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a b s t r a c t 

Current unsupervised anomaly localization approaches rely on generative models to learn the distribu- 

tion of normal images, which is later used to identify potential anomalous regions derived from errors 

on the reconstructed images. To address the limitations of residual-based anomaly localization, very re- 

cent literature has focused on attention maps, by integrating supervision on them in the form of ho- 

mogenization constraints. In this work, we propose a novel formulation that addresses the problem in 

a more principled manner, leveraging well-known knowledge in constrained optimization. In particular, 

the equality constraint on the attention maps in prior work is replaced by an inequality constraint, which 

allows more flexibility. In addition, to address the limitations of penalty-based functions we employ an 

extension of the popular log-barrier methods to handle the constraint. Last, we propose an alternative 

regularization term that maximizes the Shannon entropy of the attention maps, reducing the amount of 

hyperparameters of the proposed model. Comprehensive experiments on two publicly available datasets 

on brain lesion segmentation demonstrate that the proposed approach substantially outperforms relevant 

literature, establishing new state-of-the-art results for unsupervised lesion segmentation. 

© 2022 The Author(s). Published by Elsevier B.V. 
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. Introduction 

Deep learning models are driving progress in a wide range of 

isual recognition tasks, particularly when they are trained with 

arge amounts of annotated samples. This learning paradigm, how- 

ver, carries two important limitations. First, obtaining such cu- 

ated labeled datasets is a cumbersome process prone to annotator 

ubjectivity, limiting the access to sufficient training data in prac- 

ice. This problem is further magnified in the context of medical 

mage segmentation, where labeling involves assigning a category 

o each image pixel or voxel. In addition, even if annotated images 

re available, there exist some applications, such as brain lesion 

etection, where large intra-class variations are not captured dur- 

ng training, failing to cover the broad range of abnormalities that 

ight be present in a scan. This results in trained models which 

re potentially tailored to discover lesions similar to those seen 

uring training. Thus, considering the scarcity and the diversity of 

arget objects in these scenarios, lesion segmentation is typically 

odeled as an anomaly localization task, which is trained in an 

nsupervised manner. In this setting, the training dataset contains 
∗ Corresponding author. 
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nly normal images and abnormal images are not ideally accessible 

uring training. 

A popular strategy to tackle unsupervised anomaly segmenta- 

ion is to model the distribution of normal images in the training 

et. To this end, generative models, such as generative adversar- 

al networks (GANs) ( Schlegl et al., 2017; Schlegl et al., 2019; An- 

ermatt et al., 2019; Ravanbakhsh et al., 2019; Baur et al., 2020; 

un et al., 2020 ) and variational auto-encoders (VAEs) ( Chen and 

onukoglu, 2018; Nick Pawlowski, 2018; Sabokrou et al., 2019; 

hen et al., 2020; Zimmerer et al., 2020 ) have been widely em- 

loyed. In particular, these models are trained to reconstruct their 

nput images, which are drawn from a normal, i.e., healthy , dis- 

ribution. At inference, input images are compared to their re- 

onstructed normal counterparts, which are recovered from the 

earned distribution. Then, the anomalous regions are identified 

rom the reconstruction error. 

As an alternative to these methods, a few recent works 

ave integrated class-activation maps (CAMs) during training 

 Venkataramanan et al. (2020) , Liu et al. (2020) ). In particular, 

enkataramanan et al. (2020) leverage the generated attention 

aps as an additional supervision cue, enforcing the network to 

rovide attentive regions covering the whole context in normal 

mages. This term was formulated as an equality constraint with 

he form of a L penalty over each individual pixel. Nevertheless, 
1 
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e found that explicitly forcing the network to produce maxi- 

um attention values across each pixel does not achieve satisfac- 

ory results in the context of brain lesion segmentation. In addi- 

ion, recent literature in constrained optimization for deep neu- 

al networks suggests that simple penalties –such as the function 

sed in Venkataramanan et al. (2020) – might not be the opti- 

al solution to constraint the output of a CNN ( Kervadec et al., 

019c ). 

Based on these observations, we propose a novel formulation 

or unsupervised semantic segmentation of brain lesions in medi- 

al images. The key contributions of our work can be summarized 

s follows: 

• A novel constrained formulation for unsupervised lesion seg- 

mentation, which integrates an auxiliary constrained loss to 

force the network to generate attention maps that cover the 

whole context in normal images. 
• In particular, we leverage global inequality constraints on the 

generated attention maps to force them to be activated around 

a certain target value. This contrasts with the previous work 

in Venkataramanan et al. (2020) , where local pixel-wise equal- 

ity constraints on Grad-CAMs ( Selvaraju et al. (2020) are em- 

ployed. In addition, to address the limitations of penalty-based 

functions, we resort to an extended version of the standard log- 

barrier. 
• Furthermore, we consider an alternative regularization term 

that maximizes the Shannon entropy of the attention maps, re- 

ducing the amount of hyperparameters with respect to the ex- 

tended log-barrier model, while yielding at par performances. 
• We benchmark the proposed model against a relevant body 

of literature on two public lesion segmentation benchmarks: 

BraTS and Physionet-ICH datasets. Comprehensive experiments 

demonstrate the superior performance of our model, establish- 

ing a new state-of-the-art for this task. 

This journal version provides a substantial extension of the con- 

erence work presented in Silva-Rodríguez et al. (2021) . First, we 

xtended the literature survey, particularly for unsupervised med- 

cal image segmentation. Then, in terms of methodology, the cur- 

ent version introduces several important modifications. In partic- 

lar, we further investigate the role of the gradients on the at- 

ention maps derived from Grad-CAM in the task of unsupervised 

nomaly detection. Based on our empirical observations, we mod- 

fy the formulation in Silva-Rodríguez et al. (2021) to constraint 

irectly the activation maps without involving any gradient infor- 

ation. Furthermore, we propose an alternative learning objective 

or our constrained problem based on the Shannon entropy. More 

oncretely, we replace our log-barrier formulation by a maximiz- 

ng entropy term on the softmax activation of brain tissue pix- 

ls, which reduces the complexity in terms of hyperparameters 

ith respect to the former model. Last, we add comprehensive 

xperiments to empirically validate our method, including an ad- 

itional dataset and extensive ablation studies on several design 

hoices. 

. Related work 

.1. Unsupervised anomaly segmentation 

Unsupervised anomaly segmentation aims at identifying abnor- 

al pixels on test images, containing, for example, lesions on med- 

cal images ( Baur et al., 2020; Chen and Konukoglu, 2018 ), de- 

ects in industrial images ( Bergmann et al., 2019; Liu et al., 2020; 

enkataramanan et al., 2020 ) or abnormal events in videos ( Abati 

t al., 2019; Ravanbakhsh et al., 2019 ). A main body of the lit-

rature has explored unsupervised deep (generative) representa- 

ion learning to learn the distribution from normal data. The un- 
2 
erlying assumption is that a model trained on normal data will 

ot be able to reconstruct anomalous regions, and the recon- 

tructed difference can therefore be used as an anomaly score. Un- 

er this learning paradigm, generative adversarial networks (GAN) 

 Goodfellow et al., 2014 ) and variational auto-encoders (VAE) 

 Kingma and Welling, 2014 ) are typically employed. Nevertheless, 

ven though GAN and VAE model the latent variable, the man- 

er in which they approximate the distribution of a set of sam- 

les differs. GAN-based approaches ( Schlegl et al., 2017; Schlegl 

t al., 2019; Andermatt et al., 2019; Ravanbakhsh et al., 2019; Baur 

t al., 2020; Sun et al., 2020 ) approximate the distribution by op- 

imizing a generator to map random samples from a prior dis- 

ribution in the latent space into data points that a trained dis- 

riminator cannot distinguish. On the other hand, data distribu- 

ion is approximated in VAE by using variational inference, where 

n encoder approximates the posterior distribution in the latent 

pace and a decoder models the likelihood ( Sabokrou et al., 2019; 

ehaene et al., 2020 ). Recent literature on unsupervised anomaly 

egmentation also includes non VAE and GAN based approaches. 

or instance, Bergmann et al. (2020) exploits the teacher-student 

earning paradigm, highlighting anomalies on those outputs where 

he student networks and teacher model predictions differ. Addi- 

ionally, feature-based methods ( Shi et al., 2021; Bergmann et al., 

020 ), which identify anomalies in the feature space can be also 

mployed. 

.2. Unsupervised anomaly segmentation in medical imaging 

In the context of medical images, most current literature re- 

orts to VAEs, proposing several improvements to overcome spe- 

ific limitations of simple VAEs ( Chen and Konukoglu, 2018; 

ick Pawlowski, 2018; Chen et al., 2020; Zimmerer et al., 2019 ). 

or example, to handle the lack of consistency in the learned la- 

ent representation on prior works, Chen and Konukoglu (2018) in- 

luded a constraint that helps mapping an image containing abnor- 

al anatomy close to its corresponding healthy image in the latent 

pace. Zimmerer et al. (2019) presented a context-encoding VAE 

hat combines reconstruction- with density-based anomaly scoring 

o capture the high-level structure present in the data. More re- 

ently, a probabilistic model that uses a network-based prior as 

he normative distribution on the latent-variable model was pro- 

osed in Chen et al. (2020) . In particular, this model penalized 

arge deviations between the reconstructed and original input im- 

ges, reducing false positives in pixel-wise predictions. Generative 

odels have been also employed to tackle the unsupervised le- 

ion segmentation task ( Baur et al., 2020; Nguyen et al., 2021 ). 

hile SteGANomaly ( Baur et al., 2020 ) integrated a CycleGAN- 

ased style-transfer framework to map samples in the latent space 

uch closer to the training distribution, Nguyen et al. (2021) mask 

ut random regions of the input data before they are fed 

o the GAN model. Note that a detailed survey on unsuper- 

ised anomaly localization in medical imaging can be found in 

aur et al. (2021) . However, despite the recent popularity of these 

ethods, the results from the Medical Out-of-Distribution Analy- 

is Challenge 2020 ( Zimmerer et al., 2022 ) highlight their subopti- 

al performance on anomaly segmentation, which might impede 

heir usability in clinical practice, as stressed by Meissen et al. 

2022) . 

More recently, Venkataramanan et al. (2020) integrate attention 

aps derived from Grad-CAM ( Selvaraju et al., 2020 ) during the 

raining as supervisory signals. In particular, in addition to stan- 

ard learning objectives, authors introduce an auxiliary loss that 

ries to maximize the attention maps on normal images by includ- 

ng an equality constraint with the form of a L 1 penalty over each 

ndividual pixel. 
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.3. Constrained segmentation 

Imposing global constraints on the output predictions of deep 

NNs has gained attention recently, particularly in weakly super- 

ised segmentation. These constraints can be embedded into the 

etwork outputs in the form of direct loss functions, which guide 

he network training when fully labeled images are not accessi- 

le. For example, a popular scenario is to enforce the softmax 

redictions to satisfy a prior knowledge on the size of the target 

egion. Jia et al. (2017) employed a L 2 penalty to impose equal- 

ty constraints on the size of the target regions in the context of 

istopathology image segmentation. In Zhang et al. (2017) , authors 

everage the target properties by enforcing the label distribution 

f predicted images to match an inferred label distribution of a 

iven image, which is achieved with a KL-divergence term. Simi- 

arly, Zhou et al. (2019) proposed a novel loss objective in the con- 

ext of partially labeled images, which integrated an auxiliary term, 

ased on a KL-divergence, to enforce that the average output size 

istributions of different organs approximates their empirical dis- 

ributions, obtained from fully-labeled images. 

While the equality-constrained formulations proposed in these 

orks are very interesting, they assume exact knowledge of the 

arget size prior. In contrast, inequality constraints can relax this 

ssumption, allowing much more flexibility. In Pathak et al. (2015) , 

uthors imposed inequality constraints on a latent distribution –

hich represents a fake ground truth– instead of the network 

utput, to avoid the computational complexity of directly us- 

ng Lagrangian-dual optimization. Then, the network parameters 

re optimized to minimize the KL divergence between the net- 

ork softmax probabilities and the latent distribution. Neverthe- 

ess, their formulation is limited to linear constraints. More re- 

ently, inequality constraints have been tackled by augmenting the 

earning objective with a penalty-based function, e.g., L 2 penalty, 

hich can be imposed within a continuous optimization frame- 

ork ( Kervadec et al., 2019c; Kervadec et al., 2019a; Bateson et al., 

021 ), or in the discrete domain ( Peng et al., 2020 ). Despite these

ethods have demonstrated remarkable performance in weakly 

upervised segmentation, they require that prior knowledge, ex- 

ct or approximate , is given. This contrasts with the proposed ap- 

roach, which is trained on data without anomalies, and hence the 

ize of the target is zero. 

. Methodology 

An overview of our method is presented in Fig. 1 . In what fol-

ows, we describe each component of our methodology. 

Preliminaries Let us denote the set of unlabeled training im- 

ges as D = { x n } N n =1 , where x i ∈ X ⊂ R 

�i represents the i th image

nd �i denotes the spatial image domain. This dataset contains 

nly normal images, e.g., healthy images in the medical context, 

nd has therefore no segmentation mask associated with each im- 

ge. We now define an encoder, f θ(·) : X → Z , parameterized by

, which is optimized to project normal data points in D into a 

anifold represented by a lower dimensionality d, z ∈ Z ⊂ R 

d . Fur- 

hermore, a decoder f φ(·) : Z → X parameterized by φ aims at re-

onstructing an input image x ∈ X from z ∈ Z , which results in

ˆ 
 = f φ( f θ(x )) . 

.1. Vanilla VAE 

A Variational Autoencoder (VAE) is an encoder-decoder style 

enerative model, which is currently the dominant strategy for un- 

upervised anomaly location. Training a VAE consists in minimiz- 

ng a two-term loss function, which is equivalent to maximize the 

vidence lower-bound (ELBO) ( Kingma and Welling, 2014 ): 

 VAE = L R (x , ̂  x ) + βL KL (q θ(z | x ) || p(z )) (1)
3

here L R is the reconstruction error term between the input and 

ts reconstructed counterpart. The right-hand term is the Kullback- 

eibler (KL) divergence (weighted by β) between the approximate 

osterior q θ(z | x ) and the prior p(z ) , which acts as a regularizer,

enalizing approximations for q θ(z | x ) that differ from the prior. 

.2. Size regularizer via VAE attention 

Very recent literature ( Liu et al., 2020; Venkataramanan et al., 

020 ) has explored the use of attention maps for anomaly localiza- 

ion. In particular, attention maps a ∈ R 

�i are generated from the 

atent mean vector z μ, by using Grad-CAM ( Selvaraju et al., 2020 )

ia backpropagation to an encoder block output f s 
θ
(x ) , at a given

etwork depth s . Thus, for a given input image x n its correspond- 

ng attention map is computed as follows: 

 

n = σ

( 

K ∑ 

k 

αk f 
s 
θ(x 

n ) k 

) 

(2) 

here K is the total number of filters of that encoder layer, σ a 

igmoid operation, and αk are the generated gradients such that: 

k = 

1 
| a n | 

∑ 

t∈ �T 

∂z μ
∂a n 

k,t 

, where �T is the spatial features domain. 

In Venkataramanan et al. (2020) , authors leveraged the Grad- 

AMs based attention maps ( Eq. (2) ) by enforcing them to cover 

he whole normal image. To achieve this, their loss function was 

ugmented with an additional term, referred to as expansion loss, 

hich takes the form of: L s = 

1 
| a | 

∑ 

l∈ �i 
(1 − a n 

l 
) . We can easily ob-

erve that this term resembles to multiple equality constraints, one 

t each pixel, forcing the class activation maps to be maximum at 

he whole image in a pixel-wise manner (i.e., it penalizes each sin- 

le pixel individually). Contrary to this work, we integrate supervi- 

ion on attention maps by enforcing inequality constraints on its 

lobal target size. Note that the use of the inequality constraints is 

otivated by the choice of the barrier function in the constrained 

roblem, which is further detailed in Section 3.3 . Hence, we aim at 

inimizing the following constrained optimization problem: 

in 

θ, φ
L VAE ( θ, φ) s.t. f c (a n ) ≤ 0 , n = 1 , . . . , N (3) 

here f c (a j ) = (1 − 1 
| �i | 

∑ 

l∈ �i 
a n 

l 
) is the constraint over the atten- 

ion map from the jth image, which enforces the generated atten- 

ion map to cover the whole image. It is well-known in optimiza- 

ion that a penalty does not act as a barrier near the boundary 

f the feasible set ( Boyd et al., 2004 ). In other words, a constraint

hat is satisfied results in a null penalty and gradient. Therefore, at 

 given gradient update, there is nothing that prevents a satisfied 

onstraint from being violated, causing oscillations between com- 

eting constraints and ultimately resulting in a potential unstable 

raining. This is further exacerbated in the case of many multiple 

onstraints (i.e., Venkataramanan et al., 2020 ), motivating the use 

f a single global constraint to achieve a maximum coverage of 

lass-activation maps over the whole image in our scenario. From 

q. (3) we can derive an approximate unconstrained optimization 

roblem by employing a penalty-based method, which takes the 

ard constraint and moves it into the loss function as a penalty 

erm ( P(·) ): min θ, φ L VAE ( θ, φ) + λP( f c (a )) . Thus, each time that

he constraint f c (a n ) ≤ 0 is violated, the penalty term P( f c (a n )) 

ncreases. 

.3. Extended log-barrier as an alternative to penalty-based functions 

Despite having demonstrated a good performance in several 

pplications ( Kervadec et al., 2019b; Pathak et al., 2015; He 

t al., 2017; Jia et al., 2017 ) penalty-based methods have sev- 

ral drawbacks. First, these unconstrained minimization problems 

ave increasingly unfavorable structure due to ill-conditioning 
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Fig. 1. Method overview . Following the standard literature, the VAE is optimized to maximize the evidence lower bound (ELBO), which satisfies Eq. (1) . In addition, we 

include an attention constraint (in the form of a size-constrained loss L s or entropy proxy L H ) on the attention maps a , to force the network to search in the whole image. 

At inference, the attention map is thresholded to obtain the final segmentation mask m . 
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 Fiacco and McCormick, 1990; Luenberger, 1973 ), which typically 

esults in an exceedingly slow convergence. Second, finding the op- 

imal penalty weight is not trivial. In addition, we advocate for 

he use of the log-barrier extension versus penalties due to the 

trictly positive gradient of the latter becomes higher when a sat- 

sfied constraint approaches violation during optimization, pushing 

t back towards the feasible set (See Figure 1 in Kervadec et al., 

019c ). As explained in the previous section, this contrasts with 

enalties, as they deliver null gradients if a given constraint is 

atisfied. To address these limitations, we replace the penalty- 

ased functions by the approximation of log-barrier 1 presented 

n Kervadec et al. (2019c) . We would like to stress that barrier 

ethods require the interior of the feasible sets to be non-empty 

nd they are used, therefore, in constrained optimization problems 

ith inequality constraints, such as the one defined in Eq. (3) (note 

hat there is no interior for equality constraints). Thus, we can for- 

ally define the approximation of log-barrier as: 

˜ 

 t (z) = 

{
− 1 

t 
log (−z) if z ≤ − 1 

t 2 

tz − 1 
t 

log ( 1 
t 2 

) + 

1 
t 

otherwise , 
(4) 
1 Note that this function is convex, continuous and twice-differentiable. 

u

d

r

V

4 
here t controls the barrier during training, and z is the constraint 

f c (a n ) . Thus, by taking into account the approximation in 4 , we

an solve the following unconstrained problem by using standard 

radient Descent: 

in 

θ, φ
L VAE ( θ, φ) ︸ ︷︷ ︸ 

Standard VAE loss 

+ λs 

N ∑ 

n =1 

˜ ψ t (1 − 1 

| �i | 
∑ 

l∈ �i 

a n l ) ︸ ︷︷ ︸ 
L s : Size regularizer 

(5) 

In this scenario, for a given t , the optimizer will try to find a 

olution with a good compromise between minimizing the loss of 

he VAE and satisfying the constraint f c (a n ) . In the following, we 

efer to this formulation of gradient-CAM constraint as GradCAM- 

ons setting. 

.4. On the role of gradients in VAEs 

Even though there exist a few initial attempts to integrate at- 

ention maps on the task of unsupervised anomaly detection, how 

radient-based attention behave on anomalous patterns remains 

nclear. For instance, Liu et al. (2020) argue that anomalies pro- 

uce larger gradients in the learned latent representation, which 

esults in higher activated attention maps. On the other hand, 

enkataramanan et al. (2020) states that the VAE only focus on 
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Fig. 2. Relation between the activation values and gradient-weighted attention 

maps in an unconstrained VAE. These results demonstrate that the values obtained 

by Grad-CAM based attention are highly correlated (correlation coefficient = 0.98) 

to those obtained by the attention maps, suggesting that the gradient basically con- 

tributes as a scaling factor on the attention maps. 
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2 Note that τ is the softmax activation on the brain tissue instances, �B . 
ormal patterns (with which it has been trained), thus anomalous 

egions produce smaller absolute value gradients. These inconsis- 

encies in the literature have motivated us to analyze the under- 

ying role of the gradients in the context of brain images analysis. 

hus, we performed several experiments to analyze the behaviour 

f grad-CAMs in anomaly localization compared to non-weighted 

ctivation maps (AMs), which are computed as: 

 

n = 

1 

K 

K ∑ 

k 

f s θ(x 

n ) k (6) 

In particular, we could not find any benefit on gradients weight- 

ng other than serving as a scaling factor for attention maps to fall 

n non-saturated range of values of typically used activation func- 

ions, such as the sigmoid operation in Eq. (2) (see Fig. 2 , where

e show that the values obtained by both types of attention are 

ighly correlated). Furthermore, we found that the reconstructed 

mages derived from the gradient-based attention contained more 

rrors compared to those reconstructed with attention on the acti- 

ation maps (Eq. (6) ). We refer the reader to Section 1 of Supple-

ental Material for the detailed results concerning the role of the 

radients. 

.5. Entropy maximization as a proxy for the constraint 

Based on our previous findings, we advocate that the use of 

on-weighted activation maps (AMs) should be preferred over 

heir gradient-based counterpart. Nevertheless, this solution has a 

ain limitation that hinders the use of size constraints. As the ac- 

ivation maps are not normalized, the arbitrary activation value to 

mpose the constraint loses the sense of size or proportion . The ac- 

ivation values produced by neural networks can vary in each ap- 

lication, as well as with the architecture used, which makes it 

ifficult to establish generalizable restrictions on their value. For 

his reason, we propose to use attention maps derived from nor- 

alizing the activation maps over all the pixels of the image, via 

 softmax activation, similarly to Ilse et al. (2018) , such that: p n =
5 
�B 
(a n ) 2 Since these attention maps are normalized across pixels 

nd not over classes, the use of global constraints is meaningless, 

s the sum over all the pixels post-softmax will be equal to 1.0. 

evertheless, we still aim at regularizing the attention distribution 

p n to focus on all patterns in the image homogeneously . To this 

nd, we propose to minimize the KL distance D KL (p|| q ) = H(p, q ) −
(p) between the attention distribution p, and a constant distri- 

ution q , where H(p, q ) represents the cross-entropy between both 

istributions, and H(p) = H(p, p) is the Shannon entropy of the in- 

ensity distribution such that H(p) = − 1 
I 

∑ 

i p i · log (p i ) . In the sce- 

ario where we want p to match a constant distribution, it is 

traightforward to see that minimizing the KL distance is equiv- 

lent to maximizing the entropy H(p) : 

 KL (p|| q ) = H(p, q ) − H (p) = 

c −H (p) (7)

here = 

c indicates equality up to an additive constant. 

Thus, the proposed constrained optimization problem integrat- 

ng an entropy maximization term, referred to as L H , offers a softer 

ttention constraint compared to the solution in Eq. (5) . Further- 

ore, this formulation allows the VAE to keep the most suitable 

ctivation values, while requiring less hyper-parameters to be opti- 

ized. Analogously to Eq. (5) , we solve the constrained optimiza- 

ion problem with L H by using standard Gradient Descent: 

in 

θ, φ
L VAE ( θ, φ) ︸ ︷︷ ︸ 

Standard VAE loss 

−λH 
1 

N 

N ∑ 

n =1 

H(τ�B 
(a n )) ︸ ︷︷ ︸ 

L H : Entropy regularizer 

(8) 

Hereafter, we will refer to this formulation as AMCons. 

.6. Inference 

During inference, we use the generated attention as an anomaly 

aliency map. For the Grad-CAMs based settings we replaced the 

igmoid operation by a minimum-maximum normalization in or- 

er to avoid saturation caused by large activations. During the ex- 

erimental stage, we found that anomalies produce larger activa- 

ion on attention maps than the constrained normal samples, in 

ine to prior literature ( Liu et al., 2020 ). Then, the map is thresh-

lded to create an anomaly mask of the image. 

. Experimental setting 

.1. Datasets 

The experiments described in this work are carried out in the 

ontext of brain lesions localization. Concretely, we use two rele- 

ant neuroimaging challenges: tumour segmentation in MRI vol- 

mes and intracranial hemorrhage (ICH) segmentation in CT scans. 

Brain tumor segmentation For this task, we used the popular 

raTS 2019 dataset ( Menze et al., 2015; Bakas et al., 2017; Bakas 

t al., 2018 ), which contains 335 multi-institutional multi-modal 

R scans with their corresponding Glioma segmentation masks. 

ollowing Baur et al. (2019) , from every patient, 10 consecutive ax- 

al slices of FLAIR modality of resolution 224 × 224 pixels were ex- 

racted around the center to get a pseudo MRI volume. Then, the 

ataset is split into training, validation and testing groups, with 

71, 32 and 32 patients, respectively. Following the standard liter- 

ture, during training only the slices without lesions are used as 

ormal samples. For validation and testing, scans with less than 

 . 01% of tumour are discarded, following the standard practices in 

he literature. 
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Intracranial hemorrhage segmentation We use the Physionet- 

CH dataset ( Hssayeni, 2020; Hssayeni et al., 2020; Goldberger 

t al., 20 0 0 ) to localize intracranial hemorrhage lesions. The 

ataset is composed of 82 non-contrast CT scans of subjects with 

raumatic brain injury. From those, 36 cases are diagnosed with 

ntracranial hemorrhage of different types: Intraventricular, Intra- 

arenchymal, Subarachnoid, Epidural and Subdural. ICH Lesions 

ere slice-wise delineated by two expert radiologists. In our work, 

e join the different ICH types into one single label for bi- 

ary lesion segmentation. CT scans are skull-stripped, intensity- 

ormalized, and co-registered into a reference scan. Similar to the 

raTS dataset, 10 consecutive axial slices of resolution 224 × 224 

ixels around the center were extracted to get CT pseudo vol- 

mes. The dataset is divided into training, validation and testing 

plits. The first one contains only non-ICH cases (n = 46), while 

ases with labeled lesions were used for validation (n = 6) and test- 

ng (n = 30). Although the main core of ablation experiments in this 

ork are described on the BraTS dataset, we use the Physionet-ICH 

ataset to demonstrate the generalization capabilities of our pro- 

osed method on different brain lesions and imaging modalities. 

.2. Evaluation metrics 

We resort to standard metrics for unsupervised brain lesion 

egmentation, as in Baur et al. (2021) . Concretely, we compute 

he dataset-level area under precision-recall curve (AUPRC) at pixel 

evel, as well the area under receptive-operative curve (AUROC). 

rom the former, we obtain the operative point (OP) as threshold 

o generate the final segmentation masks. Then, we compute the 

est dataset-level Sørensen-Dice score ( � DICE � ) and intersection- 

ver-union ( � IoU � ) over these segmentation masks. Finally, we 

ompute the average Sørensen-Dice score (DICE) over single scans. 

or each experiment, the metrics reported are the average of three 

onsecutive repetitions of the training, to account for the variabil- 

ty of the stochastic factors involved in the process. 

.3. Implementation details 

The VAE architecture used in this work is based on the recently 

roposed framework in Venkataramanan et al. (2020) . Concretely, 

he convolution layers of ResNet-18 ( He et al., 2016 ) are used as

he encoder, followed by a dense latent space z ∈ R 

32 . For image

eneration, a residual decoder is used, which is symmetrical to 

he encoder. It is noteworthy to mention that, even though several 

ethods have resorted to a spatial latent space ( Baur et al., 2019; 

enkataramanan et al., 2020 ), we observed that a dense latent 

pace provided better results, which aligns to the recent bench- 

ark in Baur et al. (2021) . To train the GradCAMCons formulation 

n Eq. (5) we first trained the VAE during 50 epochs without any 

xpansion to stabilize the convergence using β = 1 . Then, the pro- 

osed regularizer was integrated ( Eq. (5) ) with t = 10 and λs = 10 3 

pplied to the Grad-CAMs obtained from the first convolutional 

lock of the encoder during 250 epochs. We use a batch size of 

 images, and a learning rate of 1 e −5 with ADAM as optimizer. 

he reconstruction loss, L R , in Eq. (1) is the binary cross-entropy. 

imilarly, the AMCons formulation in Eq. (8) was trained by using 

= 10 and λH = 0 . 1 , using a learning rate of 1 e −4 . Ablation ex-

eriments to motivate the choice of values used are presented in 

ection 5.2 and Section 3 of supplemental materials. The code and 

rained models are publicly available on ( https://github.com/jusiro/ 

onstrained _ anomaly _ segmentation/ ). 

.4. Baselines 

In order to compare our approach to state-of-the-art meth- 

ds, we implemented prior works and validated them on the 
6 
ataset used, under the same conditions. First, we use residual- 

ased methods to match the recently benchmark on unsupervised 

esion localization in Baur et al. (2021) . Then, we implement up- 

o-date methods based on contrast adjustment on the input im- 

ge via histogram equalization. We also include recently proposed 

ethods that integrate CAMs to locate anomalies. For both strate- 

ies, the AE/VAE architecture was the same as the one used in 

he proposed method. Residual methods , given an anomalous sam- 

le, aim to use the AE/VAE to reconstruct its normal counterpart. 

hen, they obtain an anomaly localization map using the residual 

etween both images such that m = | x − ˆ x | , where | · | indicates

he absolute value. On the AE/VAE scenario, we include meth- 

ds which propose modifications over vanilla versions, including 

ontext data augmentation in Context AE ( Zimmerer et al., 2019 ), 

ayesian AEs ( Nick Pawlowski, 2018 ), Restoration VAEs ( Chen et al., 

020 ), an adversarial-based VAEs, AnoVAEGAN ( Baur et al., 2019 ) 

nd a recent GAN-based approach, F-anoGAN ( Schlegl et al., 2019 ). 

or methods including adversarial learning, DC-GAN ( Radford et al., 

016 ) is used as discriminator. During inference, residual maps are 

asked using a slight-eroded brain mask, to avoid noisy recon- 

tructions along the brain borderline. Equalization-based meth- 

ds : very recent methods have highlighted the limits of residual- 

ased approaches to properly discern brain lesions Meissen et al. 

2021, 2022) . In contrast, they propose to apply an equalization 

f the histogram of the input image, and to set a threshold on 

he preprocessed image, considering that brain lesions often show 

yperintense patterns in different modalities. Concretely, we in- 

lude the method proposed in Meissen et al. (2021) , which we re- 

er to as HistEq. CAMs-based : we use Grad-CAM VAE ( Liu et al.,

020 ), which obtains regular Grad-CAMs on the encoder from the 

atent space z μ of a trained vanilla VAE. Concretely, we include 

 disentanglement variant of CAMs proposed in this work, which 

omputes the combination of individually-calculated CAMs from 

ach dimension in z μ, referred to as Grad-CAM D VAE. We also 

se the recent method in Venkataramanan et al. (2020) (CAVGA), 

hich applies a L1 penalty on the generated CAM to maximize 

he attention. In contrast to our model and Liu et al. (2020) , the

nomaly mask in Venkataramanan et al. (2020) is generated by fo- 

using on the regions not activated on the saliency map such that 

 = 1 − CAM, hypothesizing that the network has learnt to focus 

nly on normal regions. Then, a is thresholded with 0.5 to obtain 

he final anomaly mask m ∈ R 

�i . For both methods, the network 

ayer to obtain the Grad-CAMs is the same as in our method. 

. Results 

.1. Comparison to the literature. 

The quantitative results obtained by the proposed model and 

aselines on the test cohort are presented in Table 1 . Results from 

esidual-based baselines range between [ 0 . 056 − 0 . 511 ](AUPRC) 

nd [ 0 . 188 − 0 . 525 ] (DICE), which are in line with previous litera-

ure Baur et al. (2021) . We can observe that the proposed formu- 

ations outperform these approaches by a large margin. Concretely, 

he AMCons method provides a substantial increase of ∼34% and 

26% in terms of AUPRC and DICE, respectively, compared to the 

est model, i.e., F-anoGAN. Furthermore, the model integrating the 

 H term significantly outperforms our previous method in Silva- 

odríguez et al. (2021) . This supports our hypothesis that using 

on-weighted attention maps with a maximization entropy term 

s constraint is indeed a better solution for the unsupervised lesion 

egmentation task. Finally, in comparison with the very recently 

roposed method of histogram equalization, HistEq, our proposed 

ormulation brings improvements of nearly ∼10% in the main fig- 

res of merit. 

https://github.com/jusiro/constrained_anomaly_segmentation/
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Table 1 

Comparison to prior literature on BraTS dataset. Results derived from the proposed methods in gray. Best results in bold. The values in parentheses 

indicate the standard deviation over the three training repetitions. 

Method AUROC AUPRC � DICE � � IoU � DICE ( μ ± σ ) 

CAVGA ( Venkataramanan et al., 2020 ) 0.726(0.001) 0.056(0.005) 0.188(0.001) 0.104(0.002) 0.182(0.004) ±0 . 096(0 . 002 ) 

Bayesian VAE ( Nick Pawlowski, 2018 ) 0.922(0.002) 0.193(0.005) 0.342(0.005) 0.206(0.005) 0.329(0.005) ±0 . 115(0 . 005 ) 

AnoVAEGAN ( Baur et al., 2019 ) 0.925(0.020) 0.232(0.052) 0.359(0.074) 0.221(0.053) 0.349(0.071) ±0 . 115(0 . 015 ) 

Bayesian AE ( Nick Pawlowski, 2018 ) 0.940(0.002) 0.279(0.009) 0.389(0.012) 0.242(0.009) 0.375(0.010) ±0 . 130(0 . 011 ) 

AE 0.937(0.002) 0.261(0.011) 0.397(0.011) 0.248(0.008) 0.386(0.010) ±0 . 125(0 . 004 ) 

Grad-CAM D VAE ( Liu et al., 2020 ) 0.941(0.003) 0.312(0.010) 0.400(0.009) 0.250(0.012) 0.361(0.014) ±0 . 164(0 . 005 ) 

Restoration VAE ( Chen et al., 2020 ) 0.934(0.028) 0.352(0.111) 0.403(0.099) 0.252(0.069) 0.345(0.075) ±0 . 186(0 . 044 ) 

Context VAE ( Zimmerer et al., 2019 ) 0.939(0.004) 0.271(0.017) 0.406(0.020) 0.255(0.016) 0.394(0.017) ±0 . 126(0 . 007 ) 

Context AE ( Zimmerer et al., 2019 ) 0.940(0.003) 0.278(0.012) 0.411(0.014) 0.259(0.011) 0.399(0.013) ±0 . 126(0 . 005 ) 

VAE ( Baur et al., 2019; Zimmerer et al., 2020 ) 0.940(0.002) 0.273(0.010) 0.411(0.012) 0.259(0.009) 0.399(0.010) ±0 . 127(0 . 004 ) 

F-anoGAN ( Schlegl et al., 2019 ) 0.946(0.026) 0.511(0.190) 0.525(0.147) 0.369(0.131) 0.494(0.138) ±0 . 151(0 . 038 ) 

GradCAMCons w. L S (L2 penalty) 0.969(0.015) 0.567(0.138) 0.620(0.085) 0.455(0.086) 0.586(0.079) ±0 . 184(0 . 028 ) 

HistEq ( Meissen et al., 2021 ) 0.972(0.000) 0.725(0.000) 0.705(0.000) 0.545(0.000) 0.653(0.000) ±0 . 233(0 . 0 0 0 ) 

GradCAMCons w. L S (Log Barrier) 0.982(0.001) 0.746(0.034) 0.698(0.034) 0.537(0.041) 0.677(0.021) ±0 . 215(0 . 019 ) 

AMCons w. L H 0 . 988 (0 . 0 0 0 ) 0 . 850 (0 . 011 ) 0 . 786 (0 . 009 ) 0 . 648 (0 . 013 ) 0 . 741 (0 . 009) ±0 . 153 (0 . 001 ) 

Table 2 

Quantitative comparison, in terms of AUPRC, between enforcing the constraint 

at pixel-level (i.e., Venkataramanan et al., 2020 ) or at image-level (i.e., pro- 

posed approach), and for the impact of the type of regularization. 

L2 (pixel-level) L2 (image-level) Log-Barrier (image-level) 

AUPRC 0.489(0.098) 0.550(0.160) 0.728(0.034) 
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Fig. 3. Ablation study on the AMCons setting. Concretely, the role of the KL regu- 

larization ( β) in the VAE and the entropy constraint on attention maps ( λH ) from 

our formulation is studied. (a) Entropy constraint effect and dependency on β . (b) 

Ablation study on λH . 
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.2. Ablation experiments 

The following ablation studies aim at demonstrating, in an em- 

irical way, the motivation of employing the proposed models. 

irst, we provide quantitative evidences about the better perfor- 

ance of using global constraints (model in Eq. (5) ) over pixel- 

evel constraints (i.e., Venkataramanan et al., 2020 ). Second, we 

how that resorting to the extended log-barrier function is a better 

lternative than standard L2 penalty functions. Then, we perform 

n in-depth analysis of the optimal hyperparameters values for the 

ntropy-guided model ( Eq. (8) ), as well as other important design 

hoices. 

Image vs. pixel-level constraint The following experiment 

emonstrates the benefits of imposing the constraint on the 

hole image rather than in a pixel-wise manner, such as in 

enkataramanan et al. (2020) . In particular, we compare the two 

trategies when the constraint is enforced via a L2-penalty func- 

ion, whose results are presented in Table 2 . In particular, we can 

asily see that imposing the constraint at image-level consistently 

utperforms pixel-level constraints. These results support our hy- 

othesis that global constraints, such as the proposed formulation 

n Eq. (5) , should be preferred over multiple pixel-wise constraints, 

imilar to Venkataramanan et al. (2020) . 

Extended log-barrier vs. penalty-based functions To motivate 

he choice of employing the extended log-barrier over standard 

enalty-based functions in the constrained optimization problem 

n Eq. (3) , we compare them in Table 2 . It can be observed that

mposing the constraint with the extended log-barrier consistently 

utperforms the L2-penalty, with substantial performance gains. 

On the impact of entropy-guided constraints We now perform 

n in-depth analysis of the effect of integrating the entropy-guided 

onstraint in Eq. (8) for anomaly localization, as well as an ex- 

ensive validation of the values of the balancing terms β and λH . 

irst, we study the impact of L H across different β values (i.e. 

= { 0 . 01 , 0 . 1 , 1 , 10 } ), by fixing its balancing term λH to 0.1, a value

hat empirically showed good stability. These results, which are re- 

orted in Fig. 3 a, show that the VAE with and without entropy 

onstraint presents different optimal values for β . Nevertheless, 

he best results are obtained when the contribution of the regular- 
7 
zation term is large (i.e. β ≥ 1 ), and the entropy-based regulariza- 

ion over the activation maps included (i.e., green bars). Further- 

ore, this configuration is shown to be more stable once a large 

weight is set, particularly for the constrained formulation. Then, 

ased on the best configuration ( β = 10 ), we study how different 

H weights { 0 . 01 , 0 . 1 , 1 , 10 } impact the model performance. These

esults ( Fig. 3 b) show that incorporating the entropy regularization 

lways contributes to performance gains, with an optimum weight 

alue of λH = 0 . 1 . 

In the next experiment, we show how adding the L H term 

n our formulation impacts the activation maps (AM). Concretely, 

e first show in Fig. 4 the AM distribution for a normal sam- 

le for both the constrained and unconstrained configurations. It 
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Fig. 4. Influence of the entropy constrained term on the attention maps for AMCons 

on normal images. 

Fig. 5. Influence of the entropy constrained term on the attention maps for AMCons 

on images with anomalies. 
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Fig. 6. Histogram analysis on the overlap of normal and anomalous samples for the 

different proposed methods and baselines (on the whole BRATS dataset). 

Table 3 

Ablation study on threshold values from normal images. p X indicates the average 

percentile used on the training set (normal images) to compute the segmenta- 

tion threshold. OP indicates the operative point from area under precision-recall 

curve, using all validation dataset, which contains anomalous images. The metric 

presented is the dataset-level DICE. 

OP th = 0.5 p85 p90 p95 p98 

F-anoGAN 0.525 - 0.310 0.390 0.505 0.488 

HistEq 0.690 - 0.298 0.404 0.624 0.620 

GradCAMCons w. L S 0.693 0.583 0.512 0.611 0.663 0.587 

AMCons w. L H 0.743 - 0.189 0.201 0.265 0.720 
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an be observed that, in our constrained formulation, the distri- 

ution of activation values is more homogeneous (in orange), un- 

ike the more spread values found in its unconstrained counterpart 

in green). Furthermore, we show its impact on unseen, anoma- 

ous samples, where the benefits of our model are better high- 

ighted. In particular, we represent the AM distribution for nor- 

al and anomalous pixels on the unconstrained formulation (i.e. 

H = 0 ) in Fig. 5 ( top ), and the effect of integrating the L H term

 Fig. 5 , bottom ). Similarly to the normal samples, the distribution of 

ormal pixels produced by the unconstrained setting spreads over 

 larger range, resulting in a higher overlapping with the distribu- 

ion of anomalous pixels. Note that, in addition to the overlapping 

egions, there exist values of normal pixels which overpass anoma- 

ous values. In contrast, the more compact distribution provided by 

he proposed formulation favors a smaller overlap between normal 

nd anomalous pixel intensity distributions. This results in an eas- 

er identification of normal versus anomalous pixels. 

In the following, we explore how the entropy constraint favors 

he smallest overlap between normal and anomalous distribution 

n the objective criteria, compared to previous literature. To do so, 

e depict in Fig. 6 the distribution of both populations for the pro- 

osed methods, AMCons and GradCAMCons, and the most promis- 

ng baselines, F-anoGAN and Histeq. Furthermore, we obtain the 

verlap between both distributions by dividing the number of sam- 
8 
les in the overlapped region of the histograms by the total num- 

er of samples. It can be seen how the proposed method based 

n entropy maximization obtains the smallest overlap ( 10 . 2% ) and 

roduces a narrower distribution of normal samples in comparison 

ith the GradCAMCons method, based on size constraints. 

Using statistics from normal domain for anomaly localization 

hreshold A common practice on unsupervised anomaly segmenta- 

ion is to use anomalous images to define the threshold to obtain 

he final segmentation masks. In particular, these methods look 

t the AUPRC on the anomalous images, which is then used to 

ompute the optimal threshold value. We refer to this technique 

n our experiments as OP (Operative Point). To alleviate the need 

f anomalous samples during the validation stage, several meth- 

ds ( Baur et al., 2019 ) have discussed the possibility of using a 

iven percentile from the normal images (i.e., no anomalies) dis- 

ribution to set the threshold. Motivated by this, an ablation study 

n the percentile value is presented in Table 3 for our proposed 

ormulations and the best performing baselines. First, we can ob- 

erve that under the OP strategy (i.e., accessing to anomalous im- 

ges to identify the optimal threshold), both of our models bring 

ubstantial improvements over the state-of-the-art on residual- 

ased approaches, ranging from 14% to 22%. If we resort to the 

ercentiles instead, the performance improvements observed are 

ery similar to the OP scenario, with our models outperforming 

-anoGAN by a large margin. Nevertheless, we observed that the 

est results are obtained with different percentile values. While F- 

noGAN and AMCons w. L H yields the best performance using the 

8% percentile, GradCAMCons w. L S follows previous observations 

n Baur et al. (2019) , performing better using the 95% percentile. 
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Fig. 7. Ablation study on the effect of increasing the number of axial slices around 

the center used from MR brain volumes. (a) Study of latent space dimension for 

the proposed models and an standard VAE. Solid lines indicate z = 32 , and dashed 

lines denote z = 128 . (b) Study of the KL component importance ( β term) using the 

proposed AMCons method. 
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This suggests that, even though not used directly, anomalous 

mages are still required to find the optimal threshold value. How- 

ver, the proposed method GradCAMCons shows special properties 

hat suggest that they can achieve large performance gains with- 

ut having access to anomalous images to define the threshold, 

nlike prior works. In particular, our GradCAM-based formulation 

estricts the attention values to [0 , 1] , which allows to set a typical

hreshold to 0.5, with still large performance gains (+7%) compared 

o the baselines. Nevertheless, we can observe that if we resort to 

he percentile strategy, our method based on maximizing the en- 

ropy of the attention maps (i.e., AMCons) is very sensitive to the 

elected value. 

Number of slices to generate the pseudo-volumes In our ex- 

eriments, we followed the standard literature ( Baur et al., 2021 ) 

o generate the pseudo-labels for validation and testing. Neverthe- 

ess, we concede that this scenario is unrealistic, as the appro- 

riate number of slices used from the MRI scans in unsupervised 

nomaly detection should be unknown. We now explore the im- 

act of including more slices in these pseudo-volumes, which in- 

rease the variability of normal samples. For instance, it is well- 

nown that the target regions in slices farther from the center are 

ncrementally smaller. In this line, we hypothesize that the dimen- 

ion of the VAE latent space and the importance of the KL regu- 

arization may be a determining factors in absorbing this increased 

ariability. Regarding the latent space, the appropriate z dimension 

s unclear in the literature. For instance, Baur et al. (2021) uses z =
28 , while Baur et al. (2019) uses z = 64 , and we obtained better

esults using z = 32 . To validate the proposed experimental setting 

nd latent space dimension, we now present results using increas- 

ng number of slices around the axial midline N = { 10 , 20 , 40 } ,
nd two different latent space dimensions z = { 32 , 128 } for both

 standard VAE and our proposed models, in Fig. 7 a. We can ob-

erve that despite the gap between the baselines and the attention 

ased methods is reduced as the number of slides is increased, this 

ifference is still significant, and the relative performance drop is 

imilar for all methods. Finally, we can observe that an increas- 

ng on z dimension (solid versus dotted lines in Fig. 7 a) does not

roduce gains in performance in any case. Note that the model hy- 

erparameters used are optimized for z = 32 , and N = 10 , which

lso could produce some underestimation of the proposed model 

erformance when N increases. In the following, we study the per- 

ormance of the proposed AMCons method using different β val- 

es ( β = { 1 , 10 } ) in the KL term of Eq. 1 across different number
 p

Table 4 

Comparison to prior literature on Physionet-ICH dataset, and previous works 

depicted in gray, and best results are indicated in bold. The values in parenthe

Method AUROC AUPRC 

Other works 

Karkkainen et al. (2021) (Unsupervised) ∗ - - 

Hssayeni et al. (2020) (Supervised) - - 

Physionet-ICH dataset 

CAVGA ( Venkataramanan et al., 2020 ) 0.919(0.004) 0.061(0.0

Grad-CAM D VAE ( Liu et al., 2020 ) 0.955(0.003) 0.157(0.0

Bayesian AE ( Nick Pawlowski, 2018 ) 0.961(0.001) 0.188(0.0

VAE ( Baur et al., 2019; Zimmerer et al., 2020 ) 0.962(0.000) 0.167(0.0

AnoVAEGAN ( Baur et al., 2019 ) 0.961(0.000) 0.167(0.0

Bayesian VAE ( Nick Pawlowski, 2018 ) 0.964(0.000) 0.178(0.0

Context VAE ( Zimmerer et al., 2019 ) 0.963(0.002) 0.170(0.0

Restoration VAE ( Chen et al., 2020 ) 0.962(0.001) 0.183(0.0

Context AE ( Zimmerer et al., 2019 ) 0.962(0.001) 0.195(0.0

F-anoGAN ( Schlegl et al., 2019 ) 0.961(0.000) 0.173(0.0

AE 0.961(0.001) 0.176(0.0

GradCAMCons w. L S (L2 penalty) 0.967(0.009) 0.261(0.0

HistEq ( Meissen et al., 2021 ) 0.963(0.000) 0.313(0.0

GradCAMCons w. L S (Log Barrier) 0.970(0.008) 0.295(0.0

AMCons w. L H 0 . 971 (0 . 006 ) 0 . 420 (0 .

∗ Results reported on a different (private) dataset. 

9 
f slices, whose results are presented in Fig. 7 b. We can observe 

hat, by decreasing the value of β as the number of employed 

lices increases, we can alleviate the performance degradation ob- 

erved with a fixed β . Since the KL regularization directly affects 

he capacity of the VAE for learning different samples, the opti- 

ization of its balancing term when increasing the domain of sam- 

les used seems necessary. The similar behaviour between the pro- 
on ICH segmentation. Results derived from the proposed methods are 

ses indicate the standard deviation over the three training repetitions. 

� DICE � � IoU � DICE ( μ ± σ ) 

- - 0 . 197 ± 0 . 222 

- - 0 . 315 ± 0 . 211 

03) 0.094(0.005) 0.062(0.004) 0.053(0.004) ±0 . 161(0 . 002 ) 

09) 0.275(0.011) 0.159(0.005) 0.178(0.005) ±0 . 175(0 . 003 ) 

06) 0.309(0.009) 0.183(0.007) 0.242(0.008) ±0 . 181(0 . 003 ) 

05) 0.319(0.002) 0.190(0.002) 0.245(0.004) ±0 . 192(0 . 003 ) 

03) 0.313(0.006) 0.185(0.004) 0.239(0.006) ±0 . 192(0 . 002 ) 

10) 0.323(0.007) 0.193(0.005) 0.248(0.008) ±0 . 191(0 . 004 ) 

13) 0.321(0.023) 0.191(0.016) 0.243(0.014) ±0 . 191(0 . 009 ) 

05) 0.327(0.002) 0.187(0.001) 0.233(0.004) ±0 . 189(0 . 003 ) 

05) 0.359(0.010) 0.219(0.007) 0.276(0.004) ±0 . 198(0 . 004 ) 

07) 0.343(0.007) 0.207(0.005) 0.268(0.007) ±0 . 191(0 . 005 ) 

06) 0.344(0.007) 0.208(0.006) 0.266(0.002) ±0 . 202(0 . 005 ) 

13) 0.361(0.067) 0.231(0.029) 0.276(0.046) ±0 . 243(0 . 029 ) 

00) 0.385(0.000) 0.239(0.000) 0 . 348 (0 . 0 0 0) ±0 . 213 (0 . 0 0 0 ) 

73) 0.401(0.044) 0.251(0.049) 0.286(0.076) ±0 . 233(0 . 039 ) 

 068 ) 0 . 522 (0 . 046 ) 0 . 354 (0 . 043 ) 0.319(0.054) ±0 . 266(0 . 011 ) 
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Fig. 8. Qualitative evaluation of the proposed and existing high-performing meth- 

ods for anomaly localization on BraTS MRI flair volumes (top) and on Physionet- 

ICH non-contrast CT images (bottom). A failure case is depicted with the red arrow 

( fourth column ). 
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osed method and baselines suggest that this could be a limitation 

f self-training features based on VAEs, which struggle to encode 

eterogeneous sample information. 

.3. Generalization to other datasets 

In order to empirically demonstrate the generalization prop- 

rties of the proposed methodology, we evaluate its performance 

n a different dataset for brain lesion detection. Concretely, as 

reviously described, we resort to Physionet-ICH dataset for non- 

ontrast CT on ICH localization. Implementation details are analo- 

ous as the ones used on the BraTS dataset, although we decreased 

he learning rate to 1 e − 5 , and we set a larger latent dimension,

.e. z ∈ R 

128 , along all baselines and methods to favour model con- 

ergence. Obtained results for anomaly localization are reported in 

able 4 . Even though there exist slight differences in the compar- 

son between residual methods in the literature compared to the 

esults obtained on BraTS dataset (i.e. the simple AE outperforms 

ariations approaches), the proposed attention-based anomaly lo- 

alization methods still achieve remarkable results. Again, the AM- 

ons configuration yields the best performance, and it reaches im- 

rovements of nearly ∼25% and ∼18% in terms of AUPRC and DICE, 

espectively, compared to previous literature. The observed results 

uggest that the proposed methodology is able to generalize to 

ther unsupervised brain lesion segmentation challenges, even us- 

ng different imaging modalities. It should be noted, however, that 

he absolute results in terms of segmentation are lower than those 

btained in BraTS. Among other reasons, this may be due to the 

reater heterogeneity observed in the ICH dataset, the lower de- 

ree of standardization and size of the database used, and the 

mall size of ICH lesions, which penalizes metrics such as DICE. 

evertheless, the values obtained are in line with the scarce previ- 

us literature on ICH segmentation, as reflected in Table 4 . Indeed, 

he obtained results are at par with previous works using a fully 

upervised learning approach Hssayeni et al. (2020) , which shows 

he difficulty of the task. 

.4. Qualitative evaluation 

Visual results of the proposed and existing methods for both 

atasets are depicted in Fig. 8 . We can observe that our ap- 

roach identifies as anomalous more complete regions of the le- 

ions, whereas existing methods are prone to produce a significant 

mount of false positives ( first, third and seventh rows) and fail to 

iscover many abnormal pixels ( third row ). These visual results are 

n line with the quantitative validation performed in previous sec- 

ions. However, there is a known problem about segmenting only 

yperintense regions in the state-of-the-art methods of unsuper- 

ised anomaly localization of brain lesions ( Meissen et al., 2021 ). 

lthough the proposed method still suffers from this limitation 

 fourth row, red arrow ), the positive results regarding true negative 

egmentation obtained in some normal, hyperintense tissue ( sec- 

nd row, green arrow ) suggest an improvement in relation to this 

roblem. 

. Discussion 

Despite the recent advances of unsupervised anomaly segmen- 

ation in medical problems, existing literature still provides lim- 

ted performance, with most methods yielding suboptimal results 

n popular segmentation benchmarks. In this work, we have pre- 

ented a novel approach that substantially differs from prior liter- 

ture in several aspects. 

First, we resort to generated attention maps to identify anoma- 

ous regions, which contrasts with most existing works that 
10 
ely on the pixel-wise reconstruction error. Second, our formu- 

ation integrates a size-constrained loss that enforces the atten- 

ion maps to cover the whole image in normal images. This dif- 

ers from very recent works Venkataramanan et al. (2020) , as 

e tackle this problem by imposing inequality constraints on 

he whole target attention maps. Another important difference 

ies on the manner the constrained problem is addressed. While 

enkataramanan et al. (2020) leverages a L2 penalty function, we 

esort to an extension of standard log-barrier methods, which over- 

ome the well-known limitations of penalty-based methods. Quan- 

itative results demonstrate that this model significantly outper- 

orms prior literature on unsupervised lesion segmentation. 

A drawback of the log-barrier based formulation is that it re- 

uires to find the optimal value for several hyperparameters. Moti- 

ated by this, we have proposed an alternative model, which in- 

egrates a regularization term that maximizes the Shannon en- 

ropy on the generated attention maps. This new formulation only 
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dds the entropy balancing term L H , which reduces the complex- 

ty compared to the constrained problem in eq. 5 . Furthermore, as 

eported in the results, the maximum-entropy model yields better 

erformance than the size regularizer formulation. Note, in addi- 

ion, that the alternative entropy-based model better separates the 

ntensity distributions between normal and abnormal tissue. This 

llows us to employ a higher percentile value to obtain the final 

nomalous regions, with a substantial performance improvement 

ompared to previous methods. Thus, based on the reported em- 

irical validation, the proposed models represent a novel state-of- 

he-art for unsupervised anomaly segmentation. 

We believe that there exist potential research directions to 

urther improve the performance of unsupervised segmentation 

ethods. For example, brain images are typically acquired along 

ultiple modalities. Learning how to combine multiple modalities 

n the scenario of anomalous regions detection might indeed en- 

ance the learned representation by the VAE, ultimately resulting 

n better identification of abnormal pixels. In addition, unsuper- 

ised segmentation methods have been only evaluated from a dis- 

riminative perspective. Nevertheless, assessing their performances 

n terms of the quality of the uncertainty estimates, i.e., calibra- 

ion, might give a better overview of the quality of a segmentation 

odel. 
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