

Escola Tècnica Superior d’Enginyeria Informàtica

Universitat Politècnica de València

Recommender Models for items in the
game ‘Destiny 2’

Trabajo Fin de Grado

Grado en Ingeniería Informática

Autor: Jorge Jiménez García

Tutor: Rajesh Jaiswal, Eva Onaindia de la Rivahererra

2023/2024

TU Dublin, Tallaght Campus

BSc Project

Recommender models for items in the game

’Destiny 2’

Jorge Jiménez García
Department of Computing

Supervised by

Dr. Rajesh Jasiwal
Department of Computing

30 April 2023

Declaration

I hereby certify that the material, which I now submit for assessment on the
programmes of study leading to the award of Bachelor of Science, is entirely my
own work and has not been taken from the work of others except to the extent
that such work has been cited and acknowledged within the text of my own work.
No portion of the work contained in this thesis has been submitted in support of
an application for another degree or qualification to this or any other institution.

———————————–
Jorge Jiménez García

30 April 2023

2

Acknowledgements

To my supervisor Rajesh Jasiwal for what amounts to infinite patience. To family,
friends and everyone who is, was and will always there.

9th of August, 2019:
4, 3, 2, 1...

Don’t jump, don’t jump!

3

List of Figures

1 A personal copy of the ’Long Shadow’ item, with the random traits
’Field Prep’ and ’Triple Tap’ . 10

2 ’Long Shadow’ perk selection . 11
3 Search strategy diagram . 13
4 Cumulative Sum of ’Global Usage Rate’, ’Lightfall’ dataset 16
5 Decision Tree Confusion Matrix . 21
6 Random Forest Confusion Matrix 22
7 Gradient-boosted Decision Tree Confusion Matrix 22
8 Support Vector Machine Confusion Matrix 23
9 Bernoulli Naive-Bayes Confusion Matrix 23
10 Multi-Layer Perceptron Confusion Matrix 24
11 Confusion Matrix for all items in the ’Season of Seraph’ release.

SVC Model . 27
12 Confusion Matrix for newly-added added items in the ’Season of

Seraph’ release. SVC Model . 27
13 Confusion Matrix for all items in the ’Lightfall’ release. SVC Model 28
14 Confusion Matrix for newly-added items in the ’Lightfall’ release.

SVC Model . 28
15 Confusion Matrix for all items in the ’Season of Seraph’ release.

Decision Tree Model . 29
16 Confusion Matrix for newly-added added items in the ’Season of

Seraph’ release. Decision Tree Model 29
17 Confusion Matrix for all items in the ’Lightfall’ release. Decision

Tree Model . 30
18 Confusion Matrix for newly-added items in the ’Lightfall’ release.

Decision Tree Model . 30
19 Share of the dataset for all Weapon Types. ’Plunder’ dataset . . . 33
20 Share of the dataset of Weapon Types grouped by ammunition

type. ’Plunder’ dataset . 35
1 Correlation heatmap for all features in the dataset 46
2 Final Decision Tree Layout. 47

4

List of Tables

1 Decision Tree tuned hyperparameters 20
2 Gradient-boosted Decision Tree tuned hyperparameters 20
3 Support Vector Classifier tuned hyperparameters 20
4 Multi-Layer Perceptron tuned hyperparameters 20
5 Performance metrics for all models 21
6 Performance metrics for all Cross-Release Sets. SVC Model 26
7 Performance metrics for all Cross-Release Sets. Decision Tree Model 31
1 Description of common features and their effect on an item. Taken

from in-game descriptions . 48

5

Contents

1 Introduction 9

1.1 The problem domain . 9
1.2 Research question . 10
1.3 Methodology . 10

2 Collection and discussion on Data 12

2.1 Data Collection . 12
2.1.1 Collection Algorithm . 12
2.1.2 Personally Identifiable Information 14

2.2 Data Structure and Pre-processing 14

3 Literature Review 16

3.1 Previous Work . 16
3.2 Candidate Models . 17
3.3 Generation of Synthetic Data . 18

4 Model Development and Performance 18

4.1 Performance Metrics . 18
4.2 Model Parameter tuning . 19
4.3 Model Performance . 21

5 Evaluation 24

5.1 Metric-driven Model Selection . 24
5.2 Cross-Release Evaluation . 25

5.2.1 Data for new releases . 25
5.2.2 Performance . 26

6 Model Choice 31

7 Bias Report 32

7.1 Selection Bias . 32
7.1.1 From the data collection process 32
7.1.2 From the game’s internal match-making 32

6

7.2 Automation Bias . 32
7.2.1 From the API reporting . 32

7.3 Group Attribution Bias . 33
7.3.1 From items with certain features 33

7.4 Impact of and Conclusion to the Bias Assessment 34

8 Model Card 37

9 Production 39

10 Conclusion and Future Work 39

10.1 Conclusion . 39
10.2 Future Work . 40

Annex 46

Figures . 46
Tables . 48

7

Abstract

Currently, players of the popular video-game ’Destiny 2 ’ waste an excessive amount
of time skimming through their items trying to figure out if they are worth using or
not. To fill this unexplored niche, and with the goal of assisting them and reducing
the time spent, models for the area of popularity prediction and item recommend-
ation are explored. An analysis of the problems of data for this particular domain
are laid out. A novel approach of using a heuristic metric is developed for scoring
and assessing performance for this problem context. Hyperparameter tuning is
carried out for all proposed models. Models are proposed and then tested on data
incoming from future, unseen game releases, obtaining good results when predict-
ing items in future releases. Potential biases present in the model are discussed,
and a Model Card is provided. Future work is laid out.

8

1 Introduction

1.1 The problem domain

In the popular video game ‘Destiny 2’, available for all modern gaming platforms,
players construct loadouts of 3 weapons to participate in different multiplayer
activities, with a multitude of weapons and items with which to duel each other in
the player-vs-player activities (PvP), or as it is referred to in-game, The Crucible,
where players engage in casual 6v6 team-based combat.

Users obtain these items from a variety of in-game activities with ranging amounts
of difficulty, and depending on the activity, with up to five other players. Items
appear with randomized attributes, and players spend countless hours repeating
activities, or ’grinding’, to obtain their perfect copy of items.

However, the vast range of possibilities on them, be it their stats or possible attrib-
utes makes players often overwhelmed with choice when picking a good loadout.
This burden is especially acute when new sets of items are released into the game.
Whereas for current items the playerbase has already figured out which items are
good or not, for newly released additions, that ’figuring out’ process can take a
very long time. An evidence of this is Reddit’s r/sharditkeepit subforum1, where
players all over the world ask others about how good their items are or if they are
at all worth keeping. The subforum counts close to 63k players amongst its ranks.

In the game, items are generally randomized. This means they come with some
modifiers to the base attributes of the item, which are generally not that important
since most weapons come with the same modifiers available to the. Importantly,
they come with 2 random traits that generally alter the behaviour of the item.

As an example, pictured below in Figure 1 a personal copy of the ‘Long Shadow’
sniper rifle. For the Player Versus Player (or PvP) environments of interest, this
would generally be agreed to be a bad version of the weapon.

These traits, or perks as they are commonly referred to, are what players generally
look at to see if a weapon is good or not. An example of the available traits to the

1https://reddit.com/r/sharditkeepit

9

https://reddit.com/r/sharditkeepit

Figure 1: A personal copy of the ’Long Shadow’ item, with the random traits
’Field Prep’ and ’Triple Tap’

‘Long Shadow’ which has a fair amount of available traits are shown below in Fig.
2 marked in red and blue respectively. The other columns represent stat modifiers
mentioned previously and are generally the same among all weapon types.

1.2 Research question

Several community websites track weapon ‘popularity’, however they are ranked by
their performance, meaning a weapon that tends to be more effective at defeating
opposing players is deemed as ‘more popular’ than others. That stat can often be
misleading, since it does not really measure popularity, but effectiveness. In an
effort to learn of ways to know which items are actually popular, even if they are
less effective, the question of why an item is actually popular naturally arises. In
turn, trying to predict how popular a weapon is is a clear next step. This formed
the following research question:

Given an item’s properties, can it be determined how popular it is?.

1.3 Methodology

To tackle this, there will first be a discussion on how to collect the data necessary
to undertake this project, as well as an analysis of general caracteristics of the
collected data and some relevant particularities in Section 2. With information

10

Figure 2: ’Long Shadow’ perk selection

about the data in hand, literature review and research will be performed on how
to solve potential problems, read up on previous or similar attempts at this kind
of problem, as well as model types which have shown promising results in Section
3. These models will then be tuned, developed and evaluated in order to judge
which of them is best at solving this particular problem as part of Sections 4 and
5. With a model chosen, potential biases present in the process will be discussed
and a model card elaborated. To conclude, a summary of the development and
future lines of work will be outlined in the closing Section 10.

11

2 Collection and discussion on Data

2.1 Data Collection

2.1.1 Collection Algorithm

The dataset is manually gathered using the available set of public API services the
game developers provide2.

The strategy is based on a snowballing search, illustrated in Figure 3. To develop
this gathering script, Python was chosen due to its strong set of pre-existing librar-
ies as well as ease of development. In particular, the ‘json’, ‘requests’ and ‘pickle’
modules were a big draw for manipulating API responses, performing queries and
storing gathering results respectively, as well as integrating with all common ML
frameworks.

The search process is divided into three stages: ’Stage 1’ is dedicated to getting
new, unseen player IDs to query. To do this, IDs found from previous iterations or
the origin list are used and compared with IDs in the ‘closed’ player ID set, which
have already been processed. If they have not been processed yet (meaning they
are not present in the ’closed’ set), the API is queried for the player’s information
and it is passed to the next step. Note that if a user has their account set to
private, their information is discarded and repeat with a fresh player ID.

’Stage 2’ gets a set of matches from the user. It uses the player information
obtained from the previous stage to get their in-game characters. Players can
have up to three of them, and each of their character’s data is queried for their
last match played. Since the search can be restricted in time, once the games are
retrieved, they are checked to see if they are within the time interval of interest.
If they are, they are passed on to Stage 3. Otherwise, they are discarded.

’Stage 3’ is dedicated to gathering the metrics to form the dataset. To this end, the
match’s data is inspected and all weapons used throughout the match are logged.
With this information, counters are updated for each unique weapon and their
associated ID. Once complete, the match ID is added to its respective ‘closed’ list.

2https://bungie-net.github.io/multi/index.html

12

https://bungie-net.github.io/multi/index.html

Figure 3: Search strategy diagram
13

This is also the last step of an iteration. If after processing all matches in the queue
the maximum depth has been reached, indicated with the ‘radius’ parameter, the
search is stopped. If not, all players found in the match are added to the ‘open‘
queue and the search is repeated from Stage 1.

Following the stages shown in the diagram, the algorithm works by making use of
an ’open’ queue and a ’closed’ set, where players to be processed are stored, and
those who have already been used for data, respectively.

2.1.2 Personally Identifiable Information

To comment on privacy concerns of this search strategy, no personally identifiable
information is recorded or accessed at any moment in time. When obtaining player
information, no emails, names or phone numbers are contained in the returned
information, as the API design does not allow it. Only tangential information
linked to a person is accessed (Username and Platform), but even so it is never
stored in the dataset and is only used for logging purposes. Items IDs are then
used to query game databases to extract their in-game stats and attributes.

2.2 Data Structure and Pre-processing

The dataset consists of 470 item instances consisting of 172 features.

Items present attributes describing their archetype, sub-archetype and ammunition
type. Additionally, they present attributes representing their capability in battle,
for instance how stable or their fire rate, among others. The majority of weapon
classes have common attributes, but some, such as Rocket and Grenade launchers
have attributes that are only relevant to that particular class, like ’Blast Radius’.
In the dataset, these are all represented and filled with the value �1 for attributes
that are not applicable or have no value. A description of common attributes is
present in Annex Table 1.

More importantly is the way of representing perks, which, as mentioned in the in-
troduction, are expected to be the main drivers in predicting popularity. With the
goal of keeping perk data as categorical, these are represented One-Hot-Encoding,

14

resulting in a sparse matrix where the X-axis row represent the perk, and the Y-
axis column the item, for the perk data. This unfortunately means our data has
very high dimensionality. To mitigate this, a distinction between these perks, that
is, if they can appear on the left or right slot of an item, is disregarded and instead
they are folded into one, representing if they can appear on any of the two slots.

As for other pre-processing steps of these attributes, normalization is not required,
since all values have existing bounds discussed in Annex Table 1). Other attributes,
such as the weapon sub-class or archetype is label encoded, since despite the fact
that this is a categorical variable, there is a hierarchical relationship among the
categories (Mukherjee, Garg and Roy 2023). This hierarchical nature is a result of
the overall stats an item may have, which are correlated with certain categorical
variables, meaning there is a presence of multicolinearity in our data.

Following up on the study of multicolinear data, a heatmap of correlation can
be found in Annex Figure 1. Evaluating multicolinearity by this graph, some
relationships can be seen in the upper left corner of the heatmap as expected from
the ’Archetype’ variable denoting a relation between others such as ’Stability’,
’Range’ or ’Handling’ among others, as mentioned in 1. Next, the column for the
Y-axis features ’Swing Speed’ and ’Guard Resistance’ can be seen to display a few
bright correlation points with several of the perks lower down in the X-axis of the
matrix. This denotes perks that are only found on Swords, which are the only
weapon types to have values different to the null indicator �1 for these numerical
features. This also explains the clear correlation ’square’ forming alongside the
diagonal between these two aforementioned numerical variables.

Back to label encoding, this is the same process and rationale to create the three
target classes: ’Popular’, ’Niche’ and ’Unpopular’, parting from the Global Usage
Rate (GUR), a percentage representing how many times out of all items seen this
item was detected.

As seen in Figure 4, there is a sharp increase in the sum of popularity for the highest
10%, which then grows slower until the 50% mark and goes on to grow very slowly
onwards. These changes in slope are used to define the classes, where ’Popular’
is assigned to the green coloured section in Figure 4 - items in the top 10% of

15

Figure 4: Cumulative Sum of ’Global Usage Rate’, ’Lightfall’ dataset

popularity, and so on for ’Niche’ and ’Unpopular’. Following the aforementioned
rationale by Mukherjee, Garg and Roy 2023, this categorical target variable is
label encoded to preserve the hierarchy between the classes.

3 Literature Review

3.1 Previous Work

Much work has been done in the area of recommendation, but specifically for
video-games, research seems to be scarce, with the majority of it focused on re-
commending games themselves instead of using them within the game.

For recommender systems for items, Looi et al. (2019) has a similar goal to this
project’s for a different game or problem domain. They used Rule-Based systems
as well as Logistic Regression to good results. Bertens et al. (2018) focus their
recommendations on micro-transactions or sale of items, making use of Extremely-
Randomized Trees (ERT) to great results when predicting the next item to be
purchased by a player.

16

For ’Destiny’ in particular, Joshi et al. (2019) produce a system collecting and as-
sessing a wide range of factors of teams of players aiming to give recommendations
for improvement. This included a section related to item recommendations but
it was from the standpoint of modifications a player might do to improve their
previous results, not as a general recommendation, and took features outside of
the ambit of the item itself to achieve them. Drachen et al. (2016) make use of
item usage data for profiling players and categorizing them based on their item
usage.

3.2 Candidate Models

On the topic of with model selection, some structure in the data makes it suitable
for certain models over others, as well as some expected or desirable traits for our
final model.

Firstly, since the main problem of choosing an item is the vast amount of possib-
ilities for one, it would be of interest to gain an understanding of why an item is
considered popular. This makes explainability a desired trait of our model. For
this aspect, a Decision Tree is proposed on the basis of its inherent explainability
(Blanco-Justicia and Domingo-Ferrer 2019).

Furthermore, one would expect that different criteria are used to decide on different
kinds of items. This type of decision making process resembles the Ensemble family
of models, and from these a Random Forest model is chosen, for which some model-
specific techniques have been developed to attempt to understand its predictions
(Sepiolo and Ligęza 2022).

There has been much work on the topic of popularity prediction. In Trzciński and
Rokita 2017, Support Vector-based models were successfully used to predict the
popularity of online videos. It is noted however, that the exact type of Support
Vector model proposed in the paper is not applicable for the purposes of this
project since it is explicitly suited for video-based content. Additionally, models
that can easily overfit are of interest thanks to works by Jaderberg et al. (2017)
stating that models may benefit from fitting to an entire population rather than
a sample in terms of generalization of a model. Despite the fact that this refers to

17

NN-development, it is still worth assessing for traditional models.

As discussed previously in Section 2.2, our data presents the problem of having
low sample size and high dimensionality. Work on data presenting this issue has
been done. Liu et al. 2017 show workings on a problem of these characteristics
but in general the features-to-samples ratio is not close to the shape of the data
used, which prior to pre-processing presents a 3 to 1 ratio. Kosztyán, Kurbucz
and Katona (2022) state that "The number of features is more than 10 times the
number of samples" as an example of the dimensions of the data matrix. Therefore,
NN-based models are expected to perform poorly due to the small sample size
compared to the feature dimensions.

3.3 Generation of Synthetic Data

The issue of low sample size of data is hard to overcome. For data with features
following a statistical distribution, Fowler et al. 2020 propose the use of Kernel
Density Estimations, however since it is known that the distribution of perks
follows no probability function, and that it would not be possible to accurately
assign a target variable to the generated synthetic sample. This is a general issue
for all studied synthetic data techniques: The target variable cannot be assigned
to the synthetic sample in a way so that it can be known if it is a correct class for
the sample.

4 Model Development and Performance

4.1 Performance Metrics

This being a recommendation system with a class imbalance in the data, accuracy
is not the best metric to study. Accuracy for the two classes that generally should
not be recommended is irrelevant, as long as they do not get misspredicted as
the ’popular’ class. Balanced Accuracy or F1 score may seem apparently better
metrics, but due to the nature of recommendations the accuracy for the ’unpopular’
class is not of interest.

18

With this in mind, a heuristic-driven approach is developed specifically for this
problem context. A previous attempt of using heuristic approach to model scoring
and evaluation is Wu, Flach and Ferri 2007.

Weighted Failed Prediction Credit, or ’WFPC’ is a heuristic metric based on the
principle that the impact misclassifying a ’niche’ as ’popular’ is lesser than mis-
classifying an ’unpopular’ item, being in general the impact of Type I errors being
considered low. The metric is calculated as follows:

WFPC = TPPopular + (1/(AreaNiche + AreaPopular)) ⇤ FPNiche (1)

Where AreaNiche and AreaPopular are, as per Figure 4 and by definition of the
classes, 40% and 10% respectively. This also means that the perfect score for this
metric is 0.1, which is the entire area of the ’popular’ class. TPPopular and FPNiche

are normalized over the size of the dataset and represent a percentage. For these
thresholds, the metric results in:

WFPC = TPPopular + (1/2) ⇤ FPNiche (2)

It is important to note the metric’s maximum value for these thresholds would be
0.5, where items with true labels ’popular’ and ’niche’ are classified as ’popular’.
Optimally, the value would be 0.1, representing only the percentage of ’popular’
items in the dataset and the FPNiche term being 0. Due to this, it is important to
support this with additional observations, such as confusion matrices.

4.2 Model Parameter tuning

The final set of models consists on a Decision Tree, Random Forest ensemble and
Gradient-boosted Decision Tree, a Support Vector Machine Classifier, a Bernoulli
Naive-Bayes Classifier and a dense Neural Network. These were tested with differ-
ent sets of parameters via Grid Search and making use of Stratified 10-fold Cross
Validation, due to the fact that some of the target classes are severely underrepres-
ented. Note that not all models were subject to parameter exploration due to the

19

lack of tunable parameters, as is the case with Bernoulli Naive-Bayes, or the lack
of need for tuning, such as with Random Forests (Probst and Boulesteix 2017),
where a default of 1000 estimators was used.

Grid Search was guided to optimize and pick a best performing model based on
the WFPC metric. The ’plunder’ dataset was used, and models use the sklearn
API (Pedregosa et al. 2011). The set of parameters for each model is present in
Tables 1 to 4.

Parameter Value

Max_features All
Max_depth 20
Min_samples_per_leaf 3

Table 1: Decision Tree tuned hyperparameters

Parameter Value

N_estimators 1000
learning_rate 0.1
Max_features All
Max_depth 5
Min_samples_per_leaf 2

Table 2: Gradient-boosted Decision Tree tuned hyperparameters

Parameter Value

C 50000
Gamma Scale

Table 3: Support Vector Classifier tuned hyperparameters

Parameter Value

Hidden_layer_sizes 200, 200
Validation_fraction 33%
Max_iter 50

Table 4: Multi-Layer Perceptron tuned hyperparameters

20

4.3 Model Performance

Using these tuned parameters for all models, the WFPC metric for each of them
follows in Table 5. Note that metrics were rounded to 5 decimal positions.

Model 10-Fold CV Metric Full Training Metric

Decision Tree 0.05745 0.07553
Random Forest 0.00747 0.02340

Gradient-boosted Decision Tree 0.03151 0.08830
Support Vector Machine 0.03830 0.09149
Bernoulli Naive-Bayes 0.03404 0.06170
Multi-Layer Perceptron 0.01383 0.01702

Table 5: Performance metrics for all models

Additionally, Confusion Matrices for the fully fitted models are also presented in
Figures 5 to 10.

Figure 5: Decision Tree Confusion Matrix

21

Figure 6: Random Forest Confusion Matrix

Figure 7: Gradient-boosted Decision Tree Confusion Matrix

22

Figure 8: Support Vector Machine Confusion Matrix

Figure 9: Bernoulli Naive-Bayes Confusion Matrix

23

Figure 10: Multi-Layer Perceptron Confusion Matrix

5 Evaluation

5.1 Metric-driven Model Selection

With the previously given metrics in Table 5 and the confusion matrices in Figures
5 to 10, two models arise as promising options based on the full training and the
10-Fold Cross Validation results respectively.

The first model is Support Vector Machines. Boasting an excellent accuracy overall
(See Fig. 8) and a remarkable WFPC heuristic metric for full training data, SVC
would be expected to accurately predict item classes across game releases. SVC
is also expected to accurately recommend the ’popular’ class, and although the
intention of the WFPC metric was to credit models recommending ’niche’ items
as popular, SVC presents no misclassification of niche items as popular. It is
important to note that this logic is based on the fact that the model is trained
on the full dataset from a previous release. In particular, for an SVM model with
a high value for the C hyperparameter, this will result in overfitting. However,
this may be a desirable feature considering this will result in a model that closely
represents the environment it was trained in and will probably perform well for

24

game environments similar to the training one. This effect, referred as ’benign
overfitting’, is a potential factor improving Cross-Release evaluation for One-vs-
All Classification SVM variants (Wang, Muthukumar and Thrampoulidis 2021,
Bartlett et al. 2020). Additionally, this overfitting process might help represent
the implicit bias present in the playerbase’s item choices (Shamir 2022).

The second model is Decision Tree. It presents a much higher heuristic metric for
the 10-Fold Cross Validation step, but not as big an improvement when fitted to the
full dataset as its SVM counterpart. Arnould, Boyer and Scornet (2022) mention
overfitting of complex models leading to bad predictive performance to be ’an
afforism’. With this in mind, this model is also proposed for debate. Importantly,
this is known to be true for fully-grown Decision Trees, where this model is not
one of them. Recall Table 1, where the depth of the tree was capped at 20 layers
by the Grid Search process. Regardless, this could result in better performance for
game releases with vastly different environments, and does not imply bad results
for the ones similar to the training environment.

5.2 Cross-Release Evaluation

For Cross Release, both models are expected to generally perform worse. Several
factors, both due to data representation as well as external factors impact their
accuracy.

5.2.1 Data for new releases

With the goal of assessing if in fact the model can predict newly added items
correctly, new datasets are gathered for different, more recent releases of the game.
The ’seraph’ and ’lightfall’ datasets, named after the subsequent releases to the
base dataset used for all previous training, gathered on the 20th of February and
22nd of March respectively represent these different releases.

A problem present when evaluating the selected model using the newly collected
data is the feature space. Not only new items are added, but also perks, which
increases the feature space to an incompatible size to the previously trained model.
To facilitate evaluation across releases, data is ’retrofitted’: The feature space is

25

Release Set WFPC Metric

Seraph All 0.07611
New 0.04040

Lightfall All 0.07584
New 0.05194

Table 6: Performance metrics for all Cross-Release Sets. SVC Model

reduced to that of the original training dataset, losing the newly added features
in the process. In a way, this is helpful in the case of poor performance since it
highlights that the reason an item is popular but is mispredicted by the model is
because of this newly added features that were lost due to the retrofitting process.

With all this in mind, the ’seraph’ dataset consists of 519 items and 179 features,
while the ’lightfall’ dataset contains 534 items and 185 features.

5.2.2 Performance

An additional influence in the expected performance decrease are external factors
affecting popularity. An example of this is balance patches. If item properties and
perks are the same values in game, but the game developers decide that globally,
a certain weapon type has its stability cut in half, this is not reflected in the
data representations, since instead of the values changing, the game interprets
them differently. Another might be player strategies, favoring close rather than
long-range weapons.

These are also compounding, meaning the later the release from the model’s ori-
ginal, performance is expected to be gradually worse.

Confusion matrices for both datasets corresponding to new releases are present
in Figures 11 to 18. There is also a distinction present for newly added items,
which are expected to perform worse than the entire corpus, since they are likely
to rely on newly added perks that are stripped when reducing back to the previous
release’s feature space.

26

Figure 11: Confusion Matrix for all items in the ’Season of Seraph’ release. SVC
Model

Figure 12: Confusion Matrix for newly-added added items in the ’Season of Ser-
aph’ release. SVC Model

27

Figure 13: Confusion Matrix for all items in the ’Lightfall’ release. SVC Model

Figure 14: Confusion Matrix for newly-added items in the ’Lightfall’ release.
SVC Model

28

Figure 15: Confusion Matrix for all items in the ’Season of Seraph’ release. De-
cision Tree Model

Figure 16: Confusion Matrix for newly-added added items in the ’Season of Ser-
aph’ release. Decision Tree Model

29

Figure 17: Confusion Matrix for all items in the ’Lightfall’ release. Decision Tree
Model

Figure 18: Confusion Matrix for newly-added items in the ’Lightfall’ release. De-
cision Tree Model

30

Release Set WFPC Metric

Seraph All 0.07321
New 0.06060

Lightfall All 0.08052
New 0.09090

Table 7: Performance metrics for all Cross-Release Sets. Decision Tree Model

6 Model Choice

As expected, both models perform worse than in their original environment. A
point of discussion that may explain this difference is the degree of overfitting and
the differences between releases. Recall that the SVM model, when fitted to the
full dataset overfits. This is not the case for the Decision Tree model. One would
expect the more overfitted model to perform better to game releases closer in time
to its original dataset, but this is not the case. In fact, for the Season of the
Seraph release, which featured an overall small amount of changes as evidenced by
the length of its patch notes page3, lower performance is observed when compared
to the Lightfall release patch notes4, a major yearly update revamping several
in-game systems and changing several balance aspects relating to items.

Surprisingly, this lower performance for the closer release occurs also for the more
generalizable model, the Decision Tree. However, it features better performance in
all newly-added sets, and differences in metric no bigger than 0.001 in the complete
sets of data. With these results at hand, the Decision Tree Model is chosen for
prediction due to the better results in Cross-Release.

A diagram visualization of the Tree is shown in Annex Figure 2a. A result ob-
served in this diagram is that features that players commonly look at for picking
their items, such as the Weapon Type and Archetype are not directly used, but
inferred from other features. This is due to the multicolinearity present previously
mentioned in the data.

3https://www.bungie.net/7/en/News/article/destiny2_update_630
4https://www.bungie.net/7/en/News/Article/update_7_0_0_1

31

https://www.bungie.net/7/en/News/article/destiny2_update_630
https://www.bungie.net/7/en/News/Article/update_7_0_0_1

7 Bias Report

7.1 Selection Bias

7.1.1 From the data collection process

The match information gathered to obtain the popularity metrics (the category) in
the dataset primarily stems from the ‘Steam’ platform (PC Desktop) due to the use
of a ‘Steam’ platform user as the ‘seed’ for the snowballing search. Additionally,
the ‘Aim Assistance’ feature is known to have a bigger impact on items when used
on a Console platform (‘PlayStation’ or ‘Xbox’), meaning items with higher ‘Aim
Assistance’ values may not be as popular in other platforms. (Mercules904 2023)

Together, this means the class categorization reflects mostly the views of PC
Desktop players, and may not give accurate recommendations for players in these
other platforms.

Additionally, due to the fact that the representation of an item includes all possible
traits for it, some bias could appear on the model, deciding a class as ’Unpopular’
based on, for example, the absence of a trait, when in reality the item does not
necessarily have to be used with this trait.

7.1.2 From the game’s internal match-making

The game finds opponents to play against prioritizing players with better connec-
tion using Connection-Based MatchMaking (CBMM). For the snowballing search
performed, this means the data was gathered mainly from players in the European
region, but unlike with platform there is no way of knowing the location of a player
so this is speculation, although likely.

7.2 Automation Bias

7.2.1 From the API reporting

Due to inner workings of the API used to retrieve match information, only items
that got at least one defeat or assist on an opponent are reported. This means
that an item could be equipped more frequently than shown (i.e. Popular), but it

32

was not used or the player did not manage to get in combat with them so it was
not reported. This is especially true for items using certain types of ammunition,
which is more scarce.

7.3 Group Attribution Bias

7.3.1 From items with certain features

Figure 19: Share of the dataset for all Weapon Types. ’Plunder’ dataset

In Fig. 19 the share of each Weapon Type on the dataset is represented. It can
be seen that some item types are underrepresented, like ‘Glaive’ and ‘Trace Rifle’.
This is due to the fact these item types have been introduced in the game relatively
recently and therefore not as many items of that type exist yet in game.

This might mean popular items belonging to those item categories may be mis-

33

classified simply because there was not as much sample data for the model to
learn.

Additionally, players appear or revive in a match with infinite Primary weapon
ammunition, limited Special ammo, needing to obtain it off of other player’s drops
when they defeat them, and no Power/Heavy ammo, of which pickups appear
at set intervals during the game and are available for everyone during 30s after
pickup.

In short, Primary ammo weapons are more readily available than Special ammo
weapons, and Heavy weapons are very limited in usage, meaning the majority of
usage comes from Primary weapons. Fig. 20 is a chart of representation of items
grouped into the three ammunition types:

As expected, the majority of items recorded were Primary ammo weapons. The
implications for predictions is that Special and Power ammo items are underrepres-
ented when compared to Primary, and prediction could be less accurate for these
less frequent weapons, which as discussed previously are in turn split into their
own item types. For instance, for underrepresented item types that also use one
of the less available types of ammunition, this means even less samples of these
types are obtained, and prediction for them could be even less accurate. Below is
an example to illustrate how within one of the less available types of ammunition,
items are already at a disadvantage.

This results in item types such as the previously mentioned ‘Glaive’ and ‘Trace
Rifle’ types, their use of the less available ‘Special’ ammunition, compounds down
the likelihood of them appearing in games.

7.4 Impact of and Conclusion to the Bias Assessment

Given the problem context, being video-game item recommendations, the impact of
misprediction is negligible. As discussed on the ‘Performance Evaluation’ section,
Type I errors could even be considered as beneficial to certain models if they are
more likely to classify a ‘Niche’ item as ‘Popular’, resulting in the introduction of
the WFPC heuristic metric.

34

Figure 20: Share of the dataset of Weapon Types grouped by ammunition type.
’Plunder’ dataset

35

In real cases, the worst scenario that may happen is that a player is recommended
an item as ‘Popular’ when in reality it is not, and they do not realize and keep
using it. Although item popularity typically corresponds to high performance, the
main driving factor of success in games is a player’s skill, so this may not even
impact their in-game performance, or have only slightly negative impact.

Another scenario to discuss is when the model misclassifies a ‘Popular’ item as
any other category. Since the intended use is to only recommend popular items,
it would not recommend the item at all. Falling out of the intended use, Type II
errors are considered negligible.

Summarizing, in terms of biases, the data used to train the model presents biases
towards the items used in PC Desktop platforms and in Europe. It may underper-
form for items types with low representation in the overall pool of items. Finally,
the category of certain data in training might have been inaccurate.

The impact of misprediction is assessed to be very low due to the problem domain
and intended use of the model.

36

8 Model Card

Following the template laid out by Mitchell et al. (2018)

Model Details

• Person or Organization developing the model

Jorge Jiménez García, for Technological University Dublin, v0.1

• Model Date 30 April 2023

• Model Type Decision Tree

Intended Use

• Intended to recommend newly released items in the video-game ’Destiny 2’
for future game versions (i.e: Cross-Release)

• Not intended to classify all popularity types

Factors

• Potential relevant factors include an item’s Weapon Type, the presence of
new perks or attributes not part of the previous release’s feature space

Metrics

• Evaluation Metrics consist of a heuristic measure of the accuracy of pre-
diction for ’Popular’ items (See Equation 1). Balanced Accuracy was also
taken into consideration. Experimental performance for the intended use
case was also considered

• Confusion Matrices See Figure 5 for Training and Figures 15 to 18 for
Cross-Release.

Training ’Season of Plunder’ dataset. 10-Fold Cross Validation training splits.

Evaluation

37

• ’Season of Plunder dataset. 10-Fold Cross Validation evaluation splits.

• ’Season of Seraph’ dataset. Both complete and filtered for newly added
items.

• ’Lightfall’ dataset. Both complete and filtered for newly added items.

Ethical Considerations

• Due to the search strategy, classes assigned to items may reflect the views of
mostly European players from the PC platform.

Caveats and Recommendations

• The Cross-Release prediction may underperform due to external changes to
the game that the model cannot account for

• The Cross-Release prediction may underperform when an item presents prop-
erties not present on the original training data’s feature space.

Addendum A visualization of the model can be seen in Annex Figure 2a

38

9 Production

To surface this information and help users better choose the items they use, an
operational system is envisioned that would continuously gather data to form more
accurate popularity metrics. Given that new items generally come with new game
releases, which typically occur every three months, the system is free to gather
data for a long period of time. It would then be fitted for the current environment
close to the new release’s date, prepared to acquire the new list of items on release
and rank newly released items into their corresponding categories. Additionally,
since the model is based in past releases, all previous models could be stored,
allowing comparisons between predictors.

One of the ways this could be made accessible is through a website dashboard
that would display the list of newly added items sorted into their popularity class.
This being a recommendation system, popular items, i.e, the class of most import-
ance, would be displayed first for users, and would allow them to filter for other
specific features they might be looking for in the newly released items. Using the
aforementioned models from previous releases, users could also select a previous
game release, tied to a model, that they may think closely resembles the current,
unseen one to get more tailored recommendations. Via this system, players could
also be able to select a past environment they particularly enjoyed to suit their
recommendation towards their particular preferences.

10 Conclusion and Future Work

10.1 Conclusion

To finalize, a summary on the work done. A data gathering algorithm was pro-
posed and executed to collect information on in-game items and their frequency of
appearance in different matches. From there, a representation was built from data
present in the game’s public database and fed into six different Machine Learning
models for evaluation. A new approach to evaluation was developed to take ad-
vantage of the particularities of recommendation systems: only recommending the
top or popular items.

39

These models were tuned using a Grid Search process and evaluated using this
heuristic metric using 10-Fold Stratified Cross Validation and then again on the
entire corpus of data. Once reduced the options to only two models, they were
evaluated again in their ’live’ or intended use case: prediction of newly released
items into the game. Challenges such as the change in feature space across releases
were overcome, and in live evaluation a Decision Tree model was chosen as the best
performing. Once selected, potential biases and their sources were addressed, and
from these results a Model Card was redacted.

Overall, very satisfactory results were obtained from live evaluation, as well as an
unexpected improvement in performance for releases that differ significantly from
the model’s.

The use of a heuristic metric is also proven to work reliably in the ambit of pop-
ularity prediction for recommender systems.

10.2 Future Work

For proposed improvement to the recommender systems, ways of incorporating
the outside factors modified across releases into the model is of interest. One such
approach could be the incorporation of an adaption layer, that would take in the
prediction of a previous model and incorporate the features that are not a part of
the original model back into the prediction. The difficulty would lie in weighing
or training the adaption layer with these newly-added, unseen features to score
them correctly. A technique that could be of use is Natural Language Processing,
reading in descriptions of the newly added feature and outputting an estimation
of how important it may be for the popularity of an item.

An additional proposed line of work would be the acquisition of more detailed
data. Due to the API design, only an online user can see the exact details of
the items they are equipping at the present time. No information about items
equipped in the past is kept. Having authenticated access from several users would
allow a drastic increase in the amount of data available, which would lead to not
only an improvement on the accuracy of predictions, but also on the specificity of
predictions, where the model would now be able to say if a particular instance or

40

roll of an item is good, instead of only being able to classify the item in general. A
challenge with this is the collection of accurate target variables. With such a wide
range of items and instances, it is hard to come by an exact copy of an instance
more than once so that its popularity can be gauged. A different approach to
determining the target variable would be needed.

Another suggested feature upgrade would be the development of a ’loadout auto-
complete’. In essence, by reading in all gathered loadout combinations, which
recall are formed by three items. Given an item a user wants to equip, the rest
of the loadout could be suggested to them. A challenge with this proposal is data
gathering, since although three items are equipped at all times in a loadout, the
design of the API only reports items that are used in a match, meaning some
items may go unreported. However, this may show improvement on predictions
since with every loadout being a unique instance, there is no limit on the data
gathered unlike with the previous sets where the limit was the number of unique
items present in-game.

Additionally, work on the heuristic metric used for evaluation could be of benefit.
In a similar way to recall and precision having to be used in tandem for evaluation,
resulting in the F1-score metric, the heuristic could be in a way combined with a
different metric such as accuracy, with the goal of, for the heuristic side, crediting
failed but only slightly off predictions while on the accuracy side, ensuring not
too many of the completely undesirable class slip past. This would also help in
obtaining a unified metric for evaluation.

A different way of improving the heuristic metrics is the study of appropriate
factors to the terms of the metric to more accurately reflect the intended behaviour.
For instance, the term on FPNiche could be adjusted to have diminishing returns,
where a model with, for instance 20 Niche False Positives and 0 True Positives
would not equate to a model with 10 True Positives and no False Positives.

Finally, a proposed improvement to the model would be accurately pruning the
tree to lesser depth. As shown by Annex Figure 2a, the tree is left-heavy with the
majority of the deep nodes concentrating on that side of the tree. Importantly, the
mentioned branches only cover ’Unpopular’ and ’Niche’ items, so a way of reducing

41

the complexity of the tree for these less relevant classes would be of benefit. A
challenge for this is ensuring the terminal nodes on that branch of the tree do not
worsen performance for the overall model.

42

References

Arnould, Ludovic, Claire Boyer and Erwan Scornet (2022). ‘Is interpolation benign
for random forests?’ In: arXiv preprint arXiv:2202.03688.

Bartlett, Peter L et al. (2020). ‘Benign overfitting in linear regression’. In: Pro-
ceedings of the National Academy of Sciences 117.48, pp. 30063–30070.

Bertens, Paul et al. (2018). ‘A Machine-Learning Item Recommendation System
for Video Games’. In: 2018 IEEE Conference on Computational Intelligence and
Games (CIG), pp. 1–4. doi: 10.1109/CIG.2018.8490456.

Blanco-Justicia, Alberto and Josep Domingo-Ferrer (2019). ‘Machine learning ex-
plainability through comprehensible decision trees’. In: Machine Learning and
Knowledge Extraction: Third IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 In-
ternational Cross-Domain Conference, CD-MAKE 2019, Canterbury, UK, Au-
gust 26–29, 2019, Proceedings 3. Springer, pp. 15–26.

Drachen, Anders et al. (2016). ‘Guns and guardians: Comparative cluster analysis
and behavioral profiling in destiny’. In: 2016 IEEE Conference on Computational
Intelligence and Games (CIG), pp. 1–8. doi: 10.1109/CIG.2016.7860423.

Fowler, Erin E. et al. (2020). ‘Empirically-derived synthetic populations to mitigate
small sample sizes’. In: Journal of Biomedical Informatics 105, p. 103408. issn:
1532-0464. doi: https://doi.org/10.1016/j.jbi.2020.103408. url: https:
//www.sciencedirect.com/science/article/pii/S1532046420300368.

Jaderberg, Max et al. (2017). ‘Population based training of neural networks’. In:
arXiv preprint arXiv:1711.09846.

Joshi, Rishabh et al. (2019). ‘A Team Based Player Versus Player Recommender
Systems Framework For Player Improvement’. In: Proceedings of the Australasian
Computer Science Week Multiconference. ACSW ’19. Sydney, NSW, Australia:
Association for Computing Machinery. isbn: 9781450366038. doi: 10.1145/
3290688.3290750. url: https://doi.org/10.1145/3290688.3290750.

Kosztyán, Zsolt T, Marcell T Kurbucz and Attila I Katona (2022). ‘Network-
based dimensionality reduction of high-dimensional, low-sample-size datasets’.
In: Knowledge-Based Systems 251, p. 109180.

Liu, Bo et al. (2017). ‘Deep Neural Networks for High Dimension, Low Sample
Size Data.’ In: IJCAI, pp. 2287–2293.

43

https://doi.org/10.1109/CIG.2018.8490456
https://doi.org/10.1109/CIG.2016.7860423
https://doi.org/https://doi.org/10.1016/j.jbi.2020.103408
https://www.sciencedirect.com/science/article/pii/S1532046420300368
https://www.sciencedirect.com/science/article/pii/S1532046420300368
https://doi.org/10.1145/3290688.3290750
https://doi.org/10.1145/3290688.3290750
https://doi.org/10.1145/3290688.3290750

Looi, Wenli et al. (2019). ‘Recommender System for Items in Dota 2’. In: IEEE
Transactions on Games 11.4, pp. 396–404. doi: 10.1109/TG.2018.2844121.

Mercules904 (2023). How do Aim Assist and Accuracy Work in Destiny 2? url:
https://www.destinymassivebreakdowns.com/blog/aimassist (visited on
18/04/2023).

Mitchell, Margaret et al. (2018). ‘Model Cards for Model Reporting’. In: CoRR
abs/1810.03993. arXiv: 1810.03993. url: http://arxiv.org/abs/1810.
03993.

Mukherjee, Amitangshu, Isha Garg and Kaushik Roy (2023). ‘Encoding hierarch-
ical information in neural networks helps in subpopulation shift’. In: IEEE
Transactions on Artificial Intelligence.

Pedregosa, F. et al. (2011). ‘Scikit-learn: Machine Learning in Python’. In: Journal
of Machine Learning Research 12, pp. 2825–2830.

Probst, Philipp and Anne-Laure Boulesteix (2017). ‘To tune or not to tune the
number of trees in random forest’. In: The Journal of Machine Learning Research
18.1, pp. 6673–6690.

Sepiolo, Dominik and Antoni Ligęza (2022). ‘Towards Explainability of Tree-Based
Ensemble Models. A Critical Overview’. In: New Advances in Dependability of
Networks and Systems: Proceedings of the Seventeenth International Conference
on Dependability of Computer Systems DepCoS-RELCOMEX, June 27–July 1,
2022, Wrocław, Poland. Springer, pp. 287–296.

Shamir, Ohad (2022). ‘The implicit bias of benign overfitting’. In: Conference on
Learning Theory. PMLR, pp. 448–478.

Trzciński, Tomasz and Przemysław Rokita (2017). ‘Predicting popularity of online
videos using support vector regression’. In: IEEE Transactions on Multimedia
19.11, pp. 2561–2570.

Wang, Ke, Vidya Muthukumar and Christos Thrampoulidis (2021). ‘Benign over-
fitting in multiclass classification: All roads lead to interpolation’. In: Advances
in Neural Information Processing Systems 34, pp. 24164–24179.

Wu, Shaomin, Peter Flach and Cesar Ferri (2007). ‘An improved model selection
heuristic for AUC’. In: Machine Learning: ECML 2007: 18th European Confer-

44

https://doi.org/10.1109/TG.2018.2844121
https://www.destinymassivebreakdowns.com/blog/aimassist
https://arxiv.org/abs/1810.03993
http://arxiv.org/abs/1810.03993
http://arxiv.org/abs/1810.03993

ence on Machine Learning, Warsaw, Poland, September 17-21, 2007. Proceed-
ings 18. Springer, pp. 478–489.

45

Annex

Figures

Figure 1: Correlation heatmap for all features in the dataset

46

Figure 2: Final Decision Tree Layout.

(a) Orange, Green and Purple nodes represent ’Unpopular’, ’Niche’ and ’Popular’

classes respectively

47

Tables

Name of Feature Description Type, [range/unique values] Notes

Weapon Type The type of weapon this item is Categorical [17]
Archetype Modifies how it fires and describes its stat profile Categorical [15] Indirectly describes Stability, Handling, Range and Fire Rate

Slot The type of ammunition the weapon uses Categorical [3]
Stability The bounce intensity and direction your weapon experiences when fired. Numerical [0,100] except Swords and Glaives
Handling The speed with which the weapon can be readied and aimed. Numerical [0,100] except Sword and Bow
Range Increases the effective range of this weapon. Numerical [0,100] except Swords, Bows, Rocket and Grenade Launchers

Aim Assistance Determines the bullet magnetism of your shots. Numerical [0,100] except Swords
Airborne Effectiveness How effective this weapon is in the air. Numerical [0,100] except Swords

Recoil Direction An expression of a Weapon’s recoil path Numerical [0,100] except Sword.
Zoom Magnification and effective range increase when aiming down sights. Numerical [0,100] except Swords and Glaives

Magazine Size How many rounds you can fire before reloading. Numerical [1, inf] except Bows
Impact Increases the damage inflicted by each round. Numerical [1,100] except Rocket and Grenade Launchers

Reload Speed The time it takes to reload this weapon. Numerical [0,100] except Swords
Rounds Per Minute How fast this weapon fires. Numerical [15,1000] except Swords

Draw Time Determines how quickly you can charge an arrow. Numerical [0,100] only on Bows
Accuracy How well shots fired by this weapon hit their target. Numerical [0,100] only on Bows

Charge Time Determines how quickly this weapon can fire. Numerical [20,1000] only applicable on Fusion Rifles
Velocity Increases the speed of projectiles fired by this weapon. Numerical [0,100] only on Rocket and Grenade Launchers

Blast Radius Increases the explosion radius of this weapon. Numerical [0,100] limited to 55 for Grenade Launchers
Shield Duration How long you can maintain your guard with this weapon. Numerical [0,100] only present on Glaives

Guard Endurance How long you can maintain your guard with this weapon. Numerical [0,100] only present on Swords
Guard Efficiency Reduces the amount of energy required to guard an attack. Numerical [0,100] only on Swords
Guard Resistance Damage reduction while guarding with this weapon against most attacks. Numerical [0,100] only on Swords

Swing Speed How fast you can swing this weapon. Numerical [0,100] only on Swords
Charge Rate How fast this weapon’s energy recharges. Numerical [0,100] only on Swords
X present If perk X is present on any of the weapon’s two columns Boolean [149] Some perks are only on certain Weapon Types

Table 1: Description of common features and their effect on an item. Taken from in-game descriptions

48

