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Abstract
Location and navigation services based on global navigation satellite systems (GNSS) are needed for real-time
high-precision positioning applications in relevant economic sectors, such as precision agriculture, transport, civil
engineering or mapping. Real-time navigation users of GNSS networks have significantly increased all around the
world, since the 1990s, and usage has exceeded initial expectations. Therefore, if the evolution of GNSS network
users is monitored, the dynamics of market segments can be studied. The implementation of this hypothesis requires
the treatment of big volumes of navigation data over several years and the continuous monitoring of customers.
This paper is focused on the management of massive connection of GNSS users in an efficient way, in order to
obtain analysis and statistics. Big data architecture and data analyses based on data mining algorithms have been
implemented as the best way to approach the hypothesis. Results demonstrate the dynamic of users of different
market segments, the increasing demand over the years and, specifically, conclusions are obtained about the trends,
year-on-year correlation and business volume recovering after economic crisis periods.

1. Introduction

The growing need for precise real-time location information, in combination with the evolution of
global navigation satellite systems (GNSS) technology, which is bringing it closer to significantly more
users, means that today’s GNSS demand is bigger than ever in market segments such as location-based
services, transport, aviation, maritime navigation, agriculture, surveying, timing and synchronisation
and monitoring of critical infrastructures (European GNSS Agency, 2019). Currently, precise real-time
GNSS services and solutions rely on the precise point positioning (PPP) technique or differential GNSS
networks (RTK).

Real-time PPP performs precise positioning using just a single receiver (Zumberge et al., 1997;
Kouba and Héroux, 2001; Dow et al., 2009). It consists of solving the position using continuous streams
of state space representation products, which contain clock and orbital corrections, signal biases and
signal propagation models computed by analysis centres and international GNSS services (Hadas and
Bosy, 2014). In real-time PPP (RT-PPP), continuous streams of state space representation products are
needed, and they must meet the highest level of availability. Product outliers, fluctuations in the satellite
constellation and latency can sometimes degrade the performance of RT-PPP (Martín et al., 2015;
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Figure 1. GNSS ERVA Network and other surrounding stations.

Capilla et al., 2016). Additionally, the standardisation of all state space representation products is still
in its final stage (Wübbena et al., 2017).

Differential positioning uses the double-differences solution and needs at least a network of reference
stations or a reference station near the user (Hofmann-Wellenhof et al., 2008). When the position of the
user of the differential services (rover) is computed using the GNSS data that are processed in a regional
or local GNSS network, an optimal reliability and accuracy of the rover position can be achieved. In this
case, the rover can choose between two different services or mountpoints: the network RTK solution (bi-
directional communications between the rover and the network) or single reference station corrections
(uni-directional streaming corrections). In this case study, the services provided by the GNSS control
centre and servers of the reference station network of Valencia have been analysed. This network is on
the east coast of Spain, and it is known as the ERVA Network, with an effective area of 25,000 km2. The
network has been active since 2005; it has 10 stations administrated by the Cartographic Institute of
Valencia and additional stations shared by other institutions, (Capilla et al., 2013), as shown in Figure 1.

The main features and components of a server-based service for RTK corrections for navigation and
positioning are the following: a cluster of continuously tracking GNSS reference stations, permanent
communications between the stations and a GNSS data centre and, finally, the algorithms and packages
for real-time processing in the central servers. In the central servers of the ERVA Network, several
database solutions and XML standard-based formats are usually used in order to record real-time
connections for the users. NMEA-GGA (National Marine Electronics Association-Global Positioning

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0373463322000030
Downloaded from https://www.cambridge.org/core. IP address: 83.46.115.72, on 07 Feb 2022 at 23:22:09, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0373463322000030
https://www.cambridge.org/core


The Journal of Navigation 3

System Fix Data) position messages are also known when the rover connects to the GNSS network
solution, such as the virtual reference station algorithm or the master auxiliary concept technique.

A huge volume of information and reports are generated in the central servers as a result of the
connections of users for navigation and positioning applications. Nearly 180,000 min of connections
of rovers using RTK services can be registered in the database during a month. Additionally, rover
connections can usually generate more than 200,000 records or connections every month in different
files. The stored data from the connections are the time-span or number of epochs, the transferred
bytes, the quality of the fixed solution and float position, the mountpoint service, the time of the initial
connection, the approximate initial rover position or trajectory with received NMEA-GGA information.

In order to obtain the statistics and analysis on the use of real-time differential corrections for
navigation and positioning purposes, and to manage this huge volume of data, a big data architecture
has been implemented for the automatic storage, processing and data analysis.

Some of the advantages of big data with respect to a traditional centralised architecture, according
to some of Aggarwal’s ideas (Aggarwal, 2016), are related, first of all, with the concept that complex
problems based on large datasets could not be solved by using a single computer and centralised database
architecture, because it is costly and ineffective. Big data architecture can be used instead, because it
is based on dividing a large dataset into several small pieces. These small pieces can be distributed
into a network computer cluster and, finally, the cluster can be used to perform analysis optimally in
parallel by communication among the computers (Sun et al., 2014). Big data architecture provides
better computing and lower price and improves the performance compared with centralised database
architecture. Secondly, a dynamic schema for data storage is used in big data architecture. It means that
the data are stored in their raw format, preserving the original information, and the schema is applied only
when the data are to be read. The traditional database is based on a static fixed schema (Hu et al., 2014),
where data cannot be changed once they are stored and this is only done during write operations. This is
a very interesting point because GNSS real-time positions are continuously updated, thus new and old
records, data and parameters should co-exist in the same database. Finally, a traditional database system
requires expensive and complex software and hardware in order to manage large datasets. Meanwhile,
in the case of big data, since the massive amounts of data are partitioned and distributed among various
computers, open source software and commodity hardware can be used to process the data.

As a final step in the research, data mining algorithms (Duda et al., 2012; Ryza et al., 2017) can be
used to better understand the users and trends in different business markets, their behaviours and the
evolution of the related markets such as agriculture or civil engineering (every ERVA user is labelled
with a related market).

In addition, the concept of the correlation between results is demonstrated in the paper. A previous
example of the correlation between regional positioning services and other variables, such as economic
activity indicators, can be found in Páez et al. (2016). Therefore, the main novelties of this paper are the
introduction of a big data architecture to store and analyse GNSS real-time connections and locations
and the use of data mining algorithms to extract knowledge about the dynamic variations of the market
sectors with a large dataset.

After the description of the context and the presentation of the purpose of the paper in the present
Section 1, in Section 2 the basis for the big data architecture is explained in detail, which deals with
the storage and processing software tools. Section 3 is the most important section from a research point
of view, in that section all the data mining processes and results are explained in detail. A conclusion
section ends the paper.

2. Big data architecture

As the input for the architecture, the network service for real-time positioning generates huge volumes
of data, such as a database file with more than 100,000 records every month. This file contains user
connections to the network solution or to a reference station, and every connection generates a row with
the date, time, IP direction, time-span, observation interval, size in bites of the sent data information for
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Figure 2. Big data architecture.

precise positioning, number of epochs, user identification containing the market sector and connected
station or network connection. The service also generates an XML format file every day with more than
1,000 parameters of the rover navigation session. This file contains the user coordinates, date, time and
user identification containing the market sector of every connection. These data are previously filtered
in order to detect wrong or invalid connections to the service.

The main core of the architecture is the Python software program, which is shown in Figure 2. It also
represents the developed architecture with the input files until the output results of the analysis.

The first task is to read the database recorded information by the monitoring software of the network
with a plug-in or script, and to join it with the XML files and the rest of the log files. In the second task, it
is necessary to load the joint result into a NoSQL database, which is the basis for the data storage in the
big data architecture. MongoDB NoSQL database is used for data storage, which provides scalability,
flexibility and adaptability (Chodorow, 2013). MongoDB is a document-oriented open source database
which stores the data in documents of type JSON with a dynamic schema called BSON.

This database system does not require a schema, which allows the data to be flexible. PyMongo
driver can be used to access and consult MongoDB inside the Python software code, which makes
MongoDB a notably easy-to-use and versatile database. This property was the main reason for the
choice of MongoDB as this research’s database. Therefore, this first task (read Access and XML files,
join them, generate a document for every connection with the joined data and load them into MongoDB)
can be done directly using the Python software to read the original files without intermediate files or
formats. Finally, nearly one million documents are loaded in the database every year.

The state-of-the-art industrial standard for big data processing is the MapReduce model (Dean and
Ghemawat, 2008). MapReduce is mostly implemented in the frameworks of Apache-Hadoop (Murthy
et al., 2011) and Apache-Spark (Zaharia et al., 2012). Apache-Hadoop is an open source, highly fault-
tolerant software framework that can be used to manage big data files. This framework implements
both the Hadoop Distributed File System (HDFS), which is derived from the Google File System (GFS)
(Ghemawat et al., 2003) and the MapReduce computational paradigm.

Similar to Apache-Hadoop, Apache-Spark supports the MapReduce computational paradigm, devel-
oping the concept of a resilient distributed dataset (RDD), which is a read-only dataset that is partitioned
across multiple computers. RDDs can be cached in memory and can be reused in multiple Spark MapRe-
duce operations (in comparison with Apache-Hadoop, which writes all intermediate results to HDFS in
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Figure 3. Number of connections per mountpoint or service during 2016.

the hard disks), this approach results in significant performance improvements, especially in the reduc-
tion of computational time. Python language can be used to develop Apache-Spark applications, which
makes it the ideal framework for this research. Consequently, all of the processing tasks, which consist
of joining the original data, storage in MongoDB and analysis continuously in real time, occur in Python
language.

Therefore, the second task is to generate the appropriate Python software to query the MongoDB
database through the PyMongo library and import the result of the query as an RDD file into the Apache-
Spark framework for data mining (using MLlib Apache-Spark library) and analysis. In this process, the
Apache-Spark Python modules and the spark-submit command were important tools. The output of this
task should be viewed through the corresponding tables, figures and maps, where the Matplotlib and
Folium Python libraries are used. All the output data analysis visualisation has been coded using the
same Python software, and thus there is only one computer program to query, analyse and visualise the
data stored in MongoDB.

The query can be done using a temporal window (from 1 January 2016 to 31 December 2016, for
example), concrete mountpoints, users, markets or a combination of them (for example, agricultural
users in a specific month each day from 10:00 p.m. to 10:00 a.m.).

3. Data mining

3.1. MapReduce transformations

The analysis included in this manuscript corresponds to a period between 2015 and 2019. The result
of the MapReduce transformations generates the following output for users connected to the GNSS
network: number of connections for every mountpoint, as shown in Figure 3, where RED*, VRS*,
CMR*, RTCM3NET, GPS_GLONASS and DGPS* are the network RTK services, while the rest of the
mountpoints are real-time connections to individual stations. Figure 4 shows the number of connections
by month, day or weekday. Connection length in minutes by month, day or weekday is shown in Figure 5.
Connection length in minutes by user is shown in Figure 6. Connection length in minutes by time interval
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Figure 4. Number of connections by day during 2016.

Figure 5. Connection length in minutes by month during 2016.

(less than 5 min, from 5 to 15 min, etc.) is shown in Figure 7. Connection length in minutes by market
sector is shown in Figure 8.

From the results, we can see that the weekends are the days with the lowest demand for the service
and August is the month with the lowest demand. An interesting point to consider is that the mean daily
time-span of the connection was about 2,960 min for 2015, 2,954 min for 2016, 3,515 min for 2017, and
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Figure 6. Top 20 differential GNSS users during 2016.

Figure 7. Mean value of annual connections by time interval during 2016–2019.

even more than 4,500 min every day for 2018 and 2019, thus reflecting a considerable increase in the
service demand year by year.

From the recursive execution of the previous script month by month from January 2015, it is possible
to obtain information about the users’ behaviour and the market sectors with the GNSS network service.
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Figure 8. Mean time-span in minutes by market sector per year (2016–2019).

Heat mapping and point mapping showing the location of the users obtained in the query can be seen
in Figure 9. All these MapReduce transformations have been coded in the same script, so all results are
obtained in the same execution process.

3.2. Correlations

With the application of correlations in this approach, the concept explains how one or more variables are
related to each other. It gives us an idea of the degree of relationship between two variables, such as the
seasonal trends and market brands, or economic crisis and the development of certain market domains.

The Spark Machine Learning Library (MLLib) is used for this section. No representative correlation
among sectors has been found, as shown in Figure 10. The highest correlations between sectors occur
between the sectors of civil engineering and agriculture (58%), between the sectors of civil engineering
and the environment (56%) and between the sectors of the environment and sectors of occasional use
with temporary rentals of GNSS equipment (56%). The only sector that shows a year-to-year correlation
for the three analysed years is the agricultural sector (with 60% month connections between 2015 and
2016, 67% between 2016 and 2017, and 66·8% for 2018 and 2019) with a clear seasonal trend, as shown
in Figure 11.

This percentage for the agricultural sector increases year by year. Although there is a decrease in
activity between July and August and an increase between August and September in all sectors, there is
a decline in activity between November and December for the sectors of civil engineering, agriculture
and rentals.

3.3. Regressions

As defined in classical statistics, regression analysis is a method to model the relationship between a
target variable and one or more predictor independent variables. It helps us to understand how the value
of the target is evolving corresponding to changes in the predictor variables.

It can be seen that all sectors increase the use of the services and connection time, by computing a
regression line for all sectors at the time of use of the real-time positioning service. The civil engineering
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Figure 9. Location map of ERVA user connections during 2016.

Figure 10. Evolution of the top five market sectors.
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Figure 11. Evolution of the agricultural sector per year.

Figure 12. Evolution of the civil engineering sector and the regression line.

sector increased the use of the GNSS-ERVA service by 135 min by month in the studied period, the self-
employment sector by 455 min, the agriculture sector by 146 min, the environment sector by 52 min,
and the rental sector by 106 min. This is shown in Figures 10 and 12. This idea will be developed
and expanded in future research to forecast each sector using more complex algorithms such as neural
network, random forest, ARIMA models or support vector regression.

3.4. Clustering

Clustering is an unsupervised machine learning technique that involves the grouping of data sets or
points (with one or more variables), classifying each data set or point into a specific group. Data points
that are in the same group should have similar properties and/or features.

MLLib is used for this section. The idea is to use all user locations during several years to determine
the ideal centroid location for the same number of clusters as permanent stations exist and are used
to generate the network solution. Therefore, the centroids give us the ideal location for the reference
stations based on the locations of real users and can help the decision making regarding the location of
a new reference station. Figure 13 is obtained using K-means clustering, where some areas can be easily
identified as optimal locations for a new reference station. In the figure, as an example, a circled area
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Figure 13. K-means clustering: example of an optimal location for a new station inside the circled
area, based on the existent stations and computed centroids.

is represented in order to help decision makers if they have to include a new permanent station in the
territory. Based on the position of the real reference stations and the computed centroids, the circled
area is the optimal location obtained for a new station with the clustering algorithm.

3.5. Top users and sectors

Using MapReduce transformations and sort actions to find the top market segments, it is possible to
analyse very useful information for knowledge of customer and segment behaviour and stable connec-
tions. The percentage of use of the service for each sector is constant if the use is less than 3 h of
continuous connection during the period 2015–2019 (20%–30% for civil engineering, 20%–30% for
self-employment, 10%–15% for agriculture, 10%–15% for rentals and 10% for the environment – which
is the most stable of all). However, if the connection exceeds 3 h of use, the percentage of all sectors
decreases, except for the agriculture sector, which rises to 47%. That is, half of the users that use the
service with connection times longer than 3 h belong to the agricultural sector.

Over the six years from 2015, the quantitative differences between the number of authenticated users
have been obtained every year. The differences give the new users that access the services gradually. In
this way, the trend shows that the mean number of new users connected to the service per month has
been growing.

3.6. Cartographic reference location of the GNSS positions

In this analysis, cartographic information and GeoJSON data sources have been used. The GeoJSON
format (http://geojson.org/) is based on the JavaScript Object Notation (JSON) scheme. JSON allows
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Figure 14. Evolution of the total number of civil engineering campaigns and those close to a transport
infrastructure.

Table 1. Number of real-time GNSS campaigns on interurban roads.

Surveying campaigns
every 100 km

Surveying campaigns
every 5 km

2015 54,0 2,7
2016 30,0 1,5
2017 28,6 1,4

for better compression of the data sets and topology. A vector feature and its attributes are represented
as a JavaScript object. Data based on the GeoJSON structure allow better interoperability, interchange
between different platforms and access. For instance, it is supported in many open source libraries
and web clients. The format allows for easy parsing of the geometry and attributes for the geospatial
representation of geographic data. GeoJSON can be easily treated with the Python software using the
GeoJSON library or the JSON and Shapely libraries.

3.6.1. Transport infrastructures
An important geographic dataset from GeoDatabase was provided by the Transports Network project,
which is called RT project. It has the objective of defining the structure of the spatial objects and topology,
including all kinds of roads and transport infrastructures, following the INSPIRE European Union data
specifications (https://inspire.ec.europa.eu/data-specifications). These data sets were exported in the
GeoJSON file format. The topology and attributes of the transport infrastructures give information about
their geometry such as their width, length, capacity and direction. For example, there are 15194,82 km
of interurban roads in the transport infrastructures in the area of this study (25,000 km2).

The real-time GNSS user positions can be filtered by sector (civil engineering) and location. The
algorithm for filter location searches for users close to a transport infrastructure represented in the
GeoJSON format with the known attributes of width and length, in order to obtain the evolution of
the number of civil engineering field campaigns near these infrastructures.

Figure 14 shows this evolution from January 2015 to September 2017; during this period 19,856
campaigns were detected. The trend of the number of surveying campaigns during 2015 is decreasing,
it is more or less constant for 2016, and it is increasing for 2017–2019 (with the exception of August).
Table 1 shows the total number of campaigns every 100 and 5 lineal kilometres for interurban roads.
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Table 2. Number of real-time GNSS campaigns on all the infrastructures.

Surveying campaigns every 100 km Surveying campaigns every 5 km

2015 207,2 2,0
2016 177,9 1,8
2017 208,4 2,1

Table 3. Evolution of the surface area for different types of agricultural land use. Units are km2.

Land use (km2) 2015 2016 2017

Grain growing lands 507,51 434,07 429,87
Legume lands 2,07 2,56 8,45
Tuber cultivation 18,04 19,42 18,99
Industrial cultivation 7,96 24,64 17,25
Fodder crops 55,54 83,08 59,85
Vegetables 175,86 180,75 198,30
Fallow lands or crop rotation lands 545,85 575,74 592,74
Citrus fruits 1620,93 1610,13 1588,59
Other fruit trees not citrus 1498,23 1524,12 1537,50
Vineyards 688,42 675,90 661,47
Olive groves 945,16 945,39 943,68
Wood products 169,47 170,59 167,60
Greenhouses 94,43 96,90 94,71
Empty greenhouses 2,25 2,48 2,19
Kitchen gardens 96,71 100,38 100,79

Table 2 shows the total number of campaigns every 100 and 5 lineal kilometres for all transport
infrastructures. Data mining analysis revealed 90,188 campaigns in the studied period. These results
show a recovery in the civil engineering business sector that must be confirmed using information
corresponding to the following months.

3.6.2. Agriculture sector
Precision agriculture has been an important business market since around 2010 (European GNSS
Agency, 2019). In this sector, GNSS differential services are mainly needed for precise guidance of
agricultural machinery. Additionally, unmanned aerial vehicles (UAVs) are currently used for precision
agriculture. UAVs are also appropriate for agricultural smallholdings and include GNSS equipment that
can assign spatial coordinates to the aerial photographs of the crops. This kind of application is very
useful for pest control in vineyards or fruit crops.

In Spain, public regional or local permanent GNSS networks offer different corrections for free. For
this reason, the different RTK public services in Spain have also become an essential tool for agriculture
guidance or satellite farming. In the case of the territory of Valencia, agricultural land evolution is
updated every year by the regional government agency with competencies in agriculture (http://www.
agroambient.gva.es/es). This evolution from 2015 to 2017 can be seen in Table 3.

All the agricultural land uses in Table 3, except for crop rotation lands, greenhouses, empty green-
houses and kitchen gardens, can use GNSS technology as a tool for precision agriculture. The existing
areas of agricultural lands in square kilometres are given in the first column of Table 4. This shows
that the surface area of agricultural lands has tended to decrease, mainly due to depopulation, in some
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Table 4. Number of real-time GNSS campaigns per 100 km2 of crop lands.

Year
Crop lands

(km2)

Mean agricultural
surveying campaigns

per month

Mean agricultural
surveying campaigns

per month per 100 km2

of crop lands

Number of GNSS
campaigns per 100 km2

of crop lands from
January to September

2015 5689 160 2,8 33,8
2016 5670 135 2,4 25,5
2017 5631 170 3,0 27,2

Figure 15. Evolution of the number of connections for the agricultural sector.

zones in the west of Valencia, which might contribute to a progressive abandonment of agriculture as a
productive activity.

However, the evolution of surveying campaigns in the agricultural sector tends to increase year by
year, as shown in Figure 15. Therefore, the mean agricultural surveying campaigns per month, which are
given in the second column of Table 4, reflect an increase in agricultural activity. Based on the first two
columns of Table 4, it is possible to compute the use of GNSS technologies for every 100 km2 surface,
which is given in the third column of Table 4. The last column is the total number of agricultural
campaigns, taking into account the same period over the three years (January–September) in every
100 km2. Similar values were obtained for 2018 and 2019. These results again reflect an increase in this
sector in spite of the diminution of agricultural lands. This trend will be analysed in future research
with data from the subsequent years, aiming to verify this hypothesis: the evolution and modernization
of agricultural activities have a direct impact on the performance and profitability of crop lands, and
this fact can help to avoid the abandoned crop lands and depopulation in some areas that depend on
agriculture as the main activity.

4. Discussion

Compared with other solutions for data mining, this implementation based on big data architecture has
some remarkable differences. First of all, a big amount of data sets is quickly processed with a non-
centralised traditional architecture. By splitting the dataset into small pieces, clusters of data can be
processed with better performance.
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The original information and format, whatever the format, is preserved without limitations with the
implemented big data architecture. This has a positive aspect. Normally, the network GNSS monitoring
software generates its own output files of recorded connections of users. These files can have different
formats (access database records, XML, ASCII, log files, binary proprietary formats etc.).

With the exception of the NMEA specific sentence formats for communication between navigation
devices, there are no standardised formats for monitoring users’ connections in real-time navigation.
The proposed big data architecture needs, and can use and extract conclusions in real-time, not only
from the NMEA files, but also from the additional information that provides the monitoring software
of the network to obtain additional analysis. Thus, whatever the format of the input files, the big data
architecture will be able to use it.

This approach and solution does not use proprietary libraries or software, as the entire infrastructure
uses open source software. Also, different time-spans can be chosen for the analysis: real-time, day-by-
day, monthly or annual use of the positioning and location services.

Specifically, the use of the MongoDB open source database allows integration with any programming
language, and a powerful graphic interface. Another positive consequence is the replication and high
availability. The input data can also be indexed based on any attribute of the navigation parameters, and
it is possible to combine different and new data sets that arrive in real time. The capability of processing
has been provided by the Hadoop framework which has allowed the management of clusters. With
the combination of Hadoop and MapReduce, a quick method of data recovering and analysis over a
huge volume of users is obtained, which is not possible with the traditional GNSS network proprietary
software. Finally, when comparing data mining implementation with other software solutions, it has
shown better performance in terms of velocity, hardware requirements and output information.

5. Conclusion

The proposed big data architecture applied to the GNSS market segment of differential services has
become an optimal and effective option, because it allows the loading, storage and data mining of massive
data and stored records of positioning and navigation quickly and easily. The same software language
(Python) is used in all the processes. Therefore, a modular code has been created that performs the
whole analysis. Based on this architecture, the analysis and data mining processes have been executed
in order to identify the correlations between the dynamics of the GNSS network users and some of
the most important economic sectors of the territory, such as agriculture, civil engineering and self-
employment, but it is useful for analysing more market segments in any differential correction services.
The MapReduce programming paradigm has proved to be successful in the analysis with the top market
segments and sectors that need precise navigation and positioning services.

The lineal regression technique shows increments in the number of new users in the civil engineering,
agricultural, self-employment and environmental sectors every month. The data mining processes
illustrates the trends with respect to the civil engineering sector. This sector was negatively affected by
the economic and global financial crisis, but its business volume seemed to recover during 2017–2019,
and must be analysed during the coming years after the crisis caused by the global pandemic.

The big data process and data mining integration provides interesting economic findings for the
agricultural sector. It shows how the GNSS technique has been introduced in this market and how it
can benefit the economy based on this market segment. Additionally, the Spark MLLib has become a
very relevant tool in order to show the frequency of connections in the agricultural sector, showing a
correlation with seasonal trends. That is to say, there exists a year-on-year correlation and it reveals that
half of the users of the service with connection times longer than 3 h belong to the agricultural sector.
Furthermore, it reveals information about the time-span and the geographic locations with the most
demand in real time with clustering.

With respect to the input format files for the analysis, some positive aspects are that a great quantity
of input and output formats is supported by the libraries. Also, a powerful graphic output could be
further developed with the use of JSON format.
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