Document downloaded from:

http://hdl.handle.net/10251/196932

This paper must be cited as:
Ballester-Bolinches, A.; Madanha, SY.; Mudziiri Shumba, TM.; Pedraza Aguilera, MC. (2022). On certain products of permutable subgroups. Bulletin of the Australian Mathematical Society. 105(2):278-285. https://doi.org/10.1017/S0004972721000617

The final publication is available at
https://doi.org/10.1017/S0004972721000617

Copyright Cambridge University Press

Additional Information

ON CERTAIN PRODUCTS OF PERMUTABLE SUBGROUPS

A. BALLESTER-BOLINCHES, S. Y. MADANHA, T. M. MUDZIIRI SHUMBA, AND M. C. PEDRAZA-AGUILERA

Abstract

In this paper the structure of finite groups $G=A B$ which are a weakly mutually sn-permutable product of the subgroups A and B, that is, such that A permutes with every subnormal subgroup of B containing $A \cap B$ and B permutes with every subnormal subgroup of A containing $A \cap B$, is studied. Some known results on mutually $s n$-permutable products are extended.

Dedicated to the memory of Alexander Grant Robinson Stewart

1. Introduction

All groups considered here will be finite.
Mutually permutable products, that is, products $G=A B$ such that A permutes with every subgroup of B and B permutes with every subgroup of A, have been extensively studied by many authors (see [1], [4], [5], [7], [10]). In recent years, some other permutability connections between the factors were also considered. In particular, the rich normal structure of a mutually permutable product of two nilpotent groups (see [4, Chapter 5]) motivates interest in the study of mutually $s n$-permutable products.

Definition 1.1. We say that a group $G=A B$ is the mutually sn-permutable product of the subgroups A and B if A permutes with every subnormal subgroup of B and B permutes with every subnormal subgroup of A.

Carocca [8] showed that a mutually sn-permutable product of two soluble groups is soluble as well. In [2], the authors analyse the structure of mutually sn-permutable products and proved the following extension of a classical result of Asaad and Shaalan [1].

Theorem 1.2 ([2, Theorem B]). Let $G=A B$ be the mutually sn-permutable product of the subgroups A and B, where A is supersoluble and B is nilpotent. If B permutes with each Sylow subgroup of A, then the group G is supersoluble.

Following [12], we say that a subgroup H of a group G is \mathbb{P}-subnormal in G whenever either $H=G$ or there exists a chain of subgroups $H=H_{0} \leq H_{1} \leq \cdots \leq H_{n-1} \leq$ $H_{n}=G$, such that $\left|H_{i}: H_{i-1}\right|$ is a prime for every $i=1, \ldots, n$. It turns out that supersoluble groups are exactly those groups in which every subgroup if \mathbb{P}-subnormal. Having in mind this result and the influence of the embedding of Sylow subgroups on the structure of a group, the following extension of the class of supersoluble groups introduced in [12] seems to be natural.

[^0]Definition 1.3. A group G is called widely supersoluble, w-supersoluble for short, if every Sylow subgroup of G is \mathbb{P}-subnormal in G.

The class of all finite w-supersoluble groups, denoted by $w \mathcal{U}$, is a saturated formation of soluble groups containing \mathcal{U}, the class of all supersoluble groups, which is locally defined by a formation function f, such that for every prime $p, f(p)$ is composed of all soluble groups G whose Sylow subgroups are abelian of exponent dividing $p-1$ ([12, Theorems 2.3 and 2.7]). Not every group in $w \mathcal{U}$ is supersoluble ([12, Example 1]). However, every group in $w \mathcal{U}$ has an ordered Sylow tower of supersoluble type ([12, Proposition 2.8]).

In [3] mutually sn-permutable products in which the factors are w-supersoluble are analysed. The following extension of Theorem 1.2 holds.

Theorem 1.4 ([3, Theorem 4]). Let $G=A B$ be the mutually sn-permutable product of the subgroups A and B, where A is w-supersoluble and B is nilpotent. If B permutes with each Sylow subgroup of A, then the group G is w-supersoluble.

Assume that $G=A B$ is the mutually $s n$-permutable product of the subgroups A and B. Then, by [4, Proposition 4.1.16 and Corollary 4.1.17], $A \cap B$ is subnormal in G and permutes with every subnormal subgroup of A and B. Assume now that $G=A B$ and $A \cap B$ satisfies the above condition. Then G is the mutually $s n$-permutable product of A and B if and only if A permutes with every subnormal subgroup V of B such that $A \cap B \leqslant V$, and B permutes with every subnormal subgroup U of A such that $A \cap B \leqslant U$. This motivates the following definition.

Definition 1.5. Let A and B be two subgroups of a group G such that $G=A B$. We say that G is the weakly mutually sn-permutable product of A and B if A permutes with every subnormal subgroup V of B such that $A \cap B \leqslant V$, and B permutes with every subnormal subgroup U of A such that $A \cap B \leqslant U$.

Obviously, mutually $s n$-permutable products are weakly mutually $s n$-permutable, but the converse is not true in general as the following example shows.

Example 1.6. Let $G=\Sigma_{4}$ be the symmetric group of degree 4. Consider a maximal subgroup A of G which is isomorphic to Σ_{3} and $B=A_{4}$, the alternating group of degree 4. Then $G=A B$ is the weakly mutually sn-permutable product of the subgroups A and B. However, G is not a mutually sn-permutable product of A and B because A does not permute with a subnormal subgroup of order 2 of B.

Our first main result shows that Theorem 1.4 holds for weakly mutually $s n$-permutable products.

Theorem A. Let $G=A B$ be the weakly mutually sn-permutable product of the subgroups A and B, where A is w-supersoluble and B is nilpotent. If B permutes with each Sylow subgroup of A, then the group G is w-supersoluble.

The following corollary follows from the proof of Theorem A and generalises Theorem 1.2.

Corollary B. Let $G=A B$ be the weakly mutually sn-permutable product of the subgroups A and B, where A is supersoluble and B is nilpotent. If B permutes with each Sylow subgroup of A, then the group G is supersoluble.

The second part of the paper is concerned with weakly mutually $s n$-permutable products with nilpotent derived subgroup. Our starting point is the following extension of a classical result of Asaad and Shaalan [1].
Theorem 1.7 ([2, Theorem C]). Let $G=A B$ be the mutually sn-permutable product of the supersoluble subgroups A and B. If the derived subgroup G^{\prime} of G is nilpotent, then G is supersoluble.

A natural question is whether this result is true for weakly mutually sn-permutable products under the same conditions. The following example answers this question negatively:

Example 1.8. Let A be a cyclic group of order 6 . It is known that A has an inrreducible and faithful module V over the field of 5 elements of dimension 2 ([9, Theorem A.9.8]). Let $G=[V] A$ be the corresponding semidirect product. Let $B=V C$, where C is the Sylow 2-subgroup of A. Then $G=A B$. Since B is normal in $G, A \cap B=C$ and B is the unique subnormal subgroup of B containing C, it follows that G is the weakly mutually sn-permutable product of A and B. It is clear that A and B are supersoluble and G^{\prime} is nilpotent. However, G is not supersoluble.

Note that in the above example B permutes with every Sylow subgroup of A. If A also permutes with every Sylow subgroup of B, we get supersolubility.

Theorem C. Let $G=A B$ be the weakly mutually sn-permutable product of the supersoluble subgroups A and B. If B permutes with each Sylow subgroup of A, A permutes with every Sylow subgroup of B, and the derived subgroup G^{\prime} of G is nilpotent, then G is supersoluble.

By [11, Theorem 2.6], a group G is w-supersoluble if and only if every metanilpotent subgroup of G is supersoluble. In particular, if G^{\prime} nilpotent, every w-supersoluble subgroup of G is supersoluble. Therefore we have:

Corollary D. Let $G=A B$ be the weakly mutually sn-permutable product of the wsupersoluble subgroups A and B. If B permutes with each Sylow subgroup of A, A permutes with every Sylow subgroup of B, and the derived subgroup G^{\prime} of G is nilpotent, then G is w-supersoluble.

2. Preliminary Results

In this section we will prove some results needed in the proofs of our main results. We begin by showing that factor groups of weakly mutually $s n$-permutable products are also weakly mutually $s n$-permutable products.

Lemma 2.1. Let $G=A B$ be the weakly mutually sn-permutable product of A and B and let N be a normal subgroup of G. Then $G / N=(A N / N)(B N / N)$ is the weakly mutually sn-permutable product of $A N / N$ and $B N / N$.

Proof. We have that $G / N=(A N / N)(B N / N)$. Suppose that H / N is a subnormal subgroup of $A N / N$ such that $A N / N \cap B N / N \leqslant H / N$. Then $U=H \cap A$ is a subnormal subgroup of A such that $H=U N$ and $A \cap B \leq U$. Since U permutes with B and $H=$ $U N$, it follows that H permutes with $B N$. Analogously, it can be showed that $A N / N$ permutes with every subnormal subgroup of $B N / N$ containing $A N / N \cap B N / N$ and therefore G / N is the weakly mutually $s n$-permutable product of $A N / N$ and $B N / N$.

Lemma 2.2. Let $G=A B$ be the weakly mutually sn-permutable product of A and B.
(a) If H is a subnormal subgroup of A such that $A \cap B \leqslant H$, then $H B$ is a weakly mutually sn-permutable product of H and B.
(b) If $A \cap B=1$, then every subnormal subgroup of A permutes with every subnormal subgroup of B.

Proof. Since every subnormal subgroup of H is a subnormal subgroup of A, we have that B permutes with every subnormal subgroup L of H such that $A \cap B \leqslant L$. Let M be a subnormal subgroup of B such that $A \cap B \leqslant M$. Then $H M=H(A \cap B) M=$ $(A \cap H B) M=A M \cap H B=M A \cap B H=M(A \cap B H)=M(A \cap B) H=M H$. Hence A permutes with M and $H B$ is the weakly mutually $s n$-permutable product of H and B.

Assume that $A \cap B=1$. Let H be a subnormal subgroup of A and let K be a subnormal subgroup of B. By Statement (a), the product $H B$ is weakly mutually sn-permutable and $H \cap B=1$. Therefore H permutes with K, and Statement (b) holds.

Observe that Lemma 2.2 implies that if $G=A B$ is the weakly mutually $s n$-permutable product of A and B, H is a subnormal subgroup of A such that $A \cap B \leqslant H$, and K is a subnormal subgroup of B such that $A \cap B \leqslant K$, then $H K$ is a weakly mutually sn-permutable product of H and K.

Our next lemma analyses the behaviour of minimal normal subgroups of weakly mutually sn-permutable products containing the intersection of the factors.

Lemma 2.3. Let $G=A B$ be the weakly mutually sn-permutable product of A and B. If N is a minimal normal subgroup of G such that $A \cap B \leqslant N$, then either $A \cap N=$ $B \cap N=1$ or $N=(N \cap A)(N \cap B)$.

Proof. Observe that $A \cap N$ is a normal subgroup of A such that $A \cap B \leqslant A \cap N$ and so $H=(A \cap N) B$ is a subgroup of G. Note that $N \cap H=N \cap(A \cap N) B=$ $(A \cap N)(B \cap N)$. Since $N \cap H$ is a normal subgroup of H, we have that B normalizes $N \cap H=(A \cap N)(B \cap N)$.

Using the same argument as above, $K=A(B \cap N)$ is a subgroup of G such that $K \cap N=A(B \cap N) \cap N=(A \cap N)(B \cap N)$. Moreover A normalizes $K \cap N=$ $(A \cap N)(B \cap N)$. Hence $(A \cap N)(B \cap N)$ is a normal subgroup of G. By the minimality of N, we have that $A \cap N=B \cap N=1$ or $N=(N \cap A)(N \cap B)$ as required.

Lemma 2.4. Let $G=A B$ be the weakly mutually sn-permutable product of the subgroups A and B. Assume that B is nilpotent. If B permutes with each Sylow subgroup of A, then $A \cap B$ is a subnormal subgroup of G.

Proof. Let A_{1} be a Sylow subgroup of A. Then B permutes with A_{1} and so $B A_{1}$ is a subgroup of G. Futhermore, $B A_{1} \cap A=A_{1}(A \cap B)$. Therefore $A \cap B$ permutes with A_{1}. We have shown that $A \cap B$ permutes with every Sylow subgroup of A. Applying [4, Theorem 1.2.14(3)], $A \cap B$ is a subnormal subgroup of A. Since B is nilpotent, it follows that $A \cap B$ is also subnormal in B. By [4, Theorem 1.1.7], we have that $A \cap B$ is a subnormal subgroup of G.

Lemma 2.5. Let $G=A B$ be the weakly mutually sn-permutable product of the subgroups A and B, where A is soluble and B is nilpotent. If B permutes with each Sylow subgroup of A, then the group G is soluble.

Proof. Suppose that the theorem is false and let G be a minimal counterexample. If N is a minimal normal subgroup of G, then $G / N=(A N / N)(B N / N)$ is the weakly mutually $s n$-permutable product of the subgroups $A N / N$ and $B N / N$ by Lemma 2.1. Since $B N / N$ permutes with each Sylow subgroup of $A N / N$, we have that G / N is soluble by the minimality of G. If N_{1} and N_{2} are two minimal normal subgroups of G, then G / N_{1} and G / N_{2} are soluble and so $G \cong G /\left(N_{1} \cap N_{2}\right)$ is soluble, a contradiction. Hence $N=\operatorname{Soc}(G)$ is a non-abelian minimal normal subgroup of G. In particular, $\mathbf{F}(G)=1$.

By Lemma 2.4, $A \cap B \leqslant \mathbf{F}(G)$. Therefore $A \cap B=1$ and then every subnormal subgroup of A permutes with every subnormal subgroup of B by Lemma 2.2. The result then follows applying [8, Theorem 6].

Lemma 2.6. [2, Lemma 3] Let G be a primitive group and let N be its unique minimal normal subgroup. Assume that G / N is supersoluble. If N is a p-group, where p is the largest prime dividing $|G|$, then $N=\mathbf{F}(G)=\mathbf{O}_{p}(G)$ is a Sylow p-subgroup of G.

3. Main Results

We are ready to prove our main results.
Proof of Theorem A. Suppose the theorem is not true and let G be a minimal counterexample. Then A and B are proper subgroups of G. We proceed in a number of steps.
(a) G is a primitive soluble group with a unique minimal normal subgroup N and $N=\boldsymbol{C}_{G}(N)=\boldsymbol{F}(G)=\boldsymbol{O}_{p}(G)$ for a prime p.

Note that A is soluble. Therefore, by Lemma 2.5, G is soluble. Let N be a minimal normal subgroup of G. By Lemma 2.1, $G / N=(A N / N)(B N / N)$ is the weakly mutually $s n$-permutable product of $A N / N$ and $B N / N$, and it is clear that $B N / N$ permutes with every Sylow subgroup of $A N / N$. Moreover $A N / N$ is w-supersoluble and $B N / N$ is nilpotent. By the minimality of G, it follows that G / N is w-supersoluble. Note that the class of all w-supersoluble groups is a saturated formation of soluble groups by [12, Theorems 2.3 and 2.7]. This implies that G is a primitive soluble group and so G has a unique minimal normal subgroup N with $N=\mathbf{C}_{G}(N)=\mathbf{F}(G)=\mathbf{O}_{p}(G)$ for some prime p, as required.
(b) $B N$ is w-supersoluble, $1 \neq A \cap B \leqslant N$ and $N=(N \cap A)(N \cap B)$.

If $A \cap B=1$, then G is w-supersoluble by Lemma 2.2 and Theorem 1.4. This contradiction yields $A \cap B \neq 1$. Applying Lemma 2.4, it follows that $A \cap B$ is a nilpotent subnormal subgroup of G. Therefore $A \cap B \leqslant \mathbf{F}(G)=N$ and so $N=(N \cap A)(N \cap B)$ by Lemma 2.3. Hence $N B=(N \cap A)(N \cap B) B=(N \cap A) B$ is the weakly mutually sn-permutable product of $N \cap A$ and B. Also note that B permutes with every Sylow subgroup of $N \cap A$. If $N B<G$, then $N B$ is w-supersoluble by the choice of G. Assume that $G=N B$. Let $1 \neq N_{1} \leqslant A \cap B \leqslant N$. Note that N_{1} is normal in N since N is abelian. Hence $N=N_{1}^{G}=N_{1}^{N B}=N_{1}^{B} \leqslant B$ and $G=B$, a contradiction. Therefore $N B$ is a w-supersoluble proper subgroup of G.
(c) N is the Sylow p-subgroup of G and p is the largest prime dividing $|G|$.

Let q be the largest prime dividing $|G|$ and suppose that $q \neq p$. Suppose first that q divides $|B N|$. Since $B N$ has a Sylow tower of supersoluble type, we have that $B N$ has a unique Sylow q-subgroup, $(B N)_{q}$ say. This means that $(B N)_{q}$ centralises N. Thus $(B N)_{q}=1$, since $\mathbf{C}_{G}(N)=N$, a contradiction. Therefore we may assume that q divides
$|A|$ but does not divide $|B N|$. Since A has a Sylow tower of supersoluble type, we have that A has a unique Sylow q-subgroup, A_{q} say. This means that A_{q} is normalised by $N \cap A$. Then $A_{q}(N \cap B)=A_{q}(A \cap B)(N \cap B)$ is the weakly mutually permutable product of $A_{q}(A \cap B)$ and $N \cap B$ by Lemma 2.2. Also $N \cap B$ permutes with each Sylow subgroup of $A_{q}(A \cap B)$. Suppose that $A_{q}(N \cap B)<G$. Then $A_{q}(N \cap B)$ is w-supersoluble by the choice of G. It follows that $A_{q}(N \cap B)$ has a unique Sylow q-subgroup since it has a Sylow tower of supersoluble type. In other words, A_{q} is normalised by $N \cap B$. Hence A_{q} is normalised by $(N \cap A)(N \cap B)=N$. This means that A_{q} centralises N, a contradiction. We may assume that $A_{q}(N \cap B)=G$. Then $N \cap B=B$ and so B is an elementary abelian p-group. Moreover $A=A_{q}(A \cap B)$. Then $A \cap B$ is a normal Sylow p-subgroup of A. Hence $A \cap B$ is normal in G because B is abelian. By the minimality of N, we have that $N=A \cap B$, that is, $G=A_{q}(N \cap B)=A_{q}(A \cap B)=A$, a contradiction. Therefore p is the largest prime dividing $|G|$.

Since G is a primitive soluble group, it follows that $G=N M$, where M is a maximal subgroup of G and $N \cap M=1$. Then $M \cong G / N$ is w-supersoluble. By [9, Theorem A.15.6], $\mathbf{O}_{p}(M)=1$. Note that M is a p^{\prime}-group because it has a Sylow tower of supersoluble type. Therefore N is the unique Sylow p-subgroup of G.
(d) N is a subgroup of A and N is not contained in B.

Suppose that N is contained in B. Then a Hall p^{\prime}-subgroup $B_{p^{\prime}}$ of B must centralise $N=\mathbf{C}_{G}(N)$. Hence $B_{p^{\prime}}=1$ and B is a p-group. Then $G=A N$. Let $1 \neq N_{1} \leqslant A \cap B$. Then $N \leq N_{1}^{G}=N_{1}^{A N}=N_{1}^{A} \leqslant A$ and so $G=A$, a contradiction. Therefore N is not contained in B. Hence B has a non-trivial Hall p^{\prime}-subgroup, $B_{p^{\prime}}$ say, which is normal in B. Consequently, $A B_{p^{\prime}}=A(A \cap B) B_{p^{\prime}}$ is a subgroup of G. Then $1 \neq B_{p^{\prime}}^{G} \leqslant A B_{p^{\prime}}$ and so $N \leqslant A B_{p^{\prime}}$. Hence $N \leqslant A$, as required.

(e) Final Contradiction

Let $A_{p^{\prime}}$ be a Hall p^{\prime}-subgroup of A. If $A_{p^{\prime}}=1$, then $G=B N$ is w-supersoluble by Step (b), a contradiction. Hence $A_{p^{\prime}} \neq 1$. Since B permutes with every Sylow subgroup of A, it follows that $A_{p^{\prime}} B$ is a subgroup of G. By Step (d), N is not contained in B. Hence $A_{p^{\prime}} B$ is a proper subgroup of G. Since $N A_{p^{\prime}} B=G$, it follows that $N \cap A_{p^{\prime}} B=N \cap B$ is normal in G. The minimality of N implies that $N=N \cap B$ or $N \cap B=1$. By Step (d), $N \neq N \cap B$. Therefore $N \cap B=1$, and then $A \cap B \leqslant N \cap B=1$, contradicting Step (b).

Proof of Theorem C. Assume the result is not true and let G be a minimal counterexample. It is clear that A and B are proper subgroups of G and $G^{\prime} \neq 1$. Since the hypotheses of the theorem hold in every epimorphic image of G, it follows that G is a primitive soluble group. Hence G has a unique minimal normal subgroup N, and $N=F(G)=C_{G}(N)$. Moreover $G^{\prime}=N$ because G^{\prime} is nilpotent. We may assume that $A^{\prime} \neq 1$ and $B^{\prime} \neq 1$, otherwise the result follows from Corollary B. If $A \cap B=1$, we have that G is the mutually $s n$-permutable product of A and B. By Theorem 1.7, G is supersoluble, a contradiction. Thus we may assume $A \cap B \neq 1$. Since A permutes with every Sylow subgroup of B and B permutes with every Sylow subgroup of A, we have that $A \cap B$ permutes with every Sylow subgroup of A and every Sylow subgroup of B. Hence $A \cap B$ is subnormal in A and B. Let N_{1} be a minimal normal subgroup of A such that $N_{1} \leq A^{\prime}$. Then N_{1} is of prime order since A is supersoluble. Since $N_{1}(A \cap B)$ is subnormal in A, it follows that $B N_{1}(A \cap B)=B N_{1}$ is a subgroup of G. Therefore
$1 \neq N_{1}^{G}=N_{1}^{B} \leq B N_{1}$ and so $N \leq B N_{1}$. In particular, $N=N_{1}(N \cap B)$, and either $N_{1} \leq N \cap B$ or $N_{1} \cap(N \cap B)=1$. Write $T=B N$. If $N_{1} \leq N \cap B$ we have that $B N=B$ is a supersoluble normal subgroup of G. Assume $N_{1} \cap(N \cap B)=1$. Then $N \cap B$ is a maximal subgroup of N, and so T is the weakly mutually $s n$-permutable product of B and N, and T satisfies the hypotheses of the theorem. Suppose that $G=B N$. Then $N \cap B=1$ and $B^{\prime} \leq N \cap B=1$. Hence B is abelian. By Corollary B, G is supersoluble. If T is a proper subgroup of G, we have that $T=B N$ is a supersoluble normal subgroup of G. Consequently, either B is normal in G or $B N$ is a supersoluble normal subgroup of G. We can argue in a similar way with A to conclude that either A is normal in G or $A N$ is a normal supersoluble subgroup of G. In any case, we have that G is a product of two normal supersoluble subgroups. Applying Theorem 1.7, we conclude that G is supersoluble. This final contradiction proves the theorem.

4. Acknowledgements

The first and fourth authors have been supported by the research grant PGC2018-095140-B-I00 from the Ministerio de Ciencia, Innovación y Universidades and the Agencia Estatal de Investigación (Spanish Government) and FEDER (European Union), and PROMETEO/2017/057 from Generalitat (Valencian Community, Spain).

References

[1] M. Asaad and A. Shaalan, On the supersolvability of finite groups, Arch. Math., 53 (1989), 318-326.
[2] M. J. Alejandre, A. Ballester-Bolinches, J. Cossey and M. C. Pedraza-Aguilera, On some permutable products of supersoluble groups, Rev. Mat. Iberoamericana, 20 (2004), 413-425.
[3] A. Ballester-Bolinches,W. M. Fakieh and M. C. Pedraza-Aguilera, On products of generalised supersoluble finite groups, Mediterr. J. Math., 16 (2019), Paper No. 46, 7pp.
[4] A. Ballester-Bolinches, R. Esteban-Romero and M. Asaad, Products of Finite Groups, Walter De Gruyter, Berlin-New York, 2010.
[5] A. Ballester-Bolinches and M. D. Pérez-Ramos, A question of R. Maier concerning formations, J. Algebra, 182 (1996), 738-747.
[6] J. C. Beidleman, A. Galoppo, H. Heineken and M. Manfredino, On certain products of soluble groups, Forum Math., 13 (2001), 569-580.
[7] J. C. Beidleman and H. Heineken, Mutually permutable subgroups and group classes, Arch. Math. (Basel) 85 (2005), 18-30.
[8] A. Carocca, On factorized finite groups in which certain subgroups of the factors permute, Arch. Math., 71 (1998), 257-261.
[9] K. Doerk and T. O. Hawkes, Finite Soluble Groups, Walter De Gruyter, Berlin-New York, (1992).
[10] R. Maier, A completeness property of certain formations, Bull. London Math. Soc. 24, (1992), 540-544.
[11] V. S. Monakhov, Finite groups with abnormal and U-subnormal subgroups, Siberian Math. J., 57 (2016), 352-363.
[12] A. F. Valisev, T. I. Valiseva and V. N. Tyutyanov, On the finite groups of supersoluble type, Siberian Math. J., 51 (2010), 1004-1012.

Departament de Matemàtiques, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain

Email address: adolfo.ballester@uv.es
Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria, 0002, South Africa

Email address: sesuai.madanha@up.ac.za
Department of Pure and Applied Mathematics, University of Johannesburg, AuckLand Park, Johannesburg, 2006, South Africa

Email address: tmudziirishumba@uj.ac.za
Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, 46022 Camino de Vera, València, Spain

Email address: mpedraza@mat.upv.es

[^0]: Date: April 28, 2021.
 2010 Mathematics Subject Classification. Primary 20D10, 20D20.
 Key words and phrases. mutually $s n$-permutable products, supersoluble groups, widely supersoluble groups.

