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Abstract

Peltier cells have low efficiency, but they are becoming attractive alternatives for affordable and environmentally clean

cooling. In this line, the current article develops closed-form and semianalytical solutions to improve the temperature

distribution of Bi2Te3 thermoelements. From the distribution, the main objective of the current work–the optimal

electric intensity to maximize cooling–is inferred. The general one–dimensional differential coupled equation is

integrated for linear and quadratic geometry of thermoelements, under temperature–constant properties. For a general

shape, a piece–wise solution based on heat flux continuity among virtual layers gives accurate analytical solutions. For

variable properties, another piece–wise solution is developed but solved iteratively. Taking advantage of the formulae,

the optimal intensity is directly derived with a minimal computational cost; its value will be of utility for more

advanced designs. Finally a parametric study including straight, two linear, barrel, hourglass and vase geometries is

presented, drawing conclusions on how the shape of the thermoelement affects the coupled phenomena. A specially

developed coupled and non-linear finite element research code is run taking into account all the materials of the cell

and using symmetries and repetitions. These accurate results are used to validate the analytical ones.

Keywords: Multiphysics, thermoelectric, analytical solution, non-linear finite element, thermoelement shape,

optimal intensity.

Nomenclature

A Thermoelement cross-section m2

l Thermoelement length m

κ Thermal conductivity W/K m

α Seebeck coefficient V/K

γ Electric conductivity 1/Ωm

I Electric current A

xi, ξ Coordinates m

ci Half-width thermoelement m

φ Form factor 1/m

Q Heat power W

V Electric potential (voltage) V

T Temperature ◦C

n Number of layers

i Spatial direction, counter

j Counter

h Hot side

c Cold side

0 Reference

op Optimal

a, b Sections: 0, ξ or l
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1. Introduction

Peltier cells based on thermoelectric materials (TM) are used for the cooling of many devices. The general

advantages of these cells are their simplicity of construction and assembly, their solid state nature along with the

capability of being miniaturized, but the main disadvantage is their very low performance. New materials based on

metallic oxides or nanotechnology could almost double this performance although it is doubtful that in the medium

term it could surpass 15%. The classical reference [1] already stated that the optimal length of thermoelements (TE)

is between 1×10−3 and 2×10−3 [m], but did not elaborate on the shape of the TE.

From the start of their development and application, constant square cross-section (parallelepipeds) TE have been

assembled, probably due to their facility of manufacturing. Currently and with the arrival of new techniques in nano–

and meso–machining technologies and even additive manufacturing with 3D printing [2], virtually any geometry can

be produced at a reasonable price. The objective of the current work is to investigate TE geometries that in the future

could improve the performance of Peltier cells.

To this end, closed–form and semi–analytical formulae are developed here not only for simple shapes but to

completely general ones, with the future aim of automatically optimize them, even in dynamic situations, for different

objectives. To verify the validity of the solutions, a complete non-linear Finite Element (FE) algorithm developed in

previous publications, [3], [4], [5], [6] and [7] is run. This FE can model transient states, fully and dynamically couples

the thermal, electric and elastic fields, can account for temperature-dependent properties and has been implemented

in the research code FEAP [8].

Several publications have already demonstrated the importance of the TE geometry, [9], [10]. The first optimized

parallelepipedal TE modules in power generation mode (TEG). The objectives included the number of thermocouples

(TC) in a module and the optimal TE height, calculated with an iterative model and validated with experiments. The

second, also optimized TEG with a genetic algorithm but only for a trapezoidal TE. The parameters were the TE

height, electric current, cold and hot faces T ratio and cooling capacity. An analytical model based on thermodynamic

principles was applied, the material properties were dependent on T and the Thompson effect was considered.

Also, it already has been demonstrated that optimal TE lengths and linear variations in the vertical direction

(between the hot and cold faces) can improve the TE efficiency with respect to the standard geometry, specially in

transient situations. On this line, [11] applied a numerical model (not based on FE) for the optimization of TE.

To determine optimal steady-state electric intensity values, the model found minimums from several cases. With a

parametric study, conclusions on best linear geometries were drawn.

A simple static TE electric generator with linear variation of A was optimized in [12]; they presented analytical

formulae for the optimal steady-state Iop. The algorithm was again conjugate-gradient based. Two single-objective

optimizations, one for thermal efficiency and another for electric power, and a multiobjective for both together was

addressed. The publication concluded that higher TE slopes (regardless of the sign) lead to better efficiency but worse

extracted power.

In the thorough [13], a Peltier cell with three parts in the same TC (top part with constant section, lower part

with two p- and n-doped linearly increasing sections) was studied with an analytical model that partially included

T–dependent properties. The total l, cold face A and Tc were fixed for static conditions. But the average T was

variable, affecting the COP and Qcss. Optimization algorithms were not applied but, through a parametric study, it

was demonstrated that the variation of the lower part was beneficial, although their relative lengths with respect to the

top straight element needed to be quantified for each application.

The reference [14] emphasized that the geometry of the TE legs are fundamental to improve the performance of

TEG. Studies with an analytical model for trapezoidal TE and comparisons with proof-of concept devices showed

that figure of merit could be doubled. Recently, [15] presented a study in which TE materials were manufactured in

straight and linear shapes, including microstructural characterization. Comparisons of results of a simplified analytical

model and of experiments were used to generate curves and find optimal electric intensities, with some discrepancies

due to uncertainties of the measuring instruments and incompleteness of the model. It was stated that if the cold face

has smaller area than the hot face, the maximum heat power drawn is obtained with less intensity and viceversa.

Finally, [16] thoroughly studied the performance of static TEG with a simple diffusion-convection analytical model

but incorporating in the differential equation a quadratic varying TE area. The model was validated with a commercial

FE code and several optimal shapes obtained. Their main conclusion is that changes of the TE shape do not improve

the obtained voltage, coinciding with the present paper.

2



2. Materials and Method

For the heat pump application studied in the present work, it is assumed that the electric flux j is conserved and

that all distributions of T , V , fluxes, stresses, etc. are equal inside each of the two TE, except for a sign change of

some distributions. Therefore, two vertical planes of symmetry and one of repetition at the left can be considered and

only one quarter of the TC has to be modeled with the proper mechanical boundary conditions (BC, see Fig. 1). Of

the different mechanical BC which can be prescribed in the hot and cold faces, hinged surfaces are chosen. The heat

convection loss from any solid–air interface is neglected and the electric and thermal contact surfaces are considered

perfect. The Thompson effect is also neglected in analytical developments, but it is included in the FE runs with

T–dependencies of the material properties.

The electric field is gauged to zero with V̄ = 0 [V], T̄h is set to 50◦C and the steady–state optimal j̄op is prescribed

using a special interface FE developed in [17]. The thermal flux is forced nil in the cold face, Qc = 0 [W], providing an

adiabatic BC. Although the temperatures will be reported in Celsius degrees, the analytical formulation of Section 3

is developed in Kelvin degrees.

T̄h

Tc

l

j̄op

x1

x3ξ

V̄ = 0

Copper Cu

Solder S nPb

Thermoelectric Bi2Te3

Alumina Al2O3

Figure 1: Scheme of a half-thermocouple with boundary conditions: mechanically hinged at hot and cold faces, repetition at left and symmetry at

right; thermoelement geometry has variable area. Prescribed magnitudes noted by an overbar.

The thickness e in the x2 direction (see Figs. 2) is constant, a condition that could easily be overcome but facilitates

the construction of the FE mesh for the non-TE parts and specially the definition of the analytical model.

In Section 3 and for any TE shape, the main objective of the current work is to find the intensity Iop so that a

minimum Tcss—temperature of the cold face at steady–state—can be reached. Optimal intensities have been obtained

in the past but in general for parallelepipedal (straight) or linear TE, viz. [1] or [18].

Table 1: Properties of the Peltier cell materials from Fig. 1. Temperature-dependent properties for Bi2Te3 given in Eq. (1).

Property Unit Al2O3 Cu S nPb Bi2Te3

κ [W/K·m] 35.3 386 48 Eq. (1)

γ × 106 [A/V·m] 0 58.1 4.72 -”-

α [V/K] 0 0 0 -”-

First, compact analytical expressions are calculated for linear and quadratic TE shapes assuming material prop-

erties that do not change with T : this hypothesis is called “constant properties” or CP. Second, general geometries

are considered by piecewise superposition of virtual linear layers with the necessary continuity and another compact
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analytical expression is provided under CP. Finally, an iterative procedure is described under variable properties (VP)

since the real TE material properties are in general T–dependent.

A complete parametric study of five predetermined geometries with different l is presented in Section 4, under a

step pulse and both for steady and transient states.

The material properties used throughout the calculations are listed in Table 1 and Eq. (1), the latter interpolated

from the curves of [1].

α(T ) = 1.988 × 10−4 + 3.353 × 10−7 T + 7.52 × 10−10 T 2

κ(T ) = 1.663 − 3.58 × 10−3 T + 3.195 × 10−5 T 2

γ(T ) = 1.096 × 105 − 5.59 × 102 T + 2.498 T 2

(1)

l

l/
2

l/
2

e

ξ

A(0)

A(ξ)

A(l)

l i
l i
+

1
l i
−

1

ci

ci−1

c1

c1

c0c0

c2

i

Figure 2: Vertical thermoelement geometries. From left to right: three-dimensional view, linear, quadratic, piecewise linear (divided into layers i).

3. Optimal intensity for variable sections

When general geometries are considered, the steady-state optimal Iop can significantly differ from that of a straight

TE. In this section, new equations are developed for an arbitrary geometry expanding the simple solution given in

[18]. The one-dimensional (1D) power balance equation of this reference is rewritten since now the equilibrium of

heat energy is completely cross-sectional dependent. Neglecting the Thompson effect:

1

A(ξ)

d

dξ

[

κ(T ) A(ξ)
dT

dξ

]

+
I2

A2(ξ) γ(T )
= 0 (2)

where A is a function of the vertical TE-local coordinate ξ (see Figs. 2). To preserve electric charge, it will be

assumed that I is constant, that is, j3 = I/A is variable with ξ. Both κ and γ are in general T–dependent (see Eq. (1)),

although for simplicity in the ensuing three subsections the properties are considered CP. The variable A(ξ) is assumed

rectangular, see the first Fig. 1.

The first term in the equation represents thermal conduction; the second is the generated Joule source of heat per

unit of volume. The Peltier effect will be introduced through the following transport Eq. (5).

3.1. Linear geometry, constant properties

The linear geometry is represented in the second of Figs. 2, with a linear variation of A(ξ) in the frontal plane x1x3

given by:

A(ξ) ··= d0 + d1 ξ = 2e

[

c0 +
(

c1 − c0

) ξ

l

]

(3)

where c0 and c1 are the half-widths at the bottom and top sections respectively, d0 the area at ξ = 0 and d1 its slope.

Using this expression in Eq. (2), the T–distribution can be solved as a function of the a-priori unknown BC T (0) ≈ Tc

and of the prescribed T (l) ≈ T̄h. This is the first approximation assumed by the 1D model, assigning to the two TE
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ends the real cold and hot faces, which in reality should be the two Al2O3 external surfaces; the approximation is valid

since the thermal conductivity of solder, copper and alumina are high (see Table 1). By direct integration:

T (ξ) =
φ0ξ T̄h + φξl Tc

φ0l

+
I2

2 γ κ
φ0ξ φξl ; φab =

1

d1

ln
A(a)

A(b)
(4)

where subindexes a, b can take the values 0, ξ or l. The form factor φ contains the information of the geometry; as in

the following subsections for other contours, this factor is undetermined when the section becomes constant. Taking

the limit when d1 → 0, the result φab = (a − b)/d0 is obtained and by using this term in Eq. (4) we recover the

expression from [18] for constant section φ0l = −l/A.

In a 1D model, the heat power can be expressed at steady–state under CP by the differential expression (viz. [1]):

Q(ξ) = α I T (ξ) − κ A(ξ)
dT (ξ)

dξ
(5)

To calculate the CP from Eq. (1), an assumed average Tav = 10◦C is considered in the material properties of the

polynomials. The Eq. (5) is evaluated on the cold face Qc ··= Q(0) and then the intensity that maximizes the increment

of T is found by solving dQc/dI = 0:

Iop = −
α γ Tcss

φ0l

(6)

The previous expression depends on the unknown Tcss, the value for which no additional heat power can be taken

from the cold face. Under this temperature Qc must be zero, or equivalently T̄h − Tc is maximized at steady–state.

Imposing Qc = 0 in Eq. (5) and replacing the derivative of T (ξ) from Eq. (4):

Tcss =
−κ +

√

κ2 + 2 T̄h α2 γ κ

α2 γ
(7)

This equation depends only on the known T̄h and on material properties, and it is exactly the same one as that obtained

for a constant section in [18], verifying that Tcss does not depend on the TE linear geometry under CP. The final optimal

intensity is obtained substituting Eq. (7) into Eq. (6).

3.2. Quadratic geometry, constant properties

The quadratic geometry is shown in the third of Figs. 2. Three parameters are used to specify the variation of A(ξ):

the TE half-widths at the bottom, middle and top:

A(ξ) ··= d0 + d1 ξ + d2 ξ
2 = 2e

[

c0 −
(

3c0 − 4c1 + c2

) ξ

l
+ 2

(

c0 − 2c1 + c2

)

(

ξ

l

)2
]

(8)

Following the same procedure as in the previous subsection but with the previous quadratic area, the resulting

expression for T is the same as that of Eq. (4) left but with the form factors:

φab = 2
Ab −Aa

∆
; Aa = arctg

(

1

∆

dA

dξ
(a)

)

; ∆ =
√

4 d0 d2 − (d1)2 (9)

whereAb would be defined by the middle expression but particularized in b. Note that ∆ can be pure imaginary, but

then the numerator of the first of Eqs. (9) would also be pure imaginary due to the arctg function and then the quotient

results in a real number. If d1 = d2 = 0 (constant section) or d2 = 0 (linear section), the Eq. (9) is indeterminate. But

it can be shown that in the limit as d2 → 0, the result tends to that of Eq. (4); likewise, in the limit when both d1, d2

→ 0, the result coincides with that of a constant section.

Repeating the steps from the previous subsection for Iop, we again obtain the Eq. (7) and in addition Iop is given

by the Eq. (6) but with the quadratic φab from Eq. (9).
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3.3. General geometry, constant properties

For complex geometries, an extension of the previous approaches becomes very cumbersome. Instead of working

out results based on higher order polynomials or other analytical functions, the previous findings can be applied to a

piecewise-linear geometry.

The length of the TE is divided into n “layers”, each with linear lateral sides of variable area Ai(ξi) = di
0
+ di

1
ξi.

This linear variation could be changed to a quadratic one but not much difference would be obtained if the layers are

thin with respect to l. The lengths li do not need to be equal but are subjected to the constraint
∑n

1 li = l (right of

Figs. 2).

Ai(0)

Ai(li) = Ai+1(0)Qi(li)

Qi+1(0)

Ti−1

Ti

Ti+1

i + 2

i + 1

i

i − 1

ξi

ξi+1

ξi+2

Figure 3: Detailed view of the piecewise linearized geometry of the right Fig. 2; each layer includes local coordinates. Continuity of heat power at

interfaces must be imposed.

For each layer 1 ≤ i ≤ n, a local vertical coordinate 0 ≤ ξi ≤ li is defined as shown in Fig. 3. The temperature and

the half-width at the top interface of each layer are denoted by Ti and ci. At the bottom interface, the two are named

Ti−1 and ci−1, so that for the first layer T 1(0) ··= T0 ≈ Tc and for the last T n(ln) ··= Tn ≈ T̄h (superscripts indicate

the corresponding layer). The developments for a generic layer are conceptually similar to those of Section 3.1 of

a completely linear TE, but now the layer solution T i(ξi) depends on the a-priori unknowns BC T i(0) ··= Ti−1 and

T i(li) ··= Ti instead of on T̄h and Tc.

Next, Eq. (2) is solved for the T i(ξi) distribution inside each layer—and therefore for the whole TE—resulting in

a closed-form expression similar to Eq. (4):

T i(ξi) =
φ0ξi Ti + φξili Ti−1

φ0li

+
I2

2 γ κ
φ0ξi φξili (10)

The T–field is continuous by construction and so is I by conservation of charge. The solution on the layer

interfaces is then obtained by enforcing the remaining continuity of heat power:

Qi(li) = Qi+1(0) ; i = 1, . . . , n − 1 (11)

the values of which from Eq. (5) are:











































Qi(li) = α I Ti − κ Ai(li)
dT i(ξi)

dξi

∣

∣

∣

∣

∣

∣

ξi=li

Qi+1(0) = α I Ti − κ Ai+1(0)
dT i+1(ξi+1)

dξi+1

∣

∣

∣

∣

∣

∣

ξi+1=0

(12)

Since by definition Ai(li) ··= Ai+1(0), the continuity directly applies to the first derivatives of T . Eqs. (11) and (12)

conform a system of n − 1 equations each one with four unknowns: Ti−1, Ti, Ti+1 (see Eq. (10)) plus I. This system

is not explicitly solvable since it has not been fully demonstrated that Tc can be calculated from Eq. (7) and a good
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estimate for I is not yet available. But starting from the top layer n and through substitution of one layer after the

other, the generic interface Ti can be solved as an independent function of only the two unknowns Tc and I:

Ti =

T̄h

i
∑

j=1

φ j + Tc

n
∑

j=i+1

φ j

n
∑

j=1

φ j

+
I2

2 γ κ

i
∑

j=1

φ j

n
∑

j=i+1

φ j (13)

where φ j (short for φ0l| j) denotes in local coordinates the form factor between the top and bottom interfaces of layers

1 ≤ j ≤ n.

As before, Qc is obtained evaluating Eq. (12) at the cold face (first layer i = 1), but now as a function of T1 (to be

determined from Eq. (13)) instead of T̄h. The resulting heat power as function of the two main unknowns is:

Qc =
I2

2 γ

n
∑

i

φi + α I Tc + κ
T̄h − Tc

n
∑

i

φi

(14)

Analyzing the Eq. (14), it is interesting to note that the contribution to Qc of the Joule effect (first term, right

hand side) is always negative (descending the TE against ξ) since φi is also always negative; the contribution of heat

conduction (third term) is also negative. The contribution of Peltier (middle term) is always positive (ascending) and

does not depend on the geometry.

With the previous expression, and applying a maximization approach similar to the one described in Section 3.1,

we obtain the compact equation:

Iop = −
α γ Tcss

n
∑

i

φi

(15)

where only the denominator changes with respect to Eq. (6). It can be shown that the linear geometry of Eq. (6), is

recovered from Eq. (15) by taking the limit of the equation for φi so that a continuous linear geometry is represented.

The maximum heat taken from the cold side at steady–state is determined by replacing Eq. (15) into Eq. (14):

Qcss =
2κ (T̄h − Tcss) − α

2 γ T 2
css

2

n
∑

i

φi

(16)

If the BC Qc = 0 is applied to Eq. (16), we recover Eq. (7), finally demonstrating that Tcss does not depend on the

geometry of the TE under CP and disambiguating Eq. (15).

3.4. General geometry, variable properties

To find completely general solutions, VP must be considered and therefore an iterative method based on CP layers

is proposed. Analogously to the previous subsection, Ti can be calculated solving Eq. (2) for T i(ξi) using the adjacent

unknown temperatures as BC; then the flux continuity of Eq. (11) is again applied. The counterpart of Eq. (13) is

obtained as:

Ti =

I2

2

(

φi

γi

+
φi+1

γi+1

)

+ Ti−1

κi

φi

+ Ti+1

κi+1

φi+1

I (αi − αi+1) +
κi

φi

+
κi+1

φi+1

(17)

valid for each 1 ≤ i ≤ n − 1 and function of αi = α(Tav|i) to be calculated with the a priori unknown layer average

Tav|i = (Ti−1+Ti)/2 substituted in Eq. (1); the same dependency holds for κi and γi. Due to this additional implicitness,

an iterative method must be applied.
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First, the Eq. (17) is particularized to the top interface of the bottom layer to calculate T1; the unknowns of the right

hand side are now the material properties of layers i = 1, 2, besides Tc, T2 and I. Subsequent particularizations to the

other layers give n − 1 implicit equations. Rearranging this system, T–expressions dependent now on the unknowns

Tc, I plus the properties of all layers are given by the following functions f :

T1 = f1(Tc, T̄h, I, α1, κ1, γ1, . . . , αn, κn, γn)

T2 = f2(Tc, T̄h, I, α1, κ1, γ1, . . . , αn, κn, γn)
...

Tn−1 = fn−1(Tc, T̄h, I, α1, κ1, γ1, . . . , αn, κn, γn)

(18)

The f explicit forms are too long to be written even for a few layers and they cannot directly be solved since an

expression for Tc such as Eq. (7) cannot be explicitly found under VP.

The next step is to apply Eq. (5) to the bottom of the first layer:

Qc = −
I2

2 γ1

φ1 + α1 I Tc − κ1
T1 − Tc

φ1

(19)

In this formula, the influence of the complete TE is in T1, to be substituted by the first of Eqs. (18).

0 0.2 0.4 0.6 0.8 1
−40

−20

0

20

40

60

T̄h

Tcss

Iter. 1
2
3
4

FEVP

TE Length ξ/l [-]

T
em

p
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at
u
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T

(ξ
)

[◦
C

]

Figure 4: Steady-state temperature distributions along a thermoelement for geometry E from Fig. 5. Four iterations of the semi-analytical solution

based on Eq. (18) (lines) and finite element under variable properties (circles).

The maximization of Qc to calculate Iop (similar to Eq. (6)) adds one equation. Finally Qc = 0 considering this

Iop (similar to Eq. (14)) solves for Tcss, but since these two equations cannot be derived in a closed form, a numerical

approximation based on iterations is necessary.

The procedure is general, but as an example the process is presented for geometry E (defined in the next section)

with just eight layers. First Tc is guessed as an arbitrary −15◦C and T (ξ) linearly interpolated between this value

and T̄h (straight dotted line in Fig. 4). With the resulting set of Tav|i, the first iteration for the material properties are

calculated for Eqs. (18); the first additional equation gives Iop and the second Tcss. With all T at the interfaces, the

non-linear curve for the second iteration can be drawn. In this iteration the distribution does not have continuity of

derivative at the first interface (ξ = 0.125), but in the third iteration the continuity is already completely fulfilled.

When Iop and/or Tcss converge (usually with only three-four iterations) the final T distribution and the Iop value

are found. Notice that although the first estimate of Tc is not close to the final value of -32◦C, just in the second

iteration an accurate value is obtained.

For further validation, the T distribution (considered “exact”) from the steady-state FE analysis under VP (FEVP)

is plotted in the figure, achieving the semi-analytical model a very good agreement with it. The coincidence implies

that the splitting of the general geometry into eight CP layers is accurate enough.
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At any rate, the main interest of the analytical developments of this section is not to find T distributions but

to rapidly obtain precise values of Iop for the FE runs, saving CPU resources for the time–consuming processes of

transient behavior, optimization of geometry, pulse etc.

4. Parametric study

Six representative geometries shown of Fig. 5, each one divided into only eight equally-spaced layers are studied

in this section. There are no reasonable restrictions on the geometries to handle, although to avoid singular shapes,

minimum and maximum widths are imposed. Geometry S is the traditional and the linear A and B the commonly

studied in the literature of the last years (viz. [12]). The rest are quadratic (C, D) and cubic (E). By construction and

for comparison purposes, the smallest cross-section is half the width 1.5× 10−3 [m] of the largest one for the first five

geometries; therefore, in D the cold face is necessarily larger than that of E since its maximum is right above the cold

face. The constant width of S is 2c = 1.125 × 10−3 [m], an average of the maximum and minimum.

To present a broad sample and to investigate the dependency of Iop with the geometry, for all calculations the TE

lengths are randomly assigned from the integer set l ∈ {3, 4, 5, 6, 7} × 10−3 [m] as listed in the next two Tables.

A B C D E S

Figure 5: Thermoelement geometries for parametric study: linear “pyramids” A and B, quadratic “barrel” C and “hourglass” D, cubic “vase” E,

constant “straight” S. Cold face at bottom, hot face at top and equal maximum and minimum widths for all variable sections.

Table 2 shows values of Tcss calculated from Eq. (7) and numerically with the FE code under CP (FECP). The Table

also shows the optimal intensities calculated from Eq. (15) and using the bisection method of the FECP described in

[18]. This method is much more time–consuming because implies guessing an initial value, running four-five times

the code and interpolating.

Table 2: Optimal intensities to maximize overcooling at steady–state for thermoelement geometries of Fig. 5 (except S) with different lengths.

Constant material properties and Finite Elements (FECP) and analytical (Anlt. CP) from Section 3.3 with eight layers.

Geom. l × 10−3 Tcss Iop Tcss Iop

FECP Anlt. CP

[m] [◦C] [A] [◦C] [A]

A 4 -28.41 1.39 -29.04 1.41

B 3 -28.06 1.84 -29.04 1.88

C 7 -28.55 0.88 -29.04 0.89

D 5 -28.62 0.99 -29.04 1.00

E 6 -28.61 0.92 -29.04 0.93

The FECP solution is used as a reference since it includes several nonlinearities, full process coupling, dynamics

and all the materials of Fig. 1. The analytical solution is relatively simple to apply, it is based on a 1D geometry

and only simulates the TM. In spite of these simplifications, the maximum errors are very small while the CPU and

process times are orders of magnitude higher for FE. The Tcss values from the analytical solution are constant since

Eq. (7) is independent of geometry and length at steady–state (in transient–state the situation is different). But the
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values from FECP are not exactly equal due to the FE 3D discretization, which captures direction changes of fluxes

from x3 to x2 and x3 in the union between TE and Cu and in changes of A(ξ): the shorter the TE the more important

these 3D effects are.

In any case, the variable geometries and lengths have a small influence of only 3.4% and 2% for Tcss and Iop

respectively, partially validating the method of Section 3.3. As demonstrated in the previous section, Iop is not simply

proportional to the inverse of l (as was the case for straight TE), but now to the inverse of the form factors.

Table 3: Optimal intensities to maximize overcooling at steady–state for geometries of Fig. 5; several lengths. Variable material properties and

Finite Elements (FEVP) and semi–analytical (s-Anlt. VP) from Section 3.4 with eight layers.

Geom. l × 10−3 Tcss Iop Tcss Iop

FEVP s-Anlt. VP

[m] [◦C] [A] [◦C] [A]

A 4 -31.86 1.45 -31.93 1.43

B 3 -31.51 1.92 -31.92 1.91

C 7 -32.01 0.91 -31.93 0.91

D 5 -32.07 1.03 -31.92 1.02

E 6 -32.05 0.95 -31.92 0.94

S 7 -32.12 0.77 -31.92 0.77

Table 3 shows the same results as those of Table 2 but now under the VP hypothesis and using the semi-analytical

method described in Section 3.4. The most important change between the two tables is a difference of 4% for Iop

in geometry B and consequently 1.5% for Tcss (in Kelvin scale). These differences are due to the inclusion of the

Thompson effect dα/dT in the FEM formulation and in general to the completeness of its VP formulation. The

variations among the Tcss values for the different shapes are again small and similar to those of Table 2; for Iop they

are even smaller.

All values of Tcss are almost constant in spite of the geometry variation, for instance almost the same values are

listed for S and D although with more electric consumption in the latter. But for transient–state studies (not developed

in the current article), the advantages of some of the variable geometries will be significant.

−40

−20

0

20

40

60

0 0.2 0.4 0.6 0.8 1

Tc

T̄h

T
em

p
er

at
u
re

T
[◦

C
]

Length ξ/l [–]

0

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1

Vc

V
o
lt

ag
e
V

[m
V

]

Length ξ/l [–]

A

B

C

D

E

S

Figure 6: Steady-state temperature distributions along the thermoelement center for the geometries of Fig. 5 using Finite Elements, variable material

properties and the intensities of Table 3. Cold face Tcss≈−32◦C for all geometries with the same TE length of 5×10−3 [m].

The T distributions along the TE obtained with FEVP and under the different optimal intensities of Table 3 are

plotted in Fig. 6 left. Note that the slope is highest (due to the Joule concentration) near the cold face for A and C with

small cross-section on this face. For the same reason, the slope is highest in the middle of D and close to the hot face
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for E. This Joule concentration mostly determines the performance of each geometry as indicated by the last term of

Eq. (2), inversely proportional to A2(ξ). Even if the equation is valid only in 1D, the electrical flow is mostly 1D and

therefore the conclusion is valid for general symmetric geometries.

The T–values are substantially lower for E than for A, since the special geometry of the former is able to force

a linear distribution up to the necking instead of a global quadratic for the latter: that is, for the same T values

at both faces the vase shape reduces almost to half the Joule effect around the TE middle. The curvatures of the

distributions at each position ξ/l are in general proportional to the geometrical widths, except close to the hot face

where all temperatures must tend to the BC T̄h = 50◦C. The distribution of S is similar to that of E, but its T–values

are substantially higher in the middle.

These facts can also help to interpret the Eq. (5): as mentioned before its first term represents the Peltier effect

function of T (ξ), moving thermal energy from the cold to the hot face and the second term the Fourier effect function

of dT /dξ.

Near the hot face it can be appreciated that the slope of the distributions is almost horizontal, which means that

the Fourier term must be very small since it is proportional to dT /dξ; this nullity would not happen when the feeding

electric intensity is smaller than Iop. On the other hand, near the cold face the BC Qc = 0 implies that both terms must

cancel each other, that is, the Fourier term and consequently the T–slope are different than zero.

In the right Fig. 6 the corresponding voltage distribution along the TE are plotted. The straight S shape produces

an almost linear distribution, while C and D are non–linear but its values similar to those of S. The change of curvature

of the last two is due to their symmetry with respect to the middle. The decreasing (with ξ) of the E and B distributions

are very similar and maximize V at the center of the TE; the increasing A minimizes the voltage at the center for the

contrary reason. In spite of their very different shapes, all geometries give a similar voltage at the cold face since its

approximated expression is Vop = αT̄h, independent of geometry.
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Figure 7: Finite element distributions (under variable properties) for geometry E from Fig. 5 approximated with eight layers, along the vertical x3

direction.

In the Fig. 7 the 2D distributions obtained with FEVP are drawn; the refined mesh is built with 3D elements of

27–nodes. Although as commented all materials of Fig. 1 are simulated, only the TE is shown. In the second left

figure, the temperature is represented by almost horizontal isolines, giving validity to the main hypothesis assumed

in Section 3. The spacing between color levels is constant in the first TE vertical half, and variable in the second in

accordance with the distribution of the left Fig. 6. The voltage distribution of the left figure is also almost horizontal

and equally–spaced except in the middle. The small departure from the horizontality is due to the variation of area.

For the two right figures the curvature of the isolines is much more evident, since the represented magnitude is

the vertical component of the fluxes; both q3 and j3 are counterparts of Q and I per unit area, The alterations in the

necking are due to the non–zero horizontal component that reduces the module of the vertical component; that of the

cold and specially the hot face to the change of direction of the fluxes between the TM and copper, see the Fig. 1.

The hypotheses made in Section 3 can be verified in the Fig. 7: the isolines are horizontal implying constant T , and

very similar values at the TE ends with respect to the real hot and cold faces: 51 vs. 50 top, −30.7 vs. −30.5◦C bottom.
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5. Conclusions

In this article, compact analytical solutions are developed for the optimal intensity during steady–state of Peltier

cells working as heat pumps, under the assumption of constant (with temperature) material properties and for general

piecewise thermoelement geometries. For variable properties, an iterative semi-analytical method is presented and

form factors for the new geometries are defined in all solutions.

The parametric study shows that at steady–state, the thermoelement geometry greatly affects the temperature

distributions but not that of the cold face. The geometry also affects the Joule generation and the conduction but not

the Peltier effect at steady–state. In future works it will be demonstrated that sophisticated geometries substantially

affect the performance during the transient–state.

One of the interesting results is that for general geometries the optimal electric intensity is not proportional to

the inverse of the thermoelement length (as for straight geometries) but to the inverse of trigonometric or logarithmic

form factors dependent on the shape.

Acknowledgments

This work was supported by the Generalitat Valenciana research programmes PROMETEO/2020/016: Applica-

tions de Topologic Isolators in Spintronics and Thermoelectricity (TOP-TERM) and BEST/2021/079. The support is

gratefully acknowledged.

References

[1] David Michael Rowe. CRC handbook of thermoelectrics. CRC press, 2018.
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