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In this paper, a theoretical learning curve is derived for the multi-class Bayes classifier. This curve fits 

general multivariate parametric models of the class-conditional probability density. The derivation uses a 

proxy approach based on analyzing the convergence of a statistic which is proportional to the posterior 

probability of the true class. By doing so, the curve depends only on the training set size and on the 

dimension of the feature vector; it does not depend on the model parameters. Essentially, the learning 

curve provides an estimate of the reduction in the excess of the probability of error that can be obtained 

by increasing the training set size. This makes it attractive in order to deal with the practical problems 

of defining appropriate training set sizes. 
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. Introduction 

.1. Statement of the problem and previous related works 

Predicting the sample size required for proper training of a clas- 

ifier is a classic problem in pattern recognition. This is an impor- 

ant issue because obtaining labelled training data is one of the 

ost typical limitations in real settings. For example, a diagnos- 

ic system based on biosignals implies experimentation with both 

ealthy and sick patients. The necessary protocols and the nature 

f the experiment can greatly slow down the recording of signals, 

n addition to the stress often caused in the patient (e.g. the simul- 

aneous acquisition of magnetic resonance images and electroen- 

ephalograms [1] ). Also, the process of manually labelling signals 

an be tedious and require an expert with a high degree of spe- 

ialization. One example of this is the classification of polysomno- 

rams (PSG) [2] . PSGs are multimodal biomedical signalling record- 

ngs of sleeping patients, which are used to diagnose different 

leep disorders such as sleep apnea. A typical 8 h PSG may re- 

uire up to 2 h to be labelled by an expert. Another quite different

xample is the training of an automatic road surface classifier for 

utomatic calibration of an Advanced Driver Assistance System [3] . 

his requires costly experiments to take into account the diversity 

f driving surfaces and conditions. A myriad of other examples can 

e given. All of them will greatly benefit from at least some guess 

s to how large the training sample size should be, i.e. what the 
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inimum number of experiments should be to guarantee adequate 

raining of the classifier. This could save on a lot of redundant ex- 

eriments and their associated costs. 

However, the minimum training sample size for a required per- 

ormance depends on the (unknown) data distributions and on the 

lassifier structure, so it is almost impossible to define a general 

riterion, even in the form of a rule of thumb. Thus, in the classic 

aper [4] some practical recommendations were given, though the 

ain conclusion was the realization of the difficulty of the problem 

nd the requirement for experimental verification of the limited 

heoretical guidelines. Since then, many experimental and theoret- 

cal contributions can be found. Some approaches have been purely 

xperimental, considering some specific classifiers and datasets: 

aïve Bayes, Support Vector Machine and Decision Tree to clas- 

ify five classes of smoker status from excerpts of personal reports 

5] ; Partial Least Squares in combination with Linear Discriminant 

nalysis to classify five classes of cells from biospectroscopy sig- 

als considering small training sets [6] ; Artificial Neural Networks 

o deduce a rule of thumb from a variety of simulated and real 

ata sets relative to people preferences of transport mode [7] ; Con- 

olutional Neural Networks to classify six classes of Computer To- 

ography images [8] ; Naïve Bayes to detect network intrusion in 

ybersecurity [9] ; and Support Vector Machine with a linear kernel 

o classify a variety of medical data sets [10] . In most cases, a sim-

le parametric model of convergence is fitted to the experimen- 

al learning curve. The hope is that these curves could be gener- 

lized to other classification setups. However, there is no evidence 

or such expectations. Moreover, the fully experimental approach 

eeds realistic simulation models and/or large sets of real data. 
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On the other hand, theoretical analysis is rather complex, re- 

uiring several of the following limiting assumptions: two-class 

roblem, linear classifiers, known and/or equal covariance matri- 

es, asymptotic expressions, and only lower and/or upper bounds 

btained. The following are some representative works: [11] two- 

lass, pseudo-Fisher linear classifier, focussing on very small sam- 

le sizes; [12] two-class, linear discriminant, common and known 

ovariance matrices, the first moments of the error rate are ob- 

ained; [13] two-class, linear classifier, different but known co- 

ariance matrices, and bounds as well as an approximate expres- 

ion of the error rate are derived; [14] two-class, linear discrim- 

nant, known and common covariance matrices, and asymptotic 

rst moments and root mean-square of the error rate are obtained; 

15] two-class, bounds of the error rate; [16] two-class, linear dis- 

riminant, common covariance, asymptotic error rate stochastic 

odel derived from a stochastic model of the linear coefficients; 

17] two-class, linear discriminant, and asymptotic expansions of 

he error rate are obtained; [18] two-class, different but known co- 

ariance matrices, and bounds of the error rate are given. A differ- 

nt approach is given in [ 19 , 20 ] for the general multi-class prob-

em, not requiring prior knowledge of the model parameters, but 

onsidering only unidimensional discrete features. 

The main difficulty in generalizing these theoretical approaches 

omes from trying a direct computation of the probability of error 

nd/or the mean error of the classifier. Ref. [21] is a clear example 

f such a difficult approach, where convergence of the empirical 

rror to the generalization error is considered, but only for unidi- 

ensional features and with a particular theoretical focus on the 

upport Vector Machine classifier. However, other guides for pre- 

icting the required training sample size can be obtained by mea- 

uring the convergence of other functions related to the final prob- 

bility of error. We may call these methods “proxy approaches”. 

hus, in [22] the authors consider the analysis of the required sam- 

le size to estimate a covariance matrix, and in [23] the conver- 

ence of relative frequencies to probabilities is analyzed. From a 

ractical viewpoint, these works lead to some rule of thumbs to 

t the size of the training sample. The proposal in [24] is also in-

eresting, where a given measure of complexity is related to the 

lassifier performance. However, the objective is to extract the use- 

ul information in scenarios with an overabundance of data, rather 

han to predict the required sample size in situations of costly data 

cquisition. 

.2. New contributions and organization of the paper 

The objective of this research is to get a theoretical learning 

urve for the Bayes classifier to be expressed as a function of only 

he training sample size and the feature space dimension. There- 

ore, the curve should be independent of the model parameters 

hich are assumed to be unknown in a practical setting. To this 

nd, we adopt a proxy approach. Instead of trying to compute the 

ctual probability of error as a function of the training set size, 

e analyze the convergence of one specific statistic to its true 

alue, as explained in the next section. The approach is given for 

he general multi-class problem. The analysis focuses on the Bayes 

lassifier, initially assuming multivariate Gaussian models for ev- 

ry class, and then the results are extended to arbitrary models 

f parametric probability density function (pdf). In summary, in 

omparison with previous works, the learning curves obtained are 

alid for multidimensional features, any number of classes, arbi- 

rary parametric pdf models, and they do not depend on the model 

arameters. 

In Section 2 , we explain the proxy approach for the Bayes clas- 

ifier. Then, in Section 3 we derive the learning curve for the mul- 

ivariate Gaussian model. In Section 4 , the results are extended to 

eneral parametric models. Section 5 provides a set of experiments 
2 
ith simulated and real data to assess the usefulness of the theo- 

etical learning curve in a variety of scenarios. 

. The proxy approach 

Let us call the dimension of the feature vector M . This can 

ater be considered a multivariate continuous random variable ˜ x = 

 ̃ x 1 ... ̃ x M 

] 
T 

with observed values x = [ x 1 ...x M 

] 
T 

. 

Let us also assume classes k = 1 ...K. We consider that class k 

as a prior probability P k and a class conditioned multivariate 

robability density p ˜ x ( x / k, θk ) , which fits a model defined by the 

arameter vector θk . The posterior probability of class k condi- 

ioned to ˜ x = x can be written as: 

 

(
k/ x , θ1 , ..., θK 

)
= 

p ˜ x 

(
x / k, θk 

)
P k 

p ˜ x 

(
x / θ1 , ..., θK 

) , (1) 

here p ˜ x ( x / θ1 , ..., θK ) = 

K ∑ 

k =1 

p ˜ x ( x / k, θk ) . The Bayes classifier selects 

he class with the maximum posterior. Let us define the set of 

alues z k = g( p ˜ x ( x / k, θk ) P k ) k = 1 ...K , where g(·) is any mono-

onic non-decreasing scalar function. Selecting the class with the 

aximum posterior is equivalent to selecting the class with maxi- 

um z k . But z k can be considered a realization of the random vari-

ble ˜ z k which depends on the random vector ˜ x and on the model 

arameters θk 

˜ 
 k = g 

(
p ˜ x 

(
˜ x / k, θk 

)
P k 

)
k = 1 ...K 

  = [ ̃ z 1 ... ̃ z K ] 
T . (2) 

In practice, the model parameters are unknown, so they must 

e estimated from a limited number of training samples. Formally, 

his implies that (2) has to be modified to account for the random- 

ess of the parameter estimates 

˜ ˆ 
 k = g 

(
p ˜ x 

(
˜ x / k, 

˜ ˆ θ k 

)
P k 

)
k = 1 ...K 

 

  = 

[
˜ ˆ z 1 ... ̃ ˆ z K 

]T 
, (3) 

here ˜ ˆ z = [ ̃ ˆ z 1 ... ̃ ˆ z K ] 
T 

is a random vector which, given x and the 

stimated parameters ˆ θ1 , ..., 
ˆ θK , yields particular realizations ˆ z = 

 ̂ z 1 ... ̂ z K ] 
T 

. 

Let us assume that a given observation x belongs to (true) class 

 and that we have perfect knowledge of all the model parameters. 

he true class will be selected if and only if z k < z l , ∀ k � = l. Hence,

e can express the probability of error conditioned to l and to z l 
n the form 

 e/ l,z l 
= 1 − Pr { ̃ z k < z l , ∀ k � = l } , (4) 

here Pr { ̃ z k < z l , ∀ k � = l } is the probability that the K − 1 random 

ariables ˜ z k k � = l as defined in (2) are below the value z l cor-

esponding to the true class. Notice that Pr { ̃ z k < z l , ∀ k � = l } is the 

oint cumulative distribution function of the K -1 random variables 

˜  k k � = l at the K -1 points z l , ..., z l . To simplify the notation, we

ill define Pr { ̃ z k < z l , ∀ k � = l } = F ˜ z k � = l ( z l , ..., z l ) where ˜ z k � = l is a ran- 

om vector with elements ˜ z k k � = l. The overall probability of error 

an be computed by integrating P e/ l,z l 
over z l and summing over l , 

hus: 

 e/l = 

∫ ∞ 

−∞ 

P e/ l,z l 
p ˜ z l ( z l ) dz l = 1 − ∫ ∞ 

−∞ 

F ˜ z k � = l ( z l , ..., z l ) p ˜ z l ( z l ) dz l 

 e = 

K ∑ 

l=1 

P e/l P l 
, (5) 

here P e is the Bayes error rate for the assumed parametric model, 

.e. the probability of error corresponding to perfect knowledge of 

he model parameters. The actual probability of error will be ob- 

ained by replacing in (5) the distributions of the random vari- 

bles ˜ z , ..., ̃  z with the corresponding distributions of the random 
1 K 
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ariables ˜ ˆ z 1 , ..., ̃  ˆ z K (we assume for simplicity that P l l = 1 ...Kare

nown) 

ˆ 
 e/l = 1 − ∫ ∞ 

−∞ 

F ˜ ˆ z k � = l 

(
ˆ z l , ..., ̂  z l 

)
p ˜ ˆ z l 

(
ˆ z l 
)
d ̂  z l 

ˆ 
 e = 

K ∑ 

l=1 

ˆ P e/l P l 
. (6) 

From (5) and (6) , we can express the contribution of class l to

he excess in probability of error due to the finite training sample 

ize, in the form 

P e/l = 

ˆ P e/l − P e/l = E 

[ 
ˆ f 
(

˜ ˆ z l 
)] 

− E [ f ( ̃ z l ) ] 

P e = 

K ∑ 

l=1 

�P e/l P l 

, (7) 

here we have defined 

ˆ f ( ̂ z l ) = F ˜ ˆ z k � = l 
( ̂ z l , ..., ̂  z l ) f ( z l ) = 

 ˜ z k � = l ( z l , ..., z l ) . Let us assume that the estimates ˆ θ1 ... ̂
 θK are con- 

istent, i.e. ˆ θk → θk for an increasing size of the training set, so 

hat ̂  f ( ̂ z l ) → f ( z l ) and, from (7) , �P e/l → 0 . Unfortunately, it is

ot possible to evaluate this convergence. This is because the 

nalysis of convergence ˆ f ( ̂ z l ) → f ( z l ) is intractable. However, the 

nalysis of the convergence ˆ z l → z l is approachable if we know the 

ample size effects on the statistics ˜ ˆ z l . So, let us establish some 

onnection between both convergences. Given that ̂  f ( ̂ z l ) → f ( z l ) , 

y increasing the training set we will reach a size from which the 

ollowing approximation holds: 

ˆ f 
(

ˆ z l 
)

� 

ˆ f ( z l ) + 

(
ˆ z l − z l 

)
ˆ f ′ ( z l ) � f ( z l ) + 

(
ˆ z l − z l 

)
f ′ ( z l ) , (8) 

here ˆ f ( ̂ z l ) is expressed by the first two terms of the Taylor se- 

ies expansion around z l , and the joint cumulative distributions are 

lose, i.e. ˆ f (·) � f (·) . This means that the learning curve obtained 

ill be valid only after the training set size has increased so that 

8) holds. We will show in all of the experiments in Section 5 that

fter an initial mismatch, the theoretical predictions of the learn- 

ng curves reasonably fit the empirical estimates in concordance 

ith (8) . 

Then, from (7) and (8) , we can write: 

P e/l � E 
[(

˜ ˆ z l − ˜ z l 
)

f ′ ( ̃ z l ) 
]

≤ E 
1 
2 

[ (
˜ ˆ z l − ˜ z l 

)2 
] 

E 
1 
2 

[
f ′ ( ̃ z l ) 

2 
]

= �P UB 
e/l , 

(9) 

here we have made use of the Schwartz-Cauchy inequality to es- 

ablish an upper bound �P UB 
e/l 

for the excess of the probability of 

rror. Notice that the statistics of ˜ z l do not depend on the training 

et size, hence E 
1 
2 [ f ′ ( ̃ z l ) 

2 
] in (9) will simply be an unknown con-

tant when analysing the convergence of �P UB 
e/l 

for increasing train- 

ng set size. Also remember that for consistent estimates of the 

odel parameters, ˆ z l → z l , hence E 
1 
2 [ ( ̃ ˆ z l − ˜ z l ) 

2 
] → 0 so �P UB 

e/l 
→ 0

nd then �P 
e/l 

→ 0 . Analysis of the convergence E 
1 
2 [ ( ̃ ˆ z l − ˜ z l ) 

2 
] →

 will lead us to a proxy learning curve of the classifier. Thus, in

he next section we are going to calculate the mean-square error 

 MSE ) E[ ( ̃ ˆ z l − ˜ z l ) 
2 
] assuming that p ˜ x ( x / k, θk ) k = 1 ...Kare multivari-

te Gaussian pdfs with arbitrary means and covariances. Then, the 

esults will be extended to arbitrary parametric pdfs in Section 4 . 

e will see that the theoretical learning curve only depends on 

he dimension of the feature vector and on the size of the training 

et, but not on the model parameters. This, in conjunction with 

9) , will provide practical interest in the learning curve obtained, 

s we will show in Section 5 via some simulated and real data ex- 

eriments. 
3 
. Derivation of the learning curve for the multivariate 

aussian model 

Let us consider the multivariate Gaussian model 

n p ˜ x ( x / k, b k , C k ) = −M 

2 

ln 2 π − 1 

2 

ln | C k | − 1 

2 

( x − b k ) 
T 

C 

−1 
k ( x − b k

(10) 

here b k , the mean vector, and C k , the covariance matrix, are the 

odel parameters of class k . Let us define 

 k = −1 

2 

ln | C k | − 1 

2 

( x − b k ) 
T 

C 

−1 
k ( x − b k ) + ln P k . (11) 

It is clear from (1) that arg max ︸ ︷︷ ︸ 
k 

P ˜ x ( k/ x , b k , C k ) = arg max ︸ ︷︷ ︸ 
k 

( z k ) , 

o, given x we have to compute (11) for k = 1 ...K and select the

lass with maximum z k . In (11) we have assumed perfect knowl- 

dge of the class model parameters, but in practice we have to 

stimate these parameters from a labelled training set of indepen- 

ent instances x (n ) 
k 

n = 1 ...N k . Thus, maximum likelihood estimates 

re obtained from 

ˆ 
 k = 

1 
N k 

N k ∑ 

n =1 

x 

( k ) 
n 

ˆ 
 k = 

1 
N k −1 

N k ∑ 

n =1 

(
x 

( k ) 
n − ˆ b k 

)(
x 

( k ) 
n − ˆ b k 

)T . (12) 

Substituting in (11) , we have 

ˆ 
 k = −1 

2 

ln 

∣∣ˆ C k 

∣∣ − 1 

2 

(
x − ˆ b k 

)T 
ˆ C 

−1 
k 

(
x − ˆ b k 

)
+ ln P k . (13) 

Notice that z k in (11) is a realization of the random variable ˜ z k , 

hich is a function of the random variable ˜ x . However, ˆ z k in (13) is 

 realization of the random variable ˜ ˆ z k , which is not only a func- 

ion of the random variable ˜ x , but also of the random variables 
˜ ˆ 
 k and 

˜ ˆ C k . Now, considering the previous section, we will concen- 

rate on the values z l and ˆ z l corresponding to the true class l, i.e., 

˜  ∼ N( b l , C l ) . 

.1. Bias term of the learning curve 

Firstly, we are going to derive the convergence of the mean 

[ ̃ ˆ z l ] → E[ ̃ z l ] . In Appendix A, we have derived: 

 

[
˜ ˆ z l 
]

= −1 

2 

ψ M 

(
N l − 1 

2 

)
− 1 

2 

M ln 

2 

N l − 1 

− 1 

2 

ln | C l | 

−1 

2 

N l − 1 

N l − M − 2 

(
1 + 

1 

N l 

)
M + ln P l , (14) 

rovided that N l > M + 2 . 

On the other hand: 

 [ ̃ z l ] = − 1 
2 

ln | C l | − 1 
2 

E 
[
( ̃  x − b l ) 

T 
C 

−1 
l 

( ̃  x − b l ) 
]

+ ln P l = 

 − 1 
2 

ln | C l | − 1 
2 

trace 
[
C 

−1 
k 

C l 

]
+ ln P l = − 1 

2 
ln | C l | − 1 

2 
M + ln P l 

. 

(15) 

Therefore, we have found the bias term of the learning curve, 

hich is: 

B ( N l , M ) = E [ ̃ z l ] − E 
[

˜ ˆ z l 
]

= 

1 

2 

ψ M 

(
N l − 1 

2 

)
+ 

1 

2 

M ln 

2 

N l − 1 

+ 

1 

2 

N l − 1 

N l − M − 2 

(
1 + 

1 

N l 

)
M − 1 

2 

M , (16) 

rovided that N l > M + 2 . 

Notice that the multivariate digamma function can be expressed 

s 

 M 

(
N l − 1 

2 

)
= 

M ∑ 

m =1 

ψ 

(
N l − 1 

2 
+ 

1 − m 

2 

)
= 

M ∑ 

m =1 

ψ 

(
N l − m 

2 

)
, (17) 
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here ψ(x ) is the univariate digamma function. But: 

lim 

 →∞ 

ψ ( x ) = ln x ⇒ lim 

N l →∞ 

ψ M 

(
N l − 1 

2 

)
= M ln 

N l − 1 

2 

. (18) 

So: 

lim 

 l →∞ 

�B ( N l , M ) = 0 . (19) 

Thus, ̂ z l is an asymptotically unbiased estimate of z l . 

.2. MSE learning curve 

We need to compute the mean square error ( MSE ) E[ ( ̃ z l − ˜ ˆ z l ) 
2 
] ,

hich can be expressed as: 

 

[ (
˜ z l − ˜ ˆ z l 

)2 
] 

= var 
[

˜ z l − ˜ ˆ z l 
]

+ E 2 
[

˜ z l − ˜ ˆ z l 
]

= var 
[

˜ z l − ˜ ˆ z l 
]

+ �2 
B ( N l , M ) . 

(20) 

So in the following, we concentrate on the computation of 

ar [ ̃ z l − ˜ ˆ z l ] . This can be expressed as: 

ar 
[

˜ z l − ˜ ˆ z l 
]

= var [ ̃ z l ] + var 
[

˜ ˆ z l 
]

− 2 cov 
[

˜ z l · ˜ ˆ z l 
]
. (21) 

But [29] : 

ar [ ̃ z l ] = var 
[
− 1 

2 
ln | C l | − 1 

2 ( ̃  x − b l ) 
T 

C 

−1 
l 

( ̃  x − b l ) + ln P l 
]

= 

 

1 
4 

var 
[
( ̃  x − b l ) 

T 
C 

−1 
l 

( ̃  x − b l ) 
]

= 

1 
2 

trace 
[
C 

−1 
l 

C l C 

−1 
l 

C l 

]
= 

M 

2 

. (22) 

Moreover: 

ar 
[

˜ ˆ z l 
]

= var 

[
−1 

2 

ln 

∣∣∣ ˜ ˆ C l 

∣∣∣ − 1 

2 

(
˜ x − ˜ ˆ b l 

)T 
˜ ˆ C −1 
ll 

(
˜ x − ˜ ˆ b l 

)
+ ln P l 

]

= 

1 

4 

var 

[ 
ln 

∣∣∣ ˜ ˆ C l 

∣∣∣] + 

1 

4 

var 

[(
˜ x − ˜ ˆ b l 

)T 
˜ ˆ C −1 
ll 

(
˜ x − ˜ ˆ b l 

)]

−1 

2 

cov 

[
ln 

∣∣∣ ˜ ˆ C l 

∣∣∣, ( ˜ x − ˜ ˆ b l 

)T 
˜ ˆ C −1 
ll 

(
˜ x − ˜ ˆ b l 

)]
. (23) 

Considering again that ( N l − 1 ) ̃  ˆ C l ∼ W M 

( C l , N l − 1 ) , we can 

rite [25] : 

ar 

[ 
ln 

∣∣∣˜ ˆ C l 

∣∣∣] = ψ 

′ 
M 

(
N − 1 

2 

)
. (24) 

We have demonstrated in Appendix B that: 

ar 

[(
˜ x − ˜ ˆ b l 

)T 
˜ ˆ C −1 
ll 

(
˜ x − ˜ ˆ b l 

)]
= 

( N l −1 ) 
2 

( N l −M−2 ) 
2 
( N l −M−4 ) 

(
M 

(
1 + 

1 
N l 

)
+ 2 M 

(
1 + 

1 
N l 

)2 
)

+ 

(
N l −1 

N l −M−2 

)2 
2 M 

(
1 + 

1 
N l 

) , (25) 

rovided that N l > M + 4 . 

We have also demonstrated in Appendix C that: 

ov [ ln | ̃  ˆ C l | , ( ̃  x − ˜ ˆ b l ) 
T 

˜ ˆ C −1 
ll 

( ̃  x − ˜ ˆ b l ) ] � 0 for practical values of N l . 

Finally, we have demonstrated in Appendix D that: 

ov 
[

˜ z l · ˜ ˆ z l 
]

= 

1 

4 

N l − 1 

N l − M − 2 

2 M, (26) 

rovided that N l > M + 2 . 

Considering (21) and the results obtained in (22) , (24) –(26) , we 

an define a variance learning curve �V ( N l , M ) in the form: 

V ( N l , M ) = var 

[ 
˜ z l −

∼
ˆ z l 

] 
= var [ ̃ z l ] + var 

[ ∼
ˆ z l 

] 
− 2 cov 

[ 
˜ z l ·

∼
ˆ z l 

] 
= 

= 

M 

2 

+ 

1 

4 

ψ 

′ 
M 

(
N − 1 

2 

)
+ 

+ 

1 

4 

( N l − 1 ) 
2 

( N − M − 2 ) 
2 
( N − M − 4 ) 

(
M 

(
1 + 

1 

N l 

)

l l 

4 
+ 2 M 

(
1 + 

1 

N l 

)2 
)

+ 

+ 

(
N l − 1 

N l − M − 2 

)2 M 

2 

(
1 + 

1 

N l 

)
− M 

N l − 1 

N l − M − 2 

, (27) 

rovided that: N l > M + 4 . 

Notice that: 

 

′ 
M 

(
N−1 

2 

)
= 

M ∑ 

m =1 

ψ 

′ (N l −m 

2 

)
, 

lim 

x →∞ 

ψ 

′ ( x ) = 0 ⇒ lim 

N l →∞ 

ψ 

′ 
M 

(
N l −1 

2 

)
= 0 

. (28) 

Hence, it is straightforward to verify that: 

lim 

 l →∞ 

�V ( N l , M ) = 0 . (29) 

Finally, the MSE convergence of ˆ z l towards z l will be determined 

y the MSE learning curve. From (16) to (27) : 

 

[(
˜ z l −

∼
ˆ z l 

)2 
]

= �MSE ( N l , M ) = �V ( N l , M ) + �2 
B ( N l , M ) , (30) 

rovided that N l > M + 4 . 

From (19) to (29) : 

lim 

 l →∞ 

�MSE ( N l , M ) = 0 . (31) 

Thus, ˆ z l is a consistent estimate of z l . 

.3. Overall learning 

It is assumed in the above derivation that the true class is l , 

.e. we have obtained the contribution �P e/l to the whole excess of 

robability of error as expressed in (7) . Then, considering (9) in 

7) , the total excess of the error probability will be bounded by: 

P e = 

K ∑ 

l=1 

�P e/l P l ≤
K ∑ 

l=1 

�P UB 
e/l P l = 

K ∑ 

l=1 

�1 / 2 
MSE ( N l , M ) αl ( M ) P l , (32) 

here αl (M) = E 
1 
2 [ f ′ ( ̃ z l ) 

2 
] is a constant that is not dependent on 

 l . Let us define N = min ( N l ) l = 1 ...K, and express �1 / 2 
MSE 

( N l , M ) =
1 / 2 
MSE 

( N, M ) − δl ; then we can write (32) as 

P e ≤
K ∑ 

l=1 

(
�1 / 2 

MSE ( N, M ) − δl 

)
αl ( M ) P l ≤ β( M ) · �1 / 2 

MSE ( N, M ) , (33) 

here β(M) = 

K ∑ 

l=1 

αl (M) P l and we have taken into account that 

l , αl (M) and P l are positive numbers. Notice that β(M) depends 

n the specific data distribution model, through αl (M) (which de- 

ends on the joint distributions f ( z l ) = F ˜ z k � = l ( z l , ..., z l ) ) and the pri-

rs P l l = 1 ...K, but �1 / 2 
MSE 

( N, M ) is a function of only N, the mini-

um learning set size per class, and M, the feature space dimen- 

ion. This will not prevent the use of �1 / 2 
MSE 

( N, M ) as a proxy learn-

ng curve because it may provide the relative reduction of �P e for 

ncreasing N, not requiring knowledge of β(M) . This will be shown 

n the experimental Section 5 . 

Meanwhile, let us gain some insights into �1 / 2 
MSE 

( N, M ) . Fig. 1a 

hows the function 10 log �1 / 2 
MSE 

( N, M ) for increasing N and M (we 

ave represented the square root in consonance with (9) ). Accord- 

ngly with the validity of (30) , the initial value considered for Nis 

 + 5 , and the final value is N = 200 in all cases. As expected,

MSE ( N, M ) decreases monotonically with N and increases mono- 

onically with M. A fast descent can be observed at the begin- 

ing of the curves, which suggests a large reduction of � ( N, M ) 
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Fig. 1. Learning curves from Eq. (30) : (a) MSE in dB scale. (b) MSE relative reduction. 
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or a relatively small increase in N. After that initial fast de- 

rease, all of the curves fall slowly, which means that signifi- 

antly greater improvement will require significantly greater val- 

es of N. On the other hand, notice that the total possible MSE re-

uction achieved by increasing N is given by �MSE ( M + 5 , M ) −
MSE ( ∞ , M ) , but �MSE ( ∞ , M ) = 0 (see (31) ). Hence, the relative

eduction achieved at N with respect to the total possible reduc- 

ion will be ( �MSE ( M + 5 , M ) − �MSE ( N, M ) ) / �MSE ( M + 5 , M ) . We 

ave represented this relative reduction in linear scale in Fig. 1b , 

o that the saturation effect for increasing N can be clearly seen. 

In addition to its theoretical interest, the derived learning curve 

ay have a direct practical application. Thus, we have marked ‘o’ 

t the points of the theoretical curves of Fig. 1a corresponding to 

 12 dBs MSE fall, which correspond to around 94% of MSE rela- 

ive reduction in Fig. 1b as defined in the paragraph above. This 

hreshold seems a good (qualitative) trade-off between a signifi- 

ant reduction of the initial MSE and a small value N. Although this 

s somewhat arbitrary, a 12 dBs threshold could be selected, for 

xample, to define a tentative value for N, which can be refined in 

he context of a particular application. Thus, the tedious and costly 

earch for an appropriate training set size is alleviated. This will be 

hown in the real data application of Section 5.3 , while the general 

alidity of the theoretical curve will be assessed in Section 5.2 by 

ontecarlo simulations. 

. Extension to arbitrary parametric models 

In this section, we consider the generalization of the previ- 

us results to arbitrary parametric models. First of all, the learn- 

ng curves obtained can be applied to classifiers which assume 

ultivariate Gaussian models for the class-conditional pdfs. As the 

earning curves are independent of the model parameters, the re- 

ults are valid for the Gaussian Naïve Bayes (the particular case 

here C l is assumed to be diagonal), linear discriminant ( C l is as- 

umed to be the same for all classes) or quadratic discriminant 

 C l can be different for every class). 

On the other hand, as demonstrated in [30] , arbitrary pdfs can 

e approximated by a weighted mixture of Gaussians. So let us ex- 

ress the class-conditional pdfs in the form: 

p ˜ x 

(
x / k, θk 

)
= 

∑ I k 

i =1 
πki N( b ki , C ki ) k = 1 ...K, (34) 

here b ki and C ki are respectively the mean and covariance of the 

 -th normal pdf component N( b ki , C ki ) of the Gaussian mixture cor-

esponding to class k , being weighted by π . Every component in 
ki 

5 
34) defines a subclass i inside a class k . This is an extension of the 

odel of Eq. (10) , where only one Gaussian component is assumed 

or every class. Then, we can compute the following statistic for 

very subclass, as we did in (11) for every class: 

 ki = −1 

2 

ln | C ki | − 1 

2 

( x − b ki ) 
T 

C 

−1 
ki ( x − b ki ) ] + ln πki . (35) 

Every given observation x belongs to a true subclass j of a true 

lass l . So, in a similar manner to our derivation in Section 3 , let us

onsider the convergence E[ ( ̃ ˆ z l j − ˜ z l j ) 
2 
] → 0 to get a proxy learning 

urve for the general model in (34) . First, notice that the maximum 

ikelihood estimates of parameters b l j and C l j can be obtained from 

12) in a supervised setting where labelled training data are avail- 

ble for every subclass. We can also consider unsupervised train- 

ng by using the Expectation Maximization (EM) algorithm. Notice 

hat EM essentially makes an iterative use of (12) until maximum 

ikelihood estimates of the parameters of every subclass are ob- 

ained. Thus, the expression of �MSE ( N l , M ) in (30) , which was ap- 

licable to the theoretical learning of every class in the Gaussian 

odel, is valid for the learning of every subclass of the Gaussian 

ixture. Considering the minimum training set size Nfor all the 

ubclasses as we did in Section 3.3 for all classes, the minimum 

equired training set size will be N multiplied by the total num- 

er of subclasses, while in the Gaussian single-component model 

f Section 3 it was N multiplied by the number of classes. The 

umber of subclasses may be assumed to be known in advance 

r can be estimated using a variety of methods [ 31 , 32 ]. 

Certainly, a good Gaussian mixture approximation of arbitrary 

arametric pdfs as in (34) may in some cases require a large num- 

er of components and so a large number of parameters. In the 

vent that a more parsimonious modelling of p ˜ x ( x / k, θk ) is pos- 

ible, we have to estimate a minor number of parameters than 

he ones corresponding to the Gaussian mixture model of (34) . 

hus, for a given total training set size, the model estimation er- 

or will be smaller for the more parsimonious model (for example, 

ee [33] for a detailed analysis of the importance of reducing the 

arameter dimension which describes the data). Thus, convergence 

ill actually be faster than indicated by the theoretical curve ob- 

ained. In that case, �MSE ( N, M ) provides us with an upper bound 

or convergence as it is derived under the fitting of a less parsimo- 

ious model than it may actually be. 

Finally, nonparametric methods using Gaussian kernels also de- 

ne a mixture of Gaussians to estimate the class-conditional pdfs. 

owever, this cannot be approached using the framework pre- 

ented. This is because every mixture component corresponds to 
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 Gaussian kernel centered in every member of the training set. 

hus, the number of components increases with N. In general, non- 

arametric methods require much greater training sets than para- 

etric approaches, so they are not very appropriate for scenarios 

f data scarcity. Nonparametric methods are outside the scope of 

his work; they have been largely considered in other works like 

23] . 

. Experiments 

.1. Preliminary considerations 

In this section, we assess the theoretical results in some exper- 

ments using both simulated and real data. In all cases, we have 

onsidered two-class problems. Both classes will be equally proba- 

le and equally distributed except that means will have different 

igns. This is also applicable to subclasses when Gaussian mix- 

ures are considered. All subclasses will be equally probable but 

he means of the components belonging to one class will have dif- 

erent signs from the means of the components belonging to the 

ther class. We have also considered for simplicity that the training 

et size is the same for all classes or subclasses. Thus, the training 

et size per class (Gaussian model) or per subclass (Gaussian Mix- 

ure Models) will be indicated by N. 

We use the Bayes classifier ( Eq. (1) ) in all cases. In the case

f simulated Gaussian models, a multivariate Gaussian is assumed 

or the class conditioned multivariate probability density, and the 

odel parameters were estimated using Eq. (12) . In the case of 

he simulated Gaussian mixtures, a Gaussian mixture model is 

ssumed for the class conditioned multivariate probability den- 

ity, and the model parameters were estimated using EM method. 

n the real data experiment, a multivariate Gaussian is assumed 

or the class conditioned multivariate probability density and the 

odel parameters were estimated using Eq. (12) . 

Notice that the probability of error is a function of N and M; 

hus, in the different experiments we have computed the em- 

irical probability of error ˆ P e ( N, M ) . Moreover, assuming consis- 

ent convergence, the Bayes error rate can be estimated as ̂  P e (M) = 

ˆ 
 e ( N ∞ 

, M ) , where N ∞ 

is a large value from which no further re-

uction of ˆ P e ( N, M ) is observed by increasing N. According to (7) , 

he empirical estimate of the excess of probability of error will 

e computed as ˆ �P e ( N, M ) = 

ˆ P e ( N, M ) − ˆ P e (M) . Notice that differ-

nt data distributions will have different Bayes error rates. There- 

ore, for a better comparison among different models we compute 

he empirical relative excess of probability of error defined as: 

ˆ 
 ( N, M ) = 

ˆ �P e ( N, M ) 

ˆ P e ( M ) 
, (36) 

Let us apply (33) in (36) 

ˆ 
 ( N, M ) = 

ˆ �P e ( N, M ) 

ˆ P e ( M ) 
≤ β( M ) 

ˆ P e ( M ) 
· �1 / 2 

MSE ( N, M ) = λ( M ) · �1 / 2 
MSE ( N, M )

(37) 

Hence, we see that ˆ r ( N, M ) is upper bounded by λ(M) ·
1 / 2 
MSE 

( N, M ) . Notice that, for a given M, this upper bound is lin-

arly related to the proxy learning curve. Let us assume that this 

inear relationship also holds for the bounded variable ˆ r ( N, M ) for 

ome γ (M) ≤ λ(M) , i.e., ˆ r ( N, M ) = γ (M) · �1 / 2 
MSE 

( N, M ) . Then we

ould compute the reduction of ˆ r ( N, M ) for increasing N, from the 

orresponding reduction of the proxy learning curve, namely 

ˆ r ( N, M ) 

ˆ r ( N + m, M ) 
= 

γ ( M ) �
1 / 2 
MSE ( N, M ) 

γ ( M ) �
1 / 2 
MSE ( N + m, M ) 

= 

�1 / 2 
MSE ( N, M ) 

�1 / 2 
MSE ( N + m, M ) 

. (38) 

To verify that this is a reasonable assumption, in the experi- 

ents in the next section the theoretical curve 10 log 10 �
1 / 2 
MSE 

( N, M ) 
6 
as been shifted (linear proportionality implies a shift in logarith- 

ic scale) to get an optimal superposition with 10 log 10 ̂  r ( N, M ) . 

ote that knowledge of the shifting value is not required in the 

ractical application of the proxy curve; it is simply considered to 

ssess the linear proportionality between ˆ r ( N, M ) and �1 / 2 
MSE 

( N, M ) . 

.2. Simulated data 

First, we have considered multivariate Gaussian distributions, 

here 

lass 1 ˜ x ∼ N ( a 1 , C ) 
lass 2 ˜ x ∼ N ( −a 1 , C ) 

We have defined four cases, depending on the signal-to-noise 

atio ( SNR ) and the correlation. SNR is defined as the quotient be- 

ween the magnitude of the mean value and the standard devia- 

ion. Therefore in this case SNR = a . The four cases are: 

- Low SNR , no corr.: a = 0 . 2 C = I 

- Low SNR , corr.: a = 0 . 2 C ( i, j ) = 0 . 3 i − j 

- High SNR , no corr.: a = 0 . 4 C = I 

- High SNR , corr.: a = 0 . 4 C ( i, j ) = 0 . 3 i − j 

In all four cases, covariance matrices and means have been es- 

imated using (12) from labelled training samples. 

We have also considered cases where the class-conditional pdfs 

re mixtures of two Gaussian components, namely: 

lass 1 ˜ x ∼ 0 . 5N ( a 1 , C ) + 0 . 5N ( b1 , C ) 
lass 2 ˜ x ∼ 0 . 5N ( −a 1 , C ) + 0 . 5N ( −b1 , C ) 

We have also defined four cases, depending on the signal-to- 

oise ratio (SNR) and the correlation. Now, SNR is defined as the 

uotient between the magnitude of the mean value of the sec- 

nd component and the standard deviation. Therefore in this case 

NR = b . The four cases are: 

- Low SNR , no corr.: a = 0 . 2 b = 0 . 1 C = I 

- Low SNR , corr.: a = 0 . 2 b = 0 . 1 C ( i, j ) = 0 . 3 i − j 

- High SNR , no corr.: a = 0 . 2 b = 0 . 4 C = I 

- High SNR , corr.: a = 0 . 2 b = 0 . 4 C ( i, j ) = 0 . 3 i − j 

Among the two options mentioned in Section 4 , we have con- 

idered the most difficult, i.e., unsupervised learning. Then, the EM 

lgorithm was applied to estimate the parameters of the Gaussian 

ixture. This is a well-known algorithm, routinely used with Gaus- 

ian mixture models. Starting from some initial estimates, the pa- 

ameters of every Gaussian subcomponent i corresponding to every 

lass k ( Eq. (34) ) are iteratively updated. This is done by first com-

uting the conditioned probability of every training instance x (k ) 
n to 

very Gaussian subcomponent considering the current parameters. 

hen, Eq. (12) is used to update the parameters, but weighting ev- 

ry contribution of x (k ) 
n by the current estimate of the subcompo- 

ent conditioned probability. This later is updated with the new 

arameters. The algorithm ends when no significant variation is 

bserved between two consecutive iterations. 

In this experiment the number of components per class was 

ssumed to be known and equal to 2. Fig. 2 shows the results 

orresponding to the eight cases. The upper half shows the four 

aussian cases, and the lower half the four non-Gaussian cases. We 

ave considered the three feature vector sizes of Fig. 1 , M = 10, 30,

0. All the curves are functions of the training set size N , varying 

rom N = M + 5 (the smallest value for which the theoretical learning

urve can be defined) to N = 200. Remember that N is the training 

et size per class (one Gaussian component per class) or per sub- 

lass (two Gaussian components per class). Thus, the total size of 

he training set will be 2 N in the Gaussian cases and 4 N in the

aussian mixture cases. 
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Fig. 2. Estimated probability of error, relative excess of probability of error and theoretical curves for the 8 simulated cases. 
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For every case, we have two sets of curves corresponding to the 

gures of merit explained in the foregoing Section 5.1 . The upper 

et shows the empirical probabilities of error ̂  P e ( N, M ) . These prob- 

bilities have been estimated by averaging the estimates of 200 

uns. Every run counted the number of errors of the trained clas- 

ifier on a set of 500 testing samples per class. 

As expected, we see that the probability of error is lower for 

igh SNR in comparison with low SNR , as well as for no-correlation 

n comparison with correlation and also for Gaussianity in com- 

arison with non-Gaussianity. The lower set of curves shows the 

orresponding shifted theoretical curves 10 log 10 �
1 / 2 
MSE 

( N, M ) super- 

mposed, and the empirical relative excess of probability of er- 

or 10 log 10 ̂  r ( N, M ) as defined in (36) . In all cases, we have se-

ected N ∞ 

= 201 , which, looking at Fig. 2 is an adequate value

or ˆ P e ( N, M ) to converge to a stable minimum (the estimated 

ayes error rate). Superposition has been achieved by shifting 

0 log 10 �
1 / 2 
MSE 

( N, M ) to get the minimum mean-square-error fit to 

0 log 10 ̂ r ( N, M ) . We can see that, after an initial mismatch, the the- 

retical curves fit the relative excess of probability of error quite 

ell. The mismatch is in accordance with the first-order approxi- 

ation of (8) : the learning curve obtained will be valid only after 

he training set size has increased so that (8) holds. There is also 
7 
 small deviation at the end of some of the curves. This is due to

he empirical computations: we are estimating the Bayes error rate 

s ˆ P e ( 201 , M ) . However, ˆ r ( N, M ) approaches very fast to zero as N 

pproaches 200, then r( N, M ) is slightly underestimated in some 

ases. A small difference between two values close to zero is en- 

anced in logarithmic scale, as we can see in Fig. 2 . 

Notice that the probability of error curves as well as the Bayes 

rror rates change significantly from low to high SNR , from no- 

orrelation to correlation, and from Gaussianity to non-Gaussianity. 

owever, the relative excess curves cover a similar range of values 

n logarithmic scale, and fit the theoretical learning curves sim- 

larly. This suggests that in general we could use the theoretical 

urves to select an appropriate value for N, so that the initial rela- 

ive excess of probability of error is conveniently reduced. 

Moreover, we have computed the correlation coefficient be- 

ween every pair of superimposed curves in Fig. 2 . This is a classi-

al measure of the possible linear relation between two variables. 

e have obtained a range of correlation coefficients between 0.89 

nd 0.95, with a mean value of 0.93. This indicates strong linear 

ependence between the empirical relative excess of error proba- 

ility and the theoretical learning curves, as claimed after Eq. (37) . 
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Fig. 3. Empirical probability of error (top), empirical relative excess and theoretical curves (bottom) for varying class separability, Gaussian case: a) Increasing mean b) 

Decreasing variance. M = 30 in all cases. 
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Below, we present some additional experiments with simulated 

ata to further assess the general validity of the approach for dif- 

erent data distribution models. In particular, we have focused on 

 relevant data model property that refers to class separability. It 

s clear that classes whose distributions are more separated in the 

eature space will lead to a smaller probability of error for a given 

raining set size, as well as to a smaller Bayes error rate. Actu- 

lly, this has been verified in the previous experiments under the 

oncept of SNR . Notice that SNR was determined by the parame- 

er a in the Gaussian case, and by the parameter b in the non-

aussian case. Hence, a larger SNR implies a larger class separa- 

ility and vice versa. In Figs. 3 and 4 , we present the results of

ome additional simulations focussing on the separability matter. 

n all cases, we have considered M = 30 , which is the intermedi-

te value of the feature vector size of the three values considered 

n the previous experiment. Thus, similarly to Fig. 2 , we show the 

mpirical probability of error in the upper side of Figs. 3 and 4 , and

he empirical relative excess of probability of error superimposed 

ith the shifted theoretical curves in the lower side. In Fig. 3 we 

ave considered one Gaussian component per class (Gaussian case) 

or increasing class separability achieved by varying the mean: a = 

0 . 1 , ±0 . 2 , ±0 . 3 , ±0 . 4 C = I ( Fig 3a ), or by reducing the variance:

 = ±0 . 4 C = 4 I , 3 I , 2 I , 1 I ( Fig. 3b ). In Fig. 4 we have consid-

red Gaussian mixtures for increasing class separability achieved 

y successively suppressing one component to the four-component 

odel a = ±0 . 4 , b = ±0 . 3 , c = ±0 . 2 , d = ±0 . 1 C = I , or by re-

ucing the variance to the four-component model: a = ±0 . 4 , b =
0 . 3 , c = ±0 . 2 , d = ±0 . 1 C = 2 I , C = 1 I , C = 0 . 6 I , C = 0 . 4 I . 
f

8 
As expected, the results of Figs. 3 and 4 confirm that class sep- 

rability has a definite impact on the probability of error and so 

n the Bayes error rate. However, the good fit of the shifted theo- 

etical curve to the relative excess remains similar to the one ob- 

erved in the eight cases of Fig. 2 . Finally, as we did in Fig. 1 , we

ave marked ‘o’ at points of the theoretical curves of Figs. 2 –4 cor-

esponding to the 12 dBs fall from the initial MSE . The selected 

oints are also marked in the curves of probability of error. In all 

ases, it can be observed that a significant reduction of the error 

robability is achieved using this threshold. Then, as already sug- 

ested in Section 3.3 , the corresponding value N can be an initial 

election for the training set size. Let us show this practical issue 

n the next section with a real data experiment. 

.3. Real data 

In this section, we present a real data example where features 

re extracted from Electroencephalographic (EEG) signals recorded 

t the Hospital Universitari i Politècnic La Fe, Valencia (Spain). The 

im is to implement an automatic classifier of neurological activ- 

ty (see [34] Section V, [35] Section 5 , and [36] Section 4 , for more

etails of the application). The subject under analysis performs an 

bbreviated subtest of the “Barcelona test” (BT) suite [37] . A to- 

al of 10 trials were carried out with increasing difficulty. In ev- 

ry trial, the subject was shown an item on the computer monitor 

creen for 3 s (stimuli), and after a 2 s retention interval they were 

sked to recognize the previously seen item from among a set of 

our similar items (response). Once recognized, the subject pressed 
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Fig. 4. Empirical probability of error (top), empirical relative excess and theoretical curves (bottom) for varying class separability, Gaussian mixture case: (a) Decreasing 

number of components (b) Four components, decreasing variance. M = 30 in all cases. 
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 key and a new trial started. During the test, a given number of 

EG channels was recorded. Every channel was band-pass filtered 

etween 0.5 and 30 Hz and sampled at a sampling frequency of 

00 Hz. The objective was to implement an automatic two-class 

lassifier, where Class 1 corresponds to the “stimuli + retention”

tate and Class 2 to the “response” state. The correct performance 

f the classifier on a healthy subject will demonstrate that in nor- 

al conditions the EEG signals provide information about the com- 

utation between the two different neurological activities of the 

T. Hence, the particular performance of an automatic classifier 

rained on a subject may be an additional element to diagnose 

ossible neurological diseases. 

In this experiment, we selected one of the EEG signals recorded, 

hich was divided into non-overlapped epochs of 0.25 s. We ex- 

racted seven features in every epoch: sample mean, sample mean 

bsolute value, centroid frequency, and powers in the delta (0.5–

 Hz), theta (4–8 Hz), alpha (8–13 Hz) and beta (13–30 Hz) fre- 

uency bands. From these features, we made epoch feature vectors 

f dimension 7. Then, we obtained feature class vectors by averag- 

ng all the epoch feature vectors included within the same class in- 

erval (we know the initial and final instants of every class). Thus, 

e obtained one labelled feature vector of every class for each 

rial, for a total of 10 labelled feature vectors of each class for every

mplementation of the BT. To get more labelled feature vectors for 

oth training and testing, we can repeat the BT on the same sub- 

ect with different monitoring images as many times as we need. 

owever, note that the subject will become progressively tired, so 

t is of great relevance to estimate what a reasonable training and 

esting sample size should be. 

In Fig. 5 we show similar curves to the ones shown in the 

revious figures from simulated data. We have assumed a single- 
9 
omponent Gaussian model in both classes. Covariance matrices 

nd means have been estimated using (12) . Two different subjects 

ave been tested. Every subject has run the BT 10 times so that 

e got 100 labelled feature vectors for every class. Then, we made 

50 partitions of N and 100- N feature vectors for training and test- 

ng respectively, with N ranging from 7 + 5 to 82 in steps of 5.

n Fig. 3 (top) we show the estimated probabilities of error for a 

raining set size ranging from N = 7 + 5 to 77. This has been com-

uted by averaging over the 250 partitions. The value ˆ P e ( 82 , 7 ) is 

ot shown because it has been used as an estimate of the Bayes 

rror rate required to compute 10 log 10 ̂ r ( N, 7 ) . These later curves 

re shown in Fig. 3 (bottom) superimposed with the shifted the- 

retical curves 10 log 10 �
1 / 2 
MSE 

( N, 7 ) . In Fig. 3 we have also marked 

ith ‘o’ the points corresponding to a 12 dB drop of the theo- 

etical curves, which corresponds to a training set size of N = 47. 

owever, in the context of this application, it is more important to 

etermine if the classifier shows a learning performance, i.e. if the 

mpirical probability of error reasonably decreases for increasing 

raining size, rather than to achieve an error probability as small 

s possible. However, the theoretical curve indicates that a smaller 

hreshold than 12 dB could be enough to assess the learning capa- 

ility from the subject’s recorded EEG signals. Thus, for example, 

 10 dB drop achieves about 90% of MSE relative reduction as de- 

ned in Section 3.3 and Fig. 1 . This corresponds to a training set 

ize of N = 32 as indicated in Fig. 5 . We can see that the empiri-

al probability of error is significantly greater in subject 1, but the 

earning capability can be sufficiently deduced in both subjects by 

nly considering the interval from N = 12 to N = 32. Thus, three BT

mplementations could be enough to train the classifier (remember 

hat every BT is formed by 10 trials, every one providing a feature 

ector per class), instead of the five BT implementations if the ten- 
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Fig. 5. Estimated probability of error (top), relative excess of error probability and theoretical curves (bottom) for two different subjects of the real data experiments. 
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ative threshold of 12 dB were considered. This is very significant 

oth from the point of view of time consumption and of the sub- 

ect’s fatigue. In summary, the theoretical curve provides a guide 

o alleviate the task of defining an appropriate training set size in 

 practical setting. 

. Conclusion 

We have derived a theoretical curve which can help to fit the 

ppropriate value of the training set size. The derivation has been 

ased on an indirect (proxy) approach where the MSE convergence 

f the statistic corresponding to the true class or subclass has been 

nalyzed instead of the direct (intractable) analysis of convergence 

f the error probability. First, a multivariate Gaussian model has 

een assumed and then extended to arbitrary parametric models. 

Given a particular model of the feature data distribution, the 

ayes error rate is the lowest possible error rate for any classi- 

er applied to those data. It can be reached only for consistent 

stimates, i.e. perfect model estimation when the training set size 

ends to infinity. While the Bayes error rate fully depends on the 

odel, e.g. lower separable classes mean highest Bayes error rates, 

he excess of the error probability with respect to the Bayes er- 

or rate has been demonstrated to be proportional to the derived 

roxy curve. Thus, given the feature space dimension, the theoreti- 

al curve provides an estimate of the reduction in the excess of er- 

or probability as the training set size increases. In a practical set- 

ing, this may be useful to define a tentative value for the training 

et size. This value can be refined by considering the context of the 

articular application, as we have illustrated in the real data exper- 
10 
ment of the section above. Thus, the tedious and costly search for 

n appropriate training set size is alleviated. In the experiments, 

e have shown the general validity of the theoretical curve in a 

ariety of simulated models as well as in a real data example. This 

s consistent with the fact that the proxy curve depends only on 

he training set size and the feature space dimension, but not on 

he data model distribution. 

Several matters could be considered for improvement in future 

esearch. Firstly, some possible knowledge about the model pa- 

ameters could be incorporated into the analysis to obtain theo- 

etical curves that better match those particular models. For ex- 

mple, some parameters could be assumed known, e.g. correla- 

ion matrices are diagonals, and/or equal for all classes, or some 

nowledge about prior probabilities could be considered [38] . Also, 

ther models different from strictly Gaussian ones, e.g. imprecise 

aussian [39] , or different from Gaussian mixtures, e.g. Indepen- 

ent Component Analysis mixtures [35] may be assumed, though 

hey will probably be intractable in most cases. Moreover, we have 

onsidered that features are continuous random variables, however 

he discrete case [ 38 , 40 ] may be of interest in some application

omains, but the analysis should be substantially different. Finally, 

ote that in this work, the model parameters are estimated from 

he training set using closed expressions like (12) . The extension of 

he results to heuristic optimization methods such as bioinspired 

nes [ 41 , 42 ] is not obvious. However, this work could be useful to

efine an appropriate training set size to achieve a good starting 

oint for the algorithms if a parametric model is assumed to ob- 

ain the initial estimates of the parameters. 
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ppendix A 

From (13) we may write: 

 

[ ∼
ˆ z l 

] 
= −1 

2 

E 

[
ln 

∣∣∣∣∼
ˆ C l 

∣∣∣∣
]

− 1 

2 

E 

[ (
˜ x −

∼
ˆ b l 

)T ∼−1 

ˆ C l 

(
˜ x −

∼
ˆ b l 

)] 

+ ln P l . 

(A1) 

For N l > M the random matrix, ( N l − 1 ) ̃  ˆ C l follows a Wishart dis- 

ribution ( N l − 1 ) ̃  ˆ C l ∼ W M 

( C l , N l − 1 ) [25] , then [26] : 

 

[ 
ln 

∣∣∣( N l − 1 ) ˜ ˆ C l 

∣∣∣] = ψ M 

(
N l −1 

2 

)
+ M ln 2 + ln | C l | ⇒ 

 E 

[ 
ln 

∣∣∣˜ ˆ C l 

∣∣∣] = ψ M 

(
N l −1 

2 

)
+ M ln 

2 
N l −1 

+ ln | C l | 
, (A2) 

here ψ M 

(·) is the multivariate digamma function. On the other 

and: 

 ˜ ˆ C l 

[(
˜ x − ˜ ˆ b l 

)T 
˜ ˆ C 

−1 

l 

(
˜ x − ˜ ˆ b l 

)
/ x , ˆ b l 

]
= 

(
x − ˆ b l 

)T 

E ˜ ˆ C l 

[
˜ ˆ C 

−1 

l 

](
x − ˆ b l 

)
, 

(A3) 

we have used a subindex to indicate over which random variable 

he expectation is taken, and we will keep this notation where 

equired throughout the paper). Notice that ˆ b l and 

˜ ˆ C l are indepen- 

ent because the covariance of a linear form with a quadratic 

orm of a multivariate Gaussian variable is zero due to the can- 

ellation of third order moments ( [27] , page 201). So, conditional 

o ˆ b l , matrix 1 
N l −1 

˜ ˆ C 

−1 

l still follows an inverse Wishart distribution 

1 
N l −1 

˜ ˆ C 

−1 

l ∼ W 

−1 
M 

( C 

−1 
l 

, N l − 1 ) [28] , then for N l > M + 2 : 

 ˜ ˆ C l 

[
˜ ˆ C 

−1 

l 

]
= 

N l − 1 

N l − M − 2 

C 

−1 
l 

. (A4) 

On the other hand, 
˜ ˆ b l ∼ N( b l , 

1 
N l 

C l ) [25] , and ˜ x ∼ N( b l , C l ) . But 

˜ ˆ 
 l and ˜ x are independent because the instance being tested will not 

e included in the training set to avoid overfitting, so ( ̃ x − ˜ ˆ b l ) ∼
( 0 , C l + 

1 
N l 

C l ) . Then, from ( A3 ), ( A4 ), the law of total expectation

nd [29] : 

 

[(
˜ x − ˜ ˆ b l 

)T 
˜ ˆ C 

−1 

l 

(
˜ x − ˜ ˆ b l 

)]
= E 

˜ x , 
˜ ˆ b l 

[(
˜ x − ˜ ˆ b l 

)T 

E ˜ ˆ C l 

[
˜ ˆ C 

−1 

l 

](
˜ x − ˜ ˆ b l 

)]
=

 trace 

[
E 

˜ ˆ C 
−1 

l 

[
˜ ˆ C 

−1 

l 

](
C l + 

1 
N l 

C l 

)]
= trace 

[
N l −1 

N l −M−2 
C 

−1 
l 

(
C l + 

1 
N l 

C l 

)]
= 

 

N l −1 
N l −M−2 

(
1 + 

1 
N l 

)
trace [ I ] = 

N l −1 
N l −M−2 

(
1 + 

1 
N l 

)
M 

(A5) 
11 
Finally, 

 

[
˜ ˆ z l 
]

= −1 

2 

ψ M 

(
N l − 1 

2 

)
− 1 

2 

M ln 

2 

N l − 1 

− 1 

2 

ln | C l | 

−1 

2 

N l − 1 

N l − M − 2 

(
1 + 

1 

N l 

)
M + ln P l (A6) 

rovided that N l > M + 2 . 

ppendix B 

The law of total variance allows us to write: 

ar 

[(
˜ x − ˜ ˆ b l 

)T 
˜ ˆ C −1 
ll 

(
˜ x − ˜ ˆ b l 

)]
= E 

˜ x , 
˜ ˆ b l 

[
var ˜ ˆ C l 

[(
˜ x − ˜ ˆ b l 

)T 
˜ ˆ C −1 
ll 

(
˜ x − ˜ ˆ b l 

)
/ x, ̂  b l 

]]
+ var 

˜ x , 
˜ ˆ b l 

[
E ˜ ˆ C l 

[(
˜ x − ˜ ˆ b l 

)T 
˜ ˆ C −1 
ll 

(
˜ x − ˜ ˆ b l 

)
/ x, ̂  b l 

]]. (B1) 

But the quadratic form of an inverse Wishart matrix, prop- 

rly normalized, follows an inverse chi-square distribution 

˜ M 

−1 ∼
 

−1 
Q 

( M 

−1 
l 

, P ) ⇒ a T ˜ M 

−1 a / a T M 

−1 a ∼ in v χ2 
P−Q+1 

[27] . 

Considering that x ∼ in v χ2 
ν ⇒ var (x ) = 

 / ( ν − 2 ) 2 ( ν − 4 ) ν > 4 , we can write: 

1 
N l −1 

˜ ˆ C −1 
l 

∼ W 

−1 
M 

(
C −1 

l 
, N l − 1 

)
 var ˜ ˆ C l 

[
1 

N l −1 ( ̃ x −˜ b l ) 
T ˜ ˆ C −1 

ll ( ̃ x −˜ b l ) 

( ̃ x −˜ b l ) 
T 
C −1 

l ( ̃ x −˜ b l ) 
/ x, ̂  b l 

]
= 

2 

( N l −M−2 ) 
2 
( N l −M−4 ) 

. (B2) 

rovided that N l > M + 4 

Therefore, 

 

˜ x , 
˜ ˆ b l 

[
var ˜ ˆ C l 

[(
˜ x − ˜ ˆ b l 

)T 
˜ ˆ C −1 
ll 

(
˜ x − ˜ ˆ b l 

)
/ x, ̂  b l 

]]

 

( N l −1 ) 
2 

( N l −M−2 ) 
2 
( N l −M−4 ) 

E 
˜ x , 

˜ ˆ b l 

[ ((
˜ x − ˜ ˆ b l 

)T 

C −1 
l 

(
˜ x − ˜ ˆ b l 

))2 
] 

. (B3) 

But, 

 

˜ x , 
˜ ˆ b l 

[ ((
˜ x − ˜ ˆ b l 

)T 

C −1 
l 

(
˜ x − ˜ ˆ b l 

))2 
] 

= 

 E 2 
˜ x , 

˜ ˆ b l 

[(
˜ x − ˜ ˆ b l 

)T 

C −1 
l 

(
˜ x − ˜ ˆ b l 

)]
+ var 

˜ x , 
˜ ˆ b l 

[(
˜ x − ˜ ˆ b l 

)T 

C −1 
l 

(
˜ x − ˜ ˆ b l 

)]
= 

 t race 
[
C −1 

l 

(
C l 

(
1 + 

1 
N l 

))]
+ 2 t race 

[
C −1 

l 

(
C l 

(
1 + 

1 
N l 

))
C −1 

l 

(
C l 

(
1 + 

1 
N l 

))]
= 

 M 

(
1 + 

1 
N l 

)
+ 2 M 

(
1 + 

1 
N l 

)2 

. 

(B4) 

Therefore, 

 

˜ x , 
˜ ˆ b l 

[
var ˜ ˆ C l 

[(
˜ x − ˜ ˆ b l 

)T 
˜ ˆ C −1 
ll 

(
˜ x − ˜ ˆ b l 

)
/ x, ̂  b l 

]]
= 

( N l −1 ) 
2 

( N l −M−2 ) 
2 
( N l −M−4 ) 

(
M 

(
1 + 

1 
N l 

)
+ 2 M 

(
1 + 

1 
N l 

)2 
). (B5) 

We still have to compute the second term of ( B1 ), but consid-

ring ( A4 ), we can write 

ar 
˜ x , 

˜ ˆ b l 

[
E ˜ ˆ C −1 

ll 

[(
˜ x − ˜ ˆ b l 

)T 
˜ ˆ C −1 
ll 

(
˜ x − ˜ ˆ b l 

)
/ x, ̂  b l 

]]
 var 

˜ x , 
˜ ˆ b l 

[(
˜ x − ˜ ˆ b l 

)T 
N l −1 

N l −M−2 
C −1 

l 

(
˜ x − ˜ ˆ b l 

)T 
]

 

(
N l −1 

N l −M−2 

)2 (
trace 

[
C −1 

l 

(
C l 

(
1 + 

1 
N l 

))])
= 

(
N l −1 

N l −M−2 

)2 
2 M 

(
1 + 

1 
N l 

)
. 

(B6) 
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Adding ( B5 ) and ( B6 ), we can write 

ar 

[(
˜ x − ˜ ˆ b l 

)T 
˜ ˆ C −1 
ll 

(
˜ x − ˜ ˆ b l 

)]
= 

( N l −1 ) 
2 

( N l −M−2 ) 
2 
( N l −M−4 ) 

(
M 

(
1 + 

1 
N l 

)
+ 2 M 

(
1 + 

1 
N l 

)2 
)

+ 

(
N l −1 

N l −M−2 

)2 
2 M 

(
1 + 

1 
N l 

) . (B7) 

rovided that N l > M + 4 . 

ppendix C 

Let us consider de eigendecomposition of the sample covariance 

atrix 

˜ ˆ 
 l = 

M ∑ 

m =1 

˜ ˆ λm ̃

 ˆ u m ̃

 ˆ u 

T 

m 

˜ ˆ λm 

> 0 

˜ ˆ u 

T 

m 

˜ ˆ u m 

′ = 

{
1 m = m 

′ 
0 m � = m 

′ , (C1) 

here { ̃  ˆ u m 

} are the eigenvectors of matrix ˜ ˆ C l and { ˜ ˆ λm 

} the corre- 

ponding eigenvalues. Then we can write: 

˜ x − ˜ ˆ b l 

)T 
˜ ˆ C −1 
ll 

(
˜ x − ˜ ˆ b l 

)
= 

(
˜ x − ˜ ˆ b l 

)T 
(

M ∑ 

m =1 

˜ ˆ λ−1 
m 

˜ ˆ u m ̃

 ˆ u 

T 
m 

)(
˜ x − ˜ ˆ b l 

)
= 

M ∑ 

m =1 

˜ ˆ λ−1 
m 

(
˜ x − ˜ ˆ b l 

)T 
˜ ˆ u m ̃

 ˆ u 

T 
m 

(
˜ x − ˜ ˆ b l 

)
n 

∣∣∣ ˜ ˆ C l 

∣∣∣ = 

M ∑ 

m =1 

ln 

˜ ˆ λm 

(C2) 

And so 

ov 

[
ln 

∣∣∣ ˜ ˆ C l 

∣∣∣, ( ˜ x − ˜ ˆ b l 

)T 
˜ ˆ C −1 
ll 

(
˜ x − ˜ ˆ b l 

)]
= 

M ∑ 

m =1 

M ∑ 

m 

′ =1 

cov 

[
ln 

˜ ˆ λm 

′ , ˜ ˆ λ−1 
m 

˜ ˆ u 

T 
m 

(
˜ x − ˜ ˆ b l 

)(
˜ x − ˜ ˆ b l 

)T 
˜ ˆ u m 

]. (C3) 

Notice that cov [ ln 

˜ ˆ λm 

′ , ˜ ˆ λ−1 
m 

˜ ˆ u 

T 

m 

( ̃ x − ˜ ˆ b l ) ( ̃ x − ˜ ˆ b l ) 
T 

˜ ˆ u m 

] will be zero if 

ov [ 
˜ ˆ λm 

′ , ˜ ˆ λ−1 
m 

˜ ˆ u 

T 

m 

( ̃ x − ˜ ˆ b l ) ( ̃ x − ˜ ˆ b l ) 
T 

˜ ˆ u m 

] is zero. But: 

ov 

[
˜ ˆ λm 

′ , ˜ ˆ λ−1 
m 

˜ ˆ u 

T 

m 

(
˜ x − ˜ ˆ b l 

)(
˜ x − ˜ ˆ b l 

)T 
˜ ˆ u m 

]
= 

= E 

[
˜ ˆ λm 

′ · ˜ ˆ λ−1 
m 

˜ ˆ u 

T 

m 

(
˜ x − ˜ ˆ b l 

)(
˜ x − ˜ ˆ b l 

)T 
˜ ˆ u m 

]
−E 

[ 
˜ ˆ λm 

′ 
] 

· E 

[
˜ ˆ λ−1 

m 

˜ ˆ u 

T 

m 

(
˜ x − ˜ ˆ b l 

)(
˜ x − ˜ ˆ b l 

)T 
˜ ˆ u m 

]. (C4) 

Now, let us take into account that 
˜ ˆ λm 

= 

˜ ˆ u 

T 

m 

˜ ˆ C l 
˜ ˆ u m 

, so that we can 

rite 

 

[
˜ ˆ λ−1 

m 

˜ ˆ u 

T 

m 

(
˜ x − ˜ ˆ b l 

)(
˜ x − ˜ ˆ b l 

)T 
˜ ˆ u m 

]
= E 

⎡ 

⎢ ⎣ 

˜ ˆ u 

T 

m 

(
˜ x − ˜ ˆ b l 

)(
˜ x − ˜ ˆ b l 

)T 
˜ ˆ u m 

˜ ˆ u 

T 

m 

˜ ˆ C l ̃
 ˆ u m 

⎤ 

⎥ ⎦ 

.

(C5) 

Then, we can apply the law of total expectation to compute 

 C5 ). Previously, notice that a realization 

ˆ C l of the sample ma- 

rix implies a realization of all its eigenvectors. However, we will 

ssume the approximation that given a realization ˆ u m 

of the m - 

h eigenvector, ˜ ˆ C l is still a random Wishart matrix ( N l − 1 ) ̃  ˆ C l ∼
 M 

( C l , N l − 1 ) . This is a reasonable approximation for large M , 

ince this is the total number of eigenvalues and eigenvectors 

efining the matrix eigendecomposition in ( C1 ). Then we can write 
12 
 

˜ x , 
˜ ˆ b l 

[ 

˜ ˆ u 
T 

m 

(
˜ x −˜ ˆ b l 

)(
˜ x −˜ ˆ b l 

)T 
˜ ˆ u m 

˜ ˆ u 
T 

m 
˜ ˆ C l ̃ ˆ u m 

/ ̃
 ˆ C l , ̃

 ˆ u m 

] 

= 

˜ ˆ u 
T 

m E ˜ x , ˜ ˆ b l 

[(
˜ x −˜ ˆ b l 

)(
˜ x −˜ ˆ b l 

)T 
]

˜ ˆ u m 

˜ ˆ u 
T 

m 
˜ ˆ C l ̃ ˆ u m 

= 

(
1 + 

1 
N 

) ˜ ˆ u 
T 

m C l ̃
 ˆ u m 

˜ ˆ u 
T 

m 
˜ ˆ C l ̃ ˆ u m 

. (C6) 

But 
 

˜ ˆ u 

T 

m 

C l ̃  ˆ u m 

˜ ˆ u 

T 

m 

( N − 1 ) ̃ ˆ C l ̃  ˆ u m 

/ ̂ u m 

] 

∼ in v χ2 
N−1 ⇒ E ˜ ˆ C l 

[ 

˜ ˆ u 

T 

m 

C l ̃  ˆ u m 

˜ ˆ u 

T 

m 

˜ ˆ C l ̃  ˆ u m 

/ ̂ u m 

] 

= 

N − 1 

N − 3 
. (C7) 

Therefore 

 

[
˜ ˆ λ−1 

m 

˜ ˆ u 

T 

m 

(
˜ x − ˜ ˆ b l 

)(
˜ x − ˜ ˆ b l 

)T 
˜ ˆ u m 

]
= E ˜ ˆ u m 

[ (
1 + 

1 

N 

)
N − 1 

N − 3 

] 
= 

(
1 + 

1 

N 

)
N − 1 

N − 3 

. (C8) 

Let us now consider the first term in ( C4 ). We can proceed in a

imilar manner, in this case assuming that given both a realization 

ˆ  m 

of the m th eigenvector, and a realization ̂

 λm 

′ of the m’ -th eigen- 

alue ˜ ˆ C l is still a random Wishart matrix. Therefore for m � = m 

′ we

ay write: 

 

[
˜ ˆ λm 

′ · ˜ ˆ λ−1 
m 

˜ ˆ u 

T 

m 

(
˜ x − ˜ ˆ b l 

)(
˜ x − ˜ ˆ b l 

)T 
˜ ˆ u m 

]
= E 

[ 

˜ ˆ λm 

′ 
˜ ˆ u 

T 

m 

(
˜ x −˜ ˆ b l 

)(
˜ x −˜ ˆ b l 

)T 
˜ ˆ u m 

˜ ˆ u 
T 

m 
˜ ˆ C l ̃ ˆ u m 

] 

 

˜ x , 
˜ ˆ b l 

[ 

˜ ˆ λm 

′ 
˜ ˆ u 

T 

m 

(
˜ x −˜ ˆ b l 

)(
˜ x −˜ ˆ b l 

)T 
˜ ˆ u m 

˜ ˆ u 
T 

m 
˜ ˆ C l ̃ ˆ u m 

/ ̃
 ˆ C l , ̃

 ˆ u m 

, 
˜ ˆ λm 

′ 

] 

= 

˜ ˆ λm 

′ 
(
1 + 

1 
N 

) ˜ ˆ u 
T 

m C l ̃
 ˆ u m 

˜ ˆ u 
T 

m 
˜ ˆ C l ̃ ˆ u m 

E ˜ ˆ C l 

[ 
˜ ˆ λm 

′ 
(
1 + 

1 
N 

) ˜ ˆ u 
T 

m C l ̃
 ˆ u m 

˜ ˆ u 
T 

m 
˜ ˆ C l ̃ ˆ u m 

/ ̂  u m 

, 
˜ ˆ λm 

′ 
] 

= 

˜ ˆ λm 

′ 
(
1 + 

1 
N 

)
N−1 
N−3 

 

[
˜ ˆ λm 

′ · ˜ ˆ λ−1 
m 

˜ ˆ u 

T 

m 

(
˜ x − ˜ ˆ b l 

)(
˜ x − ˜ ˆ b l 

)T 
˜ ˆ u m 

]
= E 

ˆ u m , 
˜ ˆ λm ′ 

[ 
˜ ˆ λm 

′ 
(
1 + 

1 
N 

)
N−1 
N−3 

] 
= E 

[ 
˜ ˆ λm 

′ 
] (

1 + 

1 
N 

)
N−1 
N−3 

. (C9) 

And both terms in ( C4 ) cancel out so 

hat cov [ 
˜ ˆ λm 

′ , ˜ ˆ λ−1 
m 

˜ ˆ u 

T 

m 

( ̃ x − ˜ ˆ b l ) ( ̃ x − ˜ ˆ b l ) 
T 

˜ ˆ u m 

] = 0 m � = m 

′ . For m = m 

′ ,
he second term in ( C3 ) is simply E[ 

˜ ˆ λm 

]( 1 + 

1 
N ) 

N−1 
N−3 and the second

erm becomes 

 

[
˜ ˆ λm 

′ · ˜ ˆ λ−1 
m 

˜ ˆ u T m 

(
˜ x − ˜ ˆ b l 

)(
˜ x − ˜ ˆ b l 

)T 
˜ ˆ u m 

]
= E 

[
˜ ˆ u T m 

(
˜ x − ˜ ˆ b l 

)(
˜ x − ˜ ˆ b l 

)T 
˜ ˆ u m 

]
= 

 E ˜ ˆ u m 

[
E 

˜ x , 
˜ ˆ b l 

[
˜ ˆ u T m 

(
˜ x − ˜ ˆ b l 

)(
˜ x − ˜ ˆ b l 

)T 
˜ ˆ u m 

/ ̂  u m 

]]
= 

(
1 + 

1 
N 

)
E ˜ ˆ u m 

[
˜ ˆ u T m 

C l ̃  ˆ u m 

/ ̂  u m 

]. 
(C10) 

But, 

 

˜ ˆ u 

T 

m 

( N − 1 ) ̃  ˆ C l ̃
 ˆ u m 

˜ ˆ u 

T 

m 

C l ̃
 ˆ u m 

/ ̂  u m 

] 

∼ χ2 
N−1 ⇒ E ˜ ˆ C l 

[ 
˜ ˆ u 

T 

m 

˜ ˆ C l ̃
 ˆ u m 

/ ̂  u m 

] 
= ˆ u 

T 
m 

C l ̂  u m 

. 

(C11) 

Then, E ˜ ˆ u m 
[ ̃  ˆ u T m 

C l 
˜ ˆ u m 

/ ̂  u m 

] = E ˜ ˆ u m 
[ E ˜ ˆ C l 

[ ̃  ˆ u T m 

˜ ˆ C l 
˜ ˆ u m 

/ ̂  u m 

] ] = E[ 
˜ ˆ λm 

] and 

ov 

[
˜ ˆ λm 

, 
˜ ˆ λ−1 

m 

˜ ˆ u 

T 

m 

(
˜ x − ˜ ˆ b l 

)(
˜ x − ˜ ˆ b l 

)T 
˜ ˆ u m 

]
= 

(
1 + 

1 
N 

)
E 

[ 
˜ ˆ λm 

] (
1 − N−1 

N−3 

)
, 

(C12) 

hich for practical values of N will be close to zero. 
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[

[

[

[

ppendix D 

Taking into account that cov [ ( ̃ x − b l ) 
T 

C 

−1 
l 

( ̃ x − b l ) , ln | ̃  ˆ C l | ] = 0 , 

he law of total covariance can be applied in a similar form to the 

aw of total variance in ( B1 ), namely: 

ov 
[

˜ z l · ˜ ˆ z l 
]

= 

1 
4 cov 

[
( ̃ x − b l ) 

T 
C −1 

l 
( ̃ x − b l ) , 

(
˜ x − ˜ ˆ b l 

)T 
˜ ˆ C −1 
ll 

(
˜ x − ˜ ˆ b l 

)]
 

1 
4 E ˜ x , 

˜ ˆ b l 

[
cov ˜ ˆ C l 

[
( ̃ x − b l ) 

T 
C −1 

l 
( ̃ x − b l ) , 

(
˜ x − ˜ ˆ b l 

)T 
˜ ˆ C −1 
ll 

(
˜ x − ˜ ˆ b l 

)
/ x, ̂  b l 

]]
 

1 
4 cov 

˜ x , 
˜ ˆ b l 

[
E ˜ ˆ C l 

[ 
( ̃ x − b l ) 

T 
C −1 

l 
( ̃ x − b l ) / x, ̂  b l 

] 
, E ˜ ˆ C l 

[(
˜ x − ˜ ˆ b l 

)T 
˜ ˆ C −1 
ll 

(
˜ x − ˜ ˆ b l 

)
/ x, ̂  b l 

]]. 

(D1) 

The first term in ( D1 ) vanishes because, conditional to ˜ x = x ,

 ̃ x − b l ) 
T 

C 

−1 
l 

( ̃ x − b l ) does not depend on 

˜ ˆ C l . Regarding the second 

erm, we have (remember ( A4 )): 

 ˜ ˆ C l 

[ 
( ̃  x − b l ) 

T 
C −1 

l 
( ̃  x − b l ) / x, ̂  b l 

] 
= ( x − b l ) 

T 
C −1 

l 
( x − b l ) 

 ˜ ˆ C l 

[(
˜ x − ˜ ˆ b l 

)T 
˜ ˆ C −1 
ll 

(
˜ x − ˜ ˆ b l 

)
/ x, ̂  b l 

]
= 

(
x − ˆ b l 

)T 
N l −1 

N l −M−2 
C −1 

l 

(
x − ˆ b l 

)T . 

(D2) 

So [29] , 

ov 
[

˜ z l · ˜ ˆ z l 
]

= 

1 
4 

N l −1 
N l −M−2 

· cov 
˜ x , 

˜ ˆ b l 

×
[
( ̃  x − b l ) 

T 
C 

−1 
l 

( ̃  x − b l ) , 
(

˜ x − ˜ ˆ b l 

)T 

C 

−1 
l 

(
˜ x − ˜ ˆ b l 

)T 
]
. 

(D3) 

rovided that N l > M + 2 . 

We can apply the law of total covariance again to compute the 

bove covariance: 

ov 
˜ x , 

˜ ˆ b l 

[
( ̃ x − b l ) 

T 
C −1 

l 
( ̃ x − b l ) , 

(
˜ x − ˜ ˆ b l 

)T 

C −1 
l 

(
˜ x − ˜ ˆ b l 

)T 
]

= 

 E ˜ ˆ b l 

[
cov ˜ x 

[
( ̃ x − b l ) 

T 
C −1 

l 
( ̃ x − b l ) , 

(
˜ x − ˜ ˆ b l 

)T 

C −1 
l 

(
˜ x − ˜ ˆ b l 

)T 

/ ̂ b l 

]]
+ 

 cov ˜ ˆ b l 

[
E ˜ x 

[ 
( ̃ x − b l ) 

T 
C −1 

l 
( ̃ x − b l ) / ̂ b l 

] 
, E ˜ x 

[(
˜ x − ˜ ˆ b l 

)T 

C −1 
l 

(
˜ x − ˜ ˆ b l 

)T 

/ ̂ b l 

]]. 

(D4) 

Let us define ˜ w = ̃  x − b l and ̂ v = b l − ˆ b l so that ˜ x − ˆ b l = ˜ w + ̂  v . 

hen we can operate with the first term in ( D4 ): 

ov ˜ x 

[
( ̃  x − b l ) 

T 
C 

−1 
l 

( ̃  x − b l ) , 
(

˜ x − ˜ ˆ b l 

)T 

C 

−1 
l 

(
˜ x − ˜ ˆ b l 

)T 

/ ̂  b l 

]
= cov ˜ w 

[ 
˜ w 

T C 

−1 
l 

˜ w , 
(

˜ w + ̂  v 
)T 

C 

−1 
l 

(
˜ w + ̂  v 

)T 
] 

= 

= cov ˜ w 

[
˜ w 

T C 

−1 
l 

˜ w , ˜ w 

T C 

−1 
l 

˜ w 

T 
]

+ cov ˜ w 

[
˜ w 

T C 

−1 
l 

˜ w , ˆ v T C 

−1 
l 

ˆ v T 
]

+2 cov ˜ w 

[
˜ w 

T C 

−1 
l 

˜ w , ˜ w C 

−1 
l ˆ v T 

]
. (D5) 

The second term is zero because ˆ v T C 

−1 
l 

ˆ v T does not depend on ̃  w . 

he third term also vanishes because it is the covariance of a 

uadratic form with a linear form of a multivariate Gaussian vari- 

ble ( [27] , page 201). So, the first term in ( D4 ) is given by: 

 ˜ ˆ b l 

[
cov ˜ w 

[
˜ w 

T C 

−1 
l 

˜ w , ˜ w 

T C 

−1 
l 

˜ w 

T 
]]

= E ˜ ˆ b l 

[
2 trace 

[
C 

−1 
l 

C l C 

−1 
l 

C l 

]]
= 2 M. 

(D6) 

Moreover, the second term in ( D4 ) is zero because 

 ˜ x [ ( ̃ x − b l ) 
T 

C 

−1 
l 

( ̃ x − b l ) / ̂  b l ] = trace [ C 

−1 
l 

C l ] = Mis constant. There- 

ore, returning to ( D3 ) and considering ( D4 )–( D6 ), we may write:

ov 
[

˜ z l · ˜ ˆ z l 
]

= 

1 

4 

N l − 1 

N l − M − 2 

2 M. (D7) 

rovided that N > M + 2 . 
l 
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