
Pattern Recognition Letters 164 (2022) 40–45 

Contents lists available at ScienceDirect 

Pattern Recognition Letters 

journal homepage: www.elsevier.com/locate/patrec 

An Open-Set Recognition and Few-Shot Learning Dataset for Audio 

Event Classification in Domestic Environments 

Javier Naranjo-Alcazar a , b , Sergi Perez-Castanos a , Pedro Zuccarello 

a , Ana M. Torres c , 
Jose J. Lopez 

d , Francesc J. Ferri b , Maximo Cobos b , ∗

a Visualfy, Benisanó 46181, Spain 
b Computer Science Department, Universitat de València, Burjassot 46100, Spain 
c Dpt. Ingeniería eléctrica, electrónica, automática y comunicaciones, Universidad de Castilla-La Mancha, Cuenca 16002, Spain 
d iTEAM Institute, Universitat Politècnica de València, Valencia 46022, Spain 

a r t i c l e i n f o 

Article history: 

Received 16 April 2022 

Revised 6 July 2022 

Accepted 19 October 2022 

Available online 22 October 2022 

Edited by Maria De Marsico 

Keywords: 

Audio Dataset 

Classification 

Few-Shot Learning 

Machine Listening 

Open-set Recognition 

Sound Processing 

a b s t r a c t 

The problem of training with a small set of positive samples is known as few-shot learning (FSL). It 

is widely known that traditional deep learning algorithms usually show very good performance when 

trained with large datasets. However, in many applications, it is not possible to obtain such a high num- 

ber of samples. This paper deals with the application of FSL to the detection of specific and intentional 

acoustic events given by different types of sound alarms, such as door bells or fire alarms, using a limited 

number of samples. These sounds typically occur in domestic environments where many events corre- 

sponding to a wide variety of sound classes take place. Therefore, the detection of such alarms in a practi- 

cal scenario can be considered an open-set recognition (OSR) problem. To address the lack of a dedicated 

public dataset for audio FSL, researchers usually make modifications on other available datasets. This pa- 

per is aimed at providing the audio recognition community with a carefully annotated dataset 1 for FSL in 

an OSR context comprised of 1360 clips from 34 classes divided into pattern sounds and unwanted sounds . 

To facilitate and promote research on this area, results with state-of-the-art baseline systems based on 

transfer learning are also presented. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

1 The automatic classification of audio clips is a research area 

hat has grown significantly very recently [1–3] . The research in- 

erest in these algorithms is motivated by their numerous appli- 

ations, such as audio-based surveillance, hearing aids, home as- 

istants or ambient assisted living, among others. In contrast to 

ost deep learning methods, few-shot learning (FSL) tackles the 

roblem of learning with few samples per class. FSL approaches 

ained focus when trying to address intra-class classification in 

he context of face recognition problems [4] , including applications 

uch as access control and identity verification [5–7] . In order to 

ackle this problem, loss functions such as ring loss [8] or center 
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oss [9] have been proposed, together with different embeddings 

rom network architectures such as siamese [10,11] and triplet 

12,13] . These loss functions are aimed at solving convergence is- 

ues, which also require careful training procedures to appropri- 

tely choose the pairs or triplets used. Another practical issue aris- 

ng in many real-world intelligent audio applications is open-set 

ecognition (OSR) [14] . This problem occurs when a system has 

o face unfamiliar situations for which it has not been trained. A 

ystem prepared for OSR should be capable of correctly classifying 

xamples corresponding to classes seen during the training stage 

hile rejecting examples corresponding to new, previously unseen 

lasses. OSR has been addressed in the past by applying modifi- 

ations to classical machine learning algorithms such as support 

ector machines [15,16] or nearest neighbour classification [17] . In 

he last years, deep learning solutions for OSR have also started to 

merge, such as OpenMax [18] , deep open classifier (DOC) [19] or 

ompetitive overcomplete output layer (COOL) [20] . 

The problems of FSL and OSR appear frequently in smart acous- 

ic applications. For example, a given user may be exposed to sev- 

ral alerts or beeps at home, emitted by different domestic ap- 
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Fig. 1. Training and test under FSL and OSR conditions. In the training stage (left), 

only a few examples (shots) are available for each class, where some classes are 

targets to be recognized (KK classes) and others are unwanted classes to be rejected 

(KU classes). In the test stage (right) the system receives as input examples from the 

target classes and also from unwanted ones, where new classes different from the 

ones seen during training (UU classes) are also present. 
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Fig. 2. Example spectrograms from the pattern sounds category. 

2

c

s

c

t  

v

m  

F  

t

r

a

t

a

c

d

E

p

c

g

t

a

3

b

a

2 https://zenodo.org/record/3689288 . 
liances (e.g. oven, refrigerator). A smart system to differentiate 

etween both alerts should not classify both sounds into a single 

alarm” class, but should be capable of identifying correctly those 

pecific pattern sounds . However, only a limited number of exam- 

les recorded by the user may be available for training. In addition, 

he system should neglect or discard the variety of possible sounds 

ppearing in a domestic environment. Therefore, there is a need 

o design machine learning systems trained with a small number 

f audio examples capable of both identifying the classes of inter- 

st (FSL) while rejecting the sounds coming from other unexpected 

ources (OSR). 

A diagram of the conditions under which training and testing 

re performed within a FSL+OSR context is shown in Fig. 1 . The 

SL condition is reflected by the small number of examples (shots) 

vailable during the training stage. On the other hand, the OSR 

ondition is accounted by letting the system learn from examples 

orresponding to unwanted (non-target) classes. Since the num- 

er of examples is clearly insufficient, usually some meta-learning 

trategy and support data is needed to let the system learn to 

iscriminate among data and exploit better the information pro- 

ided by the available shots. In the test stage, the system is con- 

ronted towards examples pertaining either to target classes or 

o unwanted ones. Such unwanted examples might belong to the 

roup of unwanted classes seen during the training stage, but they 

ay also belong to new unseen classes, which makes the problem 

ven more challenging. The classification system should be capable 

f identifying the target classes and to reject the unwanted ones. 

ollowing the OSR nomenclature (cf. Sec. 3 ), the involved groups 

f classes are denoted as KK, KU and UU in Fig. 1 . 

The dataset presented in this paper is aimed at facilitating re- 

earch on FSL for audio event classification. A domestic environ- 

ent is considered, where a particular sound must be identified 

rom a set of pattern sounds , all belonging to a general “audio 

larm” class. The challenge lies in detecting the target pattern by 

sing only a reduced number of examples. To account for open- 

ess conditions, the dataset provides as well a folder of unwanted 

ounds containing audio samples from different subclasses which 

re not considered to be audio alarms or pattern sounds. An op- 

imal FSL+OSR system would be able to correctly identify all the 

nstances belonging to the different pattern sounds by using only 

 few training examples, while rejecting all the examples pertain- 

ng to the general unwanted class. A preliminary version of this 

ataset has already been used in a previous work [21] . Moreover, 

s one of the main motivations of this paper is to facilitate open 

esearch in the field of audio-oriented FSL and OSR, the dataset is 

ccompanied by two baseline systems based on transfer learning. 
41 
. Dataset 

The dataset is divided into 34 taxonomic classes. These 34 

lasses are classified into one of two main sub-categories: pattern 

ounds and unwanted . The dataset is completely balanced, as every 

lass contains exactly the same number of audio examples. 

• Pattern sounds category : comprises 24 classes, each one being 

a different type of audio alarm (e.g. fire alarms or door bells). 

Each pattern sound class has 40 audio clips. 
• Unwanted category : it is comprised of a total of 10 differ- 

ent classes, each one representing everyday domestic audio 

sources: car horn, clapping, cough, door slam, engine, keyboard 

tapping, music, pots and pans, steps and water falling . Each of 

these unwanted classes has 40 audio clips. 

Moreover, a k -fold configuration is provided in order to check 

he generalisation of the results. The number of folds ( k ) for cross-

alidation depends on the number of shots used for learning. That 

eans, when training with 4 shots, the number of folds is k = 10 .

or 2 shots, k = 20 . Consequently, there are 40 folds for 1 shot. All

he audio sequences have a duration of 4 seconds and have been 

ecorded using a single audio channel with a sample rate of 16 kHz 

nd 16 bits per sample. All the audios were obtained in a con- 

rolled low-noise scenario. The events were recorded individually 

nd trimmed to the desired length. The dataset annotations and 

onfiguration files were manually generated by the authors. The 

ataset along with other detailed information is publicly available. 2 

xamples corresponding to the same pattern sound class are ex- 

ected to share similar characteristics, while those from unwanted 

lasses tend to show higher variability, as they come from more 

eneral sound events. For illustrative purposes, the log-Mel spec- 

rograms corresponding to examples of the pattern sounds classes 

re represented in Fig. 2 . 

. Experimental setup 

The aim of the experiments is to test the performance of the 

aseline system over the proposed dataset considering both OSR 

nd FSL conditions. The evaluation under open-set conditions is 

https://zenodo.org/record/3689288
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Table 1 

Number of classes of each configuration and resulting openness. 

Pattern 

Sounds | K K | | KU| | U U | | C TR | | C TE | O ∗

Full set 24 

10 0 34 34 0 

5 5 29 34 0.04 

0 10 24 34 0.09 

Trios 3 

10 0 13 13 0 

5 5 8 13 0.13 

0 10 3 13 0.39 

b

t

s

O

w  

a

C

O  

m

e

t  

w  

v

r

h

s

a

h

s

d

s

o  

b

w

c

c

o

d

c  

0  

p  

r

Fig. 3. t-SNE mapping from L 3 -net representation of 24 KK categories. 
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ased on the concept of openness [22] . For this purpose, the pat- 

ern sounds and unwanted categories detailed in Sect. 2 are further 

ubdivided as follows: 

• Known Known (KK) classes: are the classes whose audios have 

been used for training/validation labeled as positive events to 

be recognized. In the context of this work, KK classes would 

match the pattern sounds category. 
• Known Unknown (KU) classes: are the classes whose audios 

have been used for training/validation, but labeled as unwanted 

categories so that they are not classified as positive events dur- 

ing testing. In this work, KU classes would be represented by a 

subset of the unwanted classes. 
• Unknown Unknown (UU) classes: as in the previous case, UU 

classes are a subset of the unwanted group. The difference be- 

tween KU and UU is that the audios in UU classes are not used 

for training/validation; instead, they are only used in the testing 

phase. It is expected that audios in UU subset will be classified 

as unwanted by the system after the training/validation stage 

has been finished. 

The openness, O 

∗, can be calculated using the formula [23] : 

 

∗ = 1 −
√ 

2 × | C T R | 
| C T R | + | C T E | , (1) 

here C T R is the set of classes used during training, C T R = KK ∪ KU ,

nd C T E corresponds to the set of classes used in testing phase, 

 T E = C T R ∪ UU . Openness values are bounded to the range 0 ≤
 

∗ < 1 . When C T R = C T E , it reaches its minimum value ( O 

∗ = 0 ),

eaning that, during testing, the algorithm is not required to face 

vents that belong to classes unseen during training. On the con- 

rary, as the difference between | C T E | and | C T R | becomes larger,

ith | C T E | > | C T R | , the openness tends to approach to its maximum

alue: O 

∗ → 1 . This means that, during testing, the system needs to 

eject events belonging to classes unseen during training. 

In a first batch of experiments, all 24 pattern sounds classes 

ave been used together as KK classes. In a second batch, pattern 

ounds have been selected in 8 groups of 3 classes each (8 trios, 

s later identified in Section 5 ), therefore, only 3 classes per run 

ave been used as KK. The particular classes in each trio have been 

elected to cover different everyday situations ranging from very 

ifferent sounds as (1,9,17) to more similar ones as (4,5,16). This 

econd batch reflects a more realistic scenario where the number 

f classes in the union of KU and UU subsets (KU ∪ UU) outnum-

ers the classes in the KK group. Besides, the experimental setup 

as designed to have several degrees of freedom taking into ac- 

ount the number of positive audio samples used for training (also 

alled shots) and different values of openness. Experiments with 

ne, two and four shots have been carried out. In order to obtain 

ifferent values of openness, the ratio given by the number of KU 

lasses and the number of UU classes has been set to 10/0, 5/5 and

/10. This results in O 

∗ ∈ { 0 , 0 . 04 , 0 . 09 } for the first batch of ex-

eriments and O 

∗ ∈ { 0 , 0 . 13 , 0 . 39 } for the second. Table 1 summa-

izes the details related to the two types of experiments described 
42
bove. Note that, in all cases, we have a completely balanced clas- 

ification problem with | K K | classes, with a reject option. 

. Baseline systems 

Due to the lack of reference approaches aimed at simultane- 

usly dealing with FSL and OSR, we propose here two simple sys- 

em baselines. The FSL problem is addressed by making use of the 

mbeddings extracted from different well-known pre-trained net- 

orks, following a transfer learning approach. The OSR problem is 

ackled by including sigmoid-based activations at the output layer 

o allow a threshold-based rejection of unwanted classes. 

.1. L 3 -net 

L 3 -net [24] is a neural network trained with two specific parti- 

ions of Audioset [25] from subsets corresponding to environmental 

nd music videos. The parameters of the embedding were set as 

ollows: content_type = “music” [24] , input_repr = “mel256”, em- 

edding_size = 512 and hop_size = 0.5. The selection of the con- 

ent type might be explained by the fact that most alarm sounds 

how a harmonic-like spectrum, which may resemble more to mu- 

ic sources than to environmental sounds. For the computation of 

he L 3 -net embeddings, each audio clip is divided into 1-second 

egments with a hop size of 0.5 seconds. Taking into account the 

 second analysis window used by L 3 -net, the above parameters 

ead to an embedding matrix of size 512 × 7 [24] . We summarize 

his output by averaging across the temporal dimension, resulting 

n a 512 × 1 column-vector representation. For visualization pur- 

oses, a t-SNE mapping of such representation for the KK classes 

s shown in Fig. 3 . Note that it captures faithfully the similarity ex- 

sting among examples of the same pattern sound class, leading to 

isibly condensed clusters. 

.2. YAMNet 

The implementation of this system follows the same procedure 

s the one using L 3 -net embeddings. In this case, the audio pre- 

rocessing is based on log-Mel spectrograms using 64 frequency 

ands and a frame size of 0.96 s with 50% overlap. For 4 sec- 

nd audio clips, the extracted audio embeddings have a shape of 

024 × 8 . As with L 3 -net, the mean across the temporal axis is 

omputed to flatten such output. YAMNet has also been trained 

sing Audioset. 

.3. System classifier 

For the classification task, a multi-layer perceptron with two 

ully-connected hidden layers with 512 and 128 units respectively 
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Table 2 

Baseline system average accuracies (%) and corresponding standard deviations (not shown for ACC w ) with 24 KK classes using 

L 3 -net network. Shots indicates the number of training examples per class. 

Openness coefficient 

Shots O ∗ = 0 O ∗ = 0 . 04 O ∗ = 0 . 09 

ACC KK ACC KU ACC w ACC KK ACC KUU ACC UU ACC w ACC KK ACC UU ACC w 

1 13.8 ±12.9 99.8 ±1.0 56.8 57.7 ±8.4 90.4 ±5.4 84.8 ±9.8 74.1 60.1 ±7.8 39.6 ±13.4 49.9 

2 81.1 ±5.5 99.4 ±0.8 90.3 83.2 ±4.8 90.2 ±5.1 82.5 ±9.6 86.7 83.3 ±5.6 33.3 ±11.6 58.3 

4 94.8 ±2.2 99.6 ±0.4 97.2 94.3 ±2.2 88.3 ±5.7 79.4 ±9.5 91.3 94.8 ±2.4 26.1 ±10.1 60.5 
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as implemented as in [24] . This neural network is fed with either 

AMNet or L 3 -net embeddings independently. All activation units 

re ReLUs. The output layer has 24 or 3 units (each one corre- 

ponding to a class of pattern sounds ) with sigmoid activation func- 

ion. Output targets corresponding to different unwanted sound au- 

io clip subcategories are set to zero vector of the appropriate size. 

his indicates the absence of any pattern sounds category. Adam 

ptimizer [26] was used. The loss function during training was bi- 

ary cross-entropy and the evaluation metric was categorical ac- 

uracy. At test time, an audio clip is classified as known, or pat- 

ern sound , when the corresponding output probability ranks the 

ighest and above a threshold with value 0.5. In the case where 

his threshold is exceeded by more than one class, the system pre- 

icts the class having the highest detection probability. The code 

or replicating the results is fully available 3 . 

. Results 

The aim of the experiments is to test the capability of the base- 

ine systems to correctly classify the examples corresponding to 

he set of target pattern sounds (KK classes) while successfully re- 

ecting any sound pertaining to an unwanted class, regardless of 

hether it belongs to a KU class or a UU class. 

Following the criteria of Task 1C of DCASE-2019 [27] , the ACC w 

easure is used, 

 

∗ = 0 (without UU) : 
ACC w 

= wACC KK + (1 − w ) ACC KU , 
(2a) 

 

∗ � = 0 (with KU and UU) : 
ACC w 

= wACC KK + (1 − w ) ACC KUU , 
(2b) 

 

∗ � = 0 (with only UU) : 
ACC w 

= wACC KK + (1 − w ) ACC UU , 
(2c) 

here w is an arbitrary weight that allows to balance the impor- 

ance of the accuracy relative to target and unwanted classes. In 

he above equations, ACC KK is the multiclass accuracy over test ex- 

mples exclusively from target (KK) classes. Correspondingly, ACC KU 

nd ACC UU denote the same accuracy when considering test data 

ither from KU or UU classes and considering two output labels 

nly: pattern and unwanted. Finally, when the openness is such 

hat there are both KU and UU classes, then the rejection capability 

s measured by the ACC KUU , which is the mean of ACC KU and ACC UU .

n the present work w has been given a fixed value of w = 0 . 5 .

ote that the formulas in Eq. (2) take into account accuracies of 

ll the categories, KK, KU and UU. Therefore, it is a convenient way 

f analyzing the trade-off between correct prediction and rejection. 

Results are presented following k -fold cross-validation as indi- 

ated in Sec. 2 repeated 5 times. All the tables show the mean 

ccuracy and standard deviation across all runs and folds. Best 

erformance between the two proposed baseline systems is high- 

ighted using bold typeface. 
3 https://github.com/Machine- Listeners- Valencia/fsl _ osr _ dataset _ baseline . 
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.1. Large number of target classes 

The results obtained by the two baseline systems for the first 

atch of experiments are shown in Tables 2 and 3 . In this first

atch, the KK set comprises the 24 pattern sound classes. As in- 

icated in Table 1 , three values of openness are considered: O 

∗ ∈ 

 0 , 0 . 04 , 0 . 09 } . As expected, the results exhibit the difficulties en-

ountered in FSL and OSR conditions. On the one hand, the lack of 

 large number of training examples affects considerably the clas- 

ification performance, as evidenced, for example, by the low ACC w 

alues achieved by the L 3 -net system with only one shot. On the 

ther hand, as the openness value increases, the accuracy for KK 

lasses remains similar whereas the accuracy of KU-UU classes de- 

reases. 

Low values in ACC UU and/or ACC KU indicate that the system is 

isclassifying unwanted events as pattern sounds , meaning that 

alse positives are observed in the KK categories. As expected, the 

roblems arising from UU classes are more evident under higher 

penness conditions. By letting the system learn from a set of 

nwanted sounds, the rejection capabilities are considerably in- 

reased. This is evidenced by the higher values in ACC UU for O 

∗ = 

 . 04 with respect to the ones for O 

∗ = 0 . 09 , independently of the

aseline system used. Note, however, that the use of unwanted 

ounds for training the classifier may also have an impact in the 

ccuracy achieved for the target pattern sounds. As shown in both 

ables, at O 

∗ = 0 , the accuracy for the KK classes is worse than for

igher openness. This is because the use of KU classes to train 

he system makes the underlying classification boundaries more 

estrictive, and the system is more prone to miss target instances. 

In general terms, YAMNet shows a greater weighted accuracy 

egarding known and unknown situations when O 

∗ ∈ { 0 . 04 , 0 . 09 } .
hus, YAMNet could be understood as a more discriminative ex- 

ractor when unknown situations are present. However, the most 

ignificant phenomenon can be seen when O 

∗ = 0 and the num- 

er of shots is equal to 1. A huge improvement in ACC KK is ob-

erved with respect to L 3 -net, leading to a better trade-off in ACC w 

. 

he improvement of this feature extractor is nearly of 25 percent- 

ge points (see Table 2 ). The difference between 1 shot and 2 

hots with O 

∗ = 0 using L 3 -net is more than 30 percentage points,

hile for YAMNet is only of 8 percentage points. Therefore, YAM- 

et seems to be a more robust solution. 

.2. Small number of target classes 

Tables 4 and 5 show the results for the second batch of exper- 

ments that consider only KK sets comprised of 3 pattern sound 

lasses, considering 8 different and disjoint trios. As indicated 

n Table 1 , the three values of openness in this case are: O 

∗ ∈
 0 , 0 . 13 , 0 . 39 } . Again, the general tendency is confirmed, where

 lower number of shots or a higher openness level leads always 

o a decrease in performance. However, in this case, it can be ob- 

erved that the particularities of the target classes can be also an 

mportant factor affecting the overall performance of the system. 

or example, with O 

∗ = 0 . 39 , very low values for ACC are ob-
UU 

https://github.com/Machine-Listeners-Valencia/fsl_osr_dataset_baseline
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Table 3 

Baseline system average accuracies (%) and corresponding standard deviations (not shown for ACC w ) with 24 KK classes using 

YAMNet network. Shots indicates the number of training examples per class. 

Openness coefficient 

Shots O ∗ = 0 O ∗ = 0 . 04 O ∗ = 0 . 09 

ACC KK ACC KU ACC w ACC KK ACC KUU ACC UU ACC w ACC KK ACC UU ACC w 

1 64.4 ±3.7 95.8 ±2.6 80.1 65.6 ±3.3 91.0 ±4.2 89.4 ±5.7 78.3 66.9 ±3.2 47.3 ±13.1 57.1 

2 78.8 ±2.3 97.6 ±1.9 88.2 79.3 ±2.3 91.8 ±4.2 87.6 ±6.2 85.6 80.4 ±2.3 41.7 ±11.7 61.1 

4 90.8 ±1.7 99.1 ±0.9 94.9 91.0 ±1.7 92.8 ±2.8 87.4 ±4.9 91.9 92.0 ±1.6 36.5 ±8.6 64.3 

Table 4 

Baseline L 3 -net system average accuracies (%) and corresponding standard deviations (not shown for ACC w ) for the second batch of experiments 

using trios (only 3 KK classes). 

Openness coefficient 

Trio Shots O ∗ = 0 O ∗ = 0 . 13 O ∗ = 0 . 39 

ACC KK ACC KU ACC w ACC KK ACC KUU ACC UU ACC w ACC KK ACC UU ACC w 

0 
1 65.1 ±16.1 99.4 ±1.1 82.3 85.9 ±13.4 97.7 ±4.6 98.4 ±4.1 91.8 100 ±0 18.6 ±8.9 59.3 

2 80.2 ±15.0 99.6 ±0.5 89.9 89.2 ±12.5 99.6 ±0.5 99.8 ±0.6 94.4 100 ±0 17.0 ±5.9 58.5 

(1, 9, 17) 4 90.1 ±14.5 99.7 ±0.4 94.9 97.5 ±8.1 99.7 ±0.4 99.9 ±0.4 98.6 100 ±0 16.9 ±3.3 58.5 

1 
1 68.9 ±12.9 99.9 ±0.2 84.4 88.8 ±13.1 98.3 ±2.8 96.8 ±5.6 93.5 100 ±0 3.9 ±3.1 52.0 

2 84.7 ±16.5 99.9 ±0.3 92.3 89.0 ±14.5 98.7 ±2.4 97.6 ±4.7 93.8 100 ±0 3.6 ±2.6 51.8 

(10, 12, 19) 4 88.0 ±15.6 99.9 ±0.4 93.9 96.2 ±9.6 96.7 ±3.1 93.8 ±5.8 96.5 100 ±0 3.8 ±3.5 51.9 

2 
1 55.5 ±18.6 99.9 ±1.0 77.7 78.4 ±13.4 99.8 ±0.9 99.7 ±1.7 89.1 98.6 ±2.4 14.8 ±12.1 56.7 

2 76.1 ±14.7 99.9 ±0.1 88.0 82.6 ±13.9 99.8 ±0.5 99.7 ±0.6 91.2 99.5 ±1.2 15.7 ±11.9 57.6 

(2, 14, 22) 4 83.1 ±20.7 99.9 ±0.1 91.5 91.9 ±12.3 99.4 ±0.9 99.0 ±1.5 95.6 99.9 ±0.4 11.5 ±8.2 55.7 

3 
1 53.0 ±12.1 99.9 ±0.4 76.5 72.3 ±13.4 96.2 ±4.2 92.7 ±8.2 84.3 99.7 ±0.7 24.9 ±8.2 62.3 

2 64.6 ±16.1 99.9 ±0.3 82.2 78.4 ±13.7 95.7 ±4.6 91.6 ±8.7 87.2 99.8 ±0.5 23.3 ±6.1 61.6 

(3, 6, 13) 4 77.4 ±19.0 99.8 ±0.9 88.6 90.3 ±11.4 92.0 ±3.2 84.8 ±6.0 91.1 99.8 ±0.4 24.5 ±6.0 62.2 

4 
1 71.7 ±15.2 100 ±0 85.8 88.5 ±10.1 99.3 ±1.3 98.6 ±2.5 93.9 99.8 ±0.8 2.4 ±2.4 51.1 

2 86.8 ±14.5 100 ±0 93.4 93.2 ±9.2 99.4 ±1.1 98.8 ±2.2 96.3 100 ±0.2 1.7 ±1.7 50.8 

(4, 5, 16) 4 88.1 ±18.6 99.9 ±0.6 94.0 97.0 ±9.1 99.0 ±1.2 98.1 ±2.2 98.0 100 ±0 1.7 ±1.2 50.9 

5 
1 76.5 ±15.2 99.9 ±0.2 88.2 87.9 ±11.8 99.1 ±1.2 98.5 ±2.2 93.5 97.3 ±5.1 42.1 ±20.1 69.7 

2 85.1 ±15.4 99.9 ±0.1 92.5 93.4 ±7.7 98.8 ±1.2 97.8 ±2.3 96.1 99.1 ±2.6 39.1 ±19.8 69.1 

(18, 21, 23) 4 89.3 ±16.4 100 ±0.1 94.6 97.2 ±8.1 98.3 ±1.2 96.8 ±2.1 97.7 99.9 ±0.3 34.3 ±20.2 67.1 

6 
1 87.0 ±13.5 99.7 ±0.5 93.4 96.0 ±7.8 99.3 ±0.8 99.4 ±0.6 97.6 100 ±0 30.9 ±11.6 65.5 

2 87.6 ±16.0 99.6 ±0.6 93.6 95.8 ±9.1 99.4 ±0.7 99.2 ±1.0 97.6 100 ±0 28.2 ±9.5 64.1 

(8, 11, 24) 4 89.9 ±14.5 99.7 ±0.5 94.8 96.8 ±9.2 99.2 ±0.8 98.9 ±1.0 98.0 100 ±0 27.7 ±8.0 63.9 

7 
1 66.4 ±15.7 99.6 ±0.6 83.0 87.0 ±11.4 97.6 ±2.9 96.8 ±5.4 92.3 99.2 ±1.9 23.7 ±8.0 61.5 

2 82.1 ±13.7 99.5 ±0.7 90.8 90.0 ±9.8 98.6 ±1.7 98.4 ±3.0 94.3 99.8 ±0.6 24.0 ±6.7 61.9 

(7, 15, 20) 4 83.7 ±15.3 99.5 ±0.9 91.6 94.4 ±10.1 98.5 ±1.5 98.1 ±2.7 96.5 100 ±0.2 24.2 ±5.3 62.1 

Table 5 

Baseline YAMNet system average accuracies (%) and corresponding standard deviations (not shown for ACC w ) for the second batch of experiments 

using trios (only 3 KK classes). 

Openness coefficient 

Trio Shots O ∗ = 0 O ∗ = 0 . 13 O ∗ = 0 . 39 

ACC KK ACC KU ACC w ACC KK ACC KUU ACC UU ACC w ACC KK ACC UU ACC w 

0 
1 83.8 ±9.4 97.3 ±3.3 90.6 87.0 ±8.7 92.3 ±4.5 90.6 ±5.6 89.6 94.0 ±7.1 17.3 ±13.0 55.6 

2 93.6 ±4.4 99.4 ±0.8 96.5 94.2 ±4.9 94.9 ±3.9 92.5 ±5.3 94.5 97.4 ±3.1 16.1 ±11.0 56.7 

(1, 9, 17) 4 97.8 ±3.0 99.8 ±0.4 98.8 97.7 ±3.4 96.5 ±2.3 94.1 ±3.5 97.1 98.6 ±2.8 17.0 ±17.0 57.8 

1 
1 83.9 ±5.7 96.5 ±3.8 90.2 88.2 ±5.9 91.7 ±4.1 89.5 ±5.7 90.0 96.0 ±2.4 26.2 ±14.9 61.1 

2 92.8 ±4.8 99.4 ±1.1 96.1 92.6 ±5.9 91.6 ±4.7 87.8 ±6.8 92.1 97.2 ±2.5 25.4 ±16.6 61.3 

(10, 12, 19) 4 96.5 ±2.7 99.8 ±0.3 98.2 96.4 ±2.3 95.1 ±3.3 91.2 ±5.8 95.7 98.0 ±2.2 21.6 ±14.4 59.8 

2 
1 96.9 ±3.7 99.9 ±0.1 98.4 97.7 ±4.8 97.7 ±3.0 95.9 ±3.7 97.7 98.7 ±5.5 11.0 ±7.2 54.8 

2 98.4 ±1.1 100 ±0 99.2 99.2 ±0.8 97.6 ±1.7 95.4 ±3.2 98.4 100 ±0 8.3 ±7.2 54.2 

(2, 14, 22) 4 98.9 ±1.1 100 ±0 99.5 99.4 ±0.8 97.1 ±1.1 94.4 ±2.2 98.2 100 ±0 4.9 ±5.8 52.5 

3 
1 58.9 ±7.9 95.5 ±3.4 77.2 63.1 ±8.2 89.6 ±3.7 86.4 ±4.7 76.3 68.9 ±7.3 5.2 ±6.1 37.0 

2 70.8 ±7.0 98.3 ±1.5 84.5 73.6 ±6.1 91.7 ±3.4 88.3 ±4.5 82.7 79.0 ±6.4 7.5 ±8.2 43.3 

(3, 6, 13) 4 85.9 ±5.2 99.6 ±0.6 92.7 86.8 ±4.7 95.9 ±2.7 93.1 ±4.2 91.4 94.1 ±4.3 8.8 ±5.2 51.5 

4 
1 71.1 ±8.2 97.6 ±3.0 83.7 75.1 ±8.1 92.4 ±4.4 90.0 ±5.3 83.7 82.1 ±8.2 12.4 ±12.5 47.3 

2 85.7 ±6.1 99.1 ±1.1 92.4 88.8 ±5.9 92.5 ±3.6 88.2 ±5.9 90.7 93.8 ±6.2 10.6 ±9.0 52.2 

(4, 5, 16) 4 92.1 ±5.1 99.9 ±0.2 96.0 93.4 ±4.9 93.4 ±3.9 88.6 ±6.8 93.4 97.6 ±3.3 9.9 ±6.2 53.8 

5 
1 98.6 ±5.1 99.7 ±1.0 99.2 99.7 ±1.7 99.6 ±1.9 99.6 ±1.5 99.6 100 ±0 24.3 ±13.8 62.2 

2 99.6 ±2.1 100 ±0 99.8 99.9 ±0.5 99.9 ±0.2 99.9 ±0.2 99.9 100 ±0 20.9 ±12.7 60.4 

(18, 21, 23) 4 100 ±0 100 ±0 100 100 ±0 100 ±0 100 ±0 100 100 ±0 21.3 ±15.4 60.8 

6 
1 94.2 ±7.8 99.6 ±1.4 97.0 94.6 ±6.1 98.1 ±2.6 96.8 ±3.5 96.4 96.4 ±3.2 14.6 ±7.1 55.5 

2 98.0 ±4.2 100 ±0 99.0 98.1 ±3.1 98.8 ±0.9 97.7 ±1.9 98.4 97.5 ±2.9 12.4 ±5.9 55.0 

(8, 11, 24) 4 99.4 ±1.4 100 ±0 99.7 99.4 ±1.5 98.8 ±0.8 97.8 ±1.5 99.1 98.7 ±2.7 11.0 ±4.7 54.8 

7 
1 86.1 ±9.2 98.7 ±2.3 92.4 86.3 ±9.5 96.4 ±3.9 96.7 ±3.7 91.4 88.8 ±9.3 25.8 ±13.1 57.3 

2 93.2 ±4.5 99.6 ±0.7 96.4 93.4 ±4.2 98.0 ±2.4 98.3 ±1.9 95.7 94.6 ±3.4 31.8 ±11.4 63.2 

(7, 15, 20) 4 96.0 ±2.4 99.7 ±0.6 97.8 96.0 ±2.3 99.3 ±0.8 99.6 ±0.4 97.6 96.2 ±2.5 35.9 ±9.7 66.1 
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ained in Table 4 for trios 1 and 4, considerably worse than for 

ther trios in the dataset. The internal L 3 -net representations of 

uch target classes may probably lead to classification boundaries 

hat are not discriminatory enough to reject successfully the un- 

anted sounds. Interestingly, the specific internal representations 

re also of high importance, as the same trios are not the ones 

ith lowest performance in YAMNet (see Table 5 ). In any case, the 

ifferences between the two baseline systems are much more evi- 

ent in this second batch of experiments than in the previous one. 

hile O 

∗ = 0 was the case that most favored the L 3 -net baseline

hen | K K | = 24 , with trios YAMNet seems to offer better perfor-

ance for the same openness value. The tendency is also reversed 

or the highest level of openness ( O 

∗ = 0 . 39 ), as the L 3 -net embed-

ings show now the best performance for most trios. Finally, note 

hat the trio-wise results are quite balanced for O 

∗ = 0 . 13 , as both

ystems are similarly competitive. However, the winning system is 

gain quite dependent on the actual trio. 

. Conclusions and future work 

Few-shot learning (FSL) is a research area with increasing in- 

erest in the audio domain. However, the lack of public FSL audio 

atasets makes it necessary to manipulate other existing databases 

ith the aim of adapting them properly to FSL research. More- 

ver, open-set recognition (OSR) can be an additional problem in 

ractical FSL scenarios, where the models are likely to be tested 

ith instances from unseen classes during training. This work pre- 

ented a carefully designed audio dataset for FSL and OSR research, 

here target sounds are instances of classes corresponding to dif- 

erent audio patterns (fire alarms, doorbells, etc.). The dataset con- 

iders a domestic scenario where such audio pattern classes corre- 

pond to intentional sounds to be accurately detected in the pres- 

nce of other unwanted sounds (coughs, door slams, etc.). Each 

lass comes with different samples for FSL training, validation and 

esting, under different openness conditions. To facilitate the use 

f this dataset and promote algorithm development, we also pro- 

ide results with a baseline system using transfer learning from 

re-trained state-of-the-art convolutional neural networks. The re- 

ults show that important trade-offs exist when both FSL and OSR 

onditions are considered, evidencing the need for novel learning 

rchitectures aimed at facing both types of problems. Future up- 

ates of this dataset will include more challenging acoustic con- 

itions, such as different levels of noise, reverberation and over- 

apped events. 
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