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Abstract
Real-time precise point positioning (PPP) has become a prevalent technique in global navigation satellite systems (GNSS). 
However, GNSS real-time users must receive space state representation (SSR) products to correct for satellite clock, orbit, 
and phase biases. The International GNSS Service (IGS) provides GNSS users with real-time services (RTSs) through 
different real-time correction SSR products. These products arrive at the GNSS users with some latency, which affects the 
quality of real-time PPP positioning. The autoregressive integrated moving average (ARIMA) and support vector regression 
(SVR) models are used in this research to predict those corrections to eliminate the latency effect. ARIMA model reduces the 
standard deviation by 28% and 13% for GPS and GLONASS constellations, respectively, compared to the real-time solution, 
which includes the latency effect, the research simulated the latency effect and named it a forced-latency solution, and the 
SVR model reduces the standard deviation by 28% and 23% for GPS and GLONASS constellations, respectively. The results 
for the permanent GNSS stations used in this study across different years 2013, 2014, 2015, 2019, and 2021 show a mean 
reduction in the 3D positioning standard deviation by 13% compared with the forced-latency solution for the ARIMA solution 
and 9% for the SVR solution. The potential of both models to overcome the latency effect is apparent based on the findings.
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Introduction

The GNSS is widely used to determine positioning through 
various methods, such as single point positioning, relative 
positioning, and PPP. The main principles of those methods 
can be found in Zumberge et al. 1997; Hofmann-Wellenhof 
et al. 2008; Enge and Misra 2011; Sanz et al. 2013; or Leick 
et al. 2015. PPP allows GNSS users to locate themselves 
globally since it does not rely on a local network of GNSS 
receivers or a base station. This is also free from the local 
effects resulting from the movement of reference stations.

Nevertheless, users must precisely measure pseudoranges 
and carrier phases from GNSS satellites to perform post-pro-
cessing and real-time PPP. GNSS biases must be accurately 
estimated, such as multipath, ionospheric delay, tropospheric 
delays, earth tides, relativistic effects, and antenna variation. 
A detailed study of these effects can be found in Zumberge 
et al. (1997), Ge et al. (2008), Cai and Gao (2013), Li et al. 
(2015), and Teunissen and Khodabandeh (2015). Finally, 
code and phase biases and satellite orbital and clock errors 
can be mitigated by using adequate biases and orbital and 
clock correction products (Teunissen and Khodabandeh 
2015; Henkel et al. 2018; Ye et al. 2018). The IGS and other 
Analysis Centers (ACs) provide precise respective products 
(Dow et al. 2009).

The PPP coordinate accuracy could reach a centimeter or 
sub-decimeter depending on the operational mode of post-
processing or real-time (RT-PPP).

The International GNSS Services (IGS) initiated a pilot 
project for real-time activities at the beginning of 2001 to 
improve RT-PPP accuracy (Dow et al. 2009). The goal was 
to provide the RTS for GNSS users with accurate real-time 
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products, mainly orbital and clock corrections, to reduce the 
satellite ephemeris and the onboard satellite clock errors.

Consequently, some ACs using the GNSS permanent ref-
erence network are involved in the real-time tracking, com-
putation, and broadcasting of real-time products (Grinter 
and Roberts 2013). Various ACs produce and disseminate 
their real-time products. IGS combines those products to 
produce official real-time products such as IGS01, IGS02, 
and IGS03. IGS01 is a single-epoch combination solution, 
IGS02 is a Kalman filter combination solution, and IGS03 
is an experimental Kalman filter combination for GPS and 
GLONASS solutions.

The orbit and clock products are used by the user with 
different latencies, i.e., the sum of the time required to gen-
erate the products in the ACs, to combine these products 
for IGS RTS Service (Johnston et al. 2017), broadcast them 
over the Internet using Networked Transport of RTCM via 
Internet Protocol (NTRIP) as RTCM state-space representa-
tion (SSR) correction streams, and the time required for the 
local computer where the RT-PPP solution is implemented. 
As the latency value increases, the corrections become 
outdated, leading to applying older corrections to real-
time observations. Martín et al. (2015b) found a 3D error 
of approximately 0.15 m and 0.30 m if latencies of 30 and 
40 s are employed, respectively. The latency problem is also 
addressed by Hadas and Bosy (2014). This study showed a 
negative relationship between latency values and the cor-
rections accuracies. The latency values for the individual 
products produced by ACs reach 10–12 s. However, this 
value increases to 30–40 s for the combined IGS products 
since IGS needs extra time to receive all AC solutions and 
combine them.

Different prediction models are discussed in the literature. 
Examples are quadratic polynomial or linear models with 
sinusoid terms found in Huang et al. (2014), El-Mowafy 
et al. (2017), El-Mowafy (2019a, b), Yang et al. (2019) to 
predict orbital and clock corrections during data commu-
nication failure or discontinuity periods, and genetic algo-
rithms with autoregressive moving average models to predict 
15 min of corrections during data loss of the IGS02 stream 
in Kim and Kim (2017). A limited number of studies have 
investigated prediction models for navigation satellite sys-
tems other than GPS. In Qafisheh et al. (2020), the GLO-
NASS satellite system is included in the prediction. Still, 
both Qafisheh et al. (2020) and Kim and Kim (2017) studies 
are missing the latency effects on coordinate accuracy.

Clock correction values are the most challenging to model 
compared to orbital corrections because they are highly 
correlated to the onboard GNSS clock oscillator behavior, 
which suffers from frequency instability, jumps, offsets, 
outliers, and frequency drift. Additional research about 

the characteristics model of the clocks and their behaviors 
can be found in Daly (1990), Senior et al. (2008), Haus-
child et al. (2013), and Maciuk (2019). Different real-time 
schemes are utilized to adapt clock offsets, jumps, noise, 
and speed using the Kalman filter (Huang and Zhang 2012).

This research aims to overcome the latency in the IGS03 
real-time clock product using the ARIMA and the SVR 
models over a short period. The prediction model and the 
methodology used in this research can be extended to cover 
other combined real-time products made available by IGS 
or other ACs. Various open-source software can handle 
SSR correction streams such as RTKLIB (Takasu 2009, 
http://​www.​rtklib.​com/​rtklib_​tutor​ial.​htm), GNSSSurfer 
(SAPOS®-Berlin 2020, http://​217.9.​43.​196/​Downl​oad/), or 
BNC from the Kartographie und Geodäsie Agency (BKG) 
(Weber and Mervart 2007). In this research, BNC software 
is employed. It can be used to accomplish different GNSS 
tasks, including satellite coordinate comparison, broadcast, 
combine and upload corrections, PPP post-processing, RT-
PPP, and decode the SSR messages to obtain the required 
correction values to eliminate orbit and clock errors (Kouba 
and Héroux 2001; Weber and Mervart 2007; Weber and 
Mervart 2007). The PPP technique uses ionospheric-free 
combinations to mitigate the ionospheric effects by combin-
ing pseudoranges codes and carrier observations of different 
frequencies. The tropospheric error, antenna phase center, 
and other biases are well modeled in the BNC software.

Experimental data

First, the RT-PPP measurements from December 13–16, 
2019 were stored. We used the IGS03 correction product, a 
5-s sampling interval, and the Brest (France) permanent sta-
tion observations. Before experimenting, the BNC software 
stored observation, navigation, and correction files in a local 
computer synchronized to the Internet time.

Latency values were also stored. The mean value of the 
latency was 31.68 s. However, the range during the imple-
mentation varied between 31.34 and 32.21 s. The stored 
correction file contains data for 52 observed satellites with 
approximately 26 thousand correction values. Several satel-
lites are affected by data unavailability during some periods.

The research extended to cover more stations over sev-
eral years to evaluate the prediction models properly. Con-
sequently, one day of RT-PPP data was used, and nine sta-
tions distributed globally were selected. We investigated the 
following years: 2013, 2014, 2015, 2019, and 2021. Table 1 
shows the percentages of the null value for various satellite 
blocks for different years, and Fig. 1 shows the distribution 
of the selected IGS stations.

http://www.rtklib.com/rtklib_tutorial.htm
http://217.9.43.196/Download/
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Methodology

One of the most important aspects to take into account in 
any machine learning or data mining project is the proper 
choice of the method or mathematical model to use. In this 
case, it is about making future predictions about the studied 
signal itself, so the choice of the method will depend on the 
characteristics of the signal. Based on the results obtained 
in the signal analysis, there will be a greater foundation in 
the choice of the prediction method.

Signal analysis

Statistical analysis for stationary inspection of the signal is 
needed to select the proper machine learning algorithms. 
Our goal is to predict future values in a temporal series (time 
series forecasting). If the signal is stationary, that is, hav-
ing no trends, seasonality, or cyclic patterns, most of the 
machine learning methods, including random forest, neu-
ral networks, or XGB, fail to fit the data. In those cases, 
the predictions have the same values as the last observation 
(Bownlee 2017).

Augmented Dickey–Fuller, Phillips–Perron, and Kwiat-
kowski–Phillips–Schmidt–Shin (KPSS) statistical tests can 
examine a time-series stationarity property (Kwiatkowski 
et al. 1992). It is possible to improve the stationarity deci-
sion by combining different statistical tests (Schlitzer 1995). 
However, the KPSS test is applied to the stored GNSS clock 
correction data to simplify the code and reduce processing 
time. The stationarity was tested for various time windows 
of clock data split from the IGS03 clock correction files 
obtained between December 13-and 16, 2019. Table 2 pre-
sents the stationarity results for the 8-min data windows, 
including the combined results for different satellite blocks 
and the percentage of stationary and not-stationarity win-
dows. In this research, we conclude that the clock correc-
tions are mostly stationary signals, but these results could 

Table 1   Clock correction availability for different satellite blocks

Year Satellite block Percentage of clocks 
corrections avail-
ability

2013 GPS-IIF 98.13
GPS-IIR 99.97
GPS-IIRM 99.97
GLONASS-K 100
GLONASS-M 96.88

2014 GPS-IIF 96.07
GPS-IIR 99.90
GPS-IIRM 99.96
GLONASS-K 100.00
GLONASS-M 98.00

2015 GPS-IIF 99.07
GPS-IIR 99.96
GPS-IIRM 99.93
GLONASS-K 98.77
GLONASS-M 99.62

2019 GPS-IIF 98.34
GPS-IIR 99.97
GPS-IIRM 100.00
GLONASS-K 89.88
GLONASS-M 99.16

2021 GPS-IIF 99.46
GPS-IIR 91.48
GPS-IIRM 99.89
GLONASS-K 76.11
GLONASS-M 96.05

Fig. 1   Distribution of the selected IGS permanent stations (source: 
Esri, Here, Garmin, FAO, USGS, © OpenStreetMap contributors, and 
the GIS User Community)

Table 2   Percentage of rolling sliding windows (RSWs) with station-
arity and non-stationarity behavior for different satellite blocks

Satellite block Percentage of RSWs 
with stationary behavior

Percentage of RSWs with 
non-stationary behavior

GPS-IIF 76.99 23.01
GPS-IIR 88.28 11.72
GPS-IIRM 89.64 10.36
GLONASS-K 62.11 37.89
GLONASS-M 61.02 38.98
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vary with respect to clock oscillators or signal length, con-
siderably restricting the machine learning model for fore-
casting. Therefore, SVR and ARIMA models are the best 
candidates (Hyndman and Athanasopoulos 2018, Bownlee 
2017). Furthermore, they can also be used to predict non-
stationary signals.

Prediction models

Once the prediction models have been chosen based on the 
signal analysis, we are going to describe them briefly, adjust-
ing the explanation to what is really necessary to understand 
the implementation and results properly.

Support vector regression model

The support vector machine (SVM) and derived SVR meth-
ods have been widely used in machine learning due to their 
simplicity (Clarkson et al. 2012). SVM development allows 
applying the traditional support vector classifier in a higher-
dimensional space (Drucker et al. 1997). The adaptation of 
higher-dimensional space can be made by harnessing the 
mapping function (kernel). Radial-base function, poly-
nomial, linear, and other kernels can transform data into 
higher-dimensional space.

Given a data set containing {(xi, yi, i = 1,2, …, m)} where 
xi and yi ∈ R, xi are the features and yi the label, both normal-
ized to (+ 1, − 1), the classifier categorizes data according 
to its label. For data categorization, the hyperplane must 
be established to separate the data. Due to the nature of 
the data, many hyperplanes can classify the same dataset. 
The chosen hyperplane must maximize the margin, defined 
using the nearest points near the margin, called support vec-
tors. The margin can be classified as a hard or soft margin. 
The so-called soft SVM is generally used because it allows 
isolated values ​​and misclassified samples, making it more 
realistic.

Smola and Schölkopf (2004) defined the SVM formula 
as:

Subjected to

where w represents the margin width, b the bias, ξ denotes 
the slack variable, which is associated with the defined soft 
SVM, allowing some value to fall in the margin, and C is the 
trade-off margin width.

(1)minimize w, b, � =
1

2
wTw + C

m
∑

i=1

�i

(2)yi
(

wTxi + b
)

≥ 1 − �i, �i ≥ 0, for 1 ≤ i ≤ m

ARIMA model

The ARIMA model has been extensively used to forecast 
time series (Sneeuw et al. 2012; Ye et al. 2012; Moreira 
et al. 2013; Xin et al. 2018; Van Le and Nishio 2019). The 
ARIMA is a combination of autoregressive (AR), moving 
average (MA), and the differencing term (I). The ARIMA 
model depends on the well-known Box–Jenkins methodol-
ogy (Box et al. 2011; Hyndman and Athanasopoulos 2018).

The I-term differentiates the time series to ensure the sta-
tionarity, and the AR indicates that it is a regression of the 
variable against itself. For example, an autoregressive model 
of order p can be defined as:

where a is a constant, εt is the noise, and bp are the param-
eters to be identified. This expression is similar to a mul-
tiple regression but considers the lagged values of yt as a 
predictor.

The MA suggests a moving average model that uses past 
forecast errors in a regression model. For example, a model 
average model or order q can be expressed by:

where c is a constant, εt is the noise, and rp are the param-
eters to be determined. In this case, the prediction yt can be 
computed based on a weighted moving average of the past 
q forecast errors.

Finally, the integration of AR, I, and MA generates the 
ARIMA model described as:

where m is a constant, εt is the noise, and y′

t
 signifies that 

the series is differenced, and it may have been differenced 
by more than one.

The ARIMA model is usually denoted as ARIMA (p, d, 
q) where the p, d, and q represent the number of lags applied 
to the MA model, the differencing degree, and the order of 
the MA model, respectively (Piccolo 1990; Box et al. 2011; 
Hyndman and Athanasopoulos 2018).

Implementation

The stored RT-PPP correction data contain orbital and clock 
corrections. The prediction is centered on the clock correc-
tions since orbital corrections can be well projected based on 
the radial, along-track, and cross-track components and their 

(3)yt = a + b1yt−1 + b2yt−2 +⋯ + bpyt−p + �t
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velocities broadcast in the navigation messages (Hadas and 
Bosy 2015). Clock corrections also need to be estimated at 
a high rate (Ge et al. 2012) due to the frequency instability 
of onboard GNSS clocks, mainly caused by temperature and 
gravitational variations.

A balance between the training set data length and com-
putational time is required to control the prediction accu-
racy and process time if real-time predictions are required. 
Rolling sliding window (RSW), expanding window, or 
fixed splitting are various testing and training methods to 
accomplish this. The clock corrections experience a period 
of high oscillations, with periodic jumps due to the clocks’ 
frequency drift, instability, and changes in gravitational 
forces. Consequently, the forward validation and the RSW 
technique is more suitable testing and training method. It 
guarantees computational time reduction and mitigates the 
effect of outdated data, which clearly emerges by using an 
expanding window. Using a rolling window instead of an 
expanding window allows GNSS users to keep the computa-
tional load at the minimum level and improve the prediction 
accuracy.

This research aims to predict clock corrections in approxi-
mately 30 s to overcome the latency effect, so three essential 
aspects must be addressed. First, we must fix the impact of 
choosing different RSWs with various lengths on both SVR 
and ARIMA model predictions in the prediction accuracy. 
Second, the model parameterization in the prediction model 
definition must be updated by searching and adjusting the 
optimal hyperparameters in the model definition based on 
the stored data. The question here is to search for the best 
rate of updating hyperparameters and then search for the best 
values for these hyperparameters. This led to evaluating the 
prediction accuracy with a different combination of C and 
gamma hyperparameters in the SVR model and (p,q,d) in the 
ARIMA model, considering a large hyperparameter search 
space in both models to ensure more stable predictions.

Regarding SVR, a large C value means that the model 
did not allow errors to violate the margin, resulting in mar-
gin shrinking; the smaller it is, the more isolated values are 
allowed in the margin area (soft SVM). The gamma param-
eter establishes the variance of the Gaussian function used 
for class separation; it must be tuned to control interpola-
tion, extrapolation, and nonlinearly separable classes (Guyon 
et al. 1993). For the ARIMA model, p controls the number 
of lags required to implement the linear regression, d con-
trols the degree of differencing mandatory to ensure sig-
nal stationarity, and q is devoted to controlling signal error 
propagation. Finally, the third essential aspect is to compare, 
in a post-process experiment, the clock values stored in real-
time with the SVR and ARIMA predictions, computing the 
standard deviation and the range for residuals and the effect 
on the final PPP computed coordinates.

This experiment was performed by reprocessing the 
stored RT-PPP files using BNC software in the static mode 
by eliminating the latency effect since the clock and orbital 
corrections production and transmission are eliminated. So, 
the latency effect was eliminated to obtain the so-called 
latency-free solution.

The stored clock correction file was modified to hold new 
clock correction values from SVR and ARIMA predictions. 
BNC is rerun again with the files containing predictions to 
compare the coordinates between the stored files in post-
processing (latency-free solution) and SVR and ARIMA 
predictions, solutions with the latency eliminated by pre-
diction. A simulation of the latency effect is computed to 
complete the comparisons by shifting the stored correction 
file ahead by 30 s, which more or less represents the stored 
mean latency, the so-called forced-latency solution, and the 
normal RT-PPP situation. Figures 2 and 3 show an overview 
of the two central parts of the methodology applied in this 
research. Figure 2 includes the methodology part related 
to real-time implementation. The BNC software used the 
broadcasted corrections and navigation information with the 
station observation stream to produce the real-time coor-
dinates solution. The clock corrections predictions were 
obtained from both models according to the rolling sliding 
values. The clock corrections residuals were calculated from 
different solutions with respect to real-time corrections.

The post-processing was described in Fig. 3. The stored 
navigation and station observation information with the 
stored clock corrections predictions and clock corrections 
stored in real-time and the simulated clock corrections were 
used to produce the station coordinates with respect to the 
different solutions or clock corrections. The sampling value 
for real-time and forced-latency clock corrections files was 
10 s. SVR and ARIMA models predict the clock corrections 
with the same sampling interval.

Results and discussion

The initial portion of the results, following the implemen-
tation section, is related to the RSW length effect. Differ-
ent sliding windows are probed with sizes of 1, 2, 4, 8, and 
16 min to fit the SVR and ARIMA models. One hour of 
clock correction data was implemented for this experiment 
on December 13, 2019. The standard deviation for clock 
correction residuals obtained by subtracting the SVR and 
ARIMA predictions was compared with the latency-free 
solution. Based on the results, an 8-min-long RSW for the 
ARIMA model and a 1-min RSW for the SVR model long 
can be selected as a good compromise between predic-
tion accuracy and processing time. Tables 3 and 4 include 



	 GPS Solutions           (2022) 26:85 

1 3

   85   Page 6 of 14

the standard deviation comparison for both models. One 
satellite represents each satellite block, and the required 
time for processing is also included. Those tables also 
contain, for comparison purposes, the standard deviation 
of the residual between the forced-latency solution, as a 
reproduction of the real-time process, and the latency-
free solution. It should be mentioned that the results are 
the same if we choose different one-hour intervals of the 
stored data. It can be seen from the tables that there is a 
negative relation between the RSW length and the error 
values obtained by the ARIMA model. This shows that the 
ARIMA model is highly dependent on the length of previ-
ous observations to adjust the hyperparameters properly 
and construct the prediction model. STDP in Tables 3 and 
4 denote the standard deviation of predictions in compari-
son with the free-latency solution, and STDL denotes the 
forced-latency standard deviation in comparison with the 
free-latency solutions. For both tables, the standard devia-
tion unit is in meters, and the processing time corresponds 
to a one-hour of predictions.

The SVR model can be implemented through different 
kernels such as linear, polynomial, and radial base functions. 
The reason behind picking the radial base function as a ker-
nel is that it is more suitable for short-term predictions like 
latency. In this research, the radial base function was used, 
and as the RSW length increased, the influence of outdated 
observations became more notable. It is worth mentioning 
that the different types of clocks used in different satellite 
blocks that led to negative and positive trends are not valid 
for all RSWs.

According to the implementation section, the second vital 
position to consider is related to selecting the best updat-
ing rate for hyperparameters. Updating rates of 0.25, 0.50, 
1, 2, 3, 4, 5, and 6 h were examined from December 13 
to December 16, 2019. Based on the experiments, a one-
hour updating rate for SVR is selected. The list of hyper-
parameters to resolve in the SVR method should be quite 
extensive in order to ensure that correct values are chosen. 
Consequently, a one-hour rate is a good balance between 

Fig. 2   Overview of the RT-PPP 
prediction flow and implemen-
tation
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Fig. 3   Post-processing PPP 
flow and implementation used 
to apply the clock correction 
predictions

Table 3   Comparison of the standard deviation of the ARIMA predic-
tion using various RSW lengths with the no-latency solution

Satellite PRN/block 
number

Sliding window (minutes)

1 2 4 8 16

G32/IIF
STDP 0.015 0.016 0.016 0.009 0.012
STDL 0.016 0.016 0.016 0.016 0.015
Processing time 2m56s 4m35s 4m40s 5m26s 6m16s
G05/IIRM
STDP 0.040 0.036 0.033 0.024 0.024
STDL 0.040 0.040 0.040 0.041 0.041
Processing time 3m20s 6m45s 7m02s 7m46s 10m59s
G23/IIR
STDP 0.016 0.015 0.013 0.010 0.007
STDL 0.017 0.017 0.017 0.017 0.017
Processing time 3m34s 6m13s 6m52s 7m04s 8m39s
R09/K
STDP 0.026 0.026 0.019 0.016 0.015
STDL 0.028 0.028 0.028 0.030 0.029
Processing time 2m45s 4m18s 3m54s 4m13s 5m13s
R15/M
STDP 0.014 0.016 0.012 0.022 0.019
STDL 0.016 0.016 0.016 0.028 0.027
Processing time 2m41s 4m59s 5m02s 4m53s 4m58s

Table 4   Comparison of the standard deviation of the SVR prediction 
using various RSW lengths with the no-latency solution

Satellite PRN/block number Sliding window (minutes)

1 2 4 8 16

G32/IIF
STDP 0.011 0.016 0.022 0.029 0.034
STDL 0.016 0.016 0.016 0.016 0.015
Processing time 20 s 20 s 21 s 24 s 26 s
G05/IIRM
STDP 0.027 0.033 0.039 0.047 0.051
STDL 0.040 0.040 0.040 0.041 0.041
Processing time 20 s 20 s 21 s 24 s 25 s
G23/IIR
STDP 0.012 0.018 0.025 0.028 0.031
STDL 0.017 0.017 0.017 0.017 0.017
Processing time 20 s 20 s 15 s 23 s 26 s
R09/K
STDP 0.018 0.025 0.031 0.041 0.058
STDL 0.028 0.028 0.028 0.030 0.029
Processing time 20 s 20 s 21 s 23 s 25 s
R15/M
STDP 0.010 0.015 0.023 0.041 0.051
STDL 0.016 0.016 0.016 0.028 0.027
Processing time 20 s 23 s 20 s 23 s 26 s
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computation time and accuracy. However, the ARIMA 
model hyperparameters list can be considered fairly small: 
0 to 3 for p and d parameters and 0 to 1 in the q parameter. 
Thus, the hyperparameter search is a high-speed operation, 
and their fixation can be executed for every RSW of 8 min 
without loss of computational time. It has also been realized 
that the rolling sliding window length has a greater impact 
on the prediction accuracy than the parameter updating rate. 
The same data and products for the ARIMA model exami-
nation were employed to analyze the SVR model. The third 
and final aspect to consider is related to the comparisons 
between prediction models and the forced-latency solution 
regarding the latency-free clock correction values. Figures 4 
and 5 demonstrate the range calculated for the clock correc-
tion residuals. The residuals were calculated by subtract-
ing the clock correction values of forced-latency, ARIMA 
prediction, and SVR prediction clock files with respect to 
the latency-free file. Figures 6 and 7 illustrate the standard 
deviation for the same residuals. It is apparent from those 
figures that the range reduction is negligible due to clock 
correction jumps. However, a remarkable reduction in stand-
ard deviation, especially for GPS satellites, has been discov-
ered. For Figs. 4, 5, 6, and 7, the differences are computed 
with respect to the latency-free clock correction values.

From the previous experiments, it can be concluded that 
the ARIMA model has lower standard deviations than the 
SVR model, except for the GLONASS M satellite block, 
where SVR is superior. However, the SVR model shows a 
faster execution time than the ARIMA model, and Tables 3 
and 4 refer to the processing time needed for one-hour 
predictions.

Fig. 4   IGS03 range differences in meters for GPS satellites

Fig. 5   IGS03 range differences in meters for GLONASS satellites

Fig. 6   IGS03 standard deviation in meters for GPS satellites

Fig. 7   IGS03 standard deviation in meters for GLONASS satellites
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Coordinates free from latency (latency-free solution), 
simulated real-time (forced-latency solution), SVR predic-
tions, and ARIMA predictions were acquired using the post-
process BNC software module for the permanent stations 
of Fig. 1, and one day of real-time data for the years 2013, 
2014, 2015, 2019, and 2021. Table 5 shows the average of 
the 3D residuals statistical summary in terms of the mean, 
standard deviation, and range of the forced-latency, SVR, 
and ARIMA solutions compared with the latency-free solu-
tion. Figure 8 is a scatter plot that expresses the X and Y 
planar coordinates of all four solutions and includes the fixed 
coordinates of station IGS BREST during one day period. 
Both of the prediction models show remarkable improve-
ment in the accuracy of coordinates in comparison with the 
forced-latency solution, which simulates the real-time situ-
ation. Figure 8 confirms that the SVR and ARIMA coordi-
nate solutions are more precise and much denser around the 
true coordinate than the forced-latency solution, especially 
the ARIMA solution. For visualization purposes, X and Y 
coordinates were shifted with (423,100 and 332,700) meters.

Table 5   Average of the mean, 
the standard deviation, and 
range of the 3D coordinate 
residual for all stations

Solution Average of 
all years

2013 2014 2015 2019 2021

Forced-latency solution (mean) 0.23 0.04 0.07 0.51 0.40 0.14
ARIMA model (mean) 0.19 0.04 0.04 0.22 0.42 0.21
SVR model (mean) 0.20 0.06 0.04 0.40 0.41 0.10
Forced-latency solution (standard deviation) 0.84 0.60 0.47 1.26 0.76 1.11
ARIMA model (standard deviation) 0.73 0.66 0.44 0.75 0.70 1.12
SVR model (standard deviation) 0.58 0.58 0.38 1.43 0.69 0.75
Forced-latency solution (range) 11.52 13.74 7.74 7.79 11.01 17.33
ARIMA model (range) 11.90 11.68 8.92 4.71 10.94 23.27
SVR model (range) 10.25 11.95 8.20 6.75 11.34 13.20

Fig. 8   BREST station coordinates for all solutions in the ITRF 2014 
reference frame. December 13, 2019

Table 6   The average standard 
deviation of the clock 
corrections was obtained from 
three solutions with respect to 
five satellite blocks

Solution Satellite block 2013 2014 2015 2019 2021

Forced-latency solution GPS-IIF 0.39 0.04 0.02 0.03 0.01
GPS-IIR 0.11 0.03 0.03 0.02 0.02
GPS-IIRM 0.12 0.03 0.03 0.03 0.02
GLONASS-K 0.04 0.07 – 0.14 0.04
GLONASS-M 0.06 0.06 0.06 0.05 0.05

ARIMA model GPS-IIF 0.34 0.03 0.01 0.02 0.01
GPS-IIR 0.09 0.02 0.02 0.02 0.01
GPS-IIRM 0.10 0.02 0.02 0.02 0.01
GLONASS-K 0.04 0.07 – 0.13 0.03
GLONASS-M 0.05 0.05 0.05 0.04 0.04

SVR model GPS-IIF 0.32 0.03 0.01 0.02 0.01
GPS-IIR 0.09 0.02 0.02 0.02 0.01
GPS-IIRM 0.11 0.02 0.02 0.02 0.01
GLONASS-K 0.03 0.06 – 0.09 0.03
GLONASS-M 0.05 0.05 0.04 0.04 0.04



	 GPS Solutions           (2022) 26:85 

1 3

   85   Page 10 of 14

Table 7   The average of clock 
corrections ranges obtained 
from three solutions with 
respect to five satellite blocks

Solution Satellite Block 2013 2014 2015 2019 2021

Forced-latency solution GPS-IIF 18.79 1.54 0.51 1.06 0.38
GPS-IIR 4.41 0.84 0.77 0.68 0.40
GPS-IIRM 4.55 0.87 0.82 1.25 0.37
GLONASS-K 1.11 2.57 – 9.72 0.78
GLONASS-M 2.49 2.54 2.14 2.52 1.99

ARIMA model GPS-IIF 13.80 1.59 0.53 0.90 0.40
GPS-IIR 4.03 0.84 0.74 0.71 0.41
GPS-IIRM 4.13 0.88 0.88 1.21 0.47
GLONASS-K 1.11 2.57 – 9.03 0.74
GLONASS-M 2.70 2.25 2.05 2.49 2.06

SVR model GPS-IIF 18.59 1.81 0.43 0.92 0.23
GPS-IIR 4.07 0.76 0.69 0.38 0.26
GPS-IIRM 4.36 0.68 0.98 0.91 0.20
GLONASS-K 0.82 3.95 – 10.17 0.46
GLONASS-M 3.03 3.04 2.74 3.07 2.46

Fig. 9   GPS satellites (PRN: G25) clock corrections values. December 
13 and 14, 2019

Fig. 10   GPS satellites (PRN: G25) clock corrections and prediction 
models values

Tables 6 and 7 show the statistical summary throughout 
the research days of the years into consideration of standard 
deviation and range for the residuals obtained by subtract-
ing the clock corrections values from different solutions 
(forced-latency, ARIMA, and SVR predictions) with respect 
to latency-free values. Tables 6 and 7 does not include the 
mean value analysis as the mean values for the residuals are 
near zero for all solutions.

Finally, the data collected with the highest clock correc-
tion jumps were examined. Each clock correction value was 
subtracted from the previous values so that the maximum 
clock correction jumps could be determined; consequently, 
the results were grouped for each satellite block by calculat-
ing the mean of the maximum values. Figure 9 shows the 

clock corrections values for 24 h between December 13 and 
14, 2019. The figure shows the value for corrections con-
cerning the GPS satellite G05. It can be seen from the figure 
the clock correction values dropped around 0.40 m within 
seconds. Figure 10 represents 30 min of clock corrections, 
the black line represents the free-latency solution, and the 
gray dash line denotes the forced-latency solution, while the 
thick gray and black dash lines show the prediction models. 
Table 8 presents the mean value of the maximum consecu-
tive difference between successive clock correction values. 
The results proved that the jumps could reach 11.68 m for 
satellites in GPS block GPS-IIF meters in 2013. Table 8 
shows that the clock corrections consecutive jumps have 
fewer values in recent years, especially for GPS satellites.
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From the GNSS real-time user point of view, the imple-
mentation should be as follows. If the SVR method is 
selected, the user should store observations for the first 2 
min to generate the first valid SVR model. An initial search 
for the hyperparameters and fixed model prediction is car-
ried out. Next, the fitted model can predict the next clock 
correction according to the stored latency value, keeping the 
size of the rolling sliding windows constant at 1 min. Thus, 
the new observations are stored, and the old observations 
are automatically deleted in the SRW window. In addition, 
the GNSS users need to update the C and gamma parameters 
for the SVR model each hour to ensure accuracy. Therefore, 
the user is required to store one-hour latency values continu-
ously. For the first hour of observations, the hyperparameters 
can be updated every 15–20 min to ensure accuracy in the 
prediction.

In case the ARIMA method is selected, the user should 
store the observation for the first 2 min. The first search 
for hyperparameters should be executed for the first 2 min 
of observations. The respective hyperparameters are uti-
lized for the first 8 min of observation. Afterward, an SRW 

window of 8 min can be employed, including the search-
and-fix of hyperparameters. In both models, the GNSS user 
should use the clock corrections as they are received in the 
first 2 min with a latency effect; then, the GNSS user can use 
a prediction model and results.

Conclusions

The SVR and ARIMA prediction models are applied to 
IGS03 clock corrections. Both models are used to estimate 
the clock corrections to overcome the latency effect. In this 
research, the latency effects on orbital corrections were not 
studied, as they vary at a low rate compared to the clock 
corrections and are not severely affected by latency. Three 
days of real-time data were utilized initially in this study in 
order to obtain the correct time dimension for the rolling 
sliding window and the correct rate to update the ARIMA 
and SVR hyperparameters. Similarly, one day of real-time 
data for the years 2013, 2014, 2015, 2019, and 2021 is 
used to confirm the validity of the proposed methods. The 
results prove that both models can be used to overcome 
the latency.

According to Tables 6 and 7, the ARIMA model reduces 
the standard deviation by 28% and 13% for GPS and GLO-
NASS constellations, respectively, compared to the forced-
latency solution. The SVR model reduces the standard 
deviation by 28% and 23% for GPS and GLONASS constel-
lations, respectively. Both models showed robust behavior 
during clock correction jumps because the models rely on 
1 min of clock correction observations for the SVR model 
and 8 min for the ARIMA model. The uses for the RSWs 
mitigate the effect of jumps and improve the availability of 
the RT-PPP solution derived from the BNC software and 
maintain the coordinate convergence during jump periods.

Finally, based on the results of Table 5, the average of 
the 3D standard deviations, both models are successful in 
eliminating the latency effect, especially the ARIMA model. 
However, the SVR model displays superiority in processing 
time compared to ARIMA. It is approximately eight to nine 
times faster. Thus, it could be an excellent solution to over-
come the latency due to simplicity and computational speed, 
which is important since GNSS receivers need to predict 
clock corrections for approximately 10–20 satellites that are 
above the horizon during the observation when using GPS 
and GLONASS signals. The proposed prediction models 
could also forecast clock corrections during periods of data 
loss or discontinuity. In this research, the range analysis is 
included in order to investigate outlier predictions. Both pre-
diction models experienced this phenomenon to prevent such 
behavior in a limited number of predictions. They affect both 
clock corrections and 3D calculated residuals. To eliminate 
possible outliers, a threshold detector must be implemented 

Table 8   Mean of the maximum differences for the clock corrections 
for different satellite blocks (units in meters)

Year Satellite block Mean of maximum 
consecutive differ-
ences

2013 GPS-IIF 11.68
GPS-IIR 2.16
GPS-IIRM 2.15
GLONASS-K 0.50
GLONASS-M 1.27

2014 GPS-IIF 0.75
GPS-IIR 0.26
GPS-IIRM 0.48
GLONASS-K 1.25
GLONASS-M 1.04

2015 GPS-IIF 0.27
GPS-IIR 0.37
GPS-IIRM 0.29
GLONASS-K 0.49
GLONASS-M 1.41

2019 GPS-IIF 0.11
GPS-IIR 0.31
GPS-IIRM 0.19
GLONASS-K 0.43
GLONASS-M 0.63

2021 GPS-IIF 0.16
GPS-IIR 0.16
GPS-IIRM 0.22
GLONASS-K 0.41
GLONASS-M 1.95
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for both predicting models. Additionally, the research meth-
odology could improve the accuracy of dynamic GNSS 
receivers such as self-driving vehicles and mobile users. 
Those users rely on mobile data connections where the inter-
net connections are more affected by the latency.
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