
UNIVERSITAT POLITÈCNICA DE VALÈNCIA

School of Informatics

Regression Test-Driven Extension of PLEXIL5: Support for
Update Nodes

End of Degree Project

Bachelor's Degree in Informatics Engineering

AUTHOR: Moreno Latorre, Jorge

Tutor: Escobar Román, Santiago

ACADEMIC YEAR: 2022/2023

Resum
Aquest projecte descriu l’esforç d’extensió de PLEXIL5, un intèrpret formal de PLE-

XIL especicat en el motor de lògica de reescriptura Maude, per aconseguir majors graus
de correcció i completitud en comparació amb el PLEXIL Executive, l’intèrpret ocial
de PLEXIL. PLEXIL5 està basat en una versió anterior de PLEXIL i ha quedat obsole-
ta. Aquest projecte pretén introduir suport per als nodes Update de PLEXIL en PLEXIL5.
L’estratègia seguida consistix en aprotar les proves de regressió ocials del PLEXIL Exe-
cutive. La comparació automàtica entre les execucions de les proves ocials en el PLEXIL
Executive i en PLEXIL5 és una mesura de la correcció i completitud de l’intèrpret formal
respecte a la implementació de referència.

Paraules clau: PLEXIL, PLEXIL5, Maude, intèrpret, vericació, lògica de reescriptura,
proves de regressió, semàntica executable, nodes update

Resumen
Este proyecto describe el esfuerzo de extensión de PLEXIL5, un intérprete formal de

PLEXIL especicado en el motor de lógica de reescritura Maude, para lograr mayores
grados de corrección y completitud en comparación con el PLEXIL Executive, el intérpre-
te ocial de PLEXIL. PLEXIL5 se basa en una versión anterior de PLEXIL y ha quedado
obsoleta. Este proyecto pretende introducir soporte para los nodos Update de PLEXIL en
PLEXIL5. La estrategia seguida consiste en aprovechar las pruebas de regresión ociales
del PLEXIL Executive. La comparación automática entre las ejecuciones de las pruebas
ociales en el PLEXIL Executive y en PLEXIL5 es una medida de la corrección y comple-
titud del intérprete formal respecto a la implementación de referencia.

Palabras clave: PLEXIL, PLEXIL5, Maude, intérprete, vericación, lógica de reescritura,
pruebas de regresión, semántica ejecutable, nodos update

Abstract
This project describes the extension effort of PLEXIL5, a PLEXIL formal interpreter

specied in the rewriting logic engine Maude, to achieve higher degrees of correctness
and completeness with respect to the PLEXIL Executive, the ofcial PLEXIL interpreter.
PLEXIL5 is based on a former version of PLEXIL and has become deprecated. This project
aims to introduce support for PLEXIL Update Nodes into PLEXIL5. The strategy fol-
lowed consists of leveraging the ofcial regression tests of the PLEXIL Executive. The
automatic comparison between the executions of the ofcial tests running on the PLEXIL
Executive and in PLEXIL5 is a measure of the formal interpreter correctness and com-
pleteness with respect to the reference implementation.

Key words: PLEXIL, PLEXIL5, Maude, interpreter, verication, rewriting logic, regres-
sion tests, executable semantics, update nodes

iii

Contents

Contents v
List of Figures vii
List of Tables viii

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 3
1.3 Structure of the report . 3

2 Background 5
2.1 Rewriting logic . 5
2.2 Maude . 6
2.3 PLan EXecution Interchange Language (PLEXIL) 7
2.4 PLEXIL Formal Interactive Verication Environment (PLEXIL5) 12

3 Design of the solution 15
3.1 Design of the PLEXIL5 semantics . 15

3.1.1 Syntax of plans . 15
3.1.2 Internal representation . 15
3.1.3 State of the system . 17
3.1.4 Node state transitions - The atomic relation 18
3.1.5 The micro relation . 20
3.1.6 Launching a macrostep . 20

3.2 Architecture of the plexil2maude tool . 21
3.2.1 Architecture of plx2maude . 21
3.2.2 Architecture of psx2maude . 22

4 Methodology 23
5 Workow 27

5.1 A test-driven approach . 27
5.1.1 TDD in plexil2maude . 28
5.1.2 TDD in the PLEXIL5 semantics . 30

5.2 Use of PLEXIL regression tests as PLEXIL5 acceptance tests 31
5.3 Development workow . 32

5.3.1 The runRegression script . 32
5.3.2 Parsing errors . 33
5.3.3 Debugging a plan . 33

6 Extending the semantics of PLEXIL5 35
6.1 Adding Update Nodes to PLEXIL5 . 35
6.2 Fixing the semantics of Command Nodes in PLEXIL5 37
6.3 Short-circuiting the macro relation . 39
6.4 Extending the generation of inputs . 41
6.5 Other contributions . 44

6.5.1 String concatenation . 46
6.5.2 Node self references . 47

v

vi CONTENTS

6.5.3 LookupOnChange . 48
6.6 Results . 49

7 Conclusions and future work 51
8 Acknowledgements 53

Appendices
A Sustainable Development Goals 57
B Code 59

B.0.1 Code for execassignment . 59

List of Figures

2.1 Module that declares commutativity and associativity as axioms 7
2.2 Execution diagram of PLEXIL plans [15] . 12
2.3 Execution diagram of PLEXIL plans adapted to PLEXIL5 13

3.1 A compiled PLEXIL plan and its translated counterpart 16
3.2 Node state diagram of assignment nodes in state executing 20

4.1 Life cycle of a feature under development in the PLEXIL5 project 25

5.1 Testing in plexil2maude . 29
5.2 boolean1.ple PLEXIL plan . 31
5.3 Empty/trivial script to use with plans that do not require one 32

6.1 Test UpdateTest fails to execute because update nodes are not implemented 37
6.2 Test UpdateTest executes correctly . 37
6.3 A command node myNode enters execution and creates a command-on-

execution node . 38
6.4 Simple plan and script that test for command abortion 39
6.5 Test commandabort1 does not execute correctly 39
6.6 Test commandabort1 executes correctly . 40
6.7 The macrostep is not short-circuited on update node execution 41
6.8 The macrostep is short-circuited on update node execution, which starts a

new macrostep . 42
6.9 PLEXIL plan and script that demonstrate the appending of extra empty

inputs to the script . 43
6.10 Log of the transitions of the example plan under the example script that

demonstrates the appending of extra empty inputs to the script 43
6.11 Log of the transitions of the example plan under the example script trans-

lated to Maude, executed with the PLEXIL5 semantics before implement-
ing the appending of extra empty external inputs 43

6.12 The nodes cellwhen the plan terminateswithout appending an extra empty
external input, leaving a node executing and suspended 44

6.13 Log of the transitions of the example plan under the example script trans-
lated to Maude, executed with the PLEXIL5 semantics after implementing
the appending of extra empty external inputs 44

6.14 The nodes cell when the plan terminates after appending an extra empty
external input, correctly terminating the node that previously did not . . . 44

6.15 Tests concat1 and concat2 lead to errors because the feature is not supported 47
6.16 Tests concat1 and concat2 execute correctly 47
6.17 Test skip1 does not execute correctly . 47
6.18 Test skip1 executes correctly . 48
6.19 Test array1 executes correctly . 49
6.20 Bar chart showing the number of correct tests before and after. 49

vii

viii LIST OF TABLES

List of Tables

2.1 Common default values for node conditions 9
2.2 Default values for node end condition . 9

6.1 Table analyzing what features are left to implement into PLEXIL5 45

A.1 Degree to which the work impacts the United Nations’ Sustainable Devel-
opment Goals (SDG). 57

CHAPTER 1

Introduction

This work was developed at the National Institute of Aerospace (NIA) under NASA
sponsorship, in Hampton, Virginia, USA. It stems from a stay in March 2023 through a
connection that Santiago Escobar, the tutor of this project, shares with NASA researchers
Marco A. Feliu and Laura Titolo. The stay was intended to be longer and happen in Q4
2022, but bureaucratic and budgetary constraints resulted in a one month stay in March
2023.

This report addresses contributions to the PLEXIL5 project under Marco A. Feliu’s
mentorship. PLEXIL5 is an implementation of the semantics of PLEXIL in a rewriting
logic engine called Maude. PLEXIL is a language developed by NASA to create soft-
ware that executes in spacecraft operations and other autonomous systems. Maude is
a language that implements rewriting logic, and allows to specify other programming
languages and to formally verify properties of systems in said languages.

The PLEXIL5 project is an open-source project that was initially developed by Camilo
Rocha et al. as an interpreter for PLEXIL accompanied by a set of graphical tools to aid
with creation of programs (called plans) and verication. However, PLEXIL has been
greatly updated since then and PLEXIL5 has become mostly deprecated. NASA re-
searcher Marco A. Feliu now leads a project that aims to modernize PLEXIL5 and adapt
it to the latest ofcial version of PLEXIL as of March 2023, which is PLEXIL 4.6. The ver-
sion of PLEXIL5 currently under development has been stripped of all graphical tools to
focus on the specication of the rewriting logic semantics of PLEXIL. As it is, PLEXIL5 is
composed by:

• The executable semantics of PLEXIL in Maude
• A tool (plexil2maude) that translates PLEXIL plans into their analogous in the exe-

cutable semantics, built in Haskell.
• A tool (plexilog) that compares the execution of the PLEXIL Test Executive with

that of the executable semantics.

The development of PLEXIL5 has a special focus on Test Driven Development to guide
the implementation of new features. It has an extensive suite of unit tests for both the
semantics and plexil2maude.

1.1 Motivation

Every PLEXIL distribution offers a set of tests used by the PLEXIL development team
to ensure that PLEXIL operates according to its requirements. They are called regression
tests [1], and are used whenever new enhancements or new requirements are introduced

1

2 Introduction

into an already developed system. When a new version of a system no longer provides
functionality that should be preserved, it has regressed. After these modications are
introduced, test cases are run to re-establish condence that the system will perform ac-
cording to its requirements. When the changes are enhancements, the test cases need not
be modied. Moreover, when changes respond to a modication in the requirements,
test-cases may need to be modied or be added to the test base. This ensures that future
modications will be able to test that the behaviour of the system has not been altered in
unwanted ways.

Taking the regression test suite provided by PLEXIL as a reference, one may argue
that any PLEXIL interpreter would be semantically complete with respect to the original
PLEXIL Executive if they behave in the same manner under the same conditions. That
is, if the state of a system under test changes in the exact same manner for the PLEXIL
interpreter under test as it does for the ofcial PLEXIL Executive, it would be reasonable
to assert that they are somewhat equivalent— or, that the PLEXIL interpreter under test is
somewhat complete with respect to the ofcial PLEXIL Executive—, to the extent that the
PLEXIL development team considers that the PLEXIL Executive meets the requirements
if it passes the test cases in the regression test suite.

PLEXIL evolution has been driven by its application on a variety of NASA projects.
Some of its most signicant uses have come in early versions of said projects. Here are
some of its most relevant uses:

• PLEXIL is used for lander autonomy in the open source Ocean Worlds Autonomy
Testbed for Exploration Research and Simulation (OceanWATERS) [2], a simulator
on a space lander on Jupiter’s Europa moon. It is a project intended to help jump-
start development of on-board software for potential missions to ocean worlds.

• NASA’s Deep Space Habitat and Habitat Demonstration Unit (DSH/HDU) [3] is a
functional station to provide living and working conditions for astronauts in deep
space missions in adverse environments, such as ones on other planets like Mars,
the moon, asteroids or planets in stationary orbit. PLEXIL is part of the DSH/HDU
software, and was successfully tested for two years to provide control of several
subsystems.

• The Drilling Automation for Mars Exploration (DAME) application is a system that
uses PLEXIL to control a fully automatic drill rig intended to use in Mars, and has
been successfully tested at a lunar/martian impact crater analog for fault diagnos-
tics, recovery and control of drilling [4].

• PLEXIL is the base of an Autonomy Operating System (AOS) for Unmanned Aerial
Vehicles (UAVs) named Pilot-in-a-box [5], an Articial Intelligence driven open
ight software platform. It aims to create a collection of apps that allow for au-
tonomous pilot-less air vehicles to provide mobility-on-demand transportation.

• PLEXIL has been used to demonstrate automation for International Space Station
(ISS) operations.

The aforementioned applications showcase the capacities of PLEXIL and the potential
that systems built with PLEXIL have. Providing a framework that helps with formally
verifying that these systems have the properties that are required of them may help in
spreading its use. In a world with prospects of furthering space exploration, providing
more ubiquitous and efcient ight transportation, automating housing and factory sys-
tems, etc., PLEXIL may help build the systems that tackle whatever problems society
faces in the future.

1.2 Objectives 3

1.2 Objectives

The rst project objective is to give support to all types of PLEXIL nodes. This involves
introducing support for Update and LibraryNodeCall node types and completing the
support for Command nodes. These modications entail three challenges: a comprehen-
sion of the current state and limitations of the PLEXIL5 semantics, a careful analysis of
the execution of test plans to identify any unsupported features, and adding any other
essential features necessary to incorporate these node types.

The second objective is to revise the current execution semantics of PLEXIL5 via a
thorough comprehension of how PLEXIL plans execute. This revision is necessary to
handle unforeseen execution scenarios that may arise during development.

Additionally, the project aims to incorporate any essential features required for con-
ducting new, previously unsupported individual tests within the regression test suite.
This will involve carefully analyzing the execution of test plans to identify any unsup-
ported features.

Consequently, all advancements in terms of new features of the PLEXIL5 semantics
require including accurate translations of PLEXIL elements into the syntax dened in the
PLEXIL5 semantics for those elements.

On another note, the project aims to promote interest in formal system verication by
providing a tool for verifying PLEXIL systems, recognizing the crucial role autonomous
systems will play in the future of human development. With the understanding of the
future widespread utilization of these types of systems, verication can act as a cross-
cutting axis for secure development in critical environments where human lives may be
at stake.

1.3 Structure of the report

This document presents the contributions made to the PLEXIL5 project, extending the
current functionality to obtain a greater degree of completenesswith regards to the PLEXIL
Executive. It starts by outlining the context of the project in Chapter 2, the framework
and language that have been used, the structure and capabilities of the PLEXIL language
and a description of PLEXIL5. Then, the design of the PLEXIL5 project is explained in
Chapter 3. Moreover, the methodology followed and the workow are detailed in Chap-
ters 4 and 5, respectively. In Chapter 6, the main contributions to the project are presented
in depth, emphasizing on their success in replicating the behaviour of the PLEXIL Exec-
utive and the results of the extension efforts. Finally, in Chapter 7, the future work and
conclusions are discussed.

CHAPTER 2

Background

2.1 Rewriting logic

Rewriting logic is a framework that describes the behaviour of a system in the form of
rewriting rules, which are functions that specify how terms are rewritten into other terms.
Precisely, rewriting logic reasons about change in a system. It provides information about
how a system can develop — how it can change given its current state. At each point
in time, rewriting rules represent the basic actions that are possible in a system. They
are made up of a left-hand side pattern that matches a term, and a right-hand side that
species how the matched term is rewritten.

Intuitively, when a system is in a given state made up of terms, different termsmay be
able to be rewritten in different, non-overlapping ways. This implies that systems mod-
eled by rewriting logic are concurrent by nature [6]. Thus, many of the simplications
that rewriting rules can perform in a system can be performed in parallel. That is, rules
with disjoint left-hand sides can be applied concurrently.

Rewriting logic uses a non-deterministic execution model, where the order of appli-
cation of rules is not predetermined and is chosen during runtime. Fine-grained control
over the the execution of rules is given by side conditions, which specify constraints that
must be fullled in order for a rule to be applied.

Moreover, if all rules in a rewriting system are deterministic and terminating, the
outcome of the system is not inuenced by the order of application of the rules. This is
known as conuence, and it assures that the rewriting system will have a consistent and
predictable behaviour.

Formally, a rewriting logic specication, denoted as R = (Σ, E,R), consists of three
components[7]:

• Σ: A signature that denes the set of symbols (e.g., functions, constants) and their
types used in the specication.

• E: An equational theory that consists of a set of equations involving the symbols in
Σ, which dene the equalities between terms built from these symbols. The equa-
tional theory induces a congruence relation denoted as =E on the set of ground
terms TΣ, where (Σ, E) ⊢ t = u means that t and u are equivalent under E.

• R: A set of rewrite rules that specify the transformations or transitions between
terms in TΣ. They consist of a left-hand side (LHS) and a right-hand side (RHS), and
specify that any occurrence of the LHS in a term can be replaced by the RHS. These
rewrite rules dene a rewrite relation denoted as →R on the set of E-equivalence
classes of ground Σ-terms, denoted as TΣ/E. The rewrite relation →R captures the
concurrent transitions between terms in TΣ/E that can be generated with R.

5

6 Background

The initial reachability model of R is a tuple TR = (TΣ/E,→R) that represents a con-
current system where the states are the set of E-equivalence classes of ground Σ-terms,
and the transitions between states are specied by the rewrite rules in R. The reachability
model captures the possible state transitions of the concurrent system and can be used to
analyze properties such as reachability, termination, or conuence.

In rewriting logic, a normal form is a term that cannot be further reduced by the
rewrite rules R specied in the system. In other words, a normal form is an irreducible
term with respect to the rewrite relation →R. Normal forms allow to reason about the
properties of a term without having to consider all its possible reductions.

2.2 Maude

Maude is a high-performance language and a versatile system that supports rewriting
logic as its computational paradigm [8]. Developed by researchers from different univer-
sities and companies, Maude is an ideal tool for the specication, analysis, and imple-
mentation of concurrent systems due to its formal foundations in rewriting logic. Maude
provides a syntax for specifying the three components of a rewriting logic specication:
the signature Σ, the equational theory E, and the rewrite rules R. Additionally, Maude
comes with a powerful and efcient rewriting engine that can execute the rewrite rules
specied in the system, allowing for the simulation and analysis of the concurrent sys-
tem’s behaviour. Moreover, Maude provides a rich set of built-in features for formal
reasoning, including support for model checking [9], theorem proving [10], and static
analysis. These tools can be used to verify properties of the concurrent system, such as
reachability, termination, or conuence, which are essential for ensuring the correctness
and reliability of the system.

In Maude, a rewriting logic specication splits the equational theory E into oriented
equations E and commonly occurring axioms Ax such as associativity, commutativity
and identity, so that R = (Σ, E ∪ Ax,R)[7]. These axioms are used to perform matchings
modulo Ax, to produce a nite number of Ax-matching substitutions, which determine
when two terms can be rewritten using →R.

Figure 2.1 shows a le that denes a simple module called "SIMPLE-SUM" that deals
with natural numbers, represented by the sort1 Nat. It declares three operators: 0 repre-
sents the number zero, s_ represents the successor function, and _+_ represents integer
addition. It also declares three variables X, Y, and Z, all of type Nat.

The attribute declaration [assoc comm] after the _+_ operation holds a signicant
level of interest. These attributes stand for "associativity" and "commutativity." They
specify that the addition is both associative and commutative, meaning that changing
the grouping or the order of addition does not change the result of the operation. With
these attributes, the representation of addition expressions can be simplied. For exam-
ple, using the commutative axiom X + 0 = X can evaluate 2 + 0 and also 0 + 2 to get
2. Likewise, the axiom X + s(Y) = s(X + Y) can evaluate 2 + s(3) to get s(2 + 3) or
s(5).

In contrast, without the [assoc comm] attribute, the behaviour dictated by the afore-
mentioned axioms would require explicit denition to cover all possible combinations
of the addition. As a result, additional mathematical properties should be introduced
like X + Y + Z = (X + Y) + Z and X + Y = Y + X to ensure the desired properties of
associativity and commutativity.

1In Maude, data types are known as sorts. Its subtypes are consequently known as subsorts.

2.3 PLan EXecution Interchange Language (PLEXIL) 7

fmod SIMPLE−SUM i s
so r t Nat .
ops 0 : −> Nat

s_ : Nat −> Nat
+ : Nat Nat −> Nat [assoc comm] .

vars X Y Z : Nat .

eq X + 0 = X .
eq X + s (Y) = s (X + Y) .

endm

Figure 2.1: Module that declares commutativity and associativity as axioms

By using attribute declarations in Maude, the specication of operations can be sim-
plied by providing a concise and powerful way to express their desired properties, re-
sulting in more elegant and compact code.

2.3 PLan EXecution Interchange Language (PLEXIL)

PLEXIL (PLan EXecution Interchange Language) is a synchronous language developed
by NASA that provides support to autonomous spacecraft operations. Traditionally,
command sequences to be executed by spacecraft were crafted on the ground and then
transmitted to the spacecraft. These command sequences were received and executed
in the real world by a software system in the spacecraft called an executive. Execution
systems are useful when spacecraft must behave somewhat autonomously, as it must
be able to take into account the state of the environment and of the spacecraft itself. In
some missions, such as some human-controlled like the Mars Exploration Rover (MER),
command sequences were written from Earth. When the spacecraft found uncertainty
in the execution of complex commands, such as the placement of one of its arms, it was
instructed to take a picture of the environment to be analysed on the ground. With this
analysis, a new command sequence could be crafted and sent to the spacecraft to con-
tinue the mission. Evidently, this methodology was clumsy, not in small part aided by
the fact that execution languages were not too powerful, lacking functionalities such as
loops or oating point operations.

PLEXIL presents itself as a solution to this problem, being lightweight, simple, ef-
cient, semantically clear and expressive [11]. Using PLEXIL, command sequences can be
built such that a spacecraft is able to react to an ever-changing environment. This reac-
tions can be expressed in PLEXIL programs. In this way, spacecrafts would be able to
execute command sequences crafted on the ground while still reacting to changes in the
environment to protect their safety safety.

PLEXIL programs contain detailed sequences of actions known as plans that au-
tonomous systems must follow during spacecraft operations and as response to envi-
ronment changes. PLEXIL also provides an execution engine for plans called the PLEXIL
Executive, which allows for execution of plans in real scenarios [12]. The PLEXIL Execu-
tive runs aboard the spacecraft and uses some external interfaces in order to communicate
with the external system. The Executive can sense the environment using lookups, which
only read values of the state of the external system. Lookups can either be immediate via
LookupNow or continuous via the event-based LookupOnChange.

8 Background

PLEXIL nodes

PLEXIL plans are essentially a tree of execution nodes that govern the control of the
spacecraft, specifying some kind of behaviour. There are different types of nodes, which
are differentiated depending on the functionality they provide. Nodes are denoted be-
tween curly braces and may have a name (MyNode: {...}). Here are the different types
of nodes:

• List Nodes: the interior (branch) nodes in a plan. They contain a set of children
nodes of any type. Every List node is the parent node of its children nodes.

• Leaf Nodes

– Empty node: a node that does not perform any action.
– Assignment node: a node that performs a local computation and assigns the

resulting value to a variable
– Command node: a node that emits a command to an external system via the

external interface. Commands are executed asynchronously.
– Update node: a node that outputs information through the external interface

of the system.
– Library call node: a node that invokes nodes that belong to external libraries.

PLEXIL node states

An individual PLEXIL node is executed by performing state transitions that advance
them through their life cycle. A node can be in one of the following states: inactive,
waiting, executing, nishing, iteration ended, failing or nished.

PLEXIL node attributes

PLEXIL nodes have attributes that hold information about themselves. Some attributes
are related to the execution of the nodes and will be discussed along this section. They
may declare local variables that are stored as node attributes, as well as input and output
variables that are usually used for nodes to be called from other nodes (these are Library
Node Calls referenced in Section 2.3).

However, some types of nodes have special attributes:

• Command nodes

– Arguments: information passed to the command
– Command handles: the status of the execution of a command. They are re-

ceived from the environment via acknowledgements. They indicate whether
a command has:

* Been sent to the system.
* Been received by the system.
* Been accepted.
* Succeeded.
* Failed.
* Been Denied.
* Produced an error in the external interface.

A command node may fail or be exited. In that case, the external system that is
executing the command signals this occurrence to the plan via the external in-
terface in the form of a Command Abort to stop the execution of said command
node. It is accompanied by a boolean value that indicates the completion of

2.3 PLan EXecution Interchange Language (PLEXIL) 9

the abort. The ofcial PLEXIL implementation in C++ currently only consid-
ers this value to possibly be true. In Section 6.2, where Command Aborts are
introduced into the PLEXIL5 semantics, this behaviour is reproduced.

– Command result: a value that indicates the result of the command, which is
usually assigned to a variable in the plan.

– Destination variable: in-scope variable that is the target of the command.

• Update nodes

– Pairs: a list of associations of variables of the interface with their correspond-
ing values to be updated.

– Acknowledgement: A boolean value that indicates whether an update of the
interface has completed

PLEXIL node conditions

The execution of nodes is governed by a set of conditions evaluated at different points
during the execution of plans. Fulllment of these conditionsmay cause a node or its chil-
dren nodes to change its state [13]. Node conditions are a type of node attributes. While
in this section node conditions are referred to as simple true or false values, they may
also be unknown values or complex boolean expressions that depend on other variables
and results of lookups, commands and library calls. They are evaluated on an as-needed
basis.

Condition Default Value

Start True
Skip False
Pre True
Invariant True
Exit False
Repeat False
Post True

Table 2.1: Common default values for node con-
ditions

The following conditions are known as
gate conditions, are user-dened and com-
mence a transition.

• Skip Condition: controls whether
node execution is skipped.

• Start Condition: controls whether
node execution is allowed to start.

• Invariant Condition: controls whether
node execution is allowed to com-
plete, by checking that the condition
is not broken during execution. For
this reason, it may be considered a
check condition, explained later.

• Exit Condition: controls whether
node execution is exited, cancelling
it.

• End Condition: controls whether node
execution is ended,

• Repeat Condition: controls whether node
execution is repeated, simulating a
loop.

Node Type End Condition

Empty True
List, Library Call All children nished
Command Command failed or denied
Assignment True
Update Update acknowledged

Table 2.2: Default values for node end condition

Table 2.1 shows the default values
for conditions that are common between
nodes. Table 2.2 shows the default values
for End Condition.

The following conditions are known as
check conditions, are also user-dened and

10 Background

can modify whether a transition is per-
formed or not. If these conditions are not
evaluated to true, the transition they gov-
ern is not executed.

• A Precondition checked after the Start
Condition becomes true.

• A Postcondition checked after the End
Condition becomes true.

Internally, PLEXIL keeps a set of conditions for every node that are not user-dened,
but are checked during execution:

• The Invariant Condition of any of the node’s ancestors becoming false.
• The Exit Condition of any of the node’s ancestors becoming true.
• The End Condition of any of the node’s ancestors becoming true.
• Whether all children of a node are in stateWaiting or Finished (All_children_

waiting_or_finished).
• The abort for a command completing.
• Whether the parent of a node transitions into stateWaiting
• Whether the parent of a node transitions into state Finished
• Whether the parent of a node transitions into state Executing

While these conditions are common for all nodes in a plan, some may not be ap-
plicable to some types of nodes — e.g. a leaf node does not have children nodes, so
All_children_waiting_or_finished does not apply to its execution.

Node execution starts with all nodes initialized to state Inactive except for the root
node, which is initialized to Waiting. The exact execution semantics of each node type
can also differ, and can be found in [14]. The case of Update nodes, an emphasis of this
work, will be explored in detail in Section 6.1

PLEXIL nodes also hold information about the outcome of their execution in an Out-
come attribute, which is initially Unknown, but can become:

• Successwhen the node terminates normally
• Failure when a node in states Executing or Iteration Ended has its Invariant Condition

become false
• Interrupted when a node in states Executing or Iteration Ended has its Exit Condition

become false
• Skipped when a node in states Inactive or Waiting has its Skip Condition or Invariant

Condition become true, its parent’s End Condition or Exit Condition become false, or
its parent transitions to Finished.

PLEXIL node termination

Nodes terminate normally under different conditions depending on its type:

• Empty and assignment nodes: immediately when it transitions to Executing
• Command node: when an acknowledgment of the command, known as command

handle, is received.
• Update node: when an acknowledgment of the update is received.
• Library call node: when its child has nished

2.3 PLan EXecution Interchange Language (PLEXIL) 11

• List node: when all its children have nished

In the case where a node terminates abnormally and has an Outcome of Failure, the in-
formation of the reason behind the failure is also held by the node. It is initialized to
Unknown and can take one of the following values:

• Precondition failed
• Postcondition failed
• Invariant condition failed
• Parent failed
• Exit condition became true
• Parent exited

Execution of PLEXIL plans

PLEXIL plans are executed following ve relations that constitute its small-step seman-
tics. Each of these relations constitutes a set of steps in the execution of the plan. [12]

• Atomic relation: describes an individual node’s state transition
• Micro relation: describes the synchronous execution of the atomic relation for all

active nodes in a plan.
• Quiescence relation: describes the repeated run of the micro relation until comple-

tion
• Macro relation: describes the execution of a plan inbetween queries to the environ-

ment.
• Execution relation: describes the N-step iteration of the macro relation.

Figure 2.2 is a diagram that represents the execution of a PLEXIL plan. The process is
started with the execution relation, which evaluates all gate conditions for the root node.
When an external input is received — in the form of responses to lookups or commands
— a macrostep is set afoot. A cycle of quiescence is performed by repeatedly applying
microsteps. Microsteps may only modify local data in the executive, that is, local vari-
ables, or node states and outcomes. Microsteps execute the atomic relation in parallel
for all nodes, with priorities used to resolve conicting assignments [12]. A cycle of qui-
escence completes when all nodes have no enabled transitions left to perform — they
have achieved what in Section 2.1 is called their normal form. In that case, the system
has achieved quiescence. The macrostep has ended and the system reads the next exter-
nal input, beginning a new macrostep. This behaviour is known as run-to-completion
semantics. External inputs are processed in the order they arrive. Gate conditions are
evaluated and, if some nodes become active, a new cycle of quiescence is performed.

PLEXIL scripts

To simulate execution of PLEXIL plans, the PLEXIL Executive cannot provide a represen-
tation of the real world on its own. Therefore, complementary to the PLEXIL Executive
there is a Test Executive that interleaves execution of a PLEXIL plan with simulated exter-
nal events that represent the external world [16]. With the Test Executive, the scripts drive
the execution of the plan. A PLEXIL script consists of an initial state (initial-state) and
a sequence of events (script). Test execution starts by applying the initial state and ad-
vancing the executive one macrostep. Then, the sequence of events is provided to the
executive in order and one at a time. In PLEXIL scripts, initial-state denes a set
of state variables with their corresponding initial values, which represent lookups that

12 Background

Figure 2.2: Execution diagram of PLEXIL plans [15]

would appear in the interface of a plan, reading from the real word. The variables in
the state are those that may be updated from the plan via update nodes and read via
lookup nodes. The sequence of events (script) contains the denition of state variables,
results and aborts of commands, acknowledgements of commands and updates, delays
and messages sending plans to the executive. It is also possible to dene the simultane-
ous provision of any number of external inputs to the plan, which is useful to model real
systems where inputs may happen at the same time.

2.4 PLEXIL Formal Interactive Verication Environment (PLEXIL5)

PLEXIL Formal Interactive Verication Environment (PLEXIL5) is a tool that implements
a formal executable semantics of PLEXIL in Maude [17]. PLEXIL5 serves as a formal
interpreter of the PLEXIL language.

PLEXIL5 is accompanied by a tool that translates PLEXIL plans and scripts to their
representation in Maude. This translator, called plexil2maude, is implemented in Haskell
and is divided into two tools: plx2maude for plans and psx2maude for scripts. PLEXIL
plans and scripts, once compiled, are in formats .plx and .psx respectively, which are
based on XML. Therefore, parsing the compiled forms of plans and scripts is a mat-
ter of traversing the XML tree and obtaining the information into a set of internal data
structures that can be then translated into the syntax dened in the formal semantics of
PLEXIL. The transformations are based on the PLEXIL XML Schema Denition, which
can be found in any PLEXIL distribution under plexil/schema.

Additionally, PLEXIL5 also incorporates a tool called plexilog that compares the out-
put of the PLEXIL Test Executive and the PLEXIL5 Executive to nd differences between
state transitions of nodes. However, this tool was already fully implemented and is not
the focus of this work.

One of the core differences between a synchronous language such as PLEXIL and the
rewriting logic framework implemented byMaude is thatMaude’s operational semantics
is asynchronous [17]. This includes maintaining a set of operations such as assignments,
commands and updates that must not be performed during any microstep, to account
for the asynchronous execution that Maude follows and emulate the synchronous nature

2.4 PLEXIL Formal Interactive Verication Environment (PLEXIL5) 13

Figure 2.3: Execution diagram of PLEXIL plans adapted to PLEXIL5

of PLEXIL. These operations, as well as state changes, are performed at the end of a
quiescence to account for changes in values while the macrostep is still in execution.
Section 6.3 dives into the details of these kinds of operations. A full diagram that shows
how the execution diagram of PLEXIL is adapted for PLEXIL5 is shown in Figure 2.3.
The rst step is, similarly to the PLEXIL Executive, to read the environment, which is
done in order and initiates the run-to-completion execution. The internal state of nodes
are reduced in parallel atomic steps to conform a sequence of microsteps. The conclusion
of this sequence leaves the system in a state of quiescence, which conforms a macrostep.
Once the macrostep ends, the environment is updated and the cycle begins again.

Modelling the environment is also a delicate topic, since one must make sure that
events are provided to the Executive in order but simulating the non-deterministic nature
of the external environment by randomly choosing inputs when may potential simulta-
neous inputs are received. Moreover, the input generator must account for the internal
behaviour of the Test Executive, which generates empty inputs when a script ends but
some nodes in the plan are still executing, in order for them to nish execution. This
behaviour is detailed in Section 6.4. However, if a script ends with nodes waiting to exe-
cute and that cannot transition without external inputs, the plan will end in an unnished
state [16].

CHAPTER 3

Design of the solution

3.1 Design of the PLEXIL5 semantics

3.1.1. Syntax of plans

PLEXIL plan syntax in the PLEXIL5 semantics is given by a root node that recursively
contains all the hierarchy of the plan. Every node has an identier, local variable decla-
rations and a set of attributes. Depending on the node type, they have extra information
that is required by the semantics, except for the empty node, which has none.

• List nodes have a list of children nodes.
• Command nodes have information about the command they execute, which in-

cludes the name of the command, the parameters of the operation and the variable
where the result is stored.

• Assignment nodes indicate what variable they modify and the expression they use.

Figure 3.1 shows a simple translated PLEXIL plan. It shows how the Maude trans-
lation of plans is conceptually similar to how plans are compiled into .plx form, in the
sense that every node in the plan can be traced back to the root node, and every node
holds all its information. However, due to the structure and verbosity of XML, Maude
translations are much shorter and more readable. For reference, the original PLEXIL plan
is shown in Figure 3.1a.

The PLEXIL compiled plan is shown in Figure 3.1b. It denes a lookup of an external
variable flag to the environment in element StateDeclaration that returns a boolean
value, and it is made up of an empty node with the element Node that has a user-dened
precondition, where the value is obtained from executing the declared lookup in the el-
ement LookupNow. The Maude translation is shown in Figure 3.1c. This Maude module
also has an empty node, declared with the operator empty with a precondition pre that
executes the lookup flag using the operator lookupNow. However, the PLEXIL5 seman-
tics does not require the declaration of lookups, because the identiers for lookups are
evaluated at runtime by searching for the looked-up variable in the environment of the
plan. This is expanded in Section 3.1.3.

3.1.2. Internal representation

PLEXIL plans and scripts translate nodes into a set of constructors for every node type
and a set of arguments that usually includes a node identier, a set of local variables, a set
of node attributes for node conditions and as any other attributes specic to the different

15

16 Design of the solution

Boolean Lookup f l ag ;

boolean1 :
{

PreCondition LookupNow(f l ag) ;
}

(a) Simple PLEXIL plan

<?xml vers ion=" 1 . 0 " encoding="UTF−8 " ?>
<P l ex i lP l an xmlns : x s i=" ht tp ://www.w3 . org/2001/XMLSchema− in s tance "

FileName=" p l e x i l / t e s t /TestExec−regress ion − t e s t /plans/boolean1 . ple ">
<GlobalDeclarat ions >

<Sta teDec la ra t ion >
<Name>f lag </Name>
<Return>

<Name>_return_0 </Name>
<Type>Boolean</Type>

</Return>
</Sta teDec la ra t ion >

</GlobalDeclarat ions >
<Node NodeType="Empty">

<NodeId>boolean1</NodeId>
<PreCondition >

<LookupNow>
<Name>

<StringValue >f lag </StringValue >
</Name>

</LookupNow>
</PreCondition >

</Node>
</Plex i lP lan >

(b) Simple compiled PLEXIL plan

mod boolean1−PLAN i s

pro tec t ing PLEXILITE−PREDS .

op rootNode : −> P l e x i l .
eq rootNode =

empty (’ boolean1 , n i locdec l , ((pre : (lookupNow(’ f lag , (n i l a rg)))))) .

endm

(c) Simple translated PLEXIL plan

Figure 3.1: A compiled PLEXIL plan and its translated counterpart

3.1 Design of the PLEXIL5 semantics 17

node types. The PLEXIL5 interpreter performs a compilation step into an internal rep-
resentation prior to any plan execution. This step also creates any locally declared node
variables in the state of the system, more on Section 3.1.3.

Internally, every piece of information that makes up a plan is represented as an object.
A node object in PLEXIL5 is given an identier O, a type C and a set of attributes and
values ai : vi and becomes a term:

< O : C | a1 : v1, ... , an : vn>

These objects do not only represent PLEXIL nodes, but also PLEXIL5 nodes that hold
extra information of the system. The following PLEXIL5 node object types are currently
supported:

• PLEXIL node objects: represent nodes in PLEXIL
• Memory node objects: represent the memory of the system.
• Interface node objects: represent nodes that are executed asynchronously. Cur-

rently only commands that have been sent for execution and are waiting for a result,
but this work introduces update nodes under execution in Section 6.1.

Identiers in PLEXIL5 are of sort Qid, which is a type offered by the module QID,
predened in Maude. Identiers are preceded by an apostrophe (’), and consist of a non-
empty string that does not contain white spaces or the special characters ’{’, ’}’, ’(’,
’)’, ’[’, ’]’ and ’,’1. PLEXIL5 implements identiers for PLEXIL nodes and variables.
Since nodes and variables can be contained inside other nodes, the fully qualied ids are
obtained via the functions getFullyQualifiedNodeId and getFullyQualifiedVariableId,
which compute for each id its full lineage (the path in the node tree that leads to the cur-
rent node) in the form:

nodeid . parentid . grandparentid . [...] . rootid

This eliminates the possibility of name collisions in nodes and variables that have
the same name but are inside different nodes. Because the different nodes will have a
different lineage, their fully qualied ids will be different. In the case of two variables
with the same name, it enables their values in the memory to be different.

Moreover, the object representation of plan nodes allows for the specication of all
the node attributes laid out in the PLEXIL documentation, as well as all the attributes
that are internal to the Executive.

3.1.3. State of the system

The state of the system is represented as a sort named Config. It is made up of cells that
hold information about different parts of the system. Cells can be classied according to
the role they play in the description of the system.

The following cells provide internal information of the system.

• nodes: Holds information about the node hierarchy of the plan. It consists of a list
of PLEXIL node objects.

• environment: Holds information about external variables, which are those declared
as lookups.

• memory: Holds information about all the local variables of the system. For each
variable that has been locally declared it includes its current, previous and original
valuea. It consists of a list of memory node objects.

1Maude manual at https://maude.cs.illinois.edu/w/images/e/ee/Maude-3.0-manual.pdf

18 Design of the solution

The following cells are related to the communication between the system and the ex-
ternal environment.

• interface: Holds information about the external environment. It is the way that
the plan communicates with the external environment. For example, interface
can contain the result or acknowledgement of commands. In short, it contains ex-
ecuting nodes that depend on inputs from the environment. It consists of a list of
interface node objects.

• generator: Because the external inputs aremodeled according to the inputs dened
in a script, a generator holds all external inputs dened in the script and that will
be orderly provided to the system.

The following cells emulate the synchronicity of PLEXIL. Because PLEXIL node state
transitions happen in parallel but Maude transitions the system step by step, any change
to the state of a node must be recorded to be executed at the end of a micro or macrostep.

• microacts: Holds information about the actions that must be performed at the end
of a microstep.

• macroacts: Holds information about the actions that must be performed at the end
of a macrostep.

• trace: Tracks the actions that have been performed to the system.

Plans are compiled into the aforementioned state of the system via a compilation
module that takes a translated PLEXIL plan and generates the internal representations
of the node hierarchy and the memory, as well as dening an empty environment, empty
interfaces and void lists of microactions and macroactions. The trace is also empty and the
generator is provided to the compiler according to the script.

After compilation by the PLEXIL5 interpreter, the system Config is used to create a
GlobalConfig that is made up of the state of the system and also the execution step, or
operation, that the system is found in. It is declared as a sort built with the operator | in
the form Operation | Config.

op _|_ : Operation Config -> GlobalConfig .

The following operations are allowed:

• start: operation that starts the execution of the system.
• macro: operation that indicates that a new macrostep must take place selecting the

next input.
• macroND (renamed to NDChoice during the duration of this work): operation that

takes a list of possible sets of external inputs as an argument and indicates that a
new macrostep must take place by non-deterministically (randomly) selecting one
of those sets of inputs.

• quiescence: operation that indicates that the system has achieved quiescence and
a new macrostep can start.

• micro: operation that indicates that a new microstep must take place.
• stop: operation that indicates that the system has reached termination.

3.1.4. Node state transitions - The atomic relation

In the atomic relation, node state transitions are modeled according to the PLEXIL node
state diagrams, which can be found in [14]. An example diagram can be found in Figure
3.2. They are a set of diagrams that represent how every type of node may transition

3.1 Design of the PLEXIL5 semantics 19

its state, depending on the state that it starts with. They include the conditions that
determine what state the node ends in.

PLEXIL node state diagrams are represented in a visual modeling language similar
to UML2. Arrows are used to direct the ow of the diagram. They use squared boxes
with rounded edges to represent the beginning and destination states, diamond-shaped
boxes to represent the aforementioned conditions. The exiting arrows may be labeled
to indicate ow control (T for true, F for false and U for unknown), and squared boxes
with straight edges are used to represent actions that must be taken along the way, for
example, as in Figure 3.2, changing the outcome attribute of a node to failedwhen a node
fails while also changing the reason for the failure in another attribute.

To do so, operations that query the state of the system to reason about what nodes
should start or halt execution are dened. In general, these operations look at the value
of attributes of either the nodes under examination or their immediate ancestor. To ex-
emplify this behavior, Figure 3.2 shows the node state diagram for assignment nodes that
are found in state executing.

The rst condition requires evaluation of the exit condition of the parent of the node
under examination Q. Then, a function ancestorExitTrue? is dened such that it recur-
sively traverses the node tree to nd the parent of Q and evaluates its exit condition, held
in the attribute exitc:_. Conveniently, the ancestor of Q can be easily found due to the
qualication of every node as a concatenation of all nodes in the node tree, so, knowing
that qualier of Q will be of form Q . parentofQ, Maude can use pattern matching to
efciently nd parentofQ and extract exitc:_.

Additionally, the last condition to check has to do with the post condition of Q. It is
easily accessible from the attribute postc:_, and can be obtained by matching the pattern
postc:_with the attributes of Q. To evaluate its value, a function eval is dened such that
it transforms whatever condition is stored in, in this case postc:_, and obtains a boolean
value true, false or unknown.

A full implementation of the function that takes care of the transitions of assignments
nodes from executing in the atomic relation can be found in annex B.0.1 as an example of
what atomic relation functions look like. The function uses pattern matching to execute
the transition of node A, of type and status executing by obtaining a node that matches
the pattern < A : assignment | status: executing, ... >. From there, the function
follows the corresponding node state diagram querying the appropriate conditions and
setting any required actions.

Actions are not performed immediately, but are instead set to be performed at the
end of the current micro or macrostep, as outlined in Section 2.4. To signal that, they
are added to the microacts or macroacts cells respectively. These actions may include:
setting the outcome of node A with function setOutcome, setting its status with function
setStatus or undoing an assignment using function undoMem. The rst two update the
outcome and status attributes in the node A and are performed at the end of themicrostep,
and the latter modies the memory cell at the end of the macrostep.

However, in the current PLEXIL5 semantics not all operations are implemented cor-
rectly and some node transitions have changed and need xing, as is the case with com-
mand nodes, whereas transitions for update nodes are not implemented because the node
type was not supported.

2UML (Unied Modeling Language) is a standardized visual modeling language used in software engi-
neering to depict, specify, construct, and document the artifacts of a software system. It provides a set of
graphical notations for representing the structure, behavior, and interactions of software systems. See more
at https://www.omg.org/spec/UML/2.5.1/About-UML/

20 Design of the solution

Figure 3.2: Node state diagram of assignment nodes in state executing

Every node state diagram is represented in a function that performs the state transi-
tion in PLEXIL5. State transition function only act on active nodes. Nodes are deactivated
inside a given microstep when they perform one state transition so that no node transi-
tions twice in a microstep.

3.1.5. The micro relation

The state transition operation micro signals the start of a microstep, that is, the simulated
parallel execution of the atomic relation on the nodes of the system. The system then tries
to transition nodes in the following order:

1. Inactive nodes
2. Waiting nodes
3. Executing nodes
4. Failing nodes
5. Finishing nodes
6. Nodes in state Iteration ended
7. Finished nodes

3.1.6. Launching a macrostep

A macrostep is initiated by the interpreter at the beginning of the execution of the plan
or when the system has achieved quiescence. It then uses the generator cell to generate

3.2 Architecture of the plexil2maude tool 21

the next input from the environment, and subsequently updates the generator. The input
is used to update the environment cell for lookups, the interface cell for command
handles and the memory cell to update local variables according to command results.

3.2 Architecture of the plexil2maude tool

The plexil2maude tool has already been introduced in this report. It is a tool that translates
PLEXIL plans and scripts into their Maude equivalent under the PLEXIL5 semantics. It
has been developed in Haskell. Since compiled PLEXIL plans and scripts follow an XML
specication, the tool uses the xml-conduit package3, which allows the traversal of an
XML tree by using the concept of a cursor, which points to an element of the tree and by
which one is able to obtain its information. Moreover, the tool uses the pretty package4

that provides a set of functions that allow to write out texts in a consistent form, also
known as prettyprinting. It also uses the text package5, which adds support for Unicode
text.

To build the tool, the Cabal framework is used. Cabal is a build system and package
manager for Haskell [18]. It provides a way to build, test and manage Haskell packages,
as well as manage dependencies between packages. Cabal reads from a le with exten-
sion .cabal, where executable commands, test-suites and dependencies of the project are
specied. To build the tools, the following command is used from the root directory of
the plexil2maude project — namely plexil2maude:

cabal v2-install --overwrite-policy=always 6

This command tells Cabal to build any specied packages and symbolically links their
executable les into the default install directory ~/.cabal/bin. Once made sure that the
install directory is in the PATH, one can execute the plx2maude and psx2maude from any
directory.

What follows is a detailed overview of the architecture of the tool. For reasons of
inherited legacy code, plexil2maude is divided into two parts: plx2maude, which handles
the translation of PLEXIL plans; and psx2maude, which handles the translation of PLEXIL
input scripts.

3.2.1. Architecture of plx2maude

The tool consists of a Main.hs le that launches a Parser.hs le that contains all the
mappings for XML elements that compose a compiled PLEXIL plan. The main le rstly
reads the .plx plan and takes a cursor pointing to the root node of the XML hierarchy. It
then starts the translation process by calling a function elementVisitor in the parser le.
This function analyzes the type of node it is currently processing by obtaining its tag and
applies the corresponding translation by calling auxiliary functions designed to process
each element separately. If the PLEXIL plan XML node requires it, the function is able to
be called recursively in order to process the children elements.

The rst XML node that the translator nds is the root node, called PlexilPlan, which
the translator processes creating the header of theMaude plan, by dening the planmod-
ule and creating the structure that will contain the root node of the plan. Then, the root

3See https://hackage.haskell.org/package/xml-conduit-1.9.1.2/docs/Text-XML.html for details
4https://hackage.haskell.org/package/pretty-1.1.3.6/docs/Text-PrettyPrint.html
5See https://hackage.haskell.org/package/text-2.0.2/docs/Data-Text.html for details
6See https://cabal.readthedocs.io/en/3.4/cabal-commands.html for details on the v2-install command

22 Design of the solution

node contents are processed and the elementVisitor function is called again if the root
node contains children nodes.

The parsing functions are dened according to the PLEXIL plan XML Schema. This
schema denes every element that can appear in the XML tree with its attributes and
sub-elements.

As evidenced by the lack of an internal data representation for the elements of the
XML tree, the architecture of plx2maude is rather simple. This is a result of the legacy
code inherited from previous versions of the tool, and there are plans to refactor the code
into one that accounts for an internal representation in order to ease future development.

3.2.2. Architecture of psx2maude

In contrast to plx2maude, the psx2maude tool has a slightly more complex architecture,
by dividing the translation process into two parts: one that parses the XML tree into an
Abstract Syntax Tree (AST)7 and another that prettyprints the AST into the Maude code.
An AST is a data structure that represents source code in the form of a tree, containing
only the information related to each construct that occurs in the code. The AST of a
PLEXIL script starts from the root element with the PLEXILScript tag. This node has two
children: the initial state and the script itself, as explained in Section 2.3).

In terms of the structure of the psx2maude tool, the parsing functions and the AST
types denition is held in one Haskell le, and the prettyprinting functions are dened
in another. The execution starts with a Main.hs module that reads the .pst le and
executes the parsing functions to obtain the internal AST data structure in the module
PLEXILScript.hs. Then, it executes the prettyprint functions in themodule PrettyPrint.hs
to obtain the Maude code. The prettyprint functions rst create the header for the Maude
script by dening the script module and, additionally, dene the input generator that
holds the external inputs dened in the script. Then, they may traverse the AST and
append to the le the correct translated Maude code.

The parsing of the XML tree into the AST is performed using a technique known as
pickling [19]. This technique provides a way to serialize and deserialize data structures
by composing functions that are able to transform fromXML to the internal data structure
and vice versa. In this way, an XML element made up of sub elements can be processed
independently.

In reality, the way that the plx2maude parser takes the XML tree and converts it into
Maude code is very similar to how psx2maude converts to AST and then to Maude code.
However, the latter does it in a more structured manner and, thus, its code becomes more
human-readable and, by extension, more maintainable and extensible. As mentioned, fu-
ture plans for the plexil2maude tool include a refactoring of plx2maude to separate parsing
from prettyprinting.

7An abstract syntax tree is a hierarchical representation of the structure of a program’s source code. It
captures the syntactic relationships between different elements of the code, such as expressions, statements,
and declarations. See more in https://courses.cs.washington.edu/courses/cse401/08wi/lecture/AST.pdf

CHAPTER 4

Methodology

A development methodology that utilizes GitHub1 has been implemented to streamline
the software development process and enhance task management. The PLEXIL5 project
has had different contributors working under this methodology, coordinated by Marco
A. Feliu. The methodology follows a set of steps, including:

1. Creating an issue (a task)
2. Assigning the task
3. Creating a pull request
4. Reviewing the changes
5. Merging the changes into the development branch

This approach has proved to be highly benecial and has positively impacted the
project in several ways.

The rst step in the methodology is creating an issue. GitHub provides a convenient
platform for creating and tracking issues, allowing contributors to document and discuss
specic tasks, bugs, or features. By creating issues, the project’s requirements and goals
can be clearly dened. Issues centralise the information of the project, enabling a better
organization between project contributors.

Once an issue is created, contributors can arbitrarily assign it to themselves to im-
plement. This step promotes individual ownership and accountability. By allowing con-
tributors to choose the issues they want to work on, the methodology empowers them
to contribute to the project based on their expertise and interests. This self-assignment
approach increases motivation and engagement among contributors, resulting in a more
productive and efcient development process.

After completing the implementation, the next step is to create a pull request (PR).
Pull requests are a formal petition for changes implemented by a contributor to be in-
troduced to the main code of the project, requiring another contributor to review the
changes. By creating a PR, the changes are isolated, and the review process can begin.
This ensures that all code changes are thoroughly examined before they are merged into
the main development branch [20]. Pull requests serve as a mechanism for collaboration,
knowledge sharing, and maintaining code quality.

The review process plays a crucial role in this methodology. It involves a designated
reviewer who carefully examines the changes made in the PR, providing feedback, sug-
gesting improvements, and ensuring adherence to coding standards. Reviews enhance

1GitHub is a web-based platform that allows developers to store, manage, and collaborate on code repos-
itories. It provides version control tools, issue tracking, and integration with popular development work-
ows. GitHub facilitates open-source projects and serves as a central hub for developers to share and con-
tribute to software projects.

23

24 Methodology

the overall quality of the codebase and help catch potential bugs or issues early on. Given
that the project has been overseen by Marco A. Feliu, he has served as the reviewer of the
PRs that have been opened during the duration of this work. By leveraging his experi-
ence in the eld, he has been able to pinpoint any issues unaccounted for. His expertise
has proven vital for the development of the project.

Once the changes are approved, they are merged into the main development branch.
This approach minimizes conicts and ensures that the main branch always contains
functional and reliable code, while allowing contributors to independently work on new
features.

The implementation of this GitHub-based methodology has signicantly streamlined
the development process in the project. Furthermore, the PR and review process has been
instrumental for maintaining code quality and catching potential issues early on. The in-
volvement of Marco A. Feliu as a reviewer has ensured that changes are thoroughly eval-
uated, and feedback is provided, leading to improved code quality and overall project
success.

Figure 4.1 shows an example of the life cycle of a feature in the PLEXIL5 project. Fig-
ure 4.1a shows an GitHub issue. It was opened with a description and self-assigned by
a contributor. When an issue is opened, it may be assigned to a development branch
where the changes occur. A branch was opened and it can be seen in the Development
section, and is named after the issue, e.g., 39-unsuspend-update-nodes. When the con-
tributor makes changes, they may open a linked pull request to review the changes. The
PR is shown in Figure 4.1b, where the PR was rstly linked to the issue, followed by
the implementation via commits. Then, it was assigned to a reviewer, Marco A. Feliu,
who approved the changes and, nally, merged the branch 39-unsuspend-update-nodes
to the main development branch dev. The issue, linked to the PR, is successfully closed
with the resolution of the linked PR.

25

(a) Issue that informs of the feature to implement

(b) Pull request that resolves the issue

Figure 4.1: Life cycle of a feature under development in the PLEXIL5 project

CHAPTER 5

Workow

5.1 A test-driven approach

The development of the contributions described in this report have been guided by the
technique of Test Driven Development (TDD) [21]. TDD advocates for a work ethic where
the minimal unit of work is a test for a given piece of code, where the success of the test
is the foremost priority. When tackling a new requirement, TDD indicates that before
writing a single line of code, a test for an ideal version of a piece of code must be written.
The test will assume an ideal code interface and an ideal code behaviour. The test must
fail before the functionality is implemented. This technique allows tackling an herculean
task by dividing it into small tasks that can be tested independently.

TDD builds up a suite of unit tests that grows with every functionality that is imple-
mented, where these tests are very often run, to ensure that no change breaks any of the
code that was previously written. Unit tests are pieces of code that validate a particular
behaviour within the code. Within TDD, the tests written before implementing the function
are unit tests.

TDD can be implemented in development by following a simple set of steps, referred
to as the "Red-Green-Refactor" cycle [22]:

1. Red — Write a failing test: Write a test that fails. This test should be focused on a
specic piece of functionality to be implemented.

2. Green — Write the simplest code to make the test pass: Write just enough code to
make the failing test pass. This code should be the simplest possible solution that
satises the test.

3. Refactor — Refactor the code: Improve the code without changing its behaviour.
This may involve simplifying the code, removing duplication, or improving its de-
sign.

4. Repeat the cycle: Once the code has been refactored, the cycle can be repeated by
writing a new failing test and then writing the code to make it pass.

This cycle encourages to focus on writing tests rst, which helps to ensure that the
code works as intended and is maintainable over time. The cycle also encourages contin-
uous refactoring of the code, which helps to keep the code clean and easy to maintain.

For example, for a system that works with units of length that must:

a. Allow for the addition of two lengths
b. Allow for the conversion from miles to kilometers

27

28 Workow

This brief explanation assumes familiarity with Object-Oriented Programming. A pro-
grammer would:

1. Select one of the use cases, e.g. a.
2. Create a test that assumes that there is a function that works ideally in adding

two lengths. For example they can assume that there is a class Length with a
eld value and a eld unit. They can then assume that a method with header
addition(Length a, Length b) exists and that an addition of an object of class
Lengthwith value = 1 and unit = ’km’with an object of class Lengthwith value = 3
and unit = ’km’will lead to a resulting object of class Lengthwith value = 4 and
unit = ’km’. They write up a test with these conditions.

3. Run the test and verify that it does not compile.
4. Implement the interface of the class Length and the method addition.
5. Run the test and verify that it fails. Failure of a test is a success because the interface

of the functionality under test is correct.
6. Implement the function addition for the test to pass. This can be anywhere from

the fully implemented function to a trivial function that returns exactly what the
test expects.

7. Run the test and verify that it passes. A passing test without context does not imply
that a function is correct. The programmer must now refer to the requirements of
the system and come up with new test cases that assume that everything works
ideally.

8. Modify the function addition to cover all test cases. Every time a modication is
performed, the test suite must be run to verify its behaviour.

In this case, the programmerwill realize that testing for addition to cover cases where
lengths in kilometers and miles are added, they will need to implement the conversion
use case b.. To do this, they will follow the same approach as for the multiplication
functionality, creating basic tests and adding more test cases to cover the requirements.
When b. is implemented, they can continue with a. to cover cases with mixed units. The
main benet of this approach is that it places the use cases of a system at the center of
development, where the programmer approaches a problem from the top down: what
the system should do rst and then how it should do it.

TDD has been applied to PLEXIL5 in both the extensions to the plexil2maude tool as
well as the executable Maude semantics. Each section of PLEXIL5 has its own set of tests
that have grown organically as new functionality has been implemented. A discussion
on the organisation of each section follows.

5.1.1. TDD in plexil2maude

The plexil2maude tool has been written in Haskell. It uses the framework Tasty to provide
the required testing functionality, with support for unit testing via the package Tasty-
HUnit. HUnit is a testing framework based on the xUnit family. Testing frameworks
based on the xUnit family are based on a common architecture that includes a test runner,
test suite, and test case classes [23]. Tasty-HUnit is also based on this architecture, where:

• defaultMain is the function used to run the test suite and generate the test results
(the test runner).

• testGroup is the function used to create a test suite. It takes a name for the test suite
and a list of test cases, which can also be other suites created with testGroup.

• testCase is the function used to dene a test case. It takes a name for the test case
and an assertion function that performs the actual test.

5.1 A test-driven approach 29

Tes ts
PSX2Maude t e s t s

Pre t ty P r in t e r
Command

Command . . . (trimmed for space) :
‘ FAIL

t e s t s /PSX2MaudeTests . hs : 1 2 3 :
i s not pre t ty pr inted as
expected : commandResult (’ ac4 , n i la rg , array (val (1 , 1) # val (2 , 2)

val (3 , 3)))
but got : commandResult (’ ac4 , n i la rg , array (val (1 . 1) # val (2 . 2)

val (3 . 3)))
Use −p ’/Command {cmdName = " ac4 " , cmdParams = [] , cmdResult

= Resul t { unResult = TypedValue { unTypedValue =
TVRealArray [1 . 1 , 2 . 2 , 3 . 3] } } , cmdType = PXRealArray }/ ’ to
rerun t h i s t e s t only .

1 out of 192 t e s t s f a i l e d (0 . 1 7 s)

(a) Unit tests fail in plexil2maude

All 192 t e s t s passed (0 . 0 3 s)

(b) All unit tests pass in plexil2maude

Figure 5.1: Testing in plexil2maude

The denition of test suites and test cases create a tree-like structure for organizing
test cases, conveniently reected in the type TestTree.

In plexil2maude, a set of tester functions are dened that take a function with a given
type signature and a tuple of the form (test_name, input_string, expected_output_string)
and return a test case that, under the provided name, asserts that the expected output
matches the produced output generated applying the function to the input. Different
tester functions are dened to account for the different type signatures of the functions
to be tested.

To run the test suite, the following command is used using Cabal as explained in
Section 3.2:

cabal new-run test -- --hide-successes --ansi-tricks=false

This command tells Cabal to run the test-suite called "test", with options specied af-
ter the ’--’. The --hide-successes option tells Tasty to only show the results of failed
tests, while the --ansi-tricks=false option disables some ANSI escape code tricks that
Tasty uses to make its output more colorful. The output of the command is the set of tests
that have failed, and provides their expected and actual outputs. If all tests pass, the out-
put is the number of tests passed. This behaviour can be seen in Figure 5.1, where a unit
test fails because a oating point number is parsed with an incorrect decimal separator.
This error is fabricated for the purposes of this explanation and resolving the issue leads
to correct execution of the tests.

30 Workow

5.1.2. TDD in the PLEXIL5 semantics

Unit testing

Maude does not have any testing framework based on the xUnit family as Haskell has.
Therefore, a script must be used to run the tests. Despite the lack of a testing framework,
the tests are organized in a similar manner to xUnit-like frameworks:

• The concept of a test runner is covered by a set of Maude modules headed by the
module TEST-RUNNER in the le test-runner.maude, which denes the functions
that the test cases will be able to use and species how the test cases are reduced.
The test runner operates by constructing a test suite using the syntax it denes,
running each test, and reporting the results.

• The test-cases are dened according to the syntax specied by the TEST-RUNNER
module. As in xUnit-like frameworks, test cases take a name, an input and an
expected output.

• Test suites are built using an operator ’_+_’ that aggregates test cases.

Tests are run by reducing a Maude term that aggregates all test cases using the se-
mantics specied in the TEST-RUNNERmodule. This behaviour is specied in a le named
suite.maude which is abstracted by a le named runSuite.maude. Therefore, to execute
the test suite, the contents of runSuite.maudemust be executed.

To do so, a bash script runTests.sh has been dened that runs the le from the com-
mand line and refreshes everytime a .maude le changes to account for changes in the
code or in the test base. That way, a developer can work on the semantics and check the
status of the test suite in a terminal running runTests.sh.

The output of the script is, similarly to plexil2maude, the set of tests that have failed,
also providing the expected and actual outputs. When all tests pass, an output void of
errors is shown.

Acceptance testing

As the other half of the PLEXIL5 testing coin, there is acceptance testing. While unit
testing allows testing for individual functions, acceptance testing is a form of testing that
allows for testing of the whole system all together[24]. In a traditional software project,
acceptance tests serve to assure the customer of the product that the system they receive
does what is required of it. In some sense, acceptance tests mark the end goal of a project.

In line with this way of thinking, PLEXIL5 implements a set of acceptance tests. How-
ever, they differ from the traditional denition of an acceptance test. Since there is no cus-
tomer to ship the product to, and the requirements of the semantics are that of the ofcial
PLEXIL executive, the acceptance test suite is composed of a set of tests that employ all
parts of the system — that is, the translation of plans and scripts using the plexil2maude
tool, the execution of the tests using both the PLEXIL Test Executive and the PLEXIL5
semantics and the comparison of their outputs using the plexilog tool.

These tests are dened under the benchmark directory. They are composed of a single
plan and a set of 12 scripts that make the plan behave differently. These tests are executed
using a custom bash script runAT.sh. The output of this script is whether the test plan
differs in execution from the PLEXIL Test Executive.

The tests are used as acceptance test by being passed somewhat often when some
feature is implemented. Since they use features that were already implemented in the
semantics, they are a good indicator that the system behaves as expected.

5.2 Use of PLEXIL regression tests as PLEXIL5 acceptance tests 31

Boolean Lookup f l ag ;

boolean1 :
{

PreCondition LookupNow(f l ag) ;
}

Figure 5.2: boolean1.ple PLEXIL plan

5.2 Use of PLEXIL regression tests as PLEXIL5 acceptance
tests

The development of new features of PLEXIL5 translates into adding support for PLEXIL
functionalities that were not considered in the current PLEXIL5 version. The function-
alities that are considered to add support for are part of the ofcial PLEXIL Executive
regression test suite.

The concept of regression testing has been introduced in Section 1.1. As a reminder,
the regression test suite is provided with every PLEXIL distribution. The PLEXIL func-
tionalities they test for are the target functionalities that PLEXIL5 must correctly imple-
ment in order to consider that it is semantically complete with respect to the ofcial
PLEXIL Executive.

While during the development of PLEXIL the regression tests serve its purpose as
regression testing, in PLEXIL5 they take the role of acceptance tests. That is, the func-
tionalities they test for become requirements for PLEXIL5, where acceptance is dened
as equivalent state transitions with the same tests run with the PLEXIL Test Executive.

Figure 5.2 shows a test plan from the regression test suite as an example to illustrate
the equivalence between the regression test suite and the requirements of PLEXIL5. The
plan is called boolean1 and it:

1. Declares a lookup for an environment variable called flag of type Boolean.
2. Declares an empty node with name boolean1 with a user-specied precondition

that is equal to performing the lookup on flag. If the variable flag in the environ-
ment is true, the node will execute. Otherwise, it will not.

Although an apparently simple plan, boolean1 denes various requirements for PLEXIL5.
According to boolean1, PLEXIL5 must support:

• The declaration of external lookup variables for the plan.
• The use of lookup expressions to query the environment.
• The type Boolean
• Nodes of type Empty
• User dened node preconditions
• The execution of lookups to the environment

These are a number of requirements that arise from a simple plan. However, most
functionalities in plans are shared or related – such as empty nodes, the type Boolean
and lookup expressions –, which means that implementing support for them to satisfy
all the requirements of one plan will satisfy the same requirement for all subsequent
plans. The case is the same for scripts, although they do not overlap between plans and
scripts. That is, the set of all the requirements of all the plans is different from the set of all
the requirements of all the scripts. This is why the plexil2maude tool is divided between
plx2maude for plans and psx2maude for scripts.

32 Workow

<PLEXILScript >
<Sc r ip t/>

</PLEXILScript >

(a) empty.psx

mod INPUT i s
pro tec t ing PLEXILITE .
op input : −>

External InputGenerator .
eq input = sequenceGenerator (

noExternal Inputs
#
n i lE Inpu t sL i s t

) .
endm

(b) empty.maude

Figure 5.3: Empty/trivial script to use with plans that do not require one

To simplify the amount of requirements, the requirements are not listed as the indi-
vidual functionalities of each regression test, but as the regression tests themselves. Thus,
in development, one does not set out to implement, following the example set by Figure
5.2, The declaration of lookup variables for the plan by itself. Instead, they set out to imple-
ment all the required functionalities to support the boolean1 test, both in the plan and its
corresponding script.

The regression test plans may be accompanied by a script with the same name that
guides the execution of the plan. However, this is not always the case. For simpler plans,
which do not require interaction with the external environment (dened in scripts), an
empty script is used. It is a trivial script. In the PLEXIL Test Executive, the plexiltest
command has an input parameter -p for the plan and an optional parameter -s for the
script. This last parameter is optional because of the aforementioned cases where a plan
does not need a specic script to guide its execution. In those cases, the parameter can be
left empty and the PLEXIL Text Executive will run the plan using an empty, trivial script.
This behaviour is replicated in PLEXIL5 by defaulting to an empty script empty.maude
that is translated from the empty script empty.psx. The content of this script can be
observed in Figure 5.3. The compiled PLEXIL script in Figure 5.3a declares a self-closing
tag <Script/> that denotes that there are no external inputs, which is reected in the
translated Maude script in Figure 5.3b.

5.3 Development workow

This section outlines how new PLEXIL5 features are developed. Section 5.2 explains how
all new features stem from trying to make tests from the PLEXIL regression test suite
behave identically when executed with PLEXIL5 as they do when executed using the
PLEXIL Test Executive. Therefore, the rst step is to execute a test in both interpreters
and compare the results, using the runRegression script.

5.3.1. The runRegression script

runRegression is a script that has been developed with the goal of automating the pro-
cess of comparing the state transition trace of a plan with a script executed both in the
ofcial PLEXIL Test Executive and the PLEXIL5 Interpreter. To do this, it makes use of the
tools plexil2maude to translate the plans and plexilog to compare the results of the trace. It
has several ags, but most importantly for these purposes it has a ag -t that allows the
user to specify what particular test to compare.

5.3 Development workow 33

The output of the script is a list of the differences in the trace of both executions of a
plan under a script, or EQ if they are equal. When there is a parsing error, a message that
reads ’bad token’ is shown.

runRegression has been developed in Python1. Python is a programming language
commonly used for scripting due to its readability, versatility and easiness to develop in.
It is not compiled, which allows for rapid development and prototyping, as scripts can
be written and executed directly. It provides a wide range of modules and libraries to
make use of pre-existing code to enhance scripts. It is also multi platform, so it can be
executed in any system with a Python distribution.

The runRegression script was discussed to be developed in Bash2. Bash is a com-
mand language and shell for Unix-like operating systems, providing a scripting envi-
ronment to automate tasks, execute commands, and interact with the operating system
through a command-line interface. Bash was considered due to its integration with the
underlying shell environment of Unix-like systems, leveraging the power of terminal
commands to include in scripts. It is also portable and very efcient, and readily available
in all Unix-like systems by default. However, Python offers much faster development
due to its readability. Bash, on the other hand, is very succinct and technical. Python is
also much easier to debug and offers great exibility with its libraries. It is also able to
use terminal commands like those in plexil2maude and plexilog. Therefore, Python was the
optimal choice to develop a script to automate PLEXIL execution logs.

5.3.2. Parsing errors

When the runRegression script nds a parsing error and shows the message ’bad token’,
what follows is the name of the XML element that the PLEXIL5 interpreter did not rec-
ognize. Often, these kinds of errors arise when the parsed plan or script code is not up
to specication with the PLEXIL5 semantics. These may include wrong function names,
missing arguments, etc. However, the most common occurrence during the develop-
ment of this work was that of unsupported elements both in the plexil2maude tool and
the PLEXIL5 semantics. Detecting these missing elements is straight-forward because
the default behaviour for unsupported elements in plexil2maude is to print the element
literally. Therefore, the missing element can be identied and its implementation both in
plexil2maude and the PLEXIL5 semantics can commence.

To exemplify this behaviour, the following extract shows how an unsupported node
with tag NEBoolean would be translated using plexil2maude. The NEBoolean tag has
two numerical child elements, which are supported and represented using the const
operator. The NEBoolean tag is printed literally and without the constructs to represent
the equivalent element in the PLEXIL5 semantics.

NEBooleanconst(val(true)),const(val(false))

5.3.3. Debugging a plan

When differences in the trace of execution are found, the next step is to build a runner to
debug the code. The debug runner imports the translated plan and script and starts the
Maude rewrite engine with the root node of the Maude plan. In reality, the debug runner
is just a copy of the runner that the runRegression script generates for the input plan and

1https://www.python.org/doc/
2https://www.gnu.org/software/bash/manual/bash.html

34 Workow

script. Note that what the debug runner does is the same as the runner, but it is better
not to modify the latter since it is overwritten with every runRegression execution.

The difference between the two runners is that, in the debug runner, Maude com-
mands are used to closely follow and examine the execution traces. Mainly, the trace
and break commands.3

• The trace command provides detailed information of every rewriting step. It is
enabled with set trace on To provide the information only when some operators
are rewritten, trace select <operator> can be used. This command is especially
useful to analyze the state of the modeled system, to examine nodes, interfaces, the
memory, etc.

• The break command sets break points along the code. It is enabled using set break on.
To select the operator to break on, the break select <operator> command is used.
Break points are especially useful when the operator that may be incorrectly de-
ned is known. When a break point is reached, the state that reached the break
point can be consulted with the command where The command step is used to
proceed with the execution step by step. The execution can be resumed using the
command resume.

As mentioned, the debugging process involves analyzing the execution trace in detail
to detect inconsistencies in the PLEXIL5 semantics. This often proves to be an arduous
task and consumes most of the time in developing the PLEXIL5 semantics. However, the
test-driven approach explained in Section 5.1 and used during the project means that the
number of instances instances where the debugging process was needed was reduced.
Even then, cases where it was needed arose from insufcient test cases.

This situation is suboptimal. However, it is enabled by the fact that the semantics of
PLEXIL are not clear cut, and the documentation does not inquire into most procedures
with enough detail. These instances beneted from the experience that the tutor under
who this project was developed, Marco A. Feliu, had working with PLEXIL, and was able
to explain them in detail.

3https://maude.cs.illinois.edu/w/images/e/ee/Maude-3.0-manual.pdf

CHAPTER 6

Extending the semantics of
PLEXIL5

The following section examines the contributionsmade to the semantics of PLEXIL5. This
will involve an in-depth discussion of the innovative approaches and insights that have
played a pivotal role in extending the behaviour, expressive power, and reliability of the
tool.

The project has seen contributions in ve areas. First andmost important has been the
implementation of update nodes, followed by the completion of the semantics of com-
mand nodes. These two types of nodes are used throughout the regression test suite.
Their accurate implementation aids in executing tests that uncover new required fea-
tures. Additionally, macrostep short-circuiting has been incorporated to align with the
execution semantics of the PLEXIL Test Executive. Furthermore, input generation has
been revamped to consider nodes that are still running when a plan exhausts external
inputs. Lastly, this section also encompasses other specic features that, though smaller
in scale, were implemented to ensure correct execution of regression tests.

6.1 Adding Update Nodes to PLEXIL5

The introduction of update nodes stands out as a signicant contribution to the semantics
of PLEXIL5, particularly due to its broad impact on the functional scope of the PLEXIL5
project. Previous versions of PLEXIL5 did not incorporate this node type, possibly be-
cause it was beyond the project’s initial scope or because the concept of update nodes
did not exist at the time of development. Determining the exact reason is challenging
since neither the PLEXIL documentation1 nor the project’s changelog2 species the tim-
ing of update nodes’ introduction. Nevertheless, the documentation does currently offer
valuable insights that have guided the implementation of this feature.

Update nodes have been explained in Section 2.3. As a reminder, update nodes mod-
ify information of the interface of the system. They have a pairs attribute that holds
associations of variables of the interface with their corresponding values to be updated
and a boolean acknowledgement attribute that indicates whether an update of the inter-
face has completed.

The implementation of the update node type has the format followed by other node
types in the sense that it extends the node denition that all other node types have. A
constructor update has been dened such that it accepts four arguments: an identier for

1https://plexil-group.github.io/plexil_docs/PLEXILLanguage/PLEXILReference.html
2https://github.com/plexil-group/plexil/blob/develop/ReleaseNotes.md

35

36 Extending the semantics of PLEXIL5

the node, the declaration of local variables of the node, a set of node attributes and the
list of pairs of variable-value to update the interface. This constructor creates an element
of sort PlexilUpdate, which is a subsort of Plexil, a general type to represent PLEXIL
nodes.

op update : Identifier LocalDecls AttributeSet List{Pair} -> PlexilUpdate .

The sort Pair has also been introduced as an association of a variable identier and
an expression that represents its associated value. Expressions are a super-type that all
types of expressions inherit, making use of polymorphism to improve the modularity,
readability and extensibility of the code by writing functions that apply to any kind of
expression.

op pair : Qid Expression -> Pair [ctor] .

Along with the update node type, an update acknowledgement updateAck has been
dened according to Section 2.3. It is an external input that carries an Ack value associated
to a node identier.

op updateAck : Identifier Ack -> UpdateInput .

The sort Ack is an abstraction of a boolean value. This decision was made – instead
of using a simple boolean value – to provide a self-descriptive representation of update
acknowledgements, as well as for the sake of readability.

subsort Bool < Ack .

In the compilation step, the node is transformed into the internal object notation.
It assigns the provided node identier, assigns the type update, sets the pairs attribute
with the provided list and sets the acknowledgement attribute as false for not completed.
It also adds the default node conditions according to Table 2.1 and enriches them by
conjunctively applying the given termination condition with the receipt of an update
acknowledgment. as illustrated in the implicit end conditions Table 2.2.

This means that an update node translated as:

update(
’anId,
nilocdecl,
endc: const(val(false)),
pair(’taskId,var(’waypointId)) pair(’taskId2,var(’waypointId2))

)

Would be compiled into:

< ’anId : update |
status: inactive,
outcome: none,
active: true,
suspended: false,
pairs: pair(’taskId,var(’waypointId)) pair(’taskId2,var(’waypointId2)),
startc: const(val(true)),
skip: const(val(false)),
pre: const(val(true)),
inv: const(val(true)),
exitc: const(val(false)),
repeatc: const(val(false)),
post: const(val(true)),

6.2 Fixing the semantics of Command Nodes in PLEXIL5 37

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−UpdateTest .maude−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

plex i log −d i f f : ParsingMaudeException " \" s td in \" (l i n e 1 , column 1) :\ nunexpected
\"W\"\nexpecting white space or macro step "

Figure 6.1: Test UpdateTest fails to execute because update nodes are not implemented

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−UpdateTest .maude−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

EQ

Figure 6.2: Test UpdateTest executes correctly

endc: const(val(false)) and hasRcvAck?(’anId . ’aRootId),
ack: false

>

The nilocdecl constant is of sort LocalDecls and means that the node has no locally
declared variables. Once the node is dened, the next step is to extend the semantics
of the atomic relation to account for the introduction of the new nodes. Atomic relation
functions as explained in Section 3.1.4 follow the node state transition diagrams that can
be found in [14]. The full implementation and node diagrams are omitted due to their
excessive length.

For update nodes, the only atomic relations that behave differently from other nodes
are the transitions from executing and failing, linked to the necessity to check whether
the update has been executed, either explicitly in the case of the state failing or as part
of the end condition in the case of the state executing. To solve this problem, a function
hasRcvdAck? is dened that checks the value of the ack attribute of the node, which is
updated via the interface. When an update is executed – that is, the update node enters
the state executing – a node in the interface cell is created that signals that the update is
executing (a update-on-execution node). This node holds information about the update
acknowledgment – the just mentioned ack attribute.

There are several test plans in the regression test suite that make use of the update
node. As an example, there is a test named UpdateTest used to specically test the be-
haviour of updates. Figure 6.1 shows how the plan did not parse prior to the implemen-
tation of the node, while Figure 6.2 shows how, after their implementation, it executes
correctly.

6.2 Fixing the semantics of Command Nodes in PLEXIL5

The other most signicant contribution to the PLEXIL5 semantics entails rectifying the se-
mantics of the command node. The concept of a command node existed in the semantics.
Yet, the semantics had not been fully implemented, similarly to update nodes, because
their specication had changed with recent versions of PLEXIL.

The rst issue with the command node semantics was related to the node state condi-
tions, since the semantics did not reect the special end condition that command nodes
have, as noted in Table 2.2. Thus, the compilation of command nodes has been aug-
mented through the enhancement of the end condition, adding logical disjunction with
the helper function cmdHandleIs?, which checks whether the command handle of the
node with the provided identier is denied (CommmandDenied) or has failed (Com-

38 Extending the semantics of PLEXIL5

[nodes :
< ’myNode : command | [. . .] , s t a tu s : executing , [. . .] >]

[i n t e r f a c e :
< ’myNode : command−on−execut ion | [. . .] , aborted : f a l s e , [. . .] >]

Figure 6.3: A command nodemyNode enters execution and creates a command-on-execution node

mandFailed). With this change, the node will prematurely end under these conditions,
even if the user-dened end condition is false.

As presented in Section 2.3, command nodes have command handles that, received
from the environment, inform about the state of the command. Managing command
handles is similar to how it is done in update nodes. When a command is executed,
a node in the interface cell is created that signals that the command is executing (a
command-on-execution node, Figure 6.3). This node holds information about the com-
mand handle. It is what the previously mentioned cmdHandleIs? function consults in or-
der to obtain the command handle. However, command aborts are not considered in this
scenario, and so a method to track them has been implemented. An attribute aborted has
been introduced that holds a boolean value indicating whether the command has been
aborted.

To be able to signal abortion, the script must support the provision of command aborts
as external inputs to the plan. An operator commandAbort has been introduced for a script
to be able to signal the abortion of a command. When a commandAbort is read from the
script, the interface cell is modied by nding the command-on-execution node with the
provided identier and arguments and setting its aborted attribute to true. It is signi-
cant to remark that the commandAbort operator supports a parameter value intended for
future-proong this implementation in the case that more abort values are introduced.
However, the current behaviour mimics the Test Executive by assuming that whenever a
command abort is received for a certain command, the abort attribute must be set to true.
That is, commandAbort is called as:

commandAbort(node_identifier, arguments, val(true))

This single behaviour implicitly takes care of both successful and failed command
aborts, because only successfully aborted commands are signaled to the plan.

Command abortion is crucial in the atomic relation for command nodes because the
state transitions from failing requires this information. It waits for the command to abort
and then transitions the node. To check for successful command abortion, a function
hasAborted is dened such that it queries the interface cell to nd a command-on-execution
node with the same identier as the command node, returning its corresponding boolean
value.

To test the implementation of command abortion, a new test has had to be written.
This is because there is no test in the regression test suite that tests only for command
abortion. While command aborts can be found throughout the test suite, they are part of
very large plans that test for a lot of functionalities, some of which are not implemented
yet. Therefore, a commandabort1 test and script have been created to test the correctness of
the command abortion functionality. Figure 6.4 shows a simple plan and accompanying
script that executes a command, which is aborted. It also shows the Maude translation
of said plan and script. Notice how the plan has a user-dened exit condition because
according to the node state diagrams in [14], command abortion is checked when the
command node transitions to failing. To force this exit condition, a lookup to the envi-
ronment variable time is used. Since command aborts were not implemented, execution

6.3 Short-circuiting the macro relation 39

Boolean Command cmd_name ;

commandabort1 :
{

Exi tCondit ion Lookup (time) ==
1 ;

cmd_name () ;
}

(a) Simple plan that tests for command
abortion

mod commandabort1−PLAN i s

pro tec t ing PLEXILITE−PREDS .

op rootNode : −> P l e x i l .
eq rootNode =

command(
’ commandabort1 ,
n i locdec l ,
((e x i t c : (_equ_ (lookup (’

time , (n i l a rg)) , const (
val (1)))))) ,

((’cmd_name) / (n i lpa r))) .

endm

(b) Plan translation to Maude

s c r i p t {
s t a t e time () = 1 : r e a l ;
command−abort cmd_name () =

1 : bool ;
}

(c) Simple script that tests for command
abortion

mod INPUT i s
pro tec t ing PLEXILITE .
op input : −>

External InputGenerator .
eq input = sequenceGenerator (

noExternal Inputs
#
commandAck(’cmd_name , n i la rg

, CommandSentToSystem)
commandAbort (’cmd_name ,

n i la rg , val (t rue))
) .

endm

(d) Script translation to Maude

Figure 6.4: Simple plan and script that test for command abortion

before applying the changes leads to the result in Figure 6.5. Applying the changes leads
to Figure 6.6, where the test executes correctly.

6.3 Short-circuiting the macro relation

Another important contribution to the semantics involves the execution semantics of a
macrostep. It has been observed that the PLEXIL Test Executive deviates from the nom-
inal execution stated in the ofcial PLEXIL documentation. According to the documen-
tation, the nominal execution model requires the system to reach a state of quiescence
within a macrostep before processing the next input. However, the PLEXIL Test Execu-
tive follows a different approach. In the PLEXIL Test Executive, when a node of types as-

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−commandabort1 .maude−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

plex i log −d i f f : ParsingMaudeException " \" s td in \" (l i n e 1 , column 1) :\ nunexpected
\"W\"\nexpecting white space or macro step "

Figure 6.5: Test commandabort1 does not execute correctly

40 Extending the semantics of PLEXIL5

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−commandabort1 .maude−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

EQ

Figure 6.6: Test commandabort1 executes correctly

signment, command, or update enters execution, the corresponding action is performed
immediately. However, the system adheres to the principle of performing actions at the
end of the macrostep. To reconcile this discrepancy, it is inferred that the macrostep is
short-circuited, allowing the actions to be executed immediately. Specically, when an
assignment, command, or update node transitions from waiting to executing, a short-
circuit occurs in the middle of the quiescence cycle, resulting in a new macrostep. The
PLEXIL Test Executive then proceeds to read the next input from the environment.

Regarding assignment nodes, any assignment is performed temporarily and can be
undone if the assignment node fails. This approach ensures that the parallel atomic re-
lations truly operate in parallel, which allows PLEXIL5 to mimic the synchronous nature
of PLEXIL. In other words, other nodes that access the variable being assigned receive
the latest value, even if the assignment node fails and the value needs to be reverted to
its previous state. This mechanism, known as a dirty read, enables the plan to proceed
synchronously, maintaining the time consistency of variable values. That is, any access
to the variable from any node at the same point in time – in the same microstep – will
lead to the same value.

Short-circuiting the macrostep involves updating the macroacts cell with the action
specied by a command, assignment or update node when it enters execution. Actions
are consequently dened as a sort with operators that encapsulate the behaviour required
by the execution of assignment, command and update nodes:

• An action runCommand to execute command nodes
• An action runUpdate to execute update nodes
• A pair of actions setMem and undoMem to handle the possibilities that executing an

assignment node offers. The former executes the assignment to ensure that all fur-
ther accesses to the variable read the latest value, therefore ensuring effectively
synchronous execution and leading to the aforementioned dirty reads. The undoMem
action undoes the variable assignment in case the assignment node enters a failing
state.

With these functions dened, nominal execution is followed in the atomic relation
and, when one of the nodes enters state executing – in the node state transition from
state waiting – the action is added to the macroacts cell and the node is suspended in
the microacts cell. This suspension ensures that these nodes cannot transition anymore
and force the microstep to nish. When the microstep nishes – rst executing actions
in the microacts cell – the macroacts cell is queried to check for macroactions. If any are
found, the system is set to have achieved quiescence. This behaviour can be observed in
the following function, where Cfg represents a system conguration that includes all the
cells.

ceq [micro-relation-withMacroactions] :
micro | Cfg

=
quiescence | Cfg

if hasMacroactions?(Cfg)
.

6.4 Extending the generation of inputs 41

MACRO
’UpdateTest from ina c t i v e to wait ing

micro
’ UpdateTest from wait ing to execut ing

micro
’ UpdateTest from execut ing to i tera t ionEnded

micro
’ UpdateTest from itera t ionEnded to f in i shed

micro

Figure 6.7: The macrostep is not short-circuited on update node execution

Once the system has reached quiescence, the following sequence of events unfolds:

1. Assignments are performed
2. Suspended assignment, command and update nodes are awaken
3. Commands are executed
4. Updates are executed

A new input is read and the plan execution proceeds normally. This behaviour can be
seen in the following function, which executes when the system reaches quiescence, that
is, when the current macrostep end:

eq [quiescence] :
quiescence | Cfg

=
macro |

executeUpdates(
executeCommands(

unSuspendMacroNodes(
performAssignments(

Cfg
)))) .

The effects of the implementation of these short-circuits can be veried in plans such
as UpdateTest, which has been previously mentioned. Figure 6.7 shows the execution
of the runRegression script with UpdateTest without short-circuiting. It shows how the
update node ’UpdateTest enter execution and is not immediately suspended to stop the
macrostep and execute the command, instead continuing the node’s nominal execution.
In this case, the actual execution of the update is not performed as the node enters exe-
cution, but it waits for the quiescence cycle to ends, which is not how the PLEXIL Test
Executive works. Figure 6.8 shows how, after implementing the feature, the result is EQ,
meaning that the state transitions are exactly the same for the PLEXIL Test Executive and
the PLEXIL5 semantics. In this scenario, the macrostep is short-circuited right after the
node enters execution and the update is performed at that point.

It must be noted that this behaviour is complementary to the generation of empty
inputs explained in the following Section.

6.4 Extending the generation of inputs

The use of PLEXIL scripts means that the execution of any plan has a very concrete start
and a very concrete end, driven by the succession of external inputs. When taking into ac-

42 Extending the semantics of PLEXIL5

MACRO
’UpdateTest from ina c t i v e to wait ing

micro
’ UpdateTest from wait ing to execut ing

micro
MACRO

’UpdateTest from execut ing to i tera t ionEnded
micro

’ UpdateTest from itera t ionEnded to f in i shed
micro

Figure 6.8: The macrostep is short-circuited on update node execution, which starts a new
macrostep

count the short-circuiting of the quiescence cycle to leap one macrostep forward, there is
a chance for nodes to be active and executing but not have achieved termination. To tackle
these cases, the Test Executive appends empty inputs to the input stream to force these
nodes to terminate. When two successive states of a PLEXIL plan are exactly identical,
that is, no state transitions have arisen from the last macrostep, the plan is terminated.

This behaviour is not found in the PLEXIL documentation as of the writing of this
report, which lead to the incorrect denition of the PLEXIL5 semantics in the past. How-
ever, it can be checked by analyzing the state transitions on a plan with any of the afore-
mentioned node types and a script with a set amount of inputs.

Take the following example. Figure 6.9a shows the code for a plan that assigns the
result of a lookup look to a local variable myLook. Figure 6.9b shows the accompanying
script, which supplies a result for said lookup. Seeing as the script only contains one in-
put, one could expect for the execution diagram to be conformed by only one macrostep.
However, this theory is disproved by the transition logs of the PLEXIL Test Executive in
Figure 6.10, which show two macrosteps, signied by two separate ==>Start cycle n.
Indeed, the rst macrostep is short-circuited when the assignment node myNode enters
state executing. This means that one extra empty input has been appended to the end of
the input script to allow for myNode to eventually arrive to state nished.

The PLEXIL5 semantics did not account for the extra input appending behaviour be-
cause it had no way of analysing the current state of the system to reason whether any
of the nodes are active but have not reached termination. It also did not include a step
in the input generation process that was able to compare the current state of the system
with the previous. These capabilities would allow the input generator to only add extra
empty inputs when the state of the system had changed in somemanner and some nodes
still needed to terminate.

Figure 6.11 shows what the transitions log yielded with the past implementation. In
total, only one macrostep was executed, corresponding with the only explicit external
input in the script. The node ’myNode is left at an unnished state. This could be under-
stood as a side-effect of short-circuiting the macrostep, because the provision of inputs
has leapt forwards. Since ’myNode is an assignment node, it has been suspended upon en-
tering execution because the assignment needs to be executed immediately. This means
that the macrostep ends and there are no inputs to consume: ’myNode has been left ex-
ecuting and suspended. A closer inspection of the system state at the end of the plan
shows this in the nodes cell, as shown in Figure 6.12.

However, what must result is the transition log in Figure 6.13, which shows how two
macrosteps are executed, even if there is, still, only one external input. See in Figure 6.14
how the node does correctly terminate now.

6.4 Extending the generation of inputs 43

Real Lookup look ;

myNode :
{

Real myLook ;

myLook = LookupNow(look) ;
}

(a) Example plan with an assignment node and a
lookup

i n i t i a l − s t a t e {
s t a t e look () = 3 .14 : r e a l ;

}

s c r i p t {
}

(b) Example script that provides the result of a lookup

Figure 6.9: PLEXIL plan and script that demonstrate the appending of extra empty inputs to the
script

[P l ex i lExec : cyc l e] ==>S t a r t cyc l e 1
[P l ex i lExec : s tep] [1 : 0] Check queue : myNode 0x55e8df836140
[P l ex i lExec : s tep] [1 : 0] S t a t e change queue : myNode 0x55e8df836140
[P l ex i lExec : s tep] [1 : 0 : 0] Trans i t ion ing node myNode 0x55e8df836140 from INACTIVE

to WAITING
[P lex i lExec : s tep] [1 : 1] Check queue : myNode 0x55e8df836140
[P l ex i lExec : s tep] [1 : 1] S t a t e change queue : myNode 0x55e8df836140
[P l ex i lExec : s tep] [1 : 1 : 0] Trans i t ion ing node myNode 0x55e8df836140 from WAITING

to EXECUTING
[P lex i lExec : cyc l e] ==>End cyc l e 1
[P l ex i lExec : cyc l e] ==>S t a r t cyc l e 2
[P l ex i lExec : s tep] [2 : 0] Check queue : myNode 0x55e8df836140
[P l ex i lExec : s tep] [2 : 0] S t a t e change queue : myNode 0x55e8df836140
[P l ex i lExec : s tep] [2 : 0 : 0] Trans i t ion ing node myNode 0x55e8df836140 from

EXECUTING to ITERATION_ENDED
[P lex i lExec : s tep] [2 : 1] Check queue : myNode 0x55e8df836140
[P l ex i lExec : s tep] [2 : 1] S t a t e change queue : myNode 0x55e8df836140
[P l ex i lExec : s tep] [2 : 1 : 0] Trans i t ion ing node myNode 0x55e8df836140 from

ITERATION_ENDED to FINISHED
[P lex i lExec : cyc l e] ==>End cyc l e 2

Figure 6.10: Log of the transitions of the example plan under the example script that demonstrates
the appending of extra empty inputs to the script

MACRO
’myNode from ina c t i v e to wait ing

micro
’myNode from wait ing to execut ing

micro

Figure 6.11: Log of the transitions of the example plan under the example script translated to
Maude, executed with the PLEXIL5 semantics before implementing the appending of extra empty

external inputs

44 Extending the semantics of PLEXIL5

[nodes :
< ’myNode : assignment | s t a tu s : executing , suspended : true , [. . .] >]

Figure 6.12: The nodes cellwhen the plan terminates without appending an extra empty external
input, leaving a node executing and suspended

MACRO
’myNode from ina c t i v e to wait ing

micro
’myNode from wait ing to execut ing

micro
MACRO

’myNode from execut ing to i tera t ionEnded
micro

’myNode from itera t ionEnded to f in i shed
micro

Figure 6.13: Log of the transitions of the example plan under the example script translated to
Maude, executed with the PLEXIL5 semantics after implementing the appending of extra empty

external inputs

This behaviour has been implemented via the concept of input sequence generators.
Input sequence generators are a structure that holds a sequence of external inputs that
are fed to the plan. Under nominal execution, every time a macrostep is started a new
input is generated from the head of the sequence of inputs in the generator. The input
generator is updated right after the choice of input and the interface is updated.

When the generator consumes its last input in the sequence, the update yields a gen-
erator with an empty sequence. However, when an input is to be generated from a gen-
erator with an empty sequence, it is only signaled that there are no inputs left when all
the nodes in the plan have nished. This is done by matching a conditional equation in
Maude with a condition that checks for all nodes termination. Another conditional equa-
tion will try to match, checking if the last and current congurations are the same. This
was only possible after updating the interface of the input generator to include two con-
gurations to compare. Before this, input generators were stateless, without knowledge
of what state the system had been in.

Note that, to be able to compare two system states, some lters had to be passed
beforehand, due to some cells that change with every step of the execution semantics –
mainly the interface-history and generator cells.

6.5 Other contributions

The rest of the contributions to the PLEXIL5 semantics came in the form of implementing
features that help tests in the regression suite have identical state transitions as under
the PLEXIL Test Executive. As a reminder, the measure of completeness considered for

[nodes :
< ’myNode : assignment | s t a tu s : f in i shed , suspended : f a l s e , [. . .] >]

Figure 6.14: The nodes cell when the plan terminates after appending an extra empty external
input, correctly terminating the node that previously did not

6.5 Other contributions 45

the PLEXIL5 interpreter is the extent to which its execution semantics mirror those in the
PLEXIL Test Executive.

For this purpose, the approach relies on a prior analysis of the features that are yet
to be implemented. By cycling through the plans and scripts in the regression suite, a
list of tasks was curated to use as a basis of all the implementation. The list contains the
features that are yet to be implemented, and is accompanied by an annex of what tests
are associated with each feature. In this manner, attention can be directed towards sup-
porting tests that require less new features, so that the task of supporting more complex
tests in the future can be lightened by shared features by other tests. Table 6.1 compiles
the result of the analysis, relating a feature with the tests that make use of it.

Table 6.1: Table analyzing what features are left to implement into PLEXIL5

Feature Tests that use it

Library node call

AssignmentMain
Increment-test
Increment-test2
lib1
lib2
libcall
LibraryNode6
LibraryCallWithArray
... (Trimmed for space)

Node timepoint value

AncestorReferenceTest
node-order-bug
old-style-ref-test
TestTimepoint
TimepointVariableConstructionOrder

Max maxTest

Min minTest

Abs TestAbsSqrt

Sqrt TestAbsSqrt

Node state variable

AssignToParentInvariant
contention3
DoubleInvariantAssignment
GrandparentAccess
isKnown1
old-style-ref-test
SimpleDrive
TestAbsSqrt
TestNodeNameScope
TestNodeNameScopeHack
TestRepeatCondition

Concat

concat1
concat2
command2
command5

Table continues

46 Extending the semantics of PLEXIL5

Table continuation

Feature The tests that use it

Tolerance

ChangeLookupTest
SiteSurveyWithEOF
TestTimepoint
unknown_lookup

Round RoundTest

Update

array8
ArrayInLoop
SiteSurveyWithEOF
UpdateLookupTest
UpdateTest

LookupOnChange

array1
conjuncts
lookup1
repeat5
repeat7
repeat8
SimpleDrive
SiteSurveyWithEOF
TestEndCondition
unknown_lookup
... (Trimmed for space)

Delay

AtomicAssignment
delay1
OnMessageFailureTest
Resource4HvmRepeatCond
closedloop-command-multipleAck
SiteSurveyWithEOF

6.5.1. String concatenation

A feature common to most programming languages is the ability to concatenate strings
into a longer string. PLEXIL also supports string concatenation via an operator +. Com-
piled plans and scripts include concatenation elements via a tag Concat, which contains
at least two elements, up to n elements.

Some tests that implement the concatenation feature are tests concat1 and concat2.
Figure 6.15 shows how executing the runRegression script leads to an error because the
feature is not implemented in the form of an unexpected character, because it is parsed
incorrectly.

Fortunately, Maude does natively support string concatenation via an inx operator
+ that takes two strings as arguments and returns the concatenation of said arguments.
Hence, the solution of the problem resides in dening a parser function that translates an
element of form:

<Concat>
<Element1>...</Element1>
<Element2>...</Element2>

6.5 Other contributions 47

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−concat1 .maude−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

plex i log −d i f f : ParsingMaudeException " \" s td in \" (l i n e 1 , column 1) :\ nunexpected
\"W\"\nexpecting white space or macro step "

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−concat2 .maude−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

plex i log −d i f f : ParsingMaudeException " \" s td in \" (l i n e 1 , column 1) :\ nunexpected
\"W\"\nexpecting white space or macro step "

Figure 6.15: Tests concat1 and concat2 lead to errors because the feature is not supported

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−concat1 .maude−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

EQ

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−concat2 .maude−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

EQ

Figure 6.16: Tests concat1 and concat2 execute correctly

...
<ElementN>...</ElementN>

</Concat>

Into:

(((parse Element1) + (parse Element2)) + ...) + (parse ElementN)

Implementing this function leads to Figure 6.16, where the above tests execute iden-
tically to the PLEXIL Test Executive.

6.5.2. Node self references

Nodes in plans can incorporate references to other nodes in the plan. These references
can be to children of a node, siblings of a node and the node itself to, for example, set as
a postcondition that all children of a node must have reached termination.

’self’ node references were not supported in PLEXIL5, leading to a plan like skip1 to
be unable to run in the semantics, as shown in Figure 6.17.

Implementing this node reference required rst dening an adequate parsing func-
tion. ’self’ references are represented in a compiled plan as an element
<NodeRef dir=’self’ />. In the semantics, the operator has been dened as an Identifier
with no arguments, making use of polymorphism to incorporate it into the set of identi-
ers that can be used in a function to reference a node.

op self : -> Identifier .

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−skip1 .maude−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

plex i log −d i f f : ParsingMaudeException " \" s td in \" (l i n e 1 , column 1) :\ nunexpected
\"W\"\nexpecting white space or macro step "

Figure 6.17: Test skip1 does not execute correctly

48 Extending the semantics of PLEXIL5

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−skip1 .maude−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

EQ

Figure 6.18: Test skip1 executes correctly

Thus, the only extra required addition was extending the function
getFullyQualifiedNodeId to translate its occurrences to fully qualied ids.

Once implemented, the test executes correctly in Figure 6.18.

6.5.3. LookupOnChange

In the past, lookupOnChange was supported through an operator that took a set of argu-
ments arguments and a tolerance. However, their semantics was not dened, nor was it
correctly translated.

Therefore, focus was set to give support to lookupOnChange. This rst approach in-
volved creating a suitable translate function in plexil2maude and, in the semantics, extend-
ing the ID sanitizing function and modifying the loopkup expression evaluation function
to retrieve the desired value. In plexil2maude, a translation for lookup arguments was in-
troduced, since they were not translated previously and empty arguments were blindly
used.

lookupOnChange poses an interesting design challenge, because a system of subscrip-
tion to interface valueswould have to be devised in order to detect when variables change
more than a given tolerance in order to be fed to the environment.

Upon further examination it became evident that microsteps were never interrupted
when new external inputs were received from the environment in the PLEXIL Test Ex-
ecutive – in fact, inputs are only read at the very beginning of a macrostep. What is
more, even if they could ever potentially be interrupted to receive value changes, our
measure of completeness would not change. This lies in the regression tests executed
in the PLEXIL Test Executive, where microsteps cannot be interrupted as evidenced by
how, when assignment, command and update nodes enter execution and the macrostep
is short-circuited, the current microstep is allowed to nish by suspending the involved
nodes, still letting other nodes execute nominally during the current microstep. In other
words, microstep uninterruption is a precondition for the PLEXIL5 project. This means
that, in this context, lookupOnChange behaves as lookupNow for all intents and purposes.

Therefore, the decision has been made to transform all lookups – both Now and On-
Change – into the simple form of lookup. It is an operator that takes an identier for an
external variable in the interface and a set of arguments. On evaluation of a lookup, the
system nds the value of the external variable with the given identier and arguments,
returning the corresponding value or unknown otherwise.

This means that a test like array1 that made use of lookupOnChange did not execute in
the PLEXIL5 semantics. Because lookupOnChangewas not properly supported in the past,
trying to compare execution of these types of tests gave a similar result as that of Figure
6.15, where there was a parsing error for an unrecognized element. Figure 6.19 shows
how the test currently executes correctly, given how the execution of lookupOnChange
now aligns with the PLEXIL Test Executive.

6.6 Results 49

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−array1 .maude−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

EQ

Figure 6.19: Test array1 executes correctly

6.6 Results

The results of the contributions to the project can be quantied by comparing the number
of tests in the regression test suite that initially executed correctly against the number af-
ter applying all contributions. Predictably, the number has increased signicantly. Before
any contributions, 33 tests executed correctly from a total of 155 tests in the test regression
suite. After the contributions, 67 tests execute correctly. This entails a 103.03% increase
in test correct execution and can be considered a success.

Still, in the grand scheme of the objective of the project to provide a tool to formally
analyze PLEXIL plans, PLEXIL5 is currently able to execute 43.23% of the tests in the
regression test suite. Compared to the previous 21.29%, it is a noticeable increase, but it
is only a moderate success.

Before After
0

50

100

150

103.0
9% Incre

ase

33

67

Contributions

N
um

be
r
of

C
or
re
ct

Te
st
s

Figure 6.20: Bar chart showing the number of correct tests before and after.

In terms of specic goals, the project has succeeded in implementing Update nodes
and reviewing and completing the semantics of Command nodes. Moreover, it has suc-
cessfully added support for specic features that make more plans execute correctly.

Additionally, this work has yielded an unexpected and favorable outcome. It serves
as a contribution of additional documentation that complements the ofcial PLEXIL doc-
umentation by lling in the gaps that are left in the realm of the execution semantics of
the PLEXIL Executive. This work has delved into the generation of inputs and the pro-
cess of short-circuiting macrosteps, thus expanding the notion of quiescence within the
PLEXIL5 semantics. Consulting this report in the future can greatly assist developers in
acquiring a more profound comprehension of the PLEXIL execution semantics.

CHAPTER 7

Conclusions and future work

The presented results demonstrate the amount of work that is required to extend the
PLEXIL5 project. Although the underlying numbers indicate a signicant improvement
in test regression correctness, it is important to note that 57.41% of the tests still encounter
execution errors.

As such, the project’s next natural step involves continuing to provide support for
currently unsupported features, thereby increasing the number of successfully executed
tests. This process may involve reworking certain existing features and diligently debug-
ging them to uncover any potential edge cases that could result in failures. This goal can
now be easily pursued following the analysis performed in Table 6.1.

Another direction in which the PLEXIL5 project could be extended is the representa-
tion of lookupOnChange. While the current behaviour of lookupOnChange in the PLEXIL
Test Executive is analogous to that of lookupNow, further analysis would be required to
evaluate if there may be some value in implementing a subscription model for node gate
conditions (Start, Skip, End, Repeat) that use lookupOnChange, as was the rst approach
to the implementation of lookupOnChange.

Moreover, discussions have already beenmade regarding the architecture of plx2maude.
Comparatively to that of psx2maude, the latter is much more organized due to the logi-
cal separation of the tasks of parsing and prettyprinting. Therefore, a reorganization of
plx2maude’s architecture is intended.

In conclusion, the extension of the PLEXIL5 tool has proven to be an overall success.
It has not only contributed to the development of a very promising project with vast
potential application across various domains but has also signicantly enhanced under-
standing of Rewriting Logic, the PLEXIL language, synchronous languages in general,
and real-time systems.

Furthermore, the tool is starting to be used by some industry professionals, which
will contribute to further rening the project’s requirements and improving its overall
functionality in the future.

The extension of PLEXIL5 has undoubtedly resulted a valuable endeavor, demon-
strating its capability to drive innovation and foster advancements in the eld. Its suc-
cessful implementation and ongoing utilization promise to yield fruitful outcomes and
contribute to the future success of the project.

Relationship between the work performed and the studies taken

It is noteworthy to mention that most of the understanding of Rewriting Logic prior to
the start of the work came from the subject of Industrial Formal Methods (MFI), which

51

52 Conclusions and future work

was studied in third year. It provided a general understanding of the framework and
background in working with Maude. It also opened perceptions on the importance of
formal verication and how having related tools can be important in areas related to
automation and how it can help make existing systems more sustainable.

The importance placed on testing was also a notion that was emphasized during the
study of the degree in subjects like Software Engineering (ISW) or Software analysis, valida-
tion and debugging (AVD), but specially in Software maintenance and evolution (MES) in the
context of ensuring that past functionalities are not broken and making future develop-
ment easier. This emphasis gave place to the use of TDD in the project.

Finally, the subjects of Software Process (PSW) and Software Engineering Project (PIN)
provided an introduction to agile methodologies that gave a framework to create the
used methodology using the resources at hand.

CHAPTER 8

Acknowledgements

I want to dedicate these lines to everyone that has made this project possible. Firstly, to
Santiago Escobar, the tutor of this work and without whom neither the project nor the
stay at NIA under NASA would have been able to happen, and to whom I am eternally
grateful. I also want to thank Marco A. Feliu, who has served as a mentor gure and
has provided guidance and lessons that are worth a lifetime, as well as to her wife Laura
Titolo for treating us like family many miles away from home.

53

Bibliography

[1] Pezzè Mauro and Michael J. Young. Software testing and analysis: Process, principles
and Techniques. J. Wiley, 2008.

[2] Universities Space Research Association (USRA). PLEXIL Wiki. URL: https : / /
plexil.sourceforge.net/wiki/index.php/Main_Page.

[3] Brian Dunbar.Habitation systems project - NASA’s Deep Space Habitat. Dec. 2011. URL:
https://www.nasa.gov/exploration/technology/deep_space_habitat/.

[4] B. J. Glass et al. “Robotic and human-tended collaborative drilling au...” In: 56th
International Astronautical Congress of the International Astronautical Federation, the In-
ternational Academy of Astronautics, and the International Institute of Space Law (2005).
DOI: 10.2514/6.iac-05-a5.2.01.

[5] Michael Lowrly et al. URL: https://plexil-group.github.io/plexil_docs/
_downloads/7f1a07c5770478fa5d0d2c8a5a3d2c39/AOS.pdf.

[6] José Meseguer. “Conditional rewriting logic as a unied model of concurrency”.
In: Theoretical Computer Science 96.1 (1992), pp. 73–155. ISSN: 0304-3975. DOI: https:
//doi.org/10.1016/0304-3975(92)90182-F. URL: https://www.sciencedirect.
com/science/article/pii/030439759290182F.

[7] Gilles Dowek, César Muñoz, and Camilo Rocha. “Rewriting logic semantics of a
plan execution language”. In: Electronic Proceedings in Theoretical Computer Science
18 (2010), pp. 77–91. DOI: 10.4204/eptcs.18.6.

[8] Manuel Clavel et al. “Two decades of Maude”. In: Lecture Notes in Computer Science
(2015), pp. 232–254. DOI: 10.1007/978-3-319-23165-5_11.

[9] Steven Eker, José Meseguer, and Ambarish Sridharanarayanan. “The Maude LTL
Model Checker”. In: Electronic Notes in Theoretical Computer Science 71 (2004).WRLA
2002, Rewriting Logic and Its Applications, pp. 162–187. ISSN: 1571-0661. DOI: https:
//doi.org/10.1016/S1571-0661(05)82534-4. URL: https://www.sciencedirect.
com/science/article/pii/S1571066105825344.

[10] Vlad Rusu and Manuel Clavel. “Theorem Proving for Maude’s Rewriting Logic”.
In: (Jan. 2007).

[11] Vandi Verma et al. “Plan EXecution Interchange language (PLEXIL) for executable
plans and command sequences”. In: 2005.

[12] Vandi Verma et al. “Universal-executive and Plexil: Engine and language for robust
spacecraft control and Operations”. In: Space 2006 (Sept. 2006). DOI: 10.2514/6.
2006-7449.

[13] Universities Space Research Association (USRA). PLEXIL Documentation - Detailed
semantics. Apr. 2021. URL: https://plexil.sourceforge.net/wiki/index.php/
Detailed_Semantics.

55

56 BIBLIOGRAPHY

[14] Universities Space ResearchAssociation (USRA). PLEXILDocumentation - Node state
diagrams. May 2015. URL: https://plexil- group.github.io/plexil_docs/
Appendices/NodeStateDiagrams.html.

[15] Jason Biatek et al. “Analysis and testing of PLEXIL plans”. In: Proceedings of the
2nd FME Workshop on Formal Methods in Software Engineering (2014). DOI: 10.1145/
2593489.2593496.

[16] Universities Space Research Association (USRA). PLEXIL Documentation - Simu-
lating plan execution. Apr. 2021. URL: https://plexil.sourceforge.net/wiki/
index.php/Simulating_Plan_Execution.

[17] Camilo Rocha et al. “A formal interactive verication environment for the Plan
Execution Interchange language”. In: Lecture Notes in Computer Science 7321 (June
2012), pp. 343–357. DOI: 10.1007/978-3-642-30729-4_24.

[18] URL: https://cabal.readthedocs.io/en/stable/index.html.

[19] Andrew J. Kennedy. “Functional pearl pickler combinators”. In: Journal of Func-
tional Programming 14.6 (2004), pp. 727–739. DOI: 10.1017/s0956796804005209.

[20] Mohammad Masudur Rahman and Chanchal K. Roy. “An insight into the pull re-
quests of GitHub”. In: Proceedings of the 11th Working Conference on Mining Software
Repositories (2014). DOI: 10.1145/2597073.2597121.

[21] Kent Beck. Test-driven development by example. Addison-Wesley, 2002.

[22] Gio Lodi. “Getting Started with Test-Driven Development”. In: Test-Driven Devel-
opment in Swift. Berkeley, CA: Apress, 2021, pp. 27–42. ISBN: 978-1-4842-7002-8.

[23] P. Hamill.Unit Test Frameworks: Tools for High-Quality Software Development. O’Reilly
Media, 2004. ISBN: 9780596552817.

[24] Roy Miller and Christopher T Collins. “Acceptance testing”. In: Proc. XPUniverse
238 (2001).

[25] Charles L. Marohn. Confessions of a recovering engineer: Transportation for a strong
town. John Wiley & Sons, Inc., 2021.

APPENDIX A

Sustainable Development Goals

Sustainable Development Goals High Medium Low None
SDG 1. No poverty. X
SDG 2. Zero hunger. X
SDG 3. Good health and well being. X
SDG 4. Quality Education. X
SDG 5. Gender Equality. X
SDG 6. Clear water and sanitation. X
SDG 7. Affordable and clean energy. X
SDG 8. Decent work and economic environment. X
SDG 9. Industry, innovation and infrastructure. X
SDG 10. Reduced inequalities. X
SDG 11. Sustainable cities and communities. X
SDG 12. Responsible consumption and productions. X
SDG 13. Climate action. X
SDG 14. Life below water. X
SDG 15. Life on land. X
SDG 16. Peace, justice and strong institutions. X
SDG 17. Partnerships for the goals. X

Table A.1: Degree towhich thework impacts the UnitedNations’ Sustainable Development Goals
(SDG).

The PLEXIL5 project primarily supports quality education and research that fuels in-
novation (SDGs 4 and 9). While its current direct impacts on other SDGs are limited,
PLEXIL5 signals an open and collaborative ethos that could someday benet communi-
ties through applications in domains like transportation, manufacturing, agriculture, and
beyond.

PLEXIL5 most meaningfully contributes to SDG 4 by providing an open platform
for students and engineers to learn skills that will drive progress on sustainability. By
implementing PLEXIL in a formal verication framework like Maude, PLEXIL5 enables
learning about autonomous systems design, programming languages, logic, semantics,
and more. These kinds of computing skills will help researchers and developers build
applications to address challenges we haven’t even thought of yet.

PLEXIL5 also substantially supports SDG 9, to build resilient infrastructure and fos-
ter innovation. PLEXIL itself was developed by NASA for spacecraft applications, and
implementing it in Maude could lead to discoveries enabling continued advancements
in elds like robotics, autonomous vehicles, and hybrid systems. By leveraging these

57

58 Sustainable Development Goals

open-source technologies and collaborative research, PLEXIL5 helps catalyze future ap-
plications to meet sustainability goals.

While PLEXIL5’s current direct impacts on other SDGs seem limited, the promise
of applications like autonomous systems in public transit, freight, agriculture and man-
ufacturing hint at signicant future potential to benet communities (SDGs 11 and 2).
Widespread adoption of automation in public mass transit may reduce accidents and
make transportation more accessible for elderly, the disabled, and sectors of the popula-
tion with scarce resources, decreasing social and economic disparities (SDGs 1 and 10).
Public transit automation and overall improvement may help develop more tightly con-
nected cities and communities, recovering cities from suburban sprawl by reducing the
maintenance costs of road infrastructure and creating safer and more human communi-
ties [25]. Precision autonomous farming could also optimize crop yields and reducewater
waste (SDGs 2 and 6). Also, the increased productivity from intelligent automation may
drive job growth in developing, maintaining and interacting with these systems (SDG 8).
Likewise, automation in areas such as manufacturing may help improve resource ef-
ciency, leading to a more responsible form of consumption in regards to the ecologic cost
of manufacturing (SDGs 12 and 13).

However, risks and challenges remain around privacy, security, and safety. Autonomous
technologies could also signicantly disrupt labor markets if not thoughtfully imple-
mented. And their long-term sustainability impacts depend on how they are developed
and deployed. Overall though, the openness demonstrated by PLEXIL5 suggests a com-
mitment to responsible, equitable innovation that aligns with the UN’s vision.

In summary, while PLEXIL5 itself currently focuses primarily on research, its plat-
form and applications have signicant potential to someday support communities and
benet society in meaningful ways. By enabling an ecosystem of learners and builders,
open-source projects like PLEXIL5 drive the creativity required to navigate complexity
and work toward sustainable development. They help cultivate the human connections
and ingenuity that will be instrumental in envisioning and achieving a just, inclusive and
prosperous future for people and planet. Although many ambitious sustainability goals
remain over the horizon, education and research are the essential rst steps.

APPENDIX B

Code

B.0.1. Code for execassignment

op execassignment : Config ~> Config .
ceq execassignment ([nodes : < A : assignment | s t a tu s : executing , a c t i v e :

true , inv : InvC , post : PostC , endc : EndC , e x i t c : ExitC , AtS > PS]
[environment : GAMMA] [memory : MEM] [microacts : AS

] [macroacts : AS ’] CONF)
= execassignment ([nodes : Nds ’] [environment : GAMMA] [memory : MEM]

CONF
i f ances torEx i tTrue ? (GAMMA, Nds MEM, A)
then [microacts : setOutcome (A, in te r rupted (parentExi ted)) , s e t S t a tu s (A,

f a i l i n g) , l ogTrans i t i on (A, executing , f a i l i ng , 1) ,AS]
[macroacts : undoMem(assignmentVariable (A, Nds)) ,AS ’]

e l s e
i f i sTrue (eval (GAMMA, Nds MEM, ExitC))
then [microacts : setOutcome (A, in te r rupted (ex i t ed)) , s e t S t a tu s (A,

f a i l i n g) , l ogTrans i t i on (A, executing , f a i l i ng , 2) ,AS]
[macroacts : undoMem(assignmentVariable (A, Nds)) ,AS ’]

e l s e
i f ance s to r Inva r i an tFa l s e ? (GAMMA, Nds MEM, A)
then [microacts : setOutcome (A, f a i l u r e (parentFa i led)) , s e t S t a tu s (A,

f a i l i n g) , l ogTrans i t i on (A, executing , f a i l i ng , 3) ,AS]
[macroacts : undoMem(assignmentVariable (A, Nds)) ,AS ’]

e l s e
i f i s F a l s e (eval (GAMMA, Nds MEM, InvC))
then [microacts : setOutcome (A, f a i l u r e (i nva r i an tFa i l ed)) ,

s e t S t a tu s (A, f a i l i n g) , l ogTrans i t i on (A, executing , f a i l i ng , 4) ,AS
]
[macroacts : undoMem(assignmentVariable (A, Nds)) ,AS ’]

e l s e
i f i sTrue (eval (GAMMA, Nds MEM, EndC))
then

i f isTrue (eval (GAMMA, Nds MEM, PostC))
then [microacts : setOutcome (A, success) , s e t S t a tu s (A,

i tera t ionEnded) , l ogTrans i t i on (A, executing , i terat ionEnded
, 6) ,AS]
[macroacts : AS ’]

e l s e [microacts : setOutcome (A, f a i l u r e (pos t condi t ionFa i l ed))
, s e t S t a tu s (A, i tera t ionEnded) , l ogTrans i t i on (A, executing ,
i terat ionEnded , 5) ,AS]
[macroacts : AS ’]

f i
e l s e [microacts : AS] [macroacts : AS ’]
f i

f i
f i

59

60 Code

f i
f i

)
i f Nds := < A : assignment | s t a tu s : executing , a c t i v e : true , inv : InvC ,

post : PostC , endc : EndC , e x i t c : ExitC , AtS > PS
/\ Nds ’ := < A : assignment | s t a tu s : executing , a c t i v e : f a l s e , inv : InvC ,

post : PostC , endc : EndC , e x i t c : ExitC , AtS > PS .
eq execassignment (CONF)
= CONF [owise] .

