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Abstract: The fresco technique performed with slaked lime putty as binding material has been well
known since Antiquity. However, the geochemical processes that occur on the surface have been
generally described as part of the carbonation process of the intonaco itself. When approaching this
technique from experimental archaeology, it has been observed for the first time that during the
execution period (from 0 to 20 h, approximately) the processes occurring on the surface of the stucco
are different from those occurring inside. Furthermore, these processes lead to the formation of an
epigenetic film of specific texture, stiffness and compactness. This study investigates the formation
and evolution of this surface film using a series of slaked lime putty stucco test tubes. Samples
were extracted at different intervals and subsequently analyzed by polarized optical microscopy,
scanning electron microscopy, and Fourier transform infrared spectroscopy. Results indicate that
the development of the film, composed of an amorphous gel-like stratum and a micro-crystalline
stratum, occurs in parallel to the carbonation occurring inside the stucco. Moreover, this process
does not respond to the classical geological processes of calcium carbonate formation. It was also
observed that its presence slows down the carbonation in the underlying strata (intonaco, intonachino,
arriccio, etc.) and that the surface becomes more crystalline over time. The identification of this
film has implications for the field of the conservation–restoration of fresco paintings and lime-based
wall paintings.

Keywords: fresco technique; stucco; carbonation process; epigenetic film; POM; SEM; FTIR

1. Introduction

Studies conducted to date on lime carbonation [1–20] note that the aerial carbonation
of slaked lime putty does not occur continuously from the surface inwards but is instead
a discontinuous process that follows the well-known Liesegang carbonation pattern [7].
This mechanism for the formation of calcium carbonates is produced by the diffusion of
reagents via a colloidal phase that fills the pores and interparticle spaces in the mortar.
Consequently, calcite crystals are precipitated in the form of rings at regular time intervals.
These rings have been detected in slaked lime putties [7,17], but this phenomenon does
not explain the mineral ontogenesis of the aqueous film that appears on the surface of
the mortar.

Amongst the investigations that have looked into the mechanisms related to the aerial
carbonation of lime, those focused on the reaction rate and mineral phase modifications of
lime carbonation in real time are remarkable. Cizer et al. [21] proposed the use of thin layers
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of Ca(OH)2 water solution on glass slides for studying the behavior of Ca(OH)2(ac)-CO2(atm)
system in the short time. According to these authors, in this process, the transformation
of portlandite (Ca(OH)2 into calcite (CaCO3) occurs in three phases: initially, there is a
high uptake of CO2 on the surface that generates calcite precipitation but which quickly
becomes passive due to the formation of amorphous CaCO3 (ACC) on the faces of the
portlandite crystals. After that, a decrease in the rate of CO2 uptake is observed together
with a consequent reduction in CaCO3 formation. Finally, CO2 diffusion occurs through
the created stratum, giving rise to a new, slower carbonation phase. These studies also
show that the carbonation rate of slaked lime is faster than that of powdered lime and
that this is related to the morphology of portlandite crystal. This is due to the growth of
portlandite crystals soaked in water favoring the development of well-shaped crystals,
especially in terms of faces 100, 101 and 001, which are the most reactive due to higher
atomic density (Bravais law) [16,22]. After this seminal work, new experiments have been
reported using a similar method, i.e., based on the study of the Ca(OH)2(ac)-CO2(atm) system
behavior in Ca(OH)2 water solution droplets deposited on glass slides [23,24]. However,
the results obtained [21,23,24] refer to a thin layer or droplet of slaked lime putty spread
on a microscope slide. The goal of this study is to characterize the mechanisms for which
the aqueous surface film is formed in real conditions on a stucco. We also describe the
subsequent stages that take place in the Ca(OH)2(ac)-CO2(atm) system during the execution
of a true stucco prepared with traditional raw materials. It is worth emphasizing the
novelty of the analytical procedure for monitoring the behavior of the Ca(OH)2(ac)-CO2(atm)
system in the first 24 h, which has been the subject of a patent [25]. This methodology has
been extended to establish how the Ca(OH)2(ac)-CO2(atm system evolves in the long term.

2. Materials and Methods

To study the formation and development of this aqueous surface film, slaked lime
stucco test tubes were prepared from which samples were extracted at different intervals.
These samples were subsequently analyzed as described below.

2.1. Test Tubes

The slaked lime stucco specimens were produced using traditional materials and
techniques. Table 1 presents the materials used, as well as a description. These were
produced by following the fresco technique procedure, which requires prior preparation
of a series of layers of slaked lime and salt-free sand or marble dust on which the final
touch is performed (brushing with water). The mixture used for the innermost layers
contains larger sand aggregates and in greater proportions than the subsequent layers.
This proportion is progressively decreased until reaching the surface, where aggregate is
no longer incorporated. Figure 1a presents a cross-section of the test tube, showing the
succession of layers, namely, arriccio, intermedium, intonaco, intonachino and epigenetic
superficial film. The proportions of slaked lime to sand in each and the aqueous film that is
produced on the surface are also included.

Table 1. Technical features of materials used to make the test tubes.

Material Description

Binding material
Lime putty paste CL 90 PL. supplier: Cales Segarra y Hernández, Barcelona. UNE-EN 459-1. Calcium
hydroxide (portlandite) embedded in an aqueous colloidal dispersion composed of carbonate and
hydroxyl ions.

Aggregate Siliceous sand *. Granulometry: 4–2.5 mm and 250 µm.

Solvent Bezoya®® weakly mineralised natural mineral water. Chemical composition (in mg/L): dry residue
at 180 ◦C: 28; bicarbonates: 7; chlorides: 0.87; Ca: 2.73; Mg: 0.39; Na: 2.55; Si: 11.0.

Supporting material Unglazed brick. The supporting material was grooved on the back to help the stucco to adhere.
Dimensions: 27.5 × 13.5 × 1 cm.

* A siliceous material was used to avoid having to discriminate the calcite from the aggregate.
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Figure 1. (a) Stratigraphy of a typical stucco test tube. The square denotes the area enlarged in
(b) that delimits the thin film studied in the present investigation formed on the surface of the
intonachino (upper stucco layer).

2.2. Conditions for Execution of Test Tubes and for Extraction and Conservation of Samples
2.2.1. Environmental Conditions

In order to generate inter-comparable data and to be able to assess how the aqueous
surface film evolves in real time, specific conditions were established in terms of tempera-
ture (21 ◦C) and relative humidity (60–65%). These conditions were maintained from the
moment of execution of the test tubes until the extraction of the samples.

2.2.2. Time Sequence

To determine the evolution of the stucco surface, the time period that needs to be
studied had to be established first. This involved a preliminary study of a test tube for
which organoleptic observation enabled us to define five evolutionary phases on the
surface (Table 2). During the first three phases (between 0 and 24 h), a more rapid evolution
of the stucco surface was observed. Hence, the interval of sample extraction between 0 and
24 h was performed following the logarithm of 24 [7,26,27]. From the fourth phase (>24 h)
onwards, sample extraction was performed every 24 h for 7 days, gradually reducing the
number of samples as shown in Table 3.

Table 2. Evolution over time of the surface of a slaked lime putty stucco.

Phase Interval Macroscopic Observations

1 0–60 m Film development starting from the initial raw material prior to construction through 60 min
after construction.

2 1–4 h Beginning of film hardening and decrease in plasticity.

3 4–24 h Formation and development of the film. At the end of this process, the surface, which was
partially permeable, did not allow the pigment particles to adhere.

4 1–30 d Hardening of the film.

5 >90 d Long-term film development.

m—minutes; h—hours; d—days.

For the POM study, samples were extracted from the same test tube. For the FTIR
and SEM, the “young” samples were removed from test tubes specially prepared for the
occasion, while the “aged” ones were extracted from the same test tube used for POM. All
test tubes were made following the same procedure and by using the same slaked lime and
aggregate, so that they featured the same characteristics.
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Table 3. Extracted samples from the test tubes.

Sequence Interval of Extraction Number of Extracted Samples

0–1 h 3 m 20 s 19
1–2 h 10 m 6
2–3 h 30 m 2

4–24 h 60 m 20
24 h–7 d 24 h 6
8–30 d 48 h 11

90 d 1
160 d 1

TOTAL 66
s—seconds; m—minutes; h—hours; d—days.

2.2.3. Extraction System

Samples were extracted and encapsulated in accordance with the protocol described
by [25]. This procedure guarantees isolation of the samples from the CO2 in the air,
thus interrupting their evolution and permitting observation and analysis of the different
physical–chemical transformation processes. Moreover, this does not deform them and
enables subtraction of the surface layer under study.

2.3. Instrumentation

To optically and morphologically characterize the evolution of the components of
the aqueous surface film, a polarized optical microscope (POM) PM-2085 by Motic was
used, equipped with four lenses (40×, 100×, 400× and 1000×), including crossed (XP)
and parallel (PP) polarizers, two λ and 1/4 λ accessory plates and a Bertrand lens. It also
featured an attached Moticam 1 sp 1.3 MP digital camera for on-screen observation and
image capture.

Compositional and morphological characterization of smaller size particles (<0.5 µm)
was performed with a scanning electron microscope (SEM) EVO ®® MA 10. Observations
were performed under vacuum conditions with a voltage of 20 k.

Identification of compounds, determination of their relative concentrations and de-
gree of disorder of the lattice of formed calcium carbonate particles were carried out
using a Fourier transform infrared (FTIR) spectrometer VERTEX 70 (Bruker Optics). This
instrument included a fast recovery deuterated triglycine sulphate (FRDTGS) temperature-
stabilized coated detector and an MKII Golden Gate Attenuated Total Reflectance (ATR)
accessory. Thirty-two scans were collected at a resolution of 4 cm−1. IR spectra from three
different replicates were acquired at each time to control and measure the advance of the
carbonation process in the specimens prepared. Processing of the IR spectra was performed
using the OPUS 7.2/IR software (Bruker Optik GmbH, Ettlingen, Germany).

To discern the IR bands of calcite and amorphous calcium carbonate embedded in the
ν3 stretching band of carbonate, we applied the curve-fitting method. The algorithm of
Levenberg-Marquardt, based on the least squares method, was employed. Between the
two possible Gauss and Lorentz band shapes, the former was selected, as it provided the
best results.

3. Results and Discussion
3.1. POM

The POM study was used to characterize the epigenetic film that forms on the stucco
surface and observe its mineral ontogenesis. It was thus determined that this film evolves
from an initial aqueous dispersion and transforms into two defined strata of a few mi-
crons: a shallower stratum made up of amorphous compounds (hereinafter “gel-like stra-
tum”) and an underlying microcrystalline stratum (hereinafter “microcrystalline stratum”)
(Figure 1b). Figure 2 shows the different particles identified in both strata. A detailed
description of each stratum is presented below:
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• Gel-like stratum:

# External face (Figure 2a): It is exposed to the atmosphere. Translucent, with
a microgranular texture and low birefringence, it is composed of a nebula
of sub-micrometer particles that, in association with each other, present an
incipient anisotropy. It is observed from 3 min after the execution of the stucco.
As it evolves, it increases both in thickness and birefringence, acquiring a soft
golden hue over time. Formation of this nebula does not seem to depend on
standard aerial carbonation processes that require longer timeframes as stated
by [21].

# Internal face (Figure 2b): It is composed of a granular mass of sub-micrometric crystals.

• Underlying microcrystalline stratum: It is located between the gel-like stratum and
the stucco surface and formed by crystalline aggregates of different kinds:

# Aggregates of particles with an amoeboid, botryoidal morphology (Figure 2c–f)
arising from the components of slaked lime (carbonate nanocrystals, colloidal
particles and crystalline nuclei) generated during the drying process. These
appear between 3 and 15 min after the execution of the stucco, by heterogeneous
nucleation on the pre-existing components. Aggregates of amoeboid particles
evolve via the mechanism of crystal growth in sectors [28], forming subeuhedral
(botryoidal) crystals with curved faces that present black–white checkered
interference colors (Figure 2g–h).

# Fibrous aggregates of acicular crystals with a polycrystalline nucleus
(Figure 2i). These are observed during the first 3 min after execution. After
this period, they disaggregate, giving rise to isolated crystals with an acicular,
tubular morphology.

# Three-dimensional (Figure 2j) or flat (Figure 2g,k) spherulite-type fibroradial
aggregates. These are observed during the first minutes after preparation of the
test tube. They are of variable size but always in the micrometric order. The flat
spherulites (Figure 2l) can group irregularly by stacking along the C axis. Each
spherulite has a different rotation angle to the one before [28]. These crystals
evolve by growth in sectors the quadrants of which can become disaggregated.

3.2. SEM

While the POM analysis provided a considerable amount of information about the
epigenetic surface film, it was sometimes challenging to identify the layer on which the
observations were being made. SEM study was used to accurately identify the different
particles previously detected by POM and chemically characterize the set of strata that
constitutes the film (Figure 3).

The gel-like stratum is made up of calcium carbonate (vide infra), whose particle size
is in the nanometric range and which forms the translucent nebula observed by POM
(Figure 2a). Under the SEM, this nebula is initially characterized on its outer face by the
presence of amoeboid particles arranged in a discontinuous manner. Between 12 and
24 h after preparing the test tube, the stratum acquires a gel-like, micro-porous appearance
and is made up of flaky, interpenetrated particles. Columnar growths are also observed
but only on the inner face of the gel-like stratum, following the growth patterns of floating
calcite described by [29] as shown in Figures 3 and 4. This gel-like stratum stabilizes
physicochemically over time (>160 d).
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Figure 2. Crystalline specimens and other particles observed on the epigenetic surface film formed
in the intonachino by POM. (a). External face of the gel-like stratum featuring a cryptocrystalline
texture; (b). Internal face of the gel-like stratum with a microgranular texture; (c). Prismatic hexag-
onal crystal (portlandite) in process of dissolution/transformation; (d) Particle showing heteroge-
neous growth nucleus; (e) Botryoidal aggregates; (f) Amoeboid aggregates; (g) Sectorial-structure
crystal aggregates; (h) Sectorial-structure chain-like aggregates; (i) Lenticular and rhombohedral
crystal aggregates; (j) Acicular-radial aggregates; (k) Lamellar-radial spherulite; (l) Axial stacking of
lamellar-radial spherulite.
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Figure 3. Sketch of the epigenetic superficial film in section. Letters correspond to the crystalline
phases and other particles shown in Figure 2 (modified from [29]). Note that although the gel-
like stratum is mainly composed of sub-micron particles of calcium carbonate (vide infra), some of
the crystallochemical phases identified in the microcrystalline stratum may be also present in the
outermost layer. Letters correspond to crystalline specimens and other particles shown in Figure 2.
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Figure 4. Evolution of texture developed in the gel-like stratum (a–c) and the microcrystalline
stratum (d–f), both on the surface of a lime putty plaster. Images obtained by SEM. (a) Initial
development of the gel-like stratum 30 min after application; (b) Growth of columnar structures on
the inner side of the gel-like stratum 12–24 h after application; (c) Gel-like stratum after 160 days; (d)
Initial development of microcrystalline interphase between the gel-like stratum and the surface of the
slaked lime plaster; (e) Growth of various crystalline morphologies previously described by POM;
(f) Advanced crystal development.

Regarding the underlying microcrystalline stratum, SEM study (Figure 4) has con-
firmed the typological variety previously established with POM and enabled better obser-
vation thereof. In addition to the crystals described in the previous section, the presence
of acicular and lenticular crystals were identified inside the interstitial spaces. These
largely develop on the faces of the euhedral and sub-euhedral crystals that arise from the
disaggregation of sectoral crystals and which contribute to the densification of the stratum.

3.3. FTIR Spectroscopy

The analysis with this technique enabled the identification of the compounds present
in the studied epigenetic surface films and the characterization of their structural changes.
IR absorption spectra of the epigenetic surface film were acquired along the drying process
of the test tubes. The time program was as follows: 1, 3, 6, 12, 30 min; 1, 4, 8, 16, 24 h, and
160 days (3840 h). To characterize the IR bands occurring in the IR spectra, the experimental
values of the band maximum were compared to those reported in the literature [23,30–38].
Table 4 shows a summary of the specific frequency values for the diagnostic vibration
modes of calcium hydroxide (portlandite), the different types of calcium carbonate reported
in the literature and the values obtained in this study.

Table 4. Diagnostic IR band frequencies obtained in this study and from the literature [30–38].

Frequencies
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712 w(sp) 
744 m(sp) 
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carbonate 
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(cm−1)

Assignation Related
CompoundACC [23,30,36,37] Portlandite

[33,34]
Calcite

[32,34,35] Aragonite [35] Vaterite
[31,35]

Monohydro-
calcite [38]

- 3646 w(sp) 3640 3400, Stretching vibration
OH in Ca(OH)2

Calcium
hydroxide

- 3450 vs. (b), 3400
vs. (b) 3330 3327 s(b) Stretching vibration

OH
Calcium

hydroxide

- 1650 m(b),
1620 m(b) 1637 - - - 1700 w(b) Bending vibration OH

in Ca(OH)2

Calcium
hydroxide
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Table 4. Cont.

Frequencies

Crystals 2023, 13, x FOR PEER REVIEW 8 of 18 
 

 

Table 4. Diagnostic IR band frequencies obtained in this study and from the literature [30–38]. 

Frequencies Ʋ (cm−1)  

Assignation 

Related 

Com-

pound 

ACC 

[23,30,36,37] 

Portlandite 

[33,34] 

Calcite 

[32,34,35] 

Aragonite 

[35] 

Vaterite 

[31,35]  

Monohydro-

calcite [38] 

- 
3646 w(sp) 

3640 
      3400,  

Stretching vibration 

OH in Ca(OH)2 

Calcium 

hydroxide 

- 

3450 vs (b), 3400 

vs (b) 

3330 

      3327 s(b) 
Stretching vibration 

OH  

Calcium 

hydroxide 

- 

1650 m(b),1620 

m(b) 

1637 

 -  -  - 1700 w(b) 
Bending vibration 

OH in Ca(OH)2 

Calcium 

hydroxide 

1470,1490 (sh), 

1425 vs (b) 

1470-1490sh,1420 

  
1425 vs(b) 

1420 
1500 vs 1450 vs 

1492 vs, 1401 

s(b) 

ν3—asymmetric 

stretching vibration 

of carbonate group 

Calcium 

carbonate 

1084 vw(sp)     1083vw(s) 1087 vw(s) 1063 w(s) 

ν1—symmetric 

stretching vibration 

of carbonate group 

Calcium 

carbonate 

874 m(sp) 

872 
  

845 w(sp), 

875 m(sp)  

872 

844 w(sp), 

874 m(sp)   
876 m(sp) s 872 m(s) 

ν2—asymmetric 

bending vibration of 

carbonate group   

Calcium 

carbonate 

725 vw or absent 

(sp), 690 (sh) 

absent 

  
712 w(s) 

712 

700 w(sp), 

712 w(sp) 
744 m(sp) 

762 m, 698 

m(s) 

ν4—symmetric bend-

ing vibration of car-

bonate group 

Calcium 

carbonate 

Acronyms: ACC—amorphous calcium carbonate; Intensity: vs—very strong; s—strong; m—me-

dium; w—weak; vw—very weak. Morphology: sp—sharp; b—broad; (sh)—shoulder. Values ob-

tained in this study in italics. 

Figure 5 shows the sequence of IR spectra acquired along the time interval in the 

study. This illustrates the evolution of the composition of the epigenetic surface film. The 

progress in the carbonation reaction can be followed through the gradual reduction in the 

intensity of the hydroxyl bands in the calcium hydroxide together with the concomitant 

increase of the carbonate group bands in the newly formed calcium carbonate particles. 

(cm−1)

Assignation Related
CompoundACC [23,30,36,37] Portlandite

[33,34]
Calcite

[32,34,35] Aragonite [35] Vaterite
[31,35]

Monohydro-
calcite [38]

1470, 1490 (sh),
1425 vs. (b)

1470–1490sh,1420

1425 vs. (b)
1420 1500 vs. 1450 vs. 1492 vs.

1401 s(b)

ν3—asymmetric
stretching vibration of

carbonate group

Calcium
carbonate

1084 vw(sp) 1083 vw(s) 1087 vw(s) 1063 w(s)
ν1—symmetric

stretching vibration of
carbonate group

Calcium
carbonate

874 m(sp) 872 845 w(sp),
875 m(sp) 872

844 w(sp),
874 m(sp) 876 m(sp) s 872 m(s)

ν2—asymmetric
bending vibration of

carbonate group

Calcium
carbonate

725 vw or absent (sp),
690 (sh) absent 712 w(s) 712 700 w(sp),

712 w(sp) 744 m(sp) 762 m,
698 m(s)

ν4—symmetric
bending vibration of

carbonate group

Calcium
carbonate

Acronyms: ACC—amorphous calcium carbonate; Intensity: vs.—very strong; s—strong; m—medium; w—weak;
vw—very weak. Morphology: sp—sharp; b—broad; (sh)—shoulder. Values obtained in this study in italics.

Figure 5 shows the sequence of IR spectra acquired along the time interval in the study.
This illustrates the evolution of the composition of the epigenetic surface film. The progress
in the carbonation reaction can be followed through the gradual reduction in the intensity
of the hydroxyl bands in the calcium hydroxide together with the concomitant increase of
the carbonate group bands in the newly formed calcium carbonate particles.
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Figure 5. Sequence of IR spectra acquired within the first 24 h and after 160 days.

The main changes are observed in the IR spectra shown in Figure 6a, acquired at
1 min, 24 h, and 160 days. The IR spectrum of the sample obtained at the beginning of
the experiment is dominated by the absorption bands corresponding to the stretching
(3640 and 3300 cm−1) and bending (1637 cm−1) vibrations of the hydroxyl bound and
surface hydroxyl groups associated with calcium hydroxide in suspension. IR absorption
bands of the carbonate group in calcite and its polymorphs are occurring in the three shown
spectra. In particular, ν3, ν2, and ν4 vibration bands, the three symmetry-allowed phonon



Crystals 2023, 13, 219 9 of 17

modes of calcium carbonate, are used for diagnostic purposes. They are characterized
more accurately in Figure 6b. The progressive increase over time of the broad ν3 stretching
carbonate band with the maximum at 1420 cm−1 can be seen, as well as the sharp ν bending
band at 872 cm−1 and the growth of the ν4 bending band at 712 cm−1, almost absent at the
beginning (Figures 5 and 6). According to data listed in Table 4, the experimental values
found in these spectra correspond to calcite.
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Figure 6. (a) IR spectra of samples taken from the surface of test tubes initially, after 24 h and after
160 days; (b) Detail of the 1500–600 cm−1 region for the IR spectra.

The asymmetry observed in the shape of the broad ν3 stretching carbonate band
suggests that it is composed of at least two overlapped bands ascribed to ACC with
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maxima at 1470–1490 cm−1 and C + ACC with the maximum at 1420 cm−1. This hypothesis
has been confirmed by applying the iterative method of curve fitting on the ν3 stretch band.
Figure 7A(a–f) show the original overlapped band, the sum spectra obtained iteratively,
and the two bands that compose the theoretical sum band obtained in the IR spectra
acquired in the first 12 h. The individual bands exhibit maxima in the ranges 1414–1423
and 1451–1496 cm−1, approaching those previously reported in the literature [36]. This
confirms the presence of amorphous calcium carbonate (ACC) in the epigenetic surface
film together with calcium carbonate. The excellent match of the experimental envelope
band (blue line) and the theoretical sum band (red line) can be seen for all the samples
with values of root mean square error in the range 0.004–0.02. It is possible to study the
role of the ACC in forming the epigenetic surface film if it is assumed that there is a direct
correlation between the intensity (area or height) of the overlapped bands and the assigned
component. A significant difference between the ACC and C + ACC band areas is observed
in Figure 7A(a,b). The greater ACC band area in the first IR spectra indicates that this
compound is prevalent at this early epigenetic surface film formation stage. It is also
observed that this band increases over time in the first 3 min. After this, the C + ACC band
grows and surpasses the ACC band. This second step lasts 12 min (Figure 7A(c,d). The
increase of the C + ACC band goes on over time until 12 h (Figure 7A(e,f)). A schematic
view of the evolution of the epigenetic surface film may be observed in Figure 7B.
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Step 2: The trend is inverted, and a decrease in the ACC/(C + ACC) band area ratio is 
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Figure 7. (A) Original overlapped band (blue line), sum band (red line) and individual bands of
calcite plus ACC (C + ACC) (green line) and ACC (purple line) obtained by applying the mathematical
curve-fitting process in the carbonate ν3 stretching band at: (a) 1 min; (b) 3 min; (c) 6 min; (d) 1 h;
(e) 1 h and (f) 12 h. Percentage values of the overlapped band area are provided. (B) Epigenetic
superficial film at step 1 (0–3 min), step 2 (3–12 min) and step 3 (12 < time < 160 days).

Information about the behavior of the epigenetic surface film in these initial stages
can also be obtained by depicting the dependence of the ACC/(C + ACC) band-area ratio
versus time. Figure 8 shows that the process of epigenetic surface film formation takes
place in three steps:

Step 1: There is a rapid increase of the ACC/(C + ACC) band area ratio corresponding
to the initial step in which the ACC nanoparticles are generated in the epigenetic surface
film from the dense supersaturated solution close to the air phase. This process is fast,
spending at ca. 3 min (see insert in Figure 8). At the same time that the ACC particles are
generated in the film’s core, ACC nanoparticles, in contact with the air phase and, therefore,
with a high supply of CO2, form a thin upper gel-like stratum. This upper sublayer quickly
becomes denser and starts to act as a barrier to the diffusion of CO2 from the atmosphere
(see Figure 7B-step1).
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Figure 8. Percentage of individual bands of calcite versus time. Insert shows in detail the behavior in
the first 12 min.

Step 2: The trend is inverted, and a decrease in the ACC/(C + ACC) band area ratio is
observed (Figure 8). This second step lasts up to 12 min. This behavior is associated with
the beginning of the formation of calcite grains from the precursor ACC nanoparticles and
the growth of calcite particle aggregates in the underlying microcrystalline stratum (see
Figure 7B-step2).

Step 3: the crystalline calcite formation rate is drastically slowed down up to 12 min.
This behavior lasts up to 160 days (see Figure 7B-step3).

The evolution of the carbonation process can also be observed in the graph shown in
Figure 9. It depicts the dependence of the band height (I) ratio (ID/IA) of the A band (IA)
to the D band (ID) versus time. The A band is ascribed to the hydroxyl groups, and the D
band (ID) corresponds to the carbonate group (see Table 5). There is a significant formation
of calcium carbonate particles within the first hour (steps 1 and 2), followed by a reduction
of the velocity of the carbonation reaction until 160 days (step 3).

Table 5. Values of the IR band intensity ratio for samples obtained at different times. Values of the IE

and IF heights were normalized to the corresponding ν3 band value.

Time (hours) 0.48 1 4 8 16 24 3840 6480 8760

ID/IA 0.46 0.68 0.86 1.1 1.15 1.84 4.35

IE/IF 10.8 10.78 10.4 10 8.5 7.33 5.1 4.04 * 4.03 *
(*): results obtained from [17].

A theoretical model proposed by some authors [39–42] enables a comparison of
the atomic disorder degree in the calcite lattice originated by geogenic, biogenic, and
anthropogenic processes. This model is based on the distinct sensitivity of the ν2 (E) and
ν4 (F) carbonate bending bands. The ν4 (F) carbonate bending band is more sensitive to the
atomic ordering of the calcium carbonate particles. Therefore, the value of the ratio (IE/IF)
at the maxima of ν2 to ν4 bending bands is a suitable indicator of the structural changes
in the particles during the maturation of the epigenetic film on the stucco surface. The
time interval of the curve depicted in Figure 10 has been enlarged to 365 days, including
values provided by [17]. The graph shows that the IE/IF ratio decreases over time. This
behavior indicates that the crystalline order of the particles in the epigenetic superficial
film increases over time. These changes are associated with the progressive transformation
of the ACC nanoparticles into calcite crystals.
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4. Discussion

Formation of solid calcium carbonate during stucco preparation is based on complex
chemical equilibria reactions and diffusion processes that are difficult to separate and
investigate independently. Two well-known theories have been proposed to describe the
mechanisms by which solid calcium carbonate is formed from a supersaturated solution in
different biological, geological, or industrial environments. Figure 11 shows a schematic
view of the different steps proposed by both classical and non-classical theories.

The classical theory establishes that precritical clusters formed by the reversible addi-
tion of ions from the solution are nucleated, becoming a post-critical nucleus. This is only
possible if specific energy and structural conditions that guarantee its stability are met [43].
The nucleation is a first-order phase transition, and nuclei form as result of the stochastic
density fluctuations of a homogeneous supersaturated aqueous solution [44]. After this,
nuclei become crystals through a growth process.
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On the other hand, the starting point for the non-classical theory is the formation
of stable precritical clusters composed of ions and other related species present in the
solution to produce a postcritical nucleus. The pre-nucleation clusters are nanometer-
sized. Although thermodynamically stable, the high solubility of those species results
in a weak phase boundary with the surrounding solution [45]. Those nuclei undergo an
internal reconfiguration, resulting in more ordered structures that can become crystalline.
Further growth of these protocrystals results in the final crystal [45]. The ACC particles
play an essential role the development of the polyamorph pathways used during the shell
formation or the stiffening of the exoskeletal cuticle [44].
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Figure 11. Schematic view of the different steps proposed by both classical and non-classical theories.
Adapted from [45].

In this context, the present study investigates and establishes how the characteristic
surface film forms in carbonating traditional slaked lime mortars, with a twofold goal:
first, to determine the structure of this epigenetic surface film (i.e., pre-nucleation versus
post-nucleation phenomena); second, to explore different instrumental methodologies for
investigating the formation and evolution of this epigenetic surface film and understanding
why it exhibits different characteristics from the internal stucco core.

Sequential examination at different times by POM and SEM during the drying process
of the stucco was carried out on samples of the epigenetic surface film. This methodology
enabled the identification of a colloidal-like suspension, composed of spherulitic nanometric
particles, in the gel-like stratum within the first minutes (see Figures 2a and 4a). These
particles, which should be formed by aggregation from precursor nanoparticles, have
been associated with a post-critical nucleus according to the non-classical theory. These
species have been previously recognized as aggregates of ACC nanoparticles in Ca(OH)2
water solution drops on glass slides by SEM and FTIR [23]. The same features are also
recognized in the present study in the ACC typical band in the carbonate ν3 stretch region.
Interestingly, it is observed that a blueshift of this individual band takes place over time.
Figure 12 shows the evolution of the ACC band maximum over 160 days.
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Figure 12. Maximum of the ACC band in the carbonate ν stretch region versus time. Scheme of
the presumed behavior of the ACC particles when forming the gel-like stratum in the epigenetic
surface film.

The first step is characterized by the rapid shift of the maximum towards higher wave-
lengths within the initial 60 min. Then, this value slightly increases. These changes have
been tentatively correlated with the evolution of the ACC particles during the formation of
the gel-like stratum composing the outer part of the epigenetic surface film. During the
so-called “sol-like phase,” higher CO2 content in the slaked lime suspension/atmosphere
interface promotes the development of pre-nucleation clusters and their rapid transforma-
tion to type-ACC particles. These particles with spherulitic shapes were already identified
(see Figure 2a) and are characterized by the lowest band maximum wavenumber. They
have been associated with type I or hydrated ACC particles. These particles are initially
isolated in the solution due to the solvation with water molecules, abundant at this moment,
but progressively become closer due to the rapid emergence of new ACC particles. The
increase of ACC particles results in the formation of clusters of type II anhydrous ACC
particles, structurally reducing their water content. In this early stage, the ACC particles
remain in solution configuring a “sol-like phase.” After 12 h, these micellar-sized particles
evolve and behave like coalescent micelles, forming the “gel-like phase” and adopting a
laminar morphology (Figure 4b,c) of vitreous appearance under POM. At this point the
upper gel-like stratum is formed.

In parallel, the IR spectra showed a relative decrease in ACC content and a concomitant
increase in calcite content. According to the non-classical model, this is evidence of the
occurrence of internal rearrangements in the ACC aggregates. These rearrangements
give rise to nucleation of the crystalline phases and further growth of the crystalline
particles. This increase of crystallinity over time is confirmed by the progressive increase
of the intensity of the enveloped band at 1420 cm−1 and the decrease of the Iν2/Iν4 ratio
observed over time (see Figure 10). The different profiles that feature the curves displayed
in Figures 8, 10 and 12 suggest that the transition of ACC into calcite crystals and the
formation of the film take place through different mechanisms; therefore, their dependence
over time is different. Results also suggest that the carbonation and formation of calcite
crystalline particles are progressively extended through the whole epigenetic surface film,
where ACC particles are also identified (see Figures 2e–l and 4d–f).

5. Conclusions

Results obtained in the present investigation indicate that the surface of a slaked
lime stucco evolves in three stages in which the presence of two newly formed strata can
clearly be differentiated on the surface: the surface gel-like stratum and the underlying
microcrystalline stratum.
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Diffusion towards the surface of the components that form the colloidal dispersion
contained in the slaked lime (CO3

2−, Ca(OH)2 and Mg(OH)2) occurs in stage 1, due to the
presence of the aqueous surface film applied at the end of stucco production. This colloidal
dispersion quickly becomes supersaturated due to evaporation of water. After 3 min, the
epigenetic surface film begins to develop, formed on the surface by calcium carbonates of
low crystalline order that could be considered amorphous (gel-like stratum), and on the
inside by a liquid inter-phase that is in contact with the surface of the stucco. At the same
time, the first phases of carbonation occur inside the stucco.

Stage 2 is influenced by the presence of this gel-like stratum, which acts like a semi-
permeable membrane. Two faces can be distinguished in the gel-like stratum: one in contact
with the air, with a gel-like texture and formed by particles of amorphous calcium carbonate,
and the inner one, where hanging calcite structures develop. This last stratum conditions
the carbonation process that occurs inside the stucco and favors the gradual supersaturation
of the liquid inter-phase, thus giving rise to a stratum with a microcrystalline texture in
which different crystalline “split growths” have been observed, such as heterogeneous
nucleation processes and sectoral growths. During this stage, the mechanical properties of
the surface vary, with an increase in its hardness and a decrease in its plasticity being noted.
All these phenomena occur during the first 20 h. This is the moment when burnishing
and/or fresco painting techniques are performed.

Finally, stage 3 is characterized by the densification of both strata (gel-like stratum
and microcrystalline stratum) and the slowing down of the physicochemical processes that
occur inside (mainly carbonation) as pore size is reduced. The evolution of the underlying
strata that make up the stucco (intonaco, intonachino, arriccio, etc.) is influenced by the
presence of this epigenetic surface film that slows down the standard carbonation reaction.

From a chemical point of view, results obtained by FTIR confirm the formation of an
epigenetic surface film with different compositions on the stucco layer. These results agree
with the rest of the analytical techniques applied in the study. The position and changes
in the intensity of the bands in the IR spectra indicate that the epigenetic surface film is
mainly composed of ACC particles that progressively transform into calcite crystals. The
maturation process of the epigenetic film on the stucco during the drying process of the
intonachino is described by three different and complementary approaches: the study of
the profile of the IA/ID and IE/IF ratios over time, the curve-fitting method applied to the
enveloped ν3 stretch band intensity ratios, and further study of its dependence over time.
These changes may be due to the evolution of the gel-like stratum itself or to the evolution
of the inter-phase between the gel-like stratum and the stucco surface, which changes from
a liquid phase to a solid microcrystalline stratum one.
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