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Featured Application: Two methods are proposed here to improve the reliability of landslide sus-
ceptibility maps in risk assessment: (1) Frequency Ratio uses clusters/regression from inventory
data, instead of standard intervals and (2) Diagnostic tests improve conventional classifications
by considering inventory data.

Abstract: Landslide susceptibility maps are widely used in land management and urban planning
to delimit potentially problematic areas. In this article we improve their reliability by acting on the
frequency ratio method and map classification systems. For the frequency ratio method, we have
worked with continuous variables and established intervals grouped by probability according to the
landslide inventory and based on the characteristics of the data rather than on standard divisions. For
map classification systems, we have compared the efficacy of conventional classifications and those
based on the concepts of sensitivity and specificity, with the specificity classifications being supported
by the information offered by available comparative data. Both strategies make it possible to avoid
subjective and repetitive procedures that are alien to the nature of the data being assessed. We present
a case study in the 23,000 km2 Region of Valencia where a total of 48 different susceptibility maps
were generated. We demonstrate that the methods applied in this study to calculate the frequency
ratio provide an improvement in specificity in areas of high susceptibility while maintaining good
sensitivity. In particular, the Area Under Curve (AUC) values increase from 0.67 for the conventional
methods to 0.76 with the methods proposed in this work. This improvement is transferred to
susceptibility mapping much more clearly when classifications that incorporate sensitivity, and
especially specificity parameters, are used.

Keywords: frequency ratio method FR; sensitivity and specificity; geographical information systems
GIS; landslide susceptibility maps; classification systems; ROC analysis

1. Introduction

Landslide susceptibility maps (LSM) are valuable and necessary resources for deciding
how land should be planned, particularly in mountainous areas. Different techniques and
methods for determining susceptibility have been developed since the 1970s, including
classic statistical, index-based, and machine learning methods [1]. GIS technology is a
useful tool for managing and analysing spatial data in relation to landslides [2,3]. Table 1
shows description advantages and disadvantages of the different techniques used.
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Table 1. Methods for Landslide Susceptibility Assessment [4,5].

Methods Description Advantages Disadvantages

Knowledge (opinion)-driven:
- AHP
- Analytic Network process

Ranking and weighting
factors by means of experts

Better knowledge processes in
the field
Do not require large amount
of data
Expert knowledge
contribution

Subjectivity of experts.
Qualitative based
No consistent standard rules
Difficult quantifying results

Bivariate:
- Frequency Ratio
- Weight of Evidence
- Fuzzy logic
- Information value
- GIS matrix method

Assess environmental
characteristics
Use terrain factors: slope,
geology

Useful for regional scale
Quantitative approach
Straightforward to implement
Easy to understand
Satisfactory prediction
performance

Certain irrationality in the
distribution of weights
Generally, less predictive
accuracy than
multivariate methods
Difficult to include a large
number of factors

Machine learning
(multivariate):
- Logistic regression
- Artificial neural network
- Support Vector Machine
- Maximum entropy

Analyse the correlation of
landslide—causative factors
by means of algorithms
Assumption of certain factors
or conditions exhibiting
similar patterns of landslide

Useful for regional scale
Quantitative approach
Normally algorithms offer
high predictive accuracy
Large number of methods

Complicated express
underlying rules
Use complex algorithms
Sensitive to controlling factors
Can’t calculate spatial
relationship of landslide
locations/factors
Black box nature
No rule of thumb for applying
the best method

Physically based
(deterministic approach)

Mechanism and landslide
processes
Geotechnical parameters
Analyse slope stability

More exact
Strong landslide
warning ability
Quantitative approach

Requires large amount of data
and field survey
Small regions
Needs homogeneity in
ground conditions

Historical landslide inventory data have been fundamental in the preparation of
these maps. These data are generally used as contrasts for validation elements to adjust
susceptibility values, and especially to establish the levels or classes of the variables that
govern the ground-motion mechanisms. This is the case of the ‘frequency ratio method’
(FR). However, it is sometimes felt that these inventory data could be better exploited. In
other words, they could provide a better fit in the case of continuous variables, as well as in
the mapping classification of susceptibility values.

The likelihood of landslides in a particular area has been widely evaluated using the
frequency ratio (FR) method [6,7]. This is a type of bivariate statistical analysis technique
that allows for representing landslide susceptibility maps that link the individual factors
governing landslide failure to the sensitivity of its occurrence. FR can be easily integrated
into a GIS system due to the simplicity of its principles, making it user-friendly [8,9].
However, other methods have proven to be more effective, which highlights the need
to improve the FR technique [10,11]. The initial step in using the FR method to analyse
landslides (as well as other bivariate methods) is identifying and grouping the factors that
contribute to them, such as the angle of the slope and the type of rock, among others. The
likelihood of a landslide occurring in a specific area is determined by the numbers and
threshold limits of the classes of factors. Determining the thresholds that lead to best results
constitutes a major challenge, because it relies on expert knowledge of the area in question
and is therefore subjective [12–15]. One proposal is to use procedures capable of extracting
the maximum information from the available data. This paper proposes a method that
objectively considers the nature of the inventory data to determine the number of classes
and their limits for numerical variables.
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The commonly used factor classifications induce discontinuities in the FR values. This
implies significant breaks between classes, which will eventually lead to a discontinuity in
the spatial distribution of landslide susceptibility. Furthermore, the choice of factor class
boundaries is subjective. Therefore, it is of key importance to apply new methods to avoid
data gaps and subjective decisions.

Creating clear and easy-to-understand maps is an important aspect of mapping land-
slide susceptibility. However, grouping data into a set number of classes can have a negative
impact on the accuracy of the results, depending on how the classes are defined. Thus,
changing the boundaries between classes can lead to vastly different maps [16]. There-
fore, the overall accuracy of the classified map is crucial for determining its usefulness in
decision-making tasks [17,18]. To assess the reliability of a map for a particular application,
it is necessary to make meaningful and consistent measurements of its accuracy. Currently,
there are no standard guidelines for classifying landslide susceptibility maps, such as the
number and names of classes or class boundaries. Some authors use expert criteria to
divide the susceptibility histogram into categories [19,20], which cannot be automated or
statistically tested [21], and do not consider the real underlying data. Because of the above,
it can be concluded that there is no universally accepted method for classifying landslide
susceptibility maps.

Some of these subjects are addressed in the new system for classification methods for
susceptibility maps proposed by Cantarino et al. (2019) [22] and based on receiver operating
characteristic (ROC) analysis. The authors compare this classification with other standard
classification systems (natural breaks, quantiles, head/tail breaks) and demonstrate its
greater effectiveness in a mountainous area of about 1500 km2. This paper compares this
ROC-based method with other classification procedures. One of these procedures also uses
the definitions of the ROC space, in particular of sensitivity, but without specificity. This
is the European Landslide Susceptibility Map (ELSUS) [23]. The previously mentioned
natural breaks and quantiles classification methods are also included to check which is
the most reliable method for assessing risk in large areas (as is the study area selected for
this work).

In short, the aim of this article is to propose new working procedures together with
the adjustment of existing procedures, basing these procedures on a better exploitation of
the inventory data. This should lead to an improvement in obtaining and spatially defining
risk values for landslide susceptibility maps.

2. Case Study of the Valencia Region
2.1. Description of Study Area

The area selected for the comparative study is the Region of Valencia. This region is in
the southeast of Spain (Figure 1) by the Mediterranean Sea. It consists of three provinces—
Castellon (CST), Valencia (VLC), and Alicante (ALC)—and includes 542 municipalities. The
area covers 23,260 km2 and represents 4.60% of the national surface; it had a population of
5,072,000 inhabitants in the year 2021 (Spanish National Institute of Statistics). The relief of
the area is influenced by its proximity to the Mediterranean, featuring a river system that
cuts deeply into the land. The study area is mainly formed by Late Cretaceous carbonate
rocks: limestones and dolomites with a significative presence of banks of marl. Materials
forming the foothills consist of clay and silt from later Tertiary and Quaternary periods.
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2.2. Data Sources

The information utilized to establish susceptibility factors and terrain features in this
article was obtained from official national sources, as outlined below.

• The data for the terrain slope gradient were obtained from the Spanish National
Geographic Institute’s digital elevation model (IGN-DEM) MDT25. The database
was created from Lidar flight and has a resolution of 50 cm/pixel, with each pixel
measuring 25 × 25 m.

• The land use and land cover (LULC) information was sourced from the SIOSE (Spanish
Land Use and Land Cover Information System) 2006 model (1:25,000 scale), from the
Spanish National Geographic Institute (IGN). Since this model contains a high level of
detail and complexity, a hierarchical model derived from the SIOSE was chosen as it is
simpler to implement [24].

• Data on surface geology were obtained from the 1:50,000 scale national geological map
created by the Spanish Geological and Mining Institute (IGME).

• Digital landslide inventory data were obtained from a 1:50,000 scale vector format
landslide map created by the Department of Public Works of the Valencian Regional
Government [25]. The map was constructed using 1:50,000 scale geological and
geotechnical maps from the Spanish Geological and Mining Institute, as well as aerial
photographs from that time. Additionally, information from specific publications and
field surveys were also utilized to identify landslide events based on factors such as
morphology, lithology, structure, slopes, and vegetation. The map includes all types
of landslides represented as polygons and differentiates rock falls from other types of
landslides, such as slides and flows, due to their higher frequency (accounting for 2/3
of all landslides).

The European Landslide Susceptibility Map (ELSUS 1000) is of particular interest, and
this is the only unofficial source. This map displays the likelihood of generic landslide
occurrence at the European scale. ELSUS was created by the Joint Research Centre in 2012,
using a 1 × 1 km grid and five susceptibility categories (VH, H, M, L, VL) for different types
of physiographic regions (coastal, flatland, and mountainous regions). Zone 5, classified as
mountainous with arid climate, was chosen for comparison with the area studied in this
study [23,26].

The factors or criteria for this study have been selected according to existing research
on ELSUS mapping [23,26] and are slope gradient, lithology, and LULC. This is considered
an appropriate selection, as these three factors have proven to be more relevant in different
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geographical areas than other factors such as NVDI, slope aspect, annual rainfall, distance
to rivers, distance to roads, or a stream power index [27,28]. The weighting methodology
used by ELSUS was initially used as a point of comparison, as described in Section 3.

3. Methodology
3.1. General Procedure

When following a standard procedure, the preparation of susceptibility maps requires,
first, defining the factors that in the authors’ opinion are most decisively involved in the
dynamics that trigger ground movements. Before creating the susceptibility maps, each
factor must be separately analysed using a bivariate statistical method. This allows the
researcher to discern the true impact of each variable and accurately classify the variable
map as having direct or inverse proportionality with landslides. That can be accomplished
by calculating the weights of each class factor by means of FR.

Several methods are commonly applied in the susceptibility map literature to obtain
the weights of each factor involved. An approach known as Spatial Multicriteria Evaluation
(SMCE) [29] is widely used for landslide susceptibility zoning. This approach combines
both landslide information and expert knowledge. In SMCE, factor weights for landslide
susceptibility are determined using the Analytic Hierarchy Process (AHP) through pairwise
comparisons of selected factors [30]. The Landslide Susceptibility Index (LSI) for each pixel
is then calculated using a weighted linear sum of the factors and factor class weights, as
shown in Equation (1).

LSIi =
n

∑
j=1

wj × xji (1)

where LSI is calculated for each i pixel, wj is the weight of the factor j (according to AHP),
and xji is the weight of the factor class i in criterion j according to FR methods for three
factors. The landslide susceptibility maps were created through this landslide susceptibility
index calculated for a specific area.

The factors that appear in Equation (1) are generally publicly available variables
provided by official bodies that describe the characteristics of the terrain relative to the
possibility of a landslide. An inventory of landslides in the study area is also necessary for
the calculation of the FR and subsequent validation processes.

To calculate LSI (landslide susceptibility index) values, classes are established for
the selected variables. The first objective of this study is to work on the optimisation
of one of the common methods for obtaining the weighting of classes (the previously
mentioned frequency ratio method or FR) and including new calculation procedures. In
total, four methods for obtaining FR were used. All these methods are discussed at length
in Section 2.2.

The second objective is to differentiate between suitable classifications for landslide
susceptibility maps. Thus, some of the more conventional classifications, such as those
based on diagnostic tests of sensitivity and specificity, are discussed using the tools provided
by the ROC space. In total, four classifications have been discussed, and these are explained
in greater detail in Section 3.3.

To better compare the results obtained, the selected geographical area is divided into
three sectors, defined by the provincial boundaries, and the methods proposed are applied
separately. With all the results obtained, a comparison will be made with the inventory data
by calculating a series of quantitative adjustment indicators. Finally, these comparisons are
synthesised and summarised so conclusions may be reached on the best combinations of
frequency ratio method and classification maps.

3.2. Frequency Ratio Methods
3.2.1. General Development

Before analysing the susceptibility maps, the true impact of each variable should be
individually evaluated by means of bivariate statistical method and then classified to have
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a direct or inverse relationship with landslide occurrence. Such a method reveals that
landslide occurrence is dependent on a single variable. Bayes’ theorem is applied to obtain
the conditional probability (Equation (2)):

P
(

landslide
X

)
=

P(landslide in X)
P(X)

(2)

In this study, the conditional probability is equivalent to factor class weights directly
determined by means of FR. This way of working is based on determining the relationship
between the landslide distribution and each of the factors involved in the phenomenon.
Thus, FR is the ratio between the area affected by landslides and the total area, as well
as the probability of landslides occurring or not for each factor. FR is determined from
the ratio of landslides in the inventory and the attributed factors. Thus, for each class j of
factor i:

FRij =

Aij
B

Cij
D

(3)

where:

Aij: number of pixels with landslide for each factor i and class j
B: total number of pixels with landslides in the study area
Cij: number of pixels in the class area j of the factor i
D: total number of total pixels in the study area

The FR value may be higher than 1 and this further indicates that the ith class of
factor F (Fi) favours landslide occurrence. Based on the inventory data, FR values were
obtained according to Equation (3), and then normalised in the 0–1 range and multiplied
by 1000 (FRn) for the discrete variables.

This is the most used methodology to obtain the FR data, either for discrete variables
(non-numerical) or continuous variables. For discrete variables, the intervals are established
by the nature of the available data. For continuous variables, constant intervals (‘equal
interval’) are usually used without the intervention of special adjustments. In this article,
this procedure of dividing a continuous variable into constant intervals is referred to as the
‘general frequency ratio (GFR)’ method.

Li et al. (2017) [15] and Zhang et al. (2020) [31] developed a proposed improvement
to this general method called the modified frequency ratio. This is an optimisation for
continuous variables that sets smaller and smaller normalised intervals until the best
answer is found. The optimisation is developed by means of an iterative algorithm applied
to each of the involved variables, the objective factor being the probability of success
according to the ROC curves. This method has the disadvantage of not adapting well
to hybrid models, which combine discrete variables with continuous variables. That the
working intervals are not balanced means that the perspective of adequately weighting
each of these variables is lost. These hybrid models, such as the case presented in this paper,
are the most common and would require a specific optimisation procedure. For this reason,
the modified frequency ratio is not used in this study.

This paper considers that it is possible to establish classes in continuous variables
in a more objective manner that considers the nature and characteristics of the data used.
An initial option is to obtain these classes by means of classical cluster data analysis. The
procedure consists of calculating the FR for a wide series of intervals, for example, 40◦ or
more, in intervals of 2◦ by 2◦. These intervals are clustered using the k-means clustering
technique, with a Euclidean similarity (or closeness) metric. The goal of this cluster type
is to divide n observations into k clusters, where each observation belongs to the cluster
with the closest mean and acts as a representative of that cluster. This creates a division of
the data space into Voronoi cells. This cluster method for obtaining the FR intervals is a
proposed improvement to the general method that is developed in this article and called
the ‘cluster frequency ratio’ (CFR). The number of clusters should approximately coincide
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with the number of classes calculated for the discrete variables. Otherwise, the weights
calculated for each variable would be inadequately compensated.

A procedure to better capture the variation of the FR value (and avoid discrete jumps
in its distribution) adjusts by regression the values of the centroids for FR of the classes
obtained by the cluster grouping described according to CFR. To avoid the previously
mentioned decompensation with the discrete variables, only the centroid data are used,
and not the data of the original intervals. This method is called ‘regression frequency
ratio’ (RFR). The fit need not be precise; nor is it necessary to obtain a single regression
curve (thereby avoiding complex polynomial equations). Accordingly, the solution adopted
distributes the centroids of the available cluster classes into two groups, one lower and the
other higher (with the possibility of overlap at the intermediate point).

Finally, to broaden the options, the same classes defined for slopes in the ELSUS
map [23,26] in its two versions (v1 and v2) are used in this work. It is considered a suitable
precedent as it is also a generalist map covering large and diverse regions. Consequently,
the ELSUS classes have been used to define another FR methodology, referred to in this
article as the ‘ELSUS frequency ratio’ (EFR), to compare with the other FR calculation
methodologies described above (see Table 2). The levels consider the zone-specific landslide
frequency analysis, although the detailed procedure is not specified in the text of the article.
Specifically, we are going to work directly with the intervals defined in the v2 version for
the Z5 zone (mountain area: temperate climate with dry summers). The number of classes
for each variable can be increased at the authors’ discretion, but this does not obviously
improve the results. On the other hand, we understand that it is preferable that the balance
of classes is equivalent among all the variables used by the model. As an example, in the
study conducted by Xiao et al. (2020) [32] with several bivariate models, a total of 13 factors
or variables were used and no continuous variable exceeded 8 classes.

Table 2. ELSUS versions v1 and v2: slope classes (values in sexagesimal degrees).

Class ELSUS v1 ELSUS v2

1 0–2 0–2
2 2–4 2–4
3 4–6 4–8
4 6–10 8–12
5 10–15 12–18
6 15–20 18–25
7 20–30 25–38
8 30–90 38–90

3.2.2. Weighting Classes for Discrete Factors

Susceptibility will be assessed using the three factors mentioned above: land use,
lithology, and slope. The first two are discrete factors and the FR is calculated for each of
the classes into which these factors are divided in line with Equation (3).

It was confirmed that loose and very loose materials, where landslides are more likely
to occur, have a very low landslide frequency as they are in predominantly flat Quaternary
areas (Table 3). This factor was the only one that required further adjustment by experts.
The classes for land uses and their FR are represented in Table 4.
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Table 3. Lithology classes defined by the authors according to Geological and Mining Institute (IGME)
data. Provinces of Castellon (CST), Valencia (VLC), and Alicante (ALC).

FR
Class Lithology (IGME) CST VLC ALC

1 Very hard and/or massive rocks
(dolomites, limestones, and quartzites) 120 130 145

2 Hard rocks with soft alternations 113 120 140

3 Medium hard rocks (calcareous
sandstones, alternations) 215 220 330

4 Fairly soft rocks 160 190 189

5 Soft rocks (marls, gypsum, gypsum
with clays) 335 235 100

6 Loose, poorly consolidated materials
and alluvial deposits. 40 80 80

7 Very loose Quaternary materials, soils 17 25 16

Table 4. Classes defined for LULC, according to SIOSE (2006). Provinces of Castellon (CST), Valencia
(VLC) and Alicante (ALC).

FR
Class Land Use and Land Cover (LULC) CST VLC ALC

1 Artificial urban residential coverage. 27 26 14

2 Tertiary artificial cover (services). Not urbanised. 68 40 37

3 Primary artificial cover (industrial) 22 55 61

4 Irrigated arable crops (market garden). 9 8 8

5 Irrigated orchard (citrus, fruit trees) 25 20 23

6 Non-irrigated arable and tree crops. 34 33 46

7 Forest (coniferous and broad-leaved) 389 239 223

8 Shrub lands. Burnt areas and rocky areas 244 341 354

9 Grasslands and bare soil 182 237 234

3.2.3. Weighting Classes for Continuous Factors

The slope factor is the continuous variable, and, therefore, the factor class weights
have been calculated with the FR methods shown in Section 2.1. The ranges have been
defined according to the methodologies indicated and are summarised in Table 5:

• GFR: constant intervals every 10◦.
• EFR: intervals defined for the ELSUS v2 map (see Table 2).
• CFR: intervals obtained by cluster analysis for the three provinces: Castellon (CST);

Valencia (VLC) and Alicante (ALC).

When one is working jointly with discrete variables, it is not possible to increase the
number of classes in the factors (as these are predefined). This requires the number of
classes defined in the continuous variables to be in accordance with the discrete variables.
In the example, slope has been distributed in 8 classes, lithology in 7, and land use in 9.
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Table 5. Intervals defined for slope according to methodologies and provinces described in the text.
Values in sexagesimal degrees.

Class GFR EFR CFRcst CFRvlc CFRalc

1 0–10 0–2 0–4 0–6 0–4
2 10–20 2–4 4–10 6–12 4–8
3 20–30 4–8 10–18 12–20 8–14
4 30–40 8–12 18–26 20–26 18–20
5 40–50 12–18 26–32 26–32 20–26
6 50–60 18–25 32–40 32–40 26–32
7 60–70 25–38 40–50 40–50 32–44
8 70–80 38–90 50–74 50–74 44–78

For the RFR method, two regression adjustment curves with FR are used as the
dependent variable for each province (as shown in Figure 2 for the example of Castellon).
Each slope value presents a value of FR according to these regression formulae.
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3.2.4. Weighting Factors

As demonstrated in Equation (1), LSI is calculated for each i pixel, by means of the
weight of each model variable. The factors or criteria used are slope gradient, lithology and
land cover. The weighting methodology used by ELSUS was initially a point of comparison
(Table 6). However, the resolution of the data used to calculate slopes in ELSUS is different
from that in the digital elevation model produced by the Spanish National Geographic
Institute. For all the above, a higher weighting must be appliedhere, and therefore the
ELSUS values are not utilized in this research. LSM weights (Table 6) were produced for
this study with the analytic hierarchy process, and slope was strengthened at the expense of
lithology—the factor that presented the lowest resolution (1:50.000) and followed by land
use (1:10.000). Subsequently, the weights were adjusted by an expert panel and applied
according to Equation (1).
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Table 6. Weight (“w”) assigned to factors according to ELSUS v1 and v2 and the approach adopted
in this article (wLSM).

Factor wELSUSv1 wELSUSv2 wLSM

Slope 0.58 0.58 0.70
Lithology 0.28 0.29 0.19
Land use 0.14 0.13 0.11

Previous research has shown that slope gradient is a significant factor in determining
general landslide susceptibility at a continental scale [20,33,34]. Having a range of values
for the same calculation method allows for sensitivity analysis by comparing the differences
in the results obtained.

3.3. Landslide Susceptibility Classification Systems

Single-zone susceptibility maps typically use landslide data to categorize areas into
five levels of susceptibility: “very low”, “low”, “moderate”, “high”, and “very high” [20,35].
It should be noted that classifying landslide susceptibility is a complex task, and there are
no established guidelines for determining the number of classes, their characteristics, or
specifications [35]. To create a classification system that is as clear as possible, we base our
approach on the density of landslide occurrences, even though our sample of landslides is
biased and incomplete. We believe that this classification method is suitable for identifying
landslide susceptibility on a continental scale and can be easily understood by end users.

Four classification types have been used. Two of the methods are popular, widely
applied in this type of work, and offered by GIS software. These are natural breaks (NB) and
quantiles (Q). The other two are based on diagnostic tests, such as ELSUS and generalised
Youden [22]. By working in this way, it is possible to make broader comparisons and
stronger conclusions, as well asto guarantee the improvements achieved by applying a
given classification method.

It should be noted that although natural breaks is a commonly used classification, it is
often overly optimistic for a susceptibility analysis, i.e., many of the cells in the study area
are classified as low susceptibility [22]. This is because the term natural breaks seeks the
greatest variance between classes, and so tends to set the class boundaries at the lowest
frequency LSI intervals—meaning the steepest FR value jumps (which are dominant in the
medium- and high-susceptibility sections).

In the ELSUS methodology, the classification of maps in mountainous areas (zone
Z5) is based on a percentage of landslide-affected pixels (LSP): 50–25–10–3% [26], i.e., the
percentage of pixels affected by landslides (LSP) in each section. In terms of sensitivity (Sen)
or true positive rate (TPR: success rate), the following percentages are established: 97–90–
75–50% (see Table 7). Note again that this methodology does not consider specificity (Spe).

Table 7. Inferior class limits for ELSUS and GYouden.

Class ELSUS GYouden (1)

Very High (VH) 0.50 × Sen max {Sen + 4 × Spe} (2)
High (H) 0.75 × Sen max {Sen + Spe} (3)

Moderate (M) 0.90 × Sen max {Sen + 3/8 × Spe}
Low (L) 0.97 × Sen max {Sen + 1/8 × Spe}

Very Low (VL) 1 min {LSI}
(1) LSI value that maximises the function. (2) The highest value is obviously max {LSI}. (3) Equal to Youden index,
the point where Sen and Spe are at their highest.

The generalised Youden (GY) approach sets the boundaries between susceptibility
classes based on the class-specific cost ratio of false positives to false negatives. The
specificity value (Spe) or TNR (true negative rate) is used to avoid the high costs of false
negatives in high susceptibility areas. For a better explanation of the GY method, see the
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article by Cantarino et al. (2019) [22] in which the development and application of the
method is described in detail.

Table 6 depicts, in the column wLSM, the weights assigned to each factor according to
the AHP method [30]. A consistency ratio of less than 0.10 in all cases in the comparison
matrices (CR) indicates that the AHP analysis can proceed. CR represents the likelihood of
the decision matrix being generated randomly. By using these coefficients and weights for
each factor and class obtained through FR methods, it is possible to calculate Landslide
Susceptibility Index (LSI) values for each susceptibility map. These values are obtained by
summing up the product of the factor weight and the factor class weight for each FRn type
using Equation (1).

With the calculated LSI values, the susceptibility maps are produced for each province
and FR calculation method. In total, 12 maps are obtained for FR. For the classification of
these maps, the four systems described in this section are used, two of which are offered
directly by the GIS software (natural breaks and quantiles) and the other two, based on
diagnostic tests (ELSUS and generalised Youden).

3.4. Quantitative Indexes

It is interesting to establish whether the overall improvement obtained by applying the
new FR calculations is transferred to the classified maps, which are ultimately the working
tools in land management. A global comparison of all the classification methods with the
FR calculation methods is proposed. For this purpose, a series of indicators is available to
express the value of each of the available combinations. In this article these indicators are
partial Area Under Curve value (pAUC), Sensibility (Sen), and Specificity (Spe).

For this purpose, another more specific indicator has been calculated that evaluates
the adjustment of the classification applied to the maps obtained. Specifically, it is the R
index (Rind) used by many authors to calculate the relative density of landslides. The
landslide susceptibility index value was used to classify slope failures as susceptible or
non-susceptible. It is expected that slope failures will occur more frequently in areas with
high susceptibility index values. To confirm this, we can use an index of relative landslide
density. This index compares the density of slope failures in a specific susceptibility class to
the overall density of slope failures. It is calculated using the following formula:

Rind = 100 × ni/Ni

∑ ni/Ni
(4)

where ni is the number of slope failures observed within a susceptibility class and Ni is the
area occupied by this class of cells [36].

Rind indicates a relative frequency of landslides. If two maps with the same number
of pixels are compared, a higher Rind value indicates a better fit and a higher number of
hits for a considered level above the total. In other words, it is a good indicator for the
whole map, and goes beyond the simple ‘consistency’ indicated by the authors. This index
has been calculated for just the two highest levels, VH and H (taken together). The use of
these values is more representative as it eliminates the variation in the number of pixels at
each level, particularly at lower levels. By considering levels separately, the differences are
more pronounced.

Figure 3 summarises the calculation itinerary followed until the comparative analysis
was made and shows that the quantitative indices calculated for the 48 susceptibility maps
obtained. For an easier understanding of the results, their means are shown for the three
provinces of the working area and so, 16 means are available for each indicator. These are
the previously mentioned specific Rind for the classes in the LSM. The pAUC, Sen, and
Spe values obtained refer to those calculated for the lower limit of the ‘high’ class for each
landslide susceptibility map. According to Table 7, this corresponds to 0.75*Sen for ELSUS
and Youden’s index for GY.
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4. Results
4.1. Frequency Ratio Methods

In this section, it is determined which of the FR calculation methods is the most
effective. The degree of accuracy of the susceptibility maps produced is calculated, i.e., the
probability that a pixel in the landslide susceptibility maps classified as unstable coincides
with the areas defined in the inventory. In the tables included in this section we depict
average values for the different methods and indices used to facilitate comparison among
methods. According to Cantarino et al. (2019) [22], working with ROC curves is the most
suitable procedure—in which the increase in sensitivity true positive rate (TPR) is plotted
with the increase in false positive rate (FPR) at various threshold settings. In these curves,
one of the most used indices to determine the validity of diagnostic tests is the area under
the ROC curve (AUC). This is an index that shows which test best discriminates between
hits and misses.

These calculations will be made on the maps of the three provinces, together with
the extended inventory for the entire territory studied and all the slope values. Thus,
the AUC values obtained are quite high and exceed the value of 0.841 (results shown
in Table 8). The table shows that there is no significant difference when considering all
the landslide susceptibility index values. Only the GFR values stand out, and these are
clearly lower than the rest. This is because at low landslide susceptibility index values, the
probability of landslides is low, the probability of success is high, and they represent most
the pixels studied. One solution to highlight the differences would be to disregard pixels
with low landslide susceptibility index values and use the cut-off points defined by one of
the classifications discussed above.

Table 8. AUC values for the FR methods.

Provinces GFR EFR CFR RFR

Castellon (CST) 0.841 0.853 0.852 0.854
Valencia (VLC) 0.858 0.869 0.865 0.869
Alicante (ALC) 0.873 0.888 0.889 0.892

Mean 0.857 0.870 0.870 0.872

However, it is preferable to establish these levels by means of ROC curves in a section
of the curve that reflects the most appropriate values rather than the total set. By working
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on this selected range, a partial “p” AUC value (pAUC) is obtained, which is more mean-
ingful as it does away with values that offer scarce information. Indeed, in this work, a
large number of positive hits (sensitivity) is considered more important with the largest
number of negative hits (specificity) in the most susceptible sections (landslide suscepti-
bility index values). Considering the importance of specificity in landslide studies, the
criterion of calculating pAUC for values greater than 60% (Spe or TNR > 0.6, or FPR < 0.4)
has been adopted.

Figure 4 below explains the behaviour of the ROC curves. It shows the ROC curves
for the three provinces and with high values selected on the axes for clarity: Sen > 40%
and Spe > 50%. Shown alongside are the pAUC evolution plots for high specificity values
(Spe > 60%) with the area between the FPR level expressed in abscissa and the beginning
of the ROC curve.
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Figure 4. Behaviour of the calculation methods for each province. ROC plots are shown in the left
column and pAUC evolution in the right column.

According to the ROC curves in Figure 4 in areas of medium susceptibility with a hit
rate for stable areas in the order of TNR = 70% (or 30% FPR), the gain in hits achieved in
unstable areas (improvement in mean sensitivity) by the continuous methods (CFR and
RFR) is very low (around 1–3%). With medium or low susceptibility (with TNR < 30% or
FPR > 70%), no differences among methods can be seen as the curves coincide. Therefore, it
does not seem worthwhile extending the zone delimited as unstable with the medium/low
susceptibility zone for such a small gain (due to the increase in prevention costs that this re-
quires). However, in the very high susceptibility zones (with TNR > 80% or FPR < 20%), the
mean gain in sensitivity exceeds 5% in favour of the continuous methods (CFR and RFR).

An analysis of the evolution of pAUC for each method shown in Figure 4 is intriguing.
It is conclusive to note that the continuous methods, such as CFR and especially RFR, offer
a higher envelope in their pAUC values in the described range. This result guarantees
the highest probability of success in the high susceptibility zone (landslide susceptibility
index), and this is the desired objective.

4.2. Classification Systems

An initial approach to determine the behaviour of the classification systems shows a
correlation between the landslide susceptibility index values of the treated maps. This is
especially true for a comparison with ELSUS and GYouden, as their classifications are more
similar. The kappa index will be used for this comparison.

Kappa is considered more robust than simply calculating the observed proportion of
agreement because it accounts for the proportion of agreement that would be expected
by chance. Kappa ranges from −1 to +1, with larger values indicating a higher level of
concordance. It can be expressed as follows [37]:

κ =
d − q
N − q

(5)

where d (observed agreement) is the proportion of cells in agreement, q is the proportion of
agreement expected by chance, and N the total number of observations. The current study
employed the Kappa statistic with linear weighting to measure the level of agreement
between maps in all cases; see Fleiss et al. (2003) [38]. The Kappa value penalizes linear
disagreement among maps on a scale from smallest to largest. This Kappa index was
utilized to assess the extent of change in model classes when the FR type was varied.
Table 9 compares the models against the RFR model as a basis.
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Table 9. Kappa values from the comparison of RFR maps with other maps.

RFR—G. YOUDEN RFR—ELSUS
Provinces GFR EFR CFR GFR EFR CFR

Castellon (CST) 0.867 0.849 0.909 0.883 0.872 0.923
Valencia (VLC) 0.895 0.805 0.916 0.888 0.883 0.923
Alicante (ALC) 0.821 0.922 0.950 0.904 0.950 0.959

Mean 0.862 0.858 0.926 0.892 0.902 0.935

As expected, the CFR method is the most correlated with RFR. The best fit is obtained in
the province of Alicante because, in the high susceptibility sections (landslide susceptibility
index), the value of FR for the slope is more stable. With the GY classification, the groupings
with GFR and EFR show a similar correlation with the improvement obtained with CFR
being evident (0.926). In contrast, if ELSUS and RFR are used as the standard, correlations
rise in most cases when compared to GY. This would seem to mean that the different
groupings according to RF for ELSUS are more homogeneous and, therefore, a possible
improvement in the definition of classes for the factors will have less influence.

It is Interesting to analyse the correlation values obtained using the kappa Index among
the classification methods. Table 9 shows a greater homogeneity in the ELSUS system with
higher values than for GY. This seems to indicate that ELSUS is worse at differentiating
between the calculation methods for FR. The GY classification is less correlated and more
sensitive to the differences between the FR methods.

4.3. Landslide Susceptibility Maps

A total of 48 maps have been produced for the three provinces, the four types of FR
(GFR, EFR, CFR, RFR), and the four classifications (NB, Q, ELSUS and GY). An example
of these maps for the province of Valencia, prepared with regression FR (RFR) and the
GY classification, is shown in Figure 5. Appendix A shows general maps for the GY and
NB classifications.
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Figure 5. Example of a susceptibility map for the province of Valencia (RFR with GY classification).

The result of the LSM classifications reveal different aspects depending on the type
of FR used and above all on the classification selected. The distribution of surface areas is



Appl. Sci. 2023, 13, 5146 16 of 24

shown in Figure 6 for the ‘high’ and ‘very high’ susceptibility classes. This figure shows the
percentage of surface area for each of these classes and for the Valencia Region as a whole
(CST, VLC, and ALC).
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Figure 6. Surface percentage for high susceptibility classes (very high and high) in Valencia Region.

Figure 6 clearly shows that the classification systems determine the extent of high
susceptibility classes (H and VH). Natural breaks is an optimistic classification with an
mean value of 15% of pixels in these classes, although it is higher for the GFR type (possibly
because the division of the slope factor is better defined in the high section). On the contrary,
quantiles is a pessimistic classification, with close to 40% of pixels in the high classes. The
GY and ELSUS rankings seem to be more balanced in their distribution. When the different
FR methods are compared, GFR shows the highest number of pixels in these classes.

4.4. Frequency Ratio and Classification Systems Comparative

Table 10 shows the values obtained for the indices as a mean for the three provinces.
The row and column means are also included for comparisons between the FR and classifi-
cation methods. In this table, the value of Sen for all cases of the ELSUS classification is 75.
This is due to the very definition of its classification, which determines this value for the
lower limit of the ‘high’ class (Table 2).
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Table 10. Mean values of indicators for the three provinces.

Classification Systems
GY ELSUS NBreaks Quantil G.Mean

Fr
eq

ue
nc

y
ra

ti
o

m
et

ho
ds

GFR

Rind 0.771 0.717 0.789 0.761 0.759

pAUC 0.745 0.711 0.674 0.794 0.731

Sen 75 75 56 86 73

Spe 80 79 91 64 79

EFR

Rind 0.782 0.765 0.758 0.812 0.779

pAUC 0.747 0.742 0.615 0.809 0.728

Sen 77 75 40 89 70

Spe 81 81 96 63 80

CFR

Rind 0.789 0.764 0.769 0.794 0.779

pAUC 0.761 0.755 0.597 0.823 0.734

Sen 77 75 44 89 71

Spe 80 82 98 62 80

RFR

Rind 0.802 0.762 0.768 0.820 0.788

pAUC 0.758 0.758 0.684 0.818 0.755

Sen 80 75 56 90 75

Spe 79 83 93 62 79

Global
mean

Rind 0.786 0.752 0.768 0.797 0.776

pAUC 0.753 0.742 0.643 0.811 0.737

Sen 77 75 49 89 72

Spe 80 81 94 63 80

After applying the ELSUS classification system, no major differences are observed
among FR methods, and none stands out from the others (except GFR). In the case of the
GY classification, an improved overall performance is observed. In particular, the better
performance of Rind seems to be due to the two lower levels that are better resolved in GY.

In terms of classification, NBreaks shows the lowest sensitivity, indicating that its hit
ratio (TP) is low in high classes (H and VH). However, its failure ratio (TN) is very high.
Therefore, as Figure 6 reveals, this is an excessively optimistic classification. In contrast,
the quantiles classification has a high sensitivity and a very low specificity, resulting in an
excessively pessimistic classification. This is the result of defining large surface areas for
high susceptibilities (VH and H) with excessive false positives.

In general, GFR shows worse values than EFR, CFR, and RFR (except for the NBreaks
classification). The GFR classification is very discriminating of high values, as the GFR
sections are defined every 10◦, which is beneficial and offers higher sensitivity than the rest.
This is consistent with its higher percentage of pixels in high classes (H and VH) as shown
in Figure 6. In contrast, the other FR methods have wider intervals in the high sections and
show a worse fit due to their poor definition. This situation is reversed for all other and
much less optimistic classifications.

LSMs based on cluster FR and regression (CFR and RFR) have better defined high
LSI (landslide susceptibility index) values and show higher specificity. The ELSUS clas-
sification, based on sensitivity alone, does not satisfactorily define the best specificity
results. In contrast, the GY classification improves on these results and does take specificity
into account.
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5. Discussion
5.1. Improvement Made by the Proposed Methods

A total of 48 susceptibility maps have been produced for three provinces by applying
four types of RF and four classification systems for a large area of 23,200 km2. Only 4% of
this total area is considered landslide-affected, according to the COPUT inventory (1998).
This fact points to the difficulty of finding clearly differentiated and generalisable results.

An analysis of Table 10 leads to the conclusion that the general method of calculating
FR in constant intervals of the same amplitude (GFR) gives the worst results of all the
classification types. These are predictable results, as they do not consider the singularity of
the distribution of a continuous variable that explains the characteristics of the terrain—
such as slope.

For a better visualisation of the results, Table 11 shows the normalised values in the
interval [0,1] that correspond to the means shown in Table 10.

Table 11. Normalisation of mean values. The highest values are shaded.

Classification Normalised Mean for All FR Types Id. For All Classification Types
GY ELSUS NBreaks Quantil GFR EFR CFR RFR

Rind 0.76 0.00 0.36 1.00 0.16 0.61 0.60 0.81
pAUC 0.65 0.59 0.00 1.00 0.53 0.51 0.54 0.67

Sen 0.72 0.66 0.00 1.00 0.61 0.54 0.57 0.66
Spe 0.55 0.57 1.00 0.00 0.50 0.54 0.56 0.53

Mean 0.67 0.46 0.34 0.75 0.45 0.55 0.57 0.67

Table 11 shows that the GY and quantile classifications show the highest values on
mean for the 42 cases analysed. It is true that quantile classification offers the highest
value, clearly because it covers a much larger area of high susceptibility values and thus
includes in these classes a large majority of the positive cases found. This situation results
in a very low specificity and is therefore an excessively pessimistic classification because it
considers 40% of the territory as highly susceptible. This does not seem acceptable, as the
area affected according to the inventory is 10 times less, as mentioned above. Therefore,
the quantile classification must be considered unrealistic. However, the continuous CFR
methods, and especially the RFR methods, stand out on mean in all classifications used and
demonstrate a better fit to the landslide inventories in almost every situation. The results
are more clearly shown in Figure 7 which shows a radial plot of data from Table 11.
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In addition, it is worthwhile noting that:

1. The standard method of grouping classes into equal intervals (GFR) produces the
worst results. Increasing the number of intervals with the same criteria does not
produce an improvement.

2. The ranges defined in the ELSUS methodology (EFR) produce good results. However,
the criterion used is not explained in the reference article.

3. The neighbourhood clustering method (CFR) is simple and offers good results that
are generally better than EFR.

4. The regression fit method (RFR) is somewhat complex to apply but produces the
best results.

It can be confirmed with the data shown in Figure 7 that a justified improvement has
been obtained with the new methods applied: CFR and GYouden. Moreover, by treating
each case in three different areas (the three provinces), it can be concluded that the results
achieved are sufficiently robust and generalisable.

5.2. Sensitivity and Specificity

The difference between FR types of methods (continuous or discrete) can be explained
according to the objectives of the map produced. If a map is sought in which the values of
greater susceptibility (landslide susceptibility index) define the unstable zones with greater
accuracy (discarding zones without landslides for a better prediction for pixels without
landslides, and minimising errors in the delimitation of high susceptibility zones) then the
most appropriate methods are those that propose a greater density of classes in the high
values of the continuous variables (CFR and RFR). However, if greater accuracy is sought
for low susceptibility zones (marking the larger unstable zones for a better prediction for
pixels with landslides), then conventional methods will be more appropriate even though
they produce a costly excessive pessimism. The greater zoning of high slope values, when
this variable is very significant in the study area, enables a better separation of unstable
and stable zones, considering the varying cost of failure in the high susceptibility sections
as opposed to the low susceptibility areas.

Potentially unstable sections (susceptibility classes VH and H) appear to be quite
effective in defining zones with potential landslides. In particular, RFR with GY offers a
high and equal sensitivity and specificity (80%). The high specificity (precision in discarding
landslide areas) is very important, as false positives can lead to expensive but unnecessary
slope stabilisations. Sensitivity (precision in landslide areas) is also important to prevent
the occupation of potentially dangerous areas that could result in many deaths and heavy
economic losses.

Finally, the ELSUS system is quite efficient with good results for all methods, but
no differences can be seen. This is because it only considers sensitivity and so does not
consider the improvement brought by continuous methods that also improve in specificity.

5.3. Applicability

The possibilities of application using other variables in other geographical areas are
open. The application in the case study of four classification methods for the classes of the
slope variable and four classification systems offer robust results that allow the proposed
methods to be used without limitations. However, for the improvement in the results to
be evident, the continuous variables used must have an important weight in the overall
model. This methodology will be appreciated in the semi-arid climates of a large part of the
Spanish territory and in other European areas (Italy, Greece, South of France, . . . ) where
the slope plays an important role.

In any case, it is important to note that while some methods work better than others,
none proves superior in all conditions [1]. It is therefore very important to select, adapt
and extract as much information as possible from the data and to use the experience and
skill of the researchers.
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6. Conclusions

In accordance with the above and considering the section on calculation methods
for frequency ratio (FR), it can be concluded that establishing groupings or patterns of
variation for continuous variables (the slope in this example) is worthwhile in all cases. As
a result, the classes are better adjusted to the available data structure, and the subjectivity
observed in many classifications of continuous factors is avoided.

When performing an ROC analysis (see Figure 4), the continuous methods offer
improvements in hits (positive and negative) in the sections of the ROC curve with the
greatest susceptibility to landslides. According with Thanh (2022) [39] and Xiao (2020) [32],
in terms of model performance, the accuracy (by the AUC values) of the bivariate methods
for landslide susceptibility mapping is approximately between 75–80% with study areas of
some hundreds of square kilometers.

The current investigation offers these AUC values, but with study areas ten times
larger. An improvement of 2–3% on conventional methods is achieved. In these sections,
continuous methods improve specificity. This is demonstrated by looking at the ROC curve
and the pAUC curves, where the improvement is up to an FPR of 0.3–0.4 and a sensitivity
(positive hit) of 0.8. According to the pAUC curves, the suitability of the RFR method is
assured by its appearance as the outer envelope of the other methods.

It is highly important that the regression fit method (RFR) is somewhat complex
to apply but produces the best results. In the high susceptibility zone, the increase in
sensitivity can be up to 10% over GFR for a given specificity. In addition, the different
high susceptibility surfaces between RFR and GFR methods in the applied classification
systems does not exceed 2% difference. Obviously, RFR offers a much more accurate high
susceptibility surface.

The GY-based classification system, which considers sensitivity and specificity, does
reveal differences in FR methods. It improves the Rind index for VH and H levels and
maintains the same efficiency by covering the same surface areas at these levels. It goes
without saying that any improvement brought about by the application of new calculation
methods to susceptibility maps represents an increase in their effectiveness and an advance
in knowledge. The results obtained in a very large study area are sufficiently solid to
recommend the general use of the new proposed methodologies under similar climates.

In conclusion, the continuous methods presented in this paper for the calculation of
the frequency ratio (RFR or even CFR) provide an improvement in specificity in areas of
high susceptibility. In other words, areas without landslides are excluded with a higher
probability of success (specificity), while maintaining a similar probability of success in
locating these events (sensitivity). This is a key aspect that would avoid unnecessary costs
in prevention. This improvement is transferred to susceptibility mapping much more
clearly when classifications are used that incorporate sensitivity and especially, specificity
parameters such as Generalised Youden.
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