the change in predictions or the model, yielding a similar

analysis as the one made in this work, but custom-made for that specific

model.

Finally, it would also be interesting to finetune models with perturbed datasets, to

determine if their robustness increases and analyse the tradeoff between performance

and robustness.

57

8. Acknowledgments

I would like to thank Jose Hernandez Orallo and Fernando Martínez Plumned for their

tutorship and guidance throughout the project, the final version of this work would have

been impossible without the.

I would also like to acknowledge the UPV Data Mining, Machine Intelligence and

Inductive Programming (DMIP) team, who gave me access to the computational

resources needed to accomplish this task.

Analysis and predicting the impact of text perturbations on NLP

58

9. Bibliography

Adel, H., Dahou, A., Mabrouk, A., Elsayed Abd Elaziz, M., Kayed, M., El-henawy, I., . . .

Ali, A. (2022, 01). Improving Crisis Events Detection Using DistilBERT with

Hunger Games Search Algorithm. Mathematics, 10, 447.

doi:10.3390/math10030447

Belinkov, Y., & Bisk, Y. (2018). Synthetic and Natural Noise Both Break Neural Machine

Translation.

Bengio, Y., Ducharme, R., & Vincent, P. (2000). A Neural Probabilistic Language Model.

(T. Leen, T. Dietterich, & V. Tresp, Eds.) Advances in neural information

processing systems, 13. Retrieved from

https://proceedings.neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b

5940d7d9a8fa4c-Paper.pdf

Brei, V. (2020, 1). Machine Learning in Marketing: Overview, Learning and Strategies,

Applications and Future Developments. Foundations and Trends ® in Marketing,

14(3), 173-236. doi:10.1561/1700000065

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., . . . others.

(2020). Language Models are Few-Shot Learners. Advances in neural

information processing systems, 1877-1901.

Burnell, R., Schellaert, W., Burden, J., Ullman, T. D., Martinez-Plumed, F., Tenenbaum,

J. B., . . . others. (2023). Rethink reporting of evaluation results in AI. Science,

380(6641), 136-138.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,

& Bengio, Y. (2014). Learning Phrase Representations using RNN Encoder-

Decoder for Statistical Machine Translation.

Clark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text

Enoders as Discriminators rather than Generators. In ICLR. Retrieved from

https://openreview.net/pdf?id=r1xMH1BtvB}

59

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and

psychological measurement, 20(1), 37-46.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V., & Salakhutdinov, R. (2019).

Transformer-XL: Attentive language models beyond a fixed-length context. arXiv

preprint arXiv:1901.02860.

Davidson, T., Warmsley, D., Macy, M., & Weber, I. (2017). Automated hate speech

detection and the problem of offensive language. Proceedings of the international

AAAI conference on web and social media, 11(1), 512-515.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding. In Proceedings of the

2019 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, Volume 1 (Long and

Short Papers) (pp. 4171-4186). Minneapolis, Minnesota: Association for

Compuational Linguistics. doi:10.18653/v1/N19-1423

Fellbaum, C. (1998). WordNet: An Electronic Lexical Database.

Hilt, D. E., & Seegrist, D. W. (1977). Ridge, a computer program for calculating ridge

regression estimates. 236, 10. Retrieved from

https://www.biodiversitylibrary.org/item/137258

Hochreiter, S., & Schmidhuber, J. (1997, 12). Long Short-term Memory. Neural

Computation, 9(8), 1735-1780. doi:10.1162/neco.1997.9.8.1735

Mikolov, T., Karafiát, M., Burget, L., Cernocký, J., & Khudanpur, S. (2010, 1). Recurrent

neural network based langauge model. Proceedings of the 11th Annual

Conference of the International Speech Communication Association,

INTERSPEECH 2010, 2, 1045-1048.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed

representations of words and phrases and their compositionality. Advances in

neural information processing systems, 26.

Moradi, M., & Samwald, M. (2021). Evaluating the Robustness of Neural Language

Models to Input Perturbations. Retrieved 3 2023

Analysis and predicting the impact of text perturbations on NLP

60

OpenAI. (2022, 11 30). Introducing ChatGPT. Retrieved from

https://openai.com/blog/chatgpt

OpenAI. (2023). GPT-4 Technical Report.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., . . . Lerer, A. (2017).

Automatic differentiation in PyTorch.

Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word

representation. Proceedings of the 2014 conference on empirical methods in

natural language processing (EMNLP), 1532-1543.

Rabiner, L., & Juang, B. (1986). An introduction to hidden Markov models. IEEE ASSP

Magazine, 3(1), 4-16. doi:10.1109/MASSP.1986.1165342

Ranstam, J., & Cook, J. A. (2018, 8). LASSO regression. British Journal of Surgery,

105(10), 1348-1348. doi:10.1002/bjs.10895

Reshamwala, A., Mishra, D. P., & Prajakta. (2013, 2). Review on Natural Languge

Processing. IRACST - Engineering Science and Technology: An International

Journal (ESTIJ), 3(1), 113-116.

Ribeiro, M. T., Wu, T., Guestrin, C., & Singh, S. (2020). Beyond Accuracy: Behavioral

Testing of NLP models with CheckList. In Proceedings of the 58th Annual

Meeting of the Association for Computational Linguistics (pp. 4092-4912).

Association for Computational Linguistics. doi:10.18653/v1/2020.acl-main.442

Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a distilled version of

BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A., & Potts, C. (2013,

10). Recursive Deep Models for Semantic Compositionality Over a Sentiment

Treebank. Proceedings of the 2013 Conference on Empirical Methods in Natural

Language Processing, 1631-1642. Retrieved from https://aclanthology.org/D13-

1170

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to Sequence Learning with

Neural Networks. Advances in neural information processing systems, 27.

61

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . .

Polosukhin, I. (2017). Attention Is All You Need. Advances in neural information

processing systems, 30.

Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E., & others. (2018). Deep

learning for computer vision: A brief review. Computation intelligence and

neuroscience, 2018.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., & Bowman, S. R. (2019). GLUE: A

Multi-Task Benchmark and Analysis Platform for Natural Language

Understanding.

Wang, X., Liu, Q., Gui, T., Zhang, Q., Zou, Y., Zhou, X., . . . others. (2021). Textflint:

Unified multilingual robustness evaluation toolkit for natural language processing.

Proceedings of the 59th Annual Meeting of the Association for Computational

Linguistics and the 11th International Joint Conference on Natural Language

Processing: System Demonstrations, 347-355.

Warstadt, A., Singh, A., & Bowman, S. R. (2018). Neural Network Acceptability

Judgments. arXiv preprint arXiv:1805.12471.

Williams, A., Nangia, N., & Bowman, S. (2018). A Broad-Coverage Challenge Corpus for

Sentence Understanding through Inference. In Proceedings of the 2018

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Volume 1 (Long Papers) (pp. 1112-

1122). New Orleans, Louisiana: Association for Computational Linguistics.

Retrieved from http://aclweb.org/anthology/N18-1101

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., . . . others. (2020).

HuggingFace's Transformers: State-of-the-art Natural Language Processing.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). XLNet:

Generalized Autoregressive Pretraining for Languge Understanding. Advances

in neural information processing systems, 32.

Yu, K.-H., Beam, A. L., & Kohane, I. S. (2018). Artificial intelligence in healthcare. Natura

biomeical engineering, 2(10), 719-731.

Analysis and predicting the impact of text perturbations on NLP

62

Zeng, G., Qi, F., Shou, Q., Zhang, T., Ma, Z., Hou, B., . . . Sun, M. (2021, 8). OpenAttack:

An Open-source Textual Adversarial Attack Toolkit. In Proceedings of the 59th

Annual Meeting of the Association for Computational Linguistics and the 11th

International Joint Conference on Natural Language Processing: System

Demonstrations (pp. 363-371). Association for Computational Linguistics.

doi:10.18653/v1/2021.acl-demo.43

Zhang, S., Yu, H., & Zhu, G. (2021, 10). An emotional Classification method of Chinese

short comment text based on ELECTRA. Connection Science, 34, 1-20.

doi:10.1080/09540091.2021.1985968

Zhang, Y., Baldridge, J., & He, L. (2019). PAWS: Paraphrase Adversaries from Word

Scrambling. arXiv preprint arXiv:1904.01130.

Zihang, D., Guokun, L., Yiming, Y., & Quoc, V. L. (2020). Funnel-Transformer: Filtering

out Sequential Redundancy for Efficient Language Processing. Advances in

neural information processing systems, 4271-4282.

1

ANNEX I. Sustainment Development
Goals

Table 1. Project relationship with the Sustainable Development Goals

High Medium Low
Not

applicable

SGD 1. No poverty X

SDG 2. Zero hunger X

SDG 3. Good health and well-being X

SDG 4. Quality education X

SDG 5. Gender equality X

SDG 6. Clean water and sanitation X

SDG 7. Affordable and clean energy X

SDG 8. Decent work and economic growth X

SDG 9. Industry, Innovation and Infrastructure X

SDG 10. Reduce inequality X

SDG 11. Sustainable cities and communities X

SDG 12. Responsible consumption and production X

SDG 13. Climate action X

SDG 14. Life below water X

SDG 15. Life on land X

SDG 16. Piece, justice and strong institutions X

SDG 17. Partnership for the goals X

Sustainable Development Goals

2

Reflection on the relationship of the TFG with the SDGs and with
the most related SDG(s):

This project is made as an End of Degree Project in the UPV Data Science Degree.

As such, the most related SDG is definitely SDG 9: Industry, Innovation and

Infrastructure.

SDG 9 aims to promote inclusive and sustainable industrialisation, foster

innovation, and enhance infrastructure. In the context of the project, evaluating the

robustness of NLP models helps advance technological innovation by identifying areas

where these models can be strengthened and made more reliable. The findings can help

in the design of more efficient and robust models. More powerful and exact tools are

essential to the economic growth of countries, specially in this modern era of information

and technology where institutions and companies aim to be more digitalised.

Moreover, unstructured data such as text is difficult to analyse and exploit, so this

work gives a general direction on how to improve the way we look at this kind of data.

The project also has connections to several other SDGs. It relates to SDG 5:

Gender Equality, as it contributes to the understanding of potential biases and

discriminatory patterns that might exist in NLP models. This is evaluated via a

perturbation called “Prejudice”, that changes masculine names to feminine ones and vice

versa.

NLP models often learn from existing language data, and even though most

datasets are curated and pre-analysed before being used for training, societal biases

can still exist. By evaluating the robustness of these models, researchers can uncover

and address biases related to gender. This research can ultimately contribute to

promoting gender equality, inclusivity, and non-discrimination in the use of AI

technologies. For this exact reason, this work is also related SDG 10: Reduced

Inequalities.

Finally, this project is also relevant to SDG 16: Peace, Justice, and Strong

Institutions. By identifying vulnerabilities and potential biases in these models, the

research helps build stronger institutions that make fair and unbiased decisions. NLP

models are increasingly used in various domains, including legal systems, governance,

and access to justice. Ensuring that these models are robust and reliable is crucial for

maintaining transparency, accountability, and fairness in decision-making processes.

Furthermore, there are concrete cases where the use of large language models can be

3

used in underdeveloped countries, where LLMs are not trained with their original

languages due to the lack of data. If the population has basic knowledge of English, and

therefore are prone to make mistakes, these models could still assist the population

without losing its exactness, becoming another tool to mitigate the impact of inequalities

and promote piece.

In summary, while primarily related to SDG 9: Industry, Innovation, and

Infrastructure, this End of Degree Project also has significant connections to SDGs 5,

10, and 16. By addressing gender equality, reduced inequalities, and the promotion of

peace, justice, and strong institutions, the research contributes to a more inclusive and

sustainable development. It highlights the importance of improving the reliability and

fairness of AI technologies, while also fostering innovation and ensuring their responsible

use for the benefit of all individuals and communities.

1

ANNEX II. Models and datasets

LIST OF TABLES
Table 1. DistilBERT for sequence classification parameters _____________________________________ 1
Table 2. ELECTRA for sequence classification parameters ______________________________________ 2
Table 3. Funnel Transformer for sequence classification parameters _____________________________ 3
Table 4. XLNet for sequence classification parameters ___ 4

Models

DistilBERT

Table 1. DistilBERT for sequence classification parameters

Parameter Value

_name_or_path distilbert-base-cased

activation gelu

architectures DistilBertForSequenceClassification

attention_dropout 0.1

dim 768

dropout 0.1

hidden_dim 3072

initializer_range 0.02

max_possition_embeddings 512

model_type distilbert

n_heads 12

n_layers 6

output_past true

pad_toke_id 0

problem_type single_label_classification

qa_dropout 0.1

seq_classif_dropout 0.2

sinusoidal_pos_embs false

tie_wieights true

torch_dtype float32

transformers_version 4.29.2

vocab_size 28996

2

ELECTRA

Table 2. ELECTRA for sequence classification parameters

Parameter Value

_name_or_path google/electra-base-discriminator

architectures ELECTRAForSequenceClassification

attention_probs_dropout_prob 0.1

classifier_dropout NULL

embedding_size 768

hidden_act gelu

hidden_dropout_prob 0.1

hidden_size 768

initializer_range 0.02

intermediate_size 3072

layer_norm_eps 1.00E-12

max_position_embeddings 512

model_type electra

num_attention_heads 12

num_hidden_layers 12

pad_token_id 0

position_embedding_type absolute

problem_type single_label_classification

summary_activation gelu

summary_last_dropout 0.1

summary_type first

summary_use_proj true

torch_dtype float32

transformers_version 4.29.2

type_vocab_size 2

use_cache true

vocab_size 30522

3

Funnel Transformer

Table 3. Funnel Transformer for sequence classification parameters

4

XLNet

Table 4. XLNet for sequence classification parameters

Parameter Value

_name_or_path xlnet-base-casedd

architectures XLNetForSequenceClassification

attn_type bi

bi_data false

bos_token_id 1

clamp_len -1

d_head 64

d_inner 3072

d_model 768

dropout 0.1

end_n_top 5.00E+00

eos_token_id 2

ff_activation gelu

initializer_range 0.02

layer_norm_eps 1.00E-12

model_type xlnet

mem_len NULL

n_head 12

n_layer 12

pad_token_id 5

problem_type single_label_classification

reuse_len NULL

same_length false

start_n_top 5

summary_activation tanh

summary_last_dropout 0.1

summary_type last

summary_use_proj true

torch_dtype float32

transformers_version 4.29.2

untie_r true

use_mems_eval true

use_mem_train false

vocab_size 32000

5

Datasets

CoLA

Nº of samples per split:

- Train: 8851

- Validation: 1043

- Test: 1063

Class distribution per split:

- Train: 30% Class 0, 70 % Class 1

- Validation: 30% Class 0, 70 % Class 1

- Test: labels unknown

Hate speech offensive

Nº of samples per split:

- Train: 24783 -> Needs train-val-test partition

Class distribution per split:

- Train: 6% Class 0, 77% Class 1, 17% Class 2

MNLI

Nº of samples per split

- Train: 392702 (subsampling needed)

- Validation_matched: 9815

- Test_matched: 9796

Class distribution per split

- Train: 33% Class 0, 33% Class 1, 33% Class 2

- Validation_matched: 35% Class 0, 32% Class 1, 33% Class 2

- Test_matched: labels unknown

6

SST2

Nº of samples per split

- Train: 67349 (subsampling needed)

- Validation: 827

- Test: 1281

Class distribution per split

- Train: 44% Class 0, 56% Class 1

- Validation: 49% Class 0, 51% Class 1

- Test: labels unknown

PAWS

Nº of samples per split:

- Train: 49401 (subsampling needed)

- Validation: 8000

- Test: 8000

Class distribution per split:

- Train: 56% Class 0, 44% Class 1

- Validation: 56 % Class 0, 44% Class 1

- Test: 56 % Class 0, 44% Class 1

1

ANNEX III. Figures and tables

Contents
Figures ... 4

Example of distribution shift ... 4

Attention matrix .. 4

Models ... 5

Evaluation .. 7

Character level perturbations ... 7

Word level perturbations .. 17

Other perturbations .. 27

Tables ... 37

Methodology ... 37

Finetuning ... 40

Detailed evaluation ... 41

Character level perturbations ... 41

Word level perturbations .. 43

Other perturbations .. 45

Aggregated evaluation .. 47

LIST OF FIGURES
Figure 1. Example of distribution shifts ___ 4
Figure 2. Visual representation of attention and self-attention __________________________________ 4
Figure 3. The DistilBERT model and its components ___ 5
Figure 4. The ELECTRA model and its components __ 5
Figure 5. The XLNet model and its components __ 6
Figure 6. The funnel transformer model and its components ___________________________________ 6
Figure 7. Confusion matrix to explain the computation of the Kappa Cohen’s score _________________ 6
Figure 8. Cohen’s kappa evaluation for character level perturbations of DistilBERT in GC _____________ 7
Figure 9. Cohen’s kappa evaluation for character level perturbations of ELECTRA in GC ______________ 7
Figure 10. Cohen’s kappa evaluation for character level perturbations of Funnel Transformer in GC ____ 8
Figure 11. Cohen’s kappa evaluation for character level perturbations of XLNet in GC _______________ 8
Figure 12. Cohen’s kappa evaluation for character level perturbations of DistilBERT in HSOL __________ 9
Figure 13. Cohen’s kappa evaluation for character level perturbations of ELECTRA in HSOL ___________ 9
Figure 14. Cohen’s kappa evaluation for character level perturbations of Funnel Transformer in HSOL _ 10
Figure 15. Cohen’s kappa evaluation for character level perturbations of XLNet in HSOL ____________ 10
Figure 16. Cohen’s kappa evaluation for character level perturbations of DistilBERT in NLI ___________ 11
Figure 17. Cohen’s kappa evaluation for character level perturbations of ELECTRA in NLI ____________ 11
Figure 18. Cohen’s kappa evaluation for character level perturbations of Funnel Transformer in NLI ___ 12

2

Figure 19. Cohen’s kappa evaluation for character level perturbations of XLNet in NLI ______________ 12
Figure 20. Cohen’s kappa evaluation for character level perturbations of DistilBERT in SA ___________ 13
Figure 21. Cohen’s kappa evaluation for character level perturbations of ELECTRA in SA ____________ 13
Figure 22. Cohen’s kappa evaluation for character level perturbations of Funnel Transformer in SA ___ 14
Figure 23. Cohen’s kappa evaluation for character level perturbations of XLNet in SA _______________ 14
Figure 24. Cohen’s kappa evaluation for character level perturbations of DistilBERT in SS ___________ 15
Figure 25. Cohen’s kappa evaluation for character level perturbations of ELECTRA in SS _____________ 15
Figure 26. Cohen’s kappa evaluation for character level perturbations of Funnel Transformer in SS n __ 16
Figure 27. Cohen’s kappa evaluation for character level perturbations of XLNet in SS _______________ 16
Figure 28. Cohen’s kappa evaluation for word level perturbations of DistilBERT in GC _______________ 17
Figure 29. Cohen’s kappa evaluation for word level perturbations of ELECTRA in GC ________________ 17
Figure 30. Cohen’s kappa evaluation for word level perturbations of Funnel Transformer in GC _______ 18
Figure 31. Cohen’s kappa evaluation for word level perturbations of XLNet in GC __________________ 18
Figure 32. Cohen’s kappa evaluation for word level perturbations of DistilBERT in HSOL _____________ 19
Figure 33. Cohen’s kappa evaluation for word level perturbations of ELECTRA in HSOL ______________ 19
Figure 34. Cohen’s kappa evaluation for word level perturbations of Funnel Transformer in HSOL _____ 20
Figure 35. Cohen’s kappa evaluation for word level perturbations of XLNet in HSOL ________________ 20
Figure 36. Cohen’s kappa evaluation for word level perturbations of DistilBERT in NLI ______________ 21
Figure 37. Cohen’s kappa evaluation for word level perturbations of ELECTRA in NLI _______________ 21
Figure 38. Cohen’s kappa evaluation for word level perturbations of Funnel Transformer in NLI ______ 22
Figure 39. Cohen’s kappa evaluation for word level perturbations of XLNet in NLI __________________ 22
Figure 40. Cohen’s kappa evaluation for word level perturbations of DistilBERT in SA _______________ 23
Figure 41. Cohen’s kappa evaluation for word level perturbations of ELECTRA in SA ________________ 23
Figure 42. Cohen’s kappa evaluation for word level perturbations of Funnel Transformer in SA _______ 24
Figure 43. Cohen’s kappa evaluation for word level perturbations of XLNet in SA __________________ 24
Figure 44. Cohen’s kappa evaluation for word level perturbations of DistilBERT in SS _______________ 25
Figure 45. Cohen’s kappa evaluation for word level perturbations of ELECTRA in SS ________________ 25
Figure 46. Cohen’s kappa evaluation for word level perturbations of Funnel Transformer in SS _______ 26
Figure 47. Cohen’s kappa evaluation for word level perturbations of XLNet in SS __________________ 26
Figure 48. Cohen’s kappa evaluation for other perturbations of DistilBERT in GC ___________________ 27
Figure 49. Cohen’s kappa evaluation for other perturbations of ELECTRA in GC ____________________ 27
Figure 50. Cohen’s kappa evaluation for other perturbations of Funnel Transformer in GC ___________ 28
Figure 51. Cohen’s kappa evaluation for other perturbations of XLNet in GC ______________________ 28
Figure 52. Cohen’s kappa evaluation for other perturbations of DistilBERT in HSOL n _______________ 29
Figure 53. Cohen’s kappa evaluation for other perturbations of ELECTRA in HSOL __________________ 29
Figure 54. Cohen’s kappa evaluation for other perturbations of Funnel Transformer in HSOL _________ 30
Figure 55. Cohen’s kappa evaluation for other perturbations of XLNet in HSOL ____________________ 30
Figure 56. Cohen’s kappa evaluation for other perturbations of DistilBERT in NLI __________________ 31
Figure 57. Cohen’s kappa evaluation for other perturbations of ELECTRA in NLI ___________________ 31
Figure 58. Cohen’s kappa evaluation for other perturbations of Funnel Transformer in NLI __________ 32
Figure 59. Cohen’s kappa evaluation for other perturbations of XLNet in NLI ______________________ 32
Figure 60. Cohen’s kappa evaluation for other perturbations of DistilBERT in SA ___________________ 33
Figure 61. Cohen’s kappa evaluation for other perturbations of ELECTRA in SA ____________________ 33
Figure 62. Cohen’s kappa evaluation for other perturbations of Funnel Transformer in SA ___________ 34
Figure 63. Cohen’s kappa evaluation for other perturbations of XLNet in SA ______________________ 34
Figure 64. Cohen’s kappa evaluation for other perturbations of DistilBERT in SS ___________________ 35
Figure 65. Cohen’s kappa evaluation for other perturbations of ELECTRA in SS ____________________ 35
Figure 66. Cohen’s kappa evaluation for other perturbations of Funnel Transformer in SS ___________ 36
Figure 67. Cohen’s kappa evaluation for other perturbations of XLNet in SS ______________________ 36

3

LIST OF TABLES
Table 1. Summary of the characteristics of the four models employed: DistilBERT, ELECTRA, XLNet and

Funnel Transformer ___ 37
Table 2. Examples for the SST2 dataset with their corresponding label ___________________________ 37
Table 3. Examples for the CoLA dataset with their corresponding label __________________________ 37
Table 4. Examples of the PAWS dataset with their corresponding label __________________________ 38
Table 5. Examples of the MNLI Corpus dataset with their corresponding label _____________________ 38
Table 6. Examples of the HSOL dataset with their corresponding label ___________________________ 38
Table 7. Summary of the five datasets used: CoLA, HSO, MNLI, SST2 and PAWS ____________________ 39
Table 8. Summary of the perturbations used with a short example ______________________________ 39
Table 9. Hyperparameters employed in the finetuning phase __________________________________ 40
Table 10. Example of the finetuning scores for DistilBERT in GC ________________________________ 40
Table 11. Best combination of hyperparemeters __ 40
Table 12. Cohen’s kappa scores for character level perturbations in GC __________________________ 41
Table 13. Cohen’s kappa scores for character level perturbations in HSOL ________________________ 41
Table 14. Cohen’s kappa scores for character level perturbations in NLI __________________________ 42
Table 15. Cohen’s kappa scores for character level perturbations in SA __________________________ 42
Table 16. Cohen’s kappa scores for character level perturbations in SS ___________________________ 42
Table 17. Cohen’s kappa scores for word level perturbations in GC ______________________________ 43
Table 18. Cohen’s kappa scores for word level perturbations in HSOL ____________________________ 43
Table 19. Cohen’s kappa scores for word level perturbations in NLI _____________________________ 43
Table 20. Cohen’s kappa scores for word level perturbations in SA ______________________________ 44
Table 21. Cohen’s kappa scores for word level perturbations in SS ______________________________ 44
Table 22. Cohen’s kappa scores for other perturbations in GC __________________________________ 45
Table 23. Cohen’s kappa scores for other perturbations in HSOL ________________________________ 45
Table 24. Cohen’s kappa scores for other perturbations in NLI _________________________________ 46
Table 25. Cohen’s kappa scores for other perturbations in SA __________________________________ 46
Table 26. Cohen’s kappa scores for other perturbations in SS __________________________________ 46
Table 27. Average kappa score per model __ 47
Table 28. Average kappa score per NLP task __ 47
Table 29. Average kappa score per perturbation type __ 47
Table 30. Average kappa score per character perturbation ____________________________________ 47
Table 31. Average kappa score per word perturbation __ 47
Table 32. Average kappa score per other type of perturbation _________________________________ 48
Table 33. Average kappa score per perturbation type when non-represented perturbations are removed

 ___ 48

4

Figures

Example of distribution shift

Figure 1. Example of distribution shifts

Attention matrix

Figure 2. On the left, visual representation of self-attention. On the right, visual representation of attention. Attention
matrixes help visualise syntactic relationships, such as the dependency of the subject ("el chico") and their passive
mention ("con él")

5

Models

Figure 3. The DistilBERT model and its components. Source: (Adel, et al., 2022)

Figure 4. The ELECTRA model and its components. Source: (Zhang, Yu, & Zhu, 2021)

6

Figure 5. The XLNet model and its components. Source: (Yang, et al., 2019)

Figure 6. The funnel transformer model and its components. Source: (Zihang, Guokun, Yiming, & Quoc, 2020)

Figure 7. Confusion matrix to explain the computation of the Kappa Cohen’s score

7

Evaluation

Character level perturbations

Figure 8. Cohen’s kappa values for character level perturbations per perturbation percentage using DistilBERT in the
Grammatical Coherence task. The values above the bars show the proportion of perturbed samples for that given
perturbation

Figure 9. Cohen’s kappa values for character level perturbations per perturbation percentage using ELECTRA in the
Grammatical Coherence task. The values above the bars show the proportion of perturbed samples for that given
perturbation

8

Figure 10. Cohen’s kappa values for character level perturbations per perturbation percentage using Funnel
Transformer in the Grammatical Coherence task. The values above the bars show the proportion of perturbed samples
for that given perturbation

Figure 11. Cohen’s kappa values for character level perturbations per perturbation percentage using XLNet in the
Grammatical Coherence task. The values above the bars show the proportion of perturbed samples for that given
perturbation

9

Figure 12. Cohen’s kappa values for character level perturbations per perturbation percentage using DistilBERT in the
Hate Speech and Offensive Language task. The values above the bars show the proportion of perturbed samples for
that given perturbation

Figure 13. Cohen’s kappa values for character level perturbations per perturbation percentage using ELECTRA in the
Hate Speech and Offensive Language task. The values above the bars show the proportion of perturbed samples for
that given perturbation

10

Figure 14. Cohen’s kappa values for character level perturbations per perturbation percentage using Funnel
Transformer in the Hate Speech and Offensive Language task. The values above the bars show the proportion of
perturbed samples for that given perturbation

Figure 15. Cohen’s kappa values for character level perturbations per perturbation percentage using XLNet in the Hate
Speech and Offensive Language task. The values above the bars show the proportion of perturbed samples for that
given perturbation

11

Figure 16. Cohen’s kappa values for character level perturbations per perturbation percentage using DistilBERT in the
Natural Language Inference task. The values above the bars show the proportion of perturbed samples for that given
perturbation

Figure 17. Cohen’s kappa values for character level perturbations per perturbation percentage using ELECTRA in the
Natural Language Inference task. The values above the bars show the proportion of perturbed samples for that given
perturbation

12

Figure 18. Cohen’s kappa values for character level perturbations per perturbation percentage using Funnel
Transformer in the Natural Language Inference task. The values above the bars show the proportion of perturbed
samples for that given perturbation

Figure 19. Cohen’s kappa values for character level perturbations per perturbation percentage using XLNet in the
Natural Language Inference task. The values above the bars show the proportion of perturbed samples for that given
perturbation

13

Figure 20. Cohen’s kappa values for character level perturbations per perturbation percentage using DistilBERT in the
Sentiment Analysis task. The values above the bars show the proportion of perturbed samples for that given
perturbation

Figure 21. Cohen’s kappa values for character level perturbations per perturbation percentage using ELECTRA in the
Natural Language Inference task. The values above the bars show the proportion of perturbed samples for that given
perturbation

14

Figure 22. Cohen’s kappa values for character level perturbations per perturbation percentage using Funnel
Transformer in the Natural Language Inference task. The values above the bars show the proportion of perturbed
samples for that given perturbation

Figure 23. Cohen’s kappa values for character level perturbations per perturbation percentage using XLNet in the
Sentiment Analysis task. The values above the bars show the proportion of perturbed samples for that given
perturbation

15

Figure 24. Cohen’s kappa values for character level perturbations per perturbation percentage using DistilBERT in the
Semantic Similarity task. The values above the bars show the proportion of perturbed samples for that given
perturbation

Figure 25. Cohen’s kappa values for character level perturbations per perturbation percentage using ELECTRA in the
Semantic Similarity task. The values above the bars show the proportion of perturbed samples for that given
perturbation

16

Figure 26. Cohen’s kappa values for character level perturbations per perturbation percentage using Funnel
Transformer in the Semantic Similarity task. The values above the bars show the proportion of perturbed samples for
that given perturbation

Figure 27. Cohen’s kappa values for character level perturbations per perturbation percentage using XLNet in the
Semantic Similarity task. The values above the bars show the proportion of perturbed samples for that given
perturbation

17

Word level perturbations

Figure 28. Cohen’s kappa values for word level perturbations per perturbation percentage using DistilBERT in the
Grammatical Coherence task. The values above the bars show the proportion of perturbed samples for that given
perturbation

Figure 29. Cohen’s kappa values for word level perturbations per perturbation percentage using ELECTRA in the
Grammatical Coherence task. The values above the bars show the proportion of perturbed samples for that given
perturbation

18

Figure 30. Cohen’s kappa values for word level perturbations per perturbation percentage using Funnel Transformer in
the Grammatical Coherence task. The values above the bars show the proportion of perturbed samples for that given
perturbation

Figure 31. Cohen’s kappa values for word level perturbations per perturbation percentage using XLNet in the
Grammatical Coherence task. The values above the bars show the proportion of perturbed samples for that given
perturbation

19

Figure 32. Cohen’s kappa values for word level perturbations per perturbation percentage using DistilBERT in the Hate
Speech and Offensive Language task. The values above the bars show the proportion of perturbed samples for that
given perturbation

Figure 33. Cohen’s kappa values for word level perturbations per perturbation percentage using ELECTRA in the Hate
Speech and Offensive Language task. The values above the bars show the proportion of perturbed samples for that
given perturbation

20

Figure 34. Cohen’s kappa values for word level perturbations per perturbation percentage using Funnel Transformer in
the Hate Speech and Offensive Language task. The values above the bars show the proportion of perturbed samples
for that given perturbation

Figure 35. Cohen’s kappa values for word level perturbations per perturbation percentage using XLNet in the Hate
Speech and Offensive Language task. The values above the bars show the proportion of perturbed samples for that
given perturbation

21

Figure 36. Cohen’s kappa values for word level perturbations per perturbation percentage using DistilBERT in the
Natural Language Inference task. The values above the bars show the proportion of perturbed samples for that given
perturbation

Figure 37. Cohen’s kappa values for word level perturbations per perturbation percentage using ELECTRA in the Natural
Language Inference task. The values above the bars show the proportion of perturbed samples for that given
perturbation

22

Figure 38. Cohen’s kappa values for word level perturbations per perturbation percentage using Funnel Transformer in
the Natural Language Inference task. The values above the bars show the proportion of perturbed samples for that
given perturbation

Figure 39. Cohen’s kappa values for word level perturbations per perturbation percentage using XLNet in the Natural
Language Inference task. The values above the bars show the proportion of perturbed samples for that given
perturbation

23

Figure 40. Cohen’s kappa values for word level perturbations per perturbation percentage using DistilBERT in the
Sentiment Analysis task. The values above the bars show the proportion of perturbed samples for that given
perturbation

Figure 41. Cohen’s kappa values for word level perturbations per perturbation percentage using ELECTRA in the
Sentiment Analysis task. The values above the bars show the proportion of perturbed samples for that given
perturbation

24

Figure 42. Cohen’s kappa values for word level perturbations per perturbation percentage using Funnel Transformer in
the Sentiment Analysis task. The values above the bars show the proportion of perturbed samples for that given
perturbation

Figure 43. Cohen’s kappa values for word level perturbations per perturbation percentage using XLNet in the Sentiment
Analysis task. The values above the bars show the proportion of perturbed samples for that given perturbation

25

Figure 44. Cohen’s kappa values for word level perturbations per perturbation percentage using DistilBERT in the
Semantic Similarity task. The values above the bars show the proportion of perturbed samples for that given
perturbation

Figure 45. Cohen’s kappa values for word level perturbations per perturbation percentage using ELECTRA in the
Semantic Similarity task. The values above the bars show the proportion of perturbed samples for that given
perturbation

26

Figure 46. Cohen’s kappa values for word level perturbations per perturbation percentage using Funnel Transformer in
the Semantic Similarity task. The values above the bars show the proportion of perturbed samples for that given
perturbation

Figure 47. Cohen’s kappa values for word level perturbations per perturbation percentage using XLNet in the Semantic
Similarity task. The values above the bars show the proportion of perturbed samples for that given perturbation

27

Other perturbations

Figure 48. Cohen’s kappa values for other perturbations per perturbation percentage using DistilBERT in the
Grammatical Coherence task. The values above the bars show the proportion of perturbed samples for that given
perturbation

Figure 49. Cohen’s kappa values for other perturbations per perturbation percentage using ELECTRA in the
Grammatical Coherence task. The values above the bars show the proportion of perturbed samples for that given
perturbation

28

Figure 50. Cohen’s kappa values for other perturbations per perturbation percentage using Funnel Transformer in the
Grammatical Coherence task. The values above the bars show the proportion of perturbed samples for that given
perturbation

Figure 51. Cohen’s kappa values for other perturbations per perturbation percentage using Funnel Transformer in the
Grammatical Coherence task. The values above the bars show the proportion of perturbed samples for that given
perturbation

29

Figure 52. Cohen’s kappa values for other perturbations per perturbation percentage using DistilBERT in the Hate
Speech and Offensive Language task. The values above the bars show the proportion of perturbed samples for that
given perturbation

Figure 53. Cohen’s kappa values for other perturbations per perturbation percentage using ELECTRA in the Hate Speech
and Offensive Language task. The values above the bars show the proportion of perturbed samples for that given
perturbation

30

Figure 54. Cohen’s kappa values for other perturbations per perturbation percentage using Funnel Tramsformer in the
Hate Speech and Offensive Language task. The values above the bars show the proportion of perturbed samples for
that given perturbation

Figure 55. Cohen’s kappa values for other perturbations per perturbation percentage using XLNet in the Hate Speech
and Offensive Language task. The values above the bars show the proportion of perturbed samples for that given
perturbation

31

Figure 56. Cohen’s kappa values for other perturbations per perturbation percentage using DistilBERT in the Natural
Language Inference task. The values above the bars show the proportion of perturbed samples for that given
perturbation

Figure 57. Cohen’s kappa values for other perturbations per perturbation percentage using ELECTRA in the Natural
Language Inference task. The values above the bars show the proportion of perturbed samples for that given
perturbation

32

Figure 58. Cohen’s kappa values for other perturbations per perturbation percentage using Funnel Transformer in the
Natural Language Inference task. The values above the bars show the proportion of perturbed samples for that given
perturbation

Figure 59. Cohen’s kappa values for other perturbations per perturbation percentage using XLNet in the Natural
Language Inference task. The values above the bars show the proportion of perturbed samples for that given
perturbation

33

Figure 60. Cohen’s kappa values for other perturbations per perturbation percentage using DistilBERT in the Sentiment
Analysis task. The values above the bars show the proportion of perturbed samples for that given perturbation

Figure 61. Cohen’s kappa values for other perturbations per perturbation percentage using ELECTRA in the Sentiment
Analysis task. The values above the bars show the proportion of perturbed samples for that given perturbation

34

Figure 62. Cohen’s kappa values for other perturbations per perturbation percentage using Funnel Transformer in the
Sentiment Analysis task. The values above the bars show the proportion of perturbed samples for that given
perturbation

Figure 63. Cohen’s kappa values for other perturbations per perturbation percentage using XLNet in the Sentiment
Analysis task. The values above the bars show the proportion of perturbed samples for that given perturbation

35

Figure 64. Cohen’s kappa values for other perturbations per perturbation percentage using DistilBERT in the Semantic
Similarity task. The values above the bars show the proportion of perturbed samples for that given perturbation

Figure 65. Cohen’s kappa values for other perturbations per perturbation percentage using ELECTRA in the Semantic
Similarity task. The values above the bars show the proportion of perturbed samples for that given perturbation

36

Figure 66. Cohen’s kappa values for other perturbations per perturbation percentage using Funnel Transformer in the
Semantic Similarity task. The values above the bars show the proportion of perturbed samples for that given
perturbation

Figure 67. Cohen’s kappa values for other perturbations per perturbation percentage using XLNet in the Semantic
Similarity task. The values above the bars show the proportion of perturbed samples for that given perturbation

37

Tables

Methodology

Table 1. Summary of the characteristics of the four models employed: DistilBERT, ELECTRA, XLNet and Funnel
Transformer

Table 2. Examples for the Stanford Sentiment Treebank with their corresponding label

Table 3. Examples for the Corpus of Linguistic Acceptability with their corresponding label

Sentence Label

cold movie 0 (negative)

with his usual intelligence and subtlety 1 (positive)

will find little of interest in this film, which is

often preachy and poorly acted
0 (negative)

a $ 40 million version of a game 0 (negative)

gorgeous and deceptively minimalist 1 (positive)

38

Table 4. Examples of the Paraphrase Adversaries from Word Scrambling dataset with their corresponding label

Table 5. Examples of the Multi-Genre Natural Language Inference Corpus dataset with their corresponding label

Table 6. Examples of the Hate Speech and Offensive Language dataset with their corresponding label

39

Table 7. Summary of the five datasets used: CoLA, HSO, MNLI, SST2 and PAWS

Table 8. Summary of the perturbations used with a short example

Dataset NLP Task Size Nº labels

Train: 8 550 sentences

Validation: 1 040 sentences

Test: 1 060 sentences

Train: 13 878 tweets

Validation: 5 948 tweets

Test: 4 957 tweets

Train: 15 000 pairs of senteces

Validation: 9 820 pairs of sentences

Test: 9800 pairs of sentences

Train: 15 000 sentences

Validation: 872 sentences

Test: 1820 sentences

Train: 15 000 pairs of senteces

Validation: 8 000 pairs of sentences

Test: 8 000 paris of sentences

SST2 Sentiment Analysis

PAWS Semantic Similarity

2

3

3

2

2

Grammatical

Acceptability

Hate Speech and

Offensive Language

Natural Language

Inference

CoLA

HSOL

MNLI

Level Perturbation Original Perturbed

Keyboard hand hanf

Ocr hello hellu

SpellingError achieve acheive

Typos random andom

SwapSynWordEmbedding It is nothing but a caricature It is nothing but an imitation

SwapSynWordNet I'd like some pie, please I'd like some cake, please

Contraction They are coming, run! They're coming, run!

InsertAdv He jumped the fence He quickly jumped the fence

Prejudice I'm moving to Canada next month I'm moving to Morocco next month

Punctuation The film was quite good The film was quite good!

SwapNum 3 people attended the meeting 15 people attended the metting

VerbTense He started slow but ended up winning He starts slow but ends up winning

Twitter Good premise, bad ending Good premise, bad ending @username789

WordCase I'm not angry, not at all I'M NOT ANGRY, NOT AT ALL

Character

Word

Other

40

Finetuning

Table 9. Hyperparameters employed in the finetuning phase. The only two who take various values are the initial
learning rate and the number of epochs

Table 10. Example of the scores obtained for the finetuning phase in the case of the DistilBERT model in the
Grammatical Coherence task. The highest score (optimal combination of hyperparameters) is highlighted

Table 11. Best number of epochs (left) and initial learning rate (right) for each combination of model and NLP task

41

Detailed evaluation

Character level perturbations

Table 12. Scores for each model and character level perturbation type for the Grammatical Coherence task. The best
score for each perturbation is highlighted

Table 13. Scores for each model and character level perturbation type for the Hate Speech and Offensive Language
task. The best score for each perturbation is highlighted

42

Table 14. Scores for each model and character level perturbation type for the Natural Language Inference task. The
best score for each perturbation is highlighted

Table 15. Scores for each model and character level perturbation type for the Sentiment Analysis task. The best score
for each perturbation is highlighted

Table 16. Scores for each model and character level perturbation type for the Semantic Similarity task. The best score
for each perturbation is highlighted

43

Word level perturbations

Table 17. Scores for each model and word level perturbation type for the Grammatical Coherence task. The best
score for each perturbation is highlighted

Table 18. Scores for each model and word level perturbation type for the Hate Speech and Offensive Language task.
The best score for each perturbation is highlighted

Table 19. Scores for each model and word level perturbation type for the Natural Language Inference Coherence
task. The best score for each perturbation is highlighted

44

Table 20. Scores for each model and word level perturbation type for the Sentiment Analysis task. The best score for
each perturbation is highlighted

Table 21. Scores for each model and word level perturbation type for the Semantic Similarity task. The best score for
each perturbation is highlighted

45

Other perturbations

Table 22. Scores for each model and other perturbation type for the Grammatical Coherence task. The best score for
each perturbation is highlighted

Table 23. Scores for each model and other perturbation type for the Hate Speech and Offensive Language task. The
best score for each perturbation is highlighted

46

Table 24. Scores for each model and other perturbation type for the Natural Language Inference task. The best score
for each perturbation is highlighted

Table 25. Scores for each model and other perturbation type for the Sentiment Analysis task. The best score for each
perturbation is highlighted

Table 26. Scores for each model and other perturbation type for the Semantic Similarity task. The best score for each
perturbation is highlighted

47

Aggregated evaluation

Table 27. Average kappa score per model

Table 28. Average kappa score per NLP task

Table 29. Average kappa score per perturbation type

Table 30. Average kappa score per character perturbation

Table 31. Average kappa score per word perturbation. Values in red indicate that that the mean proportion of
perturbed samples in the dataset is less than 50%

48

Table 32. Average kappa score per other type of perturbation. Values in red indicate that that the mean proportion of
perturbed samples in the dataset is less than 50%

Table 33. Average kappa score per perturbation type when non-represented perturbations are removed

