
UNIVERSITAT POLITÈCNICA DE VALÈNCIA

School of Informatics

Web Data Scraper

End of Degree Project

Bachelor's Degree in Informatics Engineering

AUTHOR: Prieto Roig, Ausiàs

Tutor: Hurtado Oliver, Lluis Felip

Cotutor: Segarra Soriano, Encarnación

ACADEMIC YEAR: 2022/2023

Resum
La recol·lecció de dades, també coneguda com web scraping, és el procés de

recolectar informació de pàgines web de manera automàtica. Les pàgines web di-
nàmiques, caracteritzades per la seua capacitat d’actualitzar el contingut el temps
real (AJAX), presenten reptes únics per a la recol·lecció de dades.
La importància d’aquesta informació per a les persones, empreses i investigadors
és fundamental, ja que s’hi pot gastar en una gran varietat de propòsits com en
l’anàlisi de negòcis, l’investigació i l’ús personal, i fins i tot per a l’entrenament
de Models del Llenguatge Grans (LLM).
Describim l’arquitectura, el disseny i l’implementació de una ferramenta modu-
lar, extensible i open-source que hem creat amb l’ús de Python, Cython i la lli-
breria "Playwright", entre moltes altres llibreries de Processament del llenguatge
natural (NLP), específicament feta per abordar aquestos reptes, i evaluem el seu
rendiment a través d’experiments i estudis de casos.
Com a part de la reflexió, concluïrem discutint les possibles aplicacions de les
dades recolectades en aquestes pàgines web dinàmiques i les tendències a futur
d’aquest camp.

Paraules clau: Extracció d’informació, Scraping, Crawling, Pàgines web dinàmi-
ques, AJAX, Playwright, Data harvesting, Open-source, Python, NLP

Resumen
La recolección de datos, también conocida como web scraping, es el proceso

de recolectar información de sitios web de manera automática. Los sitios web di-
námicos, caracterizados por su capacidad de actualizar el contenido en tiempo
real (AJAX), presentan desafíos únicos para la recolección de datos.
La importancia de esta información para las personas, empresas e investigadores
es fundamental, ya que se puede utilizar para una variedad de propósitos como
el análisis de negocios, la investigación y para el uso personal, e incluso para el
entrenamiento de Modelos del Lenguaje Grandes (LLM).
Describimos la arquitectura, el diseño e implementación de una herramienta mo-
dular, extensible y open-source que hemos creado usando Python, Cython y la
librería "Playwright", entre otras muchas librerías de Procesamiento del lenguaje
natural (NLP), específicamente hecha para abordar estos retos, y evaluamos su
rendimiento a través de experimentos y estudios de casos.
Como parte de la reflexión, se concluirá discutiendo las posibles aplicaciones de
los datos recolectados en estos sitios web dinámicos y las tendencias a futuro en
este campo.

Palabras clave: Extracción de información, Scraping, Crawling, Páginas web di-
námicas, AJAX, Playwright, Data harvesting, Open-source, Python, NLP

Abstract
Data harvesting, also known as web scraping, is the process of collecting infor-

mation from websites automatically. Dynamic websites, which are characterized
by their ability to update content in real-time (AJAX), present unique challenges

iii

iv

for data harvesting.
The importance of this information for people, companies and researchers is
paramount, as it can be used for a variety of purposes such as business intelli-
gence, research and personal usage, and even for training Large Language Mod-
els (LLM).
We describe the architecture, design, and implementation of a modular, exten-
sible and open-source data harvesting tool that we have created using Python,
Cython and the library "Playwright", among many other Natural Language Pro-
cessing (NLP) libraries, specifically made to address these challenges, and whose
performance we will evaluate through experiments and case studies.
As part of the reflection about this tool, we will conclude by discussing the po-
tential applications of data harvested from these dynamic websites and the future
trends in this field.

Key words: Information Extraction, Scraping, Crawling, Dynamic websites, AJAX,
Playwright, Data harvesting, Open-Source, Python, NLP

Contents

Contents v
List of Figures vii
List of Tables viii
List of algorithms ix

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives . 3
1.3 Sustainable Development Goals . 4
1.4 Related Coursework . 5
1.5 Structure of the report . 6

2 Literature review 7
2.1 Review of the existing research on data scraping tools and techniques 7
2.2 Identification of gaps in the existing literature and areas for further

research . 8
2.3 Discussion on the strengths and limitations of these tools 10
2.4 Approaches to the overcoming of the weaknesses 11

3 Design and implementation 15
3.1 Description of the design and the architecture 15
3.2 Technologies used . 19
3.3 How does the tool work . 20

4 Evaluation and testing 23
4.1 Methods and metrics . 24
4.2 Results of the evaluation . 25
4.3 Challenges faced . 33

5 Conclusions 35
Bibliography 39

Appendices
A Sustainable Development Goals 43

A.1 Our work’s alignment . 44
B System configuration 47

B.1 Initialization phase . 47
B.2 Browser GUI usage . 47

C Example use case 49
C.1 Definition of the use case . 49
C.2 Requirements and issues from the non-expert users 50
C.3 Requirements and issues from the expert user 50

v

vi CONTENTS

C.4 Issue addressing . 51

List of Figures

3.1 The dependency flow of the GDGTool 16
3.2 The data management steps invoked by the pipeline 17
3.3 The tool during the crawling process. On the left side, eight win-

dows requesting different URLs. On the right side, the console
with the logs and timing metrics . 20

3.4 The tool controlled by the user in GUI mode. On the left, the
browser that the user sees. On the right, the console with the logs
and the action buttons, showing the result of the keyword extrac-
tion functionality . 21

4.1 The tool’s different runs doing crawling and scraping (green), crawl-
ing, scraping and keyword extraction (red) versus the Scrapy base-
line time (blue) . 25

4.2 The tool’s CPU usage of the multiple runs doing crawling 26
4.3 The tool’s CPU usage of the multiple runs performing crawling

and keyword extraction from the data gathered 27
4.4 The tool’s CPU usage of the base crawling and data scraping (green)

and keyword extraction (red) compared to the Scrapy CPU usage
during the same task(blue) . 27

4.5 The tool’s RAM usage of the multiple runs doing crawling 28
4.6 The tool’s RAM usage of the multiple runs performing crawling

and keyword extraction from the data gathered 28
4.7 The tool’s RAM usage of the base crawling and data scraping (blue)

compared to the scrapy RAM usage during the same task(purple) . 29
4.8 The tool’s disk writing usage of the base crawling and data scrap-

ing (green), with keyword extraction (red) and compared to the
scrapy disk writing usage during the same task (blue) 30

4.9 The results of the questionnaire we made for non-experts to test
our tool usability (More is better) . 31

4.10 Am histogram representing the frequency of website loading time
on a run with broken links . 32

A.1 United Nations’ 17 Sustainable Development Goals chart. 43

vii

List of Tables

A.1 This work alignment with the UN’s Sustainable Development Goals 44

viii

List of algorithms

Dynamic crawling using ML algorithm built upon an algorithm
found in the literature . 11

ix

CHAPTER 1

Introduction

Ever since the dawn of humanity, keeping track of the information available was
of uttermost importance.

The act of writing was the solution of a basic problem: How do I store this in-
formation so that if I forget or I am not available, this information can still be
used.
After writing became paper, then printing, then magnetic storage and finally dig-
itization. Take a look nowadays, the Internet contains an unimaginable amount
of information of all kinds. However, too many information can be a problem for
regular people who just have no time to read all texts, articles or websites that
appear whenever you do even the simplest search.
But how can we access and use data more effectively?
How can we find relevant and reliable data sources among the vast amount of
information available on the web?
How can we extract and organize data in a way that suits our needs and goals?
These are some of the challenges that data gathering tools aim to address. How-
ever, not all data gathering tools are created equal.

In this work, I will introduce Dynamic Data Gathering Tool (GDGTool), a data
harvesting tool[1] that addresses the three main aspects of this discipline. Our
tool allows users to search, filter, and download data from various websites in
a fast and easy way. It also provides a modular and configurable architecture
that enables all kind of users to customize their data gathering tasks according to
their preferences and requirements. Moreover, it leverages containerization tech-
nology to enhance its scalability and portability across different platforms and
environments.
I will explain how GDGTool approaches these issues, and compare it with other
existing tools in the market. For this, our tool is based on three techniques that
work together to perform the basic tasks required to collect data from dynamic
sources.

We introduce the concept and the utility of Web Data Harvesting, composed by
Web Crawling[2], Web Scraping[1] and Data Gathering[3].
Web crawling[2] is the process of iteratively finding and fetching web links start-
ing from a list of seed URLs. It is what search engines[3][4][5] do to index web
pages and discover new content. Web crawlers have to scrape the web pages they

1

2 Introduction

visit to extract the links and other information.
Web Scraping is the act of accessing the internet as a human would do, with the
intent to gather information autonomously. This implies that any program capa-
ble of doing information gathering should be capable of understanding language
at least in a basic level. Thanks to recent developments in Natural Language Pro-
cessing (NLP)[6][7], several options of pre-made multi-dimensional relationship
word embeddings[8] or lexical network databases[9] (like Wordnet[10]) have be-
come easily available, which allows the creation of intelligent tools of data scrap-
ping[11] with the aforementioned knowledge.
Data gathering is more of a general term that refers to collecting any kind of data
from any source. It can be done online or offline, with web scraping or other
methods. Data gathering is often the first step in data analysis or data mining.

1.1 Motivation

Data harvesting using a scraper[1] is a powerful and widely used technique used
to extract information from the internet. It has become increasingly popular as
businesses and individuals recognize the benefits of quickly and efficiently gath-
ering large amounts of data[11][12]. It involves extracting data from websites
and converting it into a format that can be easily analyzed and used[13]. This in-
formation can help improve decision-making, identify trends and patterns, and
provide new insights into topics of interest[12]. However, data scraping also car-
ries risks and potential liability if not handled with care. Personal data posted
online can expose users to identity fraud, harassment, and other threats[14].
Developing new data scraping tools also provides opportunities for research and
innovation in the field. With the increasing complexity of websites and secu-
rity measures implemented to block bots[15], there is a need for new techniques,
methods, and tools that can navigate these challenges.

Existing data scraping tools can be challenging to use, and often require advanced
technical skills. As a result, there is a growing demand for more user-friendly
and accessible tools that can handle large amounts of data and extract data from
a wide range of websites and formats. Such tools could enable more people to
benefit from data scraping and improve their work or research.
Additionally, the overwhelming amount of information online makes finding re-
liable information a time-consuming and intensive task[16]. A computer can tire-
lessly and objectively search for the most relevant topics, rate sources of infor-
mation, and search for information in multiple languages, among thousands of
human-read-hours in mere seconds. For example, these tools can help users to
manage the overwhelming amount of data is by providing advanced analytical
capabilities, or by providing access to a wide range of data sources.
Data scraping tools can perform complex statistical analysis, natural language
processing, and machine learning algorithms to identify patterns and trends in
the data. This can help users to uncover insights and make informed decisions
based on the data and gather a comprehensive view of a particular topic or issue.
Finally, the data collection could be enhanced by providing real-time data up-
dates. This can be really useful in industries such as finance or marketing, where

1.2 Objectives 3

access to real-time data is essential for decision-making.

It is clear that this kind of tools can help many people, ease their lives and im-
prove their knowledge. More knowledgeable people means further advances in
science and technology, and big amounts of treated data can also help technolo-
gies like the , in their creation or in the information gathering.

1.2 Objectives

In this work, we will focus on three objective users, ranked by their expertise, and
try to focus the development based on their needs.
We will define the ’Non-expert user’ as a non-programmer that wants to search
things on the internet, and any added capability must be presented in a simple
way.
Next, we have the ’Programmer user’, a user capable of programming and build-
ing programs themselves, but that doesn’t know about crawling or scraping pro-
cesses. This user can use APIs to build their own tools with their specific needs.
Finally we take into account the ’Expert user’, that is capable of programming,
but it also has enough knowledge to understand the processes that happen in the
tool under the hood, and so it is capable of improving it.

The main objectives of this work are:

1. To develop a fast, modular and reliable framework for data scraping, scal-
able that is able to efficiently extract data from a wide range of websites and
formats.
This could be achieved by ensuring a modular architecture, capable of per-
form crawling and data gathering fast, efficiently and reliably. Also, an
enhancement could be to compile the source code into Cython[17]. The tool
should ensure:

• Performing base crawling is as fast as possible, to make sure that it
does not block more complex and slower workflows.

• The tool can handle various scenarios where data gathering would be
useful.

• Expert users can add optimized functionalities that make use of the
whole tool’s potential, or even extend it.

• Programmers easily can build generic tools that make use of crawling
and scraping.

2. To develop solutions to ensure users of different expertise can use the tool
to better fit their needs, without spending too much time.
For example, lesser expert users could make use of a graphical user inter-
face, with easy buttons and controls to access some of the tool’s capabilities,
and programmers can have an API set to make using the program easier

4 Introduction

3. To ensure repeatability and security in the tool. This is necessary because at
some point this tool may make automated work that can’t be supervised by
the user.

1.3 Sustainable Development Goals

The Sustainable Development Goals (SDGs) [18] are a set of global objectives es-
tablished by the United Nations to address the most pressing social, economic,
and environmental challenges faced by humanity. Adopted in 2015, the SDGs
provide a comprehensive framework for achieving sustainable development world-
wide. In line with the principles of the SDGs, our focus within the field of study
and research has centered on three specific goals:

4. Quality Education: By providing users with easy access to information and
data through our tool, we aim to empower individuals, particularly those
with limited resources to pursue learning, intellectual growth and broaden
their knowledge horizons. We believe our tool can help to bridge the edu-
cational divide and contribute to a more equitable and inclusive education
system.

8. Decent Work and Economic Growth: Our tool seeks to facilitate productiv-
ity and efficiency, allowing researchers and professionals to streamline their
tasks and focus on higher-value activities. By automating repetitive pro-
cesses and providing data insights, we aim to achieve greater job satisfac-
tion in jobs where data extraction is imperative and repetitive, improve pro-
ductivity, and reduce research time spending, fostering economic growth.

10. Reduced Inequalities: We strive to create an open tool where individuals
from diverse backgrounds and contexts can harness the power of data with-
out barriers or discrimination. By embracing inclusivity and promoting eq-
uitable access to resources, our tool contributes to breaking down informa-
tion silos and narrowing the knowledge gap among different communities.
With its ability to gather and analyze data from diverse sources, it empow-
ers individuals, particularly marginalized communities, to access accurate
and timely information. By providing a means to combat misinformation,
such as contrasting xenophobic articles, our tool enables minorities to stay
informed about news and events that directly impact them. This increased
access to relevant information can foster a greater sense of inclusion and
empowerment, ultimately working towards reducing inequalities and pro-
moting a more equitable society.

As an extended goal, by automating repetitive tasks and streamlining data
gathering processes, the tool can enhance researchers’ productivity and efficiency.
Researchers play a vital role in advancing knowledge and addressing societal
challenges. By equipping them with effective tools and resources, this research
strives to facilitate their work and ultimately contribute to the betterment of soci-
ety.
Lastly, not only researchers but research itself can directly help society. Research

1.4 Related Coursework 5

and technological advances that require large amounts of data can highly benefit
from this kind of tools. Trendy data hungry deep learning and in particular Large
Language Models, have recently proved the impact that they can have in society.
For example, GPT-3 required around 600B tokens and LLaMA 1.4T tokens, most
of which were extracted from websites using technologies such as crawling and
data harvesting [19] [20].

1.4 Related Coursework

The "related coursework" section provides an opportunity to highlight the spe-
cific subjects taken during college years that have contributed to the development
of the tool and the completion of this work. These courses have provided us with
foundational knowledge and skills that are directly applicable to the project:

• Information storage and retrieval systems: This subject played a crucial role
in making the entire project possible. It provided us with a theoretical un-
derstanding of how information can be stored and retrieved efficiently. It
also equipped us with practical knowledge on various techniques and tech-
nologies used in modern information retrieval systems, which directly in-
fluenced the design and implementation of the tool.

• Statistics: Our knowledge of statistics has been instrumental in understand-
ing data processing and incorporating statistical analysis into our project.
This understanding has allowed us to effectively handle and interpret data,
enabling informed decision-making throughout the development process.

• Intelligent systems: This subject provided us with a solid foundation in ma-
chine learning and natural language processing (NLP). The concepts and
techniques learned in this course have empowered us to leverage ML and
NLP algorithms and methodologies in our tool, enhancing its capabilities
in areas such as data extraction and understanding of textual information.

• Concurrency and distributed systems: The concepts learned in this course
have been valuable in understanding and implementing asynchronous pro-
cessing and resource management within our tool. We have been able to
design and orchestrate the efficient utilization of computing resources, en-
abling concurrent operations and improving overall performance.

• Data Structures and Algorithms: Our knowledge of data structures and
algorithms has been pivotal in the creation of our tool. It has allowed
us to make informed decisions regarding the choice of appropriate data
structures, ensuring optimal performance while accommodating various
use cases and requirements.

• Automata theory and formal languages: This course has inspired us to ex-
plore graph-based approaches and motivated us to try to incorporate graph
structures and workflows into the project.

6 Introduction

• Computability and complexity: Understanding computability and complex-
ity theory has been beneficial in terms of performance considerations. Our
knowledge in this area has guided us in developing algorithms that avoid
performance issues, ensuring that our tool operates efficiently without en-
countering exponential complexity problems.

1.5 Structure of the report

Through the whole report, we provide an overview of our decisions in the mak-
ing of the Data Harvesting tool.

In the Literature review, we start by reviewing and comparing the literature that
previous researchers have performed, the current state of the research about data
crawling, data scraping and data harvesting tools and techniques, and what parts
of the research have not been addressed properly or that could be explored fur-
ther, to then chain the discussion with the strengths and weaknesses of this kind
of tools.
We also take advantage of the knowledge gathered for this last section to explain
how this weaknesses can be mostly overcome, how did other researchers try to
overcome them, and how our tool is designed around them.

In the Design and implementation chapter, we make use of that knowledge to
define the design and decisions taken, the architecture that makes everything
possible and the technologies used, to end with a description of how the tool is
used and how can it be useful for many people.
This empathises the modularity oriented design that guides the project, which
allows expert users to adapt and improve the project, for the benefit of everyone.

In the Evaluation and testing we then present the results of the evaluation of
our tool, and how it compares to other tools available for this purpose. We also
identify the most prominent challenges faced during the development of the tool,
how they affected the tool, and how we overcame them.

Finally, we conclude with the Conclusions, where we report the accomplishments
of the project, the lessons learned, and the expected improvements for future ver-
sions of the tool. This report provides a comprehensive overview of the design,
implementation, and evaluation of our Data Harvesting tool and offers insights
for researchers and practitioners in this field.

CHAPTER 2

Literature review

The literature review provides context and background information on the topic
being studied. It helps to establish the relevance and significance of the research,
and shows how the study fits into the existing body of knowledge on the subject.
It is a critical component of the research methodology, as it provides the founda-
tion and justification for the research design and methods used in the study. It
allows the researcher to draw on the work of others, to build upon their findings,
and to avoid duplicating previous research.

2.1 Review of the existing research on data scraping
tools and techniques

Data scraping, also known as web scraping[1], is a process of extracting struc-
tured information from unstructured sources, such as web pages, documents, and
many other formats, both computer-oriented and human-oriented. Data scrap-
ing can enable various applications, such as querying, organizing, and analyzing
data, integrating data from multiple sources, and creating knowledge bases[12].
However, data scraping is also a challenging task that requires dealing with noisy,
heterogeneous, and dynamic data.

Several competitions and studies have been conducted in the development of
this field, yet many of these studies tend to focus on specific fields or particular
web pages, which limits their generalizability and applicability to other domains.
When the research is not focused on one specific website, the existing literature
often classifies data scraping tools into two main categories:
Either they use Machine Learning, classical template "wrappers" or a combination
of both, using Machine Learning to classify websites into the wrappers provided
to the algorithm.

Machine learning methods rely on statistical models that learn from labeled or
unlabeled data to identify and extract relevant information they are known to
provide more generalization, at a much higher computational cost, both for train-
ing and analysis. Template wrappers are instead rules that specify how to locate
and extract information from a given web page based on its structure and layout.
This approach is less computationally expensive, but won’t work unless the web-

7

8 Literature review

site is similar to the wrappers generated. Some hybrid methods combine machine
learning and template wrappers to leverage both approaches, training the mod-
els to either create the wrappers or most commonly to classify the given website
into one of the available patterns.

In her book, S.Sarawagi presents a detailed research on all types of data extrac-
tion tools that is appraised by most of the literature[21]. She provides a taxonomy
of information extraction methods along various dimensions, such as the input
sources, the output format, the extraction techniques, and the management is-
sues. She also discusses the challenges and opportunities for future research in
this field.

Online scraping can be split into three interwoven primary processes: Website
analysis, website crawling, and data organizing[22]. Website crawling refers to
systematically navigating through web pages to extract relevant data. It involves
following links, handling different page layouts, and managing the traversal of
websites. Website analysis involves examining the structure, content, and behav-
ior of websites to determine the most effective scraping approach. Data orga-
nizing focuses on structuring and storing the collected data in a meaningful and
usable format for further analysis and processing.

While web scraping is a vital component of data mining, it is important to dif-
ferentiate between the two. Web scraping is primarily concerned with collecting
data from various sources, such as web pages, documents, and other formats,
regardless of the data’s analysis. On the other hand, data mining goes beyond
data collection and involves analyzing and interpreting the already collected and
formatted data to discover patterns, relationships, and insights.

Data mining encompasses a wide range of sophisticated statistical techniques and
algorithms. These techniques include Statistical/Machine Learning approaches
such as classification, clustering, regression of missing data, and anomaly de-
tection, or more classical algorithms like Decision trees and Association Rules,
which are among the popular methods utilized in data mining [23] [24].

2.2 Identification of gaps in the existing literature
and areas for further research

While there has been a considerable amount of research on data scraping, there
are still several gaps in the literature. One area that has not been given enough at-
tention is modularity, specifically the use of plugins and extensions in data scrap-
ing tools. These plugins can enhance the functionality of the scraping tools by
providing additional features and capabilities that are not available in the core
tool. This is related to one of the forementioned points that we noticed during
the literature review: The fact that most researchers focus these kind of tools to
only one field. This explains why there is not much research that takes into ac-
count the modularity, but also shows that a modular tool could unify efforts and
provide researchers with an abstraction layer that handles all crawling and or-

2.2 Identification of gaps in the existing literature and areas for further research 9

chestration.

We have also found out that some research use of containerization tools like
Docker[25] to package the application and its dependencies in a single deploy-
able unit, but more importantly because it is crucial to ensure the repeatability of
data scraping experiments. This is an important issue because the accuracy and
reliability of the results obtained from data scraping experiments can be affected
by a variety of factors, including the operating system and software environment
used to run the experiments, and more often than not, scraping is a critical pro-
cess where changes in the system like package or OS updates can not become a
point of failure. Containerization tools can help ensure that these factors are stan-
dardized across different experiments, adding to the whole research process.

Another gap in the literature is in the integration of data scraping tools with
web browsers to make them more accessible to non-experts. This is an impor-
tant issue because many potential users of data scraping tools may not have the
required technical expertise needed to use them effectively. By integrating data
scraping tools directly into web browsers, these tools can be made more user-
friendly and accessible to a wider audience. A downside of this approach is that
testing must be performed on humans, who are not always consistent in their cri-
teria for determining relevance or accuracy. This introduces a level of subjectivity
and variability in evaluating the usability of the tools, as human users may have
different preferences and opinions for evaluating the effectiveness of the tools.
Nonetheless, the benefits of making data scraping tools more accessible to non-
experts could outweigh this challenge, as it could empower users to gather and
analyze data more efficiently and effectively.

Furthermore, little attention has been given to graph-storage structures, which
can be useful in storing and analyzing data relationships and connections. Since
data scraping tools find many kinds of data from multiple sources, we believe
that heterogeneous graphs can be a very valid data structure. For one, writing
graph-structured data is not slower than formatting the data into other more com-
mon formats like CSV or JSON. Graphs allow by definition a dynamic number
of nodes of any kind in a non-euclidean space, and can be a great and easy way
to visualize the data gathered. However, the most significant advantage of using
graph-storage structures is the potential to bring applying graph machine learn-
ing techniques closer to research
.
PDF reading is another area that has been overlooked in the current literature on
data scraping. PDFs are a widely used document format, and extracting informa-
tion from them can be a valuable source of data. However, extracting information
from PDFs is really challenging. This is really useful because the most cutting-
edge, state of the art information is usually only packaged as PDF, which are
important to users that need the most updated accurate information. Although
there are several packages capable of reading PDFs, it is sometimes overlooked
the integration with data scraping tools in a way that makes it seem like they are
not relevant.

In terms of areas for further research, one promising area is graph structure and

10 Literature review

graph ML. Graphs can be used to represent complex relationships between data
points, and machine learning techniques can be used to extract useful insights
from graph data. We already mentioned this as a gap in the literature, but we
firmly believe that this requires further research on how to effectively use graph
ML techniques in the context of data scraping.

Another area where more research is needed is the integration of data scraping
tools with object detection and segmentation models like YOLO. These models
can be used to identify and extract specific objects or regions of interest from im-
ages or other visual data, which can be useful in many data scraping applications,
but most importantly, it can learn common sense knowledge required to success-
fully navigate websites, a point that we will discuss in the discussion about the
strengths and limitations.

Another area for further research is chat-like access to information. This in-
volves developing natural language processing algorithms that can interpret and
respond to user queries in a conversational manner. This would allow non-
technical users to easily access and extract raw or aggregated information from a
variety of data sources once the data gathering process has finished possibly even
allowing the user to get a better insight from the data.

2.3 Discussion on the strengths and limitations of
these tools

Data harvesting tools have many strengths that make it an interesting topic for
the research of its many applications. For one, the baseline of comparison is hu-
man performance, which although peak in many aspects, lags behind roughly
any computer in reading, memorizing, and navigating through large volumes of
data, identifying relationships between concepts, recognizing patterns and keep-
ing focus in one task, aspects at which computers excel, and that coincidentally
are core to the process of harvesting data, which makes them a promising tool for
many day to day uses.

However, there are certain limitations to data harvesting tools that must be taken
into consideration. One of the most significant limitations is the lack of outside-
world knowledge and pattern recognition skills that humans possess. While hu-
mans can interpret and rely on symbols and icons on websites to navigate with
ease, this also explain why computers often struggle to explore websites and ex-
tract relevant information. This can be a significant limitation, especially since
websites are created and designed for humans, which can also be worsened by
the included bot-evasion measures. This implies that some websites are easier
to access than others, which would mean for the tool to unknowingly prioritize
information for the ones that are more bot-accessible, even if the information is
less useful or less reliable

Another significant challenge is the accuracy of the information being harvested.
Aggregation problems may arise when the majority of the harvested data is incor-

2.4 Approaches to the overcoming of the weaknesses 11

rect or unreliable, and while there algorithms can help approximate trustworthy
information sources by their relationships with other websites, computers still
lack the contextual understanding and the ability to interpret information in the
same way that humans do. This can make it challenging for computers to dis-
tinguish between reliable and unreliable sources, particularly in cases where the
data is complex or ambiguous.

This two limitations if combined can become even worse, for inaccuracies in data
(which can be seen as error in the process of harvesting), can be compounded by
navigation and extraction problems, if for example "unreliable" or hoax websites
are easier to access or have fewer security measures in place, leading to inaccu-
rate, flawed or biased insights and incorrect conclusions.
Attackers could potentially exploit these limitations to deliberately manipulate
the data collected by data harvesting tools, further compromising the accuracy
and reliability of the harvested data. For example, an attacker may create fake
websites specifically designed to mislead data harvesting tools.

Mitigating the risks associated with the limitations of data harvesting tools is
necessary to ensure that the insights generated from the data are valid and reli-
able. However, it also adds complexity to the tools, as it requires a combination
of automated and manual techniques to verify the accuracy and reliability of the
data being collected. This involves using techniques such as sentiment analysis,
fact-checking, and manual review to detect misleading information prior to the
generation of the final conclusions.

Although the strengths of the tools exceed their limitations, it is clear that their
limitations are more important because they directly affect the quality of output
of the tools, in some cases this implying that the tool is rendered useless after the
process has completed.

2.4 Approaches to the overcoming of the weaknesses

Addressing the weaknesses related to navigation in data scraping, we found
a backtracking exploratory algorithm that analyzes interactable elements within
the Document Object Model (DOM) of web pages, as discussed in the paper
"Crawling Ajax-Based Applications"[26]. This algorithm provides a potential so-
lution to navigate through web pages that heavily rely on dynamic content and
Ajax requests.

However, we want to note that the presence of bot traps, designed to catch auto-
mated crawlers, can pose challenges to this kind of navigation approaches. We
believe that this algorithm is a good way to approach this problem, and it could
potentially be improved by screenshot hashing techniques and the use of ML (see
ALGORITHM 1). However, they may not suffice in scenarios involving videos or
animations, where the content is dynamic and constantly changing in random
periods of time.

12 Literature review

ALGORITHM 1: DYNAMIC CRAWLING USING ML ALGORITHM BUILT UPON
AN ALGORITHM FOUND IN THE LITERATURE

Require: Array URLs of strings
Require: Float minRank
Require: ML Model WebsiteEncoder
Require: ML Model VisionCNN

Procedure MAIN(URLs)
begin
browser ← newBrowser()
sortedStates← newSortedStateMachine()
sortedStates.URLs← sort(sortedStates.URLs ∪URLs)

browser.crawl(sortedStates, minRank)
end procedure

Procedure BROWSER.CRAWL(sortedStates, minRank)
begin
while sortedStates.length > 0 do

currentState← sortedStates \ {0}
currentURLScore← browser.getUrlScore(currentState.URL)
if currentURLScore ≤ minRank then

break
end if
browser.loadState(currentState)
browser.explore()
encodedState←WebsiteEncoder.encode(currentState)
if sortedStates.encodings.contains(encodedState) then

continue
else

sortedStates.encodings ← sort(sortedStates.encodings ∪
{encodedState, })
end if
Clickables← VisionCNN.GetCandidateClickables(encodedState)
for c ∈ Clickables do

if c.targetURL ̸= currentState.URL then
sortedStates.URLs← sort(sortedStates ∪ c.targetURL)

else
newState← browser.click(c)
sortedStates← sort(sortedStates ∪ newState)
BACKTRACK(currentState)

end if
end for

end while
end procedure

2.4 Approaches to the overcoming of the weaknesses 13

While our tool does not extensively employ Machine Learning, we recognize that
AI is crucial to overcome these limitations effectively. We propose that incor-
porating AI models capable of gathering external world information could be a
valuable solution. Although such models may lack the millions of years of evo-
lutionary knowledge in human brains, we believe that a model capable of per-
forming both real-world navigation tasks and website interactions tasks can be
performant in generalizing and comprehend new, unfamiliar icons and elements
in common websites.

To ensure the use of reputable sources we believe that the best option is relying on
well-established industry-standard algorithms such as Google’s Hummingbird,
which can be improved by advanced Natural Language Processing (NLP) tech-
niques to significantly improve the quality prediction of the information source.
By incorporating these algorithms into our tool, we can be more future-proof as
these Large Language Models (LLM) grow rapidly.

To address data accuracy potential issues, we propose performing data mining
on processed data represented as triplets. We would utilize lexical relationship
databases like WordNet[10] to generate dynamic entities based on attribute vari-
ance and frequency, creating a flexible window of information. The relevance and
weight of these entities would be determined by the predicted trustworthiness of
the respective websites, as well as the ratio of affirmations to negations concern-
ing the statements. Although we are aware that an algorithm capable of reaching
pure truth is impossible, we believe that aggregations of reliable sources can av-
erage out some errors

Finally, we advocate for the application of Reinforcement Learning in Hetero-
geneous Graph Machine Learning (GML) [27] [28] to capture and utilize all avail-
able information to make predictions across multiple domains simultaneously.
By training one model in different predictions, we can get it to have a broader
understanding of the problem in hand to tackle the weaknesses of data scraping
in a unified manner, enabling more accurate and robust results.

CHAPTER 3

Design and implementation

The high loads of data, expected reliability and the limitations in performance of
the most critical part of the scraping implies that the resources that are available
in the computer must be orchestrated and balanced as best as possible. Modular-
ity also plays a big role, since the best tool is but text if no one can comprehend it
and hence use it. At last, it must be taken into account all possible use cases that
any user might have.

We know that the whole process will be bound by I/O operations, mostly TCP/IP
HTTP connections to the websites to retrieve the website and its data, done dur-
ing the scrapping process.
We can optimize this by using asynchrony and by blocking some non-useful re-
sources. As so, all processes that the scraper performs must be asynchronous.
The data storage does require somewhat faster I/O processes, them being disk
writing.
Then, the data extraction an processing requires mostly CPU computation. Al-
though those have remarkably faster frequencies, the data extraction may be re-
ally heavy computationally-wise, so we can optimize this by dividing the data in
processes among all processors in the computer.
Finally, we can optimize the plain Python code by compiling it into C++ using
Cython[17], an Python Module that performs this compilation to speed up run
time.
All this can be added in a docker container to help with reliability, repeatability
and security during the use of the tool.

3.1 Description of the design and the architecture

The design of the data harvesting tool is based on a modular and extensible ap-
proach, which allows for easy customization and integration of new features. It
is divided into several main components (See Figure 3.1):

15

16 Design and implementation

Figure 3.1: The dependency flow of the GDGTool

• GUI: The Guest User Interface allows non-expert users to use this tool by
providing an easy and familiar interface and only showing simple buttons
that invoke complex pre-made macros that make use of the API section.

• API: The API section provides a slow but safe interface for interacting with
the tool. It includes type and value checking to ensure that the input data is
valid and conforms to the expected format. This is the intended approach
for users that want to extend the tool to his/her own needs but do not re-
quire a fast interaction with it.

• Core: The core section contains the main bulk of the code and is responsible
for the fast and efficient execution of the scraping process. It is compiled
code that handles the web crawling, data extraction, and data storage.

– Extensions: The extensions component contains optional code that must
be integrated to the core component manually due to performance or
compatibility. These extensions provide additional utilities such as ro-
tating proxies, which can be enabled or disabled as needed.

– Resources: This component manages the shared resources for all the
project to ensure that these resources are not unnecessarily instantiated
multiple times throughout the program, which can lead to inefficien-
cies and unnecessary overhead.

– Session: The session component is responsible for managing the stor-
age and retrieval of the program’s state when the program needs to
pause or stop. This enables the tool to resume from where it left off,

3.1 Description of the design and the architecture 17

preserving the progress made and avoiding redundant computations,
and allows users to resume if issues are encountered.

– Storage: This component is responsible for managing the dynamic
storage requirements of the collected data. Relying on a data storage
library, this component temporarily holds the gathered information in
RAM as it continues to accumulate. Once certain conditions are met,
such as a specified memory limit or a predetermined data size, the
Storage component initiates the process of dumping the accumulated
data into the chosen storage format.

– Pipeline: The pipeline component manages all data handling and pro-
cessing in the tool. By calling plugins at certain points during the ex-
ecution of the tools, we get a fully modular tool that is both adaptable
and performant.

• Plugins: The plugins component contains optional code that can be added
dynamically at different stages of the scraping process. These plugins are
independent and run during the harvest, but are not integrated into the core
component. An example of a plugin is the video harvesting.

• Tests: The tests component contains a set of automated tests to ensure that
the tool works correctly and that the different components are functioning
as expected.

Figure 3.2: The data management steps invoked by the pipeline

This architecture allows for flexibility and scalability, as different parts of the
tool can be added, removed or modified as necessary. Additionally, the use of
asynchronous operations ensure that it can handle large amounts of data and
high loads of requests. By using optional modules such as rotating proxies and
other kind of plugins, it is more versatile and able to adapt to different personal

18 Design and implementation

situations. Furthermore, the use of a user interface makes it easier to use than any
API-based tool.

One of the main features for the tool to be modular and extensible is the ’Plugins’
component. It makes use of the pipeline component, which is a static number of
steps that are executed during the crawling step. The steps are fixed to improve
the performance of the tool by making it easier to optimize them, to manage
memory, and to test the whole environment (See Figure 3.2):

1. Router: This step allows the plugins to run once for every request that the
browser sends/receives when it matches a defined pattern. This could be
used to block unwanted, heavy resources, not useful for the scraping pro-
cess, or to keep track of the resources consumed during the scraping pro-
cess.

2. Event management: This step allows the plugins to run when a specific
event is detected. This can be used to detect popups, or to handle errors
when the website loading fails.

3. Start: This step allows the plugins to run before the actual crawling process
starts, this could be used for example to setup the environment, set specific
configurations or pre-process data. For example, to set up a connection to a
database where the scraped data will be stored.

4. Page management: This step allows the plugins to run once the website is
loaded. This can be used for example to extract all wanted data individually
per website, without performing any modifications. A plugin that extracts
structured data such as prices, product names, and ratings could be added
to the page management step.

5. Data management: This step allows the plugins to run once all page man-
agement is done. This can be used for example to generate data using all the
extracted data from the previous step, for example to do some data analysis,
data extraction, etc. The plugin could check the extracted data to change the
search behaviour of the tool, focusing more on the products/websites with
lower prices.

6. URL management: This step allows the plugins to run for every URL vis-
ited during the crawling process. This can be used for example to block
unwanted URLs, remove parameters or perform other URL-specific opera-
tions.

7. End management: This step allows the plugin to run once the crawling pro-
cess has finished, this could be used for example to close resources, create
a final report or notify that the process has ended. For example, it could be
created a email notification about the end of the scraping process, indicating
the statistics of the execution.

8. Post management: This step allows the plugins to run once all data has been
successfully stored. This is useful for running expensive methods, such as
data analysis or further data processing that are not critical for the scraping

3.2 Technologies used 19

process but are crucial for the final outcome. It could be used to perform
machine learning techniques to analyze the scraped data and generate in-
sights.

3.2 Technologies used

Python is the primary programming language used in the development of the
Data Harvester. Its versatility, extensive libraries, and ease of use make it an
ideal choice for implementing various functionalities and components of the tool.
Python with the Playwright[29] library for crawling, and industry standard NLTK[30],
WordNet[10], Spacy[31], Pytorch[32], Tensorflow[33] and Scikit-learn[34] provide
robust support for web scraping, text processing, and machine learning, enabling
seamless integration of different modules and algorithms.

Although we initially leveraged starting the project in C / C++ or Java, but we
reached the conclusion that Python is more fitting because of the number of data
processing libraries available allows us to target the development of areas where
the research is more present.

Due to the performance intensive tasks that we perform, Cython is used to allow
us to write Python code that can be compiled to C or C++ extensions, enabling
faster optimized execution speeds in critical sections of the code.

Playwright is a powerful automation library that enables browser automation
and interaction. It supports multiple web browsers, including Chrome, Firefox,
and Safari, allowing the Data Harvester to navigate through web pages, interact
with elements, and extract desired information. However, the most important
point about Playwright is that has an active development, which ensures that the
library won’t fall behind unsupported in the next few years.

During the initial tests, we built tools using Python Scrapy and Selenium[35] to
compare to Playwright’s performance. However, they lacked some features we
believe are key to the success of our project like we envisioned it from the begin-
ning.
Selenium allowed to have a visual browser for non-expert users to interact with,
but since Selenium was not made to be a crawling library, it lacked many fea-
tures required for this purpose. The most important for us was the lack of asyn-
chronous behaviour, that significantly slows down the process.
Scrapy[36] was at the other end, with great crawling capabilities but missing na-
tive AJAX handling. In its official documentation, Scrapy suggests using Play-
wright as a bridge to resolve AJAX requests. Also, with Scrapy handling the
crawling, we couldn’t fully control the browser during the process. We settled up
in Playwright.
For data processing and specially NLP pipelines we have the NLTK, WordNet,
Spacy, Pytorch, Tensorflow and Scikit-learn libraries that pretty much handle any
data processing requirement that we may have. Other than that, we also have
Coreferee[37], a coreference resolution[38] library that we have found to be more

20 Design and implementation

performant than other libraries. Having coreference resolution allows our NLP
pipelines to better handle the extracted texts.

Pretty much all libraries tested ended up in the toolbox because every one of
them excel at one process best than the others. NLTK and Scikit-learn has many
useful preprocessing methods, WordNet allows semantic relationships to con-
nect entities extracted by Spacy, which also allowed for PartOfSpeech tagging.
Pytorch and Tensorflow was used to try out pre-trained summarization models
which ended up not giving good enough results.
Finally with Coreferee we also tried NeuralCoref[39], but not only used far more
RAM, but it also had collisions with other packages.

3.3 How does the tool work

The tool uses a combination of web scraping, data parsing and data analysis tech-
niques to automate the process of extracting data from different websites. It is
designed to optimize the performance and efficiency by using asynchrony, mul-
tiprocessing, and encapsulating everything inside a Docker[25] container.

Figure 3.3: The tool during the crawling process. On the left side, eight windows request-
ing different URLs. On the right side, the console with the logs and timing metrics

Using a web crawler, navigates through the website and follows links to find
the relevant pages to scrape (See Figure 3.3). The web crawler uses a browser to
retrieve the pages using asynchrony, which allows multiple requests to be sent
and received simultaneously, improving the performance and speed of the scrap-
ing process. This can also be run using rotating proxies.

The data analysis step uses multiprocessing, that allows the tool to use multiple

3.3 How does the tool work 21

CPUs or cores to process different parts of the data at the same time, improving
the performance and speed of the data analysis process.

Figure 3.4: The tool controlled by the user in GUI mode. On the left, the browser that
the user sees. On the right, the console with the logs and the action buttons, showing the

result of the keyword extraction functionality

For easy user control, the project may be used with a controller-UI with but-
tons to execute actions and relevant information displayed (See Figure 3.4).

All the processes are wrapped up inside a Docker container, which allows the
tool to run isolated and separated from the host system, for security and repeata-
bility and also make it easy to deploy and run the tool in different environments.
This can also make the tool more portable.

Finally, all data is stored in a format that is easy to access and analyze, such as a
text file, CSV, or database. This can be chosen by the user.

CHAPTER 4

Evaluation and testing

The evaluating and testing phase is an important step in the development of any
data harvesting tool. This phase serves to ensure that the tool is working correctly
and that it is able to extract the desired data accurately and efficiently.

During this phase, we run the tool against four test cases:

• Running the tool and Scrapy[36] as a baseline against the same website
for crawling. The chosen website was "https://crawler-test.com/", that we
choose because of its many different edge cases and loops. This was used
to test for performance and resource usage.

• Running the tool against broken links. For this, we modified the tool not to
remember which URLs has already visited, and we tested against "https://crawler-
test.com/", which also provides with broken links.

• Running the tool data processing against Wikipedia articles. This was used
to test the NLP Keyword extraction and unsuccessful summarizer.

• Running the tool against test captchas like the ones in "https://nopecha.com/demo".

The test cases’ results were compared to the expected outcomes. This allowed us
to identify any issues or bugs, such as missing or incorrect data, and to make any
necessary adjustments that may be necessary.

It was also important to evaluate the performance of the tool by measuring how
long it takes to extract the data and the amount of resources it uses, to optimize
the tool and make it more efficient.

Additionally, we must test the tool against a range of different websites, including
those with different structures, technologies, and levels of complexity, to ensure
that the tool can handle a variety of different scenarios.

Furthermore, testing for edge cases, like very big and complex websites, 404 er-
rors, CAPTCHAs, among others, and also testing for different use cases of the
tool, can help to identify any limitations of the tool and consider them when de-
signing the final product.

23

24 Evaluation and testing

4.1 Methods and metrics

Evaluating the performance of a data harvesting tool is an important step in the
development process, as it helps to ensure that the tool is able to extract useful
data efficiently. We will use the following metrics to evaluate the performance of
a data harvesting tool:

• Scraping speed: This metric measures the time it takes for the tool to extract
data from a website. It can be measured in pages per second or in total time
to extract the data.

• Resource usage: This measures the amount of resources (such as CPU and
memory) that the tool uses while extracting data. This can help to identify
any bottlenecks in the tool and to optimize its performance.

• Scalability: To measure the ability of the tool to extract data from large web-
sites with long texts. It can be measured by the amount of data the tool can
extract in a certain amount of time.

• Robustness: This metric measures the ability of the tool to handle errors
and unexpected situations, such as broken links, CAPTCHAs, and changing
website structures.

• Data Quality: This one is really important, as it measures the quality of the
data that the tool extracts. It can be measured by comparing the extracted
data to the expected results, or by evaluating the completeness and accuracy
of the data.

• Usability: This metric tests on the non-expert users to detect shortcomings
of the usability of the tool. It can be measured by providing a questionnaire
to the users before and after testing the tool.

To test each metric we will set up specific scenarios oriented to one specific
metric. This metric-oriented scenarios will be the base to the final analysis that
we will perform and showcase about the tool.

• Scraping speed test: Test the tool extracting data in a large number of pages
in the least amount of time. This will help to evaluate the tool’s scraping
speed and identify any bottlenecks that may be limiting its performance. A
real case would be to make a search in the main search engines (Google,
Bing, DuckDuckGo, Yahoo...) with a crawling depth of 2 at least and dump
the data into files

• Resource usage test: Record the resource usage of the tool while performing
the extraction. This can be done by measuring the CPU and memory usage
of the tool during the different scenarios and compare between all the re-
sults. A hard case would be to perform the extraction of the data while
performing actual analysis of the data (for example, generate a network of
statements)

4.2 Results of the evaluation 25

• Scalability test: Test the handling of large and complex websites by extract-
ing data from a website with a large number of pages and a complex struc-
ture. This will help to evaluate the tool’s scalability and identify any limi-
tations that may be preventing it from handling large websites. A real case
would be to set the tool to make the extraction in dynamic websites with
infinite scrolling shuch as Reddit among others.

• Robustness test: Test the tool under unexpected situations, such as broken
links, CAPTCHAs, and changing website structures. This can be done by
scraping a website with known issues and evaluating the tool’s ability to
handle the errors and unexpected situations that may arise. We can find
broken links or blocked websites and check how the tool handles this situa-
tions

• Data quality test: Test the tool’s ability to extract high-quality data by com-
paring the extracted data to the expected results. This can be done by ex-
tracting data from a known website and comparing it to a known dataset
or by evaluating the completeness and accuracy of the data. An example
would be to pick a known topic from wikipedia and compare the extracted
information to our personal knowledge and the one available on wikipedia.

• Usability test: Ask non-technical users for evaluation of the tool’s usage,
if the tool is easy to use and understand for the intended user. This can
include testing the tool’s user interface, the ease of configuring and running
the tool, and the ease of interpreting the results. This must be performed on
real users, and can include many of the features that the tool provides, and
also with a free, more broad test giving the user total freedom

4.2 Results of the evaluation

Figure 4.1: The tool’s different runs doing crawling and scraping (green), crawling, scrap-
ing and keyword extraction (red) versus the Scrapy baseline time (blue)

The Figure 4.1 plots the execution times of many tests of the GDGTool.

The first group, shown in blue, represents the Scrapy baseline performance. This
run involved crawling and scraping data at depth level 2. Compared to the other
groups, the Scrapy baseline took the longest time to complete the task.

26 Evaluation and testing

The second group, depicted in red, represents multiple runs of the GDGTool per-
forming crawling, scraping, and keyword extraction. Each bar in this group cor-
responds to a specific configuration, denoting the depth level and the number
of tabs used. Notably, as the number of tabs increases, the execution time also
increases, which can be attributed to the additional time required for tab initial-
ization. Similarly, the execution time tends to be higher for greater depth levels,
as the number of URLs to explore increases exponentially.

The third group, shown in green, comprises the same runs as the red group but
without keyword extraction. These runs are noticeably faster compared to the
corresponding runs in the red group. This demonstrates that keyword extraction
adds a significant amount of time to the overall execution process.

This shows the clear relationship between the number of tabs, depth levels, and
execution time. It indicates that the GDGTool’s execution time increases with a
higher number of tabs and greater depth levels, aligning with the expected be-
havior considering the increased workload and exploration complexity.

We humbly acknowledge that Scrapy, being a more mature and widely adopted
software, may have certain considerations that contribute to its longer execution
time compared to our GDGTool. We believe that the timing difference observed
is likely due to factors that we might not have fully considered or optimized for
in our tool’s current implementation. It is possible that Scrapy incorporates cer-
tain mechanisms or functionalities necessary for ensuring accurate and reliable
results, which might require additional computational time. Alternatively, the in-
tegration of Cython compilation in our tool may contribute to its relatively faster
performance.

Figure 4.2: The tool’s CPU usage of the multiple runs doing crawling

4.2 Results of the evaluation 27

Figure 4.3: The tool’s CPU usage of the multiple runs performing crawling and keyword
extraction from the data gathered

Figure 4.4: The tool’s CPU usage of the base crawling and data scraping (green) and
keyword extraction (red) compared to the Scrapy CPU usage during the same task(blue)

Figure 4.2 illustrates the CPU usage of the tool during multiple runs focused
on crawling and scraping data. The graph shows that the CPU usage remains
relatively low, except for an initial spike where the CPU cost temporarily exceeds
100%. This spike can be attributed to the concurrent execution of multiple threads
during the tool’s initialization process. Additionally, two minor bumps in CPU
usage can be observed, which likely correspond to the periods when the tool an-
alyzes the URLs.

Figure 4.3 presents the CPU usage of the tool during multiple runs involving
crawling and keyword extraction from the gathered data. Similar to the previous
figure, the CPU usage exhibits a similar pattern. However, in this case, the initial
CPU usage period is longer, likely due to the initialization of machine learning
models used for keyword extraction. The graph ends with a low bump, indicat-
ing the tool’s completion of the keyword extraction process.

Figure 4.4 compares the CPU usage of the GDGTool (green) and keyword ex-
traction (red) with the CPU usage of Scrapy (blue) during the base crawling and

28 Evaluation and testing

data scraping task. Using Scrapy as a baseline, the same test was conducted in
both tools. The graph demonstrates that the GDGTool generally exhibits lower
CPU usage at the beginning of the task, but as the task progresses, the CPU usage
of both tools converges to a similar level. Additionally, it is worth noting that
the GDGTool completes the task faster than Scrapy, as evidenced by the earlier
completion point on the graph.

Figure 4.5: The tool’s RAM usage of the multiple runs doing crawling

Figure 4.6: The tool’s RAM usage of the multiple runs performing crawling and keyword
extraction from the data gathered

4.2 Results of the evaluation 29

Figure 4.7: The tool’s RAM usage of the base crawling and data scraping (blue) compared
to the scrapy RAM usage during the same task(purple)

The RAM usage plots provide insights into the memory utilization of the sys-
tem during the tool’s execution.

In Figure 4.5, we observe that the memory usage is influenced by both the depth
levels and the number of tabs. Notably, the runs that explore higher levels, such
as (level 1, 10 tabs) and (level 2, 5 tabs) and (level 2, 10 tabs), exhibit increased
memory usage. This can be attributed to the larger volume of data stored in
memory as more levels are traversed and additional tabs are loaded. Interest-
ingly, the runs at level 2 demonstrate a logarithmic-like curve, which we believe
is due to the cumulative delays introduced by websites with longer loading times.

In Figure 4.6, which represents keyword extraction, a spike in memory usage
is observed at the beginning, followed by a relatively stable curve. This can be
attributed to the loading of NLP models, which consume a significant portion
of memory. Subsequently, the memory usage remains relatively constant as the
keyword extraction process proceeds, indicating that the additional memory re-
quirements after model initialization are comparatively minor.

Figure 4.7 provides a comparison between the aforementioned runs and the Scrapy
baseline. Notably, the runs that do not involve loading NLP models demon-
strate lower memory usage compared to the Scrapy baseline. Conversely, the
runs where NLP models are loaded exhibit higher memory usage than the Scrapy
baseline, as expected due to the additional memory requirements of the models.

30 Evaluation and testing

Figure 4.8: The tool’s disk writing usage of the base crawling and data scraping (green),
with keyword extraction (red) and compared to the scrapy disk writing usage during the

same task (blue)

The Disk writing plot represents the amount of memory dumped from RAM
to the disk and provides insights into the disk writing behavior of the tool.

In Figure 4.8, we observe the memory usage for data crawling and scraping
(green), keyword extraction (red), and the Scrapy baseline (blue). Our tool ex-
hibits a single spike at the end of the run, indicating the dumping of all data to
the disk. In contrast, Scrapy shows a flatter line, suggesting minimal disk writing
activity throughout the process.

It is important to note that while our approach of delaying the data dumping un-
til the end reduces disk writing frequency, it also implies a higher risk in case of
unexpected events such as power outages. To address this, we have implemented
dynamic disk dumping capabilities that allow the tool to adaptively dump data
based on the amount of memory being held. However, since this particular test
scenario was not highly demanding in terms of memory usage, the data was not
dumped earlier. Nonetheless, we recognize the need to enhance the tool’s re-
liability by implementing measures to handle potential failures, such as power
disruptions, and ensure the integrity of collected data.

This analysis highlights the trade-off between keeping data in memory and the
cost of disk writing. While our tool optimizes disk writing by selectively dump-
ing data, it also necessitates improvements in terms of reliability and resilience.

4.2 Results of the evaluation 31

Figure 4.9: The results of the questionnaire we made for non-experts
to test our tool usability (More is better)

During the evaluation phase showcased in Figure 4.9, we sought feedback
from six non-expert test users regarding their experience with the tool’s ease of
use.
The questionnaire used to get this information had eight questions with scores
from zero to ten, where zero is unusable / impossible and ten is really useful /
really easy. The eight questions referenced the tool in non-expert cases that the
users could find themselves in.

While the overall ratings were not exceptional, averaging around 6 out of 10,
the feedback provided valuable insights into areas that required attention.

• The Linux installation score represents the subjective opinion of the users
regarding the ease of installation. Users rated their experience based on
their perception of the installation process, without considering the average
time it took. The mean score was 4.17 out of 10, ranging from 2 to 7. We
believe that this score represents how used was the user to see a console
before the use of the tool and the difficulties they had to find and follow the
README.

• The Windows installation score also represents how easy it was to install
the tool on Windows. The mean score was 1.5 out of 10, with a range of 0 to
4. These scores indicate that users found the installation process somewhat
challenging, particularly in Windows. We believe this might be a specially
bad score due to the lack of guides and plug & run versions. Users had to
install docker and run it, which was not intuitive.

• The initial impression scores capture the users’ first perceptions of the tool
before actually using it. The mean score was 5.33 out of 10, with a range of 4
to 7. This shows that the first impressions were average, but not impressive.

• The predicted utility scores shows the expectations and potential value that
the user foresees for this kind of tool. The mean score was 6.33 out of 10,
ranging from 5 to 8. These scores indicate a moderate level of satisfaction
and positive expectations among the users.

32 Evaluation and testing

• The extra modules utility refers to the perceived usefulness of additional
modules or functionalities that could be integrated into the tool, but have
not been implemented yet. Users rated this aspect with a mean score of 8.67
out of 10, suggesting that they recognized the potential value of expanding
the tool’s capabilities.

• The GUI use scores represents the ease of use that the users experience when
using the GUI version of the tool. Users perceived this mode as a regular
browser mode they are used to plus the utilities that the tool brings. The
scores had a mean of 7.5 out of 10, which we can understand as an over-
average score. We believe most of this is earned because of the similarities
with conventional browsers.

• The GUI results understanding test shows the reported understanding of
the users about the information showcased in the GUI version of the tool,
about the actions that the users took in it. The scores’ mean was of 7.33 out
of 10, indicating that although not all users were fully comfortable, the tool
is less lacking in the communication with the user in this regard.

• Regarding the file results understanding, users reported difficulties in com-
prehending the information presented in the comprehensive JSON-format
results file generated by the tool during the whole execution. The mean
score for file results understanding was 2.8 out of 10, ranging from 2 to 4.
This indicates a significant challenge for users in navigating to and inter-
preting the data stored in the file. Improving the accessibility and clarity of
the file results could enhance the overall user experience.

Figure 4.10: Am histogram representing the frequency of website loading time on a run
with broken links

In the Figure 4.10 we see robustness test performed against a website that has
known broken links. It shows that outliers aside, website loading takes about 4
seconds at maximum per tab, and outliers take about 30 seconds before a timeout
is set. This is aligned with our settings that try loading the website for 30 seconds
and if it is not done loading, it raises a Timeout.

4.3 Challenges faced 33

Finally, the data quality test was a critical part of the analysis of the results. Ini-
tially our tool was to generate summaries of all the data gathered, but this was
rendered impossible in the time we had since many issues arose. After many
trial and error we set up by providing the already tested keyword extraction
algorithm textrank[40] by the library PyTextRank[41], which worked fine given
enough phrases.

4.3 Challenges faced

During the creation of the Data Harvester, several challenges were encountered
that required careful consideration and innovative solutions. These challenges
encompassed various aspects of the tool’s development, ranging from technical
complexities to design considerations. Let’s explore each challenge in detail:

• Asynchrony: One of the primary challenges faced was dealing with asyn-
chronous operations. As web scraping often involves interacting with mul-
tiple web pages simultaneously, managing the asynchronous nature of these
operations became crucial. Ensuring proper synchronization and coordina-
tion of tasks while efficiently utilizing system resources required it, so we
used the Python asyncio library.

• Modularization: Creating a modular and extensible architecture was an-
other significant challenge. Modularization allows for easy integration of
new functionalities, enhances code re-usability, and facilitates maintenance.
Designing a well-structured and modular system architecture required care-
ful planning and visualization of the general problems that the tool will
tackle. It was decided that this would be used during crawling to get data,
process it, and take decisions with it. This allows the tool to change its be-
haviour depending on the results .

• Compiling into Cython: Optimizing critical sections of the code for im-
proved performance posed a challenge. Leveraging Cython, the Python
code was compiled into C or C++ extensions to achieve faster execution
speeds. This limited core classes because everything had to be defined be-
fore compilation, and a new set of ’.pxd’ files needed to be created.

• Storage: Efficiently storing and managing the harvested data was another
challenge. As the Data Harvester collects vast amounts of information from
multiple sources, designing an effective storage mechanism was crucial. Al-
though the default is stored using JSON files in folders, this is customizable,
and in the future we want to implement Graph storage in hdf5 files.

• Pipeline design: Designing an efficient and scalable data processing pipeline
was a complex task. The pipeline needed to handle various stages of data
extraction, transformation, and analysis seamlessly.

• Crawling algorithm: Developing an effective crawling algorithm that could
navigate through websites, handle dynamic content, and avoid common

34 Evaluation and testing

pitfalls such as bot traps presented a significant challenge. Implementing in-
telligent algorithms that could mimic human-like behavior while efficiently
exploring web pages required a deep understanding of web technologies
and clever algorithmic design.

• Integration with the browser: Integrating the Data Harvester with web browsers
to simulate user interactions presented unique challenges. Overcoming is-
sues such as handling JavaScript-heavy websites, dealing with complex ren-
dering engines, and efficiently capturing desired data required leveraging
browser automation tools like Playwright and overcoming inherent limita-
tions.

• Long processing times for NLP data: Processing natural language data can
be computationally intensive and time-consuming. Challenges included
handling large volumes of text, applying complex NLP algorithms, and
managing resource-intensive tasks such as language parsing, entity recog-
nition, and sentiment analysis. Optimizing the NLP pipeline to reduce pro-
cessing times while maintaining accuracy and reliability was a significant
challenge.

• API design: It being a key part of the project meant that this task wouldn’t
be easy. Taking into account all possible problems that the tool should be
able to complete while taking all performance and concurrent tasks into
account is not an easy task. We ended up adding four steps for data pro-
cessing because it is a critical and intensive task, so the user should decide
when is best to perform which analysis.

• Data analysis: Using NLP models to perform data analysis is not easy, but
initially we had in mind to provide a summary of the data gathered. This
turned out to be really hard, and impossible in the time we had. Language
models tend to be really large, which sometimes would not fit in our 16 GB
RAM. Also, extractive summarizing, whose models are not so big doesn’t
work that well.

CHAPTER 5

Conclusions

In conclusion, the development and implementation of the GDGTool has become
a way for us to dive deeper into a whole range of new processes.
Throughout this project, we have explored and learned from various challenges,
such as handling asynchrony, modularization, compiling into Cython, storage
management, pipeline design, crawling algorithms, integration with browsers,
and the processing of NLP data. By using technologies like Python, Cython, Play-
wright, NLTK, WordNet, Spacy, and Neuralcoref, we have been able to create a
tool capable of efficient data extraction, analysis, and storage.

This open-source project has been developed with the aim of making advanced
data scraping capabilities accessible to users with varying levels of expertise. By
providing a modular and user-friendly tool, we strive to empower a wide range
of users, including researchers, analysts, and professionals, to harness the power
of data extraction and analysis.

Our work has successfully achieved all of the initial objectives outlined in this
project.

• We have developed a fast, modular, and scalable framework for data scrap-
ing, capable of efficiently extracting data from a wide range of websites and
formats. The architecture of the framework has been designed to prioritize
speed, efficiency, and reliability (see Figure 4.1).
This fulfills our objective as our tool ensures the three main required func-
tionalities that we established in our objectives, plus the optional goal:

– Crawling performance can be compared to other used libraries avail-
able like Scrapy[36]. This means that our tool has space to heavier
processing steps to be included while not resenting its speed.

– Our tool has successfully enabled data harvesting in various scenarios,
including crawling static and dynamic websites, and gathering differ-
ent types of data. This versatility makes it a valuable asset for both
experts and non-experts in the field of data scraping.

– We have established an API that facilitates the implementation of ex-
tensions for personal use cases. This API prioritizes ease of use and
ensures the safety of inputs and usage. By creating separate files as a

35

36 Conclusions

safe bridge to the more performance oriented core files to handle com-
mon user mistakes, we have streamlined the development process and
made it more accessible to a wider range of users (see Figure 3.1).

– We have build an architecture around the tool to allow changes to the
tool for the most expert users. This includes having less performant
plug & play Plugins, or optimized Extensions, that enables changes to
be included and turned on and off based on the needs of the task.

– We reached the optional goal of enabling Cython compilation, to com-
pile the code into C++, which is in many cases faster than Python.

• The integration of a built-in browser has provided non-expert users with
easier access to the tool’s capabilities, enhancing its usability and enabling
data gathering without the need for coding skills. However, based on the
feedback received from the questionnaire administered to non-expert test
users, there is still room for improvement in terms of user accessibility and
interface design (see Figure 4.9)

• We have also addressed security concerns by implementing measures such
as Docker to ensure the integrity of the automated process, and the auto-
matic erasure of browser data with each run. This way, we ease installation
and ensure that any malicious encounter is contained within a secure area.

As an added bonus, we have identified through evaluations areas for im-
provement. These findings will guide us in refining the tool and enhancing its
capabilities to meet the evolving needs of this kind of tool.

Moving forward, further enhancements and refinements can be made to expand
its functionality and cater to evolving data harvesting requirements:

• Graphs-oriented architecture: One of our key objectives in the future is to
transition towards a more graphs-oriented architecture. Graphs provide
a powerful representation of the data that can be gathered through web
scraping. They allow for more complex and interconnected relationships
to be modeled and analyzed. By adopting a graphs-oriented approach, we
can enhance the tool’s capabilities in capturing and processing data from
websites.

• Graph data structures as HDF5[42] files: As part of our effort to leverage
graph-based representations, we would like to utilize HDF5 (Hierarchical
Data Format) files to store and manipulate graph data structures. HDF5
files offer efficient storage and retrieval capabilities, enabling us to handle
large-scale graphs effectively. This will facilitate tasks such as graph traver-
sal, querying, and analysis. Furthermore, the adoption of the GraphML[27]
format will enhance interoperability with other graph processing tools and
libraries.

• Graph data results into SQL: Explore the possibility of processing, optimiz-
ing and converting the generated HDF5 graph files into a SQL-based for-
mat. By transforming the data into SQL, you can take advantage of opti-
mized and efficient querying mechanisms offered by modern database sys-

37

tems. This can significantly improve data access speed, making it faster and
easier to extract specific information from the collected data.

• Graphics card optimization: Investigate opportunities to leverage graphics
card (GPU) usage as an optimization strategy. Streamline GPU utilization
to prevent conflicts when multiple processes attempt to access it simultane-
ously. While initial tests may suggest that using the GPU could slow down
the tool, explore potential optimizations that can harness the power of par-
allel processing offered by GPUs. This may involve optimizing data trans-
fer between CPU and GPU, parallelizing computationally intensive tasks,
or exploring GPU-accelerated libraries and frameworks that align with the
tool’s requirements.

• Integration of machine learning models: Machine learning techniques of-
fer promising opportunities to enhance the capabilities of our data scraping
tool. Specifically, we plan to incorporate vision-based models to identify
and select clickable objects on web pages, improving the efficiency and ac-
curacy of data extraction. Additionally, reinforcement learning (RL) algo-
rithms can be utilized to navigate websites dynamically, adapting to changes
in page layouts and structures. By leveraging machine learning models, we
can automate and optimize various aspects of the scraping process (see AL-
GORITHM 1).

• Enhance the scheduling and resource management capabilities of your data
scraping tool. Develop intelligent algorithms and strategies to optimize and
limit the allocation of resources, such as bandwidth, CPU, and memory. Im-
plement techniques like adaptive crawling, rate limiting, and distributed
crawling to ensure efficient and responsible data gathering. Also, consider
natively implementing schedulers to process full or partial requests at dif-
ferent times at specific frequencies.

We believe that applying this changes, as well as maturing the software and
ensuring reliability with real use cases we can reach a tool that can very well
become a industry-standard option that is able to be used and improve many
people’s lives.
With the GDGTool, we believe that we have reached a solution that can fit most
cases, while keeping performance and reaching most users despite their exper-
tise.

Bibliography

[1] Web scraping. URL: https : / / en . wikipedia . org / wiki / Web _ scraping.
(accessed: 31.03.2023).

[2] Web crawler. URL: https://en.wikipedia.org/wiki/Web_crawler. (ac-
cessed: 31.03.2023).

[3] Data collection. URL: https://en.wikipedia.org/wiki/Data_collection.
(accessed: 31.03.2023).

[4] Googlebot. URL: https://en.wikipedia.org/wiki/Googlebot. (accessed:
31.03.2023).

[5] Bingbot. URL: https : / / en . wikipedia . org / wiki / Bingbot. (accessed:
31.03.2023).

[6] Natural language processing. URL: https://en.wikipedia.org/wiki/Natural_
language_processing. (accessed: 31.03.2023).

[7] Stephanie Lunn, Jia Zhu, and Monique Ross. “Utilizing Web Scraping and
Natural Language Processing to Better Inform Pedagogical Practice”. In:
Oct. 2020. DOI: 10.1109/FIE44824.2020.9274270.

[8] Word embedding. URL: https://en.wikipedia.org/wiki/Word_embedding.
(accessed: 31.03.2023).

[9] Lexical resource. URL: https://en.wikipedia.org/wiki/Lexical_resource#
Lexical_database. (accessed: 31.03.2023).

[10] George A. Miller. “WordNet: A Lexical Database for English”. In: Commun.
ACM 38.11 (Nov. 1995), pp. 39–41. ISSN: 0001-0782. DOI: 10.1145/219717.
219748. URL: https://doi.org/10.1145/219717.219748.

[11] Elsa A. Olivetti et al. “Data-driven materials research enabled by natural
language processing and information extraction”. In: Applied Physics Re-
views 7.4 (Dec. 2020). 041317. ISSN: 1931-9401. DOI: 10.1063/5.0021106.
eprint: https://pubs.aip.org/aip/apr/article-pdf/doi/10.1063/5.
0021106/13895961/041317_1_online.pdf. URL: https://doi.org/10.
1063/5.0021106.

[12] Vidhi Singrodia, Anirban Mitra, and Subrata Paul. “A Review on Web Scrap-
ping and its Applications”. In: 2019 International Conference on Computer
Communication and Informatics (ICCCI). 2019, pp. 1–6. DOI: 10.1109/ICCCI.
2019.8821809.

39

https://en.wikipedia.org/wiki/Web_scraping
https://en.wikipedia.org/wiki/Web_crawler
https://en.wikipedia.org/wiki/Data_collection
https://en.wikipedia.org/wiki/Googlebot
https://en.wikipedia.org/wiki/Bingbot
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Natural_language_processing
https://doi.org/10.1109/FIE44824.2020.9274270
https://en.wikipedia.org/wiki/Word_embedding
https://en.wikipedia.org/wiki/Lexical_resource#Lexical_database
https://en.wikipedia.org/wiki/Lexical_resource#Lexical_database
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
https://doi.org/10.1063/5.0021106
https://pubs.aip.org/aip/apr/article-pdf/doi/10.1063/5.0021106/13895961/041317_1_online.pdf
https://pubs.aip.org/aip/apr/article-pdf/doi/10.1063/5.0021106/13895961/041317_1_online.pdf
https://doi.org/10.1063/5.0021106
https://doi.org/10.1063/5.0021106
https://doi.org/10.1109/ICCCI.2019.8821809
https://doi.org/10.1109/ICCCI.2019.8821809

40 BIBLIOGRAPHY

[13] H.L. Shashirekha and S. Murali. “Ontology Based Structured Representa-
tion for Domain Specific Unstructured Documents”. In: International Con-
ference on Computational Intelligence and Multimedia Applications (ICCIMA
2007). Vol. 1. 2007, pp. 50–54. DOI: 10.1109/ICCIMA.2007.255.

[14] Vlad Krotov and Leiser Silva. “Legality and Ethics of Web Scraping”. In:
Sept. 2018.

[15] DataDome. Web Scraping Protection: How to Prevent Scraping & Crawler Bots.
DOI: 10.1109/ICCIMA.2007.255. URL: https://datadome.co/learning-
center/scraper-crawler-bots-how-to-protect-your-website-against-
intensive-scraping/. (accessed: 31.03.2023).

[16] Writing for Success. University of Minnesota Libraries, 2015. ISBN: 978-1-
946135-28-5. DOI: 10.24926/8668.2801. URL: https://open.lib.umn.
edu/writingforsuccess/chapter/11- 4- strategies- for- gathering-
reliable-information/. (accessed: 31.03.2023).

[17] Cython. URL: https://github.com/cython/cython.

[18] General Assembly. “Sustainable development goals”. In: SDGs Transform
Our World 2030 (2015), pp. 6–28.

[19] Tom B. Brown et al. Language Models are Few-Shot Learners. 2020. arXiv:
2005.14165 [cs.CL].

[20] Hugo Touvron et al. LLaMA: Open and Efficient Foundation Language Models.
2023. arXiv: 2302.13971 [cs.CL].

[21] S. Sarawagi. Information Extraction. Foundations and trends in databases.
Now Publishers, 2008. ISBN: 9781601981882. URL: https://books.google.
es/books?id=AqHpDoYPjLQC.

[22] Plamen Milev. “Conceptual Approach for Development of Web Scraping
Application for Tracking Information”. In: Economic Alternatives 3 (2017),
pp. 475–485. URL: https://www.unwe.bg/uploads/Alternatives/10_Alt_
english_br_3_2017.pdf.

[23] Shivam Agarwal. “Data Mining: Data Mining Concepts and Techniques”.
In: 2013 International Conference on Machine Intelligence and Research Advance-
ment. 2013, pp. 203–207. DOI: 10.1109/ICMIRA.2013.45.

[24] Hussain Ahmad Madni, Zahid Anwar, and Munam Ali Shah. “Data min-
ing techniques and applications — A decade review”. In: 2017 23rd Inter-
national Conference on Automation and Computing (ICAC). 2017, pp. 1–7. DOI:
10.23919/IConAC.2017.8082090.

[25] Dirk Merkel. “Docker: lightweight linux containers for consistent develop-
ment and deployment”. In: Linux journal 2014.239 (2014), p. 2.

[26] van Deursen A. Mesbah A. and Lenselink. “Crawling AJAX-Based Web Ap-
plications through Dynamic Analysis of User Interface State Changes”. In:
2012. DOI: 10.1145/2109205.2109208. URL: https://people.ece.ubc.ca/
amesbah/resources/papers/tweb-final.pdf.

[27] Zhiqiang Zhong, Cheng-Te Li, and Jun Pang. “Reinforcement learning en-
hanced heterogeneous graph neural network”. In: arXiv preprint arXiv:2010.13735
(2020).

https://doi.org/10.1109/ICCIMA.2007.255
https://doi.org/10.1109/ICCIMA.2007.255
https://datadome.co/learning-center/scraper-crawler-bots-how-to-protect-your-website-against-intensive-scraping/
https://datadome.co/learning-center/scraper-crawler-bots-how-to-protect-your-website-against-intensive-scraping/
https://datadome.co/learning-center/scraper-crawler-bots-how-to-protect-your-website-against-intensive-scraping/
https://doi.org/10.24926/8668.2801
https://open.lib.umn.edu/writingforsuccess/chapter/11-4-strategies-for-gathering-reliable-information/
https://open.lib.umn.edu/writingforsuccess/chapter/11-4-strategies-for-gathering-reliable-information/
https://open.lib.umn.edu/writingforsuccess/chapter/11-4-strategies-for-gathering-reliable-information/
https://github.com/cython/cython
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2302.13971
https://books.google.es/books?id=AqHpDoYPjLQC
https://books.google.es/books?id=AqHpDoYPjLQC
https://www.unwe.bg/uploads/Alternatives/10_Alt_english_br_3_2017.pdf
https://www.unwe.bg/uploads/Alternatives/10_Alt_english_br_3_2017.pdf
https://doi.org/10.1109/ICMIRA.2013.45
https://doi.org/10.23919/IConAC.2017.8082090
https://doi.org/10.1145/2109205.2109208
https://people.ece.ubc.ca/amesbah/resources/papers/tweb-final.pdf
https://people.ece.ubc.ca/amesbah/resources/papers/tweb-final.pdf

BIBLIOGRAPHY 41

[28] Shantian Yang et al. “IHG-MA: Inductive heterogeneous graph multi-agent
reinforcement learning for multi-intersection traffic signal control”. In: Neu-
ral Networks 139 (2021), pp. 265–277. ISSN: 0893-6080. DOI: https://doi.
org/10.1016/j.neunet.2021.03.015. URL: https://www.sciencedirect.
com/science/article/pii/S0893608021000952.

[29] Playwright for Python. URL: https://github.com/microsoft/playwright-
python.

[30] Steven Bird, Ewan Klein, and Edward Loper. Natural Language Processing
with Python: Analyzing Text with the Natural Language Toolkit. O’Reilly Media,
Inc., 2009.

[31] Matthew Honnibal et al. “spaCy: Industrial-strength Natural Language Pro-
cessing in Python”. In: (2020). DOI: 10.5281/zenodo.1212303.

[32] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep
Learning Library”. In: Advances in Neural Information Processing Systems 32.
Ed. by H. Wallach et al. Curran Associates, Inc., 2019, pp. 8024–8035. URL:
http://papers.neurips.cc/paper/9015- pytorch- an- imperative-
style-high-performance-deep-learning-library.pdf.

[33] Martín Abadi et al. TensorFlow, Large-scale machine learning on heterogeneous
systems. Nov. 2015. DOI: 10.5281/zenodo.4724125.

[34] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12 (2011), pp. 2825–2830.

[35] Selenium. URL: https://github.com/SeleniumHQ/selenium.

[36] Scrapy. URL: https://github.com/scrapy/scrapy.

[37] R.P. Hudson. coreferee: coreference resolution for multiple languages. URL: https:
//github.com/msg-systems/coreferee.

[38] Vincent Ng and Claire Cardie. “Improving machine learning approaches
to coreference resolution”. In: Proceedings of the 40th annual meeting of the
Association for Computational Linguistics. 2002, pp. 104–111.

[39] NeuralCoref 4.0: Coreference Resolution in spaCy with Neural Networks. URL:
https://github.com/huggingface/neuralcoref.

[40] Rada Mihalcea and Paul Tarau. “TextRank: Bringing Order into Text”. In:
Proceedings of the 2004 Conference on Empirical Methods in Natural Language
Processing. Barcelona, Spain: Association for Computational Linguistics, July
2004, pp. 404–411. URL: https://aclanthology.org/W04-3252.

[41] Paco Nathan. PyTextRank, a Python implementation of TextRank for phrase ex-
traction and summarization of text documents. 2016. DOI: 10.5281/zenodo.
4637885. URL: https://github.com/DerwenAI/pytextrank.

[42] The HDF Group. Hierarchical Data Format, version 5. https://www.hdfgroup.org/HDF5/.
1997.

https://doi.org/https://doi.org/10.1016/j.neunet.2021.03.015
https://doi.org/https://doi.org/10.1016/j.neunet.2021.03.015
https://www.sciencedirect.com/science/article/pii/S0893608021000952
https://www.sciencedirect.com/science/article/pii/S0893608021000952
https://github.com/microsoft/playwright-python
https://github.com/microsoft/playwright-python
https://doi.org/10.5281/zenodo.1212303
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.5281/zenodo.4724125
https://github.com/SeleniumHQ/selenium
https://github.com/scrapy/scrapy
https://github.com/msg-systems/coreferee
https://github.com/msg-systems/coreferee
https://github.com/huggingface/neuralcoref
https://aclanthology.org/W04-3252
https://doi.org/10.5281/zenodo.4637885
https://doi.org/10.5281/zenodo.4637885
https://github.com/DerwenAI/pytextrank

APPENDIX A

Sustainable Development Goals

On 25 September 2015, world leaders
adopted a set of global goals to eradi-
cate poverty, protect the planet and en-
sure prosperity for all as part of a new
sustainable development agenda. Each
goal has specific targets to be achieved
over the next 15 years.

Figure A.1: United Nations’ 17
Sustainable Development Goals

chart.

The Sustainable Development Goals decided to follow are the following:

1. No Poverty

2. Zero Hunger

3. Good Health and Well-Being

4. Quality Education

5. Gender Equality

6. Clean Water and Sanitation

7. Affordable and Clean Energy

8. Decent Work and Economic Growth

9. Industry, Innovation, and Infrastructure

10. Reduced Inequalities

11. Sustainable Cities and Communities

43

44 Sustainable Development Goals

12. Responsible Consumption and Production

13. Climate Action

14. Life Below Water

15. Life on Land

16. Peace, Justice and Strong Institutions

17. Partnerships

A.1 Our work’s alignment

With these sustainable goals in mind, we can create a table to show how our work
aligns with this sustainable goals towards the global prosperity.

Sustainable Development
Goals

High Medium Low Not Applicable

SDG 1. No Poverty ●

SDG 2. Zero Hunger ●

SDG 3. Good Health and
Well-Being ●

SDG 4. Quality Education ●

SDG 5. Gender Equality ●

SDG 6. Clean Water and
Sanitation ●

SDG 7. Affordable and
Clean Energy ●

SDG 8. Decent Work and
Economic Growth ●

SDG 9. Industry, Innovation,
and Infrastructure ●

SDG 10. Reduced Inequalities ●

SDG 11. Sustainable Cities
and Communities ●

SDG 12. Responsible Consumption
and Production ●

SDG 13. Climate Action ●

SDG 14. Life Below Water ●

SDG 15. Life on Land ●

SDG 16. Peace, Justice and
Strong Institutions ●

SDG 17. Partnerships ●

Table A.1: This work alignment with the UN’s Sustainable Development Goals

A.1 Our work’s alignment 45

As seen in Table A.1, we believe our work best aligns with mainly four of the
development goals:

4. Quality Education: Our tool has the potential to promote quality educa-
tion by providing users with easy access to information and data. We be-
lieve that by offering a tool that enables individuals, regardless of their re-
sources, to pursue learning and broaden their knowledge horizons, we can
contribute to a more equitable and inclusive education system.
For instance, imagine a student who wants to delve into a particular sub-
ject but lacks the necessary resources. With our tool, they can effortlessly
explore a wealth of information, educational materials, and data that can
enhance their understanding. We believe that by leveling the playing field
and facilitating equal access to knowledge, we can promote quality educa-
tion for all.

8. Decent Work and Economic Growth: Our tool seeks to enhance productiv-
ity and efficiency, allowing researchers and professionals to focus on high-
value activities. Through automation and data insights, we believe that
our tool can lead to greater job satisfaction, improved productivity, and re-
duced research time, thereby fostering economic growth and contributing
to decent work opportunities.
Consider a scenario where a research team can automate data extraction
and analysis tasks using our tool. This enables them to dedicate more time
to critical decision-making, innovation, and advancing their field. We be-
lieve that by optimizing workflows and minimizing tedious tasks, our tool
can help professionals to thrive and contribute to their respective industries.

9. Industry, Innovation and Infrastructure: To a lesser extent, we believe that
our work aligns with this goal because it is able to enhance the productivity
and efficiency of jobs that require research, which will create a conducive
environment for innovation to thrive. We firmly believe that research plays
a fundamental role in driving innovation, and many jobs in this domain are
closely tied to innovative advancements. Our tool, by automating repeti-
tive processes and providing valuable data insights, supports researchers
and professionals in their quest for new ideas and groundbreaking solu-
tions.
For example, by utilizing our tool’s capabilities, a team of scientists can ex-
pedite their research process, gather relevant information more efficiently,
and make informed decisions, leading to breakthrough innovations that
contribute to the advancement of industries and overall economic growth.

10. Reduced Inequalities: We also believe that our tool can contribute to re-
ducing inequalities by providing a platform that promotes inclusivity and
equitable access to resources. By breaking down information silos and pro-
moting knowledge-sharing among diverse communities, we can narrow the
knowledge gap as mentioned in point 4. Quality education, help individu-
als from different backgrounds, and even fight malicious or careless miss-
information that can promote hate towards minorities.
Imagine a situation where our tool allows individuals to gather and ana-
lyze data from various sources, regardless of their geographical location or

46 Sustainable Development Goals

social status. This democratization of information may help them to stay
informed and make well-informed decisions. We believe that with this, we
can address disparities, challenge misinformation, and promote a more eq-
uitable society.

APPENDIX B

System configuration

The system configuration phase of the GDGTool involves setting up the neces-
sary environment to run the tool smoothly.
Thanks to its containerization using Docker, the system requirements are mini-
mal and the setup process is simplified.

To run our tool, the user will only need Docker installed and 15 GB of disk space.
Docker provides a lightweight and portable environment that encapsulates all the
dependencies and configurations needed for the GDGTool to run effectively. This
means that users only need to have Docker installed on their operating system of
choice, which can be achieved by executing a single command.

B.1 Initialization phase

The initialization phase of the GDGTool streamlines the setup process from the
moment Docker is installed until the visual browser becomes accessible. Once
Docker is successfully installed, the GDGTool utilizes pre-configured Docker im-
ages and containers to automatically set up the required components and de-
pendencies. These containers include all the necessary software, libraries, and
configurations needed for the tool to function effectively.

For Linux users, we provide two bash scripts that run the tool. One only
runs the browser GUI, but for more technical tasks and to run custom scripts we
provide a second script that launches the tool but also connects to the console
inside the container.

B.2 Browser GUI usage

Once the GDGTool’s browser GUI is open, users can navigate websites like a reg-
ular user while also accessing the tool’s macros. These macros automate common
data extraction tasks, such as extracting keywords from the current page. By com-
bining manual navigation with automated actions, users can efficiently gather
data and perform advanced processing operations without complex scripting.

47

48 System configuration

This user-friendly approach enhances productivity and accessibility, making data
harvesting more accessible to users of varying technical expertise.

APPENDIX C

Example use case

In this appendix, we present a comprehensive use case that has served as a guid-
ing scenario throughout the development of our data scraping tool. This use case
exemplifies the practical application and benefits of our tool in a specific domain,
providing a real-world context for understanding its capabilities and potential.

Throughout the development process, we have focused on addressing the needs
and challenges of this particular use case, tailoring our tool’s features and func-
tionalities to meet its requirements effectively, while keeping a broader view to
also help generalize the tool to other use cases.

C.1 Definition of the use case

The use case we have selected for our data scraping tool revolves around a sce-
nario where an expert user, working in a team of non-expert users, seeks to au-
tomate data processing in their regular internet searches. This use case specifi-
cally caters to situations where a team or organization relies heavily on gathering
and analyzing information from various online sources to support their decision-
making processes.

In this use case, the expert user possesses in-depth knowledge and expertise in
data scraping techniques, web technologies, and data processing methodologies.
Their role is to lead the team and provide guidance on implementing efficient and
effective data gathering and processing strategies. The expert user understands
the intricacies involved in accessing and extracting relevant data from different
websites, and they possess the skills to navigate the complexities of web scraping
tools and technologies.

On the other hand, the non-expert users in the team are individuals who may
lack the technical know-how or programming skills to implement data scraping
techniques independently. However, they recognize the importance of incorpo-
rating data-driven insights into their work and understand the potential value of
automating data processing in their regular internet searches. Their primary goal
is to enhance their productivity and decision-making capabilities by harnessing
the power of data through the use of a user-friendly and intuitive data scraping

49

50 Example use case

tool.

The collaboration between the expert user and the non-expert users creates a sym-
biotic relationship, where the expert user’s knowledge and expertise are lever-
aged to develop a data scraping tool that caters to the specific needs and require-
ments of the non-expert users. The expert user serves as a facilitator, guiding the
development process and ensuring that the tool is user-friendly, accessible, and
capable of delivering accurate and reliable results.

C.2 Requirements and issues from the non-expert
users

The non-expert users in our use case often face a common challenge: how to
interact with the tool in a way that aligns with their skill set and avoids over-
whelming them with complex technical details. We acknowledge that these users
may not be familiar with programming concepts or the underlying structure of
the tool, making it crucial to design an interface that is intuitive and user-friendly.

To address this issue, we recognize the need to simplify the menus and controls
as much as possible. Instead of presenting the users with a plethora of techni-
cal options, we can provide a streamlined interface that focuses on the essential
functionalities they require. For instance, using buttons that trigger pre-defined
macros or actions can be an effective approach. These buttons can be labeled with
descriptive and user-friendly terms, such as "Extract Data" or "Perform Analysis".
By abstracting the technical complexities behind these actions, non-expert users
can interact with the tool effortlessly, without the need to understand the under-
lying programming structure.

Additionally, providing contextual guidance within the tool can be immensely
helpful for non-expert users. A partial result of each executed macro can be show
next to the buttons in the interface. This way, users can gain a better understand-
ing of how to utilize each feature without feeling overwhelmed or confused.

C.3 Requirements and issues from the expert user

While the non-expert users provide input regarding the desired functionalities, it
is the expert user who will be responsible for implementing and managing these
functionalities within the tool, and the one that will encounter the issues of the
implemented functionalities.

One of the key requirements emphasized by the expert user is the performance of
the tool. As the non-expert users may require processing large amounts of data, it
is crucial that the tool is designed to handle such volumes efficiently. The expert
user recognizes the importance of optimizing data scraping and processing oper-
ations to ensure timely and seamless execution, enabling the non-expert users to

C.4 Issue addressing 51

accomplish their tasks without unnecessary delays.

Non-expert users will require the tool to also process the data generated and for-
mat it to the format they require. The expert has the task to allow the extraction
of multiples types of data, and perform a processing step on the data generated,
per website crawled. At the end, the tool will be required to do an additional
processing step where the data will be formatted, and the expert must take into
acount that the format may change.

Another essential aspect for the expert user is the flexibility to make fast changes
to the tool’s functionality. While the non-expert users may provide initial re-
quirements, it is not uncommon for additional features or modifications to be
requested during the tool’s usage. Therefore, the expert user needs a develop-
ment environment that supports quick iterations and easy integration of new
functionalities without requiring extensive relearning or rewriting of the entire
tool’s codebase. This flexibility enables the expert user to adapt the tool to evolv-
ing needs and incorporate user feedback efficiently.

Additionally, the non-expert users raise the importance of allowing users to en-
able or disable specific functionalities of the tool. Not all users may require or
desire every feature provided by the tool. By incorporating a modular design and
allowing users to customize the tool’s functionalities, the expert user ensures that
the tool remains focused and tailored to the specific needs of individual users.
This customization capability enhances user experience and avoids unnecessary
complexity for users who may only require a subset of the tool’s capabilities.

Furthermore, the expert user acknowledges the need for deploying the tool in
different systems while ensuring security. The tool should be designed to run re-
liably on various operating systems and environments, accommodating the pref-
erences and requirements of different users. It should also adhere to security best
practices, protecting sensitive data and preventing unauthorized access. By con-
sidering these aspects, the expert user aims to ensure that the tool is versatile,
adaptable, and provides a secure environment for users to perform their data
gathering tasks.

C.4 Issue addressing

To achieve the requirements and address the issues faced by both expert and
non-expert users in our real case, several decisions were made during the devel-
opment of the tool.

• For non-expert users, one of the key requirements is simplicity in interact-
ing with the tool, without compromising the availability of all necessary
functionalities.
We have acknowledged that non-expert users may feel overwhelmed by an
interface that resembles the programming structure of the tool. To address
this, we have focused on simplifying the user interface by incorporating in-
tuitive buttons and controls that enable easy access to the tool’s capabilities.

52 Example use case

By streamlining the user interface, non-expert users can interact with the
tool in a more user-friendly manner, reducing the learning curve and en-
abling them to utilize the tool without requiring extensive programming
knowledge. This decision caters to the non-expert users’ need for simplic-
ity and accessibility, empowering them to automate data processing tasks
in their regular internet searches efficiently.

• For the expert user, several requirements were identified based on their spe-
cific needs. Firstly, the tool must exhibit high performance to handle the
large amounts of data that the expert user may encounter in their tasks.
By developing a fast, modular, and scalable framework, we have ensured
that the tool can efficiently extract data from various websites and formats,
while optimizing speed and execution. This performance-oriented approach
allows expert users to process and analyze data swiftly, enabling them to
work with extensive tasks effectively. As an added benefit, we performed
Cython compilation, that makes the tool faster in some cases, which further
helps to tackle the performance requirement.

• Another important requirement for the expert user is the ability to make
fast changes to the functionality of the tool. We recognized that the expert
user often require flexibility and adaptability in their workflows, without
the need for extensive relearning of the tool. To address this, we have de-
signed the tool with a modular architecture that facilitates the addition of
new functionalities or the modification of existing ones. The expert user
can easily extend the tool’s capabilities, integrate their optimized function-
alities, and customize its behavior to align with their specific requirements
via the Extensions for critical code and Plugins, for faster developed tools.

• Additionally, we have incorporated the option for the expert user to enable
or disable specific functionalities of the tool before starting a new task. This
capability allows non-expert users to fine-tune the tool’s behavior, selecting
only the functionalities that are relevant to their current task. By enabling
this level of customization in both Plugins and Extensions, the tool becomes
a versatile asset, offering control over its features and ensuring that they
can focus on the specific aspects of data gathering that are essential to their
objectives.

• In terms of deployment and security, the expert user often need the ability to
run the tool on different systems while ensuring the tool’s security. To fulfill
this requirement, we have implemented measures such as Docker, which
allows for secure and isolated execution environments. By using Docker,
the expert user can deploy the tool across various systems with confidence,
knowing that the automated processes are contained within secure contain-
ers, minimizing the risk of unauthorized access or interference.

C.4 Issue addressing 53

Thanks to

, I would like to take this opportunity to express my gratitude to Encarna Segarra
Soriano and Lluís Felip Hurtado for their guidance and support throughout the
writing of this work.

I would also like to extend my gratitude to all the wonderful teachers at Uni-
versitat Politècnica de València. Each one of them has shaped me as the person
I am, instilling in me to search and learn more about our field and providing me
with a really valuable knowledge and skills. I am truly fortunate to have had the
privilege of being their student.

Thank you all for your tireless efforts and for making all these years so special.

55

	Contents
	List of Figures
	List of Tables
	List of algorithms
	Introduction
	Motivation
	Objectives
	Sustainable Development Goals
	Related Coursework
	Structure of the report

	Literature review
	Review of the existing research on data scraping tools and techniques
	Identification of gaps in the existing literature and areas for further research
	Discussion on the strengths and limitations of these tools
	Approaches to the overcoming of the weaknesses

	Design and implementation
	Description of the design and the architecture
	Technologies used
	How does the tool work

	Evaluation and testing
	Methods and metrics
	Results of the evaluation
	Challenges faced

	Conclusions
	Bibliography
	Sustainable Development Goals
	Our work's alignment

	System configuration
	Initialization phase
	Browser GUI usage

	Example use case
	Definition of the use case
	Requirements and issues from the non-expert users
	Requirements and issues from the expert user
	Issue addressing

