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In-cylinder pressure smart sampling for
efficient data management

Benjamı́n Pla , Joaquı́n De la Morena , Pau Bares
and Irina Jimenez

Abstract
The present paper proposes an optimized algorithm for minimizing the amount of data processed in order to maintain
all critical information from the in-cylinder pressure sensor but with minimum computational cost. The algorithm uses
singular value decomposition (SVD) for reducing the number of samples and pivoting QR decomposition to identify the
optimal sampling locations.
Experimental data from four engines with different combustion modes, namely Spark ignition (SI), Compression ignition
(CI), turbulent jet ignition (TJI), and dual fuel ignition (DFCI), was used to validate the algorithm. The impact of the differ-
ent sampling methodologies on different metrics for engine performance has been addressed and studied showing negli-
gible information loss when reducing to 25 samples per cycle the acquisition buffer size.
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Introduction

On-road emissions monitoring of automotive vehicles
with portable emission systems (PEMS), as well as the
inclusion of new stringent regulations for NOx, parti-
cles and CO2 pushes the automotive industry to better
detect aging and combustion dispersion in the fleet in
real time by improving the current On-board
Diagnostics (OBD) systems with a better analysis of
the combustion.1,2

In-cylinder pressure sensors offer detailed information
of the combustion process. The low frequency content of
the in-cylinder pressure signal is critical to analyze the
heat release rate (HRR) or the indicated mean effective
pressure (IMEP),3 while the high frequency content is
used to estimate the resonance intensity.4 The HRR is
commonly used to estimate the combustion evolution,
which is used together with the IMEP to provide feed-
back from the engine determine the optimal combustion
settings for an adequate closed loop combustion con-
trol.5,6 The resonance intensity is frequently estimated
through the maximum amplitude pressure oscillation
(MAPO) and it can be useful to identify the levels of
vibration and even maintain the knock occurrence with
stochastic controls in desired levels.7,8

The in-cylinder pressure signal can be used as input
to feed several models that estimate other control

parameters, such as in Khameneian et al.9 to estimate
the temperature and air distribution for a GDI spark
ignition engine, in Murić et al.10 to estimate the emitted
NOx from the HRR and the unburned temperature, in
d’Ambrosio et al.11 to estimate the combustion noise,
in Bares et al.12 to predict the knock probability, in
Broatch et al.13 and Youssef14 to estimate the trapped
mass, or in Martos et al.15 to estimate the soot by semi-
empirical models. These models can be used to replace
current sensors, to improve the accuracy of the estima-
tion in a sensor data fusion scenario,16 or to identify
the system dynamics in order to design advanced
controls.17

The potential of the information extracted from the
in-cylinder pressure might be critical for the future on-
board diagnosis (OBD) systems, which are being
adapted to incorporate the connection of the fleet by
point-to-point (P2P) or internet of things (IoT) strate-
gies. Current researches are already developing
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algorithms for that future environment: Hamid et al.18

used five data parameters, engine speed, manifold air
pressure, load-fuel, barometric pressure, and engine
temperature, to detect anomalies sharing information
of a fleet by IoT, Wang et al.19 used Vehicle to X
(V2X) communication to share traffic data information
for OBD prediction, Weis et al.20 used IoT to deter-
mine the car range by OBD and the possibilities of
refueling and Jeong et al.21 proposes a self-diagnosis
System (ISS) for an Autonomous Vehicle based on an
Internet of Things (IoT) Gateway and Deep Learning.

However, processing such amount of information in
commercial electronic control units (ECUs), or the
interconnection of such units with external computers,
might be a challenge for the current technology.22 On
the one hand, in-cylinder pressure sampling is com-
monly performed crank angle based, as the pressure
needs to be properly phased with the volume evolution
for a precise HRR computation.23 On the other hand,
sufficient time resolution is required to differentiate
resonance (around 5–25 kHz) from the normal combus-
tion.24 Because of that, an adequate sampling fre-
quency resolution is achieved with five samples per
degree (24kHz at 800 rpm and 60kHz at 2000 rpm).
The world light-duty rest procedure (WLTP) cycle con-
sists in following an engine speed and torque profile
over more than 30min, which results in 18,119 combus-
tion cycles. Assuming an engine with four cylinders
and acquiring with 16 bit resolution (3mbar), the mini-
mum capacity required will be 0.694GB. Assuming
that the WLTP is representative of normal driving, that
means a rate of more than 20MB/minute of memory
capacity. Therefore, procedures to compress cylinder
pressure signal and extract the sensible information are
crucial for processing and sharing combustion features
and for real-time combustion control.

The problem addressed in the following paper
(smart sampling) consists of finding the number of
samples required and the location of such samples to
capture the essential information with minimum loss.
Because of the complex phenomena involved in com-
bustion, machine learning (ML) seems to be appropri-
ate to capture the main patterns of the pressure trace,
while sparse sampling techniques are required to recon-
struct the actual signal from a small subset of measure-
ments. Data-driven sparse sampling techniques have
been extensively used to compress images and audio
files, and more recently, the research of such techniques
is being exploited to optimize the sensor placement in
dynamic systems.25 Single value decomposition (SVD)
techniques have already being used to determine the
fluid dynamics with minimum sampling,26,27 and
pivoted QR decomposition has been proven an efficient
technique to reduce the sampling in dynamic
systems.28,29

The present paper uses single value decomposition
for extracting the main features of combustion from
the in-cylinder pressure sensor and determines the opti-
mal samples location by using pivoted QR

decomposition in order to minimize any loss of infor-
mation. The method is applied to different engines and
combustion concepts, and the trade-off between sam-
pling size and the accuracy in capturing different com-
bustion metrics is analyzed. The content of the article is
structured as follows: next section is devoted to present
the engines used, section three explains the algorithm
developed, then, a discussion of the results is presented
in section four, and finally, some conclusions are sum-
marized in the last section.

Experimental set-up

The study presented bellow has been developed with a
database obtained in the research institute of CMT-
Motores Térmicos. The dataset consists in four para-
metric studies covering most of the operating range in
four engines with different combustion modes, namely
SI, CI, DFCI, and TJI.

� Spark Ignited (SI) combustion: A conventional
spark ignited gasoline direct injection (GDI) engine
was tested at 1000, 2000, and 3000 rpm at various
loads by performing variations in the throttle (vary-
ing lambda) and the spark advance (varying the
combustion phasing). In-cylinder pressure of 54
tests with 200 cycles at each operating condition
were recorded and post-processed with a resolution
of five samples per crank angle degree (CAD) in
the four cylinders.

� Compression Ignited (CI) combustion: A para-
metric analysis of a CI engine was performed to
study the effect of different configurations of
exhaust gases recirculation (EGR) by combining
the low-pressure (LP) EGR and the high-pressure
(HP) EGR. A total of 54,636 cycles of in-cylinder
pressure data was obtained from nine operating
conditions, at three loads (20%, 40%, and 60%)
and at 1750, 2500, and 3000 rpm. At each operating
point various configurations of low pressure, high
pressure, and variable gas turbine were tested. The
pressure was sampled each 0.2 CAD in all four
cylinders.

� Turbulent Jet Ignited (TJI) combustion: A classical
configuration of SI engine was modified to include
a passive pre-chamber in a single-cylinder research
configuration to analyze the potential of such com-
bustion mode (TJI).30 The engine was run at three
engine speeds, namely 1350, 2000, and 3000 rpm. At
each engine speed the injected fuel, the intake pres-
sure and the spark timing were varied, ranging from
misfires to maximum efficiency operation (60,468
cycles). The pressure was sampled each 0.2 CAD in
all four cylinders.

� Dual Fuel Compression Ignited (DFCI) combus-
tion: This engine was equipped with gasoline port
fuel injection (PFI) and diesel direct injection (DI)
to perform different dual fuel strategies of
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combustion, ranging from partially-premixed com-
pression ignited combustion (PPCI) to reactivity
controlled compression ignition (RCCI).6 In-cylin-
der pressure data was sampled each 0.2 CAD at six
engine speeds, from 950 to 2200 rpm, by varying
the quantity of each fuel and performing different
combustion phasing and loads (3591 cycles).

At each operating condition 60% of the cycles were
used for training purposes while the remaining cycles
were used to compute the final error metrics. The main
engine specifications are provided in Table 1 while
Figure 1 shows 10 cycles randomly selected from the
dataset in order to illustrate each combustion features.

Method description

There are tight in-cylinder pressure sampling require-
ments to perform combustion analysis and diagnostics.
It is generally accepted that a crank angle resolution
below 0.5 crank angle degrees is required to accurately
compute the heat release rate calculation, and sampling
frequencies above 3000Hz are needed to perform knock
evaluation.31 However, Figure 1 shows well-defined
structures suggesting that, any of the in-cylinder pres-
sure sets shown, admits a low rank representation. It is
intuitive that the pressure will increase during the

compression stroke and decrease during expansion,
even more, if during those processes a politropic evolu-
tion can be assumed, then pressure signal can be recon-
structed from the gas condition in a single point and the
politropic coefficient. In this sense, Figure 1 shows that
if the pressure traces are represented in the proper coor-
dinate system, the signal can be expressed using a lim-
ited number of parameters containing the contributions
of the main modes. Admitting the previous statement
then, a step further would be to use a limited number of
samples and reconstruct the complete signal using pre-
vious knowledge from the main modes. The question
arising now is where should be those samples placed in
the cylinder cycle to reproduce the complete signal with
minimum information loss.

According to the previous ideas, the proposed
method should address the following challenges:

� Find a low rank representation of the space of the
feasible in-cylinder pressures in a given engine.

� Find what are the best sampling points for the cho-
sen basis.

� Reconstruct the pressure evolution in the cycle from
a limited set of measurements.

Next sections address both topics by following the
method proposed in Manohar et al.25

SVD for computing the in-cylinder pressure basis

Consider that a dataset with the in-cylinder pressure
signals for n cycles of dimension m (number of samples
per cycle) is provided. Hereinafter, we will assume that
the set is large enough to cover, to a reasonable extent,
all the feasible in-cylinder pressure traces. Then, the fol-
lowing matrix (P) can be constructed:

P= p1, p2:::pn½ � ð1Þ

where the columns of P (that has m3 n elements) are
the pressure recordings (with m elements) of any of the
n cycles.

The matrix P can be expressed, as the product of
two matrices:

P=CS= c1,c2:::cm½ � s1, s2:::sn½ � ð2Þ

where C has m modes of dimension m, and S is com-
posed from n vectors that determine the intensity of
each mode at each cycle (in the case at hand m\ n).
While several matrices C and S may fulfill equation (2)
(C= I and S=P is the trivial case), the idea behind
such transformation is to find a coordinate system
allowing to reduce the number of modes, so the size of
C, leading to:

P=CrSr = c1,c2:::cr½ � s1, s2:::sn½ � ð3Þ

where r\m, Cr has r modes of dimension m and Sr is
composed from n vectors of r values containing the
coordinates of the n pressure traces of P in the Cr basis.

Figure 1. Pressure examples of the four engines.

Table 1. Engines specifications.

Combustion SI CI DFCI TJI

Displaced volume [cc] 1300 2200 7700 404
Stroke [mm] 81.2 96 135 80.5
Bore [mm] 72 85 110 80
Compression ratio [-] 10.6 16 12.2 13.4
Number of cylinders 4 4 6 1
Fuel injection system GDI DI PFI-DI PFI
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Although, in general, P will be a full-rank matrix,
the structure shown in Figure 1 should allow the
approximation with a lower rank basis. The Eckart–
Young theorem32 shows that the Singular Value
Decomposition (SVD) provides the best possible
approximation of range r for the matrix P in the sense
of minimum least-square error. The result is a represen-
tation composed of a orthonormal matrix of m modes
(C), a diagonal matrix composed from m singular val-
ues (S), and n unitary vectors that characterize each
cycle (V).33

P=CSV ð4Þ

Amongst the SVD properties, one may highlight that,
as V is unitary, the resulting singular values sj offer
direct information about each mode importance.
Moreover, since the singular values are located in the S

diagonal in decreasing order, the modes in C are in
order of decreasing importance. In this sense, provided
a given number of modes (r) it is straightforward to
choose the best possible approximation of P with rank
r as:

P=CrSrVr ð5Þ

where Cr contains the first r columns of C, Sr is the
upper-left submatrix of order r, and Vr contains the
first r rows of V.

Pivoting QR factorization for optimal sample
placement

Provided that Cr consists of r linearly independent vec-
tors, r measurements are needed to determine the inten-
sity of the r modes. The problem now is to choose the
location of the r samples which allow to reconstruct the
complete signal of size m from r measurements with
minimum information loss according to the patterns in
Cr. To this aim, consider an in-cylinder pressure evolu-
tion p of size m. A measurement with r samples can be
considered as an extraction of r of the m values in p, or
in matrix multiplication form:

y=Cp ð6Þ

where y is a vector of size r containing the pressure
measurements and C is a sparse extraction matrix of
size r3m with a single element equal to one in every
row and the rest of elements equal to 0. Note that the
ones in C determine the samples taken from p, for
example, a one in the entrance ij of C means that the ith

measurement is the jth value of p. Assuming that p is in
the space of Cr it can be written as linear combination
of its rows, leading to:

y=CCra ð7Þ

where a is a vector with r components containing the
coefficients of p in the basis Cr (the contribution of any
of the Cr modes in p). Provided that the number of

measurements has been chosen equal to the number of
modes (r), the coefficients in a are perfectly determined
from the measurement (y), the basis (Cr) and the mea-
suring (extraction) points (C) as:

a=(CCr)
�1y ð8Þ

Note that the values of a are dependent on the compu-
tation of the inverse of CCr, and therefore on the selec-
tion of the measurement locations (C). To make the
inverse of CCr as well-conditioned as possible, C
should be chosen in a way that minimizes its condition
number, that is, the ratio between the maximum and
minimum singular value. Taking into account that the
condition number is related to the spectral characteris-
tics of the matrix, Optimal Design of Experiments are
aimed to maximize different matrix metrics that tend to
minimize the condition number. In this sense D-
Optimal design maximizes the determinant of the
matrix CCr, while M-Optimal maximizes its trace and
A-Optimal maximizes its minimum singular value.
Both Optimal Design of Experiments or directly find-
ing the sampling points that minimize the condition
number of the matrix CCr are optimization problems
with high computation cost. Pivoting QR decomposi-
tion has been proposed as an alternative that tend to
maximize the determinant of CCr, so leading to a well
conditioned matrix.25

QR factorization decomposes a matrix with full
column rank into the product of a unitary matrix and
an upper triangular matrix, therefore, the determinant
of the original matrix is the product of the diagonal of
the triangular matrix.33 While there are several QR
decomposition methods, pivoting QR factorization
introduces a column permutation matrix to order the
elements in the triangular matrix diagonal in decreasing
order. Recalling M=CT

r , the pivoting QR factoriza-
tion leads to:

MCT =QR ð9Þ
jR11j4jR22j4:::jRrrj ð10Þ

where C is the column permutation matrix, Q is uni-
tary, and Rjj are the elements in the diagonal of the
upper triangular matrix R. The pivoting method is
based on maximizing jRiij at each step, thus globally
tending to maximize the determinant of R.34,35 In this
sense, the matrix C obtained from the pivoting QR fac-
torization of Cr is a good candidate for the extraction
matrix, leading to measuring positions, since maximizes
the determinant of CCr.

Pressure signal reconstruction

Once the matrix of measurement locations (C) is chosen
and the measurement vector y is taken, the intensity of
the modes in Cr can be obtained by applying equation
(8). Finally, the complete pressure signal p can be recon-
structed as:
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p=cra ð11Þ

Results and discussion

For comparison purposes the signal of the combustion
stroke (from 2180� to 180�) has been processed.
Furthermore, the dataset has been re-sampled to 5
samples/� in all the engines by using linear extrapola-
tion in engines B and C. As consequence, all the pres-
sure traces used for training have 1800 samples per
cycle and were also used for benchmarking.

The heat release rate (HRR) has been estimated by
using the apparent heat release with k=1:3, such as:

AHRR=
k

k� 1
pdV+

1

k� 1
Vdp ð12Þ

where V is the chamber volume, p the pressure evolu-
tion, and the derivatives (dp and dV) where obtained as
a first order forward differentiation.

The apparent heat release rate (AHHR) was used to
estimate the combustion evolution and find the posi-
tion where the 10%, 50%, and 90% of combustion
(CA10, CA50, and CA90 respectively) was reached.
Also, the indicated mean effective pressure (IMEP) was
computed by integrating the pressure and the volume
derivative between 180� before and after the top dead
center (TDC).

The combustion features, namely CA10, CA50,
CA90, and IMEP, are characterized by the low fre-
quency content of the pressure signal so it is normal to
apply a low-pass filter with 3000 kHz cutoff frequency
as the content above use to be only associated to reso-
nance or noise.36 Nevertheless, the intensity of the pres-
sure oscillations might be critical for SI engines to
avoid excessive knock,4 or in CI engines to analyze the
emitted noise. The pressure oscillation intensity is com-
monly measured by MAPO which has been estimated
by identifying the maximum of the high-frequency
pressure content (above 3 kHz).

According to the previous paragraphs, the present
work is aimed to analyze the error in the combustion
parameters that are usually computed from the in-
cylinder pressure (peak pressure, IMEP, CA10, CA50,
CA90, and MAPO) when the method proposed in sec-
tion 3 is applied to different engine types.

Figure 2 shows the accumulated relative relevance
(AR) of r modes, which is computed by adding all the
weight of the first r modes and dividing by the total
weight of all the modes according to:

AR½%�=
Pr

j=1 sj
Pm

j=1 sj
100 ð13Þ

Left plot shows the result when applying SVD over the
raw signal, while right plot shows the result of the same
procedure but using only the content of the frequencies
below 3kHz.

The high frequency content does not perturb the
intensity distribution of the modes in traditional com-
bustion modes, such as SI or CI combustion, but it has
a complete different effect in the TJI or DFCI combus-
tion that are subject to pressure variations at higher fre-
quencies as shown in the examples of Figure 1.

Figure 2 shows that 25 modes can cover most of the
information (above 95%) in the raw pressure signal in
SI or CI combustion but loses part of the information
in engines with a fast combustion, such as TJI and spe-
cially DFCI. This can be explained by the resonance
excitation: In the case of SI combustion a flame front
covers all the combustion chamber without a sudden
heat release (if there is no knock) and in CI engines the
combustion is ignited far from the TDC to minimize
NOx, and hence, it has no important resonance excita-
tion. On the contrary, DF-CI performs a nearly homo-
geneous ignition to benefit from low NOx and high
efficiency and TJI aims to accelerate the flame front
evolution with a jet ignition created in a pre-chamber.
But such fast combustions heavily excites resonance
leading to large oscillations that can be appreciated in
Figure 1.

The number of modes retained is a trade-off between
the computational cost and size of the database (Cr)
versus the accuracy. The singular values are directly
linked to the mode, the first four modes are represented
in Figure 3. It must be noticed that the first mode is the
average of all the cycles while the rest of them configure
the final shape of the pressure trace in the various con-
ditions tested.

Finally, pivoting QR decomposition was used to find
the adequate location to minimize the error. The opti-
mal locations for determining the modes are shown in
Figure 4, where the intensity of the colors determines
the preference, ranging from dark blue (more impor-
tant) to light yellow (less important).

The distribution of the sampling locations depend on
the combustion itself:

� In conventional combustions modes (CI and SI)
sampling get estranged. On CI ignition, a combina-
tion of pilot main and post injections distribute the
combustion along the expansion stroke to reduce
NOx by maintaining the flame temperature low.
On SI ignition the variability of combustion forces

Figure 2. Accumulated relevance of modes: Left plot with no
filter, right plot with lowpass filter.
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the algorithm to sample the pressure in several loca-
tions leading to a similar distribution that in CI.

� In DFCI or TJI combustion, where heat is intended
to be fast released, the sampling is located near the
expected combustion phasing, which uses to be
some degrees after the TDC.

� Results also indicate that space between samples
tend to get shorter when high frequency content
needs to be captured, specially in HCCI-like com-
bustion (TJI and DF-CI).

Once the sampling locations and the representative
modes of the SVD are defined by a proper training
dataset, pressure can be sampled only at such locations
to determine the intensity of each mode (cj) and hence,
reconstruct the complete pressure signal.

Note, that the method provides the optimal sam-
pling that is able to represent the combustion features
though few modes. Henceforth, the information of
these few points is also a potential input for applying
machine learning control techniques in real time. That
means that, once the method have detected the optimal
sampling positions, the heat release rate computation
can be substituted by other simplified models, such as
ANN, and substantially reduce the number of
operations.

Figure 5 shows the reconstruction of a randomly
selected cycle from the validation dataset in Engine B
by using only 25 samples. The Root Mean Square
Error (RMSE) is 300mbar for the raw signal and
26mbar for the low pressure content. However, it must
be said that the error is concentrated on the phase of
the oscillation signal, and hence, it does not affect most
of the parameters used for combustion (MAPO, IMEP,
CAXX).

Figure 6 shows the Root Mean Square Error
(RMSE) in % as a function of the number of modes
used. The error was normalized by using the time of
combustion (CA902CA10) for the combustion phasing
and the average of the measured value in the IMEP,
the pmax or the MAPO.

The estimation of the parameters do not substan-
tially differ after 50 samples and 25 samples seems a
reasonable value to estimate most of the parameters.
The errors obtained in all the engines by sampling the
pressure with 25 samples over the validation dataset
have been tabbed in Tables 2 to 5. The upper part of
the tables contains the RMSE while the low part con-
tains the relative root mean square error in %. In order
to benchmark the proposed method, the error obtained
with an equispaced sampling is also included in the
tables.

It can be observed how the proposed method outper-
forms the equispaced sampling, since the modes stored
in Psir provide an sparse basis for the in-cylinder pres-
sure and the pivoting QR algorithm approximates the

Figure 3. First four modes for each engine by using the raw
signal.

Figure 4. First 25 locations to capture the mean features of
each combustion mode.

Figure 5. Pressure reconstruction with 25 samples.
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best sample locations according to the Psir basis. Note
that the proposed algorithm allows the estimation of
the maximum of the in-cylinder pressure with an error
below 1% and mostly associated to the oscillations of
resonance. Regarding the combustion evolution, the
center of the combustion (CA50) is captured with

precision in all engines, the start of combustion (CA10)
is identified in SI, TJI, and DF-CI combustion with a
precision in the range of the crank resolution (0.2
CAD), but in the CI engine an error around 2 CAD
might be expected due to the characteristic multiple
injections. The end of the combustion (CA90) is accu-
rately estimated in SI combustion but errors between 2
and 4 CAD are expected in the rest because of the slow
evolution of the late combustions.

The Maximum Amplitude Pressure Oscillation
(MAPO) was estimated by filtering the in-cylinder pres-
sure and computing the maximum of the oscillations
with a frequency content above 5 kHz. Henceforth, 25
samples equispaced sampling and SVD method after
filtering are not suitable for MAPO evaluation. When
comparing the SVD method with 3600 samples equis-
paced sampling the average error in MAPO is 6.74%,
18.72%, 44.07%, and 35.48% in CI, DFCI, TJI, and
CI combustion, respectively. Nevertheless the error is
mostly due to the cycle to cycle variability and when a
window of 50 samples is used the estimation of MAPO
is accurate enough to control the engine. MAPO has a
high cycle-to-cycle variability and normally its average
value is commonly controlled by stochastic controllers,
henceforth, a white noise does not perturb the control-
ler as it is based on stochastic control.

Using a low-pass analog filter would substantially
improve the measurements as the sampling location

Figure 6. Relative error of the mean parameters as a function
of the number of samples and modes used for reconstruction.

Table 2. Errors at the control parameters after reconstruction
(CI combustion).

Equispaced SVDraw SVDfilt

CA10 [CAD] 5.96 1.88 1.78
CA50 [CAD] 3.02 0.15 0.08
CA90 [CAD] 3.51 2.50 0.71
IMEP [mbar] 57.02 29.75 19.97
pmax [mbar] 837.54 55.29 10.09
CA10 % 13.57 4.29 4.06
CA50 % 6.88 0.33 0.18
CA90 % 7.99 5.70 1.61
IMEP % 0.63 0.33 0.22
pmax % 1.02 0.07 0.01

Table 3. Errors at the control parameters after reconstruction
(DFCI combustion).

Equispaced SVDraw SVDfilt

CA10 [CAD] 1.92 0.29 0.07
CA50 [CAD] 4.30 0.31 0.05
CA90 [CAD] 6.32 3.76 0.25
IMEP [mbar] 194.64 584.65 19.88
pmax [mbar] 10351.58 98.11 21.64
CA10 % 11.14 1.68 0.38
CA50 % 24.91 1.79 0.29
CA90 % 36.64 21.77 1.44
IMEP % 1.33 3.98 0.14
pmax % 8.81 0.83 0.02

Table 5. Errors at the control parameters after reconstruction
(SI combustion).

Equispaced SVDraw SVDfilt

CA10 [CAD] 1.86 0.09 0.07
CA50 [CAD] 1.92 0.06 0.04
CA90 [CAD] 4.48 0.24 0.14
IMEP [mbar] 103.57 11.56 12.43
pmax [mbar] 3784.10 67.32 30.74
CA10 % 9.92 0.47 0.38
CA50 % 10.22 0.33 0.24
CA90 % 23.85 1.28 0.73
IMEP % 1.00 0.11 0.12
pmax % 8.94 0.16 0.07

Table 4. Errors at the control parameters after reconstruction
(TJI combustion).

Equispaced SVDraw SVDfilt

CA10 [CAD] 2.81 0.36 0.17
CA50 [CAD] 2.33 0.48 0.13
CA90 [CAD] 4.98 2.14 0.67
IMEP [mbar] 59.76 17.90 5.30
pmax [mbar] 3490.50 149.58 11.67
CA10 % 10.62 1.38 0.65
CA50 % 8.82 1.81 0.48
CA90 % 18.83 8.11 2.53
IMEP % 1.12 0.34 0.10
pmax % 10.32 0.44 0.03
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would be specifically used to determine the parameters
associated with combustion, however, information
from the oscillation will be lost. Special attention must
be paid when combustion heavily excites resonance. In
such conditions, a low-pass filter becomes critical to
estimate IMEP in order to avoid excessive sampling in
the area of combustion where resonance requires from
a high sampling rate to identify the high frequency
spectrum.

Conclusions

A new methodology for reducing the computational
burden of in-cylinder pressure signal processing has
been addressed. The Optimal sensor placement algo-
rithm described in Manohar et al.25 has been adapted
for optimal crank-angle sampling of in-cylinder pres-
sure. The algorithm suggests using singular value
decomposition for reducing the dimensions of the pres-
sure trace and pivoting QR decomposition to identify
the best sampling locations for identifying the modes,
which will be finally used for the pressure
reconstruction.

The algorithm was used in four engines with differ-
ent combustions, namely CI, SI, DFCI, and TJI, and
the main combustion parameters (CA10, CA50, CA90,
IMEP, maximum pressure, and MAPO) were studied
to analyze the feasibility of the method for combustion
control and diagnosis.

Results demonstrate that it is possible to reduce the
number of samples from 3600 samples (0.2 CAD reso-
lution) to 25 with minimum information loss. That
means that the computational burden can be reduced
from 20MBytes per minute (estimated shared data
along a WLTP cycle) to only 0.14MB per minute.
However, in new combustion modes, such as TJI or
DFCI, where fast combustion heavily excite the reso-
nance of the combustion chamber, the modes are dri-
ven by the pressure oscillations and the error increases.
In such combustion modes, a low-pass filter would
reduce the error in one order of magnitude but MAPO
information is lost.
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