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Diego, gran amigo, qué buenos dos años hemos pasado juntos. Gracias por las llamadas
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Abstract

In the effort to reduce the carbon footprint generated by air transportation, the exhaustive
study of the combustion processes, including traditional, SAF and hydrogen fuels, is
necessary to develop advanced methodologies and computational models that can assist
the aeronautical industry with the decarbonization objectives of the aviation sector.

In this context, the Ordinary Differential Equations (ODEs) involved in the resolution
of chemical kinetics must be solved with an implicit numerical method, known as stiff
solver, in order to maximize the time step of the integration interval. This stiff solver
includes several numerical methods inside. Typically, a Newton iteration is needed to
reach the solution of the nonlinear equation system. Even further, the Newton iteration
requires the evaluation of the Jacobian matrix as well as a linear solver execution. All
these methods together are usually computationally expensive.

This is where modern computer architectures and Graphic Processor Units (GPUs) can
be useful to speed up chemical integration. Multi-threading handling technologies, such
as OpenMP and CUDA can be used to parallelize the stiff solver at different levels of
granularity. Coarse-grained parallelism, with OpenMP threads, solving chemical integra-
tion in multiple mesh points simultaneously. Fine-grained parallelism, launching CUDA
kernels to GPU devices, for floating point matrix operations.

In this work an Ordinary Differential Equations integrator library has been developed
with the objective of minimizing the integration time. This library exploits the paral-
lel capability of CPU-GPU heterogeneous architectures through shared-memory parallel
programming models.
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Resumen

En el esfuerzo de reducir la huella de carbono generada por el transporte aéreo, un estudio
exhaustivo de los procesos de combustión, tanto para los combustibles tradicionales como
para los novedosos combustibles sostenibles SAF e hidrógeno, es necesario para entender
y desarrollar nuevas metodoloǵıas y modelos computacionales que puedan ayudar a la
industria aeronáutica a los objetivos de descarbonización de la aviación.

En este contexto, el sistema de Ecuaciones Diferenciales Ordinarias (EDOs), formado por
las reacciones acopladas de los numerosos compuestos que integran el combustible, ha
de ser resuelto con un método numérico impĺıcito, conocido en la literatura como “stiff
solver”, para poder maximizar el paso de integración del intervalo temporal a resolver.
Normalmente, para resolver el sistema de ecuaciones no lineal se utiliza el método de
Newton o alguna de sus variantes. A su vez, este último método necesita de la evaluación
de la matriz Jacobiana, aśı como, de la resolución de un sistema lineal de ecuaciones
algebraicas. La resolución de todos métodos numéricos anidados supone un coste com-
putacional elevado.

Aqúı es donde las arquitecturas de computadores modernas y las unidades de proce-
samiento gráfico (GPUs) pueden aprovecharse para acelerar la integración qúımica. Tec-
noloǵıas para la programación con sistemas multi-hilo, como OpenMP y CUDA pueden
usarse para paralelizar los distintos métodos numéricos a diferentes niveles de granulari-
dad. Paralelización de grano grueso, usando hilos de OpenMP, para resolver la integración
qúımica en múltiples puntos del dominio computacional de forma simultánea. Paralelismo
de grano fino, invocando “kernels” de CUDA en las GPUs, para realizar operaciones ma-
triciales con aritmética en punto flotante.

En este trabajo se ha desarrollado un libreŕıa que integra sistemas de EDOs con el ob-
jetivo de minimizar los tiempos de integración. Esta libraŕıa explota las capacidades de
paralelización de las arquitecturas heterogéneas CPU-GPU a través de los modelos de
programación paralela en memoria compartida.
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Resum

En l’esforç de reduir l’empremta de carboni generada pel transport aeri, un estudi ex-
haustiu dels processos de combustió, tant per als combustibles tradicionals com per als
nous combustibles sostenibles SAF i hidrogen, és necessari per a entendre i desenvolupar
noves metodologies i models computacionals que puguen ajudar a la indústria aeronàutica
als objectius de descarbonització de l’aviació.

En aquest context, el sistema d’Equacions Diferencials Ordinàries (EDOs), format per
les reaccions acoblades dels nombrosos compostos que integren el combustible, ha de ser
resolt amb un mètode numèric impĺıcit, conegut en la literatura com a “stiff solver”, per
a poder maximitzar el pas d’integració de l’interval temporal a resoldre. Normalment,
per a resoldre el sistema d’equacions no lineal s’utilitza el mètode de Newton o alguna
de les seues variants. A la vegada, aquest últim mètode necessita de l’avaluació de la
matriu Jacobiana, aix́ı com de la resolució d’un sistema lineal d’equacions algebraiques.
La resolució de tots els mètodes numèrics anidats suposa un cost computacional elevat.

Aćı és on les arquitectures de computadors modernes i les unitats de processament
gràfic (GPUs) poden aprofitar-se per a accelerar la integració qúımica. Tecnologies per
a la programació amb sistemes multi-fil, com OpenMP i CUDA, poden ser utilitzades
per a paral·lelitzar els diferents mètodes numèrics a diferents nivells de granularitat.
Paral·lelització de gran gruix, utilitzant fils d’OpenMP, per a resoldre la integració qúımica
en múltiples punts del domini computacional de forma simultània. Paral·lelisme de granu-
lació fina, invocant “kernels” de CUDA en les GPUs, per a realitzar operacions matricials
amb aritmètica en punt flotant.

En aquest treball s’ha desenvolupat una llibreria que integra sistemes d’EDOs amb l’objectiu
de minimitzar els temps d’integració. Aquesta llibreria explota les capacitats de paral·lelització
de les arquitectures heterogènies CPU-GPU a través dels models de programació paral·lela
en memòria compartida.
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Chapter 1

Introduction

1.1 Motivation

One of today’s global challenges is the global warming, that is the temperature increase of
the planet, mainly caused by the emission to the atmosphere of GreenHouse Gases (GHG),
such as CO2, H2O, CH4, etc. In particular, this is a very hot topic in the transportation
sector, whose emission contributions are growing every year, in comparison with industrial
and civil sectors that are showing a decreasing trend.

Zooming in the transportation sector, the aviation is presenting a steadily growing evolu-
tion over the years, with a prediction of doubling air traffic every 15 years [1]. The reason
why this can be a major problem is because nowadays, the way an aircraft is generating
the force to move forward and fly is the result of a combustion process that occurs inside
its propulsion engines. Traditionally, the fuel that feed those engines is fossil-based. To
give the reader a very brief and simple illustration of the chemical composition of an
aeroengine exhaust gases, in the Eq.(1.1) can be seen a perfect combustion reaction of
methane with oxygen, as the reader can appreciate, the reaction’s products are CO2 and
H2O.

CH4 + 2O2 −→ CO2 + 2H2O (1.1)

In a real scenario, additional products are generated as a result of an incomplete com-
bustion, hazardous emissions such as NOx, soot, CO, among others, are expelled to the
atmosphere. These last molecules have dangerous effects on human lives as well as harmful
consequences for the environment.

According to the International Civil Aviation Organization (ICAO), the aviation is re-
sponsible for the 2-3% of the total CO2 emitted, and 13% in the transportation sector
per year [2]. For many decades, scientists and engineers have been trying to properly un-
derstand and model all the complex phenomena that comes with a combustion reaction,
with the objective to enhance the current combustion techniques that use Conventional
Aviation Fuel (CAF) (mainly kerosene) and develop more environmental-friendly aero-
engines. In parallel, other research lines start to make noise as it will be seen in the

1
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following section.

In order to reach the goals of climate change of the Paris Agreement [3], in 2021 a resolu-
tion approved by the International Air Transport Association (IATA) set a new horizon
of net-zero carbon emissions for the global air transport industry by 2050 [4].

Given the 2050 deadline for the complete decarbonization of the aviation, research and
development of several potential net-zero technologies must be accelerated. Two main
lines of research for the replacement of aviation’s fossil-based fuel are very active currently:

• Sustainable Aviation Fuel (SAF).

• Hydrogen

1.1.1 Sustainable Aviation Fuels and Hydrogen

SAFs are known as fuels that have less GHG and less pollutant emissions when burned.
Consequently, they are a good potential replacement of fossil-base fuel in the path to
reduce the carbon footprint. Furthermore, the industry has committed to using it as one
of the main solutions to decarbonize aviation where other technologies, such as electric
propulsion systems, are not competitive for medium and long-range travelling. There are
two main different SAFs regarding its way of creation:

• Synthetic fuels, which are chemically produced from hydrocarbon derivatives, feed-
stocks such as coal and natural gas.

• Bio-renewable fuels, produced from agricultural crops and bio-wastes, using feed-
stocks like lipids, fats and oils.

The great advantage that SAFs have versus other technologies is that they are referred
to as drop-in fuels, which means that the way to evaluate the specifications and fuel
requirements is the same that CAFs have, i.e, if a SAF is approved it can be directly used
as a fuel for a current operational aircraft. There is no need to change the propulsion
plant, nor the design of the aircraft, nor infrastructure of the airport, in contrast with
technologies such as hydrogen as it will be explained shortly.

Most of the current approved SAFs present lower specific heat than CAFs, so to reach
the demands of power that aircraft need, a blending of CAF and SAF is commonly used.
Depending on the needs, blending ratios ranges from 10 to 50% [1]. The achievement of
100% SAF will drive to the net-zero carbon goals, as carbon emissions will be neutral
because is presumed to be absorbed in the same creation process.

Hydrogen is a non-carbon fuel (see Eq.(1.2)) that has a high specific heat. It has been
used by the aerospace industry, as a reducing agent in liquid propellant rockets, for years
[5], so it is a tentative option not to reduce, but to eliminate the carbon footprint in
the aviation industry. However, to embrace hydrogen as a solution to decarbonize the
aviation, many problems have to be solved before make it real. Using hydrogen as a jet
fuels comes with a redesign of both aircraft and engines, its low density compared with
the kerosene requires huge volumes tanks (even in liquid state) and a reinforced fuselage
that can handle the loads generated from these tanks [6].
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2H2 +O2 −→ 2H2O (1.2)

Even more, the amount of energy both, for generate hydrogen and cryogenic storage, is far
from negligible, thus, in order to be considered as carbon-free fuel the energy invested in
those process has to come from a clean and renewable sources, such as wind, ocean, solar
and so on. Current studies show that operational costs for H2-powered aircraft scenario
can increase by 77-112% compared with kerosene-powered aircraft [7], manifesting that
still a lot of research focus on H2 and its related infrastructure is needed to prove that
H2 can really be an affordable option.

1.1.2 Numerical computation

Scientific computation is one of today’s three pillars in all research activities. Before the
era of the computer, the traditional way in which scientific advances occurred was through
dialogue between theory and experimentation. Experimentation has different limits de-
pending on the area of research, in flow mechanics, set up a laboratory configuration that
reproduces the same flow condition that the target phenomena is usually really expensive
or impossible, even more, assuming that the experiment is affordable, measuring the flow
properties, such as temperature, pressure or velocity is far from trivial. Computational
simulations help in the understanding of complex physics phenomena and, complementing
laboratory experiments, is a tool for exploring science and technology. However, due to
the demanding computation that reactive flow simulations requires, the time needed to
get results can be prohibitive.

High Performance Computing (HPC) is a branch of computer science that involves specific
software, networking and hardware devices that aims to get the maximum performance
of a supercomputer. Flow and combustion simulations relies heavily on it for its de-
velopment, but, at the same time, its high computational demand is one of the greater
precursors of HPC. The programmer that is in charge of coding the computer program
that will run the simulations has a key role in order to achieve the maximum performance
that a supercomputer can offer. A strong knowledge of parallel computing, software ar-
chitecture details and the underlying hardware is needed to write efficient code, orders
of magnitude of difference in simulation time can be the impact of having an optimized
code.

In the Chapter 4 is discussed more in detail the typical parallel architecture of a supercom-
puter, how this parallelism occurs at different levels, how HPC deals with heterogeneous
hardware and the multiple memory models that are present in a parallel computer.

1.2 Objectives

This Master’s Thesis is in the frame of the Center of Excellence in Combustion (CoEC), a
program funded by the European Union (EU) whose objective is to promote and develop
advance simulation software that can contribute to the decarbonization of the energy and
transportation sectors [8]. The thesis has taken place in the Departamento de Sistemas
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Informáticos y Computación (DSIC) of the Universitat Politècnica de València (UPV) in
collaboration with the Barcelona Supercomputing Center (BSC).

The purpose of the thesis is to accelerate the computation of the chemical integration
stage when solving reacting flow simulations with detailed chemistry. That process gives
rise to non-linear Ordinary Differential Equation (ODE) systems that are stiff. Given the
scenario, the project can be broken down into the following points:

• Study of the available libraries that are developed to solve stiff ODE systems.

• Configuration and validation of a base case that is computed in a single processor
unit (in serial).

• Code analysis to speed up computation using parallelization in a shared memory
model.

• Development of a standalone portable library that supports multiple integrators
using different levels of parallelism.

• Parametric study of the acceleration achieved using different configurations.



Chapter 2

High-fidelity combustion simulations

2.1 Combustion

Combustion is an exothermic reaction that converts chemical energy contained in fuel
molecules into heat that can be used in engines to produce work or thrust. In the literature
the reader will find that the flame phenomena, when isolated, can be classified as [9]:

• Premixed flame.

• Non-premixed or diffusion flame.

A premixed flame is found when fresh gases (mixture of fuel and oxidizer) and burnt
gases are separated by a reaction zone. On the other hand, a diffusion flame occurs when
fuel and oxidizer come from different sources thus they found and mix each other as a
result of mass diffusion transport, the reaction happens at the same place of the mixture.
Although, an exothermic reaction occurs in both scenarios, the behavior is completely
different. On the left side of the Figure 2.1, a pure diffusion flame is seen and gradually
from left to right premixed oxygen is added until the stoichiometric mixture is reached,
leaving a premixed flame. Not only in the visual, both flames have different flame speed,
pollutant formation mechanisms, stability and more. On top of that, turbulence has a
strong influence, modifying its behavior, compared with laminar regimes. So, depending
on the Reynolds number1 (see Eq.(2.1)) different combustion regimes are identified.

Re =
ρuL

µ
(2.1)

In real world combustion applications, such as the ones that occur inside the aeroengines,
many of the regimes commented above live simultaneously in the same combustion cham-
ber. Therefore, a proper understanding of all phenomena is needed to advance science
towards a cleaner future aviation. From the point of view of numerical modelling, combus-
tion involves complex chemical and physical phenomena that bring challenges to multiple
disciplines. The reacting flow that goes through the combustion chamber is characterized
for having high temperature, high pressure and high Reynolds number, which indicates

1Reynolds number is a dimensionless number that is used to compare the convection forces of the flow
with the viscosity.

5
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Figure 2.1: Different flame types of a Bunsen burner depend on oxygen supply [10].

that the flow is predominantly turbulent. The injected fuel, usually in liquid state, exper-
iments an atomization phase, which is the process where the liquid jet breaks down into
ligaments and droplets, that later on are evaporated and mixed with the surrounding air.
In the following section it is discussed what is turbulent combustion modeling and why it
is a relevant field of study.

2.1.1 Turbulent combustion modeling

As explained before, a wide range of coupled problems are involved in turbulent flames,
then, in order to design new approaches/strategies of combustion, using numerical com-
putation, the following physical and chemical phenomena must be modeled:

• The knowledge of flow properties is crucial to understand the air-fuel mixing process,
as well as the heat transfer and mass transport. Computational Fluid Dynamics
(CFD) is an extensive research area, which is focused on solving numerically the
Navier Stokes Equations (NSE) [11] to determine the thermofluid dynamic state of
a given flow.

• Chemical reaction mechanisms predict the fuel oxidation, the heat released and the
species that allow to know the combustion products and pollutant. But to achieve
that, a precise mechanism that can model all the real chemistry that occurs on the
system is needed.

• Multiphase modeling plays an essential role in liquid fuel injection systems where
atomization models drive the evaporation rate and air-fuel mixing for combustion.

• Models for radiative heat transfer emitted by some species and radicals. This is
even more important when simulating carbon-based fuels due to the radiative heat
emission from soot formation.

In order to solve numerically all of these, a high spatial and time resolution of the compu-
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tational domain is needed2. In CFD, solving all the turbulence scales is known as a Direct
Numerical Simulation (DNS). Nowadays, practical combustion applications are computa-
tionally prohibitive, even using cutting edge supercomputers. In contrast, an averaging
approach of the equations are necessary. Two major techniques are used widely when
modeling turbulence:

• Reynolds Averaged Navier-Stokes (RANS). This technique lead to model all the
turbulent scales that appear in the simulation.

• Large Eddy Simulation (LES) consists in solving the integral spatial and temporal
scales of the turbulence, and using a filter for modeling small scales (the ones that
are smaller than the mesh resolution).

When dealing with reacting flows, LES simulations are the most widely used approach due
to its trade-off between accuracy and computational cost, as it possesses great properties.
Large turbulent structures are very dependent on the geometry of the domain, in contrast,
smaller scales present some independence of the domain as they share universal behavior.
Thus, in terms of accuracy, modelling only the smaller scales should have less penalty.
Furthermore, as large structures are numerically solved, and they predominate the air-fuel
mixing process and flame/turbulence interaction, LES seems to be a better approach than
RANS in order to achieve high-fidelity combustion simulations. The reader can find more
about turbulent combustion modeling in [13].

2.2 Governing equations in reacting flows

Fluid dynamics are based on three fundamental principles:

1. Mass is conserved.

2. Newton’s second law, F = m · a.

3. Energy is conserved.

These principles lead to the mathematical formulation of the Navier Stokes Equations3.
In combustion simulations NSE are modified to add the conservation of the species. The
continuity and momentum equations are not affected by the chemical reaction, but the
effects of mass diffusion must be added to the conservation of energy, additionally, to
describe the chemical state of the flow, one transport equation for each species that
participate in the chemical mechanism must be added to the system. In summary, for the
simulation of reacting flows, a system of Partial Differential Equation (PDE)s composed
by the NSE and species conservation must be solved. The formulation of the NSE is
outside the scope of the current Master’s Thesis, but if the reader is interested, it is
recommended to consult Chapter 17 of [14]. However, a special attention will be paid to
the transport equation of the species:

∂ (ρYk)

∂t
+∇ · (ρuYk) = −∇ · (ρVkYk) + ω̇k , (2.2)

2The spatial and temporal scales of the turbulence present in the real reacting flow applications span
from the integral length scales to the Kolmogorov microscales [12].

3When assuming a Newtonian, unsteady and viscous flow.
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where ρ is the flow density, u is the velocity (3 dimensional vector) and Yk the mass fraction
of the kth species. Eq.(2.2) was derived on the basis of an infinitesimally small element
fixed in space, which means that it is displayed in its conservation form (see Fig.2.2). The
first term of the left-hand side of the equation is the time rate of change of the species
mass inside the control volume, i.e., the species mass that appears or disappears during
time, for instance, as a result of a chemical reaction. Next to it is the convection term
that represent the change of species mass due to mass fluxes entering and leaving the
control volume. On the right-hand side, the first term describes the diffusion of species
caused by the gradient of species concentration. Finally, ω̇k, is the chemical source term
of the kth species, which is, the target term of the current thesis. The value of this term
is the result of the chemical mechanism evaluation involving the kth species and, usually,
is the most computational demanding calculation when simulating reacting flows [15].

Figure 2.2: Infinitesimal fluid element fixed in space with the fluid moving through it [16].

In the next section, the numerical approach followed to solve the PDE system formed by
Eq.(2.2) is described.

2.3 Splitting schemes for chemical integration

In order to solve Eq.(2.2) numerically, a transformation from the partial differential equa-
tion to an approximate solution, commonly known as difference equation4, is needed. On
the other hand, when dealing with non-linear initial value problems in three space vari-
ables, a first order discretization usually drives to a high mesh resolution (both in time
and space) looking to get enough accuracy, or higher order schemes that comes with com-
plicated and expensive differencing, both with a non-negligible computational demand.
A popular approach to tackle this problem is using an alternating direction scheme or
operator splitting scheme proposed by Strang in [17]. The numerical scheme of Strang,
suggest splitting the governing equations into decoupled sub-equations that deals with
only a portion of the physics, which means that the terms of the Eq.(2.2) are divided into
sub-equations. Strang proved a second order accuracy when taking sufficiently small time
steps. With this method, each sub-equation is integrated separately and sequentially in
time for each time step.

To demonstrate Strang method, let’s assume one-dimensional premixed flame, in an adi-
abatic and isobaric system. Moreover, taking into account convection, diffusion and re-
action processes, the transport equations for the thermochemical state of the flow can be

4Difference equation’s name comes from the theory of numerical differentiation of derivatives terms.
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expressed as follows:
∂(ρϕ)

∂t
= C(ϕ) +D(ϕ) + S(ϕ) , (2.3)

where ϕ ≡ {Y, T} is the thermochemical composition vector and C(ϕ), D(ϕ), S(ϕ) are
the convection, diffusion and chemical reaction terms [18]. For simplicity, Eq.(2.3) can be
discretized in time using a constant time step:

∆t =
tf − t0
N

, (2.4)

where t0 is the starting calculation time, tf the final time, and N the number of time
steps covered by the calculation. Applying the operator splitting method to the Eq.(2.3),
the sub-equations to solve in a ∆t are described as:

∂(ρ(1)ϕ(1))

∂t
= S(ϕ(1)), ϕ(1)(x, 0) = ϕn on [0,∆t/2] (2.5)

∂(ρ(2)ϕ(2))

∂t
= C(ϕ(2)) +D(ϕ(2)), ϕ(2)(x, 0) = ϕ(1)(x,∆t/2) on [0,∆t] (2.6)

∂(ρ(3)ϕ(3))

∂t
= S(ϕ(3)), ϕ(3)(x,∆t/2) = ϕ(2)(x,∆t) on [∆t/2,∆t] (2.7)

where ϕn = ϕ(x, tn = t0+n∆t) and ϕn+1 will be the result of the calculation of ϕ(3)(x,∆t).
Eqs.(2.5) and (2.7) correspond to chemical reaction substeps and Eq.(2.6) to a convection-
diffusion substep. This sequence is known as 1

2
R− T − 1

2
R, which is referred as one

reaction evaluation over half-time step follow by a transport evaluation (convection +
diffusion) and another reaction evaluation over half-time step. Other sequences can be
found in the literature, such as 1

2
T −R− 1

2
T .

The sub-equations concerning this thesis are Eqs.(2.5) and (2.7), which correspond to
stiff, non-linear Ordinary Differential Equation system. Due to the large range of time
scales involved in the chemical mechanism and considering that the time step is generally
dictated by the flow field, which is usually greater than the lowest chemical reaction
timescale, a stiff ODE solver is mandatory for accuracy and stability of the solution.

In the next Chapter, a further explanation will be given on how to solve numerically
Eq.(2.5) and all the different mathematical problems that arise with it, including a special
section dedicated to stiffness.
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Chapter 3

The mathematical problem

3.1 Initial Value Problems for Ordinary Differential

Equations

The Equation (2.5) presented in the previous chapter is an Initial-Value Problem (IVP),
where an ODE or a system of ODEs are given with an initial condition. In most calculus
books, the problem is presented as

dy

dt
= f(t, y), for a ≤ t ≤ b, (3.1)

with an initial condition y(a) = α. When dealing not with a single but with a coupled
first-order differential equation system, the formulation is as follows

dy1
dt

= f1(t, y1, y2, . . . , yn)

dy2
dt

= f2(t, y1, y2, . . . , yn)

...

dyn
dt

= fn(t, y1, y2, . . . , yn)

for a ≤ t ≤ b, given the initial conditions

y1(a) = α1, y2(a) = α2, . . . , yn(a) = αn

This last system formulation correspond to the Eq.(2.5) since ϕ = {T, Yk}, where there
is one first-order differential equation for each species and one extra for the temperature.
Actually, it is possible to solve all mass fraction species minus one because the last one
can be calculated from the mass conservation law, as seen in Eq.(3.2).

Yn = 1−
n−1∑
i=1

Yi (3.2)

11
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Eq.(3.1) and the system of ODEs just presented can be treated equally in terms of nu-
merical methods, so in the rest of the chapter, the described techniques may be applied
indistinctly to them, as appreciated in the vector notation in Eq.(3.3).

y = (y1, y2, . . . , yn)
T f(t, y) = (f1, f2, . . . , fn)

T (3.3)

3.1.1 Numerical methods for solving IVP

Eq.(3.1) must satisfy two conditions in order to be a well-posed problem:

• y(t) has a unique solution, i.e., it satisfies Lipschitz condition [19].

• Small perturbations in the statement of the problems introduce small changes in
the solution. When using numerical methods for solving ODEs, round-off errors are
always introduced. Thus, Eq.(3.4), known as the associated perturbed problem, is
the approximation to Eq.(3.1).

dz

dt
= f(t, z) + δ(t), a ≤ t ≤ b, z(a) = α + δ0, |z(t)− y(t)| < kε (3.4)

where ε > 0, k > 0 and |δ(t)| < ε.

In this section, we will present many of the most widespread numerical methods to solve
ODEs. Formula derivation for all the methods is outside the frame of this thesis, however,
to illustrate the reader with some of the techniques used in more advance methods, the
derivation of Euler’s Method will be briefly explained. For more detailed explanation of
Euler’s Method and the other techniques presented in this section, in Chapter 5 of [20]
the reader will find an extended explanation of numerical methods for solving ODEs.

Euler’s Method

Euler’s Method is widely known for its simplicity, and despite being one of the bases for
the rest of the methods, it is rarely used in practice due to its low efficiency when solving
real engineering problems.

Given a temporal discretization of the Eq.(3.1) with a constant step size, i.e., h = (b −
a)/N = ti+1 − ti, the value of a function in a point with respect to another nearby point
can be described according to Taylor’s Theorem

y(ti+1) = y(ti) + (ti+1 − ti)y
′(ti) +

(ti+1 − ti)
2

2
y′′(ti) + . . .

Assuming a second-order local error, O(h2) and y′(ti) = f(ti, y(ti))

y(ti+1) ≈ y(ti) + hf(ti, y(ti)) (3.5)

Finally, when using Eq.(3.5) in a computer algorithm with finite precision arithmetic
(round-off errors), the expression of Euler’s Method is

yi+1 = yi + hf(ti, yi) (3.6)
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As an illustration of the use of Euler’s Method, let’s consider the following IVP

y′(t) = f(t, y) = y − t, 0 ≤ t ≤ 3, y(0) = 1.5 (3.7)

The analytical result is

y(t) = 1 +
1

2
et + t

Figure 3.1 shows the solutions of the analytical equation and the numerical Euler’s

(a) h = 0.25 (b) h = 0.05

Figure 3.1: Analytical vs numerical solution of the Eq.(3.7), using different step sizes.

Method, using h = 0.25 and h = 0.05. It can be appreciated that the error propagation
or global error is very dependent of the step size. In order to have high accuracy with
this technique the step size should be very small, which is inefficient and computational
demanding when integrating large ranges of the independent variable. The remaining of
the section will be dedicated to present other methods.

One-step methods

One-step methods use the result of the previous step (yi) to calculate the solution that
follows (yi+1). Among one-step methods, they can be classified as explicit or implicit.
Explicit means that the value to compute, in this case yi+1, is isolated (or can be) in one
side of the equation, whereas implicit methods have the variable to compute in both sides
of the equation. The latter cannot be directly solved, thus, additional numerical methods
are needed, as it will be seen in future sections. Some of the most common one-step
methods are

• Euler’s Method. The just explained method of Eq.(3.6).

• Higher-Order Taylor Methods. Just as it has been done with the derivation of
Euler’s Method, expanding Taylor’s series, i.e., using more terms, a greater accuracy
(lower local truncation error) is achieved with the cost of an increased computational
cost due to the evaluation of higher order derivatives. Eq.(3.8) shows the Taylor
method of order n.

yi+1 = yi + h

(
f(ti, yi) +

h

2
f ′(ti, yi) + · · ·+ hn−1

n!
f (n−1)(ti, yi)

)
(3.8)
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• Runge-Kutta Methods. These techniques try to solve the penalty that high-order
Taylor Methods have, due to the evaluation of the derivatives of f(t, y), maintaining
high-order truncation errors. The most widely used is the explicit Runge-Kutta
Order Four:

k1 = f(ti, yi)

k2 = f(ti +
h

2
, yi +

1

2
k1)

k3 = f(ti +
h

2
, yi +

1

2
k2)

k4 = f(ti+1, yi + k3)

yi+1 = yi +
h

6
(k1 + 2k2 + 2k3 + k4) (3.9)

There are implicit Runge-Kutta methods too, with the form

kl = f

(
tn + clh, yn + h

s∑
j=1

al,jkj

)
, l = 1, . . . , s,

yn+1 = yn + h
s∑

l=1

blkl (3.10)

that derive to first-order Implicit Euler’s Method or second-order Implicit
Trapezoidal method, depending on the selected order.

Multistep methods

Unlike one-step methods, multistep methods use two or more values computed in previous
iterations to calculate the value yi+1. As well as before, there are two types, explicit and
implicit methods. The general formula for m-step multistep method is as follows

yi+1 = am−1yi + am−2yi−1 + · · ·+ a0yi+1−m

+ h[bmf(ti+1, yi+1) + bm−1f(ti, yi)

+ · · ·+ b0f(ti+1−m, yi+1−m)] (3.11)

When bm = 0 the equation is explicit, otherwise it is implicit. The idea behind these
methods is to benefit from previous calculated solutions to have a more accurate calcula-
tion of the following one. To do so, f(t, y(t)) is approximated by a polynomial P (t) that
contains the information of these previous points/solutions (see Eq.(3.12)).

y(tn+1)− y(tn) =

∫ tn+1

tn

f(t, y(t)) dt ≈
∫ tn+1

tn

P (t) dt (3.12)

Adams methods use the Lagrangian interpolating polynomial [21] to calculate bk, k =
0, . . . ,m coefficients. Notice that in the Eq.(3.12), coefficients ak, k = 0, . . . ,m− 1 from
Eq.(3.11) are all zero apart from am−1 = 1.
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Adams-Bashforth explicit methods are constructed taking bm = 0, they range from
two-steps to five-steps or more. Eq.(3.13) refers to Adams-Bashforth Two-Step Ex-
plicit Method.

y0 = α, y1 = α1,

yi+1 = yi +
h

2
[3f(ti, yi)− f(ti−1, yi−1)] (3.13)

Adams-Moulton implicit methods add (ti+1, f(ti+1, y(ti+1))) as an additional point to
the interpolating polynomial. As well as Adams-Bashforth methods, in the literature the
reader will find Adams-Moulton methods ranging many steps, from two to even twelve.
To compare against Two-Step Adams-Bashforth, Eq.(3.14) describes Adams-Moulton
Two-Step Implicit Method.

y0 = α, y1 = α1,

yi+1 = yi +
h

12
[5f(ti+1, yi+1) + 8f(ti, yi)− f(ti−1, yi−1)] (3.14)

As the reader may appreciate in Eqs.(3.13) and (3.14), the m first step solutions cannot
be calculated with Adams methods. Therefore, the first m solutions are calculated using
one-step methods, such as Euler, Runge-Kutta or any of the methods mentioned before.

Error control and variable step size

The methods presented until now have been derived assuming equally-spaced solution
nodes (constant step size), however, this approach is inefficient when the problem presents
simultaneously intervals of low variations (small derivatives values) and intervals with
large variations (larger derivatives values). Small step sizes are needed to capture the
latter intervals, but using the same step size for intervals where the function is constant,
or its rate of change is very low, is, from the point of view of computation, a waste of
time. To solve this efficiency problem, there are adaptive methods that use error control
procedures to modify the step size in order to minimize the computational cost. The
technique varies a little among one-step and multistep methods, but the idea is basically
the same.

Given an error tolerance ε > 0, the objective is to minimize the number of steps while
keeping the global error |y(ti) − yi| less or equal than ε. For one-step methods, this can
be done by using methods of different local order of accuracy1. Subtracting local errors
of both order methods and doing some mathematical manipulations, the expression to
control global error is as follows

q ≤
(

εh

|ỹi+1 − yi+1|

)1/n

, (3.15)

where ε is the tolerance, yi+1 the solution of the low order method, ỹi+1 the solution of the
method that is used to control the error (one order of accuracy higher than the previous
method), h the step-size and n the order of accuracy of the low order method. Eq.(3.15)
will drive to two scenarios:

1Global error and local truncation error in IVP for ODEs are closely related with the convergence of
the solution, for more information read the Section 5.10 of [20].
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• When q < 1: The error in the approximation is higher than the tolerance, so the
solution must be calculated again with a step-size of qh.

• When q ≥ 1: The computed value is valid and for the next iteration the step-size
qh, which is greater than the current h, can be taken.

This error control technique is used for the Runge-Kutta-Fehlberg Method. The
method uses a calculation of Runge-Kutta of order five to estimate the truncation error
of Runge-Kutta of order four.

Similarly, the construction of variable-step multistep methods comes from error con-
trol procedures. Instead of comparing the error between two different order methods,
a predictor-corrector strategy is taken. Adams Variable Step-Size Predictor-
Corrector is a common choice to explain these techniques. It consists in a calculation
with the four-step explicit Adams-Bashforth method as an estimation, or predicted, so-
lution, ypi+1, and a second calculation (the corrected solution) with a three-step implicit
Adams-Moulton method. This technique transform last implicit method in an explicit
method, reducing significantly the complexity and computational cost involved in it. An
equation similar to Eq.(3.15) is derived mathematically for this method, therefore, how
and when to change the step-size it has been already explained. An important consid-
eration must be mentioned, multistep methods require equal step sizes in the current
solution, i.e., the values involved in Eq.(3.14) should be equally-spaced, thus any change
in step-size necessitates recalculating the values that take part in the current iteration.

3.2 Stiff ordinary differential equations

The previous section has covered a wide range of methods and techniques involved in the
calculation of initial-value problems for ODEs. In the current section it is discussed what
stiff ODEs are and why they need a special treatment.

Stiffness is a characteristic that is present in many differential equations that describe
real-world phenomena. Stiffness is about efficiency, it depends on the initial value and
on the error tolerance imposed. It is common to say that a problem is marked as stiff
when explicit methods do not work well. The reason they do not work well is that the
integration time step needs to be small enough to be able to capture all the time scales
involved in the chemical reactions, which is not very efficiency, otherwise if the time step
is not small enough the problem becomes unstable (low convergence rates).

Stiff problems usually appear in chemical reaction systems, where slow and fast reactions
coexist (different timescale in each reaction mechanism), thus optimizing the integration
of these systems is not an easy task. To illustrate the reader with an example of a chemical
reaction system where stiffness is present, let’s consider the following reactions

A
0.04−−→ B (slow)

B +B
3·107−−−→ C +B (very fast) (3.16)

B + C
104−−→ C +B (fast)
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that leads to the next initial-value problem

A : y′1 = −0.04y1 + 104y2y3 y1(0) = 1

B : y′2 = 0.04y1 − 104y2y3 − 3 · 107y22 y2(0) = 0 (3.17)

C : y′3 = 3 · 107y22 y3(0) = 0

Figure 3.2: y2 solution of the Eq.(3.17) using both, ode45 and ode23s solvers, for a time
range of 0 ≤ t ≤ 0.1 seconds with a relative error tolerance of 1 · 10−2.

The system can be solved (or at least try to) using any of the methods mentioned in the
previous section. In Figure 3.2 it is shown the solution of y2 by using two different solvers
that come with the MATLAB software package [22]. This example has been reproduced
following the explanation of the Chapter 4 of [23].

• ode45 is a nonstiff explicit Runge-Kutta solver with an error control technique
based on the pair RK order four and RK order five, similar to Runge-Kutta-Fehlberg
method. In [24] the reader will find a detailed explanation of the method.

• ode23s is a stiff implicit solver based on Backward Differentiation Formula (BDF)
or similar [25] (BDF will be explained shortly).

As it can be appreciated in Figure 3.2, the difference in the number of steps taken by
each method is huge. It is true that the computational cost of a single step of the implicit
method is greater than the step computed with the explicit one, but even then, overall,
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the time to solution of the explicit method is greater. The oscillations that the ode45
solver produce in the marching-steps is caused by an instability situation, so to control
the error it is obligated to use very small steps. There are techniques to detect when a
nonstiff integrator may have encountered stiffness and intelligently change to a stiff solver.
In summary, this experiment helps to illustrate that given an initial-value problem with a
stiff condition, an explicit method is completely inefficient, therefore, only a certain type
of implicit methods can tackle the problem.

Backward Differentiation Formula drive to what is known as BDF-methods, which have
the form of Eq.(3.18). They are implicit methods that are proven to perform extremely
well in stiff problem conditions [26, 27]. BDF are linear multistep methods that ap-
proximate the derivative of the function, f(tn+1, yn+1), using information from already
computed values (in line with what has been explained in multistep methods), see Figure
3.3 for a graphic illustration of the BDF and its derivative.

s∑
k=0

akyn−k+1 = hβf(tn+1, yn+1) (3.18)

In Eq.(3.18), yn+1 is the target calculation, ak and β are coefficients chosen to achieve
accuracy of order s.

Figure 3.3: Graphic definition of BDF [28].

For an exhaustive explanation of numerical methods for ODEs, stability, stiffness and
more, consulting Hairer et al.’s books is highly recommended [23, 28].

BDF methods are the chosen ones for the development of this thesis due to the stiffness
present in chemical systems. Therefore, the rest of the chapter focuses on a brief explana-
tion of how to solve an iteration of a BDF method, i.e., what it takes to solve a nonlinear
implicit system of equations.

3.3 Numerical solutions of non-linear systems of equa-

tions

In the last section, it has been mentioned that implicit BDF methods yield non-linear
system of equations. In order to solve it, root-finding numerical methods should be
applied. Newton’s Method and its variants are the most common approach for this
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situation. Newton’s Method is derived from the optimization of a fixed-point method
with the form of Eq.(3.19).

g(x) = x− ϕ(x)f(x) (3.19)

where the optimal ϕ(x) = 1/f ′(x) [20]. The nomenclature for systems of non-linear
equation is as follows, given

f1(x1, x2, . . . , xn) = 0

f2(x1, x2, . . . , xn) = 0

...
... (3.20)

fn(x1, x2, . . . , xn) = 0

from the differentiation formula of the BDF method, the n non-linear equations in n
unknowns can be represented by

F(x1, x2, . . . , xn) = (f1(x1, x2, . . . , xn), f2(x1, x2, . . . , xn), . . . , fn(x1, x2, . . . , xn))
t

and using a vector notation, then the system acquires the following form

F(x) = 0 (3.21)

Moreover, Eq.(3.19) in n-dimensional case evolves to the expression:

G(x) = x− J(x)−1F(x) (3.22)

where J(x) is the Jacobian matrix, defined by

J(x) =


∂f1
∂x1

(x) ∂f1
∂x2

(x) . . . ∂f1
∂xn

(x)

∂f2
∂x1

(x) ∂f2
∂x2

(x) . . . ∂f2
∂xn

(x)
...

...
. . .

...

∂fn
∂x1

(x) ∂fn
∂x2

(x) . . . ∂fn
∂xn

(x)

 (3.23)

Finally, Newton’s method for non-linear system is described by Eq.(3.24), where
superscript k represents the number of the iteration (remember that this is an iterative
numerical method).

x(k) = G
(
x(k−1)

)
= x(k−1) − J

(
x(k−1)

)−1
F
(
x(k−1)

)
(3.24)

Two common approaches exists to construct the Jacobian matrix,

• Analytical evaluation. It consists in manually programming the derivatives of
each of the functions of the system for all the variables of the x vector. Then, the
Jacobian construction in the iteration k, J(x), requires n2 function evaluations.

• Finite Differences. This approach consists in approximating the Jacobian matrix
by approximating the partial derivatives as shown in Eq.(3.25), where h is the step
(a small value) and ei is a vector of all zeros apart from a 1 in the i position.

∂fj

∂x
(k)
i

≈ fj(x
(k) + eih)− fj(x

(k))

h
(3.25)



20 CHAPTER 3. THE MATHEMATICAL PROBLEM

This method is expected to have quadratic convergence when a sufficiently accurate initial
vector value is given. Hence, the major weakness of the method is that it needs a good
first approximation and this is not always possible, so it is often common to start the
root-finding problem with another method, such as Steepest Descent Method, that
have less rate of converge, but helps to reach a sufficiently good start point before moving
to Newton’s Method [20]. Furthermore, the computational cost of evaluating the Jacobian
matrix at each iteration is really high, a problem that has motivated the development of
similar methods, also known as Modified Newton’s methods, that seek to reduce the
computation needed for each iteration while trying to keep the rate of convergence the
higher possible2. Some examples of these methods are:

• Chord method. Here the Jacobian matrix is calculated only one time, at the
beginning of the iteration process. The concept behind this method is to take the
direction of where the root is supposed to be and keep that direction for the rest of
the algorithm.

• Shamanskii’s method. This method is less radical than Chord method, it con-
struct the Jacobian matrix each m iterations or when the convergence ratio slow
down a certain threshold.

• Broyden’s method. It lies within the Quasi-Newton methods, that are the
generalization of the Secant method to non-linear systems of equations. Instead
of calculating the Jacobian matrix at each iteration, this method has been developed
to construct an initial matrix (usually using finite difference) and, since then, only
update the matrix by adding a relative cheap calculation.

In the current section it has been presented Newton’s method and it has been briefly
described some of its derivations. However, in Eq.(3.24), the calculation of the inverse of
the Jacobian matrix is an expensive operation, and actually, it is not really need it. In
the next section it is explained how this inverse matrix is avoided and, therefore, how to
proceed in the Newton’s iteration.

3.4 Direct methods for solving dense linear systems

Newton’s method’s second term, −J (x)−1 ·F (x), is a product between a matrix (inverse
the of Jacobian) and a vector (the evaluation of the system equations in x), whose result is
a vector of the same length as F(x). So, to avoid the inverse calculation, the matrix-vector
product can be addressed as a linear system described as follows

y = −J (x)−1 · F (x) −→ J (x) · y = −F (x)

and

J (x) · y = −F (x) −→ A · x = b (3.26)

In Eq.(3.26), A is a n×n matrix (Jacobian is a square matrix) and the length of x and b
is n too. The size of the system corresponds to the number of species in the combustion

2A quadratic convergence is only achieved with Newton’s Method, but some variations of it achieve
superlinear ratios while reducing notably the computational cost.
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mechanism at a given coordinate of the computational domain (refer again to the Section
2.3 of the Chapter 2 if needed).

The matrix A, that is the Jacobian construction at some point of the algorithm (Newton’s
method or its modifications), is usually a dense matrix, which means that almost every
coefficient, if not all, has a nonzero value. In order to solve this square, dense and linear
system, the best suitable approach is the LU factorization of A with Backward and
Forward Substitutions. Hence, the rest of the section is focused on explaining that
procedure.

3.4.1 LU matrix factorization

The LU matrix factorization is a decomposition of the linear system’s matrix, such as
A = L · U, where L is a unit lower triangular matrix and U is an upper triangular
matrix. This factorization is a derivation of the traditional Gaussian elimination. The
advantage of using the LU factorization is that the system of Eq.(3.26) can be easily
solved in two-steps3. A Backward Substitution for the lower triangular system of the
Eq.(3.28) and a Forward Substitution for the upper triangular system of the Eq.(3.29).

L ·U · x = b (3.27)

L · z = b (3.28)

U · x = z (3.29)

The advantage of using modified Newton’s methods which do not evaluate the Jacobian
matrix at each iteration, such as the Chord or Shamanskii’s method mentioned before,
is that the LU factorization remains valid until the Jacobian is changed. This strategy
reduce considerably the computational cost of the non-linear method. In Chapter 6 of
[20] it is demonstrated that solving Eqs.(3.28) and (3.29) requires O(n2) arithmetic oper-
ations whereas solving with Gaussian elimination takes O(n3). Thus, as long as the LU
factorization, who requires O(n3) operations to be constructed, exploits or maximizes the
number of iterations for the non-linear method, a speed-up will be appreciated. Just to
mention that LU factorization will fail if a zero value is present in the diagonal of the
matrix, or severe round-off error propagation may be encountered when the matrix is
not strictly diagonally dominant. To avoid these scenarios, pivoting techniques are
used by robust linear-solver software packages. For instance, MATLAB linear solver use
partial pivoting, a technique that uses a permutation matrix for keeping track of the
changes of the original matrix, as shown in Eq.(3.30).

P ·A · x = L ·U · x = P · b (3.30)

3Maybe, the more intuitive form is to solve x by calculating the inverse of A, but this approach, apart
from turning back to the start point of the current discussion, is completely inefficient.
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Chapter 4

High Performance Computing in
engineering simulations

4.1 Supercomputers and its hierarchical parallelism

In Chapter 2 it has been described the fundamental bases of numerical combustion simula-
tions and how splitting schemes facilitate the calculation of reacting flows. The evaluation
of the species’ source term derive to an ODE system that involves the selected chemical
mechanism of the combustion process. The ODE system has been numerically analyzed
in Chapter 3, where it has been explained numerous methods for its integration, paying
special attention to stiffness. Moreover, the methods that work well in stiff initial-value
problems involve the calculation of non-linear and linear systems of equations. The main
numerical methods that give solution to latter systems have been briefly explained too.
Given a computational domain discretized in hundreds of thousands or millions of nodes,
and having to solve ODE systems at each of those nodes, the amount of computation
required by all these processes is infeasible without parallel supercomputers.

A parallel supercomputer is a set of inter-connected computing nodes1 that communicate
with each other through a high-speed network. Therefore, in combustion simulations,
the computational domain is distributed between multiples nodes (as many as needed)
that must communicate via the network when accessing data that resides in other node’s
memory. Each node has its own private memory that is accessed by the multiple pro-
cessing units that are found inside. This hierarchy drives to distinguish the concepts
of distributed and shared-memory parallelism. Figure 4.1 illustrates the classical
hierarchy of modern supercomputers. It is made of multiple racks that are composed by
nodes, and each node can contain several Central Processor Units (CPUs) and accelera-
tors (usually Graphic Processor Units (GPUs)). Finally, each processor unit is composed
by multiple cores, that are the minimum processor units that perform the computational
operations.

To take the most of the hierarchical parallelism of supercomputers, the software that
runs on it has to be able to exploit all the computational capability, a responsibility that

1Notice that here, nodes, refers to a unit of the supercomputer not a discretized point of the mesh.

23
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Figure 4.1: Hierarchy of a parallel supercomputer. The numbers in parentheses refer to
the configuration of Marenostrum 4 supercomputer, hosted at Barcelona Supercomputing
Center [15].

lies on the programmer’s side. This is the reason why the programmer should know the
underlying heterogeneous hardware architectures, together with the set of HPC tools and
techniques, to write efficient parallel programs.

This chapter describes the concepts of distributed-memory, shared-memory and other
types of parallelisms that live in a supercomputer, with a special focus on the programming
languages or Application Programming Interfaces (APIs) that are used at intra-node
levels, due to the fact that chemical evaluation, that has been explained in the previous
chapters, is currently calculated at a node level. This is because the computational domain
has already been distributed, consequently, the ODE systems at each mesh point does
not need external communication to proceed.

4.2 Distributed-memory parallelism

Distributed-memory parallelism, also known in the literature as inter-node parallelism
[29], is based on the Direct Connection Machine (DCM) model [30]. This model consists
in multiple processes, with their own private memory, running all together the same
program. They do not share memory, thus the information or data exchange is performed
through message passing (see Figure 4.2). The basics primitives in these systems are

• Send(v, i), which is writing the information v in the processor’s buffer Pi.

• Receive(v), which is reading the information v and cleaning the buffer, saving v’s
information in a local variable.

Although this model can be applied at node-level (spawning multiples processes in a
single CPU), it is designed for multiple nodes who are connected by a network. In
engineering simulations, the computational domain is partitioned into blocks that are
distributed between nodes. Then the computation is carried out independently by each
node. Eventually, the nodes should synchronize to exchange the data that is on the edge
of the partitioned subdomains. However, message passing usually stops the computation,
which is a penalty in the performance. Thus, in order to develop efficient programs in
distributed-memory systems, the following principle guides should be considered [29]:

• Balanced computational load. If the computational load is not well distributed
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Figure 4.2: Simplified scheme of the DCM model. Separate processes (P), communicate
via network interfaces (NI). No process can access another process’ memory (M), but each
processor have its own private memory [31].

among the nodes, the progress of the overall problem would be delayed by the node
who has the larger load.

• Maximize computation-to-communication ratio. The problem distribution
should prioritize computational load, instead of delivering subdomains that have
great amounts of communication, which would delay the computation of every other
node.

• Minimize global communication. Global communication delays the computa-
tion of all nodes simultaneously, parallel algorithms should minimize or eliminate,
when possible, this type of communication.

The programming model that follows the guidelines of the DCM theoretical model is
Message Passing Interface (MPI). It is a standard API used worldwide for scientists,
research institutes and private companies. In concrete implementations, such as Open
MPI [32], the main actions are found as library functions or subrutines in the C and
Fortran programming languages. The current version of the MPI specification is 4.0, a
document with the details can be found in [33].

4.3 Intra-node parallelism

In contrast with distributed-memory parallelism, at a node-level, parallelism is constantly
changing and evolving very quickly over the years. Hence, legacy software is rapidly out-
dated in terms of optimizing the available parallelism of the machine. It is rather simplistic
to categorize all the optimizations and parallelism that occurs in a node as shared-memory
parallelism. In a typical supercomputer’s node a complex memory hierarchy is present,
it is usually composed by the main memory or Random Access Memory (RAM), cache
memories and processor registers. Furthermore, nowadays, it would be rare for hetero-
geneous devices, such as GPUs or Field-Programmable Gate Arrays (FPGAs), not to be
present on a supercomputer’s node. Usually, in shared-memory environments, applicable
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both to CPUs or GPUs memory hierarchies, the performance of a compute-bound algo-
rithm highly depends on the optimal utilization of the memory hierarchy, thus a couple
of notions will be given before addressing multiprocessing techniques.

Scientific and engineering code applications work with large n-dimensional matrices. How-
ever, from the point of view of the code, the matrices are stored in contiguous memory,
treating them as one-dimensional vectors. Depending on how the matrices are stretched
out, they can be classified as column-major order or row-major order. This can be
a restriction of the programming language, for instance, Fortran’s matrix storage strat-
egy is always colum-major order, while in C/C++ is row major. Figure 4.3 illustrates a
three-dimensional matrix in row-major order.

Figure 4.3: A scheme of a three-dimensional matrix stretched out in contiguous memory
in row-major order.

These matrices are stored in the main memory where the access to its elements is very
slow, compared to the time of accessing caches or registers data (the processor has to
wait for the element to continue its computation, an undesirable situation). But, when a
matrix element is requested from the RAM, it is retrieved and stored in cache memories
along with nearby elements. So, designing a program that can exploit that scenario,
specially in memory bound applications, is extremely beneficial in terms of performance.

4.3.1 Cache utilization

Cache utilization is not only a concern in parallel computing but also in serial code. As
described before, the optimal utilization of cache memories can play a key role in the
performance of a program. Particularly, CFD’s codes suffer from low computation inten-
sity, i.e., low ratio of arithmetic operations per memory elements accessed per operation,
making cache utilization programming techniques an essential design step for optimizing
programs. To show in some detail what these techniques consist of, let’s consider an
example of an outer product of vectors a and b, of lengths n and m, resulting in an n×m
matrix C, stored in column-major order (see Listing 4.1). At some point of the execution
the elements of innermost-i-loop, i.e., all the elements of the a vector, will be fetched
from the RAM to cache. However, if the length n is too large, the cache will not have
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enough space to hold all the elements of a at once, resulting in multiple cache misses. It
should be considered that apart from the elements of a, cache memory will be holding
some elements from b and C. Therefore, the optimum scenario would be that the cache
and registers could hold all the elements of a, the entire j-column of C and the current
value of b(j) in order to maximize the computation intensity of the innermost loop.

1 for ( int j = 0 ; j < m; j++)
2 {
3 for ( int i = 0 ; i < n ; i++)
4 {
5 C[ i + j ∗ n ] = a [ i ] ∗ b [ j ] ;
6 }
7 }

Listing 4.1: Outer product without any optimization.

An optimization is shown in Listing 4.2. Here, the innermost-i-loop has been changed
for a third jj-loop that iterates blocks of vector b of size B, a concept known as cache
blocking. This leads to better cache reuse, where the block B is chosen to fit entirely in
cache. But a better optimization is presented in Listing 4.3, where the innermost loop is
changed to minimize cache write misses of C j-column matrix. Notice that Listing 4.2 is
just as optimal as Listing 4.3 if C matrix is stored in row-major order.

1 for ( int j = 0 ; j < m; j = j + B)
2 {
3 for ( int i = 0 ; i < n ; i++)
4 {
5 for ( int j j = j ; j j < ( j + B − 1 ) ; j j++)
6 {
7 C[ i + j j ∗ n ] = a [ i ] ∗ b [ j j ] ;
8 }
9 }

10 }
Listing 4.2: Outer product with cache blocking optimization for row-major ordering.

1 for ( int i = 0 ; i < n ; i = i + b)
2 {
3 for ( int j = 0 ; j < m; j++)
4 {
5 for ( int i i = i ; i i < ( i + b − 1 ) ; i i ++)
6 {
7 C[ i i + j ∗ n ] = a [ i i ] ∗ b [ j ] ;
8 }
9 }

10 }
Listing 4.3: Outer product with cache blocking optimization for colum-major ordering.
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4.3.2 Vectorization

Another concept that concerns to both, serial and parallel code, is vectorization. Vector-
ization is the ability of modern processors to execute arithmetical operations to multiple
data simultaneously. It is also known as Single Instruction Multiple Data (SIMD), that
comes from Flynn’s taxonomy of computer architectures [34]. It consists in data paral-
lelization at processor unit/core level. Consider the vector addition code of Listing 4.4,
the code is just a single loop that iterates through all the elements of a and b, adding its
values and writing the result in c.

1 for ( int i = 0 ; i < n ; i++)
2 {
3 c [ i ] = a [ i ] + b [ i ] ;
4 }

Listing 4.4: Vector addition operation.

Vector addition can be sped up using the intrinsic parallelization in modern processor
architectures. In Listing 4.5 it is shown the explicit use of vectorization using the Ad-
vanced Vector Extensions (AVX) set of instructions [35]. Figure 4.4 may help the reader
to understand graphically what is Listing 4.5’s code doing.

1 m256 ∗ptr1 , ∗ptr2 , ∗ptr3 ;
2 for ( int i = 0 ; i < n ; i+=4)
3 {
4 ptr1 = ( m256∗)&a [ i ] ;
5 ptr2 = ( m256∗)&b [ i ] ;
6 ptr3 = ( m256∗)&c [ i ] ;
7 ∗ptr3 = mm256 add ps (∗ ptr1 , ∗ptr2 ) ;
8 }

Listing 4.5: Vector addition operation with explicit AVX instructions.

Figure 4.4: Graphic illustration of vectorization applied to a vector addition operation.

Vectorization is usually handled by the compiler at compile time, releasing the program-
mer of such a tough task. However, sometimes the compiler is not intelligent enough to
identify blocks of code that can be vectorized. This could happen with the presence of
control flow instructions, such as while and if, or with the presence of function calls
inside for loops. So, the programmer should indentify vectorization opportunities, and
try to write clean for loops, easy to vectorize, to the compiler, when possible.
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4.3.3 Shared-memory parallel programming model with OpenMP

The most popular shared-memory parallel theoretical model is presented in [36], known
as Parallel Random Access Machine (PRAM). It explains a scenario where multiple pro-
cessors run the same code (where the code flow can take different paths depending on
the processor’s ID), having simultaneous access to a shared memory (there are not cache
memories in this model) and where they communicate through variables, i.e., reading
and writing variables from/to the shared memory. From this theoretical model, multi-
ple shared-memory parallel programming models have been developed. In the 1990’s the
POSIX Threads API [37], for the C language, to run multiple threads in parallel or
concurrently, was extremely popular. Nowadays, the reader will find multiple solutions,
such as the Intel Threading Building Blocks (TBB) C++ library [38]. But there is no
doubt that the dominant API among the scientific community is OpenMP, moreover,
it has become a shared-memory parallel programming standard [39]. OpenMP API is
mainly supported in Fortran, C and C++ languages. This section covers the basics of
OpenMP programming model with some examples.

OpenMP is based on a set of compiler directives that follows a fork-join scheme, as
illustrated in Figure 4.5b. Two actions are identified in the scheme:

• Fork. It spawns a new task, can be a process or a thread, who starts running from
the same point where the master, is at the moment of invoking it.

• Join. An instruction that waits until one or more concurrent tasks finish the work.

OpenMP implements the fork-join model using threads instead of processes because the
former fits better the shared-memory model, some of their properties are:

• Threads are spawned inside the same process, so they share resources and memory.
However, each thread has its own execution context and a reduced private memory
space.

• The overhead of spawning new threads differs by orders of magnitude with respect
processes, with the former being faster.

• Synchronization is faster.

To show some OpenMP compiler directives, take a look at the Eq.(4.1). The analytical
integration of the function results in the π number. A numerical approximation of the
integral using a mid-point numerical quadrature method, or middle Riemann sum
is also given [20].

π =

∫ b=1

a=0

4

1 + x2
dx ≈ h

n−1∑
i=0

f(xi +
1

2
h), xi = a+ ih (4.1)



30CHAPTER 4. HIGH PERFORMANCE COMPUTING IN ENGINEERING SIMULATIONS

(a) fork-join scheme in a general UNIX-like
system.

(b) OpenMP fork-join scheme [31].

Figure 4.5: Illustrations of fork-join schemes. On left-hand side a general approach and
on the right-hand side the approach followed by OpenMP.

1 double f (double x )
2 {
3 return 4 / (1 + x ∗ x ) ;
4 }
5

6 double i n t e g r a t e ( int n , double a , double h)
7 {
8 double s = 0 .0 f ;
9 for ( int i = 0 ; i < n ; i++)

10 {
11 s += f ( a + ( i + 0 . 5 ) ∗ h ) ;
12 }
13 return s ∗ h ;
14 }

Listing 4.6: Serial integration of Eq.(4.1).

Listing 4.6 illustrates the numerical integration written in the C programming language.
The code inside the for loop is parallelizable because there are no dependencies between
iterations. Thus, an OpenMP parallel version of the code is shown in Listing 4.7. There,
it can be identified some directives:

• #pragma omp parallel. This directive initiates a parallel region, spawning threads
who concurrently run the code that is delimited by the curly braces. This is the
point where the fork of the Figure 4.5b happens. At the end of the parallel region,
i.e., at the closing curly brace, an implicit synchronization barrier hides the join
call, where the execution stops until all the threads of the team reach that point.
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• #pragma omp for. The for directive distributes the iterations of the loop among
the threads, so every thread receives a chunk of iterations to work on independently.
Due to the variable, s, is declared inside the parallel region, each thread has its own
copy of it, so there is no race condition. However, with this approach, each thread
calculates a partial sum of the total integration. The way to prevent a race condition
when adding the partial sums together drives to the next directive.

• #pragma omp critical. Concurrent write access to shared variables is what is
known as a race condition, a situation that should be avoided in parallel computation
because it leads to undeterminate behaviors or results. The critical directive
solves this situation by serializing the code, which means that only one thread can
run the code that is inside the critical section at a time. Obviously, serializing a
code block in a parallel region is a penalty in performance, so it should be avoided
when possible.

1 double i n t e g r a t e ( int n , double a , double h)
2 {
3 double r e s u l t = 0 .0 f ;
4 #pragma omp p a r a l l e l
5 {
6 double s = 0 .0 f ;
7 #pragma omp for
8 for ( int i = 0 ; i < n ; i++)
9 {

10 s += f ( a + ( i + 0 . 5 ) ∗ h ) ;
11 }
12 #pragma omp c r i t i c a l
13 {
14 r e s u l t += s ;
15 }
16 }
17 return r e s u l t ∗ h ;
18 }

Listing 4.7: Parallel integration of Eq.(4.1) with critical directive.
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1 double i n t e g r a t e ( int n , double a , double h)
2 {
3 double s = 0 .0 f ;
4 #pragma omp p a r a l l e l for r educt i on (+: s )
5 for ( int i = 0 ; i < n ; i++)
6 {
7 s += f ( a + ( i + 0 . 5 ) ∗ h ) ;
8 }
9 return s ∗ h ;

10 }
Listing 4.8: Parallel integration of Eq.(4.1) with reduction clause.

Before finishing this introduction to OpenMP, in Listing 4.8 an enhanced version of the
parallelization of Listing 4.7 is presented. Here, a convenient directive with the reduction
clause is used. #pragma omp parallel for is an elegant combination of the directives
parallel and for when the parallel region is only needed in for loops. The reduction
clause plays the same role that the critical region of the previous example, but using
OpenMP built-in functionality. Furthermore, notice that this latter implementation is
the same as the serial one except for the directive. Due to non-OpenMP compilers will
just ignore OpenMP directives, Listing 4.8 is a valid solution for both serial and parallel
executions. In Table 4.1 are displayed the integration times for each implementation, it
can be appreciated that the last one has slightly better performance than manually using
the critical directive. For a comprehensive overview of OpenMP, the book [40] is highly
recommended.

Parallelization Time [s]

Serial 3.029893

Critical directive 0.534867

Reduction clause 0.490955

Table 4.1: Integration time of Eq.(4.1) using n = 1, 000, 000, 000 intervals in an eight-core
AMD Ryzen 5000 processor.

4.3.4 Heterogeneous parallelism with CUDA

Nowadays, the presence of CPU-GPU heterogeneous architectures in supercomputer’s
nodes is becoming very common. This is because GPUs deliver extremely high through-
put, with high power efficiency, in data-parallel problems. However, GPU does not per-
form independently but is used as a co-processor to a CPU. They are connected through
a PCI-Express bus, where the CPU is called the host and the GPU is called the de-
vice. Figure 4.6 illustrates the heterogeneous architecture, where it can be appreciated
that the GPU presents (ignoring the difference in computing cores) a similar architec-
ture and memory hierarchy than CPU’s. Thus, a GPU, when isolated, fits perfectly the
shared-memory parallel programming model.
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Figure 4.6: CPU + GPU heterogeneous architecture logic scheme [41].

The reason for the rise in popularity of this new heterogeneous architecture, that adds
complexity to the programmer, is due to CPUs are well-suited for control-intensive tasks
but are orders of magnitude slower than GPUs when it comes to compute-intensive tasks,
and the other way around. Therefore, CPU + GPU architectures have complementary at-
tributes that can be exploited in parallel computing applications to increase performance,
i.e., reduce the time-to-results in engineering simulations.

A CPU-GPU application is made up of host code and device code. Host code runs on CPU
and is responsible for the core logic of the application, i.e., Input/Output, algorithms, flow
control, and managing the device (GPU). In Figure 4.7 is shown a scheme of the typical
CPU-GPU application, where the CPU execute host code in serial, or with multiple
CPU threads (for instance, using OpenMP), until it finds a compute-intensive portion of
the algorithm. Then, CPU instructs the GPU to run that compute-intensive part. In the
meantime, CPU can continue executing host code because device code run asynchronously,
only when CPU needs the results, a synchronization is performed.

Figure 4.7: Execution scheme of a CPU-GPU application [41].
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To handle CPU-GPU applications, NVIDIA has developed CUDA, a programming
model to control their GPUs [42]. CUDA Toolkit is a developer platform that comes with
CUDA-accelerated libraries, compilers, runtime APIs to manage the device and more.
CUDA is presented to the developer as a language extension of the industry-standard
C/C++. CUDA programming model propose two hierarchy structures to manage par-
allelism. Memory hierarchy enables the programmer to optimize the code making an
efficient use of the global memory, shared memory, caches and registers, similar to the
typical CPU approach. What’s new in CUDA model is the thread hierarchy structure
that enables organizing GPU’s threads in multiple groups. A proper knowledge of how to
organize threads is a critical part of CUDA programming to write efficient code. There are
two levels for grouping threads, blocks of threads and grid of blocks, each group with an
organization up to three dimensions (x, y, z). In Figure 4.8 is shown a graphical example
of the thread hierarchy with a 2D grid containing 2D blocks of threads.

Figure 4.8: CUDA thread hierarchy structure of a 2D grid of 2D blocks of threads [41].
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1 cudaMalloc ( (double ∗∗)&d a , bytes ) ;
2 cudaMalloc ( (double ∗∗)&d b , bytes ) ;
3 cudaMalloc ( (double ∗∗)&d c , bytes ) ;
4

5 cudaMemcpy( d a , a , bytes , cudaMemcpyHostToDevice ) ;
6 cudaMemcpy( d b , b , bytes , cudaMemcpyHostToDevice ) ;
7

8 dim3 block ( b l o ckS i z e ) ;
9 dim3 gr id ( ( n + block . x − 1) / block . x ) ;

10

11 gpu vec to r add i t i on<<<gr id , block>>>(d a , d b , d c , n ) ;
12

13 cudaMemcpy( c gpu , d c , bytes , cudaMemcpyDeviceToHost ) ;
14

15 cudaFree ( d a ) ;
16 cudaFree ( d b ) ;
17 cudaFree ( d c ) ;

Listing 4.9: CUDA runtime API calls to launch a kernel.

To illustrate the reader with a brief example of CUDA programming, let’s show how to
code a simple vector addition operation, as it was explained in Listing 4.4 for CPU in
standard C language. Listing 4.9 shows how to send to the GPU the vector addition
parallel execution, the program consists of the following steps:

1. Allocate GPU memory, lines 1-3. Notice that is almost identical to the standard
“malloc” C function to allocate CPU memory.

2. Transfer data from CPU to GPU memory, lines 5-6. Remember that the GPU has
its own global memory and cannot directly access to CPU’s RAM.

3. Invoke the CUDA kernel, line 11. The kernel is the function that is executed by the
GPU. Here, it is defined the thread execution configuration (the mentioned two-level
thread hierarchy) inside triple-angle-brackets.

4. Transfer result data back from GPU to CPU memory, line 13.

5. Destroy GPU memories allocations, lines 15-17. Again, very similar to the standard
“free” C function.

Finally, the basic idea that you have to keep in mind when writing a CUDA kernel is
that it is just a serial piece of code that will be run by a single thread. Listing 4.10
shows the vector addition kernel function call (line 11 of Listing 4.9). Notice that, in
contrast with Listing 4.4, the kernel has no for loop, instead is used the built-in variables
(blockIdx, blockDim and threadIdx) to identify the thread and access the global index
of the vectors. In line 5, the if condition is used to prevent threads from invalid memory
access (exceeded array bounds), see Figure 4.9.
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1 g l o b a l void gpu vec to r add i t i on (double ∗a , double ∗b ,
2 double ∗c , const int n)
3 {
4 int idx = blockIdx . x ∗ blockDim . x + threadIdx . x ;
5 i f ( idx < n)
6 {
7 c [ idx ] = a [ idx ] + b [ idx ] ;
8 }
9 }

Listing 4.10: Vector addition CUDA kernel.

Figure 4.9: When invoking CUDA kernels, it is common that the number of threads is
greater than the number of elements that will be accessed, thus illegal global memory
accesses must be prevented [41].



Chapter 5

A Parallel ODE Integrator Library

The main objective of the current Master’s Thesis is the development of a library that
accelerates the integration of the chemical source term shown in the Eq.(2.5), in Chapter
2, whose derivation comes from the mathematical modeling of reactive flows in turbu-
lent combustion simulations. Chapter 3 shows the mathematical theory of how to solve
Eq.(2.5), a stiff ODE system, but instead of developing a new ODE solver to address
the problem, widely known open-source solutions have been chosen as core dependencies.
With all this context, the current chapter describes the software architecture of a parallel
ODE library that makes use of the HPC tools and techniques described in Chapter 4.

The outline of the chapter is as follows. Section 5.1 describes the library dependencies.
Then, from Section 5.2 to Section 5.5, the architecture of the library is explained in detail,
using Unified Modeling Language (UML)1 and some pieces of code when needed. Section
5.6 exposes how the validation of the solution has been addressed, why unit testing is
important in software development and the approach taken to include it in the library.
Section 5.7 shows an application example of how to use the library and how to take the
advantage of its runtime configuration. Finally, in Section 5.8, a high-level application to
collect data and results to a local database is described.

5.1 Library’s dependencies

As mentioned at the introduction of the chapter, in this thesis no ODE solver has been
developed, instead two open-source codes, which are specialized to perform the solution
of stiff ODE problems, has been taken as core dependencies. Those libraries are Cantera
and Sundials-CVODE. Moreover, the pyJac library has been included as a tool to
evaluate analytically the Jacobian matrix and Magma to solve dense linear systems on
the GPU. Lastly, GoogleTest is a world-wide known library that is used for testing
purposes in C++ programming language.

1If the reader is not familiar with UML, we recommend the book [43], it is a great and accessible
introduction.

37
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5.1.1 Cantera

Taken from its official website, Cantera is an open-source suite of tools for problems involv-
ing chemical kinetics, thermodynamics, and transport processes [44]. It supports multiple
language interfaces, such as Python, Fortran, MATLAB and C/C++. Cantera is designed
using the Object-Oriented Programming (OOP) paradigm. From the thesis perspective,
this library exposes an API that helps to work with chemical kinetics problems in a com-
fortable way. Listing 5.1 shows the internal integration method of the CanteraIntegrator
and CanteraIntegratorOMP classes (from the library developed in this thesis), whose ar-
chitectures will be explained in Section 5.4. What we want to show here is the part of
Cantera’s API needed for solving the combustion chemical integration problem.

1 void
2 Cantera Integrator : : in tegrateSystem (
3 double &temperature ,
4 double &enthalpy ,
5 double ∗ sp e c i e s ,
6 double dt )
7 {
8 auto s o l u t i o n = Cantera : : newSolution ( th i s−>mechanism ) ;
9 auto thermo = so lu t i on−>thermo ( ) ;

10 Cantera : : Idea lGasConstPressureReactor r e a c t o r ;
11 Cantera : : ReactorNet can t e r a In t e g r a t o r ;
12

13 thermo−>setState TPY ( temperature , th i s−>pres sure , s p e c i e s ) ;
14 r e a c t o r . i n s e r t ( s o l u t i o n ) ;
15

16 c an t e r a In t e g r a t o r . s e t I n i t i a lT ime ( 0 . 0 ) ;
17 c an t e r a In t e g r a t o r . s e tTo l e rance s ( th i s−>r e l t o l , th i s−>ab s t o l ) ;
18 c an t e r a In t e g r a t o r . addReactor ( r e a c t o r ) ;
19

20 c an t e r a In t e g r a t o r . advance ( dt ) ;
21

22 // Take s o l u t i o n
23 temperature = r ea c t o r . temperature ( ) ;
24 enthalpy = thermo−>enthalpy mass ( ) ;
25 thermo−>getMassFract ions ( s p e c i e s ) ;
26 }
Listing 5.1: Chemical integration method of CanteraIntegrator class that make use of
Cantera’s API.

Cantera’s inputs in Listing 5.1 are:

• Temperature as a function input, line 3.

• Enthalpy as a function input, line 4.

• Species mass fraction vector as a function input, line 5.
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• Time step as a function input, line 6.

• Chemical mechanism already a property of the class, line 8.

• Pressure already a property of the class, line 13. Notice that a constant pressure
condition is imposed.

• Solver error tolerances already properties of the class, line 17. These options are
needed by the ODE solver.

The outputs are:

• Temperature, line 23.

• Enthalpy, line 24

• Species vector, line 25.

As the reader may appreciate, Cantera’s API provides an abstract layer of the thermo-
chemical and mathematical processes that are involved in the chemical integration that,
from the programmer’s perspective, is very easy to use at the cost of having no con-
trol over the operations. The underlying ODE solver that Cantera uses for the chemical
integration is CVODE, that is explained in the next section.

5.1.2 Sundials - CVODE

Sundials is a software package that groups various mathematical libraries for solving Non-
linear equations, Non-linear Ordinary Differential equations and Differential Algebraic
equations [45, 46]. Particularly, CVODE is a solver for ODE IVPs in n-space. It uses
variable-order and variable-step multistep methods. For nonstiff problems, CVODE uses
the implicit Adams Moulton methods, but more important for our case is that for stiff
problems uses BDF formulas of the form of Eq.(3.18) (visit Chapter 3 if needed). CVODE
is the library that Cantera depends on for the chemical integration, thus the direct use
of CVODE is more complex than Cantera, but gives more control over the data and
operations and the possibility of further optimization. As well as it has been done for
Cantera, let’s show CVODE’s API by analyzing the serial integration method of the
CVodeIntegrator class. Listing 5.2 shows the integration method inputs and Sundials-
CVODE’s variables declarations.

1 void CVodeIntegrator : : in tegrateSystem (
2 double ∗ system ,
3 double dt )
4 {
5 N Vector y ;
6 SUNMatrix J ;
7 SUNLinearSolver LS ;
8 . . .

Listing 5.2: Chemical integration method of CVodeIntegrator class that make use of
Sundials-CVODE’s API. Part I.
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• system, from line 2, is an array with the length of the species mechanism. The first
entry is the temperature, and the rest are the species except last one. Remember
Eq.(3.2), where it was explained that, due to mass conservation of the species, only
n− 1 species are required to be solved.

• dt, line 6, is the time step, same as in Cantera’s integrator.

• sundials::Context, N_Vector, SUNMatrix and SUNLinearSolver are the Sundials
objects declarations to allocate memory space for the computational operations; y
for the species, J for the Jacobian matrix and LS for the linear system.

Listing 5.3 exposes CVODE configuration and the integration call, it consists of the
following steps:

1. Allocate species memory, using the systemSize property, line 2.

2. Copy initial values of the problem (temperature and species), line 5.

3. Set BDF ODE solver, line 7

4. Set CVODE initial values and specify dy/dt = f(y, t) function, line 9.

5. Set solver error tolerances, line 11.

6. Allocate memory for the Jacobian matrix, line 13.

7. Set linear dense solver, lines 15-17.

8. Specify analytical function or finite differences Jacobian matrix evaluation, line 19.

9. Set specific user data to be accessed in the Jacobian and f(y, t) function evaluations,
line 23.

10. Solver integration, line 25.

11. Copy back temperature and species solution.
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1 . . .
2 y = N VNew Serial ( th i s−>systemSize , sunctx ) ;
3

4 double ∗yptr = N VGetArrayPointer ( y ) ;
5 copy ( system , system + th i s−>systemSize , yptr ) ;
6

7 cvode mem = CVodeCreate (CV BDF, sunctx ) ;
8

9 CVodeInit ( cvode mem , th i s−>dydtFunc ( ) , t0 , y ) ;
10

11 CVodeSStolerances ( cvode mem , r e l t o l , ab s t o l ) ;
12

13 J = SUNDenseMatrix ( th i s−>systemSize , th i s−>systemSize , sunctx ) ;
14

15 LS = SUNLinSol Dense (y , J , sunctx ) ;
16

17 CVodeSetLinearSolver ( cvode mem , LS , J ) ;
18

19 CVodeSetJacFn ( cvode mem , th i s−>jacobianFunc ( ) ) ;
20

21 CVodeSetMaxNumSteps ( cvode mem , maxSteps ) ;
22

23 CVodeSetUserData ( cvode mem , uData . get ( ) ) ;
24

25 CVode( cvode mem , dt , y , &t0 , CVNORMAL) ;
26

27 copy ( yptr , yptr + th i s−>systemSize , system ) ;
28 . . .

Listing 5.3: Chemical integration method of CVodeIntegrator class that make use of
Sundials-CVODE’s API. Part II.

Finally, in Listing 5.4 the memory space used by the system integration is freed.

1 . . .
2 CVodeFree(&cvode mem ) ;
3 SUNLinSolFree (LS ) ;
4 N VDestroy (y ) ;
5 SUNMatDestroy ( J ) ;
6 }
Listing 5.4: Chemical integration method of CVodeIntegrator class that make use of
Sundials-CVODE’s API. Part III.

It is easy to appreciate that CVODE requires more configuration details and data manage-
ment that Cantera’s interface, but its API allows further customization and optimization.
Furthermore, the reader may have noticed that two key functions are specified in the
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CVODE configuration, i.e., f(y, t) and the Jacobian evaluation function. In Cantera,
those functions are handled internally by specifying the chemical mechanism, but with
CVODE is the programmer’s concern. So this topic drives to the next dependency which
is the pyJac library.

5.1.3 pyJac

As it has been described in Chapter 3, the two main ways of Jacobian matrix evaluations
are; analytically, by deriving formulas, or numerically, by using finite differences meth-
ods. pyJac is a Python package that generates analytical Jacobian matrices for chemical
kinetics applications [47]. It is an open-source tool that produces the source code of the
functions, or subroutines, for the evaluation of the chemical reaction mechanism and its
associated analytical Jacobian matrix (a mechanism chosen by the user). For CPU opera-
tions, the source code generated is via the C/C++ language, while for GPU operations is
via CUDA language. The package assumes a constant-pressure hypothesis, so it matches
the requirements of our physical problem.

Regarding parallelization, for the CPU solutions, pyJac is thread-safe, so it can be used
in OpenMP parallel regions. And for GPU solutions, pyJac adopted a “per-thread” par-
allelization (instead of “per-block”), it means that every GPU thread evaluates a single
mechanism with its associated Jacobian matrix. With this approach, each GPU thread is
involved in a different ODE system problem. Therefore, a GPU “per-thread” paralleliza-
tion means that CVODE solver is handling multiple ODE systems simultaneously, using
the GPU for Jacobian matrix factorization and for solving the linear systems. Currently,
Sundials-CVODE is capable of GPU parallelization by adopting a library dependency,
Magma.

5.1.4 Magma

Magma stands for Matrix Algebra on GPU and Multi-core Architectures. It is a linear
algebra library for heterogeneous computing [48]. Magma presents similar interfaces for
supporting widely known packages, such as LAPACK and BLAS [49, 50], to easily porting
algebra software components to GPU.

Magma supports dense batched LU methods [51]. These routines consist in solving LU
factorization and linear systems for multiple problems at once (see Figure 5.1). This
functionality is useful when each of the systems is not large enough to be worth solving
with the GPU (it does not offset the penalty of data movements) but many of them can
be solved in parallel. This is the case of the chemical reaction scenario, where common
mechanisms involve from 10 to 2000 species, so GPU has enough memory space to hold
many of those systems. Magma is supported by Sundials-CVODE’s solver to parallelize
the integration of multiple ODE systems using GPU devices.

5.1.5 GoogleTest

The last dependency of the library is GoogleTest. It is a testing framework to write
C++ tests [52]. The library includes this framework to manage the validation of the
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Figure 5.1: Matrix representation for dense batched LU methods, handled by Magma
package.

solutions. Unit tests help prevent regressions in a continuous development code base.
Therefore, having a test battery opens the possibility to set up a continuous integration
pipeline.

5.2 The Context object and its components

The remaining sections will describe the implementation details of the library. The current
section explains the classes that compound the Context object, which are:

• OutFileService

• BaseLogger

• Mesh

5.2.1 OutFileService

OutFileService

- executionFolder: string

- DFT_OUTFOLDER: string = "./out" {readOnly}

+ OutFileService(outFolder: string = DFT_OUTFOLDER): void 

+ getExecutionFolder(): string

- prepareExecutionFolder(outFolder: string): string

- addTimeStampSubFolder(rootFolder: string): string

- createRootOutFolderIfNotExists(outFolder: string): void

- getTimeStamp(): string

Figure 5.2: UML diagram OutFileService class.
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The OutFileService class, as the name suggests, is a component that is used as a service
inside the library. It holds the Unix-like path where all the outputs of the execution will
be saved. This path can be accessed by calling the method “getExecutionFolder():
string”. Figure 5.2 shows the methods and properties of the class. By default, the output
will be saved in the relative path “./out”, but the constructor allows you to choose
another one. Once the path is defined, the instance will create the output directory if it
does not exist and, inside this directory, another with the current timestamp as its name.

5.2.2 Thread-safe logging system

Either in development phases or trying to find a bug in a code that is in production,
having a good logging system is almost mandatory. To do so, it has been developed a
thread-safe logging system that supports log messages in concurrent and parallel regions,
such as OpenMP’s.

A thread-safe system means that the system is protected against possible race-conditions.
This is the case when two or more threads want to write a log message simultaneously. To
avoid that situation, the code must be serialized using mutual exclusion (mutex) objects,
critical regions or similar techniques. However, Input-Output operations are really slow,
compared to reading-writing memory variables. Therefore, to minimize the penalization of
serializing an Input-Output instruction, the system follows a Master-Worker pattern with
only one worker. With a master-worker scheme, the Input-Output operation is decoupled
from the thread that has the message to write, to a thread whose sole task is to write log
messages. The latter thread can be called the logging-thread. Thus, the thread that has
the message, instead of directly writing in the Input-Output buffer, it put the message in
a First-In, First-Out (FIFO) queue. The logging-thread is continuously taking messages
from the queue and writing it into the output buffer.

Figure 5.3 shows the architecture of the logging system in a UML diagram. Four classes
can be identified, ThreadSafeQueue, BaseLogger, ConsoleLogger and FileLogger.
Let’s explain them a little further.

ThreadSafeQueue

C++ standard library does not provide a thread-safe queue, so it has been necessary to
implement one that uses mutex. Just two actions has been implemented, push to add a
message to the queue and pop both for taking and deleting a message from the queue.

BaseLogger

The BaseLogger is the abstract class of the two forthcoming classes. It is the engine of the
whole system. When initializing a class that inherits from the BaseLogger, the constructor
method start a new thread (the logging-thread) with the task of “processQueue()”, that
is an infinite loop that takes messages from the ThreadSafeQueue and writes them using
the “log(msg: string): void” method. The latter function is an abstract method, so
concrete classes must implement this method in their own way. Moreover, the LogLevel
enumeration allows you to choose the level of messages to write, DEBUG will write all
types of messages, whereas INFO will ignore debug-type messages.
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ThreadSafeQueue

- mtx: mutex

- condVar: condition_variable

- myQueue: queue<T>

+ push(item: T): void

+ pop(item: T): void

T

BaseLogger

- logQueue: ThreadSafeQueue<string>

- queueWorker: thread

- logLevel: LogLevel

- DFT_FMT: string = "%F %T" {readOnly}

- EXIT_FLAG: string = "SIGNAL_EXIT" {readOnly}

+ BaseLogger(logLevel: LogLevel): void

+ info(msg: string, line: int, file: string): void

+ debug(msg: string, line: int, file: string): void

+ error(msg: string, line: int, file: string): void

# log(msg: string): void

# finishworker(): void

- getTimeStamp(): string

- processQueue(): void

- buildMsg(type: string, msg: string, line: int, file: string): void

«enumeration»
LogLevel

DEBUG

INFO

FileLogger

- fout: ofstream

+ LOG_FILE_NAME: string = "out.log" {readOnly}

+ FileLogger(fileService: OutFileService): void

# log(msg: string): void

#define info(x)      info(x, __LINE__, __FILE__)
#define debug(x)  debug(x, __LINE__, __FILE__)
#define error(x)    error(x, __LINE__, __FILE__)

ConsoleLogger

# log(msg: string): void

<<bind>> <T->string>

OutFileService

Figure 5.3: UML diagram of the thread-safe logging system.

The public interface that concrete loggers present is the same for all. It consists in the
following methods:

• info(msg: string, line: int, file: string): void

• debug(msg: string, line: int, file: string): void

• error(msg: string, line: int, file: string): void

These methods define the type of message being written, i.e., information, debug or error
message. Actually, due to the macro defined on the left of the Figure 5.3 there is no need
to specify the line and the file when calling those methods. An example of the message
is the following:

[139748955570176][2023-05-26 17:40:14,569][main.cpp:45] INFO: Integrating systems

The message is composed of:

1. Thread ID.

2. Date and Time.

3. File and line from where the message was sent.

4. Type of message: INFO, DEBUG, ERROR.

5. Message content.

Finally, when an instance of the BaseLogger is destroyed, the destructor method puts an
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exit signal in the queue. Eventually, the logging-thread reads the exit signal from the
queue, exiting the infinite loop and joining the master thread.

ConsoleLogger

ConsoleLogger is a concrete class of the abstract BaseLogger. It overrides the “log(...)”
method to send the message to the console, also known as the standard output (stdout).

FileLogger

The FileLogger overrides the “log(...)” method to write the logs in a permanent file.
It needs the OutFileService class in the constructor because it needs to request the path
where to create the log file.

5.2.3 Data structure

This section explains how the data are managed and stored inside the library. To begin
with, it is important to define what a mesh point is. As described in Chapter 2, to
integrate the Eq.(2.5), it is necessary to know the initial thermochemical state of each
discrete point of the mesh. Thus, from the point of view of the library, to integrate a
single ODE system, a mesh point may have the following properties:

• Temperature, in Kelvin.

• Number of species of the mechanism and their mass fraction values.

• The specific enthalpy, in J/kg.

• The coordinates of the point with respect to a reference system, in meters.

The first two properties are absolutely necessary for its integration because they are the
unknowns of the PDE system. The specific enthalpy is a secondary variable that can be
calculated from the first two, so it is optional. And the coordinates are also optional.

Point subsystem

In Figure 5.4 is illustrated the UML diagram of the Point class and its closest dependen-
cies and relationships. The Point presents a large public interface where all its properties
can be accessed. However, a Point instance may not have all the properties, but tem-
perature and species are mandatory. The method “isReady(): bool” ensures that the
latter mentioned properties are set, by returning a “true” value, otherwise it returns
“false”. To be able to create a Point with different properties in runtime, a widely
known creational design pattern has been used, the Builder Pattern. This pattern needs
an auxiliary class, the PointBuilder class, that allows you to produce different types
of Points depending on the items that had been added (temperature, species, enthalpy,
etc). Finally, the Coords class provides an abstract layer to handle 3D coordinates in a
comfortable way.
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PointBuilder

- point: Point

+ PointBuilder(nsp: int): void

+ addTemperature(temp: double): void

+ addSpecies(species: vector<double>): void

+ addEnthalpy(enthalpy: double): void

+ addCoordinates(coords: Coords) void

+ create(): Point

Coords

+ x: double

+ y: double

+ z: double

Point

- temperature: double 

- species: vector<double>

- enthalpy: double

- coordinates: Coords

- nsp: int

+ hasTemperature(): bool

+ hasSpecies(): bool

+ hasEnthalpy(): bool

+ hasCoordinates(): bool

+ isReady(): bool

+ getTemperature(): double

+ getSpecies(): vector<double>

+ getEnthalpy(): double

+ getCoordinates(): Coords

+ numSpecies(): int

Figure 5.4: UML diagram of the Point subsystem.

Mesh system

The Mesh class is the core of the library, it is where all the systems are stored and,
once integrated, is the object that has the solutions. Figure 5.5 shows the properties and
methods of the class. They are somehow similar to the Point class, but instead of storing
a single system, the Mesh class has vectors and matrices to store multiple systems. The
class is used as follows:

“addPoint(newPoint: Point): void” method is used to add new points/systems to the
Mesh. Once the first Point is added, the Mesh class registers its type, i.e., what properties
it has. Then subsequent added points must have the same properties, a characteristic
that is controlled by the method “isCompatible(point: Point): bool”. The public
methods relevant to integrator classes (see the Section 5.4) are:

• “numSystems(): int”. To check how many systems the mesh holds.
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Mesh

- temperature: vector<double>

- speciesMat: vector<vector<double>>

- enthalpy: vector<double>

- coordinates: vector<double>

- nsp: int

- isCompatible(point: Point): bool

+ addPoint(newPoint: Point): void

+ numSystems(): int

+ numSpecies(): int

+ hasEnthalpy(): bool

+ hasCoordinates(): bool

+ clear(): void

+ getTemperatureAtSystem(index: int): double

+ setTemperatureAtSystem(index: int): double

+ getSpeciesVector(index: int): vector<double>

+ setSpeciesAtSystem(index: int, species: vector<double>): void

...

Figure 5.5: Properties and method of the Mesh class.

• “numSpecies(): int”. It returns the size of the chemical mechanism.

• “get...AtSystem(index: int): <T>”. Returns the value of the requested prop-
erty (temperature, species, enthalpy or coordinates) at the given index.

• “set...AtSystem(index: int, property: <T>): void”. Change the value of
the selected property at the given index. These methods are mainly used to save
the results.

Coords

PointBuilder MeshPoint

Figure 5.6: UML diagram of the Mesh system.

Figure 5.6 illustrates the relationships between the Mesh system. Notice that the Mesh is
not composed by Points, is just a dependency relationship. This is because, to optimize the
memory access pattern, the Mesh class stores the properties of each system in contiguous
memory by extracting the data of each point.
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5.2.4 Context

Context

- outFileService: OutFileService

- logger: BaseLogger

- mesh: Mesh

+ getOutFileService(): OutFileService

+ getLogger(): BaseLogger

+ getMesh(): Mesh

+ setMesh(mesh: Mesh): void

Mesh

OutFileService

BaseLogger

Figure 5.7: UML diagram of the Context class and its components.

As described at the beginning of this section, the Context object is composed by an
OutFileService instance to keep track of the output directory path, a Mesh instance that
stores the data and a BaseLogger instance (see Figure 5.7). It is important to highlight
that the BaseLogger abstract class cannot be instantiated, but a concrete class of it. This
is one of the four pillars of the Object-Oriented Programming, Polymorphism. Actually
the four pillars of OOP paradigm are used extensively in the library, those pillars are:

• Abstraction

• Encapsulation

• Inheritance

• Polymorphism

5.3 Input and Output

Now that it has been explained how the library stores the data, it is time to show how
to insert that data into the Mesh, and how to get the results from it. This is called the
Input-Output system (or module), and its UML diagram is shown in the Figure 5.8. Let’s
break it down in parts.

On the left-hand side of the diagram it is the Reader branch. The Reader abstract
class has an association with the Context class because it needs its Mesh and BaseLogger
instances. Furthermore, it has an abstract method “read(): void” that must be imple-
mented by concrete classes. This method must be used to read the data from a certain
source and insert it into the Mesh instance. At the time of writing this thesis, only a
concrete class has been developed, the CsvReader class. This is because no more data
sources, apart from Comma-Separated Values (CSV) files, has been used. However, if in
the future any developer of the library needs to insert data from other sources, he/she
should create another class that inherits from the Reader class and implement its abstract
method “read(): void”. Regarding the CsvReader, it needs the absolute path of the in-
put CSV file for the construction of the object, then, when invoking the “read(): void”
method, the instance will read the rows, line by line, and it will insert the systems into
the Mesh instance.
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Reader

# ctx: Context

+ Reader(ctx: Context): void

+ read(): void

CsvReader

- csvFilename: string

+ CsvReader(filename: string): void

+ read(): void

- inspectHeader(header: string): HeaderInfo

- readPoint(row: string, headerInfo: HeaderInfo): Point

Mesh Package

Mesh, Point, PointBuilder,
Coords

Context

Writer

# ctx: Context

+ Writer(ctx: Context): void

+ write(): void

CsvWriter

- csvFilename: string

+ CsvWriter(filename: string): void

+ write(): void

- writeHeader(file: ofstream): void

- writePoint(file: ofstream, index: int): void

HeaderInfo

+ nsp: int

+ hasTemperature: bool

+ hasCoords: bool

+ hasEnthalpy: bool

Figure 5.8: UML diagram of the Input-Output system.

On the right-hand side of the diagram it is the Writer branch. Similarly to the Reader
branch, the Context class is associated with the Writer abstract class. Again, only a
concrete class has been developed, the CsvWriter. This class makes use of the OutFile-
Service instance of the Context object to get the output path where to write the output
CSV file. Finally, when calling the method “write(): void”, the CsvWriter writes se-
quentially line by line the systems that reads from the Mesh instance.

5.4 Integrators

There are five different integrators at the moment of writing this thesis:

• CanteraIntegrator

• CanteraIntegratorOMP

• CVodeIntegrator

• CVodeIntegratorOMP

• CVodeIntegratorGPU

They all present the same public interface, which means that they all share the highest
superclass, the Integrator abstract class. Figure 5.9 shows the properties and methods
of the Integrator abstract class. Those methods are:

• init(ctx: Context, config: IntegratorConfig): void

• integrate(dt: double): void

• clean(): void

Once more, the Context class is an association of the Integrator class, it is obvious that
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Integrator

# ctx: Context

# numSystems: int

# systemSize: int

# mechanism: string

# reltol: double

# abstol: double

# pressure: double

# ompConfig: YAML

# jacobianStrategy: string

# ANALYTICALJACOBIAN: string = "analytical" {readOnly}

# FINITEDIFFJACOBIAN: string = "finDiff" {readOnly}

+ init(ctx: Context, config: IntegratorConfig): void

+ integrate(dt: double): void

+ clean(): void

# calculateLastSpecieValue(speciesExceptLastOne: double[*]): double

IntegratorConfig

+ mechanism: string

+ reltol: double

+ abstol: double

+ pressure: double

+ ompConfig: YAML

+ jacobianStrategy: string

Context

Figure 5.9: Properties and methods of the Integrator abstract class.

the latter class needs the Mesh instance for the integration and the BaseLogger for trace-
ability and debug purposes. Furthermore, the “init(...)” call also request an instance
of the IntegratorConfig, a class that holds all the parameters that every integrator
needs. The “integrate(dt: double): void” method is the abstract method that every
integrator that inherits from this abstract class must implement in its own way. Lastly,
the “clean(): void” can be overridden to free memory allocations (or any other similar
operation), this method should be called once the integration has finished.

Once described the basic operations that integrators have, let’s explain a little further the
concrete implementation of those integrators.

5.4.1 Cantera integrators

CanteraIntegrator class is the basic Cantera serial integrator. Listing 5.5 shows the
source code that overrides the abstract method “integrate(dt: double): void” of the
Integrator superclass. First, the code gets all the data from the Mesh instance, as refer-
ences (using C/C++ raw pointers). Then, a for loop that iterates through all systems
calls sequentially the integration method presented in Listing 5.1. The conditional sen-
tences are necessary to distinguish whether the Mesh points have been inserted with the
enthalpy property, otherwise that property is ignored when collecting the solution.
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1 void Cantera Integrator : : i n t e g r a t e (double dt )
2 {
3 I n t e g r a t o r : : i n t e g r a t e ( dt ) ;
4 double ∗ temperatures = nu l l p t r ;
5 double ∗ en tha l p i e s = nu l l p t r ;
6 double ∗ s p e c i e s = nu l l p t r ;
7

8 i f ( th i s−>mesh−>hasEnthalpy ( ) )
9 en tha l p i e s = th i s−>mesh−>getEnthalpyPointer ( ) ;

10

11 temperatures = th i s−>mesh−>getTemperaturePointer ( ) ;
12

13 for ( int i = 0 ; i < th i s−>numSystems ; i++)
14 {
15 s p e c i e s = th i s−>mesh−>ge tSpec i e sPo in t e r ( i ) ;
16 i f ( th i s−>mesh−>hasEnthalpy ( ) )
17 {
18 th i s−>in tegrateSystem ( temperatures [ i ] ,
19 en tha l p i e s [ i ] ,
20 sp e c i e s , t ) ;
21 }
22 else
23 {
24 double dummyEnthalpy ;
25 th i s−>in tegrateSystem ( temperatures [ i ] ,
26 dummyEnthalpy ,
27 sp e c i e s , t ) ;
28 }
29 }
30 }

Listing 5.5: Integrate method overriden by the serial CanteraIntegrator.

As illustrated in the top-left corner of Figure 5.10, CanteraIntegratorOMP inherits
from the serial CanteraIntegrator. This integrator is an OpenMP parallel version of the
latter. It does not override the core integration method, “integrateSystem(...)” from
Listing 5.1, but overrides the “integrate(dt: double): void” as shown in Listing 5.6.
Almost no differences can be found among Listings 5.5 and 5.6, just the “#pragma omp

parallel for schedule(runtime)” compiler directive. The parallelization of the loop is
straightforward because iterations are independent of each other. The “schedule(runtime)”
clause permits a scheduling configuration in runtime, as it will be shown in Section 5.5.
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1 void Cantera Integrator : : i n t e g r a t e (double dt )
2 {
3 I n t e g r a t o r : : i n t e g r a t e ( dt ) ;
4 double ∗ temperatures = nu l l p t r ;
5 double ∗ en tha l p i e s = nu l l p t r ;
6 double ∗ s p e c i e s = nu l l p t r ;
7

8 i f ( th i s−>mesh−>hasEnthalpy ( ) )
9 en tha l p i e s = th i s−>mesh−>getEnthalpyPointer ( ) ;

10

11 temperatures = th i s−>mesh−>getTemperaturePointer ( ) ;
12

13 #pragma omp p a r a l l e l for schedu le ( runtime )
14 for ( int i = 0 ; i < th i s−>numSystems ; i++)
15 {
16 s p e c i e s = th i s−>mesh−>ge tSpec i e sPo in t e r ( i ) ;
17 i f ( th i s−>mesh−>hasEnthalpy ( ) )
18 {
19 th i s−>in tegrateSystem ( temperatures [ i ] ,
20 en tha l p i e s [ i ] ,
21 sp e c i e s , t ) ;
22 }
23 else
24 {
25 double dummyEnthalpy ;
26 th i s−>in tegrateSystem ( temperatures [ i ] ,
27 dummyEnthalpy ,
28 sp e c i e s , t ) ;
29 }
30 }
31 }

Listing 5.6: Integrate method overridden by the parallel CanteraIntegratorOMP.

5.4.2 CPU CVODE integrators

The serial CVodeIntegrator is a bit more complex than Cantera’s because it comprises
more pieces. As shown on the right-hand side of the Figure 5.10, CVodeIntegrator imple-
ments the MechanismDriver interface to provide the CVODE solver with the chemical
reaction and the analytical Jacobian matrix functions. These functions link to the second
dependency (Sundials-CVODE is the first one), pyJac. Moreover, CVODE’s interface
allows you to have arbitrary data to access them when the latter functions are called.
These data are reflected in the UserData class association. Here, the “integrate(...)”
method is overridden as shown in Listing 5.7. Three steps can be identified:

1. Get data from the Mesh instance and reorder it to use it in the CVODE solver.
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CanteraIntegrator

+ integrate(dt: double): void

# integrateSystem(temperature: double, enthalpy: double, 
                               species: double[*], dt: double): void

CanteraIntegratorOMP

+ integrate(dt: double): void

CVodeIntegrator

- uData: UserData

+ integrate(dt: double): void

+ dydtFunc(): function

+ jacobianFunc(): function

# dataTransferFromMesh(): vector<vector<double>>

# dataTransferToMesh(systemsData: vector<vector<double>>): void

# integrateSystem(system: double[*], dt: double): void

«interface»
MechanismDriver

+ dydtFunc(): function

+ jacobianFunc(): function
Integrator

UserData

+ ctx: Context

+ pressure: double

CVodeIntegratorOMP

+ integrate(dt: double): void

- dataTransferFromMesh(): vector<vector<double>>

- dataTransferToMesh(systemsData: vector<vector<double>>): void

Cantera Package

Version 2.6.0 

Sundials Package

Version 6.3.0
PyJac Package

Version 1.0.6

Figure 5.10: UML diagram of the CPU integrators.

2. Integration for loop.

3. Reorder data and insert it back into the Mesh instance.

1 void CVodeIntegrator : : i n t e g r a t e (double dt )
2 {
3 I n t e g r a t o r : : i n t e g r a t e ( dt ) ;
4

5 vector<vector<double>> systemsData =
6 th i s−>dataTransferFromMesh ( ) ;
7

8 for ( int i = 0 ; i < th i s−>numSystems ; i++)
9 {

10 th i s−>in tegrateSystem ( systemsData [ i ] . data ( ) , t ) ;
11 }
12

13 th i s−>dataTransferToMesh ( systemsData ) ;
14 }

Listing 5.7: Integrate method overridden by the serial CVodeIntegrator.

Listing 5.8 shows in detail the source code of the first step. It consists in allocating
memory space for all ODE systems. Then, in a for loop, each system is collected from the
Mesh instance and stored in contiguous memory, where the temperature is the first item,
followed by the corresponding species except last one. The second step, the integration,
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has been explained in Section 5.1 when analyzing the Listings 5.2, 5.3 and 5.4. The third
step is analogous to the first one, but the other way around. Inside the for loop of
Listing 5.9 the temperature is extracted from the first item of the corresponding row of
the “systemsData” matrix. Notice that the last species is not collected directly from the
results, instead it is calculated using the “calculateLastSpecieValue(...)” method
that applies Eq.(3.2).

1 vector<vector<double>>
2 CVodeIntegrator : : dataTransferFromMesh ( )
3 {
4

5 vector<vector<double>> systemsData (
6 th i s−>numSystems , vector<double>( th i s−>systemSize , 0 . 0 f )
7 ) ;
8

9 vector<double> temperatures =
10 th i s−>mesh−>getTemperatureVector ( ) ;
11

12 vector<double> s p e c i e s ;
13 for ( int i = 0 ; i < th i s−>numSystems ; i++)
14 {
15 s p e c i e s = th i s−>mesh−>ge tSpec i e sVec to r ( i ) ;
16 systemsData [ i ] [ 0 ] = temperatures [ i ] ;
17 copy (
18 begin ( s p e c i e s ) , end ( s p e c i e s ) − 1 ,
19 begin ( systemsData [ i ] ) + 1
20 ) ;
21 }
22

23 return systemsData ;
24 }

Listing 5.8: “dataTransferFromMesh()” method of serial CVodeIntegrator.
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1 void
2 CVodeIntegrator : : dataTransferToMesh (
3 vector<vector<double>> systemsData
4 )
5 {
6 double ∗ temperatures =
7 th i s−>mesh−>getTemperaturePointer ( ) ;
8

9 double ∗ s p e c i e s ;
10 for ( int i = 0 ; i < th i s−>numSystems ; i++)
11 {
12 temperatures [ i ] = systemsData [ i ] [ 0 ] ;
13 s p e c i e s = th i s−>mesh−>ge tSpec i e sPo in t e r ( i ) ;
14 copy (
15 begin ( systemsData [ i ] ) + 1 ,
16 end ( systemsData [ i ] ) ,
17 s p e c i e s
18 ) ;
19

20 s p e c i e s [ th i s−>systemSize − 1 ] =
21 th i s−>ca l cu l a t eLa s tSpec i eVa lue ( s p e c i e s ) ;
22 }
23 }

Listing 5.9: “dataTransferToMesh()” method of serial CVodeIntegrator.

Now that the serial CVodeIntegrator has been explained in detail, the OpenMP parallel
CVodeIntegratorOMP, that inherits from the latter, is exactly the same except for
the fact that every for loop that has been mentioned is parallelized using the OpenMP
compiler directive that has been used in CanteraIntegratorOMP.

5.4.3 CVodeIntegratorGPU

Version 2.6.0 of Cantera’s package does not support GPU parallelization, consequently,
only one parallel GPU approach has been developed. The CVodeIntegratorGPU class
does not inherit from CVodeIntegrator (as CVodeIntegratorOMP does) because its im-
plementation is completely different. Instead, CVodeIntegratorGPU inherits directly
from the Integrator abstract class and implements the MechanismDriver interface (see
Figure 5.11). The arbitrary data for the CVODE also varies a little with respect to
the serial and OpenMP versions, GPUUserData contains many more properties that
are necessary to handle GPU memory during the CVODE integration. As explained in
Section 5.1, the CVODE GPU implementation has one extra dependency, apart from
Sundials-CVODE and pyJac, which is Magma.

The source code of the CVodeIntegratorGPU is a lot more extensive than the previous
integrators (more than 1000 lines), so it is not convenient to put it all here for its expla-
nation. However, a high-level explanation, using the properties and methods, of the UML
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diagram of Figure 5.11, is sufficient to understand how it works.

1 while ( th i s−>processedSystems < th i s−>numSystems )
2 {
3 SystemsToProcess systemsToProcess =
4 th i s−>ca lcu lateSystemsToProcess ( ) ;
5

6 th i s−>i n t eg rateBatch ( dt , systemsToProcess ) ;
7

8 th i s−>processedSystems +=
9 systemsToProcess . rea lSystemsToProcess ;

10 }
Listing 5.10: The integration “while” loop of the CVodeIntegratorGPU.

«interface»
MechanismDriver

+ dydtFunc(): function

+ jacobianFunc(): function
Integrator

GPUUserData

+ ctx: Context

+ pressure: double

+ pyjacMem: mechanism_memory

+ systemsToProcess: int

+ diffJacExtra: DiffJacExtraMemory

CVodeIntegratorGPU

- uData: GPUUserData

- processedSystems: int

- MAX_GPU_MEM_COEF: double = 0.8 {readOnly}

+ integrate(dt: double): void

+ clean(): void

+ dydtFunc(): function

+ jacobianFunc(): function

- calculateSystemsToProcess(): SystemsToProcess

- integrateBatch(dt: double, systemsToProcess: SystemsToProcess): void

- getRemainingSystems(): int

- requiredMechanismSize(): int

- setInitialConditions(yptr: double[*], numSystemsToInit: int): void

- saveResults(yptr: double[*], numSystemsToSave: int): void

- setSystemInitialCondition(systemPtr: double[*], globalIndexOfTheSystem: int):void

- saveSystemResult(systemPtr: double[*], globalIndexOfTheSystem: int): void

SystemsToProcess

+ realSystemsToProcess: int

+ padded: int

Sundials Package

Version 6.3.0

PyJac Package

Version 1.0.6

Magma Package

Version 2.6.2DiffJacExtraMemory

+ f0: double[*]

+ f: double[*]

Figure 5.11: UML diagram of the CVodeIntegratorGPU class.

As well as the previous integrators, everything starts from the call “integrate(...)”.
This function drives to the while loop of the Listing 5.10. There are three instructions
inside the loop:

1. “calculateSystemsToProcess()”. First, this method calculates the number of
systems that can be allocated in the GPU memory. Second, checking the value
of the variables “numSystems” and “processedSystems”, it calculates how many
systems are left to integrate. Finally, the method returns the minimum value from
the two previous calculations, resulting in the number of systems to integrate in the
current iteration.
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2. “integrateBatch(dt, systemsToProcess)” method takes the integration time
range and the number of ODE systems to integrate. Internally, this method handles
the GPU memory space allocation and the Sundials-CVODE objects and functions
to integrate all the system in parallel using the GPU with the Magma library.

3. “this->processedSystems += systemsToProcess.realSystemsToProcess”. This
last step refers to an accumulation variable to keep track of the number of systems
that have already been integrated. This is necessary for the exit loop condition.

5.5 Runtime library configuration

At this point of the chapter, all the components that compound the library has been
explained with a certain level of detail. We have covered the logging system, the data
structure, the Context class, how the input and output of the data are managed and the
different types of integrators available. All these subsystems have been designed with an
Object-Oriented Programming approach and using multiple design patterns. This gives
the library great versatility, which means that with just one-time compilation, the library
is highly configurable at runtime.

1 ou tF i l e S e r v i c e :
2 outFolder : nu l l # i f nul l , default i s . / out
3 r eader :
4 type : CsvReader
5 f i l ename : { abso lu te path }/ input . csv # Only for f i l e r eade r s
6 wr i t e r :
7 type : CsvWriter
8 f i l ename : r e s u l t . csv
9 i n t e g r a t o r :

10 type : CVodeIntegratorOMP
11 omp :
12 threads : 14
13 schedu le :
14 type : stat ic
15 chunk : 1
16 mechanism : g r i 30 . yaml
17 j a cob ianSt ra t egy : a n a l y t i c a l
18 r e l t o l : 1 . 0 e−6
19 ab s t o l : 1 . 0 e−10
20 pre s su r e : 101325.15
21 dt : 1 . 0 e−3
22 l o gg e r :
23 type : F i l eLogger
24 l o gLeve l : DEBUG

Listing 5.11: A YAML file example to configure the library in runtime.

Listing 5.11 shows an example of how the library can be configured during runtime. It
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consists in a YAML file with all the specifications needed by the library. Let’s cover every
field one by one:

• outFileService. This field is used to configure the OutFileService class. It has a
unique subfield:

– outFolder. This subfield specifies the directory where all the output files, that
the library generates during the execution, will be written. The path can be
either absolute or relative. If the directory does not exist, it will be created by
the library. If it exists, but the path corresponds to a file instead of a directory,
the file will be removed and replaced by the directory. Lastly, if the field is filled
with the string “null”, the library will choose the default directory, “./out”.

• reader. This field refers to the data input subsystem.

– type. Here it is specified which one of the concrete classes of the abstract
Reader class is going to be used. At this moment, only “CsvReader” is avail-
able.

– filename. This subfield is only required when using the CsvReader type. It
has to be filled with the absolute path of the CSV input file.

• writer. Refers to the data output subsystem.

– type. Similar to the reader fields, a concrete class of the Writer abstract class
must be chosen. In this first version of the library only “CsvWriter” is available.

– filename. Again, This subfield is only required when using the CsvWriter
type. The field must be filled with the filename of the CSV output file without
its path (the path is determined by the outFileService→outFolder field).

• integrator. This field gathers all the configuration related to the integrator system.

– type. As it has been seen in Section 5.4, there are five types of integrators:
“CanteraIntegrator”, “CanteraIntegratorOMP”, “CVodeIntegrator”, “CVodeIn-
tegratorOMP”, “CVodeIntegratorGPU”.

– mechanism. Refers to the combustion chemical mechanism. Some sample
YAML files can be found in the “resources/mechanisms” directory of the cur-
rent library repository.

– jacobianStrategy. The available options are “analytical” or “finiteDiffer-
ences”. It refers to the way the Jacobian matrix will be evaluated. With
the former option, the Jacobian matrix is evaluated using the analytical func-
tion provided by pyJac, otherwise first order finite difference formulas will be
used. This option is just available for CVODE integrators (including the GPU
version)

– reltol and abstol. These options specify the maximum relative and absolute
error tolerances of the ODE solver.

– pressure. Remember that, in the combustion problem that we are dealing
with, it has been assumed a constant pressure hypothesis. Here the pressure
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is set in Pascal units.

– dt. Integration time range.

– omp. This field only affects OpenMP integrators.

∗ threads. Number of OpenMP threads that will be used in parallel regions.
If the number is greater than the maximum available in the current node,
then the maximum of the node will be taken.

∗ schedule. OpenMP scheduling options.

· type. Set the type of scheduling. The available options are, “static”,
“dynamic”, “guided” and “auto”.

· chunk. This field specifies the size of the iteration chunk that each
OpenMP thread will process, once the scheduling strategy has been
chosen.

• logger. Field that gathers the configuration of the logging system.

– type. As it has been discussed in Section 5.2 (see Figure 5.3), two options are
available: “ConsoleLogger” and “FileLogger”.

– logLevel. This field is used to set the “LogLevel” enumeration class. It has
two options: “DEBUG” and “INFO”.

The ODEIntegratorFactory class is responsible to handle the runtime configuration.
In Figure 5.12 is illustrated its UML diagram. This class implements a modified version
of the widely known Abstract Factory creational design pattern2. Due to the fact that the
library exploits the concepts of interfaces and polymorphism, the runtime configuration
capability allows the user of the library to write a single client program and not having to
modify the code if any configuration (for instance, the type of Reader, Writer, Integrator,
etc) has to be changed.

ODEIntegratorFactory

- config: YAML

+ ODEIntegratorFactory(config: YAML): void

+ createContext(): Context

+ createReader(ctx: Context): Reader 

+ createWriter(ctx: Context): Writer

+ createIntegrator(): Integrator

- createOutFileService(): OutFileService

- createLogger(outFileService: OutFileService): BaseLogger

Context

Writer

Reader

OutFileService

Integrator

BaseLogger

Figure 5.12: UML diagram of the ODEIntegratorFactory class.

2The ODEIntegratorFactory class does not follow exactly the Abstract Factory UML diagram but a
modified version of it that fits better this use case.
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Before moving to the validation section, Figure 5.13 illustrates a high-level view of the
library with its relationships and external dependencies. At this point, the reader has a
thorough understanding of how the ODEIntegratorLibrary works.

PyJac Package

Version 1.0.6

Module

Integrators

Module

Mesh

Module

Reader-Writer

Sundials Package

Version 6.3.0

Cantera Package

Version 2.6.0

Context

OutFileService

Module

Loggers
ODEIntegratorFactory

ODEIntegratorLibrary

Magma Package

Version 2.6.2

Figure 5.13: High-level UML diagram of the ODEIntegratorLibrary and its dependencies.

5.6 Unit testing

When a software project starts to get bigger, it becomes to be difficult to add or change
functionality because there is the fear of breaking something by accident. Unit testing is a
very common technique in the software development industry to help developers prevent
adding bugs in the program. Moreover, adopting this philosophy, it enforces developers
to write architectures that tend to be less coupled where each code piece adopts just one
responsibility.
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For the validation of every software subsystem of the current library, several test cases
have been written. The GoogleTest testing framework has been adopted as a dependency
for this task. GoogleTest provides an execution testing environment that can be easily
extended to adapt it for many scenarios. Figure 5.14 shows the UML diagram of the
testing architecture developed for the library validation. The highest superclass, Test,
is part of the GoogleTest framework. It provides lots of handy features to create robust
test cases. The methods “SetUp(): void” and “TearDown(): void” can be overridden
in child classes. These methods are called internally by the GoogleTest engine when
executing the tests.

Test

# SetUp(): void

# TearDown(): void

EvidencesCreator

+ TEST_DIRECTORY_NAME: string = "tests" {readOnly}

+ EVIDENCES_FOLDER: string = "Evidences" {readOnly}

# outFileService: OutFileService

- getTestEvidencesPath(): string

- cleanDirectory(directory: string)

- findRooTestDirectory(): path

- getTestName(): string

- recursiveTestDirectorySearch(path: path): path

OutFileService

ContextSetUp

# ctx: Context

# SetUp(): void

# TearDown(): void

# createContext(): Context

Context

SuiteTest

Figure 5.14: UML diagram of the uni testing framework developed for the library valida-
tion.

The EvidenceCreator class is an intermediate class whose objective is to create a specific
evidence directory for the current running test. First, it searches recursively among the
parents directories until it finds the “tests” directory. Once this directory is found, it
creates a directory called “Evidences” at the “tests” level, if “Evidences” does not exist
previously. The last step consists in using the Test superclass features, it queries the
suite and test names and creates another directory, down the “Evidence” one, with those
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names. Furthermore, it uses the latter directory path, the one with the suite and test
names, to create an instance of the OutFileService class to save there all the file-base
evidences.

ContextSetUp is another intermediate class, only used by integrator test suites because
they all share some steps. Those steps are the Context creation, with their associated
Mesh and BaseLogger instances, at the beginning of the test run, and clean the integrators
at the end. To do so, this class overrides the “SetUp(): void” and “TearDown(): void”
base methods. Lastly, the bottom classes of the hierarchy are the SuiteTest classes that
contain their corresponding test cases.

The list of the suite and test cases that exists in this first version of the library is:

• Logger Suite:

– “ConcurrencyManagementInFileLogger”

• Point Suite:

– “FullBuild”

– “MinBuild”

– “BadBuild”

– “BadConstruction”

– “BadSpecies”

• Mesh Suite:

– “AddPoints”

– “Clear”

– “OutOfIndexAccess”

– “AddBadPoint”

– “ChangeSpeciesVector”

• CsvReader Suite:

– “ReadGoodFile”

– “ReadBadFile”

– “ReadNotExistingFile”

– “ReadTxtInvalidFile”

• CsvWriter Suite:

– “WriteNormalResults”

• CanteraIntegrator Suite:

– “BasicIntegration”
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– “SerialVSOMP”

• CVodeIntegrator Suite:

– “BasicIntegration”

– “ValidationVSCantera”

– “SerialVSOMP”

• CVodeIntegratorGPU Suite:

– “ValidationVSCantera”

– “FiniteDiffJacobian”

A total of 23 test cases contained in 8 test suites.

5.7 A C++ application example

This section is a step-by-step tutorial of how to use the library and take the most of it
in a real C++ application. The section contains many pieces of code, but now that the
reader has gone through the exhaustive explanation of the ODEIntegratorLibrary, it will
be easy to follow because most of the function calls are part of the library’s API, which
should be familiar.

Main function

1 void runODEApplication ( s t r i n g conf igFi leName )
2 {
3 auto app l i c a t i o n = ODEApplication ( conf igFi leName ) ;
4 auto l o gg e r = app l i c a t i o n . getLogger ( ) ;
5

6 l ogger−>i n f o ( ” S ta r t i ng ODEApplication . . . ” ) ;
7

8 app l i c a t i o n . readData ( ) ;
9 app l i c a t i o n . i n t e g r a t e ( ) ;

10 app l i c a t i o n . wr i t eRe su l t s ( ) ;
11

12 l ogger−>i n f o ( ”End o f ODEApplication” ) ;
13 }

Listing 5.12: ODEApplication trigger function.

Listing 5.12 shows how in a few steps the highest level function performs the integra-
tion. The function makes use of the library through the ODEApplication class, whose
UML diagram is found in the Figure 5.15. The input of this main function is a string
that contains the path of the YAML configuration file. Then it creates an instance of
the ODEApplication class, using the latter argument as a parameter in the class’ con-
structor. For convenience, the ODEApplication instance allows the programmer to access
the BaseLogger instance through its API. Finally, “runODEApplication” function calls
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sequentially the methods “readData()”, “integrate()” and “writeResults()”, which
their names are self-explanatory. Let’s dive into those ODEApplication’s methods.

ODEApplication

- yamlConfig: YAML

- ctx: Context

- logger: BaseLogger

- outFileService: OutFileService

- reader: Reader

- writer: Writer

- integrator: Integrator

+ ODEApplication(configFileName: string): void

+ readData(): void

+ integrate(): void

+ writeResults(): void

- readYamlFile(configFileName: string): YAML

- createFactoryObjects(): void

- getIntegratorConfiguration(): IntegratorConfig

Figure 5.15: UML diagram of the ODEApplication class.

ODEApplication’s Constructor

At the moment of creating an instance of the ODEApplication class, its constructor calls
two functions (see Listing 5.13). The first one reads the YAML configuration file and
keeps it internally as an instance property. The second function, line 5 of Listing 5.13,
use the ODEIntegratorFactory class in order to instantiate the objects that correspond
with the YAML specification. Listing 5.14 shows the factory in action.

1 ODEApplication ( s t r i n g conf igFi leName )
2 {
3 th i s−>yamlConfig = th i s−>readYamlFile ( conf igFi leName ) ;
4

5 th i s−>c reateFactoryObjec t s ( ) ;
6 }

Listing 5.13: ODEApplication’s contructor method.
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1 void c reateFactoryObjec t s ( )
2 {
3 auto f a c t o r y =
4 make unique<ODEIntegratorFactory>( th i s−>yamlConfig ) ;
5 th i s−>ctx = factory−>createContext ( ) ;
6 th i s−>l o gg e r = th i s−>ctx−>getLogger ( ) ;
7 th i s−>ou tF i l e S e r v i c e = th i s−>ctx−>ge tOutF i l eSe rv i c e ( ) ;
8 th i s−>r eader = fac tory−>createReader ( th i s−>ctx ) ;
9 th i s−>i n t e g r a t o r = factory−>c r e a t e I n t e g r a t o r ( ) ;

10 th i s−>wr i t e r = fac to ry−>c rea teWr i t e r ( th i s−>ctx ) ;
11 }

Listing 5.14: ODEApplication’s factory method.

Read and write functions

The read and write methods are just wrappers of the internal library API with a log
message for debugging purposes. Notice that the “reader” and the “writer” instances are
just calling the abstract method of their superclasses, so the code of Listings 5.15 and
5.16 does not need to be changed as long as the instances inherit from Reader and Writer
abstract classes.

1 void readData ( )
2 {
3 th i s−>l ogger−>i n f o ( ”Reading input data” ) ;
4 th i s−>reader−>read ( ) ;
5 }

Listing 5.15: ODEApplication’s read method.

1 void wr i t eRe su l t s ( )
2 {
3 th i s−>l ogger−>i n f o ( ”Writt ing r e s u l t s ” ) ;
4 th i s−>wri te r−>wr i t e ( ) ;
5 }

Listing 5.16: ODEApplication’s write method.

Integrate function

Finally, the “integrate()” method consists in taking from the YAML object the config-
uration parameters, constructing the IntegratorConfig object, and use that latter object,
plus the integration time range, to call the three integrator methods of the library’s API:
“init(...)”, “integrate(...)” and “clean()”. Again, notice that any type of inte-
grator that inherits from the Integrator abstract class will be able to fit in this function
calls without breaking.



5.8. HIGH-LEVEL PYTHON APPLICATION FOR DATA COLLECTION 67

1 void i n t e g r a t e ( )
2 {
3 th i s−>l ogger−>i n f o ( ” I n t e g r a t i n g systems ” ) ;
4

5 In t eg ra to rCon f i g i n t e g r a t o rCon f i g =
6 th i s−>g e t In t e g r a t o rCon f i gu r a t i on ( ) ;
7 double dt = yamlConfig [ ” i n t e g r a t o r ” ] [ ”dt” ] . as<double>() ;
8

9 th i s−>i n t e g r a t o r−> i n i t ( th i s−>ctx , i n t e g r a t o rCon f i g ) ;
10 th i s−>i n t e g r a t o r−>i n t e g r a t e ( dt ) ;
11 th i s−>i n t e g r a t o r−>c l ean ( ) ;
12 }

Listing 5.17: ODEApplication’s integrate method.

1 In t eg ra to rCon f i g g e t In t e g r a t o rCon f i gu ra t i on ( )
2 {
3 In t eg ra to rCon f i g i n t e g r a t o rCon f i g ;
4 i n t e g r a t o rCon f i g . r e l t o l = th i s−>yamlConfig [ ” r e l t o l ” ]
5 i n t e g r a t o rCon f i g . ab s t o l = th i s−>yamlConfig [ ” ab s t o l ” ]
6 i n t e g r a t o rCon f i g . mechanism = th i s−>yamlConfig [ ”mechanism” ]
7 i n t e g r a t o rCon f i g . j a cob ianSt ra t egy =
8 th i s−>yamlConfig [ ” j a cob ianSt ra t egy ” ]
9 i n t e g r a t o rCon f i g . p r e s su r e = th i s−>yamlConfig [ ” p r e s su r e ” ]

10 i n t e g r a t o rCon f i g . ompConfig = th i s−>yamlConfig [ ”omp” ] ;
11 return i n t e g r a t o rCon f i g ;
12 }

Listing 5.18: ODEApplication’s method that queries the integrator configuration.

5.8 High-level Python application for data collection

Before concluding this chapter, some brief comments about a high-level application will
be given in the current section. Throughout the chapter we have seen that the library
has many options to configure. From the input data, through the integrator parameters
to the type of concrete instances, such as logger, integrator, etc. Analyzing all possible
configurations to gain insight into library performance and scalability can be a difficult
task. In order to solve this problem, a high-level Python application has been developed
with the goal of collecting configuration data in an automated way and saving this data
into a relational database. So, the Python application is just a wrapper of the C++
application presented in the previous section.

Figure 5.16 illustrates the entity-relationship diagram of the local database developed
for archiving runtime configurations. Chapter 6 presents results that come from this
database after some processing. The technology used for the database is SQLite that is
a Structured Query Language (SQL) database engine written in C language [53]. SQLite
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Figure 5.16: Database’s diagram of the high-level Python application.

presents a Python interface, sqlite3, that comes with the standard package installation.
The application database consists of the following tables:

• Input table. This is where the different CSV input file parameters are stored. It
has a one-to-many relationship with the Execution table, because many runtime
configurations can have the same input file.

• Machines table. It saves the information of the compute node where the execution
has been performed. As well as the previous table, it has a one-to-many relationship
with the Execution table.

• Execution table. This table stores the information of the type of instances, exe-
cution time and date timestamp.

• IntegratorConfig table. As its name suggests, this table stores the integrator
parameters used for the integration of the ODE systems. It has a one-to-one re-
lationship with the Execution table, because each runtime configuration can have
only one IntegratorConfig row associated.

• Log table. It has the information related to the logging system, such as the
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LogLevel option chosen and the log file content, if any. As well as the previous
table, it has a one-to-one relationship with the Execution table.

• Omp table. This table only receives new entries when a parallel OpenMP inte-
grator is chosen, such as CanteraIntegratorOMP or CVodeIntegratorOMP. It stores
the OpenMP runtime configuration and it has a one-to-one relationship with the
Execution table.
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Chapter 6

Results

6.1 Analysis of parallel algorithms

The current chapter presents the results regarding computing performance. The objective
of parallel computing is reducing the compute time of an algorithm. This involves the
concept of maximizing the degree of use of a parallel computer, which usually answer the
question of how the algorithm scales with the problem size or/and the number of processor
units. To analyze the performance of a parallel algorithm, two types of parameters are
used:

• Absolute parameters. These parameters give information about the real cost of an
algorithm and enable the calculation of relative parameters. The most important
parameters are the serial and parallel execution times.

• Relative parameters. These parameters enable comparing the performance of a
parallel algorithm among multiple implementations, which, among others, give in-
formation about the degree of use of the parallel computer.

S(n, p) =
t(n)

t(n, p)
(6.1)

E(n, p) =
S(n, p)

p
(6.2)

Eqs.(6.1) and (6.2) are the formulas to calculate the speedup, S(n, p), and the efficiency,
E(n, p), of a parallel algorithm, where t(n) is the serial execution time to solve the prob-
lem of size n and t(n, p) is the parallel execution time using p threads/processes. However,
those formulas give the performance analysis of what is known as strong scaling, which
is how the solution time varies with the number of processors for a fixed total prob-
lem size. Another scalability analysis is the weak scaling that consists in study how
the solution time varies with the number of processors for a fixed problem size per
processor. Ideally, perfect weak scalability is achieved when the time remains constant
when the number of processor and problem size scale proportionally1. Eq.(6.3) shows how

1This is only true if the computational cost of the algorithm scales linearly with the problem size,
otherwise, the analysis is more complex. For instance, when performing a weak scalability test for different

71
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to calculate the weak speedup. C(n, p) is the theoretical parallel cost, n0 is the problem
size that each thread/process has to solve and k is the proportional constant with which
threads/processes and problem size grows.

S(n, p)weak =
C(n, p)

t(n, p)
=

k p0 t(n0)

t(k n0, k p0)
(6.3)

The following sections show the obtained performance results of the ODEIntegratorLi-
brary, using execution time, speedup and efficiency parameters. The computation has
been performed with the hapy.dsic.upv.es machine that pertains to the Departamento
de Sistemas Informáticos y Computación, whose specifications appear in the Table 6.1.

Machine Specifications

CPU Intel(R) Core(TM) i9-10940X CPU @ 3.30GHz

Cores 14

Logical processors 28

RAM capacity 15 GB

GPU NVIDIA RTX A2000 12GB

Number of GPUs 1

Table 6.1: hapy.dsic.upv.es’s machine specifications.

6.2 Serial performance

6.2.1 Cantera and standalone CVODE

Figure 6.1 shows the integration time taken by the serial version of Cantera and CVODE
integrators of the ODEIntegratorLibrary. It can be appreciated that the serial CVodeIn-
tegrator outperforms Cantera’s version. As described in the previous chapter, CanteraIn-
tegrator uses the CVODE solver under the hood, which indicates that the difference in
performance is due to the overhead generated by the multiple layers that Cantera has.
Cantera calculates other related chemical properties that are not needed for the current
application. Therefore, even though Cantera gives a lot of functionality and information
about the thermochemical state of the solution, this represents a performance penalty
that has no beneficial outcome because those extra functionalities are not needed.

Furthermore, Figure 6.2 gives more insights about the results from Figure 6.1. The
speedup achieved when using CVodeIntegrator, instead of CanteraIntegrator, is almost a
x5 and it seems to be independent of the number of systems to solve. This means that the
overhead generated by Cantera does not grow with the problem size, but it is constant.

combustion mechanisms, in order to maintain the same load on each thread, one must take into account
not only the number of systems to solve but also the cost of each mechanism’s algorithm, which generally
scales quadratically or cubically with the number of species.
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Figure 6.1: Integration time of CanteraIntegrator and CVodeIntegrator when solving
various number of systems.

Figure 6.2: CVodeIntegrator’s integration time over CanteraIntegrator’s from the data of
Figure 6.1.



74 CHAPTER 6. RESULTS

For these results the GRI3.0 combustion mechanism [54] has been used, with the integrator
configuration of Table 6.22.

Integrator Configuration

JacobianStrategy analytical

reltol [-] 1.0e-6

abstol [-] 1.0e-10

pressure [Pa] 15 GB

dt [s] 1.0e-3

Table 6.2: Integrator configuration for serial integration with CanteraIntegrator and
CVodeIntegrator.

6.2.2 Jacobian matrix calculation strategy

Figure 6.3: CVodeIntegrator’s integration times with analytical and numerical approaches
for the Jacobian matrix evaluation.

Continuing the analysis with the CVodeIntegrator, Figure 6.3 illustrates the integration
times taken to solve different number of systems with two Jacobian matrix strategies.
The analytical evaluation uses the functions provided by pyJac package. The numerical

2The JacobianStrategy option does not affect CanteraIntegrator, Cantera’s library manage the Jaco-
bian matrix evaluation in its way, without giving option to the user.
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calculation is handled internally by CVODE solver with finite difference approximation.
For every number of systems to solve, the analytical evaluation presents better perfor-
mance due to the fact that finite difference approaches require more function evaluations
to construct the matrix. In Figure 6.4, it can be seen the integration times with a numer-
ical over analytical strategy, resulting the latter strategy approximately two times faster
(constant for the number of systems and GRI3.0 combustion mechanism).

Figure 6.4: CVodeIntegrator’s integration time with numerical over analytical Jacobian
matrix evaluation strategy.

From now on, an analytical Jacobian matrix evaluation will be the default configuration
for CVODE integrators.

6.3 OpenMP runtime configuration

This section shows the results of the analysis carried out looking for the best OpenMP’s
schedule configuration. There are two parameters to configure, the schedule strategy
and the size of the chunk when for loops’ iterations are distributed among OpenMP’s
threads. Figure 6.5 illustrates the integration times when solving 10000 ODE systems with
the CanteraIntegratorOMP, using 14 OpenMP’s threads. It is easy to appreciate that the
smaller the chunk size, the better performance is achieved. This phenomenon indicates
load imbalance among systems, which means that the times to solve individual ODE
systems are different. Therefore, with smaller chunk sizes, the overall load is balanced
among the threads. That is the reason why the schedule strategy has almost no effect
in small chunk sizes, but when the chunk size is big, strategies such as “dynamic” or
“guided” work better because threads dynamically request work. When using “static”
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schedule for big chunk sizes, the load is distributed before starting computation, so if
there are load imbalances among iterations, it cannot be compensated.

Figure 6.5: Integration time of CanteraIntegratorOMP for different schedule configuration
when solving 10000 systems.

Figure 6.6 indicates that the pattern discussed above is repeated for the CVodeIntegra-
torOMP, but obviously with different integration times, as we have seen in the previous
section that the CVodeIntegrator is almost five times faster than Cantera’s. So, again,
for CVodeIntegratorOMP smaller chunk sizes performs better. The difference in the inte-
gration times with different chunk sizes seems to be more pronounced for the CanteraIn-
tegratorOMP case, but Figures 6.7 and 6.8 prove this thinking wrong. These Figures
illustrate the same data but from a dimensionless perspective. In Figure 6.7, the Y-axis
represents the integration time over the minimum integration time with respect to the
data of Figure 6.5, and in the same way for Figure 6.8. So, notice that both Figures,
6.7 and 6.8, are almost identical (same Y-axis range) but it represents the results from
CanteraIntegratorOMP and CVodeIntegratorOMP. This illustrates that the performance
penalty in the worst case, i.e., 200 of chunk size with “static” schedule, is around a 10%
for both integrators. In summary, the best OpenMP’s schedule configuration is:

• Schedule: “dynamic”.

• Chunk size: less than 10.

However, the penalty in performance of choosing another scheduling strategy is low.
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Figure 6.6: Integration time of CVodeIntegratorOMP for different schedule configuration
when solving 10000 systems.

Figure 6.7: Integration time over the minimum time (among times of Figure 6.5) of
CanteraIntegratorOMP for different schedule configuration when solving 10000 systems.
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Figure 6.8: Integration time over the minimum time (among times of Figure 6.5) of
CanteraIntegratorOMP for different schedule configuration when solving 10000 systems.
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6.4 OpenMP Integrators’ scalability

Now that we have discussed the best OpenMP’s schedule strategy, we can analyze the
scalability of OpenMP’s integrators. As explained in the beginning of the chapter, two
approaches have been taken for this task:

• Strong scalability

• Weak scalability

The integrator configuration used is the same as for the serial analysis (see Table 6.2),
and Table 6.3 shows the OpenMP schedule configuration.

OpenMP Configuration

Schedule dynamic

Chunk size 1

Table 6.3: OpenMP’s schedule configuration.

6.4.1 Strong scalability

Figure 6.9: Strong speedup of CanteraIntegratorOMP and CVodeIntegratorOMP when
solving 10000 systems.

For the strong scalability analysis, 10000 ODE systems has been chosen as the fixed prob-
lem size. Figure 6.9 shows the speedup of both, CanteraIntegratorOMP and CVodeIn-
tegratorOMP, integrators. Both integrators present almost identical results, which are
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really promising for the first half of the plot. For less than 15 OpenMP’s threads the
speedup is very close to the theoretical maximum. According to Amdahl’s law [55], this
indicates that the intrinsically serial part of the algorithm is relatively small compared
with the part that can be parallelized. This is not only true for the CVODE solver but for
the high-level layers that Cantera has above it. On the second half of the plot, above 14
OpenMP’s threads, the speedup suffers a decrease on its rate of growth. This is because
the number of physical cores that the hapy.dsic.upv.es machine has, is 14. Then, when
configuring OpenMP with more threads than the latter number, the thread scheduler is
using the hyperthreading capability that Intel’s processors have. Intel’s processor manage
two logical processor units per physical processor, so from the software perspective it may
seem that the machine has more capability, but under the hood those two logical proces-
sors have to share the same hardware. In applications with low compute intensity, for
instance, a web server, this characteristic increases the maximum clients that the server
can handle at once. However, for applications with high compute intensity, such as the
present one, this does not perform as expected.

Figure 6.10: Strong parallel efficiency of CanteraIntegratorOMP and CVodeIntegra-
torOMP when solving 10000.

Figure 6.10 confirms the deductions described above. Here, the parallel efficiency is around
90% for less than 15 threads. But, it drops to 50% when hyperthreading comes into play.

6.4.2 Weak scalability

Figures 6.11 and 6.12 shows the results of speedup and efficiency of the weak scalability
test. Here, the number of systems that each thread solves is 1000. Therefore, in the
Eq.(6.3), n0 = 1000, p0 = 1 and k = 1, 2, . . . , n.
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Figure 6.11: Weak speedup of CanteraIntegratorOMP and CVodeIntegratorOMP to a
fixed load of 1000 systems per thread.

The weak efficiency is calculated using the Eq.(6.2) but using the weak speedup in the
numerator. It can be appreciated that the weak scalability of the CanteraIntegratorOMP
and CVodeIntegratorOMP have the same trend as in the strong scalability, meaning that
the time to solve bigger problems, increasing the number of threads proportionally, is
almost the same as solving in serial. The performance starts to drop when the number
of threads is greater than the number of physical cores of the machine, as well as we
have concluded in the strong scalability test. In summary, OpenMP’s integrators of
the ODEIntegratorLibrary show good scalability properties both for weak and strong
scalability tests when the number of threads are equal or less than the number of physical
processors.

From another perspective, we can assume that the integration time in the hyperthreading
regions corresponds to the full capability of the physical cores, which means that a speedup
of 13 with 28 OpenMP’s threads actually is a x13 for 14 cores working in parallel, an almost
perfect parallelization.
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Figure 6.12: Weak parallel efficiency of CanteraIntegratorOMP and CVodeIntegra-
torOMP to a fixed load of 1000 systems per thread.
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6.5 GPU integrator

Figure 6.13: Integration times of serial and GPU implementations of CVODE integrators.

Figure 6.13 displays the integration times of the serial and GPU CVodeIntegrators for
different number of systems. The integrator configuration is the same as used before, see
Table 6.2, and the combustion mechanism is the GRI3.0. Figure 6.14 shows that, for
the number of systems of the Figure 6.13, the GPU implementation is six times faster
than the serial integration. From the results of the previous OpenMP’s analysis, it can
be confirmed that OpenMP’s integrators have better performance while the number of
physical cores is greater than six.

There are multiple reasons of why the GPU does not outperform OpenMP’s implementa-
tions. First of all, pyJac and CVODE do not share the same vector and matrix layout for
GPU data structures. Therefore, for every pyJac’s kernel call, CVODE’s GPU data must
be copied to the pyJac’s layout, and the other way around before finishing the kernel, as
shown in Listing 6.1.
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Figure 6.14: Serial integration times over GPU’s for different number of systems.

1 g l o b a l void ke rne l dydt ( . . . )
2 {
3 i f (T ID < systemsToProcess )
4 {
5 . . .
6 // Reorder data f o r PyJac
7 sun to pyjac Y (ySun , yPy ) ;
8

9 dydt ( t , P, yPy , dyPy , d mem ) ;
10

11 // Reorder data back to Sund ia l s
12 pyjac to sun Y (dyPy , dySun ) ;
13 }
14 }
15

16 d e v i c e void sun to pyjac Y (double ∗ySun , double ∗yPy)
17 {
18 int threadID = threadIdx . x + blockIdx . x ∗ blockDim . x ;
19 // PyJac index −> #de f i n e INDEX( i ) (T ID + ( i ) ∗ GRID DIM)
20 for ( int i = 0 ; i < NSP; i++)
21 {
22 yPy [INDEX( i ) ] = ySun [ threadID ∗ NSP + i ] ;
23 }
24 }

Listing 6.1: dy/dt CUDA kernel.
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Secondly, pyJac’s CUDA parallel approach is “‘per-thread”, rather than “per-block” [47].
A “per-thread” GPU parallelization model means that each GPU thread calculates an
entire system, both function and matrix evaluations, while in “per-block” approaches,
threads in a block cooperate for the evaluation. The former approach is similar to the
OpenMP’s, i.e., coarse-grained parallelism. This may cause thread divergence among
CUDA “warps” (also known as the Single Instruction Multiple Thread (SIMT) CUDA
model) [41].

Lastly, Sundials’ current version (6.3.0) explicitly warns in its documentation that the
Sundials-Magma modules are still experimental, so, we must wait for future stable ver-
sions in order to properly analyze the performance. In summary, the current GPU im-
plementation merits further investigation for the purpose of enhancing the kernels. Next
chapter proposes multiple lines of research for this case.

6.5.1 Combustion mechanism influence

Before moving on to the conclusion chapter, one last analysis has been performed, which
is the influence of the combustion mechanism on the CVodeIntegrators. Figure 6.15
illustrates integration times using the combustion mechanisms of the Table 6.4 (notice the
Y-axis logarithmic scale). It can be appreciated that the mechanism strongly determines
the time to solution.

Mechanism Number of species

H2O2 9

GRI3.0 53

ESTiMatE 214

Table 6.4: Combustion mechanisms and its associated number of species.

The computational cost scales almost cubically with the number of species. Even though,
both OpenMP (using 14 threads) and GPU’s integrators perform around one order of mag-
nitude faster than the serial version, being OpenMP’s the best implementation. However,
results from the Figure 6.15 are very promising for the GPU. There, the GPU seems to be
less performant for small mechanism sizes, but it really scales for large ones, approximating
to the same performance that OpenMP presents for the ESTiMatE mechanism. Notice
that OpenMP’s performance degrades for large detailed chemical mechanisms, showing
an inflection point where GPU integrator comes into play to replace the OpenMP version.
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Figure 6.15: Integration times for different combustion mechanisms.

Figure 6.16: Speedup of OpenMP and GPU’s integrators for different combustion mech-
anisms.



Chapter 7

Conclusions and future work

7.1 Conclusions

In the present work we have gone through the physics phenomena involved in the simu-
lation of reacting flows, along with the mathematical splitting scheme that permits the
integration of the chemical source term, that appears as a result of the combustion of air-
fuel mixing. The equation that drives to the calculation of the temperature and species
is identified as an Ordinary Differential Equation system. In Chapter 3 an exhaustive
analysis of how to solve these ODE systems, when the stiffness characteristic is involved,
has been performed. Then, in Chapter 4 we have described the state of the art of the
High Performance Computing tools and techniques, focusing on the ones that enable par-
allelization at node-level with heterogeneous architectures. With all this context, we have
developed a library that speeds up the integration time of the temperature and species
that form the ODE system. The integrators that compound the library present different
parallelization approaches:

• Serial integrators (no parallelization).

• Fork-join thread parallelization model using OpenMP.

• NVIDIA-GPU parallelization via CUDA language.

To support all these types of integrators, the library gathers multiple coupled systems
that work together in order to provide the essential functionality that the integrators
need. Those systems are in charge of providing functionality such as the data ingestion,
logging, internal data management, working with the OS’ file system and more. From the
Chapters 5 and 6 we can enumerate the following conclusions:

• We have investigated the open-source ODE solvers that are available and, with
those, we have configured and validated a base case using the GRI3.0 combustion
mechanism with a constant pressure condition in a single processor unit.

• We have identified the parallelization opportunity when integrating multiples ODE
systems.

• A working configuration of the Sundials-CVODE solver with the pyJac package has

87
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been successfully performed.

• Two OpenMP’s fully functional integrators have been developed that present great
strong and weak scalability characteristics.

• A first GPU parallelized version of the CVODE integrator has been developed
achieving moderate acceleration for small combustion mechanism, but that seems
to outperform the OpenMP’s versions for detailed combustion reactions.

• We have found the best OpenMP schedule configuration for the CPU parallel inte-
grators.

• We have demonstrated that the analytical Jacobian matrix evaluation performs two
times faster than using finite difference approximations for the serial and OpenMP
integrators.

• The combustion mechanism strongly determines the time to solution where the
computational cost scales cubically with the mechanism size.

• We have developed a high-level Python library with a SQLite database to automate
the data collection pipeline for parametric studies.

7.2 Future work

The current work introduces the state of the art of the combustion phenomena and its
associated mathematical problem, as well as the HPC tools to speed up its calculation.
Therefore, this thesis can be used as the entry point for future students who want to
enter this line of research. Still, many things deserve further investigation. Now that the
basic infrastructure has been established, there is an opportunity to work in the following
areas:

• The CVodeIntegratorGPU requires further research. On the one hand, The cur-
rent kernel implementations can be tuned to increase the performance, specially the
GPU finite difference kernel for the Jacobian matrix evaluation, whose current im-
plementation is not functional. With the proper use of the NVIDIA’s profiling tools
this can be achieved. On the other hand, the GPU versions of pyJac and CVODE
do not share the same data storage strategy, consequently, a lot of data movement
occurs during runtime in order to link the two libraries. Therefore, multiple solu-
tions can be taken to tackle this problem. To name a few, the pyJac source code can
be modified to have the same matrix layout as CVODE, or it can be developed a
standalone implementation of a non-linear solver that fits both, CVODE and pyJac,
APIs.

• This first version of the library uses CMake [56] as the build system. However, the
implementation needs to be reviewed. It would be convenient to add more options in
the configuration step, such as compiler flags, accept external dependency binaries
and the option to build without compiling GPU sources.

• The current logging system supports standard output (console) and file logging
functionality for the serial and OpenMP’s integrators. A great improvement would
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be to adapt the current interface to also support logging from the GPU.

• Only CSV concrete implementations of the Reader and Writer abstract class are
currently available. In-memory concrete classes should be implemented to be able
to use the current library as a plug-in for other libraries or applications.

• The results presented in the Chapter 6 come from a compilation with the open-
source GNU C/C++ compilers (gcc and g++), except for the “.cu” sources that are
compiled with the NVIDIA CUDA compiler, nvcc. It would be convenient for the
library to support other C/C++ compilers, such as Intel, CLANG or NVIDIA’s.
Besides, it will drive to further performance analysis with discussions about what
compiler performs better for this application.

• Only one ODE solver is included in the library. But the library architecture can
easily incorporate other solvers, both with stiff or non-stiff solving capabilities.

• Researching about the possibilities of changing the combustion mechanism using
the runtime configuration. Currently, a compilation step is needed to change the
combustion mechanism for CVODE’s integrators.
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Introducción a los métodos numéricos para ecuaciones diferenciales. Editorial Uni-
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