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Resumen

La Fusariosis de la Espiga (FHB) representa una amenaza significativa para la producción global de trigo,
causando pérdidas de rendimiento, contaminación por micotoxinas y poniendo en peligro la seguridad
alimentaria. El desarrollo de variedades de trigo resistentes a FHB mediante métodos convencionales
de mejora es un desafío debido a la compleja arquitectura genética de los rasgos de resistencia. La
selección genómica (GS) ofrece una solución prometedora para acelerar la mejora del trigo en cuanto a
la resistencia a FHB.
En este estudio, evaluamos la precisión de los valores de mejora genómica estimados (GEBVs) para la
resistencia a FHB en una diversa colección de 865 variedades de trigo hexaploide (Triticum aestivum).
Para modelar la curva de progresión de FHB, utilizamos funciones de regresión no lineal que incluyen
logística, Gompertz, Mono-molecular, Gaussiana y Gamma. Además, se utilizó el área convencional bajo
la curva de progresión de la enfermedad (AUDPC) como referencia.
Nuestros resultados muestran que la función Logística con dos parámetros mostró la correlación más
alta de 0,89 con AUDPC. Para predecir los GEBV, aplicamos el método de predicción lineal mejorada
genómica (GBLUP), XgBoost y varios métodos de regresión bayesiana (BayesA, BayesB, BayesC,
BayesRR). Mediante validación cruzada de cinco pliegues, la precisión media a lo largo de los años fue
de 0,58, 0,60, 0,55 y 0,53 para BayesA y BayesB, GBLUP y XgBoost respectivamente, cuando se utilizó
el parámetro B de la función logística. Cuando se utiliza AUDPC, GBLUP, XgBoost, BayesA y BayesB
consiguen precisiones de predicción de 0,54, 0,49, 0,57 y 0,59 respectivamente.
Nuestros resultados destacan la eficacia de los modelos de regresión no lineal en la selección genómica
para mejorar la resistencia a FHB en trigo. El uso de la parametrización no lineal superó a la AUDPC
convencional, con BayesB, BayesA, GBLUP y Xgboost en otros de fuerza mostrando una mayor precisión
en la predicción de variedades resistentes a FHB. Estos resultados proporcionan información valiosa para
los mejoradores que buscan desarrollar variedades de trigo resistentes a FHB utilizando GS.
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Abstract

Fusarium ear blight (FHB) represents a significant threat to global wheat production, causing yield losses,
mycotoxin contamination and jeopardizing food security. The development of FHB-resistant wheat
varieties through conventional breeding methods is challenging due to the complex genetic architecture
of the resistance traits. Genomic selection (GS) offers a promising solution to accelerate wheat breeding
for FHB resistance.
In this study, we evaluated the accuracy of estimated genomic breeding values (GEBVs) for FHB
resistance in a diverse collection of 865 hexaploid wheat (Triticum aestivum) varieties. To model the FHB
progression curve, we used nonlinear regression functions including Logistic, Gompertz, Mono-molecular,
Gaussian, and Gamma. In addition, the conventional Area Under the Disease Progression Curve
(AUDPC) was used as a reference.
Our results show that the Logistic function with two parameters showed the highest correlation of 0.89
with AUDPC. To predict GEBVs, we applied the Genomic Linear Enhanced Linear Prediction (GBLUP)
method, XgBoost and several Bayesian regression methods (BayesA, BayesB, BayesC, BayesRR). By
five-fold cross-validation, the average precision across years was 0.58, 0.60, 0.55 and 0.53 for BayesA
and BayesB, GBLUP, and XgBoost respectively, when using parameter B of the logistic function. When
using AUDPC, GBLUP, XgBoost, BayesA, and BayesB achieved prediction accuracies of 0.54, 0.49, 0.57
and 0.59 respectively.
Our results highlight the effectiveness of nonlinear regression models in genomic selection for improving
FHB resistance in wheat. The use of nonlinear parameterization outperformed conventional AUDPC,
with BayesB, BayesA, GBLUP and Xgboost in other of strength showing higher accuracy in predicting
FHB resistant varieties. These results provide valuable insights for breeders seeking to develop FHB
resistant wheat varieties using GS.
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1 Introduction

In 2021, wheat (Triticum aestivum L.) contributed to an estimated global production of over 770 million
tons (faostat 2021), serving as a primary source of sustenance for most of the world’s population,
particularly in developing countries, providing 18% of human daily calorie intake and 20% of protein
(faostat 2021, Wheat Nutrition n.d.). However, increasing population growth and changing climatic
conditions have exerted pressure on wheat production, making it imperative to enhance the crop’s
genetic potential to meet the rising food demands and disease management is paramount to this goal
(Aggarwal 2008). Effective management of diseases such as Fusarium Head Blight (FHB) (Wilde &
Miedaner 2006), a fungal ailment that can cause yield losses of up to 50% and reduce grain quality by
producing mycotoxins, is one of the most significant impediments to wheat production (Machado et al.
2018).

The primary causative agents of FHB are pathogenic species such as Fusarium graminearum, F. culmorum,
and F. avenaceum, which produce toxins that are harmful to both human and animal health. These
pathogens also cause significant crop losses and jeopardize food security (Nelson et al. 1993, Yu et al.
2004, Goswami et al. 2006, Lemmens et al. 2016, Perochon et al. 2015, Xia et al. 2021, Edwards 2022).
Additionally, kang2008cytological report that these pathogenic species have detrimental effects on human
and animal health, as well as significant impacts on crop yields in most wheat producing areas around the
world. Expensive fungicides are often used in conventional management of FHB in wheat production,
which can have negative environmental consequences (Kage et al. 2017, Gunupuru et al. 2019, Reyna
et al. 2023). To manage FHB, researchers have proposed different strategies such as crop rotation, tillage,
use of resistant varieties, and fungicide application (Pirgozliev et al. 2003, Musyimi 2009, Bernhoft et al.
2022). The most sustainable and effective approach is using resistant varieties (Cromey et al. 2001,
Gosman et al. 2007). However, developing FHB-
resistant wheat varieties has been challenging due to the complex genetic architecture of disease-resistance
traits (Arruda et al. 2016, Velásquez et al. 2018, Buerstmayr et al. 2020).
Initially, breeders rely on traditional methods, i.e.phenotypic selection, where breeders use their expertise
to choose good offspring based on observed traits. Marker-assisted selection (MAS) (Lande & Thompson
1990, Wakchaure et al. 2015, Boopathi & Boopathi 2020) which gained considerable popularity in the
past, employed the use of molecular genetic techniques to identify traits controlled by a small number
of major genes. However, the limitations of MAS became evident when dealing with complex traits
such as disease resistance, which are often influenced by multiple genes (Lande & Thompson 1990). As
genotyping costs began to fall, it became feasible to expand upon MAS by including all loci, rather
than a select few, leading to the development of Genomic Selection (GS) (Meuwissen et al. 2001).
This method, an advanced derivative of MAS, leverages genome-wide markers to calculate a Genomic
Estimated Breeding Value (GEBV). The core advantage of GS over MAS is that it allows for the
estimation of the effects of all loci, facilitating selection for complex, quantitative traits, in contrast to
MAS’s focus on simpler, qualitative ones. Genomic selection utilizes a training population to establish
associations between markers and phenotypes (Isidro et al. 2016, Cobb et al. 2013, Spindel et al. 2015,
Crossa et al. 2017, Heffner et al. 2009, Heslot et al. 2012), subsequently constructing a predictive model
of genomic markers and phenotypic traits. This innovation moves beyond the confines of Quantitative
Trait Loci (QTL) detection, enabling the prediction of genetic effect values of unobserved individuals
using the established model. Thus, GS presents a significant upgrade in breeding strategies, offering an
effective solution to the enduring challenge of developing FHB-resistant wheat varieties.

In recent years, GS has emerged as a powerful tool for enhancing FHB resistance in wheat, particularly
with the advent of contemporary DNA marker technologies such as Diversity Arrays Technology (DArT)
and Single Nucleotide Polymorphism (SNP) (Ashraf 2021). As an illustration, an experimental review
by (Arruda et al. 2016) demonstrated superior predictive ability for FHB resistance utilizing GS, even
outperforming traditional selection methodologies. In fact, the top-performing lines selected via GS
exhibited significantly elevated resistance levels (Arruda et al. 2016, Larkin et al. 2019).The efficiency
of GS has been tested against MAS and conventional pedigree breeding in maize, where it has resulted
in yield increments up to 16% (Jannink et al. 2010). GS has also been successfully utilized in wheat
to predict rust resistance, achieving prediction accuracies ranging from 0.27 to 0.44 (González-Camacho
et al. 2018). Significantly, GS facilitates the early assessment and selection of individuals, reducing the
time and labor expenditure per breeding cycle and hence shortening the generation interval. This early
assessment possibility might lead to a paradigm shift in the role of phenotyping, where it predominantly
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serves to update prediction models rather than solely being used for line selection (Jeon et al. 2023).
GS as previously discussed, uses statistical models to identify and quantify the correlation between
genetic markers and the phenotype of interest (Cobb et al. 2013, Spindel et al. 2015, Crossa et al. 2017).
The majority of these statistical models used in GS are linear models, based on the assumption that the
phenotype is a linear function of the genetic markers (Heffner et al. 2009, Pérez et al. 2010, Ogutu et al.
2012, Howard et al. 2014, González-Camacho et al. 2018). Key to GS is the presumption of additive
effects of each marker on the phenotype (Heffner et al. 2009), coupled with the notion that at least one
marker is in linkage disequilibrium with the QTL of interest. A prevalent linear model used in GS is the
genomic best linear unbiased prediction (GBLUP) model. This model assumes that each marker’s effect
on the phenotype adheres to a normal distribution, with a mean of zero and a variance proportionate
to the marker’s linkage disequilibrium with the QTL affecting the trait of interest (Xiao et al. 2022).
Apart from GBLUP, other linear models like least absolute shrinkage and selection operator (LASSO)
and Bayesian ridge regression have been deployed to predict disease resistance in wheat (Juliana et al.
2017, Momen et al. 2018, Xu et al. 2021). Notably, works such as those by Wu et al.(2020) and Xu
et al.(2021) have used LASSO regression for predicting FHB resistance in Chinese wheat landraces. They
found LASSO regression proficient in identifying QTLs with minor effects, which were not detected by
traditional genome-wide association studies. In addition, Heslot et al.(2015) applied Bayesian ridge
regression to several quantitative traits in a spring wheat panel and reported high prediction accuracy
for grain yield.
Several strategies have been proposed to leverage GS in breeding for FHB. For instance, Tessema
et al. (2020) proposed using optimized genotyping strategies and statistical models that can account for
complex trait architectu
-res to increase the accuracy of predictions. Ashraf (2021) suggested using wild relatives to improve
wheat breeding for rust resistance. These relatives can be incorporated into GS programs to increase the
allele diversity used for prediction. Current research on GS for FHB resistance in wheat primarily relies
on linear regression models (Arruda et al. 2016, Jiang et al. 2017, Zhang et al. 2022). However, recent
studies have demonstrated that non-linear regression models can be advantageous for disease progression
modeling and improving prediction accuracy (Bari et al. 2012, Heslot et al. 2014, Garcia-Abadillo et al.
2022). Non-linear models are more flexible than linear models and can capture complex relationships
between genomic markers and disease progression (Blum & François 2010, Pérez-Rodríguez et al. 2012).
Machine learning algorithms, such as Support Vector Machines, Random Forests, and Neural Networks,
have shown potential in GS for various crop traits (González-Camacho et al. 2012). These methods can
model non-linear and interaction effects among markers and improve prediction accuracy (Zingaretti
et al. 2020). Some studies have explored the use of non-linear regression models to predict FHB incidence
in wheat, using methods such as the generalized additive model and Support Vector Machine models
(Dyba et al. 1997, Paul et al. 2005).
These findings suggest that non-linear models can provide more accurate predictions of FHB incidence
in wheat, outperforming traditional linear regression models. However, the predictive ability of most
models linear or non linear depends on the precise evaluation of the progression of disease and the
resistance of wheat varieties, therefore, disease progress curves (DPCs), which describe the increase in
disease severity over time, are commonly used to evaluate the efficacy of resistance acting as estimators
and/or predictor parameters (Savary et al. 2000, 2006, Mundt 2014, Gazal et al. 2016, Saeed et al.
2022). Previous studies suggested that it is demanding to accurately model the disease progression
curves using sigmoidal functions through nonlinear regression (Cao et al. 2019, Carrillo & González
2002, Berger 1981) and as a result most researchers turn to use mostly linear models which has its
limitations (Berger 1981) but the applicability of traditional linear statistical models for predicting FHB
incidence are usually limited, particularly in capturing the complex and nonlinear relationships between
environmental factors and disease occurrence (Huang et al. 2019, Almoujahed et al. 2022, Shah et al.
2023). Therefore, non-linear regression techniques provide a better potential solution to improve FHB
prediction accuracy despite its complexity (Shah et al. 2023).
As to any model based campaign for estimation and or predictions, the selection of an appropriate
mathematical function to model any response variable (in the case of this study, DCPs) is a crucial step
towards building a robust model with a good predictive ability (Mesterhazy et al. 2000, Rossi et al. 2009,
Paul et al. 2005). So, this study employed the use of several non linear mathematical functions, such as
Logistic, Gompertz, Monomolecular, Gaussian, and Gamma to model the disease progression curves of
FHB in wheat and also evaluates its fitness criteria as suggested by (Mesterhazy 1995, Li et al. 2022,
Xiao et al. 2022) in prior studies. The selection of these nonlinear functions is generally based on widely
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used growth models for describing temporal disease epidemics, as discussed by Xu et al.(2006).

Researchers have employed some of these functions to model the pattern of some major plant disease
severity in different crops, with some major breakthroughs including: using the logistic function, which
usually depicts an S-shaped curve or a sigmoid with an initial exponential growth phase followed by a
slowdown phase and a plateau (Arruda et al. 2016), to model the progression of certain plant diseases.
The Gompertz function has been used to model the spread of plant diseases by assuming that the disease
progress rate in general decreases exponentially with time (Cheng et al. 2020). The Gaussian function,
which is principally used to estimate the mean and variance of a normal distribution (Nutter 2007), has
been used to model the distribution of most plant diseases as well. Finally, the Gamma function has
been employed to analyze the distribution of disease severity scores assuming that the severity scores
follow a gamma-like distribution (Andrews & Mallows 1974). These mathematical functions have proven
to be valuable tools in predicting and understanding the patterns and spread of plant diseases, aiding
in the development of effective management strategies.
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2 Objectives

Our study aims to investigate the most appropriate mathematical function that characterizes the progress
curves of FHB disease in wheat and define the parameters that correspond to the most optimal curve
and can be used for its estimate. To achieve this objective, we will use data collected over eight years of
an empirical wheat breeding program and apply genomics-assisted selection tools to predict the disease’s
associated parameters. Our study will

• Develop a range of mathematical functions using non-linear regression analysis to fit the disease
progress curves.

• Define the parameters associated with the most optimal mathematical function that characterizes
the disease progress curve of FHB in wheat.

Our goal is that our findings will provide valuable insights into the dynamics of FHB disease in wheat and
facilitate the development of effective breeding and selection measures for this economically important
disease.

4



3 Materials and Methods

3.1 Materials

3.1.1 Data Description

I. FHB Phenotypic Data:
For our study, we utilized a dataset generated from a wheat breeding program conducted by
BOKU between 2015 to 2022 (Table 1). The dataset contains information on 865 genotypes
that underwent testing for eight years, with FHB scoring information at four different time
points per year (Figure 1). In addition, the dataset includes other relevant phenotypic
information such as plant height, anther retention, and duration of anthesis which serve
as good co-variables. The field trials were conducted in Tulln (Austria) using a randomized
design with two to six replications per genotype within a year (Table 2). For some genotypes,
non-replicated trials were conducted across multiple years.

Table 1: Number of Genotypes per year and Repetition utilized in this study.

Number of Genotypes in Each Reps

Year Rep 1 Rep 2

2015 166 166

2016 199 199

2017 193 193

2018 97 97

2019 139 134

2020 120 120

2021 127 127

2022 266 266

Table 2: Genotype Appearance Accross Years

Years 2015 2016 2017 2018 2019 2020 2021 2022

2015 138 34 9 2 4 1 0 0

2016 34 187 46 2 3 1 0 0

2017 9 46 126 24 9 2 5 4

2018 2 2 24 90 23 2 0 0

2019 4 3 9 23 90 19 9 9

2020 1 1 2 2 19 111 27 15

2021 0 0 5 0 9 27 126 39

2022 0 0 4 0 9 15 39 233
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II. FHB Genotypic Data:
To evaluate the extent of FHB, the field staff at BOKU inoculated F. graminearum or F.
culmorum during the anthesis stage of the field trials. The incidence and severity of the
disease was calculated by determining the percentage of infected spikelets per plot (Figure 1).
The genetic information used in this study was obtained from 1-week-old seedlings of the 865
different varieties which was extracted and subjected to sequencing using the TraitGenetic 25K
single nucleotide polymorphism (SNP) chip and to ensure accuracy, markers that exhibited
more than 5% heterozygous or missing calls and had a minor allele frequency below 5% were
eliminated. After applying these filters, a total of 6677 informative markers were preserved
for further analysis.

Figure 1: FHB severity variation across years: This figure represents the variation of the FHB severity
measured during 8 years. The severity intensity increased relatively from 2015 to 2022 as represented
by the boxplots
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3.2 Methods

3.2.1 Scoring Metrics

I. Area Under the Disease Progress Curve (AUDPC):
To determine the overall progression of a given pathogen, it is essential to calculate the area
under the disease progress curve (AUDPC). This calculation involves employing Riemann’s
sum with a discrete set of T assessments to approximate the definite integral of a function
over the interval between x1 and xT . The default method for obtaining AUDPC is the
Trapezoidal or mid-point rule, as suggested by (Wilcoxson et al. 1975). However, depending
on experimental and statistical requirements, other algorithms may be used, as recommended
by (Simko & Piepho 2012).
In this study, we propose an alternative scoring metric that utilizes the corresponding T
FHB assessment frequency, represented by X = x1, x2, ..., xT , and the set of T FHB severity
evaluations denoted as Y = y1, y2, ..., yT . To achieve this, we define a scoring metric as a
function that maps X and Y to a score, which is then utilized as the response variable in
further analysis.

X = x1, x2, ..., xT ; Ω = ω1, ω2, ..., ωΩ; Y = y1, y2, ..., yT

A scoring metric is defined as:

S(Ω, Y ) = f(X,Y )

where S is the scoring metric, f is the function that maps X and Y to a score.

II. Time needed to reach 50% of the total FHB severity (T50):
To measure partial resistance in plants and the progression of the disease, we calculated T50,
which is the accumulated time necessary for a plot to reach 50% of the total FHB severity.
This measure is also known as the latent period in disease progression. To determine T50,
we used a linear interpolation algorithm that identified the data points nearest to the target
disease level of 50%. The calculation for T50 is as follows:

T50(X,Y ) =
50− yL
yR − yL

(xR − xL) + xL (1)

where L = arg maxx (X|y ≤ 50), and R = arg minx (X|y ≥ 50).
We can identify the indexes for the closest points to the target disease level (50%) as L and
R, corresponding to the points located to the left and right of the target, respectively. Thus,
the optimal points for performing a linear interpolation of T50 can be represented by the
coordinates (xL, yL) and (xR, yR).

3.2.2 Mathematical Model Selection

We evaluated different mathematical functions, including logistic, Gompertz, Gaussian, and gamma, to
determine the function that best fits the FHB phenoytpic data, assuming a sigmoid pattern for the FHB
disease. We fit these models to the data using nonlinear regression analysis and selected the model with
the best results.

I. Logistic Model:
We considered a logistic model with two parameters and three parameters to evaluate which
one provided the best fit for the data when fitting the data parameters.
(a) Logistic model with only two parameters:

y =
100

1 + exp(−r(x−B))
(2)
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(b) Logistic model with three parameters:

y =
K

1 + exp(−r(x−B))
(3)

Equations three and four record the severity of FHB for a given value of accumulated FHB
assessment time (T), represented by the variable y, while the parameter B corresponds to
the T values at any given time, represented by the variable x. The value of x when the
severity of FHB reaches 50% corresponds to the inflection point. The parameter r provides
information on the rate at which the disease progresses, corresponding to the shape of the
sigmoid curve, while the parameter K represents the threshold limits of the sigmoid curve
growth. In the case of the logistic model with two parameters, this threshold limit was preset
to 100, assuming that the maximum severity of FHB is attained at that point. Meanwhile,
in the case of the logistic with three parameters, this threshold was set to have a variable
threshold limit.
Besides the logistic model with an extra K parameter, all remaining models discussed below
have similar parameters Where y corresponds to FHB severity for any given value of T (B), r
represents the growth rate of the disease, and x represents the inflection point at 50% severity
rate.

II. Gompertz Model:
Assuming severity measurements are available at four time points, namely t1, t2, t3, and t4,
we can represent the severity measurements as y1, y2, y3, and y4, respectively.
The Gompertz function is used to describe the growth of FHB severity over time (t) and
therefore, the Gompertz model used to fit the data is given by the following equation:

y(t) = K × exp (−B × exp (−r × t)) (4)

In this equation:
y(t) represents the severity of FHB at time t.
K is the carrying capacity or the maximum severity that FHB can reach (K=100).
B is a parameter that influences the shape of the severity curve.
r controls the rate of change of severity over time.

III. Mono-molecular:
The monomolecular function is a mathematical model commonly used to describe various
biological and chemical processes. It is characterized by a single exponential term and is often
employed to analyze growth or decay phenomena. The function exhibits sigmoidal behavior,
starting slowly, accelerating, and then reaching an asymptote. By adjusting the parameters,
the monomolecular function can capture different growth patterns and provide insights into
the initial value, maximum value, and rate of change of the process being modeled. It finds
applications in areas such as population dynamics, enzyme kinetics, and ecological modeling.
To model the sigmoid curve representing FHB severity, we utilize the monomolecular function:

y = 100× (1−B × exp(−r × x)) (5)

Where:
– y represents the severity of FHB at a given time point, scaled from 0 to 100.
– x denotes the independent variable, representing the time points (t1, t2, t3, t4).
– B is a parameter that influences the shape of the sigmoid curve, determining the rate of

change of severity over time.
– r controls the rate at which the severity approaches its maximum value.

We utilize the severity measurements at the four time points (FHB1, FHB2, FHB3, FHB4)
as data points to estimate the parameters B and r.
Estimating the values of B and r enables us to capture the characteristics of the sigmoid
curve representing FHB severity. These estimated parameters provide insights into the growth
pattern and rate of FHB severity development over time.
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IV. Gaussian:
In the case of implementing the Gaussian model, the formula used to fit the parameters as
shown in the equation below:

y = 100× pnorm(x,B, r) (6)

This equation represents the Gaussian model used to fit the data, where y is the severity of
FHB, 100 is the maximum value to which FHB reaches, x is the accumulated measurement
time(T), B is the value of T at any given time, and r is the rate at which the disease
progresses. The function pnorm represents the cumulative distribution function of a standard
normal distribution.

V. Gamma:
The gamma model is represented by the following equation:

y = 100× pgamma(x,B, r) (7)

where y is the severity of FHB recorded for a given value of accumulated measurement time(T),
B corresponds to the values of the T at any given time, r provides information on the rate
at which the disease progresses, and pgamma is the probability density function of the gamma
distribution. The parameter values are estimated using nonlinear regression analysis to fit
the gamma model to the data.

3.2.3 Parameter Estimation

We estimated the parameters associated with the most optimal curve using mathematical models. These
parameters encompassed the maximum disease severity, time to reach the maximum severity, and the
rate of disease progression. To accomplish this, we explored different methods for parameter selection,
including maximum likelihood estimation (MLE) and least-squares regression. Maximum likelihood
estimation is a statistical method that estimates the values of the model parameters that maximize the
likelihood of observing the data, while least-squares regression minimizes the sum of squared differences
between the observed data and the predicted values. We compared the results of both methods to
determine the most suitable approach for parameter selection.

3.2.4 Goodness Of Fit Of Model

We evaluated the goodness of fit of each model by calculating their mean squared error, adjusted
R-squared, and Akaike Information Criterion (AIC). The model that exhibited the lowest mean squared
error, highest adjusted R-squared, and lowest AIC was selected as the most suitable fit for the FHB
data.

3.2.5 Genomic Selection Model Development

We evaluated the genomic prediction accuracy using GBLUP method. Additionally, we employed four
Bayesian methods: BayesA, BayesB, BayesC, and BRR. In our study, we considered a population of
n individuals with available phenotypic records. Each individual was genotyped with m markers. We
represented the genotypic information as the matrix Z, with dimensions n × m. In this matrix, zij
denotes the number of selected alleles at the jth locus (j = 1, 2, ..., m) for the ith genotyped individual
(i = 1, 2, ..., n).

I. Genomic Best Linear Unbiased Prediction Model (GBLUP):
The effectiveness of scoring metrics was assessed by employing the Genomic Best Linear Unbiased
Predictors (GBLUP) model established by (VanRaden 2008).
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The GBLUP model, represented by the following equations, was employed:
y = Xβ + Zu+ ϵ[

u

ϵ

]
∼ N

([
0

0

]
,

[
Gσ2

a 0

0 Iσ2
ϵ

])
(8)

In this equation, y is the vector of phenotypic records with n dimensions, ̆ represents the overall
mean, and Z and ϵ are random vectors representing additive genetic values and errors, respectively.
To further elaborate, the design matrices X and Z represent the known fixed effects (such as
environmental factors (years), blocks (Repetitions), and covariates (plant height, anthesis duration,
and anthesis retention)) and random effects (such as genotypes), respectively. The vector β
indicates the regression coefficients for the fixed effects estimated using the least squares method.
The part u comprises the random genetic additive effects or Genomic Estimated Breeding Values
(GEBVs).
The random term and residual variances are denoted as σ2

a and σ2
ϵ , respectively. The matrices

G and I define the covariance structure, with G representing the additive genomic relationship
matrix based on marker information. This model is assumed to be homocedastic i.e. residuals are
independent and their variance-covariance is the identity matrix (I)

II. Bayesian Models (BAYES):
Bayesian methods assume different marker effect distribution and allow to model complex genetic
architectures.The prior densities and hyperparameters for different Bayesian methods in this model
are as follows:

a. BayesA:
The prior density of the marker effects, βj , follows a scaled-t distribution. To avoid computa-
tional complexity, the scaled-t distribution is implemented as a finite mixture of scaled-normal
densities. Specifically, βj follows a normal distribution with mean 0 and variance σ2

βj
.

b. BayesB:
The prior distribution of the effect of each marker is a mixture of a scaled-t distribution and
a distribution with a point mass at zero. The effect βj follows a normal distribution with
mean 0 and variance σ2

βj
with probability π, and it is equal to zero with probability (1− π).

c. BayesC:
The prior densities of the marker effects are assumed to be a Gaussian mixture. βj follows
a normal distribution with mean 0 and variance σ2

βj
with probability π, and it is equal to

zero with probability (1− π). The parameter π follows a Beta distribution, π ∼ Beta(p0, π0),
where p0 > 0 and π0 ∈ [0, 1] with E(π) = π0 and Var(π) = π0(1−π0)

1+p0
.

d. BayesBRR:
The marker effects are assigned independent identically distributed (i.i.d.) Gaussian priors
with the same variance, βj ∼ N (0, σ2

β). The overall mean µ is assigned a flat prior. The
variance of the marker effects and the error variance σ2

e for all Bayesian models follow a
chi-squared distribution with degrees of freedom v and shape parameter S. The shape
parameter S has a prior distribution following a gamma distribution with rate parameter
r and shape parameter s.

III. XgBoost Model: XgBoost, a powerful machine learning ensemble method, is suitable for both
classification and regression tasks and is particularly effective when dealing with large datasets that
exhibit complex patterns. This method utilizes an ensemble approach, where the final decision or
prediction in a regression problem is based on the average outputs of multiple regression trees.
One key distinction between XgBoost and other ensemble methods like random forests lies in
how the individual trees contribute to the final decision. XgBoost employs a gradient descent
optimization heuristic, assigning different weights or votes to each tree based on their performance,
whereas random forests assign uniform weights to all trees. This allows XgBoost to adaptively learn
from the data and make more accurate predictions.
In contrast to parametric methods, XgBoost is considered non-parametric. This means that
it doesn’t compute specific effects for each marker. Instead, it makes predictions by grouping
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instances based on their features, particularly SNP markers, and leveraging the patterns and
relationships observed within these feature groups.

3.2.6 Model Validation

To evaluate the accuracy of genomic prediction, we adopted the repeated five-fold cross-validation (CV)
approach (González-Camacho et al. 2012, Gianola et al. 2014, Pérez-Rodríguez et al. 2012). In this
approach, the experiment was conducted 30 times, with each iteration employing a 5-fold CV procedure
(Makowsky et al. 2011, Pérez-Cabal et al. 2012, Kramer et al. 2014). Specifically, the entire dataset was
randomly divided into five disjoint subsets, with each subset containing approximately the same number
of individuals. Four subsets were used as the training population, while the remaining subset served
as the test population. This process was repeated five times, rotating the test subset in each iteration
to ensure that each subset was used as a test population once (González-Camacho et al. 2012, Gianola
et al. 2014, Pérez-Rodríguez et al. 2012, Makowsky et al. 2011, Pérez-Cabal et al. 2012, Kramer et al.
2014).

3.2.7 Statistical Analysis

The predictive ability of the genomic prediction methods was assessed by calculating the Pearson’s
correlation coefficients between the Genomic-Enabled Breeding Values (GEBV) and the observed
phenotypic traits (Zambrano & Echeverri 2014). Within each fold of the five-fold cross-validation (CV),
the Pearson’s correlation between the predicted GEBV and phenotypic values was computed. The final
accuracy was obtained by averaging the correlation coefficients over 30 experiments. To measure bias in
the GEBV, the regression coefficient was computed by regressing the actual phenotype on the GEBV
(Zambrano & Echeverri 2014). A regression coefficient close to 1 indicates no bias, while values less than
1 or greater than 1 indicate underestimation or overestimation of GEBV, respectively (Makowsky et al.
2011, Pérez-Cabal et al. 2012, Kramer et al. 2014).
The effectiveness of scoring metrics in predicting outcomes was assessed using the GBLUP (Genomic Best
Linear Unbiased Predictors) model developed by Van Raden (VanRaden 2008). The sommer package
in R was employed for implementing the model covarrubias2016genome. All the Bayesian methods were
implemented using the BGLR R-package de2014bayesian.
For the BLUP methods, the heritability of the trait can be calculated as follows:

h2 =
σ2
g

σ2
g + σ2

e

(9)

where σ2
g represents the additive genetic variance and σ2

e represents the residual variance.

h2 =
VA

VA + σ2
e

(10)

where VA is the total additive genetic variance, given by:

VA = π × 2σ̂2
S × N

P

m∑
j=1

pjqj (11)

where pj and qj are the allelic frequencies of the jth locus, π denotes the proportion of markers with
non-zero effects, N is the number of individuals, P is the number of markers, and σ̂2

S is the estimated
marker effect variance.
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4 Results

4.1 Disease Severity Variation Across Trial Years

Figure 2 illustrates the results of scoring FHB severity over eight years within the BOKU wheat breeding
program. BOKU performed the scoring at four time points (FHB1 to FHB4), which are plotted along
the x-axis. The severity score of the disease, ranging from 0 to 100 percent and reflecting the rate of
infection and spread, is represented on the y-axis. The lines within each plot show the rate of change of
FHB severity between consecutive measurement points and provide information on AUDPC. Our results
indicate that FHB severity was more pronounced in the years 2016, 2020, 2021, and 2022 compared
to the other years (Figure 2). This observation is supported by the presence of a greater number of
genotypes exhibiting higher AUDPC curves (blue lines).

Figure 2: The figure displays eight years of FHB severity scores in the BOKU wheat breeding program.
It shows four time points (FHB1 to FHB4) on the x-axis and the severity score (0-100%) on the y-axis.
The lines represent the rate of change in FHB severity (AUDPC), with blue lines indicating higher
severity genotypes.
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4.2 Distribution of Plant Height, Anthesis and Anthesis Retention Across
Years

In this study, we considered PH, AT, and AR as crucial traits acting as covariates within a two-step
genomic prediction model. Concerning PH, we observed no substantial variation in mean values across
the eight years of experimentation (Figure 3). However, the year 2020 stood out as it exhibited the
shortest wheat plants overall. It is important to note that we did not have PH data available for the
year 2016. In the remaining years, we observed a relatively normal distribution, with the majority of
mean values falling within the range of 60 to 100 cm (Figure 3).
Similar to PH, AT and AR rate displayed comparable patterns. The years 2020 and 2021 showed
the shortest duration from anthesis initiation to completion and the lowest rates of anthesis retention,
respectively (Figure 3).

Figure 3: Variation in Plant Height, Anthesis Time, and Anthesis Retention Time across Experimental
Years. (a) Plant Height: Mean values of plant height (cm) were analyzed over eight years of
experimentation. (Note: Data for 2016 was unavailable) (b) Anthesis Time: The duration from anthesis
initiation to completion (in days) was examined across the experimental years. (c) Anthesis Retention
Time: The rate of anthesis retention was assessed over the experimental years
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4.3 Correlation Of Disease Score And Co-variates

We conducted an analysis to explore the relationship between disease progression of FHB (FHB1, FHB2,
FHB3, & FHB4) and three covariates: PH, AT, and AR. We utilized Spearman correlation to examine the
associations among these variables. We found a negative correlation between PH and each FHB scoring,
with the strength of this negative relationship slightly decreasing from FHB1 to FHB4 (Figure 4).
Among the FHB scores, FHB1 showed a strong correlation (0.67) with FHB2, while we observed weaker
correlations between FHB1 and FHB3 (0.41) as well as FHB4 (0.23). Similar patterns were observed
when comparing FHB2 to the other traits, as well as FHB3 to FHB4, demonstrating a correlation of
0.87. Regarding the AT, we observed a weak positive correlation with FHB1 (0.35), while we found a
negative correlation with FHB4 (-0.01). Notably, AR exhibited the highest positive correlation (0.42)
compared to PH. AR displayed a weak positive relationship with PH (0.02) and AR (0.05). Interestingly,
when assessing the relationship between AR and the FHB scores, we observed a general positive trend,
with the correlation increasing from FHB1 (0.11) to FHB4 (0.3).

Figure 4: This figure showcases the correlation analysis between disease progression of FHB at different
scoring levels and the covariates: plant height (PH), anthesis time (AT), and anthesis retention (AR).
The graph illustrates the relationships observed among these variables, highlighting the trends and
associations between FHB scores and the covariates
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4.4 Fitting Non Linear Functions With Covariates To Generate Prediction
Parameters

We performed a correlation analysis on the estimated or secondary traits derived from various the
mathematical models used to simulate the progression of original FHB disease across different wheat
genotypes over multiple years as shown in Figure 5. The results revealed significant correlations among
the traits. The AUDPC trait, which quantifies the area under the disease progress curve, exhibited a
strong negative correlation with the B parametric traits of all other models. Among them, Logistic 2B
displayed the strongest negative correlation (-0.89), followed by Logistic 3B (-0.84). Conversely, AUDPC
demonstrated positive correlations with other traits. Notably, strong positive associations were observed
with Gompertz r (0.78), Logistic 3K (0.55), and Logistic 3r (0.34).
Another important trait, the point of inflection (inf_pnt) for each genotype, displayed noteworthy
correlations. We observed a relatively strong negative correlation between inf_pnt and AUDPC (-0.61),
Gamma r (-0.65), Gompertz r (-0.73), and Logistic 3K (-0.65). Additionally, inf_pnt exhibited positive
relationships with Logistic 3B (0.47) and Logistic 2B (0.62).

Figure 5: Correlation analysis of parametric traits derived from mathematical models simulating FHB
disease progression in different wheat genotypes. The AUDPC trait shows negative correlations with
B parametric traits, while positive correlations are observed with other traits. The point of inflection
(inf_pnt) exhibits notable correlations, including both negative and positive associations
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4.5 Goodness Of Model Fit Using Akaike Information Criterion

To assess the adequacy of non-linear functions in fitting the covariates and generating the BLUEs of FHB
scores for various genotypes, we employed the Akaike Information Criterion (AIC). The AIC allowed
us to identify the optimal combination of covariates that, when combined with the parameters of each
function, produced the most accurate estimates. Table 3 presents the AIC values for each combination of
covariates and their respective non-linear functions. By comparing the AIC values, we can determine the
combination of covariates that yielded the best fit and the most reliable estimates for FHB scores. Based
on the results obtained, it was found that utilizing all combinations of covariates resulted in the lowest
AIC values. Therefore, for further statistical analysis, we selected AT, PH, and AR as the covariates to
be incorporated. By including them in the analysis, we can better account for their effects and improve
the accuracy of our statistical models.

Table 3: The figure illustrates the Akaike Information Criterion (AIC) values for different combinations
of covariates, indicating the goodness of fit for each combination. The lowest AIC value represents the
optimal combination of covariates that produced the most accurate estimates for FHB scores.

Inflection

Covariates Logistic2 Logistic3 Monomolecular Gompertz Gaussian Gamma AUDPC point

Julian B r B r K B r B r B r B r

None 2927 271 3716 2239 22853 -11802 -6855 7628 -1270 -771 -4191 9644 4090 25035 16860

AR 2913 273 3700 2241 22833 -11789 -6859 7625 -1268 -766 -4184 9633 4089 24992 16848

PH 2307 82 2933 1669 19389 -10084 -6069 6097 -1452 -979 -3557 7967 3066 21076 14395

PH+AR 2289 84 2918 1672 19376 -10077 -6077 6094 -1454 -974 -3552 7962 3064 21042 14387

AT 2616 248 3494 2231 22786 -11800 -7174 7612 -1340 -945 -4197 9535 4092 24533 16846

AT+AR 2605 250 3481 2233 22766 -11787 -7177 7609 -1338 -939 -4190 9525 4091 24491 16834

AT+PH 1986 35 2700 1651 19337 -10082 -6406 6074 -1521 -1162 -3562 7823 3067 20562 14376

AT+PH+AR 1969 38 2687 1654 19325 -10075 -6413 6071 -1522 -1157 -3558 7819 3065 20527 14368
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4.6 Fitting Model Estimated Parameter

In our analysis of the estimated AUDPC for each year and FHB measurement, we utilized data from
different functions, including Logistic, Gamma, Gompertz, Gaussian, and Monomolecular. The exami-
nation of the results revealed that certain functions generated a higher number of estimated fit points
compared to others. This disparity can be observed by the density of lines in each function-year plot,
as shown in Figure 6. Specifically, when comparing the estimated fit points generated by the Gaussian
function to those produced by the Gamma and Monomolecular functions, it became apparent that the
Gaussian function yielded fewer genotype AUDPC fits.
In addition to the analysis of the number of estimated fit points, we also examined the shape of the
fitted curves. Our objective was to generate an S-shaped or sigmoid curve that accurately emulates
the natural life-cycle of the FHB-causing agent’s effect on wheat plants (Figure 6). The sigmoid curve
reflects the disease progression, starting with a period of low incidence during the early growth stages
of the crop. As the crop reaches the susceptible stage, the disease intensity rapidly increases, resulting
in an exponential growth in severity. This phase is characterized by the pathogen’s rapid spread and a
higher rate of infection. The disease reaches its peak severity during the middle phase of the sigmoid
curve, with the majority of infections occurring at this stage. Prominent symptoms, such as bleaching
of spikelets and fungal growth, become evident. Following the peak, the disease gradually diminishes,
leading to a flattening of the sigmoid curve, indicating a decrease in disease severity. Finally, the disease
incidence becomes minimal, signifying a low level of spread, and the severity decreases significantly.
Based on these observations, it is noteworthy that almost all the fitted curves for the different functions
exhibited this sigmoid behavior, except for the Monomolecular function (Figure 6). This indicates that
the chosen functions effectively capture the disease progression over time. Furthermore, in Figure 6, the
green color represents genotypes with smaller AUDPC values, indicating lower disease severity, while
the blue color represents genotypes with larger AUDPC values, indicating higher disease severity. This
color scheme allows for easy visual differentiation and comparison of genotype performance in terms of
disease severity.
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Figure 6: Comparison of estimated fit points and fitted curves for various functions used to model
Fusarium head blight (FHB) disease progression. The density of lines in each function-year plot
demonstrates variations in the number of estimated fit points, with the Gaussian function generating
fewer genotype AUDPC fits compared to the Gamma and Monomolecular functions. The sigmoid shape
of the fitted curves accurately represents the natural life-cycle of the FHB-causing agent’s impact on
wheat plants, except for the Monomolecular function. Genotypes with lower disease severity (smaller
AUDPC values) are depicted in green, while genotypes with higher severity (larger AUDPC values) are
shown in blue.
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4.7 Model Predictability Accuracy

The predictability performance of various traits, including AUDPC, Logistics (2 and 3 - B, K, and r),
inflection points, Gompertz (B and r), and Gamma (B and r), was assessed using multiple prediction
models, including Bayesians, XgBoost, and GBLUP (Figure7). Among the traits evaluated, the best
prediction accuracies were observed for AUDPC, Gompertz r, and Logistic B (two-parameter scenario)
when using the BayesA and BayesB models. In terms of AUDPC, the BayesB model achieved the highest
prediction accuracy of 0.58, closely followed by the BayesA model with a prediction accuracy of 0.52
(Figure7). The Bayesian Lasso model exhibited the lowest predictability for this trait, with a prediction
accuracy of 0.49. It is important to note that the predictive abilities for AUDPC ranged from 0.49 to
0.58 across all models.
For the Gamma B trait, the predictability accuracies were relatively lower compared to AUDPC. The
BayesB model and XgBoost demonstrated notable results with prediction accuracies of 0.35 and 0.34,
respectively. Conversely, the Bayesian Lasso model had the lowest predictability for this trait, with an
accuracy of 0.2. Regarding the Gamma r trait, most prediction models yielded relatively good results
around 0.45, except for Bayesian Lasso and XgBoost, which exhibited lower predictability abilities of
0.40 (Figure7).
However, it is important to highlight that certain traits showed poor predictability across all models.
Specifically, the prediction of Gompertz B trait resulted in low accuracy levels across all models, hovering
around 0.1. XgBoost performed slightly better than the other models for this trait. Similarly, Logistic
2r, Logistic 3r, and inflection points exhibited prediction levels below 0.2 across all models (Figure7).
These findings indicate variations in predictability among different traits and emphasize the importance
of selecting appropriate prediction models based on the specific trait being predicted.

Figure 7: Model predictability of fitted parameters in the study. Each color indicates a different model.
BRR: Bayesian Ridge Regression, XGBoost: Extreme Gradient Boosting.
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4.8 Model Predictability Validation

We conducted cross-validation to determine top-performing genotypes for each trait relative to AUDPC.
Positive correlations with AUDPC were observed for Gamma r, Logistic 2r, Logistic 3k, Logistic 3r, and
Gompertz r, while the remaining traits exhibited negative correlations Figure 8. No definitive correlation
pattern was discernible for Gompertz B.
Genotypes were selected based on their AUDPC correlation, drawing a cutoff to isolate the lowest 20% for
positively correlated traits and the highest 80% for negatively correlated ones. This method facilitated
the identification of the most performant genotypes relative to AUDPC for each trait.
The GBLUP model revealed substantial genotype overlap for traits including Gamma r, Gompertz r,
Logistic 3B, Logistic 3K, Logistic 3r, inflection point, and Logistic 2B. Contrastingly, Logistic 2r and
Gamma B showed minimal overlap, with Gompertz B presenting no intersecting genotypes (Figure 8)..

Figure 8: Genotype selection based on AUDPC correlation. The plot illustrates the chosen cutoffs that
isolate the bottom 20% of genotypes for positively correlated traits (indicated in red), and the top 80%
for negatively correlated ones (shown in red). This selection process enabled identification of the most
performant genotypes relative to AUDPC for each trait using the GBLUP model
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Conducting a parallel analysis using predictions from the XGBoost model resulted in consistent findings
with the previous model Figure 9. All traits displayed intersecting individuals with the same correlation
trend as previously observed. However, it is noteworthy that the total count of identified high-performing
genotypes in this analysis was comparatively smaller than in the previously described model (Figure 8).
In essence, traits with fewer high-performing genotypes consistently intersected in both models. Similarly,
traits with larger intersections in the prior model continued this trend in the XGBoost analysis, albeit
with fewer qualifying individuals. While correlation trends and genotype intersections with AUDPC
largely paralleled across both models, the XGBoost model discerned fewer high-performing genotypes
per trait. This may hint at more rigorous selection criteria inherent to the XGBoost model, thereby
yielding a more selective set of top performers.

Figure 9: Selection of genotypes via AUDPC correlation employing the XGBoost model. The graphic
demonstrates the applied cutoffs, isolating the lowermost 20% of genotypes for traits with positive
correlations (depicted in red), and the uppermost 80% for traits showing negative correlations (also
portrayed in red). This procedure facilitated the identification of superior genotypes in relation to
AUDPC for each distinct trait.

21



5 Discussion

5.1 Implications of Trait Variability and Correlations

This study highlighted the variations in FHB severity within the BOKU wheat breeding program over
eight years, pinpointing the years 2016, 2020, 2021, and 2022 as showing higher FHB severity (Figure
2). This aligns with prior research that emphasizes the critical role of environmental factors in FHB
presence, especially during the wheat flowering phase (Moreno-Amores et al. 2020, Juroszek & von
Tiedemann 2013, Buerstmayr et al. 2020). Plant height, anthesis time, and anthesis retention were
considered covariates in our research, shaping the predictability of the genomic models used. Notably,
plant height showed marginal fluctuation across the period, except for 2020, which had the shortest
wheat plants, implying possible environmental or genetic influences (Hilton et al. 1999, Miedaner et al.
2023, Marino 2018, Kalih et al. 2014).
The years 2020 and 2021 showed similarities in terms of anthesis time and anthesis retention (Figure
3). In 2020, there was a noticeable decrease in plant height, anthesis duration, and anthesis retention,
suggesting potential environmental impacts on these variables (Marino 2018). This reduction suggests a
hastened flowering phase and potential challenges with grain maturation and maintaining yield following
the anthesis stage. These observations support findings from previous studies, underscoring the role of
environmental factors in disease progression and severity.
Our analysis revealed a negative correlation between plant height and each FHB severity score (Figure
4), suggesting that plant height, along with other agronomic and morphological traits, plays a significant
role in influencing FHB severity. This is consistent with previous findings (Hilton et al. 1999, Kalih et al.
2014, Miedaner et al. 2023, Marino 2018, Moidu et al. 2015, Brown et al. 2010). For instance, taller
plants with elongated floral structures might hinder fungal invasion into spikelets and possess superior
overall health, thereby increasing their resistance to pathogens (Buerstmayr et al. 2020). Conversely,
shorter plants might be more susceptible to FHB, possibly due to factors such as canopy structure and
overall plant health. It is important to highlight that this is not a pleiotropy effect, where the same
genes control both plant height and FHB resistance, but a strategic escape strategy where taller plants
avoid FHB infection, creating a correlation between the two traits (Solovieff et al. 2013).
Correlation analysis of FHB scores at different time points helped elucidate the progression dynamics
of FHB. There was a robust positive correlation between FHB1 and FHB2, implying a steady disease
progression from one time point to the next (Kollers et al. 2013, Chrpová et al. 2021). On the other
hand, weaker correlations between FHB1 and FHB3 and between FHB1 and FHB4 suggest potential
deviations in disease progression at these later time points. Factors such as changing environmental
conditions, varying pathogen activity, or the plant’s defense mechanisms could contribute to these
variations (Chrpová et al. 2021, Buerstmayr et al. 2003).
Lastly, we observed interesting correlations between the anthesis rate and FHB severity at different
measurement points. A mild positive correlation between AT and FHB1 and a negative correlation
between AT and FHB4 suggest how anthesis rate influences disease severity (Buerstmayr et al. 2003,
Cowger et al. 2009, Buerstmayr et al. 2020). Furthermore, our analysis indicated that anthesis retention
showed the strongest positive correlation among the traits investigated, establishing a substantial relation-
ship with FHB severity. This implies that genotypes with better anthesis retention may experience lower
FHB severity (Buerstmayr et al. 2003, Cowger et al. 2009, Buerstmayr et al. 2020).

5.2 Analysis of Non-Linear Models for Disease Progression Curve Parameters

We primarily concentrated on two-parameter models in our study, where ‘B’ signifies the x-axis parameter
(e.g., Inflection Point, Gaussian Distribution Mean), and ‘r’ is the shape parameter (e.g., inflection point
slope, Gaussian variance). For breeders, these parameters offer significant interpretability, particularly
within certain non-linear models like logistics. The ‘B’ parameter, i.e. the inflection point, symbolizes a
pivotal stage in the FHB progression curve, marking the peak acceleration in disease development rate
(Goshu & Koya 2013). Differences in inflection points can imply varying FHB tolerance among genotypes,
hence facilitating the selection of FHB-resistant lines (Zhao et al. 2004, Kuska et al. 2017, Garcia-Abadillo
et al. 2022). Moreover, positive associations between inflection points and both Logistic 3B and Logistic
2B points towards a decelerated disease progression as inflection point values augment (Garcia-Abadillo
et al. 2022). The ‘r’ parameter, representative of each model’s growth rate, demonstrates a strong
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positive correlation with the AUDPC. This suggests that higher disease growth rates correspond with
elevated AUDPC values, meaning genotypes with faster disease growth rates are more vulnerable to FHB
(Jeger & Viljanen-Rollinson 2001, Draeger et al. 2007, Yuen & Forbes 2009, Karanja et al. 2018, Amrate
et al. 2023). Unique to the Logistic 3 model, the ‘K’ parameter interpreted as a saturation parameter for
growth models where resources are constrained, ’K’ represents a scenario where the disease does not reach
the full scale of FHB measurements, signifies the limit of pathogen population size. Its correlation with
AUDPC suggests that a higher pathogen growth limit aligns with a more severe disease manifestation
in the wheat genotype, aiding in the detection of more susceptible genotypes (Lamb & Loschiavo 1981,
Steffenson & Webster 1992).

By further analyzing our research findings, it becomes evident that the Gaussian function, which exhibits
symmetry with respect to the inflection point, produces a reduced number of genotype AUDPC fits when
compared to the Gamma and Monomolecular functions, as showed in Figure 6. This discrepancy can
be attributed to the nature of the Gaussian probability function, which is symmetric with respect to
the mean, while the cumulative density function, obtained through the integration of the bell-shaped
curve of the data, is symmetric with respect to the inflection point representing the mean of zero in the
standard normal distribution (Limpert et al. 2001, Stahl 2006) (Figure 6). For the rest of most functions,
they exhibited an S-shaped sigmoidal curve, emulating the natural life-cycle effect of the FHB-causing
agent, with a notable exception of the Monomolecular function due to its lack of an inflection point and
outlines a drawback to using Monomolecular model to detect traits such as disease latency period or
point of maximum growth (Cambaza 2018).

5.3 Predictability of Metrics: Evaluating Performance

To further explore the relationship between genotypes and traits, we undertook cross-validation, focusing
on identifying top-performing genotypes relative to AUDPC. We noted positive correlations with AUDPC
for our estimated or secondary derived traits such as Gamma r, Logistic 2r, Logistic 3k, Logistic 3r, and
Gompertz r which are representative estimations of actual FHB field scores, whereas other traits showed
negative correlations (Figure 8). We selected genotypes based on their AUDPC correlation, employing
a cutoff to capture the bottom 20% for positively correlated traits, and the top 80% for negatively
correlated traits. As proposed by Schrauf et al.(2021), this approach facilitated the identification of
the most effective genotypes for each trait (Figure 8). Despite certain traits, such as Logistic 2B and
3B, demonstrating strong correlation with AUDPC across various prediction models, others consistently
exhibit low predictability. This is largely attributed to the increased estimation error in these traits, often
overlooked by the markers. For instance, poor estimations of a specific secondary trait, like Gompertz
B, can lead to lower prediction accuracies, regardless of the genomic selection model’s fit, corroborating
the situations reported by (Mostafavi et al. 2020) (Figure 7). In addition, this study indicates that
most Bayesian models outperform the standard GBLUP model, primarily due to their ability to detect
significant genetic effects by presuming the presence of major genes. These results align with findings
from similar research conducted by (Colombani et al. 2013).
Furthermore, this study identifies parameters that optimally align with AUDPC predictions, suggesting
their potential as selection alternatives. Specifically, lines with higher values for traits such as inflection
point, Logistic B, Logistic K, and Gompertz r are desirable for lower AUDPC. By incorporating these
traits, we can utilize them for growth curve prediction and inform selection decisions. Notably, these
selected parameters harmonize with conventional AUDPC-driven selection, providing an efficient
complementary method to boost genotype performance (Madden et al. 1987).
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6 Conclusion

This study highlights the significant influence of environmental conditions on FHB severity, as well as
the crucial roles of plant height, anthesis time, and anthesis retention. The traits identified suggest
that taller wheat genotypes with elongated floral structures show enhanced FHB resistance. These
findings, combined with the identification of key non-linear model parameters like Inflection Point and
growth rate, provide valuable tools for breeders. Additionally, the superior performance of Bayesian
models in detecting genetic effects underscores their potential in improving wheat breeding programs.
Incorporation of these models with estimated BLUES from fitting non-linear functions could enhance the
detection of FHB-resistant genotypes. However, the variability in trait predictability due to prediction
and estimation errors underscores the necessity for cautious interpretation and application of certain
traits. The insights gained from this study offer important implications for breeding strategies, particularly
in the selection of FHB-resistant wheat genotypes.
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