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Abstract

The use of Mixed Reality (MR) has experienced an outstanding growth in recent
years. Mixed Reality allows the users to have an immersive experience, but one in which
they can see the real world around them and interact with the information and digital el-
ements displayed on it, usually using translucent glasses where information is projected.
However, this field is still relatively new and constantly evolving, so it is necessary to
address the challenge of creating natural and comfortable experiences for the user. One
of the areas of interest is communication and interaction with the elements of the Mixed
Reality environment, through natural interaction methods such as gestures. Therefore,
it is essential that MR devices can recognize and understand gestures made by users,
allowing applications to react appropriately to these actions.

This work focuses on the development of a heterogeneous (both static and dynamic)
Hand Gesture Recognition (HGR) system using Deep Learning techniques. The main
objective is to create a classifier that can recognize and distinguish the gestures made
by the user. In addition, the aim is to develop a complete system that allows real-time
recognition, so that users can interact in a natural way with Mixed Reality environments
using gestures. For model training, we use data captured using Microsoft HoloLens 2
Mixed Reality glasses, which provides spatial information about finger joints.

Through this study, we explore different Neural Network architectures and analyze
their performance in accurate Hand Gesture Recognition. In addition, we present a self-
developed dataset, considerably larger than previously published datasets in this field.
Overall, this study provides a new perspective on heterogeneous gesture recognition for
natural interaction in Mixed Reality applications, using Deep Learning techniques and a
larger proprietary dataset. The results obtained are intended to highlight the feasibility
and potential of this system to improve the user experience in MR environments, paving
the way towards new types of interaction and the development of immersive and intu-
itive applications.

Key words: Deep Learning (DL); Mixed Reality (MR); Hand Gesture Recognition (HGR);
Human-Computer Interaction (HCI); HoloLens 2; Joint tracking; Machine Learning (ML);
Neural Networks (NN); Convolutional Neural Networks (CNN);
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Resumen

El uso de la realidad mixta (MR) ha experimentado en los últimos años un crecimien-
to destacable. La realidad mixta permite al usuario una experiencia inmersiva, pero en
la que puede ver el mundo real a su alrededor e interactuar con la información y ele-
mentos digitales que se muestran sobre el mismo, habitualmente utilizando unas gafas
traslúcidas sobre las que se proyecta información. Sin embargo, este campo es aún es rela-
tivamente nuevo y está en constante evolución, por lo que es necesario abordar el desafío
de crear experiencias naturales y cómodas para el usuario. Una de las áreas de interés es
la comunicación e interacción con los elementos del entorno de realidad mixta a través
de métodos de interacción natural como los gestos. Por lo tanto, es fundamental que los
dispositivos de realidad mixta puedan reconocer y comprender los gestos realizados por
los usuarios, permitiendo que las aplicaciones reaccionen de manera adecuada a estas
acciones.

Este trabajo se centra en el desarrollo de un sistema de reconocimiento de gestos he-
terogéneos (tanto estáticos como dinámicos) de las manos, empleando técnicas de apren-
dizaje profundo. El objetivo principal es crear un clasificador que pueda reconocer y dis-
tinguir los gestos realizados por el usuario. Además, se busca desarrollar un sistema
completo que permita el reconocimiento en tiempo real, de forma que los usuarios pue-
dan interactuar de manera natural con entornos de realidad mixta mediante gestos. Para
el entrenamiento del modelo se utilizan datos capturados mediante las gafas de reali-
dad mixta Microsoft HoloLens 2, las cuales proporcionan información espacial sobre las
articulaciones de los dedos.

A través de este estudio, exploramos diferentes arquitecturas de redes neuronales y
analizamos su rendimiento en el reconocimiento preciso de los gestos de las manos. Ade-
más, presentamos un dataset propio, considerablemente más extenso que los conjuntos
de datos previamente publicados en este campo. En conjunto, este trabajo proporciona
una nueva perspectiva en el reconocimiento de gestos heterogéneos para la interacción
natural en aplicaciones de realidad mixta, utilizando técnicas de aprendizaje profundo y
un dataset propio de mayor tamaño. Los resultados obtenidos tratan de demostrar la via-
bilidad y el potencial de este sistema para mejorar la experiencia del usuario en entornos
de realidad mixta, allanando el camino hacia nuevas formas de interacción y desarrollo
de aplicaciones inmersivas e intuitivas.

Palabras clave: Aprendizaje profundo (DL); Realidad mixta (MR); Reconocimiento de
gestos de la mano (HGR); Interacción Hombre-Computadora (HCI); HoloLens 2; Segui-
miento de articulaciones; Aprendizaje automático (ML); Redes neuronales (NN); Redes
neuronales convolucionales (CNN);
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Resum

L’ús de la realitat mixta (MR) ha experimentat un creixement notable en els darrers
anys. La realitat mixta permet a l’usuari una experiència immersiva, però en la qual pot
veure el món real al seu voltant i interactuar amb la informació i els elements digitals
que s’hi mostren, generalment utilitzant ulleres translúcides sobre les quals es projecta
informació. No obstant això, aquest camp encara és relativament nou i està en constant
evolució, per la qual cosa cal abordar el repte de crear experiències naturals i còmodes per
als usuaris. Una de les àrees d’interés és la comunicació i interacció amb els elements de
l’entorn de la realitat mixta mitjançant mètodes d’interacció natural, com ara els gestos.
Per tant, és fonamental que els dispositius de realitat mixta puguen reconéixer i com-
prendre els gestos realitzats pels usuaris per permetre una interacció adequada amb les
aplicacions.

Aquest treball es centra en el desenvolupament d’un sistema de reconeixement de
gestos heterogenis (tant estàtics com dinàmics) de les mans, fent servir tècniques d’a-
prenentatge profund. L’objectiu principal és crear un classificador capaç de reconéixer
i distingir els gestos realitzats pels usuaris. A més, es busca desenvolupar un sistema
complet que permeta el reconeixement en temps real, per facilitar la interacció natural
dels usuaris amb els entorns de realitat mixta mitjançant gestos. Per a l’entrenament
del model s’utilitzen dades capturades mitjançant les ulleres de realitat mixta Microsoft
HoloLens 2, les quals proporcionen informació espacial sobre les articulacions dels dits.

Per mitjà d’aquest estudi, s’exploren diferents arquitectures de xarxes neuronals i s’a-
nalitza el seu rendiment en el reconeixement precís dels gestos de les mans. A més, es
presenta un conjunt de dades propi, considerablement més extens que els conjunts de
dades prèviament publicats en aquest àmbit. En conjunt, aquest treball aporta una no-
va perspectiva en el reconeixement de gestos heterogenis per a la interacció natural en
aplicacions de realitat mixta, fent servir tècniques d’aprenentatge profund i un conjunt
de dades pròpies més gran. Els resultats obtinguts busquen demostrar la viabilitat i el
potencial d’aquest sistema per millorar l’experiència dels usuaris en entorns de realitat
mixta i obrin el camí a noves formes d’interacció i desenvolupament d’aplicacions im-
mersives i intuïtives.

Paraules clau: Aprenentatge profund (DL); Realitat mixta (MR); Reconeixement de ges-
tos de la mà (HGR); Interacció Home-Computadora (HCI); HoloLens 2; Seguiment
d’articulacions; Aprenentatge automàtic (ML); Xarxes neuronals (NN); Xarxes neuronals
convolucionals (CNN);
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CHAPTER 1

Introduction

This chapter outlines the reasons behind choosing this topic as a final master’s project,
analyzing the objectives we pursued throughout the experimentation. Furthermore, we
state how we have structured this report, which presents and consolidates the obtained
results.

1.1 Motivation

The motivation for this project arises from the increasing adoption of Mixed Reality (MR)
and the need to enhance natural user interaction in this environment [1]. As the use of
Mixed Reality has gained popularity, there is a recognized importance in creating immer-
sive and comfortable experiences for users. However, recognizing and understanding
gestures performed by users remains a challenge [2].

Natural gestures provide an intuitive and powerful means of communication and
interaction with elements in the Mixed Reality environment. Gestures can provide a more
fluid and expressive means of communication, compared to other interaction methods
such as voice commands or physical controllers [3].

Accurate gesture recognition is then essential to enable smooth and natural interac-
tion between the user and the Mixed Reality application. This entails developing systems
capable of reliably and real-time recognizing and distinguishing a wide range of user ges-
tures.

Deep Learning techniques [4], such as Neural Networks, have demonstrated great
potential in the field of Hand Gesture Recognition (HGR). These techniques can learn
complex patterns from large datasets and can adapt to individual variations in gestures
[5]. In this work, we will employ such techniques to train a classifier capable of real-time
recognition and differentiation of user gestures.

However, a major challenge we face is the limited availability of suitable datasets
with an adequate number of samples for training. For instance, the DHG14/28 dataset
[6] consists of only 1400 samples of full hand gestures. Similarly, the SHREC22 dataset
[7] offers an even smaller labeled set of 576 hand gesture samples.

To address the limited number of samples in these datasets, we have taken the initia-
tive to create our own dataset, capturing the 3D joint points of hand articulations using a
Mixed Reality device. By doing so, we aim to provide a solid and comprehensive foun-
dation for the development and training of our Deep Learning models.

This project has been undertaken in collaboration with the Human-Computer Inter-
action (HCI) department at the Instituto Tecnológico de Informática (ITI). Initiated as a part

1
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of the company internship during this master’s degree program, this work evolved into a
complete research. This hands-on participation has allowed an integration of theoretical
knowledge into real-world applications, contributing to the exploration and refinement
of HGR methodologies.

The development of this gesture recognition system will attempt to enhance the user
experience in Mixed Reality environments, enabling more intuitive and natural interac-
tions. This will pave the way for the development of immersive applications that allow
the user to express themselves through hand gestures. Ultimately, this project is expected
to contribute to the advancement and widespread adoption of Mixed Reality as a more
enriching form of communication and working.

1.2 Objectives

The general objective of this work is to develop a heterogeneous gesture recognition sys-
tem that allows real-time recognition within Mixed Reality applications, employing a
Deep Learning approach.

More specifically, we can state the following objectives:

• To explore and analyze different Neural Network architectures for gesture recogni-
tion.

• To develop a comprehensive dataset for gesture recognition.

• To develop a gesture classifier model that accurately recognizes and classifies spe-
cific gestures from input data.

• To design and implement a binary classifier that can determine the presence or
absence of a gesture within a given window of joint data.

• To create a complete system that extracts real-time windows of joint data, processes
them using the gesture recognition model, and provides instantaneous gesture de-
tection and classification.

• To evaluate the performance of the gesture recognition system in terms of accuracy,
speed, and robustness, using appropriate evaluation metrics.

• To showcase the feasibility and potential of the developed system by integrating it
into a basic Mixed Reality application, demonstrating its effectiveness in enabling
natural and intuitive interactions.

1.3 Structure of the thesis

Throughout this document, we present the work carried out, explaining the decisions
taken and the most relevant results.

In chapter 2, we start with a section of fundamental concepts. This work brings to-
gether two large areas of knowledge within Computer Science, the part related to Ar-
tificial Intelligence, Machine Learning, Pattern Recognition, etc. and the part related to
Computer Graphics, Extended Reality, Human-Computer Interfaces, etc. In this chapter,
we briefly explain the basic concepts of both parts that it is essential to keep in mind in
order to be able to understand the content of this work.
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Later, in chapter 3, we analyze the current state of the art, indicating the advantages
and disadvantages of the existing methods that attempt to recognize hand gestures in a
Mixed Reality context.

Thereafter, in chapter 4, we expose one of the main problems in this field: the ab-
sence of large datasets. To deal with this issue, we decided to create our own dataset. In
this chapter we explain the whole process, indicating the steps taken to acquire the data
samples, their cleaning and their basic statistics.

Afterward, in chapter 5, we present the experimentation carried out. We introduce the
three major parts of this work: the gesture classifier, the gesture detector, and the final
real-time detection and classification system. We also show a small proof-of-concept of
how this system would work integrated in a Mixed Reality application.

Finally, chapter 6 is the culmination of this report, where we compile the definitive
conclusions of the work carried out. We also propose possible improvements to achieve
even better results, which could not be examined for being outside the length of the
project.





CHAPTER 2

Basic concepts

In this chapter, we aim to provide a concise and simplified explanation of the funda-
mental concepts related to our work. For a more in-depth background, please refer to
the references mentioned in each point. We divide these concepts into two parts: those
related to Machine Learning (ML) and those related to Extended Reality (XR).

The ML-related concepts serve as the foundation for our gesture recognition system.
We introduce key elements such as Neural Networks, MultiLayer Perceptron, Convolu-
tional Neural Networks, etc. These concepts are essential for understanding the under-
lying techniques employed in this project.

On the other hand, the XR-related concepts are crucial for comprehending the context
in which our system is designed to operate. We present an overview of Extended Real-
ity (XR), which encompasses Virtual Reality (VR), Augmented Reality (AR), and Mixed
Reality (MR). We delve into the definitions and characteristics of each concept, highlight-
ing their distinctions and applications. Additionally, we introduce key concepts such
as Head-Mounted Display (HMD), a device that plays a significant role in delivering
immersive XR experiences and serves as a crucial component for capturing data in our
project.

2.1 Machine Learning-related concepts

Machine Learning (ML)

Machine Learning is a field of study that focuses on developing algorithms and models
that enable computers to learn from and make predictions based on data [8]. It involves
the creation of mathematical models and algorithms that can automatically improve their
performance through experience.

Neural Networks (NN)

Neural Networks are computational models used in Machine Learning, inspired by the
structure and functioning of the human brain [8]. They consist of interconnected nodes,
or artificial neurons, organized in layers. Neurons receive inputs, apply transformations
using mathematical functions, and pass values to the next layer. Neural Networks can
learn patterns and relationships in data by adjusting the weights of connections between
neurons through a process called training [8]. Figure 2.1 shows a basic representation of
its architecture.

5
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Figure 2.1: Example of the basic architecture of a Neural Network (adapted from [4]).

Deep Learning (DL)

Deep Learning is a subfield of Machine Learning that focuses on training Neural Net-
works with multiple layers to learn hierarchical representations of data [8]. These Neural
Networks, often referred to as Deep Neural Networks, have shown remarkable success
in various tasks, such as Computer Vision [9] and Automatic Speech Recognition [10].
Deep Learning algorithms usually learn directly from raw data, automatically extract-
ing relevant features and patterns without the need for manual feature engineering. The
depth of the networks allows them to model complex relationships and capture intricate
structures in the data, leading to improved performance and higher levels of abstraction
[8].

MultiLayer Perceptron (MLP)

MLP is a type of Neural Network where information flows in one direction, from the
input layer through one or more layers (called hidden layers) to the output layer [4]. Each
neuron in an MLP is connected to every neuron in the subsequent layer, making it capable
of learning complex patterns and non-linear relationships in the data [4]. Figure 2.1 is
more concretely an MLP with two hidden layers and an undefined number of neurons
per layer.

Convolutional Neural Networks (CNNs)

CNNs [8] are a type of Neural Network architecture designed for processing grid-like
data, such as images. They employ layers that convolve filters over the input data to
extract local features. CNNs have been successful in various Computer Vision tasks,
including image classification [11], object detection [12], and image segmentation [13].
Figure 2.2 shows a representation of its architecture.

Input

Convolution
Pooling

Output

Feature Extraction Classification

MLP

Figure 2.2: Example of the basic architecture of a CNN (adapted from [8]).
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ResNet

ResNet, short for Residual Network, is a Deep Neural Network architecture that intro-
duced residual connections [8]. Residual connections are skip connections that enable the
network to learn residual mappings, capturing the difference between the input and the
output of a layer. By using these connections, ResNet allows for training of much deeper
networks without suffering usual problems (vanishing gradients [8]). This architecture
has achieved remarkable performance in Computer Vision tasks, such as image classifica-
tion [9], by effectively handling the challenges of training Deep Neural Networks. Figure
2.3 shows an example of a residual connection.

n+1 th
Layer

n th
Layer

x

x

y x+= 'x'x

Figure 2.3: Illustration of a residual connection (adapted from [8]).

1D Convolutional Neural Networks (1D-CNNs)

1D-CNNs are Convolutional Neural Networks specifically designed for processing one-
dimensional data, such as time series or sequence data [14, 15]. They apply convolutional
operations along the temporal dimension to capture local patterns and extract features.
1D-CNNs have been widely used in applications such as Automatic Speech Recognition
and Natural Language Processing [16].

Data Augmentation (DA)

Data Augmentation is a technique used to artificially increase the size and diversity of a
dataset by applying transformations or modifications to existing data samples [17]. This
technique usually helps to reduce overfitting and improves the generalization capability
of Machine Learning models by exposing them to different variations of the original data
[17].

Evaluation metrics

Evaluation metrics are measures used to assess the performance of Machine Learning
models [5]. They provide quantitative indications of how well a model performs on a
specific task. Common evaluation metrics usually include accuracy, recall, F1-score, and
mean squared error, depending on the nature of the problem being addressed [5]. These
metrics help in comparing and selecting the best-performing models for a given task. In
section 5.1.1 we explain in detail those used in this work.
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ROC curve

In the context of Machine Learning and binary classification tasks, the Receiver Operat-
ing Characteristic (ROC) curve is a graphical representation of a model’s performance in
distinguishing between two classes. It plots the True Positive Rate (sensitivity) against
the False Positive Rate (1 - specificity) at various decision thresholds [8].

The ROC curve is a valuable tool for evaluating the trade-off between a model’s
sensitivity and specificity. Sensitivity measures the model’s ability to correctly identify
positive instances, while specificity measures its ability to correctly identify negative in-
stances [8]. By adjusting the decision threshold, one can achieve different levels of sensi-
tivity and specificity.

The ROC curve is particularly useful when comparing multiple models or algorithms
for binary classification. A model with a curve closer to the top-left corner of the plot is
considered better as it achieves higher sensitivity while keeping false positives low [8].
An example of a ROC curve can be seen in Figure 5.8.

Fine-tuning and transfer learning

Fine-tuning and transfer learning are techniques in Machine Learning that involve using
knowledge gained from one task or domain to improve the learning and performance on
a different, but related, task or domain [8].

In particular, fine-tuning is a specific application of transfer learning. It involves tak-
ing a pre-trained model, typically a Deep Neural Network, that has already learned valu-
able features from a large dataset, and further training it on a new, related dataset. The
primary goal of fine-tuning is to adapt the pre-trained model to perform well on a spe-
cific task or dataset without training it from scratch [8]. In fine-tuning, the pre-trained
model serves as a starting point. Additional training is performed using the new dataset.
Some layers of the model may be frozen, meaning they are not updated, while others are
allowed to be modified. This approach takes advantage of the knowledge and features
learned by the model on the original dataset, which can be highly beneficial when the
new dataset is small or related to the original task [8].

Transfer learning, on the other hand, is a broader concept that encompasses various
strategies for re-using knowledge across tasks or domains to improve Machine Learning
models’ performance. The main type of transfer learning is fine-tuning a pre-trained
model, as explained earlier. However, transfer learning can also involve using features
extracted from earlier layers of a Neural Network or adapting model parameters for the
new task. The key idea is to avoid starting the learning process from scratch when solving
a related problem by transferring the knowledge acquired from a source task or domain
[8].

Lambda layer

In the context of Neural Network architectures, a “lambda layer” is a layer used to per-
form specific manually defined transformations on input data before it is fed into the
Neural Network. These transformations can include mathematical operations such as
normalization, scaling, color space conversion, or any other processing that prepares the
input data for subsequent processing by the network [18]. For example, when working
with images, a lambda layer might resize all images to a specific size, adjust their bright-
ness, or convert them to a particular color scale before they are used as input for the
network. This allows the Neural Network to work with data that is in the correct for-
mat and scale, which can significantly improve its performance and accuracy in Machine
Learning tasks [18].
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Embedding

In the context of Machine Learning, an embedding refers to a learned representation
of data that captures essential features or relationships, usually in a lower-dimensional
space [8]. It is commonly used to transform high-dimensional data, such as text or im-
ages, into a more compact and meaningful representation that can facilitate subsequent
analysis or modeling tasks [8].

2.2 Extended Reality-related concepts

Extended Reality (XR)

Extended Reality is an umbrella term that encompasses various immersive technologies,
including Virtual Reality (VR) [19], Augmented Reality (AR) [19], and Mixed Reality
(MR) [20]. XR refers to the spectrum of experiences that blend the physical and virtual
worlds, enabling users to interact with digital content and information in a more immer-
sive and realistic manner. The “X” in XR can be seen as a placeholder for V(R), A(R), or
M(R) [21] to indicate the specific technology being used.

Virtual Reality (VR)

Virtual Reality is a technology that creates a simulated, computer-generated environment
in which users can fully immerse themselves [19]. By wearing a Head-Mounted Display
(HMD), users are visually and audibly isolated from the real world and are presented
with a fully virtual environment that surrounds them. VR provides an immersive and
interactive experience, where users can explore and interact with the virtual environ-
ment.

Augmented Reality (AR)

Augmented Reality is a technology that overlays digital content onto the real world, en-
hancing the user’s perception and interaction with the environment [19]. Unlike Virtual
Reality, AR does not isolate users from the real world entirely. Instead, users view the
real world through a screen or transparent display, such as a smartphone, with virtual
elements seamlessly integrated into the real-world environment. AR enhances the user’s
perception by overlaying information, graphics, or objects onto the physical surround-
ings.

Mixed Reality (MR)

Mixed Reality combines elements of both Virtual Reality and Augmented Reality to cre-
ate an experience where users can interact with and manipulate both virtual and real-
world objects simultaneously [20]. MR allows virtual content to interact with the physical
environment, providing a more seamless integration of digital and real-world elements.
Users can see and interact with virtual objects that appear to coexist with the real world,
enabling more immersive and interactive experiences.
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Milgram Continuum

The Milgram Continuum [20] is a theoretical concept developed by researcher Paul Mil-
gram that describes a scale ranging from pure physical reality to complete Virtual Reality.
Within this continuum, different levels of immersion exist, ranging from purely physical
environments, through AR, to full VR.

Real
Environment

Virtual
Environment

AR VR

MR

Figure 2.4: The Milgram Reality-Virtuality Continuum (adapted from [20]).

This concept is relevant for understanding the context in which Extended Reality op-
erates. While VR provides a fully immersive experience in a computer-generated virtual
environment, AR just overlays digital information onto the real physical environment,
visible only through a screen. MR considers both, allowing for a more integrated in-
teraction between virtual and real elements. Figure 2.4 shows a representation of this
spectrum.

By considering the Milgram Continuum, one can appreciate how XR technologies are
situated at different points along the spectrum, offering varying degrees of immersion
and fusion between the virtual and the real environment. This has important implica-
tions for user interaction, the way environments are perceived, and the effects that can
be achieved by blending digital and physical elements in Extended Reality applications.

Head-Mounted Display (HMD)

A Head-Mounted Display is a wearable device that typically resembles goggles or glasses
and it is worn on the head to deliver Virtual or Mixed Reality experiences. HMDs consist
of display screens, sensors, and sometimes audio devices, providing users with a visual
and auditory immersion into virtual or mixed environments.

In the case of MR, the HMD allows users to see the real world through a screen or
transparent display while overlaying virtual elements. Figure 2.5a shows a basic schema
of a MR-HMD. As an example of MR-HMD devices, we can mention the Microsoft
HoloLens 21.

On the other hand, we have devices as the Oculus Quest Pro2, designed specifically
for VR experiences. In this case, it fully immerse users in virtual environments, blocking
out the real world and providing a purely digital visual and auditory experience.

1https://www.microsoft.com/hololens
2https://www.meta.com/es/quest/quest-pro

https://www.microsoft.com/hololens
https://www.meta.com/es/quest/quest-pro
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Figure 2.5: Different types of HMD devices to simulate MR experiences (adapted from [22]).

Passthrough

In the context of Extended Reality, passthrough (also known as video see-through) refers
to the technique used in VR headsets, that do not have translucent displays, to simulate
Mixed Reality experiences. In these devices, passthrough utilizes one or more cameras to
capture the real-world view from the user’s perspective and then displays it on the head-
set’s opaque screens [23, 24]. Figure 2.5b shows a basic schema of a VR-HMD simulating
a MR experience.





CHAPTER 3

State of the art

In this chapter, we delve into the state of the art in Hand Gesture Recognition (HGR),
exploring the advancements and approaches that have shaped this evolving field. Hand
gestures play a fundamental role in human communication and interaction [3], and take
advantage of their potential within Mixed Reality environments. For this reason, HGR
has become an area of significant research interest [25].

Exploring methodologies and devices utilized for HGR, we seek to better understand
the current panorama, which will serve as the basis for our research on developing a
Hand Gesture Recognition system using 3D joint data and Deep Learning techniques.
Through this literature analysis, we seek to identify challenges, opportunities, and po-
tential solutions in HGR, ultimately enhancing natural interactions in MR applications.

3.1 Hand Gesture Recognition (HGR)

Hand Gesture Recognition is a prominent research area within the field of Computer Vi-
sion (CV) and Human-Computer Interaction (HCI) [26]. It involves the automated inter-
pretation and understanding of hand movements and configurations to infer meaningful
gestures and commands. HGR has gained great importance due to its potential to revo-
lutionize various applications, including Extended Reality, Sign Language Recognition,
and Human-Robot Interaction [25].

3.1.1. Importance and applications

The relevance of HGR lies in its ability to enable intuitive and natural interactions be-
tween humans and machines. As technology progresses towards more immersive and in-
teractive experiences, the need for efficient gesture-based interfaces becomes paramount.
HGR facilitates seamless communication between users and computers, removing the
barriers imposed by traditional input devices like keyboards and mice [25].

In Virtual Reality applications, HGR allows users to interact with virtual objects and
environments using natural hand movements, enhancing the sense of presence and im-
mersion. Moreover, it offers new possibilities in the field of Mixed Reality, where real
world and virtual elements blend harmoniously, enabling novel and compelling user ex-
periences [27].

Another crucial application of Hand Gesture Recognition is in Sign Language Recog-
nition [28]. By accurately interpreting sign gestures, HGR systems can bridge the com-
munication gap between the hearing-impaired community and the broader population,
fostering inclusive communication and accessibility [28].

13
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Additionally, HGR plays a vital role in Human-Robot Interaction, enabling robots
to perceive and respond to human gestures effectively. This capability is particularly
relevant in scenarios where verbal communication may be impractical or insufficient,
such as noisy environments or situations where language barriers exist [27].

As it can be observed, Hand Gesture Recognition holds significant potential in vari-
ous applications [25, 7]. This thesis seeks to contribute to the development of a gesture
recognition system within Mixed Reality HMDs. The proposed system aims to accurately
detect user gestures, enabling seamless interactions with the application running on the
glasses, which can respond accordingly to the recognized gestures.

3.1.2. Approaches to Hand Gesture Recognition

Hand Gesture Recognition can be approached through different methods, primarily us-
ing RGB-based vision [26] or 3D sensor-based data [27], each presenting distinct advan-
tages and difficulties.

RGB-based vision methods for HGR

RGB-based vision utilizes video or image data to recognize hand gestures. While this
approach has been widely explored and can work effectively for certain gestures [29, 30],
it may encounter difficulties with background and foreground segmentation, lighting
variations, and limited depth information [26]. Precise depth information is essential for
recognizing gestures involving movements towards or away from the camera, making
RGB-based methods more challenging for such scenarios.

3D sensor-based methods for HGR

On the other hand, the 3D sensor-based data approach leverages depth information to
represent hand gestures in a three-dimensional space [7]. These methods face issues
like noise and artifacts in depth data, sensor calibration, and limited hand coverage, but
they enable a more accurate representation of complex gestures that involve depth-based
movements [25].

For this research, we have chosen to adopt the 3D sensor-based approach. By tak-
ing advantage of working with 3D positions, we anticipate a more efficient and accu-
rate gesture recognition system. 3D positions represent the spatial coordinates of key
hand articulation points, which results in a much lower data dimensionality compared
to RGB images. This reduction in data complexity can lead to more efficient processing
and faster computation times during gesture recognition, which helps to achieve real-
time performance of interactive MR applications. Also, by capturing depth information,
this approach facilitates the recognition of gestures involving different hand positions
and orientations, which improves the overall user experience.

3.1.3. Challenges and limitations

Despite the promising potential of HGR, developing accurate and robust recognition sys-
tems presents several significant challenges [26]. The main obstacle lies in the variability
and complexity of hand gestures. Human hands can produce an extensive range of ges-
tures, each displaying subtle differences in appearance, making it challenging to discern
between them accurately.
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Another pressing challenge in HGR is achieving real-time processing in interactive
applications [31]. The demand for high frame rates and low-latency responses is cru-
cial for delivering seamless user experiences. However, this goal introduces a substan-
tial computational burden. Balancing real-time performance while maintaining gesture
recognition accuracy remains an ongoing challenge, promoting the exploration of effi-
cient algorithms and hardware optimization techniques [7].

Furthermore, the requirement for large and diverse annotated datasets (or pre-trained
models) poses yet another limitation in HGR research. Building such datasets is a time-
consuming and resource-intensive process, involving the collection and annotation of a
vast number of hand gesture samples [7]. The availability of large datasets is crucial
for training Deep Learning models effectively [5], but creating them can be a significant
obstacle. Addressing this challenge calls for innovative data collection strategies and
collaborative efforts to facilitate the development of more robust and sophisticated HGR
systems.

3.2 Mixed Reality devices for hand gesture capture

In the field of Hand Gesture Recognition, a wide range of MR devices can be used [25],
each offering unique capabilities to capture hand movements and joints. These devices
mainly include depth-sensing cameras, Head-Mounted Displays, and specialized Mixed
Reality gloves.

3.2.1. Comparative analysis of hand gesture capture devices

Depth-sensing cameras, such as Leap Motion1 or Kinect2, capture detailed 2D or 3D point
clouds of the hand, providing high-precision data for gesture recognition. Their cost-
effectiveness also makes them an attractive option for HGR applications, especially in
budget-constrained scenarios [25].

On the other hand, Head-Mounted Displays (HMDs) offer a distinct advantage by
incorporating built-in cameras and sensors that facilitate more natural and intuitive in-
teractions. By eliminating the need for external tracking systems or markers, HMDs sim-
plify the setup and enhance the user experience during gesture capture and MR inter-
actions [7]. Their main disadvantages are that they are more expensive and sometimes
uncomfortable, especially for prolonged use.

Another noteworthy option is Mixed Reality gloves, equipped with sensors like IMUs
(Inertial Measurement Units) and flex sensors. These wearable devices enable precise
hand articulation capture, offering high accuracy in tracking intricate hand movements
and gestures. A potential disadvantage of these gloves is their impact on user comfort
and ease of use, as they require users to wear additional equipment during interactions
in MR environments [25].

In our study, we have chosen to utilize Head-Mounted Displays (HMDs) and, specif-
ically, the Microsoft HoloLens 23 as the MR device for Hand Gesture Recognition. The
decision was based on several factors, mainly due to the availability of the HoloLens 2 de-
vices we already possessed, and because they allow us to seamlessly integrate the Mixed
Reality applications and the capture of hand gestures with the headset’s sensors. In ad-
dition, this device offers a great track record in the state of the art of Mixed Reality [32],

1https://leap2.ultraleap.com/leap-motion-controller-2
2https://azure.microsoft.com/es-es/products/kinect-dk
3https://microsoft.com/hololens

https://leap2.ultraleap.com/leap-motion-controller-2
https://azure.microsoft.com/es-es/products/kinect-dk
https://microsoft.com/hololens
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good support from Microsoft, and a well-established SDK for application development4,
making it a suitable choice for our research on developing an advanced HGR system that
can be used by MR apps.

3.2.2. Microsoft HoloLens 2 description and specifications

The Microsoft HoloLens 2 is an advanced and cutting-edge Mixed Reality headset de-
signed to seamlessly blend the digital and physical worlds, offering immersive and in-
teractive experiences [32]. In this section, we present its technical characteristics5 to be
highlighted for the realization of this work.

Hardware specifications

The HoloLens 2 features a custom-built Microsoft Holographic Processing Unit 2.0 (HPU),
specifically designed to handle complex holographic computations, real-time tracking,
and gesture recognition. It also incorporates a Qualcomm Snapdragon 850 System-on-
Chip (SoC), 4-GB LPDDR4x system DRAM, 64-GB UFS 2.1 of storage, Wi-Fi 5 (802.11ac
2x2), Bluetooth 5.0, and USB Type-C for connectivity.

Optics and display

The Microsoft HoloLens 2 features a display system that incorporates see-through holo-
graphic lenses, also known as waveguides, allowing users to overlay holographic content
onto their physical environment. The device is equipped with 2K (2048 x 1080 pixels) 3:2
light engines, providing high-resolution visuals, and a holographic density of over 2.5k
radiants, ensuring detailed holographic imagery. Additionally, the HoloLens 2 utilizes
eye-based rendering technology to optimize the display for 3D eye position, dynamically
adjusting the rendered content based on the user’s eye movements for improved visual
fidelity and a more natural Mixed Reality experience.

Sensors

The Microsoft HoloLens 2 is equipped with various sensors, including 4 visible light
cameras for head tracking, 2 IR cameras for eye tracking, a 1-MP Time-of-Flight (ToF)
depth sensor for depth perception, and an IMU consisting of an accelerometer, gyroscope,
and magnetometer for motion tracking. Additionally, the device features an 8-MP camera
for capturing still images and recording FullHD (1080p) at 30 FPS video.

Environment understanding

The Microsoft HoloLens 2 offers advanced environment understanding capabilities, in-
cluding 6 DoF (Six Degrees of Freedom) tracking, enabling world-scale positional track-
ing for users’ movements in physical spaces. The device also features spatial mapping,
allowing real-time creation of an environment mesh, which aids in overlaying virtual
holographic content onto the real world seamlessly.

Portability

The Microsoft HoloLens 2 offers favorable ergonomics and portability features. The
device is designed to accommodate users who wear glasses, ensuring a comfortable

4https://microsoft.com/hololens/developers
5https://learn.microsoft.com/en-us/hololens/hololens2-hardware

https://microsoft.com/hololens/developers
https://learn.microsoft.com/en-us/hololens/hololens2-hardware
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fit for extended wear. With a weight of 566 grams, the HoloLens 2 remains relatively
lightweight, contributing to its ease of use. Regarding battery life, the device provides
approximately 2 to 3 hours of active use, allowing for extended periods of MR interaction
before requiring recharging.

3.3 Previous research on HGR using DL and 3D joints

Hand Gesture Recognition using Deep Learning techniques and 3D joint representations
has attracted increasing interest [7], but the exploration of this approach is relatively
less extensive compared to Computer Vision (CV) methods. The focus on CV-based ap-
proaches has resulted in a more comprehensive body of research, while the potential of
3D joint representations remains relatively less explored [25].

Traditional methods such as Support Vector Machines (SVM), Random Forests, and
dissimilarity-based classifiers have also been explored [33, 34]. Nevertheless, Neural
Networks have become the prevailing approach in this domain with promising results.
Recurrent Neural Networks, particularly LSTM units, have been popularly utilized for
handling time-series data like hand pose streams, as demonstrated in [35]. The Deep
Gesture Recognition Utility [36], employing stacked GRUs and a global attention model,
has proven to be both efficient and effective [36].

Other approaches have noted that very simple 1D Convolutional Neural Networks
with motion summarization modules can achieve state-of-the-art results with reduced
computational complexity [31]. Despite these advancements, open challenges still exist in
the domain of HGR, warranting further investigation into 3D joint-based Deep Learning
methods.

Studies employing 3D joint data for HGR often utilize a variety of devices, especially
those with lower cost, for data capture. However, this diversity in devices can lead to
differences in the representation of hand gestures since each device may consider differ-
ent key points in the hand [6, 37, 7]. As a consequence, achieving a standardized and
consistent representation of hand joints becomes challenging, potentially affecting the
generalizability of results across studies.

One notable domain where significant advancements have been made in HGR us-
ing 3D joints is in the SHREC (SHape REtrieval Contest) community6. Specifically, the
“SHREC 2022 Track on Online Detection of Heterogeneous Gestures” [7] stands out as a
relevant benchmark in the field. Although the track poses certain limitations due to the
absence of publicly available test data7, it serves as a valuable resource for understanding
the methodologies used by participants to tackle the HGR problem.

The main advantage of focusing on this competition is that researchers employed the
same capture device we use, the Microsoft HoloLens 2, and utilized also the same rep-
resentation of hand joints for training (see Section 4.1.1 for joints’ description) [7]. While
we are not able to make any direct comparisons of the performance of the models due to
the lack of labeled test data, studying the approaches employed by various participants
provides valuable insights into the state of the art techniques and inspires potential im-
provements for developing advanced Hand Gesture Recognition systems in our research.

In the subsequent sections, we delve into the primary approaches used, all of which
revolve around DL methods and 3D joint representations.

6https://www.shrec.net/
7https://univr-vips.github.io/Shrec22/#dataset

https://www.shrec.net/
https://univr-vips.github.io/Shrec22/#dataset
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3.3.1. Spatial Temporal Graph Convolutional Networks for HGR

One of the proposed approaches to address Hand Gesture Recognition is through the
utilization of the “Two-Stream” Spatial Temporal Graph Convolutional Network (2ST-
GCN) [7]. This architecture is an extension of the Spatial Temporal Graph Convolu-
tional Network (ST-GCN) [38], which is specifically designed for gesture detection in
video data. The 2ST-GCN model employs a two-stream design to process both spatial
and temporal information. The first stream focuses on understanding the spatial rela-
tionships between key hand points (i.e. the joints) within individual frames, while the
second stream analyzes temporal dynamics by observing how these hand points move
over time across consecutive frames. By incorporating graph convolution, the model ef-
fectively captures complex spatial and temporal patterns, enabling accurate and robust
Hand Gesture Recognition.

3.3.2. Temporal Convolutional Networks for HGR

Another proposed approach to tackle Hand Gesture Recognition is to utilize Temporal
Convolutional Networks (TCN) [7]. Specifically, the Causal TCN variant proposed is a
specialized CNN designed for processing sequential data in a causal order. This archi-
tecture incorporates cascading convolutional layers to learn patterns of varying temporal
lengths within the sequence, allowing for the modeling of long-term temporal depen-
dencies. Unlike traditional Recurrent Neural Networks (RNN), Causal TCNs overcome
limitations on the length of temporal dependencies they can capture, making them par-
ticularly advantageous for predicting long-term time series events.

3.3.3. Transformer Network + Finite State Machine for HGR

An additional strategy proposed to address Hand Gesture Recognition is the combina-
tion of a Transformer network with a Finite State Machine (FSM) [7]. The FSM consists of
four states designed to detect the initiation, middle, and completion stages of the gesture,
along with an additional state for verification. Complementing the FSM, the network
comprises two main components: the first employs transformers to generate a gesture
embedding, while the second utilizes a Fully Connected (FC) layer to classify the ges-
tures into 17 distinct classes, including 16 specific gestures and a class for non-gestures.

3.3.4. 1D Convolutional Neural Networks for HGR

Finally, another proposed approach is to utilize the STRONGER (Simple TRajectory-
based ONline GEsture Recognizer) network [7, 27], which is based on a modified ver-
sion of the DDNet (Double-feature Double-motion Network) architecture [31]. DDNet
is a Deep Neural Network designed for directional signal classification, such as images,
audio, and sensor data, among others. DDNet’s core concept is to leverage directional
data that contains valuable information in multiple orientations. The network processes
and combines input signals in various directions using directional filters, followed by
convolutional and pooling layers that reduce the dimensionality of the learned features.
DDNet’s unique advantage lies in its ability to capture specific directional patterns that
are challenging for conventional Neural Networks to capture effectively. This makes it
particularly valuable for applications involving directional signals, such as gesture clas-
sification [7].
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3.4 Datasets used in previous research

In this section, we explore the datasets used in the literature for Hand Gesture Recogni-
tion. We describe them and analyze their characteristics, sizes, limitations, and potential
for improvement.

3.4.1. Characteristics and size of the datasets

SHREC22 dataset

The SHREC22 dataset8 includes 288 sequences of hand gestures, each containing a vari-
able number of gestures ranging from 3 to 5 per sequence. The dataset is divided into a
training set, with provided annotations, and a test set, which lacks annotations due to its
use in a competition. Hence, only 144 usable samples are available (576 total gestures).
The data was recorded using Microsoft HoloLens 2, capturing 26 points of interest on the
hand’s joints [7].

Dynamic Hand Gesture 14/28 dataset

This dataset9 consists of 1400 sequences where 14 hand gesture classes are performed
in two ways (2800 in total): using one finger and using the whole hand. Each gesture is
executed five times by 20 right-handed participants. The sequences include depth images
and 22 joint coordinates in both 2D depth image space and 3D world space, forming
a complete hand skeleton. The Intel RealSense short-range depth camera captures the
dataset at 30 frames per second, with a resolution of 640x480 for depth images. The
gesture lengths range from 20 to 50 frames and 22 points of interest on the hand joints are
captured [6].

SHREC21 dataset

The SHREC21 dataset10 comprises 180 sequences of hand gestures, carefully planned to
include 3 to 5 gestures per sequence, supplemented with semi-random hand movements
labeled as non-gesture. The original dictionary contains 18 gestures, categorized into
static gestures characterized by a fixed hand pose, and dynamic gestures characterized
by hand and joint trajectories. However, a gesture was later removed from the dataset
due to potential conflicts, leaving 17 gesture classes. The dataset provides an annotated
test sequence. Gesture trajectories were captured using LeapMotion sensors at 50 FPS,
providing 20 points of interest with both positional coordinates and quaternions [37].

3.4.2. Limitations and potential improvements in existing datasets

One primary limitation in existing datasets is the scarcity of samples (all have 100 or
less samples per class), which hinders the application of Deep Learning techniques effec-
tively [5]. Additionally, the variation in the number and types of joints captured by each
dataset poses a challenge for direct adoption in certain applications, requiring complex
adaptations to maintain consistency in the gesture representation.

8https://univr-vips.github.io/Shrec22/#dataset
9http://www-rech.telecom-lille.fr/DHGdataset/

10https://univr-vips.github.io/Shrec21/#revision

https://univr-vips.github.io/Shrec22/#dataset
http://www-rech.telecom-lille.fr/DHGdataset/
https://univr-vips.github.io/Shrec21/#revision


20 State of the art

As well as the fact that there are not too many datasets, and those that exist are quite
small, we can also highlight the lack of pre-trained models available in the literature.
While pre-trained models have become increasingly prevalent in various Computer Vi-
sion and Natural Language Processing tasks [8], we have not encountered any publicly
available pre-trained models specifically tailored for Hand Gesture Recognition using 3D
joint data or similar.

Future improvements could focus on expanding the datasets with a larger number of
samples, allowing for a more suitable training of DL models. Efforts to standardize the
representation of hand joints across datasets could also enhance cross-dataset compati-
bility and facilitate a more seamless integration of the data for robust and accurate Hand
Gesture Recognition models.

3.5 Conclusions of the state of the art

3.5.1. Summary of key findings, gaps, and areas for improvement

Through our exploration of the state of the art in Hand Gesture Recognition, several key
findings have emerged. We identified a greater focus on Computer Vision approaches
using RGB images, while the utilization of 3D joint data is relatively less explored. In this
latter field, the trend seems to be towards CNN-1D networks as they are more efficient,
simpler and also achieve great results.

The availability of large and diverse annotated datasets still remains a challenge, hin-
dering the application of Deep Learning techniques to their full potential. Additionally,
the lack of pre-trained models tailored for HGR using 3D joint data is also a notable lim-
itation.

Furthermore, we observed variations in the representation of hand joints among dif-
ferent datasets, which may complicate the direct adaptation of models across datasets.
Hence, training with a specific dataset may pose challenges in adapting the model to
Mixed Reality devices that utilize a different number of joints.

3.5.2. Relevance of the thesis within the current research context

In the context of the state of the art, our thesis is justified by several distinct objectives.
Firstly, our research focuses on exploring the potential of Deep Learning with 3D joint
data for Hand Gesture Recognition, an approach that has received relatively less atten-
tion compared to conventional Computer Vision techniques, although it offers significant
advantages.

Secondly, we intend to address the limitation of existing datasets by creating a signif-
icantly larger and more diverse dataset specifically tailored for HGR using 3D joint data.
This dataset will serve as a valuable resource for training and evaluating Deep Learning
models, ultimately contributing to the advancement of gesture recognition systems.

Lastly, the relevance of our thesis is underscored by our emphasis on designing the
Hand Gesture Recognition system with compatibility for Mixed Reality devices. We en-
vision a system that can be readily integrated into MR glasses, enabling natural and in-
tuitive interactions with virtual environments. By aligning our research with the con-
straints and requirements of Mixed Reality devices, we aim to facilitate the practical im-
plementation and real-world applicability of our gesture recognition solution.



CHAPTER 4

Dataset creation

In this chapter, we present the process of creating the dataset for Hand Gesture Recogni-
tion (HGR). The necessity for developing a new dataset arises from the limited availabil-
ity of datasets in the current state of the art, particularly those with a substantial number
of samples. Given the utilization of Deep Learning techniques, a large amount of data is
essential to achieve optimal model performance and generalization.

This chapter provides a comprehensive overview of the dataset creation process,
covering various crucial aspects. Firstly, we detail the data capture process using a
HoloLens 2 Mixed Reality device. Thereafter, we discuss the different classes of the
dataset and the automatic labeling of gestures during the data capture process. In ad-
dition, we provide an analysis of the demographics of the participants who took part in
the data capture.

Furthermore, the dataset undergoes a detailed cleaning process to remove any noise
or erroneous data, ensuring its quality and reliability. We outline the applied cleaning
techniques and the identification and handling of noisy data to achieve a high-quality
dataset. Finally, we present some key statistics on the dataset, including the distribu-
tion of gestures among the various categories, ensuring a balanced representation of the
classes.

4.1 Data collection

In this section, we delve into the various aspects of data collection for the HGR dataset.
We explore the key elements related to the data capture process using the Microsoft
HoloLens 2 Mixed Reality device, which enables the real-time capture of 3D hand joint
points.

4.1.1. Joints’ description

Joints, also known as points of articulation, are three-dimensional data points that rep-
resent the position (x, y, z) of various key articulation points in the hands. By capturing
these joints, we can effectively track and analyze hand movements and gestures, facili-
tating the development of accurate gesture recognition models.

Figure 4.1 presents the different joints captured, where each joint location on the hand
can be seen. Each identifier is cross-referenced to those in Table 4.1, where a description
of each joint is provided.

21
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Figure 4.1: Visualization of captured joints in skeletal hand representation. The figure presents a
skeletal hand visualization, with each joint numbered according to the corresponding identifiers

in Table 4.1.

Joint name ID Description

Wrist 1 The wrist.

Palm 2 The palm.

ThumbMetacarpalJoint 3 The lowest joint in the thumb (down in your palm).

ThumbProximalJoint 4 The thumb’s second (middle-ish) joint.

ThumbDistalJoint 5 The thumb’s first (furthest) joint.

ThumbTip 6 The tip of the thumb.

IndexMetacarpal 7 The lowest joint of the index finger.

IndexKnuckle 8 The knuckle joint of the index finger.

IndexMiddleJoint 9 The middle joint of the index finger.

IndexDistalJoint 10 The joint nearest the tip of the index finger.

IndexTip 11 The tip of the index finger.

MiddleMetacarpal 12 The lowest joint of the middle finger.

MiddleKnuckle 13 The knuckle joint of the middle finger.

MiddleMiddleJoint 14 The middle joint of the middle finger.

MiddleDistalJoint 15 The joint nearest the tip of the middle finger.

MiddleTip 16 The tip of the middle finger.

RingMetacarpal 17 The lowest joint of the ring finger.

Continued on next page
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RingKnuckle 18 The knuckle of the ring finger.

RingMiddleJoint 19 The middle joint of the ring finger.

RingDistalJoint 20 The joint nearest the tip of the ring finger.

RingTip 21 The tip of the ring finger.

PinkyMetacarpal 22 The lowest joint of the pinky finger.

PinkyKnuckle 23 The knuckle joint of the pinky finger.

PinkyMiddleJoint 24 The middle joint of the pinky finger.

PinkyDistalJoint 25 The joint nearest the tip of the pinky finger.

PinkyTip 26 The tip of the pinky.

Table 4.1: Description of captured joints. The table provides an overview of the joints cap-
tured during the data collection process using the HoloLens 2 device. The identifiers are cross-
referenced with Figure 4.1, offering a visual representation of each joint and its location on the

hand. Adapted from [39].

4.1.2. 3D hand joint capture process

To ensure an adequate amount of data for reliable training, we set the target of acquiring
at least 500 samples per gesture class. With 16 classes in total, this led us to the goal of
gathering 8,000 samples for the entire dataset. To achieve this, we recruited 25 different
participants to perform the data capture process. Dividing the target of 500 samples per
class by the number of participants, we arrived at an allocation of 20 samples per person
per gesture class. With 16 gesture classes, each participant contributed 320 samples in
total1.

Prior to data collection, each participant received detailed instructions and a clear ex-
planation of the gestures they were required to perform. Emphasis was placed on main-
taining natural and spontaneous hand movements, enabling the dataset to encompass a
wide range of realistic gestures.

Regardless of the participants’ dominant hand, all users were required to use their
right hand for the data capture process. This decision was made to simplify and optimize
the data processing pipeline on the HoloLens 2 device, which focused on detecting and
capturing only the right hand’s movements.

For the data capture interface, a custom-built MR application was developed. The ap-
plication makes use of the HoloLens 2 sensors to accurately capture the 3D positions of
the hand joints. Participants were performing the gestures while the HoloLens 2 recorded
the positional data of the hand joints at a sampling rate of 30Hz. The application was
designed to minimize distractions during the data capture sessions, ensuring that partic-
ipants could focus solely on performing the gestures with ease. For complete details of
the application please refer to section 4.1.3.

Given that recording all 320 gestures in one continuous session would have been ex-
hausting for the participants, the data collection was organized into four separate ses-
sions, each containing 80 gestures and with an approximate duration of 15 minutes.
Within each session, participants performed a total of 5 gestures from each gesture class
in a randomized order. This approach of individual sessions not only ensured a more
manageable and comfortable data capture experience for the participants, but also al-
lowed us to distribute the effort and maintain consistency throughout the entire dataset.

1In fact, we recorded a few more gestures from each user, as a precaution against potential data loss
during the cleaning process.
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Upon completion of each data capture session, the application generated a data file
containing the recorded 3D hand joint positions. Each line of this file represents a specific
time frame, with the coordinates of the 26 joints. Each joint is therefore characterized by
3 floats (x, y, z position), so each row has 79 elements (1 + 26 × 3) and it is encoded as:

Frame ; Joint1_x ; Joint1_y ; Joint1_z ; Joint2_x ; Joint2_y ; Joint2_z ; ...

4.1.3. Process of automatic labeling during data capture

Given the substantial number of gestures to be captured, 8000 in total, the implemented
system follows a structured workflow to ensure accurate labeling without the need for
manual intervention during data acquisition. The two keys of the process are the follow-
ing:

• To show the user which gesture to make: To avoid bias and maintain diversity,
the app randomly presents the 80 gestures to be recorded, but always ensuring that
those 80 are five of each class.

• Voice-activated Start and Stop commands: Since the application informs the user
of the next gesture to perform, we can directly label the captured samples with the
corresponding gesture identifier. The user’s vocal cues of “start” and “stop” enable
us to accurately mark the temporal boundaries of each gesture, thus facilitating the
automatic labeling of the recorded data.

As shown in Figure 4.2, the labeling process is aided by a couple of auxiliary elements
of the app interface. First, a banner that shows the instructions and voice commands for
the user to remember. Second, the app superimposes the real-time visualization of hand
joints detected by the HoloLens 2 over the user’s hand, providing visual feedback and
enhancing the user experience.

(a) Voice commands (b) Hand joint holograms

Figure 4.2: App interface elements to assist the user. On the left, it can be seen the sign with the
voice commands. On the right, the holograms representing each joint.

The app workflow comprises five distinct stages (see Figure 4.3):

(A) Initially, the app remains inactive (Figure 4.3a), awaiting the user to put on the
HoloLens 2 device and position the interface elements comfortably (e.g., placing
the instructions banner on a wall).

(B) Once the user is ready, he/she says “record” to start the capture session. From this
moment on, joints are captured at 30Hz continuously (Figure 4.3b). The application
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shows the user which gesture to perform in two ways: by indicating the name of the
gesture via text and by showing a panel with a video demonstration of the gesture2.

(C) Before beginning the gesture, the user says “start” (Figure 4.3c) to mark the ges-
ture’s start from that frame onwards.

(D) Similarly, when the user finishes performing the gesture, he/she says “stop” (Fig-
ure 4.3d) to mark its end, and the app proceeds to display the next gesture to be
performed.

(E) After completing all 80 gestures, the user says “exit” (Figure 4.3e) to finalize the
joint capture and store the generated data file in the HoloLens 2 memory.

(a) Interface before starting (b) Proposed gesture

(c) Gesture recording (d) End of recording +
New gesture proposal

(e) Session completed

Figure 4.3: Workflow of the data capture app: The figure illustrates the sequential steps of the
app during the data capture process. Note that the user’s actual hand is not represented in this

sequence, only the interface visible to the user is shown.

Furthermore, to provide real-time feedback about the app’s status during the data
capture process, the app incorporates a small sphere that changes color accordingly: it
remains gray when not capturing data, it turns red between gestures, and it becomes
green while capturing a gesture (between the “start” and “stop” commands).

2Important note: It is essential to emphasize that users were explicitly instructed not to imitate the gesture
demonstrated in the video. The video merely served as a visual reference to inform participants of the
required gesture, while they were encouraged to perform it in a manner that felt natural and comfortable to
them.
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4.1.4. Ergonomics considerations in data collection

In our data collection process, we placed a strong emphasis on accommodating partici-
pants’ natural hand movements to achieve the highest level of realism and authenticity in
gesture representation. With the objective of capturing diverse and authentic hand ges-
tures, participants were encouraged to perform the gestures in a manner that felt most
natural and comfortable to them. This approach allowed for the spontaneous execution
of gestures, mirroring how they would naturally perform them in real-life scenarios.

To ensure maximum flexibility and ease of execution, participants were not restricted
in their body posture during data capture. The majority of participants chose to per-
form the gestures while standing, which allowed for full-body engagement and a wide
range of hand movements. However, as the data capture sessions required performing a
considerable amount of gestures, some participants opted to execute the gestures while
seated, offering them more comfort and endurance during the extended recording peri-
ods. Additionally, a few participants even chose to support their elbow on an elevated
surface while performing certain gestures to reduce fatigue and maintain gesture accu-
racy.

By providing this flexibility, we ensured that the captured dataset represents a diverse
and genuine set of hand movements. These ergonomics considerations were crucial in
achieving a dataset that closely mimics real-life scenarios, enhancing the applicability and
practicality of the Hand Gesture Recognition models trained on the dataset. Moreover,
by prioritizing participants’ comfort and preferences during the data capture process, we
encouraged a positive environment, resulting in a more engaging and rewarding data
collection experience for all participants involved.

4.1.5. Privacy considerations in data collection

Throughout the data capture process, ethical considerations were a priority. Prior to
participation, all potential subjects were provided with information about the purpose
of the study, the data capture procedures, and the intended use of the recorded data,
including any potential data publication. Participants provided their informed consent
for data collection and were explicitly informed of their right to withdraw from the study
at any point without consequence.

In accordance with established privacy guidelines and regulations, strict measures
were implemented to safeguard the confidentiality and anonymity of participants. Per-
sonal identifying information was carefully separated from the captured data, ensuring
that all individuals remained anonymous throughout the research process.

4.2 Dataset classes

This Hand Gesture Recognition dataset comprises a total of 16 distinct classes, each rep-
resenting a specific hand gesture. These classes encompass a wide range of gestures,
showcasing the versatility and complexity of hand movements. In Figure 4.4, each class
is visually represented using a scatter 3D visualization of the captured hand joints. This
representation illustrates the precise positioning and spatial arrangement of the hand
joints during the execution of the corresponding gesture.

On the other hand, in Table 4.2, each gesture is identified by its unique ID and cate-
gorized into one of the four generic types: static (ST), single-dynamic (D), fine-grained
dynamic (FG), or dynamic-periodic (P). Moreover, each gesture is accompanied by a brief
description, providing insights into its intended meaning or practical applications.
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(1) Thumbs up (2) Thumbs down (3) Stop (4) Palm

(5) Up (6) Down (7) Left (8) Right

(9) Push (10) Pull (11) CW circle (12) CCW circle

(13) Grab (14) Deny (15) Wave (16) Follow me

Figure 4.4: Visualization of all gesture classes in the dataset. The figure displays a graphical
representation of each class of the dataset, captured using a HoloLens 2 device. The first four
gestures belong to static categories, while the remaining gestures are dynamic. In the dynamic
ones, the early frames are depicted with lighter shades, gradually transitioning to darker shades

for the later frames, representing the temporal flow of the gesture.

ID Gesture name Type Description

01 Thumbs up ST Thumb up, rest of the hand closed.

02 Thumbs down ST Thumb down, rest of hand closed (inverse of 01).

03 Stop ST Palm open, back of hand facing the user.

04 Palm ST Palm open, palm facing the user (inverse of 03).

Continued on next page
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05 Up D (Y-axis) Hand with open palm, moves from the bottom
to the top.

06 Down D (Y-axis) Hand with open palm, moves from the top to
the bottom (inverse of 05).

07 Left D (X-axis) Hand with open palm, moves from right to left.

08 Right D (X-axis) Hand with open palm, moves from left to right
(inverse of 07).

09 Push D (Z-axis) Hand with open palm, moves outward, as if
pushing something.

10 Pull D (Z-axis) Hand with open palm, moves towards the user,
as if pulling something (inverse of 09).

11 CW circle D (XZ plane) Index finger draw a circle in the air, rest of
hand closed. Start at the bottom and clockwise (if it were
a clock: 6, 7, 8, ..., 12, 1, 2, ..., 4, 5, 6).

12 CCW circle D (XZ plane) Index finger draws a circle in the air, rest of
hand closed. Start at the bottom and counterclockwise
(if it were a clock: 6, 5, 4, ..., 1, 12, 11, ..., 8, 7, 6) (inverse of
11).

13 Grab FG Fingers are clamped together.

14 Deny P Index finger extended and rest of hand closed. Moving
the hand to one side and to the other to indicate denial
of something. Repeat several consecutive times.

15 Wave P Greet with an open hand. Repeat several consecutive
times.

16 Follow me P Intuitive gesture to follow. Extend hand forward with
palm up and fingers together, then move hand back and
forth. Repeat several consecutive times.

Table 4.2: Gesture classes descriptions. The table presents an overview of the 16 distinct gesture
classes in the Hand Gesture Recognition dataset presented. The identifiers are cross-referenced

with Figure 4.4, offering a visual representation of each class.

4.2.1. Description of gesture categories

This section describes the four generic categories of gestures mentioned above. Each one
represents a distinct type of hand movement, enabling a systematic organization of the
dataset.

Ensuring the inclusion of at least one gesture from each of the four significant types
is desirable to ensure the diversity of the dataset. Each gesture type represents a distinct
category of hand movements with unique characteristics, and by incorporating examples
of each kind, we enhance the dataset’s applicability.

Static gestures contribute to a robust representation of distinct hand postures and
symbolic gestures. On the other hand, dynamic gestures capture straight hand motions,
making the dataset suitable for recognizing continuous movements and directional in-
structions. Fine-grained dynamics focus on intricate finger articulations, ensuring the
dataset covers gestures with precise finger control. Finally, dynamic-periodic gestures
add repetitive patterns to the dataset, which is relevant for recognizing cyclic actions.
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By covering these diverse gesture types, we ensure that our dataset captures a broad
spectrum of hand movements encountered in real-world scenarios. In the following,
we provide a detailed description of each kind, highlighting the specific features that
differentiate them.

Static gestures

Static gestures are characterized by a pose that is kept fixed for a minimum duration of
0.5 seconds. Participants are instructed to hold a specific hand configuration without
any significant movement. These static gestures often represent specific hand signs or
symbols that convey meaning or indicate commands. The specific gestures are those
denoted as type ST in Table 4.2.

Single-dynamic gestures

Single-dynamic gestures involve a continuous and smooth trajectory of the hand. Partic-
ipants are encouraged to execute a single, fluid motion with their hand to represent these
gestures. The dynamic nature of these gestures makes them well-suited for conveying
directional instructions, such as swiping or tracing gestures. The specific gestures are
those denoted as type D in Table 4.2.

Fine-grained dynamic gestures

Fine-grained dynamic gestures focus on the movement of individual fingers during hand
movements. Participants perform gestures that involve precise finger movements and
configurations. These gestures often emphasize the dexterity and versatility of hand ar-
ticulations, and they are valuable for applications requiring precise finger tracking and
control. The specific gestures are those denoted as type FG in Table 4.2.

Due to their specific nature, these gestures have been less included in the dataset.
This category encompasses actions like “grab” and “pinch”, which are constrained by
the Microsoft SDK and are associated with particular actions. We have introduced at least
one in the dataset to check that it can indeed be recognized and used with our system,
but from an MR app development point of view, they are the least attractive gestures as
they already have a function in the SDK.

Dynamic-periodic gestures

Finally, dynamic-periodic gestures involve the repetition of the same fingers’ motion pat-
tern at least three times. Participants execute these gestures with a rhythmic and periodic
pattern, which makes them suitable for representing actions that have a repetitive na-
ture or need to be performed in cycles, such as waving or saying no with the hand. The
specific gestures are those denoted as type P in Table 4.2.

4.3 Analysis of participant demographics

This section presents an analysis of the demographics of the participants involved in
the data capture process for the HGR dataset. A diverse group of individuals was re-
cruited for this study, including work colleagues, friends, and family members, who gen-
erously volunteered their time and participation without any financial compensation or
incentives. Their invaluable contributions enabled the creation of a robust and complete
dataset, reflecting a real-world representation of gestures across different demographics.
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4.3.1. Participants’ age and gender

The gender and age composition of participants in the data capture process plays a signif-
icant role in the dataset’s diversity and applicability. The dataset comprised 15 male and
10 female participants (there were no individuals who identified with another gender),
indicating a relatively balanced gender representation. This inclusion of both genders
ensures that the Hand Gesture Recognition models are not biased towards one gender
and can generalize well across different users.

In terms of age distribution, the participants were categorized into three main groups.
The majority of the participants fell into the young-adult category, aged between 18 to 29
years, with 16 individuals. This age group is particularly relevant as it represents a signif-
icant proportion of the potential user base for HGR applications in various domains. The
middle-aged group, consisting of 6 participants aged between 30 to 49 years, provides in-
sights into how hand gesture patterns may differ across different life stages. Finally, the
dataset also includes 3 older adult participants aged 50 years and above. This age group
is essential to capture the nuances in hand movements that may occur with age-related
factors, such as reduced dexterity or flexibility.

4.3.2. Participants’ dominant hand

All participants in the data capture process were right-handed. Nevertheless, it should be
remembered that the capture process was reserved for the use of the right hand, so that
even though this may restrict the dataset’s diversity in hand dominance, it aligns well
with the typical user interaction scenario, where users typically interact predominantly
with their dominant hand.

Still, it is important to acknowledge that Hand Gesture Recognition systems should
ideally be designed to accommodate both left-handed and right-handed users. However,
due to practical constraints and the limited availability of left-handed volunteers, the cur-
rent dataset predominantly represents gestures performed by right-handed participants.
Despite this limitation, the dataset remains a valuable resource for developing and eval-
uating Hand Gesture Recognition models. Moreover, it also serves as a foundation for
future extensions, where efforts can be made to incorporate left-handed gesture data or
to simulate left-hand gestures by performing mirror operations, ensuring a more diverse
dataset.

4.3.3. Participants’ previous experience with MR

Understanding participants’ prior experience with Mixed Reality (MR) technologies is
essential to measure their familiarity and potential influence on the data capture process.
Out of the total participants, 14 individuals had no prior experience with Mixed Real-
ity headsets or exposure to holograms. For these participants, the data capture process
served as their first encounter with MR technologies, ensuring that the dataset reflects a
diverse range of experience levels.

Additionally, five participants had some prior exposure to MR technologies, having
experimented with Mixed Reality headsets on a limited basis before. This group’s previ-
ous experience may have influenced their interaction with the data capture app and their
comfort level with performing gestures in Extended Reality environments.

Furthermore, six participants were already familiar with MR technologies and regu-
larly used the HoloLens 2 in their daily lives. Their proficiency with these technologies
may have enabled them to adapt quickly to the data capture process, potentially leading
to more refined and accurate hand gestures.
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4.4 Dataset cleaning

The dataset cleaning process is a critical step to ensure the data’s quality and reliability,
ultimately impacting the performance of Hand Gesture Recognition models. In the fol-
lowing sections we will discuss the different measures applied and the approach to the
management of outliers.

4.4.1. Applied cleaning processes

During the dataset cleaning process, we implemented specific strategies to address data
artifacts and ensure the dataset’s integrity. One essential step involved eliminating ges-
tures that users themselves identified as incorrect during the data capture process. Users
were given the option to flag any incorrectly performed gestures, which were subse-
quently removed from the dataset to maintain data accuracy.

Additionally, we performed a thorough search for empty gestures, i.e., those with
non-recording of joints between the “start” and “stop” commands. Empty gestures could
result from tracking errors or unintentional user actions. As a consequence, we identified
one user whose majority of gestures were empty. To rectify this issue and achieve the
minimum required 20 gestures per class, we conducted additional data capture sessions
with this user.

Moreover, for the rest, a total of eight users (approximately 1/3 of the total par-
ticipants) recorded some empty gestures, though in a significantly smaller proportion.
Specifically, we found a total of 49 empty gestures (less than 1% of the total number of
recorded gestures). Among these users, two recorded more than ten empty gestures,
while six had only a few (ranging from 1 to 5 empty gestures).

It is important to note that out of the 49 empty gestures, a staggering 45 (92%) be-
longed to the gesture Thumbs down. This finding raises concerns regarding the gesture’s
recognition accuracy, as it may pose challenges for the HoloLens 2 in capturing the ges-
ture accurately. Further investigation is needed to better understand the reasons behind
this observation and ensure reliable recognition for all gestures.

In addition to the aforementioned cleaning processes, we have also applied outlier
elimination techniques to further refine the dataset. These outlier removal methods are
intended to identify and exclude extreme or erroneous data that could negatively affect
the model’s training and performance. Further details on the outlier elimination process
will be discussed in Section 4.4.2, where we delve into the specific methodologies used
to ensure data integrity and reliability.

4.4.2. Identification and handling of outliers

Firstly, in order to rigorously analyze outliers within the dataset, we calculated the quar-
tiles for the duration of the recorded gestures. Specifically, the first quartile (Q1) was
found to be 54 frames, the second quartile (Q2 or median) was 76 frames, and the third
quartile (Q3) was 95 frames. Additionally, the Interquartile Range (IQR), which repre-
sents the spread of the middle 50% of the data, was determined to be 41 frames.

On the one hand, after examining the duration of the gestures, we identified 54 quasi-
empty gestures out of 8653 samples. These gestures exhibited an extremely short dura-
tion, consisting of fewer than 20 frames, making it highly improbable that any significant
hand movement was captured. In addition, it is worth mentioning that most of these
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quasi-empty gestures were associated with the same users who had recorded entirely
empty gestures, thus reinforcing the theory that they were not valid gestures.

Therefore, we removed these 54 quasi-empty gestures from the dataset. The short
duration of these gestures could be attributed to users placing their hands too far away
from the HoloLens 2 sensors, resulting in an incomplete gesture detection.

On the other hand, some excessively long gestures have also been detected, which can
certainly be considered outliers. By using the IQR Method of Outlier Detection [40], we
observed that any gesture with a duration exceeding 157 frames could be considered an
outlier. However, we opted to set a slightly higher threshold and remove gestures with
a duration greater than 250 frames. This decision was made based on the understanding
that some inexperienced users with MR technology might take longer than the majority
to perform certain gestures.

In total, 10 gestures were removed from the dataset due to their excessively long dura-
tions. Prolonged gestures could potentially result from difficulties in accurately detecting
the “stop” voice command, leading to segments of quasi-constant hand position or even
a completely relaxed arm, thus compromising the authenticity of the gesture representa-
tion.

4.5 Dataset statistics

In this section, we compile and present the statistics of the final version of the dataset,
which will be utilized for experimentation in the following chapter. We analyze the du-
ration of the gestures, their distribution across classes, and the partitioning into training,
development, and testing sets. Additionally, we provide individual statistics for each
partition, offering a complete overview of the dataset’s characteristics.

4.5.1. Gesture distribution after cleaning
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Figure 4.5: Gesture distribution by class in the final dataset after cleaning, showcasing a well-
balanced dataset with a minor imbalance in the Thumbs down class.

The distribution of gestures after the cleaning process is visualized in Figure 4.5. As
expected, all classes contain approximately 500 gestures, reflecting the dataset’s balanced
nature. However, a slight imbalance is evident, where all classes have over 530 gestures,
except for the Thumbs down class with 490 gestures.
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This imbalance is because most empty or quasi-empty gestures are associated with the
Thumbs down class (see Section 4.4.1), affecting their representation in the dataset. Never-
theless, the overall impact of this imbalance is minimal and it does not pose a significant
concern, as the percentage differences are relatively small.

The distribution analysis further reveals that, even though the potential challenges
in capturing the Thumbs down gesture accurately, the Mixed Reality device successfully
records the majority of these Thumbs down gestures, as the imbalance remains marginal.

4.5.2. Gesture duration after cleaning

The analysis of gesture duration is of utmost importance as it plays a crucial role in deter-
mining the optimal window size for the developed gesture classifier. As shown in Figure
4.6, the histogram of gesture durations (in frames) exhibits two distinct modes: a primary
mode centered around 76 frames and a secondary mode around 60 frames.
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Figure 4.6: Histogram illustrating the distribution of gesture durations in frames.

A deeper examination of the duration by gesture type (Figure 4.7) reveals clear pat-
terns. The first four gestures, which correspond to static hand poses, have a lower av-
erage duration, around 60 frames, consistent with the secondary mode observed in the
histogram. On the other hand, dynamic gestures have an average duration of approxi-
mately 76 frames, aligning with the primary mode in the distribution. The exception to
this pattern is seen in the circular gestures (CW circle and CCW circle), which exhibit a
longer average duration of approximately 93 frames.

The increased duration of circular gestures is justified, as they are conceptually and
execution-wise more complex compared to other gestures. During data capture, it was
noted that circular gestures posed challenges for accurate detection by the HoloLens 2.
As a result, users performed these gestures deliberately more slowly to ensure successful
capture.

Altogether, the shorter duration of the static ones is compensated by the longer dura-
tion of the circular ones, so that the overall mean and median are still around 76 frames.
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Figure 4.7: Average and median durations of gestures for each gesture class.

4.5.3. Training, development, and test set split

Given a total of 8589 samples captured from 25 unique users, it was crucial to perform
user-based partitioning to ensure data independence among the sets and prevent any
potential contamination. Accordingly, 17 users were allocated to the training set, 3 users
to the development set, and 5 users to the test set.

During the selection process for the test set users, particular attention was given to
ensuring diversity in terms of gender, age groups and previous experience with the
HoloLens 2. This diverse composition encompassed both users familiar with the tech-
nology and those without prior experience, further enhancing the dataset’s representa-
tiveness for various potential users.

Metric Training Development Test

Number of users 17 3 5

Number of gestures 5887 992 1710

Duration mean 76.228 79.225 75.412

Duration std 29.854 24.070 27.966

Min duration 20 21 23

Duration 25% (Q1) 52 64 56

Duration 50% (Q2) 76 78 75

Duration 75% (Q3) 97 90 92

Max duration 236 222 238

Table 4.3: Statistics of the dataset partition into the training set, development set, and test set.
Duration in frames. The partitioning was performed on a per-user basis to ensure data indepen-

dence and avoid cross-contamination among the sets.

The complete statistics of each dataset partition are provided in Table 4.3. The parti-
tioning was designed to achieve a balanced distribution of gestures among the various
classes, thus providing a solid foundation for training and evaluating the Hand Gesture
Recognition model.



CHAPTER 5

Experimentation

In this chapter, we present a detailed description of our experimental activities, which
aim to develop an efficient and accurate Hand Gesture Recognition system, based on
the groundwork established in previous chapters. Through a rigorous experimentation,
we examine the trade-offs between model architectures, data transformations, and clas-
sification strategies, with the final goal of obtaining an optimized solution suitable for a
seamless real-time integration in Mixed Reality applications.

5.1 Proposed approach

As discussed in Section 3.1.2, our gesture recognition strategy is based on the use of
three-dimensional positional information of hand joints captured by the HoloLens 2 de-
vice. The proposed approach is centered around designing and implementing a robust
gesture classification system. Given a temporal window consisting of multiple frames,
our primary classifier is designed to determine the specific gesture within the window.

In addition, to lighten the computational load on this primary classifier and ensure
real-time processing, we propose the introduction of a preliminary binary classifier. The
purpose of this binary classifier, also referred to as detector, is to rapidly determine the
presence or absence of a gesture within a temporal window. As a result, we enable an
efficient filtering mechanism that prioritizes more complex analysis only when a gesture
is detected, enhancing the overall responsiveness of the system.

Taking into account the findings of the reviewed state of the art literature (see Section
3.3), we have concluded that the utilization of one-dimensional Convolutional Neural
Networks is promising for our gesture recognition approach. The efficiency inherent to
CNN-1D architectures aligns well with our goals, making them a suitable choice for our
experimentation.

Among the one-dimensional network options within the gesture recognition context,
we note the success of the STRONGER network [27], particularly due to its initial trans-
formations applied to the joint data. These transformations appear to enhance the dis-
criminative capabilities of the classifier, even though being a simple (and efficient) model.
Our research will delve into these transformative techniques, with a focus on their adap-
tation and integration into various network architectures.

5.1.1. Experimental setup and methodology

In this section, we describe the systematic experimental setup and methodology em-
ployed to conduct our investigation.

35
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Data preprocessing

In order to maintain uniformity within each training batch, it is necessary that all tem-
poral windows have the same dimensions. To address this, we make the simplifying
assumption that all windows contain a fixed number, K, of frames. After the dataset
cleaning process, we conducted the following preprocessing step: for a given gesture
window, we resized it to precisely contain K frames. If the window had fewer frames, we
padded it with frames from the borders. Conversely, if the window exceeded K frames,
we retained only the central K frames, as these frames are more likely to capture the
essence of the gesture due to the inherent noise associated with gesture labeling.

Temporal window definition

The choice of an optimal value for K, the number of frames within each temporal window,
is a critical factor. After careful consideration, we propose K = 76 as the ideal value. This
choice is motivated by our observations in Section 4.5.2, where the median and mean
duration of gestures converged around this size (see Figure 4.7).

Training configuration

During the training process, several techniques were employed to optimize model per-
formance. The training configuration included a batch size of 32 and ran for 100 epochs.
Adaptive learning rate adjustment was implemented through a reduce on plateau sched-
uler, with a factor of 0.2 and a patience of 5 epochs, ensuring efficient convergence. Addi-
tionally, a custom learning rate schedule was defined, gradually decreasing the learning
rate from 0.001 to 0.00001 as the epochs progressed. The training process was further re-
fined by incorporating an early stopping method with a patience of 5 epochs to prevent
overfitting. Finally, Adam optimizer was used with an initial learning rate of 0.001.

Evaluation metrics

The performance evaluation of our proposed approach relies on accuracy (the ratio of
correct predictions to the total predictions) as the primary metric. For the main gesture
classifier, we assess the accuracy of correctly identifying the specific gesture in each win-
dow. For the detector (referred to as the binary classifier), we evaluate the accuracy of
detecting the presence or absence of a gesture in each window.

On the other hand, in the context of the complete system, we focus on the GER metric
(see Section 5.8.2) to determine the overall quality of the system, in which all types of er-
rors have the same importance. It is worth highlighting that in both the complete system
and the binary classifier, each window may or may not contain a gesture. However, if a
gesture is present, the window contains one, and only one, gesture.

Hardware and software configuration

Our experiments were conducted on two distinct hardware configurations. When refer-
ring to CPU-based computations, the configuration encompassed a machine equipped
with a 13th Gen Intel i7-1360P (16 cores) @ 5.000 GHz, 31726 MiB of RAM, Ubuntu 22.04.1,
and Python 3.10.12. For GPU-based computations, we utilized a setup featuring a 7th
Gen Intel i7-7700 (8 cores) @ 4.200 GHz, an NVIDIA GeForce RTX 3070 with 8192 MiB
of VRAM, 15926 MiB of RAM, Ubuntu 20.04.6, and Python 3.8.10. If the machine is not
explicitly mentioned, the one with GPU was used.
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Results and experimental replication

The reported experimental results are based on an average of ten independent training
runs, ensuring the reliability and consistency of our proposed approach. This strategy not
only mitigates the impact of random variations but also enhances the robustness of our
findings. In addition to presenting the mean values, we include the corresponding 95%
Confidence Intervals (CIs) to provide an understanding of result stability and variability.

5.2 Custom transformations for Hand Gesture Recognition

In this section, we delve into the motivation and implementation of the custom trans-
formations for enhancing Hand Gesture Recognition. An effective joint-sequence rep-
resentation should encompass both global motion information and location-viewpoint
invariance. However, it is challenging to satisfy both requirements in one feature [31].
Leveraging insights from the DDNet and STRONGER approaches [27, 31, 7], we adopt
the strategy of integrating distinct transformations at the top of the model. With this, we
seek to combine location-viewpoint invariant features, global orientation features, and a
two-scale global motion feature. In the following, we present each of the transformations
applied on the raw 3D joint positions.

5.2.1. Joint Collection of Distances (JCD)

The first transformation, the Joint Collection of Distances, focuses on capturing the Eu-
clidean distances between hand joints. For each frame, the JCD transformation calculates
the L2 distance matrix among every pair of hand joints, resulting in a symmetric matrix
with a full size of 26 × 26 = 676. However, exploiting its symmetrical nature and the fact
that the diagonal distances are always zero (reflecting the distance of a joint from itself),
we can simplify this matrix to its lower triangular form, which can be flattened into a
single vector of size:(

26
2

)
=

26!
2! · (26 − 2)!

=
26!

2! · 24!
=

25 · 26
2

= 325

Thus, from the original set of 26 three-dimensional joint points (which flattened form
a vector in R78), the JCD transformation yields a vector in R325. This representation offers
a remarkable advantage: it is inherently location-viewpoint invariant. It eliminates the
need for translations or rotations to position the hand in a canonical orientation.

Formally, let K be the total number of frames in a window, and let N be the total
number of joints (in our case K = 76 and N = 26). At frame k ∈ [1, K], the 3D Cartesian
coordinates of joint n ∈ [1, N] is represented as Jk

n = (x, y, z). The formula for calculating
the JCD feature of a frame k is:

JCDk =
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denotes the Euclidean distance between Jk
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j , with 1 ≤ i < j ≤ N.
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(a) Stop gesture (b) Grab gesture

Figure 5.1: Illustration of a reduced JCD transformation for distinct hand poses.

As an illustrative example, consider Figure 5.1, which provides a simplified represen-
tation of the Joint Collection of Distances transformation for two hand poses. To facilitate
visualization, we have focused on a subset of joint distances by selecting six key joints:
the palm and the tips of each finger. The left portion of the figure (Figure 5.1a) showcases
the JCD representation for an open hand gesture, corresponding to the Stop gesture.
Here, it is evident that the distance between the thumb and the pinky is notably large
(15 cm).

In contrast, the right side of the figure (Figure 5.1b) displays the JCD for a closed hand,
symbolizing the ending of a Grab gesture. In this case, we observe that the distances
between joints are generally much smaller (6 cm between the thumb and the pinky tips),
reflecting the proximity of the fingers to one another. This visual insight into the JCD
transformation highlights how it captures the relative spatial relationships among hand
joints, facilitating the discrimination among gestures.

However, while JCD provides viewpoint invariance, it lacks the ability to capture
global hand motion trajectories or orientations, making it insufficient for recognizing dy-
namic or symmetric gestures on its own (e.g., Thumbs up and Thumbs down would generate
the same JCD). This underscores the necessity of the additional transformations of the
network input.

5.2.2. Joint Pairs’ Directions (JPD)

The second transformation, referred to as Joint Pairs’ Directions, aims to derive a set of
representative directions from specific pairs of hand joints. These directions are calcu-
lated as the vector difference between the positions of the involved joints. Specifically,
the following seven directions are considered:

• Direction from the palm to the thumb tip.

• Direction from the palm to the index finger tip.

• Direction from the palm to the middle finger tip.

• Direction from the index finger tip to the thumb tip.

Continued on next page
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• Direction from the middle finger tip to the thumb tip.

• Direction from the middle finger tip to the index finger tip.

• Direction from the distal joint of the index finger to the index finger tip.
(It represents where the index finger actually points to)

Figure 5.2a illustrates this collection of directions within an open hand. These vectors
capture essential geometric relationships among different parts of the hand and represent
global orientation features. The incorporation of these directions into the hand represen-
tation enhances the information provided to the Neural Network and contributes to its
gesture discrimination capabilities.

5.2.3. Palm Orientation (PO)

The third transformation is simply the orientation of the palm, i.e., the normal that leaves
the palm of the hand. It is calculated as the unit normal vector to the plane defined by
the index knuckle, the pinky knuckle, and the palm. This transformation serves as an
additional global orientation feature, capturing the hand basic alignment. Figure 5.2b
shows the representation of this vector in an open hand.

(a) JPD transformation (b) PO transformation

Figure 5.2: Illustration of the Joint Pairs’ Directions and Palm Orientation transformations in an
open hand (Stop) gesture.

5.2.4. Two-scale motion features: Mslow and Mfast

The final transformations, Mslow and Mfast, cover joint velocities computed at two dis-
tinct scales: slow and fast. These transformations capture temporal differences (i.e., ve-
locity) between consecutive joint positions to derive global motions that are location-
invariant. As global motions for the same action may exhibit varying scales, some can be
faster and others slower, we need a robust global motion feature accounting for both fast
and slow movements.

To achieve this, we compute both fast and slow global motions. This approach draws
inspiration from the concept of two-scale optical flows proposed for RGB-based action
recognition [41]. SlowFast networks have demonstrated remarkable efficacy in classify-
ing videos within vast and challenging datasets such as Kinetics-400 and Kinetics-600
[41]. Their successful application extends to other video recognition tasks, including ac-
tion detection and object localization within RGB videos [41].
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Formally, given a window of K frames, and Sk = {Jk
1 , Jk

2 , . . . , Jk
N} being the set of joint

positions in frame k, the motions are computed as:

Mk
slow = Sk+1 − Sk , k ∈ {1, 2, 3, . . . , K − 1}

Mk
f ast = Sk+2 − Sk , k ∈ {1, 3, 5, . . . , K − 2}

Mslow =

{
ms

∣∣ ∀ k ∈ {1, 2, 3, . . . , K − 1} , ms = Mk
slow

}
M f ast =

{
m f

∣∣ ∀ k ∈ {1, 3, 5, . . . , K − 2} , m f = Mk
f ast

}

Notice that the final motion calculation is done per window and not per frame.

An intuitive explanation of these flows can be visualized with Figure 5.3. Mslow com-
putes the hand’s movement between consecutive frames, essentially measuring the dis-
tance covered by subtracting the positions of the same joint in both frames. Conversely,
Mfast carries out a similar operation but with a stride of 2, computing the displacement
between frame i and frame i + 2. In the illustration, the initial frame is depicted in blue,
the subsequent frame in purple, and the frame two steps ahead in green. This approach
captures different aspects of hand motion patterns, capturing both slower and faster fea-
tures of movement for a more complete representation.

(a) Mslow (b) Mfast

Figure 5.3: Illustration of Mslow and Mfast flow fundamental calculation.

5.2.5. Integration of transformations within the model architecture

Once we have defined the five input transformations, we can proceed to examine their
incorporation and utilization within the architecture of the Deep Learning model. As
previously mentioned, our approach involves employing CNN-1D, where a window of
K frames serves as the input, and the model’s objective is to predict the corresponding
gesture class based on this input sequence (or detect if there is a gesture in the binary
case).

In essence, upon receiving the input, the network initiates five distinct pathways,
applying a specific transformation to each through a lambda layer. Subsequently, the
network performs a series of convolutions with residual connections (for specific details,
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please refer to Appendix A) to obtain a form of sub-embedding for the gesture. These
sub-embeddings are then combined in a concatenation layer, resulting in a full gesture
embedding.

Thus, during training, the network will receive tensors of size: batch_size × K × A,
where K is the number of frames contained in a window and A is the number of compo-
nents in each frame. The size of these variables in each phase of the block of transforma-
tions can be seen in Table 5.1.

Stage K A Comments

Input 76 78 26 joints × 3 spatial components = 78

JCD 76 325 (26
2 ) =

26!
2!·(26−2)! = 325

JPD 76 21 7 directions × 3 spatial components = 21

PO 76 3 1 normal × 3 spatial components = 3

Mslow 75 78 The window becomes K − 1

Mfast 37 78 The window becomes K/2 − 1

Output of
Transf. block
(concatenate)

340
Last conv.
filter size
(128)

Kconcat = 76 + 76 + 76 + 75 + 37 = 340
Since all paths have passed through convolutions
before concatenation, the size of A is the filter size
(assuming uniformity across all paths for concat.)

Table 5.1: Output tensor sizes after each stage of the transformations block.

Once concatenated, the network proceeds as if the input was the produced embed-
ding rather than the raw joint data. The concept of this transformation block at the top of
the network is illustrated in Figure 5.4.

Input

JCD JPD PO Mslow Mfast

Multi-
Residual
Conv.
Blocks

Multi-
Residual
Conv.
Blocks

Multi-
Residual
Conv.
Blocks

Multi-
Residual
Conv.
Blocks

Multi-
Residual
Conv.
Blocks

Concatenate

Figure 5.4: Illustration of the initial transformations block in the model architecture, showcasing
the application of the five custom transformations.
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5.3 Translational layer: normalizing hand positions

In this section, we explore the Translational layer whose function is to normalize the
coordinates of the hand joints captured by the HoloLens 2 device.

5.3.1. Coordinate system and stationary frame of reference

In 3D graphics applications, including everything related to HoloLens 2, Cartesian coor-
dinate systems are employed to define the positions and orientations of virtual objects
[42]. These systems establish three perpendicular axes: X, Y, and Z. Each object in a
scene, or in our case, each hand joint, is assigned an XYZ position in its respective co-
ordinate system. This system of reference is expressed in meters and forms the basis for
rendering holographic content.

Holographic rendering dynamically adjusts the app’s presentation of holograms as
users move, ensuring that virtual objects align with their predicted head movements.
For seated-scale experiences within a game engine like Unity (which is the one we use
for the hand-capture apps), a stationary frame of reference defines the engine’s “world
origin”. Objects situated at specific world coordinates are positioned using this frame of
reference, allowing them to remain stable in the user’s view, even as the user moves [42].

In our context, the coordinates of hand joints are represented in this stationary frame
of reference, with the origin set at the user’s initial head position and orientation. In other
words, the (0, 0, 0) will be the position of the user’s head at the moment he/she opened
the MR application.

5.3.2. Addressing coordinate shifts

Given the nature of Mixed Reality, users are not stationary but rather move within the
physical environment. As a result, coordinates received by the deployed application can
differ significantly from those captured during dataset collection and used for training
the Neural Network. To address this challenge, we introduce the Translational layer,
which implements a normalization process for hand positions.

The Translational layer performs a translation normalization, achieved through joint
displacement within a window of frames. For this purpose, we calculate the mean po-
sition along each axis using a moving average that varies with each window. With this
value, we translate all the hand’s coordinates to the coordinate system’s origin.

Formally, let A be the total number of components of a frame, that is, N × 3 (number
of joints times coordinates per joint). Given a window of size (K × A) , we reorder the
tensor to a size of (K·A

3 × 3) and we calculate the global mean per axis: µx , µy , µz. Once
the means have been calculated, we construct the translation matrix T of size (K × A):

T =


µx µy µz µx µy µz . . . µx µy µz
µx µy µz µx µy µz . . . µx µy µz
...

...
...

...
...

...
. . .

...
...

...
µx µy µz µx µy µz . . . µx µy µz


And finally, all the points of the window W are translated by subtracting these aver-

ages: W ′ = W − T.
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Our ultimate goal is to enable direct input of captured HoloLens 2 windows into the
Neural Network. To achieve this, we have integrated the normalization process directly
into the network’s architecture. A lambda layer, the Translational layer, is positioned at
the network’s top, even before the application of the transformations block. This layer is
responsible for the initial translation of positions to the origin before further calculations
are performed, ensuring consistency between the input data and the training context.

It is crucial to emphasize that translation is applied per window, rather than per
frame. This approach preserves the concept of motion, allowing the hand to maintain
its dynamic properties. An example of window translation is illustrated in Figure 5.5.

(a) Original hand motion window (b) Translated hand motion window

Figure 5.5: Illustration of the Translational layer’s normalization process on a CW circle hand
gesture window.

5.4 Data Augmentation techniques

In order to introduce additional variability to the dataset and enhance the model’s ability
to generalize, we have implemented a simple Data Augmentation strategy. This aug-
mentation process involves applying perturbations to the joint positions, allowing the
network to encounter a broader range of hand configurations during training. Specifi-
cally, the following augmentation techniques have been incorporated into the data pre-
processing pipeline:

• Gaussian Noise (GN): We add Gaussian Noise with a mean of zero and a standard
deviation of 0.001 to the joint positions. This noise is applied independently to each
frame in a window with a 50% probability. As a result, the hand positions within
the window suffer subtle fluctuations.

• Rotations: Rotations are applied around any of the axes (chosen randomly) within
the range of [-20 degrees, +20 degrees]. These rotations are applied uniformly to all
frames within a window, introducing minor variations in hand orientation.

• Scaling: Uniform scaling is performed along all three axes simultaneously, within
the range of [0.75, 1.25]. This ensures that the hand’s overall size can vary slightly
while maintaining proportionality.

Notably, no translations are applied during this augmentation process, as hand posi-
tions are normalized within each window using the Translational layer. Additionally, the
mean of the introduced noise is set to zero to avoid altering the overall hand position.
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To implement this augmentation strategy, we utilized the ImageDataGenerator pro-
vided by the Keras library. While initially designed for image data, we adapted it for our
purpose by introducing a dummy dimension to the data. By working with tensors of size
(batch_size×K × A× 1), we effectively utilize the preprocessing_function argument of
the generator. Within this custom preprocessing function, transformations were defined
manually using NumPy. Subsequently, the network’s input layer handles the reshaping
and removal of the extra dummy dimension, ensuring compatibility with the rest of the
architecture.

By incorporating these augmentation techniques, we seek to enrich the dataset with
diverse hand configurations and motions, enabling the model to become more robust and
generalize effectively. An illustrative example of this Data Augmentation is presented in
Figure 5.6 applied to a Palm hand gesture frame.

(a) Original hand (b) Augmented hand

Figure 5.6: Data Augmentation example with Gaussian Noise, scaling (× 0.78), and rotation
around the Z-axis (+ 20◦).

5.5 Hand gesture classification models

5.5.1. Model comparisons and implementations

As we have already discussed in Chapter 3, since Yang et al. [31] observed that a very
simple network architecture based on 1D convolutions fed with features derived from
the hand joint sequence can provide state-of-the-art results with reduced computational
complexity, they are, together with MLPs for baseline, the option where we will mainly
focus. In the following, we present the different models studied.

Baseline model: MultiLayer Perceptron (MLP)

The MultiLayer Perceptron serves as our baseline model for hand gesture classification.
In this approach, the entire gesture sequence within a window is flattened into a vector
of size (K · A). The architecture of the MLP consists of four Fully Connected (FC) layers.
The ultimate layer is a softmax classifier, totally connected to the previous layer’s output,
featuring a number of neurons equivalent to the dataset’s class count. Within the hidden
layers, each one is composed of 500 neurons, with ReLU as the activation function, and
with dropout layers incorporated before the dense layers.
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While the MLP offers simplicity and ease of implementation, its design inherently
limits its ability to capture intricate temporal patterns in the gesture sequences. In subse-
quent sections, we will explore more advanced models that aim to address this limitation
and improve classification accuracy.

Residual Network 1D (ResNet-1D)

The Residual Network 1D architecture is structured similarly to a traditional ResNet [8]
but employs 1D convolutions. Comprising a total of 11 layers, the network consists of
three distinct residual blocks, culminating in a Global Average Pooling (GAP) layer and
a final softmax classifier. The number of neurons in this classifier is equal to the number
of classes in the dataset.

Each residual block starts with three consecutive convolutions, the output of which
is added with the residual block’s initial input. This summation is then directed into the
subsequent layer. All convolutions utilize a fixed number of filters: 64 for the first block
and 128 for the second and third blocks. The Rectified Linear Unit (ReLU) activation
function is employed, preceded by a Batch Normalization operation. Within each resid-
ual block, the filter length is set at 8, 5, and 3 for the first, second, and third convolution,
respectively. This configuration of ResNet-1D allows for the capture of intricate temporal
patterns [15] which should help in the classification of dynamic gestures.

STRONGER network

For the STRONGER architecture, we implemented the model based on the description
provided in the paper [27], as we did not find an available implementation. It begins
with the application of the transformation block (for simplicity, we have adopted our
block which is similar to the one they propose). After the concatenation of transformed
features, the model proceeds with four additional convolutional layers. Subsequently,
a Global Average Pooling (GAP) layer is utilized to flatten the resulting tensor. The flat-
tened representation is then passed through a Fully Connected (FC) layer comprising 128
neurons, and finally, through another dense layer with as many neurons as the number
of classes together with a softmax activation function.

Although it is not exactly the original network of the paper (we have also placed the
Translational layer on top of it), it is very similar. Since it has already shown a favorable
performance in gesture recognition tasks, we expect it to also hold for our dataset.

Enhanced models: MLP and ResNet-1D with transformations block

With these models, we explore the impact of integrating the proposed transformations
into the two architectures already seen. The core concept behind these enhanced models
is introducing the transformation block, encompassing the five distinct paths at the top
of these Neural Networks. By doing so, we aim to assess whether including this block
positively influences the performance, incorporating domain-specific transformations as
an initial processing step.

ParaRed: Parameter-Reduced model

With the objective of achieving real-time gesture recognition, we also developed the
ParaRed network, a parameter-reduced version of our best-performing model (see Ta-
ble 5.2). By lightening the architecture through the removal and simplification of some
convolution blocks, we sought to strike a balance between computational efficiency and
gesture classification accuracy.



46 Experimentation

5.5.2. Results analysis of gesture classification models

Once the architectures have been described, we proceed to evaluate their performance.
We have analyzed the models with and without Data Augmentation. This analysis aims
to identify the best models, as well as to evaluate the effectiveness and added value of
the transformations.

Model Accuracy (± CI)

MLP 0.896 ± 0.019

DA + MLP 0.915 ± 0.017

ResNet-1D 0.968 ± 0.011

DA + ResNet-1D 0.969 ± 0.011

STRONGER 0.970 ± 0.011

DA + STRONGER 0.977 ± 0.009

Transf + MLP 0.878 ± 0.020

DA + Transf + MLP 0.895 ± 0.019

Transf + ResNet-1D 0.984 ± 0.008

DA + Transf + ResNet-1D 0.985 ± 0.008

DA + ParaRed 0.981 ± 0.008

Table 5.2: Classification results of the different models on our dataset. It is shown the mean
accuracy and the 95% Confidence Intervals (CI) of ten independent training runs.

In Table 5.2, we can see the results of the accuracy of each classifier. The baseline Mul-
tiLayer Perceptron already achieves remarkable accuracy, reaching a precision of 0.896.
Moving on, the introduction of ResNet-1D demonstrates excellent progress in dealing
with temporal sequences, resulting in a substantial accuracy boost up to 0.968. This result
reaffirms the suitability of residual architectures for temporal data processing, aligning
with their proven success in similar 1D contexts [15].

We expected good results from the STRONGER, and so it has been, obtaining an
accuracy of 0.977 in the Data Augmentation (DA) variant. This result reinforces the idea
that incorporating complex transformations at the top of the network holds promise for
improving gesture recognition.

Turning our attention to the models integrated with the transformations mentioned
above, some divergences in performance emerge. The MLP has lost accuracy, probably
due to the inherent flattening operation, which, together with the transformations, seems
to aggravate the loss of positional information. As a result, its accuracy decreases to 0.878,
even behind the plain MLP. In contrast, the ResNet-1D positively integrates the transfor-
mations. It achieves the highest accuracy of 0.985 in the DA configuration, showcasing
the compatibility of these transformations with residual architectures and their efficacy
in capturing intricate temporal relationships.

Furthermore, our proposed ParaRed, a parameter-reduced version with five times
fewer parameters (see Section 5.7.1) than the best ResNet (DA + Transf + ResNet-1D),
emerges as a strong candidate. Despite the limitations imposed by this parameter reduc-
tion, it maintains a competitive accuracy of 0.981, reaffirming the robustness of its design
and its potential as an efficient real-time gesture recognition model.
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In addition, the visualization of the confusion matrices of these models can be found
in Appendix B, which provides an overview of the classification model results on specific
gestures. Although the obtained accuracy results already indicate generally good perfor-
mance, it is interesting to highlight specific areas of confusion. In particular, the MLP
model shows confusion between Wave and Stop gestures, as well as between Follow me
and Palm. Also, we can see how the Transf + MLP model fails mainly because of signif-
icant confusion between the right and left gestures (both those of a straight gesture and
circles) and the DA version directly classifies all CW circle as CCW circle.

Finally, it should be noted that Data Augmentation is advantageous in all our mod-
els. Although its impact may vary depending on the model, it is undeniable that it con-
tributes to improving the overall performance, which further underlines its importance
in enhancing model generalization.

5.6 Binary gesture detection

5.6.1. Motivation

The motivation for employing binary gesture detection includes several reasons. First
and foremost, the adoption of a detection approach aligns with established practices in
the domain, particularly usual in the realm of RGB video-based gesture recognition [29,
30]. This approach is based on the concern to improve computational efficiency and real-
time processing, a common goal shared across HGR literature.

Furthermore, our dataset does not have a specific no-gesture class. In situations
where a gesture is not present, a method is required to detect such instances effectively.
While one potential solution involves employing softmax probabilities as a means of
decision-making, it is essential to acknowledge the inherent limitations of this approach.
Neural Networks often exhibit a tendency toward overconfidence in their predictions,
yielding predicted probabilities that may not accurately reflect true confidence levels [43].

Consequently, the implementation of more advanced calibration techniques [43, 44]
to address this disparity between predicted and true probabilities becomes a viable con-
sideration. However, the binary gesture detection approach offers us an intuitive and
interpretable framework that avoids the complexities associated with probabilistic un-
certainty.

5.6.2. Data capture for no-gesture

Defining and capturing samples of non-gesture instances was conceptually more chal-
lenging because of the actual definition of the no-gesture class itself. Unlike the well-
defined categories of gestures, no-gestures lack a clear and predefined form, making their
capture a complex task. To meet this challenge, we adopted an imaginative approach
which uses the same application employed for gesture capture (see Section 4.1.3).

Specifically, we asked users to perform simple, non-gestural movements while the
application captured their hand joints. Emphasis was placed on ensuring that no rec-
ognizable gestures from the 16 predefined classes were performed during the record-
ing sessions. This deliberate avoidance of gestures aimed to create a distinct dataset of
no-gestures, representing a wide range of natural and spontaneous non-gestural move-
ments. Special attention was given to diversifying this no-gesture dataset to encompass
various orientations, hand placements, and viewpoints.
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The methodology consisted of recording the user’s movements during the entire ses-
sion, encompassing the period between the “record” and “exit” commands. Interactions
involving the “start” and “stop” commands were deliberately omitted, as each window
extracted from a session could be labeled directly as a no-gesture instance, avoiding the
need for additional annotations.

A subset of the participants were used for this task, 7 in particular, who recorded a to-
tal of 5,592 samples of non-gestures. To prevent any cross-contamination, the dataset was
partitioned on a per-user basis, distributed among the training (4,970 samples), develop-
ment (262 samples), and testing (360 samples) sets. Furthermore, an equivalent number
of gesture samples were included in each set, although these samples were labeled with a
generic gesture label rather than the specific gesture class. As a result, the binary dataset
encompassed a total of 9,940 training instances, 524 development instances, and 720 test-
ing instances.

5.6.3. Binary gesture detection models

In this section, we explore a variety of models designed for the binary classification task
of distinguishing between gestures and no-gestures. This task is crucial for efficient and
fast gesture detection. Our goal is to strike a balance between model simplicity and per-
formance, evaluating both lightweight models suited for fast decision making and the
higher performing models from the previous section, to assess their suitability for this
specific detection task. In the following, we delve into the details of each model.

Previous models adapted for binary gesture detection

These models share the same architectures as discussed in Section 5.5.1. However, a
modification is applied to their final layers for the binary gesture detection task. In-
stead of the previous Fully Connected layer with neurons corresponding to the number
of gesture classes and a softmax activation function, the final layer is substituted with a
single-neuron FC layer featuring a sigmoid activation function. This change reconfigures
the models into binary classifiers, allowing them to differentiate between gesture and
non-gesture instances effectively. Specifically, the models evaluated were:

• MultiLayer Perceptron (MLP)

• Residual Network 1D (ResNet-1D)

• ResNet-1D with transformations block (Transf + ResNet-1D)

• Parameter-Reduced (ParaRed)

SimpleDetectGestureNet: a simple and lightweight model

Moreover, we introduce a model named SimpleDetectGestureNet, specifically designed
for efficient and effective binary gesture detection. The core structure of the SimpleDe-
tectGestureNet is composed of a 1D convolutional layer with 32 filters, followed by a
1D max-pool operation to capture essential features. The resulting feature maps are then
flattened into a one-dimensional vector, subsequently fed into a Fully Connected layer
containing 32 neurons, activated by the ReLU function. These hyperparameters have
been selected after a brief search for optimal settings. Finally, the output of this layer
is connected to a single-neuron FC layer with a sigmoid activation function. This sim-
ple architecture aims to balance computational efficiency and classification performance,
making it a suitable candidate for fast binary gesture detection.
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Transfer learning for detection: adapting the best classification model

Finally, we also explored the transfer learning approach. Building on the success of our
most efficient gesture classification model, we adapted it to the binary detection task.
This adaptation was carried out in two distinct phases.

In the first phase, we loaded the pre-trained classification model (DA + Transf +
ResNet-1D), removed its final layer containing neurons equal to the number of classes
with a softmax activation, and replaced it with a single neuron Fully Connected (FC)
layer with a sigmoid activation. The weights of all layers except the newly added FC
layer were frozen to prevent major changes to the already learned features. This phase
involved training for 50 epochs using dynamic learning rate scheduling, which ranged
from 0.01 to 0.0001.

Subsequently, in the second phase, we unfroze all layers of the model and conducted
a complete fine-tuning process. This phase encompassed 100 epochs of training, employ-
ing a much lower learning rate of 0.000001 in order to facilitate a gradual adaptation of
existing weights and prevent abrupt changes that might compromise the model’s prior
knowledge and generalization ability.

5.6.4. Results and insights of detection models

After analyzing the different models, we evaluated them for the gesture detection task.
Each model was trained using Data Augmentation (DA) since, as discussed in Section
5.5.2, it has been proven that it helps to improve the performance of these classifiers.

Model Accuracy (± CI)

DA + MLP 0.93 ± 0.02

DA + ResNet-1D 0.96 ± 0.01

DA + Transf + ResNet-1D 0.91 ± 0.02

DA + ParaRed 0.88 ± 0.02

DA + SimpleDetectGestureNet 0.96 ± 0.01

DA + Pre-trained 0.92 ± 0.02

Table 5.3: Detection results of the different models on our binary dataset. It is shown the mean
accuracy and 95% Confidence Intervals (CI) of ten independent training runs.

Table 5.3 shows the results of each detector’s accuracy. Interestingly, models incorpo-
rating transformations did not manage as well in this context. The DA + Transf + ResNet-
1D and ParaRed models showed comparatively weaker results. Although promising, the
pre-trained transfer learning model reached a midpoint with an accuracy of 0.92. Given
the performance of the DA + Transf + ResNet-1D model, we expect a similar result for
this pre-trained model, though it improves it slightly.

Proving the effectiveness of simplicity, the MLP achieved a commendable accuracy of
0.93, underlining that simple models can work satisfactorily at this particular task. The
best-performing models were ResNet-1D and SimpleDetectGestureNet, both with an ac-
curacy of 0.96. Once again, ResNet-1D models demonstrate their skill in capturing tem-
poral dynamics, while SimpleDetectGestureNet shows that meticulous hyperparameter
selection can improve performance even in modestly designed models.
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5.7 Efficiency analysis

In this section, we delve into the efficiency review of the developed models, including
gesture classification and binary gesture detection. We focus on two key aspects: model
parameters and inference time in both CPU and GPU, followed by a discussion about the
real-time applicability of these models in Mixed Reality (MR) applications.

5.7.1. Model parameters and inference time

To evaluate the efficiency of our models, we analyze their model complexity in terms of
the number of parameters and inference time. Model parameters enclose both trainable
and non-trainable elements. Inference time, crucial for real-time performance, is esti-
mated for a single input window (batch_size = 1). For larger batches, times are similar
thanks to parallelism, but being a model that will work in an online environment, we
should consider the worst case where we only receive one window at a time.

In addition, it is vital to note that the first inference always takes much longer than
the rest because the predict function is created during the first (and only the first) call
to predict_on_batch1. Therefore, these results are the median (and not the mean) of
1000 inferences (by averaging the last 999 inferences, the resulting times are essentially
identical). The results can be seen in Tables 5.4 (gesture classification) and 5.5 (binary
gesture detection).

Model # parameters Time in CPU (ms) Time in GPU (ms)

MLP 3,473,516 6.7035 2.9768

ResNet-1D 552,976 8.0527 4.9331

STRONGER 1,839,604 13.2428 8.8700

Transf + MLP 45,571,792 31.2486 12.7916

Transf + ResNet-1D 1,308,176 22.8349 13.8903

ParaRed 262,992 11.7466 12.9396

Table 5.4: Efficiency results for gesture classification models. The reported times represent the
median of 1000 inferences.

Model # parameters Time in CPU (ms) Time in GPU (ms)

MLP 3,466,001 6.4169 2.9565

ResNet-1D 551,041 7.8323 4.8938

Transf + ResNet-1D 1,306,241 25.7132 14.0536

ParaRed 262,497 11.8502 12.7840

SimpleDetectGestureNet 169,313 5.3105 3.0947

Pre-trained 1,306,241 23.9999 14.3335

Table 5.5: Efficiency results for gesture detection models. The reported times represent the me-
dian of 1000 inferences.

1For more details, see make_predict_function in the source code.

https://github.com/keras-team/keras/blob/master/keras/engine/training.py
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As it can be seen, in general, MLP models emerge as the most efficient in terms of in-
ference speed, thanks to their simplicity and low computational complexity. Despite their
memory-intensive nature due to the high number of parameters, MLPs achieve great
times in both CPU and GPU execution. However, their performance trade-off becomes
evident as their accuracy remains behind other models, particularly in gesture classi-
fication tasks. While MLPs offer competitive speeds, alternatives with notably higher
precision are worth considering if temporal constraints allow.

Regarding gesture classification, models with transformations exhibit increased com-
putational demands compared to the ResNet-1D, leading to slower inference times. Nev-
ertheless, the ParaRed model balances accuracy and efficiency, achieving competitive
speeds while outperforming the ResNet-1D in classification accuracy (see Table 5.2).

For binary gesture detection, the results of the same models are naturally similar, as
the main distinction lies in the complexity of their final layers. The pre-trained model,
built upon the DA+Transf+ResNet-1D architecture, has a pretty analogous performance,
making it of no interest due to better options, both in accuracy and inference speed. On
the other hand, the SimpleDetectGestureNet has achieved its intended objective, being
the one with the least parameters, even less than the ParaRed. Moreover, it is the fastest
on CPU, surpassing the MLP and closely rivaling GPU speeds.

Finally, a remarkable thing about the ParaRed is worth mentioning: it is the only one
that shows superior CPU performance compared to GPU execution, potentially due to
the CPU-GPU information transfer overhead.

5.7.2. Real-time applicability in MR applications

The efficient deployment of gesture recognition models within Mixed Reality environ-
ments presents a significant challenge, as real-time performance is essential to deliver
seamless and immersive user experiences. While deploying these ML models onto ded-
icated servers rather than the HoloLens 2 itself mitigates device resource concerns, the
critical factor lies in the inference speed.

In addressing real-time feasibility, two key components deserve close consideration:
the collective inference time of the chosen models and the potential delay introduced
by the communication between the HoloLens 2 and the server. Although we do not
have data on the exact communication delay because it may depend on many factors, its
impact on the overall system’s latency underscores the need to consider it.

Opting for the hierarchical modeling strategy promises good results. Using the fast
and lightweight SimpleDetectGestureNet for detection (5.3 ms on CPU) and ParaRed
for classification (11.7 ms on CPU) yields a combined processing time of approximately
17 ms per gesture inference. And note that this situation represents the worst-case sce-
nario. In an MR application context, the analyzed windows are more likely to comprise
non-gesture instances primarily. Consequently, the detector can quickly discard these
windows without needing to be processed by the classifier. This inherent bias toward
non-gestural instances further improves the feasibility of the real-time system.

Nevertheless, it should be noted that this time is without considering the delay of
the transmissions. Given that the HoloLens 2 can sample the hand joints at 30Hz, corre-
sponding to a time between frames of 33.33 ms, we still have a margin of about 16 ms
for the potential communication overhead. Therefore, maintaining real-time throughput
that matches the 30 Hz capture rate of HoloLens 2 so that windows overlap up to a single
frame separation appears achievable.
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5.8 Combined gesture recognition system

In this section, we delve into the development and evaluation of our combined gesture
recognition system, which integrates both the binary gesture detection model and the
specific gesture classification model in a hierarchical manner. This approach aims to
optimize the trade-off between real-time performance and accurate gesture recognition
within Mixed Reality applications.

5.8.1. Decision-making process

As we have already mentioned throughout this chapter, the decision-making process of
our combined gesture recognition system is a crucial aspect that involves two sequential
stages: gesture detection and gesture classification. This hierarchical approach ensures
that predictions are fast enough, while maintaining accurate recognition. The basic work-
flow is illustrated in Figure 5.7.

YN
Is_Gesture?

Binary Model

Classification Model

Receive
Window

Send
NO_GESTURE

Send
GESTURE_TYPE

Figure 5.7: Basic hierarchical workflow of the combined gesture recognition system.

During the gesture detection stage, the incoming windowed data is first analyzed
using the binary gesture detection model. If a gesture is detected, the data proceeds to
the gesture classification stage. At this point, the specific gesture is identified using the
gesture classification model. In addition, further complexity can be introduced by incor-
porating a confidence threshold based on the softmax probability of the classifier. This
threshold determines whether the prediction of a gesture is reliable enough to classify
it as such or not, even if the detector initially identifies it as a gesture. This approach
takes advantage of the tendency of Neural Networks to exhibit overconfidence in their
predictions [43] so that if it is low, it is plausible that it is a non-gesture, thus increasing
the overall robustness of the system.

5.8.2. System evaluation and threshold analysis

To evaluate the system’s performance as a whole, we must first establish the value of
its hyperparameters. Assuming the approach that considers low softmax probabilities
from the classifier as non-gesture predictions, we have to determine the value of two
thresholds: those of the detector and the classifier.
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For the detector, we performed an analysis of the Receiver Operating Characteristic
(ROC) curve derived from our best model on the test set, setting the binarization thresh-
old where the False Positive Rate (FPR) equals the False Negative Rate (FNR). This critical
equilibrium point occurs at a threshold of 0.5516, with FPR = FNR = 0.0333, as depicted in
Figure 5.8.
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Figure 5.8: ROC curve for the binary gesture
detection model.
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Figure 5.9: Optimal threshold analysis for
the gesture classifier model.

On the other hand, for the gesture classifier, we study the optimal value of the thresh-
old according to the improvement achieved in the system’s overall performance. To
achieve this goal, we formulated a metric called Gesture Error Rate (GER) to evaluate
the effectiveness of the entire system. When analyzing a given data window, five differ-
ent situations can occur, each corresponding to different outcomes:

• False Positive (FP): Occurs when a no-gesture is erroneously detected as a gesture.

• False Negative (FN): Arises when a gesture is mistakenly classified as a no-gesture.

• Classification Error (CE): Represents the misclassification of a particular gesture
(e.g., identifying Gesture_X as Gesture_Y).

• True Positive (TP): Entails the accurate detection and classification of a gesture.

• True Negative (TN): Denotes the precise detection of a non-gesture.

The Gesture Error Rate (GER) is thus defined as the ratio of the sum of False Pos-
itives, False Negatives, and Classification Errors against the total number of windows
processed. Mathematically, it can be expressed as:

GER =
FP + FN + CE

total_windows_processed

This metric takes into account the impact of all possible errors, providing a solid as-
sessment of the performance of the complete, combined gesture recognition system.

Hence, to determine the optimal threshold for the gesture classifier, we analyzed its
GER in relation to different threshold values. This evaluation allowed us to understand
how the GER changes with varying thresholds, representing the trade-off between the
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different types of errors. Figure 5.9 presents the resulting curve depicting this relation-
ship. As it can be seen in the figure, the optimal threshold was identified as 0.54, yielding
a notable system-wide performance over test with a GER of 3.75%.

This result proves that considering gestures with low softmax probabilities as non-
gestures can improve the overall performance of the combined gesture recognition sys-
tem. Not setting it would be equivalent to setting it to zero, and, as it can be seen in
Figure 5.9, this would give us a worse GER of 4.17%.

5.9 Deployment: proof-of-concept MR app

In this section, we delve into the deployment aspects of our system, outlining the com-
munication framework and introducing the custom Mixed Reality application designed
to validate the functionality of the complete gesture recognition system.

5.9.1. System deployment

Enabling efficient and smooth real-time gesture recognition within the MR environment
involves a carefully considered deployment strategy. In our case, we chose not to per-
form inference directly on the HoloLens 2 device, although it is possible with some chal-
lenges [45]. This decision was primarily driven by the concern of potential performance
degradation, where device saturation could lead to intermittent stuttering of the Mixed
Reality interface, compromising the user experience. Instead, we designed an alternative
approach.

In our deployment scheme, we set up a dedicated server responsible for conducting
the inference. This architecture reduces the computational load on the HoloLens 2, as
it just sends the joint information and awaits the class label response. This approach
aligns with conventional communication patterns in MR applications and allows for a
simple integration. Furthermore, this configuration also ensures model accessibility, as
the server uses standard Python code with Keras models in the well-known .h5 format.

Joints 3D
Coordinates

Predicted
Gesture

ML Model

Figure 5.10: Communication architecture of the combined gesture recognition system.
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In practice, the interaction proceeds as follows: the HoloLens 2 transmits joint data to
the server, which then performs the hierarchical inference proposed in Section 5.8.1. The
resulting label is returned to the application, enabling real-time responses such as scene
transitions or game initiation. To facilitate this communication, we employed ZeroMQ
(ZMQ) protocols over TCP packets designed for low-latency interactions. Figure 5.10
visually represents this interaction concept.

With this setup, the MR application can take advantage of the capabilities of the com-
bined gesture recognition system without compromising the immersive experience. Fur-
thermore, the modular design allows for easy adjustments and extensions to fit various
scenarios, demonstrating the versatility and potential of the proposed solution.

5.9.2. Proof-of-concept MR app

Finally, we have developed a simple Mixed Reality application to serve as a practical
demonstration of our proposed system. While not intended for final deployment or ex-
haustive evaluation, this app allows us to explore the feasibility and performance of our
approach. The app design is minimalist, reusing the interface of our gesture capture app.
Instead of providing a gesture proposal, it displays the inference results and argmax val-
ues of the probability distributions computed by our ML models.

The video preview window has been removed in this interface, and a small keyboard
has been integrated to input the server’s IP address. Figure 5.11 illustrates a Mixed Re-
ality view, presenting a combination of real-world and holographic elements. The user’s
hand joints, detected by the HoloLens 2 device, are overlaid on their hand, and the out-
come of the gesture recognition process is projected onto a nearby wall.

Figure 5.11: Mixed Reality view of the proof-of-concept application. We can observe an example
of use, with a hand performing a Thumbs up, the overlapping of the detected joints, and the result

of the inference of this gesture.



56 Experimentation

For the sake of simplicity in this proof-of-concept version, we have excluded the con-
sideration of window overlapping (the overlap issue is discussed in Section 6.4). Hence,
the HoloLens 2 device captures an entire window of 76 frames before transmitting the
76 × 78 tensor (26 joints per 3 space components each yields 78 floats per frame) to the
server for inference. Upon completion, the inference results are sent back to the device for
displaying them in the user’s holographic view. This process continues iteratively, with
non-overlapping windows being processed by the server until the user issues a “stop”
command to conclude the capture.

5.10 Discussion and analysis of results

The results obtained from the experimentation provide a complete overview of the per-
formance and efficiency of the proposed models for gesture detection and classification
in Mixed Reality applications. Evaluating accuracy and efficiency becomes crucial, as
both aspects are essential to ensure a smooth real-time experience in MR environments.

In the gesture classification section, it is observed that MLP models, despite their
computational efficiency, reach a lower precision level than more complex architectures
with the transformations block, like ParaRed and ResNet-1D. While the latter shows im-
pressive performance (98.5% accuracy), the balance between precision and speed must
be considered based on the specific requirements of the MR application.

Regarding the binary gesture detector, the implemented models demonstrated op-
timistic capabilities in distinguishing between gestures and non-gestures, with the best
model achieving an accuracy of 96%. Furthermore, the hierarchical approach adopted
for the combined detection and classification system yielded encouraging results, with
a GER of only 3.75%. Integrating the SimpleDetectGestureNet architecture for detec-
tion and ParaRed for classification proved to be an effective combination in terms of
performance-speed trade-off. This choice is based on SimpleDetectGestureNet’s ability
to quickly discard non-gestures before passing them to a more exhaustive classification
by ParaRed.

Implementing this solution in an MR proof-of-concept application highlighted the
feasibility of the proposed approach, with ample room for exploration of more complex
aspects like window overlap and optimization of communication between the device and
the server.

In summary, this chapter underlines the importance of model selection and efficient
strategies for gesture detection and classification in MR applications. These findings will
serve as a foundation for future developments and refinements in the search for an opti-
mal solution for smooth Human-Computer Interaction in Mixed Reality environments.



CHAPTER 6

Conclusions and future work

In this final chapter, we conclude our exploration of Hand Gesture Recognition in Mixed
Reality applications. Based on the learnings acquired during the research, we comment
on the achievements of our proposed framework, its alignment with relevant course sub-
jects, and explore possible future lines of research.

6.1 Conclusions

Throughout this work, a complete exploration of gesture recognition and classification
in the context of Mixed Reality applications has been performed. The primary objective
was to design, implement, and evaluate a robust and efficient HGR system for real-time
interaction in MR scenarios.

The investigation began with an in-depth review of the existing literature, which
showed us a wide range of methodologies designed to address the complexities of ges-
ture recognition. Each approach had distinct advantages and limitations, which led us to
evaluate carefully which to use. We deliberately chose 3D joint-based recognition over
more conventional methods based on RGB images. This decision was motivated by the
compact and potentially efficient nature of joint representations, although less well stud-
ied (which also gives us a margin for research and innovation).

Within this domain, diverse paradigms emerged, encompassing classical methods
such as Support Vector Machines (SVM) alongside contemporary techniques like Convo-
lutional (CNN) and Recurrent (RNN) Neural Networks. With this in mind, we decided
to study one-dimensional Convolutional Neural Networks (1D-CNNs). This architecture
has several advantages, mainly its simplicity and efficiency for one-dimensional signal
processing such as audio, text, and time series [14, 15, 16]. In our case, the continuous
signal of the 26 joints over time. Hence, this type of network was postulated as the best
option in terms of precision-speed balance.

When studying this network paradigm, we observed the prevalence of architectures
incorporating transformational layers at the top of the network. These layers served to
capture rich gestural embeddings. Being intrigued by this concept, we further inves-
tigated the generalizability of these transformation blocks across different network ar-
chitectures. Our goal was double: to discern the adaptability of these transformation
elements in various models and to determine the model that offers optimal performance.
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The main obstacle was the scarcity of large datasets required for effective training
of Deep Learning models. In the existing literature, the available datasets were no-
tably deficient, characterized by a limited number of samples and variable joint detec-
tion paradigms. Against this challenge, our response was to create our own extensive
dataset. To this end, we relied on the collaboration of 25 volunteers, each participating in
five recording sessions of approximately 10 minutes each. This joint effort allowed us to
collect an extensive corpus consisting of 8,589 gesture samples distributed in 16 different
classes, together with 5,592 representative instances of non-gestural activity.

Once the data was collected and cleaned, we implemented different gesture classifica-
tion and detection models, as well as our own transformation block, a translation block,
and a self-made Data Augmentation. ResNet-1D, with its block of transformations, per-
formed the best for the classification task, with an accuracy of over 98%. This success
demonstrates the transformation block’s adaptability to various architectural paradigms
and reinforces its effectiveness in the classification domain.

In addition, we also designed a reduced-parameter version of this best model to eval-
uate the trade-off between efficiency and accuracy. In particular, our empirical results re-
vealed that the simplified version maintained almost all its predictive effectiveness while
showing a higher speed, especially when used over CPU, where the inference time was
nearly halved.

In the binary gesture detection task, the SimpleDetectGestureNet emerged as the op-
timal choice due to its efficient performance, with an accuracy of 96%. Our basic network
demonstrated superior accuracy and processing speed despite exploring different and
more complex model configurations, outperforming the adapted architectures designed
for multi-class classification. Notably, transformation modules yielded limited benefits
in the binary context, where simplicity prevailed over complexity for optimal results.

Efficiency emerged as a critical factor for seamless integration in MR environments.
This led to a complete analysis that resulted in the strategic combination of ParaRed and
SimpleDetectGestureNet. Our hierarchical decision-making design effectively discards
non-gesture windows, ensuring fast processing and resource allocation. Furthermore,
the inference process was strategically offloaded to an external server, alleviating the
computational load on the HoloLens 2. In the proposed framework, the device focuses
on running the MR app and detecting the joints, transmitting the data to the server, and
waiting for the classification label.

This combined system was rigorously assessed using the Gesture Error Rate (GER)
metric (see Section 5.8.2), achieving an impressive GER of 3.75%. Furthermore, we per-
formed a proof-of-concept experiment that effectively demonstrated the viability and
feasibility of the designed framework for real-world utilization in Mixed Reality applica-
tions.

In conclusion, this work has analyzed the complexities of gesture recognition and
classification in Mixed Reality applications. The various state-of-the-art Deep Learning
techniques studied, the efficient model design, and the careful optimization have paved
the way for a robust and effective interaction paradigm. The learnings from this research
provide helpful guidance for developing future gesture-based systems, offering a further
step toward the successful fusion of human actions and digital experiences in immersive
environments.
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6.2 Achievement of objectives

Regarding the objectives established in section 1.2, the following accomplishments have
been achieved:

• Heterogeneous gesture recognition system: The system has been successfully im-
plemented, recognizing both static and dynamic gestures.

• Neural architectures study: A thorough exploration of Neural Network architec-
tures resulted in developing a ResNet-1D model with a transformation block. This
model achieved an accuracy exceeding 98% in gesture classification.

• Dataset development: Creating a comprehensive dataset comprising 8589 gesture
samples and 5592 no-gesture samples enabled robust training and validation of the
Deep Learning models.

• Gesture classifier: Implementing the ResNet-1D model with the transformation
block demonstrated its efficacy in accurately recognizing and classifying specific
gestures from input data.

• Binary classifier: The development of the SimpleDetectGestureNet, a lightweight
architecture, efficiently determined the presence or absence of gestures in joint data
windows, with an accuracy of 96%.

• Real-time system: Implementing a hierarchical system using the two models with
the best accuracy-speed trade-off has enabled real-time gesture recognition capa-
bilities, even over CPU.

• Evaluation and validation: Rigorous evaluation and validation processes finally
obtained a Gesture Error Rate (GER) of 3.75%, affirming the system’s accuracy and
robustness.

• MR application integration: The integration of the developed system within a ba-
sic Mixed Reality application showcased its potential for enabling natural and in-
tuitive interactions in real-world scenarios.

In summary, the successful achievement of these objectives underscores the viabil-
ity and effectiveness of the developed work, offering promising potential for seamless
integration into various Mixed Reality applications.

6.3 Relationship with course subjects

The content and development of this project intersect with a range of key subjects within
the field of Computer Science, Artificial Intelligence, Pattern Recognition, and Digital
Imaging. Virtual and Augmented Reality (Realidad Virtual y Aumentada) has played a
crucial role in conceptualizing the design and use of Mixed Reality, emphasizing the
practical utility of integrating gesture recognition into immersive environments.

The principles covered in Computer Vision (Visión por Computador) significantly influ-
enced the DL aspects of the work, including the utilization of advanced Deep Learning
architectures, Data Augmentation techniques, and preprocessing methods. Additionally,
concepts from Pattern Recognition and Machine Learning (Reconocimiento de Formas y
Aprendizaje Computacional) have been useful in improving the accuracy and efficiency of
gesture recognition algorithms.
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Artificial Neural Networks (Redes Neuronales Artificiales) provided a solid basis for
exploring and implementing various Neural Network models, including the key role
of Convolutional Neural Networks in gesture classification. The study of Biometrics
(Biometría) highlighted the importance of user comfort, confidence, and interaction ef-
ficiency, guiding decisions regarding developing a user-friendly and intuitive interaction
approach within Mixed Reality scenarios.

Efficiency and real-time performance, crucial aspects drawn from Computer Graph-
ics (Gráficos por Computador) and Graphics Programming (Programación Gráfica), signifi-
cantly influenced the development of the hierarchical decision-making system and the
optimization of the combined gesture recognition system. Insights from Game Engines
(Motores de Videojuegos) facilitated the integration of the gesture recognition framework
into a MR application using Unity, enabling a tangible understanding of real-world ap-
plicability.

The foundations of Machine Learning and Pattern Recognition explored in Applica-
tions of Pattern Recognition (Aplicaciones de Reconocimiento de Formas) provided the es-
sential basis for designing and fine-tuning the gesture recognition models. Finally, the
principles of Data Visualization (Visualización de Datos) played an essential role in devel-
oping effective visual representations, including the elaborate 3D joint visualizations that
contribute to understanding the whole gesture recognition process.

In essence, the multidisciplinary nature of this project has been enriched by insights
drawn from these various subjects, collectively contributing to the successful realization
of a robust and efficient gesture recognition system within the domain of Mixed Reality
applications.

6.4 Future work

The future trajectory of our gesture recognition system involves several challenging di-
rections to be studied, each offering opportunities to improve its performance, versatility,
and real-world applicability. In the following, we present possible new research direc-
tions, which could not be covered in this work due to the limited time duration of the
project.

A first option is to augment the dataset to include left-hand gestures. This could
be achieved through specialized operations like specular transformations or recording a
new dataset dedicated to left-hand gestures. Moreover, the adaptability of the models
should be investigated, ensuring that they can effectively recognize gestures from both
hands. Another more straightforward strategy might involve incorporating an initial
lambda layer that determines the handedness and, if required, performs mirroring.

The exploration of overlapping windows emerges as another interesting aspect. By
introducing overlapping windows into the data streaming process, the system could
improve the speed of gesture detection and benefit from a richer temporal context, im-
proving the system’s overall performance. Enhanced decision mechanisms that consider
overlapping, such as a voting system or a selective update approach, could optimize the
real-time efficiency of the system. Notably, such mechanisms could notify the HoloLens 2
device only when a substantial change in the recognition occurs, avoiding the continuous
sending of messages that would happen with the overlapping of windows.

The potential of early detection within the gesture recognition process presents an-
other route for exploration. The system could achieve reduced latency by introducing
larger windows and early detection mechanisms while maintaining gesture recognition
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accuracy. Furthermore, the contextual analysis of a sequence of windows could yield a
more precise context-aware interpretation of gestures.

Another future research approach involves exploring a multimodal gesture recogni-
tion system that combines 3D joint data with RGB camera input, as the HoloLens 2 also
has cameras and simultaneous acquisition could be done. This approach could improve
gesture understanding by simultaneously capturing spatial and visual cues. However,
the concurrent data capture raises questions about computational demands and trade-
offs in real-time processing, so careful investigation is needed to balance data richness
and efficiency.

A different avenue worth exploring is the investigation of model calibration tech-
niques. Calibrating the gesture recognition models could improve confidence estimates
and more accurate predictions. The overall system’s reliability and performance could be
further optimized by aligning the model’s output probabilities with the true likelihood
of correct classifications (see Section 5.6.1). This work could involve exploring methods
like Platt scaling or Isotonic regression [43], contributing to a refined and well-calibrated
gesture recognition system for practical deployment in MR scenarios.

Continuing along the path of future directions, the concept of a unified multiclass
model is also worth investigating. This model would incorporate all 16 gestures and the
no-gesture class. While this approach offers the advantage of simplicity by employing
a single model, it introduces challenges that deserve consideration. Evaluating the pre-
cision of this model will be crucial to determine if its accuracy improves or decreases
compared to the hierarchical design. Moreover, the absence of a rapid discarding mech-
anism is a challenge, requiring a fast and efficient inference process.

Hardware deployment across diverse platforms, such as GPUs and Jetson devices,
stands as another potential area for future investigation. Such deployment would of-
fer insights into the scalability of the system and its adaptability to various computing
environments. This analysis could show possible latency variations, especially in open
networks. Additionally, exploring alternative communication protocols, such as UDP,
could contribute to optimizing data transmission efficiency and reducing latency, further
improving the real-time responsiveness of the system.

In addition, developing a fully featured Mixed Reality application represents a key
future goal. This application could take full advantage of the gesture recognition system
to enrich user experiences, including interactive games, immersive storytelling, or other
unexplored forms of user participation. By designing and deploying a complete Mixed
Reality application, the system’s impact in real-world scenarios would be demonstrated.

Lastly, the potential for cross-domain applications should be noticed, as the gesture
recognition system developed in this project could be adapted and integrated into vari-
ous fields beyond Mixed Reality, including healthcare, education, and entertainment.

In conclusion, this work lays the foundation for future advancements in gesture recog-
nition for Mixed Reality applications. While substantial progress has been made, nu-
merous untapped opportunities remain for further improvements and innovations. As
technology advances and research continues, these potential directions promise to refine
the proposed system, enhance its capabilities, and ultimately contribute to the seamless
integration of intuitive and immersive interactions in Mixed Reality environments.
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APPENDIX A

Detailed architectures of
top-performing models

In this appendix, we present complete visual representations of the architectures for our
top-performing models. These diagrams are intended to provide a clear overview of
network structures, allowing a better understanding of their complexity and design.
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Figure A.1: Architecture of the main classifier (part 1).
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Figure A.2: Architecture of the main classifier (part 2).
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Figure A.3: Architecture of the main classifier (part 3).
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Figure A.4: Architecture of the main classifier (part 4).

Binary classifier: DA + SimpleDetectGestureNet
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Figure A.5: Architecture of the binary classifier.



APPENDIX B

Confusion matrices of
classification models

This appendix provides an overview of the confusion matrices obtained from evaluat-
ing the gesture classification models explored in this study. These matrices offer insight
into the performance and accuracy of each model in correctly classifying gestures into
different classes. The visual representation of these matrices is intended to aid in un-
derstanding which gestures the models can correctly classify, thus providing valuable
context for comparative analysis. It should be noted that since the results in Table 5.2 are
the mean of 10 independent runs, it is shown the confusion matrix of the model whose
accuracy is more similar to the mean.
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Figure B.1: Normalized confusion matrix for model MLP.
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Figure B.2: Normalized confusion matrix for model DA + MLP.
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Figure B.3: Normalized confusion matrix for model ResNet-1D.
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Figure B.4: Normalized confusion matrix for model DA + ResNet-1D.
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Figure B.5: Normalized confusion matrix for model STRONGER.
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Figure B.6: Normalized confusion matrix for model DA + STRONGER.
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Figure B.7: Normalized confusion matrix for model Transf + MLP.
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Figure B.8: Normalized confusion matrix for model DA + Transf + MLP.
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Figure B.9: Normalized confusion matrix for model Transf + ResNet-1D.
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Figure B.10: Normalized confusion matrix for model DA + Transf + ResNet-1D.
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Figure B.11: Normalized confusion matrix for model DA + ParaRed.



APPENDIX C

Sustainable Development Goals

The United Nations’ Sustainable Development Goals (SDGs) offer a complete framework
for global sustainability. These goals cover a wide range of challenges, from poverty
eradication to climate action. In the domain of technological research, our study inter-
sects with some of these goals, as outlined in Table C.1. This alignment underscores the
importance of our work in contributing to a more sustainable and inclusive future.

Sustainable Development Goals (SDGs) High Medium Low Not
applicable

SDG 1. No poverty ✓

SDG 2. Zero hunger ✓

SDG 3. Good health and well-being ✓

SDG 4. Quality education ✓

SDG 5. Gender equality ✓

SDG 6. Clean water and sanitation ✓

SDG 7. Affordable and clean energy ✓

SDG 8. Decent work and economic growth ✓

SDG 9. Industry, innovation, and infrastructure ✓

SDG 10. Reduced inequalities ✓

SDG 11. Sustainable cities and communities ✓

SDG 12. Responsible consumption and production ✓

SDG 13. Climate action ✓

SDG 14. Life below water ✓

SDG 15. Life on land ✓

SDG 16. Peace, justice, and strong institutions ✓

SDG 17. Partnerships for the goals ✓

Table C.1: Degree of relationship between the work and the United Nations Sustainable Devel-
opment Goals.
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In the first instance, we can examine the relationship between our project and SDG 9:
Industry, Innovation, and Infrastructure. Our project inherently aligns with SDG 9, given
its focus on designing and developing a gesture recognition system within the Mixed
Reality (MR) domain. This system exhibits a clear potential for integration across various
industrial sectors, acting as a catalyst for innovation and efficiency. In fact, one of our
project’s intended applications lies in robotic control in a warehouse.

Let us consider the scenario of warehouse operations, where our developed ges-
ture recognition system has a strategic role. In this context, an operator equipped with
HoloLens 2 would have the ability to interact seamlessly with a robotic agent in charge of
tasks such as transporting boxes. Through the MR interface, the operator obtains a holo-
graphic overlay of pertinent information about the physical packages, clarifying their
contents or indicating specific destinations within the warehouse. The operator’s ges-
tures, recognized by our system, emerge as an intuitive and effective means of communi-
cating with the robotic entity through the glasses. Employing gestures, the operator can
orchestrate a whole series of actions, from ordering the robot to rotate or move towards a
specific direction. This dynamic combination of Mixed Reality and gesture-based interac-
tion not only exemplifies innovation but also substantiates the practical synergy between
our project and the realm of Industry 4.0, as championed by SDG 9.

Likewise, this work aligns with Sustainable Development Goal 4: Quality Education.
Through the fusion of Mixed Reality and gesture recognition, our project offers promis-
ing ways to improve educational experiences. Imagine a classroom scenario where stu-
dents equipped with HoloLens 2 devices participate in a captivating educational journey.
Integrating our gesture recognition system empowers educators to navigate digital con-
tent, seamlessly enabling interactive and immersive learning. Students can see complex
concepts come to life through holographic visualizations, while instructors can employ
intuitive gestures to control the learning environment, ensuring a more attractive and dy-
namic pedagogical approach. By promoting technological literacy and building innova-
tive educational tools, our work promotes equitable and quality learning opportunities,
as advocated by SDG 4.

Continuing this trajectory, our project also intersects with Sustainable Development
Goal 10: Reduced Inequality. By deploying Mixed Reality interfaces that facilitate natural
and inclusive interactions, we aspire to bridge the gap between individuals with varying
degrees of digital ability. Benefiting from gesture recognition technology, our system en-
ables a diverse range of users, including those facing challenges in traditional interfaces,
to interact effortlessly with digital environments. This inclusivity ensures that technol-
ogy becomes an empowering force, breaking down barriers and reducing inequalities in
accessing and benefiting from cutting-edge advancements. In this way, we contribute to
the broader vision of creating a more inclusive and equitable digital world, aligning with
the principles of SDG 10.

Moreover, our gesture recognition system is expected to be integrated into MR se-
rious game applications to assist neurodivergent individuals. In scenarios like these,
where maintaining focus on the therapeutic aspects of the game is crucial, traditional
interfaces might prove distracting. The innate naturalness of gestures could play a key
role, allowing users to interact with the game environment without being taken out of
the immersive experience. By facilitating an unobtrusive and intuitive interaction mode,
our system could significantly improve the efficacy of serious games for neurodivergent
users, contributing to their concentration and overall well-being. This aligns with the
principles of inclusivity and equality promoted by SDG 10 and furthers the goal of SDG
3: Good health and well-being, by trying to improve mental health and well-being for di-
verse populations.
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In addition, our work also intersects with SDG 3 in other manners. While our pri-
mary focus has been on gesture recognition for MR applications, the implications of our
technology extend to health-related scenarios. With the potential to minimize physical
contact with devices and interfaces, our gesture-based system could reduce the spread
of infections, especially in settings where shared touchscreens are prevalent. This aligns
with the broader goal of safeguarding public health by offering alternative interaction
methods prioritizing hygiene and well-being. By enhancing user experiences and ensur-
ing safer interactions, our work aligns with the aspiration of SDG 3 to promote healthier
lives and well-being for all.

Furthermore, this work holds relevance for SDG 8: Decent work and economic growth.
Deploying gesture-based interaction systems like the one developed in this project could
facilitate innovative applications in various industries. For instance, in manufacturing
and logistics, as previously mentioned, integrating our system into robot control sce-
narios could improve efficiency and reduce the physical stress on workers by enabling
intuitive and remote interaction. This could improve productivity and safer working con-
ditions, aligning with sustainable economic growth and job creation goals. By exploring
new ways of efficient human-machine interaction, we are addressing the dynamic needs
of modern workplaces and advancing toward the objectives set by SDG 8.

Finally, our project intersects with SDG 12: Responsible consumption and production and
SDG 13: Climate action. By developing gesture recognition models, we contribute to re-
ducing electronic waste through a reduced dependency on physical interfaces and de-
vices. This aligns with the principles of responsible production and consumption by pro-
moting more sustainable patterns of technology utilization. Simultaneously, the pursuit
of efficiency in our models fits with climate action objectives, as simple and optimized
technology processes inherently consume less energy. This dual alignment underscores
our commitment to advancing technology that enables environmentally aware practices.

In closing, the inherent alignment between our project and several Sustainable De-
velopment Goals highlights the long-term implications of our work. The potential to
empower industries, improve accessibility for diverse populations, and support sustain-
able technological progress coincides with the global vision of the SDGs. By embracing
these objectives, our study not only offers gesture recognition technology but also con-
tributes to a broader, more sustainable future in which technology is used as a force for
positive change.
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