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A B S T R A C T

This study aims at developing a new methodological approach for building composite indicators, focusing
on the weight schemes through an unsupervised machine learning technique. The composite indicator
proposed is based on fuzzy metrics to capture multidimensional concepts that do not have boundaries, such
as competitiveness, development, corruption or vulnerability. This methodology is designed for formative
measurement models using a set of indicators measured on different scales (quantitative, ordinal and binary)
and it is partially compensatory. Under a benchmarking approach, the single indicators are synthesized.
The optimization method applied manages to remove the overlapping information provided for the single
indicators, so that the composite indicator provides a more realistic and faithful approximation to the concept
which would be studied. It has been quantitatively and qualitatively validated with a set of randomized
databases covering extreme and usual cases.
1. Introduction

Many socio-economic phenomena should be represented with a
multiplicity of dimensions, each of them measured by single indicators
with different singularities. People understand this kind of concepts
more easily in the form of a sole measure or composite indicator that
allows its interpretation, communication and comparison (Greco et al.,
2019; Mazziotta & Pareto, 2017; Saltelli, 2007).

In this regard, two interconnected aspects have attracted attention
in the composite indicator literature: the allocation of weights among
the single indicators in the composite indicator and the method to
aggregate the single indicators into a solely value. These two aspects
are not minor since they will determine the values of the compos-
ite indicator and therefore the ranking of the units (countries, re-
gions, companies, etc.) that are being analysed (Becker et al., 2017;
Jiménez-Fernández & Ruiz-Martos, 2020; Keogh et al., 2021).

In order to establish the weights of the single indicators there are
three possibilities: participatory weights based on public or expert opin-
ion, equal weights, and statistical weighting techniques (Greco et al.,
2019; Maggino, 2017; OECD, 2008). Participatory and equal weights
are typically linked to arithmetic mean and geometric mean as form of
aggregation, whereas statistically determined weights are mainly linked
to a multivariate technique, being the principal component analysis
(PCA) extensively used.
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Of all of them, the no-weights or equal weights is the most widely
used scheme for the aggregation of single indicators into a composite
indicator. The arithmetic mean was used to calculate the Human De-
velopment Index of United Nations from 1990 until the 2010 edition,
until it was substituted by the geometric mean (UNDP, 2018). Other
initiatives of international institutions also use the arithmetic mean to
aggregate indicators into a composite index, for example: the Better
Life Index developed by the OECD (OECD, 2017), Canadian Index of
Wellbeing (2016) developed by the Canadian Research Advisory Group
(Canadian Index of Wellbeing, 2016), and the Sustainable Development
Goals (SDG) Index (Sachs et al., 2018). Equal weights are favoured
when simplicity is called upon; there is no consensus on the distribution
of weights or/and lack, of theoretical basis or/and insufficient statisti-
cal knowledge (Jiménez-Fernández & Ruiz-Martos, 2020; Keogh et al.,
2021). Their main inconvenience is that this approach is unlikely to be
empirically or theoretically correct, since all variables are unlikely to
have the same importance (Becker et al., 2017); that is to say, it does
not permit to differentiate between crucial and non-crucial indicators
(Greco et al., 2019).

Within the weighting schemes determined by the use of statistical
techniques, PCA is a multivariate method to reduce the dimensionality
of the set of data by explaining a high percentage of the variance or
information of the data (Jolliffe, 2002). Usually, the first component is
vailable online 4 April 2022
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taken as the composite indicator. In this vein we find several applica-
tions in well-being studies (Cruz-Martínez, 2014; Madonia et al., 2013),
the measurement of environment quality (Montero et al., 2010) and
the socio-economic regional performance in the EU (Sánchez & Ruiz-
Martos, 2013), among others. We can also find a combination of several
methods. PCA is applied to verify whether the set of indicators within
each dimension is internally consistent, which in a second step are
aggregated by arithmetic mean, following a weighting-scheme decided
by experts. This is the approach that follows the World Economic Forum
to elaborate the Global Competitiveness Index from 2008 (Schwab &
Porter, 2008) and the European Commission to elaborate the European
Regional Competitiveness Index from 2009 until the edition of 2019
(Annoni & Dijkstr, 2019).

These aggregation methods are very popular, largely due to their
simplicity. However, they have serious disadvantages in their weighting-
schemes that should raise doubts about the reliability of their results
(Becker et al., 2017). Neither arithmetic mean nor geometric mean
avoid the redundant or overlapping information of single indicators,
and PCA only removes the linear redundant information (Jiménez-
Fernández & Ruiz-Martos, 2020; OECD, 2008). Additionally, and more
importantly, none of these methods enables benchmarking because
they do not provide a mathematical structure for the analysis of the
results through a metric which allows comparisons between units. Why
do we understand that the use of a metric is necessary in the context
of the construction of composite indicators? This is due to the fact that
it is the natural way to establish the proximity between the analysed
observations and, therefore, to perform benchmarking. Without this
construction, an ordering of the units studied is obtained that lacks
structure and, thus, the notion of distance.

The aim of this paper is to provide a more advanced analytical
framework which allows the generation of new composite indicators
with mathematical and computational techniques. More specifically,
(1) we use fuzzy metrics and (2) unsupervised machine learning with
innovative applications that allow us to perform benchmarking, as
well as overcoming the drawbacks in the construction of composite
indicators.

Our starting point is that a large number of phenomena studied
are fuzzy concepts. For instance, competitiveness is a fuzzy concept
since we are not able to establish the boundary of this notion. That
is to say, when we study competitiveness in different territories, we
are measuring degrees of competitiveness, or we provide a measure of
proximity to the concept, since we cannot affirm that a unit (country
or region) has or does not have competitiveness.

The methodology proposed in this study makes it possible to address
in a more realistic way the complexity of synthesizing a set of variables
in a single indicator. Existing methodologies permit this operation
to be carried out, in most cases in an elementary way. However, it
is difficult to simplify a complex problem with the use of a trivial
formulation. The intrinsic complexity of the method presented is at the
same time its virtue. The proposed composite indicator is the result
of the conjunction of as many fuzzy metrics as single indicators are
synthesized. These metrics can all be the same, in other words, if
all the single indicators have the same statistical nature (continuous,
categorical, etc.); or different, if we combine single indicators of a
different nature. From the theory of fuzzy metric spaces, it is possible to
construct a metric as a result of joining through an appropriate t-norm
the metrics used in each single indicator. For example, these metrics are
being used in different fields of science. Gregori et al. (2011) propose
an image filtering as a result of grouping a family of computationally
attractive filters with good detail preservation capacity (FSVF) through
the combination of fuzzy metrics. López-Ortega and Castro-Espinoza
(2019) propose fuzzy metrics that capture the uncertainty and doubts
of the experts to quantify the consensus in multi criteria group decision
making.

To achieve our goal, throughout the article we follow the steps
2

that are collected below. Section 2 introduces some technical formal m
concepts regarding the fuzzy metric, which are necessary to get a
better understanding of the purposed methodology. In Section 3, two
sections are distinguished. Section 3.1 presents the composite indicator
calculation formula and analyses how to choose the baseline or targets
of the single indicators. Section 3.2 focuses on the estimation of the
weights or the relevance of each single indicator in the composite
indicator by using machine learning. Specifically, we study how to
determine the best polynomial approximation between the composite
indicator and the set of single indicators and how to estimate the
importance of the single indicators in the calculation of the composite
indicator. Section 4 analyses the algorithm for building the composite
indicator, that is to say, the iterative method of calculation and the
statistical properties required for the iterative process to stop. Section 5
focuses on mathematical properties of composite indicators in order
to study its goodness of fit. Section 5.1 illustrates the mathematical
properties that our composite indicator satisfies and Section 5.2 perfor-
mances a comparison with the widest methods used. Section 6 purposes
three new strategies for checking the robustness of our composite
indicator, since the traditional techniques (uncertainty and sensitivity
analysis) are inappropriate to assess the validity of our method. Finally,
conclusions and remarks are drawn in Section 7.

2. Preliminaries

In order to foster a better understanding of our methodological pur-
pose, let us introduce some technical formal concepts and definitions
regarding the fuzzy metric using the standard mathematical notation.

Definition 1. A function ∗∶ [0, 1] × [0, 1] → [0, 1] is said to be
a continuous t-norm if the following conditions are satisfied for all
elements 𝑎, 𝑏, 𝑐, 𝑑 ∈ [0, 1]:

1. Commutativity 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎;
2. Associativity 𝑎 ∗ (𝑏 ∗ 𝑐) = (𝑎 ∗ 𝑏) ∗ 𝑐;
3. Monotonicity 𝑎 ∗ 𝑏 ≤ 𝑐 ∗ 𝑑 if 𝑎 ≤ 𝑐 and 𝑏 ≤ 𝑑;
4. Identity element, 𝑎 ∗ 1 = 𝑎;
5. ∗ is continuous.

Some classical examples used in fuzzy metrics are, firstly, the usual
product that we will denoted by ⋅ (𝑎 ∗ 𝑏 = 𝑎 ⋅ 𝑏), secondly, the minimum
t-norm denoted by ⋅𝑚𝑖𝑛 (𝑎 ∗𝑚𝑖𝑛 𝑏 = 𝑚𝑖𝑛{𝑎, 𝑏}), and thirdly Lukasievicz
t-norm 𝑎 ∗𝐿 𝑏 = 𝑚𝑎𝑥{𝑎 + 𝑏 − 1, 0} denoted by 𝓁. These t-norms satisfy
𝑎 ∗𝑚𝑖𝑛 𝑏 ≥ 𝑎 ⋅ 𝑏 ≥ 𝑎 ∗𝐿 𝑏.

Definition 2. Let 𝑋 be a non-empty set. According to George and
Veeramani (1994), a Fuzzy Metric Space is a triple (𝑋,𝑀, ∗) where ∗
is a continuous t-norm and 𝑀 ∶ 𝑋 × 𝑋 × [0,∞) → [0, 1] is a mapping
which satisfies the following properties for every 𝑥, 𝑦, 𝑧 ∈ 𝑋 and two
parameters 𝑡, 𝑠 > 0

1. 𝑀(𝑥, 𝑦, 𝑡) > 0;
2. 𝑀(𝑥, 𝑦, 𝑡) = 1 if and only if 𝑥 = 𝑦.
3. 𝑀(𝑥, 𝑦, 𝑡) = 𝑀(𝑦, 𝑥, 𝑡);
4. 𝑀(𝑥, 𝑦, 𝑡) ∗ 𝑀(𝑦, 𝑧, 𝑡) ≤ 𝑀(𝑥, 𝑧, 𝑡 + 𝑠);
5. 𝑀(𝑥, 𝑦, ⋅) ∶]0,+∞] →]0, 1] is continuous.

is called fuzzy metric.

𝑀(𝑥, 𝑦, 𝑡) may be interpreted as the degree of proximity between
𝑥 and 𝑦 with respect to the parameter 𝑡 that we call sensitivity1 of
the fuzzy metric 𝑀 . When a fuzzy metric 𝑀 on 𝑋 does not depend
on 𝑡 is said to be stationary, i.e. if for each 𝑥, 𝑦 ∈ 𝑋 the function
𝑀𝑥,𝑦(𝑡) = 𝑀(𝑥, 𝑦, 𝑡) is constant. Such a metric is enough for defining

topology 𝜏𝑀 by means of the basis of neighbours that is given by

1 Notice that the parameter t represents an abstract parameter that allows
odulating the fuzzy metric.
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open balls 𝐵𝑀 (𝑥, 𝜀, 𝑡) ∶= {𝑦 ∈ 𝑋, 0 < 𝜀 < 1, 𝑡 > 0,𝑀(𝑥, 𝑦, 𝑡) > 1 − 𝜀}. This
opology allows us to establish a relation of proximity and therefore to
rovide an order to the calculated indicator. Thus 𝑀(𝑥, 𝑦) ≃ 1 means
hat 𝑥 is close to 𝑦 (that is, there is high similarity or proximity) in the
ense providing by the metric 𝑀 (George & Veeramani, 1994).

In this paper, we use the fuzzy metrics approach for the construc-
ion of the composite indicator, although any of the classical metrics
ould have been used for this purpose. When simple indicators are
epresented by a continuous variable, we can use the following metrics,
hich are additionally used as a reference to show methodology.

xample 3. Let 𝑔 ∶ R+ → R+ be an increasing continuous function
nd 𝑑 is a distance on an nonempty set 𝑋

(𝑥, 𝑦, 𝑡) =
𝑔(𝑡)

𝑔(𝑡) + 𝛼 ⋅ 𝑑(𝑥, 𝑦)
(1)

where 𝛼 > 0, then 𝑀 is a fuzzy metric with ⋅ t-norm on 𝑋. A particular
case to the previous (for instance 𝛼 = 1, 𝑔(𝑡) = 𝑘) is the following

𝑀(𝑥, 𝑦) = 𝑘
𝑘 + 𝑑(𝑥, 𝑦)

(2)

where 𝑘 is a positive suitable constant, which provides a stationary
fuzzy metric over 𝑋.

Notice that when the function 𝑔(𝑡) trends to infinity or 𝑘 is suffi-
ciently large, remaining constant 𝑑(𝑥, 𝑦), then the partial indicator is
close to one, namely, the fuzzy distance between two pairs of vectors
can be forced to the phenomenon to be measured, increasing the value
of the function 𝑔(𝑡) or the parameter 𝑘. This property provides an
advantage with respect to the classical metrics due to the fact that we
can model the sensitivity of the metric. In our model, these functions
are used in order to increase the sensitivity of the metric to avoid
the duplication of information of the indicators that constitute the
composite indicator, as well as differentially allocate the importance
to each indicator.

Other fuzzy metrics that can be used depending on the nature of the
indicators to be used are shown below.

Example 4. We assume that 𝑋 = R+ and 𝑡 ∈ R+, then

𝑀(𝑥, 𝑦, 𝑡) =
min{𝑥, 𝑦} + 𝑡
max{𝑥, 𝑦} + 𝑡

is a fuzzy metric with ⋅ t-norm on 𝑋. Also

𝑀(𝑥, 𝑦) =
min{𝑥, 𝑦}
max{𝑥, 𝑦}

s a stationary fuzzy metric with ⋅ t-norm on 𝑋.

When we use simple ordinals or binary simple indicators to make
he composite indicators, we can use other metrics that require a
pecific t-norm. We assume the minimum t-norm (𝑎 ⋅𝑚𝑖𝑛 𝑏 = 𝑚𝑖𝑛{𝑎, 𝑏}),

the following examples represent fuzzy metrics with the minimum
t-norm on 𝑋.

Example 5.

𝑀(𝑥, 𝑦, 𝑡) =

{

1, if 𝑥 = 𝑦

𝑓 (𝑡), if 𝑥 ≠ 𝑦

here 𝑓 ∶ R+ → [0, 1[ is an increasing continuous function. If 𝑓 is
constant 𝑓 (𝑡) = 𝑘 ∈ [0, 1[ then the fuzzy metric is stationary, also called
discrete fuzzy metric.

In addition, we can assume the Lukasievicz t-norm 𝑎 ∗𝐿 𝑏 = 𝑚𝑎𝑥{𝑎+
− 1, 0}. Let 𝑔 ∶ 𝑋 ×𝑋 → [0, 12 [ be a symmetric function. Then

𝑀(𝑥, 𝑦) =

{

1, if 𝑥 = 𝑦

𝑔(𝑥, 𝑦), if 𝑥 ≠ 𝑦
3

s a stationary fuzzy metric on 𝑋. a
3. Fuzzy-machine learning approach

The methodology presented in this study provides the main tools
in order to construct a composite indicator into the context of a
formative measurement model, such as regional development, poverty,
quality of life, well-being, etcetera, where the causality is from the
single indicators to the composite indicator (see Coltman et al., 2008;
Diamantopoulos et al., 2008; Jiménez-Fernández & Ruiz-Martos, 2020).
Another consideration in the selection of the proper aggregation tech-
nique is whether compensability or substitutability among indicators
should be permitted. The desired degree of compensation between the
indicators will depend on the underlying theoretical framework of the
phenomenon under investigation (Maggino, 2017; Mazziotta & Pareto,
2017). Our methodological proposal is partially compensatory which
requires the use of non-linear functions or multiplicative methods. In
what follows we present the calculation formula on the composite
indicator and its required steps.

3.1. Composite indicator formula

The starting point is a 𝑛×𝑚-dimension matrix 𝑋, where the columns
epresent the normalized single indicators 𝑋𝑗 𝑗 ∈ {1,… , 𝑚}, and the
ows of 𝑋 are referred to the units studied (regions, countries, etc.).
et (𝑋𝑗 ,𝑀𝑗 , ∗) be fuzzy metrics spaces 𝑗 = {1,… , 𝑚} according to

George and Veeramani (1994) – for instance, any metric presented in
the previous section – such that 𝑋𝑗 is a (non-empty) single indicator,
over the same t-norm ∗. Henceforth, we are going to use the t-norm of
the usual product as a reference. We denote by 𝑥𝑖 = (𝑥𝑖1,… , 𝑥𝑖𝑚) the

-dimension vector that groups all single indicators corresponding to
he i-observation 𝑖 ∈ {1,… , 𝑛}. Supposing that 𝑥∗ = (𝑥∗1,… , 𝑥∗𝑚) be a
ictitious vector reference (target or baseline) that is composed by the
esults of a theoretical observation with the best-worst possible scenario
or all the single indicators depending on the polarity2 .

The composite fuzzy indicator (CFI) can be defined as

𝐶𝐹𝐼𝑖 = 𝐶𝐹𝐼(𝑥∗, 𝑥𝑖) =
𝑚
∏

𝑗=1
𝑀𝑗 (𝑥∗𝑗 , 𝑥𝑖𝑗 ) (3)

Thus (𝑋1 ×⋯×𝑋𝑚, 𝐼, ⋅) is also a fuzzy metric defined with the same
-norm (Segi Rahmat & Noorani, 2008), namely, all metrics included in
his product must be defined on the same t-norm. This metric computes
he fuzzy distance between each observation 𝑥𝑖 = (𝑥𝑖1,… , 𝑥𝑖𝑚) and the
arget 𝑥∗ = (𝑥∗1,… , 𝑥∗𝑚). As a result, if the composite indicator is equal

to 1 for the unit 𝑖, then the 𝑖 observation reaches the reference vector.
onversely, the closer to zero the composite indicator is, the observa-
ion 𝑖 is further away from the reference vector and therefore, further

from the concept we want to model. This property is fundamental,
since it allows making a composite indicator that also is a fuzzy metric,
namely, it satisfies Definition 2. Therefore, for each observation i, the
metric provides a degree of proximity to the concept that the researcher
wishes to model. The choice of the vector reference or baseline is a
crucial step which must be done in connection with the theoretical
framework of the phenomenon to be studied. If we were interested
in measuring, for example, the technological development of a set of
countries, the best values of the single indicators – within the set of
countries – should be taken as a vector reference. On the contrary, the
worse values would be taken as a reference vector when you want to
measure concepts such as poverty or socio-economic vulnerability in

2 The indicator’s polarity is defined as the sign of the relation between the
ingle indicator and the phenomenon to be measured. Some indicators may
e positively correlated with the latent variable (positive polarity), whereas
thers may be negatively correlated with it (negative polarity). For instance,
he investment in R&D would be positively associated with the economic
evelopment (latent variable), whereas the 𝐶𝑂2 emissions would be negatively

ssociated.
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which the higher the score of the composite indicator, the worse the
real situation.

More specifically, given the fuzzy metric shown by Eq. (2), the
composite indicator can be written as follows

𝐶𝐹𝐼(𝑥∗, 𝑥𝑖) =
𝑚
∏

𝑗=1
𝑀𝑗 (𝑥∗𝑗 , 𝑥𝑖𝑗 ) =

𝑚
∏

𝑗=1

𝑘𝑗
𝑘𝑗 + |𝑥∗𝑗 − 𝑥𝑖𝑗 |

(4)

where 𝑘𝑗 is the sensitivity constant associated to each fuzzy metric 𝑀𝑗 .
Notice that the function 𝑓 (𝑘) = 𝑘∕(𝑘 + 𝑑) is an increasing function,

due to the fact that 𝑑 is positive. Therefore, we can use this parameter
in order to modify each fuzzy metric according to its relevance. For
example, taking 𝑘1 = ⋯ = 𝑘𝑚, then the composite indicator only consid-
ers a theoretical situation of equal importance of each single indicator
or, equivalently, there is not overlapping or redundant information
between them (influence). To check if there exists any influence, ac-
cording to Section 3.2.2, we must check if there are statistical function
relationships among the single indicators and then attribute them to
their corresponding fuzzy metrics through the sensitivity constant 𝑘𝑗 .
The next step is to estimate the more suitable value of the sensitivity
constant 𝑘𝑗 for each single indicator 𝑋𝑗 .

3.2. Computing the sensitivity of fuzzy metric

One of the crucial stages in this methodology focuses on the com-
putation of the sensitivity constant 𝑘𝑗 , namely, the importance of each
single indicator in the CFI. Taking as a reference the initial CFI, for
which all single indicators have the same relevance (𝑘1 = ⋯ = 𝑘𝑚),
the procedure must check if there exist statistical relationships be-
tween them. To carry out this task, the best approximation polynomial
between the composite indicator and the set of single indicators is
obtained through Multivariate Adaptive Regression Splines (MARS)
(Friedman, 1991). Unlike to other approaches to indicator construction
such a Distance P2 (Pena Trapero, 1977; Sánchez et al., 2018; Sánchez
& Ruiz-Martos, 2018) which use ordinary linear regression as a hinge to
quantify the weights of the relationships between the CFI and the single
indicators, MARS is a non-parametric modelling method which extends
the linear model by incorporating non-linearities and the indicators
interactions without the assumptions that traditional regression models
must meet. It is insensitive to not normally distributed predictors
and response. Likewise, it is insensitive to irrelevant variables and
unscaled variables. These tools are used to understand data through
new improved software packages Kuhn (2008).

3.2.1. Selecting an efficient approach to the data set
In this section, we select the best functional relationship among

singles indicators and CFI. For each observation 𝑖 ∈ {1,… , 𝑛}, MARS
model can be written as follows:

𝐶𝐹𝐼𝑖 = 𝛽0 +
𝑚
∑

𝑗=1
𝛽𝑖𝐵(𝑥𝑖𝑗 ) + 𝜀𝑖 (5)

where 𝐶𝐹𝐼𝑖 is the composite indicator, 𝑥𝑖𝑗 is the observation of the j-
normalized single indicator 𝑗 ∈ {1,… , 𝑚}, 𝛽0 is the intercept, 𝐵(𝑥𝑖𝑗 ) is a
basis of disjoint functions and finally 𝜀 is the error term. The procedure
is implemented by constructing on the previous suitable basis of disjoint
functions (polynomials of degree 𝑞) tied by knots, where a final model
is constituted as a combination of this generated base functions that
can be fitted by ordinary least-squares (Friedman, 1991).

To carry out this approach, two crucial tuning hyperparameters are
used in order to minimize mean-square error (MSE). Firstly, the degree
of the basis functions 𝐵(𝑥𝑖𝑗 ) used to perform Eq. (5), and secondly,
the number of knots used to link the disjoint polynomials. In order
to identify the optimal combination of the previous hyperparameters,
the procedure performs a grid of two dimensions search. MARS pro-
cedure will assess all the potential combinations between these two
hyperparameters and will discard them until obtaining the optimal
4

selection.
Fig. 1. 10-cross validation partition.

To perform this optimization process, we use k-fold cross-validation
as a resampling procedure (Craven & Wahba, 1971). We split the data
set into 10 groups of equal size. The first fold (B) is treated as a
validation set, and the model (5) is fit on the remaining 9 folds (A) for
each combination of two hyperparameters which are tested using B to
adjust the coefficients values to best fit the data, as shown in a Fig. 1 .
More precisely, let {(𝑥𝑖1,… , 𝑥𝑖𝑚, 𝐶𝐹𝐼𝑖)}𝑛𝑖=1 be 𝑛 observations where each
i-observation is composed by m+1 coordinates, the m first represented
by the single indicators and the last by the CFI. We generate a partition
of the whole data, the training subset 𝐴 = {(𝑥𝑖1,… , 𝑥𝑖𝑚, 𝐶𝐹𝐼𝑖)}𝓁𝑖=1 and
test subset 𝐵 = {(𝑥𝑖1,… , 𝑥𝑖𝑚, 𝐶𝐹𝐼𝑖)}𝑛𝑖=𝓁+1 where 𝓁 > 𝑛 − 𝓁. For each
two hyperparameters belonging to the performed grid, model (5) is fit
with respect to the A training subset. We assess {(𝑥𝑖1,… , 𝑥𝑖𝑚)}𝑛𝑖=𝓁+1 and
then {𝐶𝐹𝐼}𝑛𝑖=𝓁+1 is obtained. Due to the fact that B was not used in the
previous process, the Mean Square Error (MSE) can be estimated as

𝑀𝑆𝐸 = 1
𝑛 − 𝓁

𝑛
∑

𝑖=𝓁+1
(𝐶𝐹𝐼𝑖 − 𝐶𝐹𝐼 𝑖)2 (6)

We can repeat the procedure 10 times by selecting new partitions of
data and obtaining 10 square errors {𝑀𝑆𝐸𝑘}10𝑘=1. The cross-validation
error is defined as follows

𝐶𝑉10 =
1
10

10
∑

𝑖=𝑘
𝑀𝑆𝐸𝑘 (7)

3.2.2. Single indicators importance scores (𝑘𝑗). The sensitivity scores of the
fuzzy metrics

Once we know which is the best polynomial basis that relates the
single indicators with respect to the composite indicator, we determine
the sensitivity scores (𝑘𝑗). These parameters provide a rank of impor-
tance of the single indicators. In other words, we want to quantify the
strength of the relationship between the single indicators and the com-
posite indicator. One of the primary reasons to measure the strength
or relevance of the single indicators is to select the suitable sensitivity
𝑘𝑗 , which should be used as inputs in the fuzzy metric. To do this, we
select sensitivity scores through a function variable importance, using
Partial Dependence Plots (PDP) (Greenwell et al., 2018). In turn, PDP
provides the metric with the suitable constants (𝑘𝑗) in order to reduce
the overlapping information from the m-single indicators. Sensitivity
scores are computed as follows. Let 𝑋 = {𝑋1,… , 𝑋𝑚} be the set of m
indicators in the chosen model (5) whose prediction function computed
using MARS technique is denoted by 𝑓 . Let 𝑍𝑠 = {𝑋1,… , 𝑋𝑠}, 𝑠 < 𝑚
be an indicator subset of 𝑋 and let 𝑍𝑝−𝑠 = {𝑋𝑠+1,… , 𝑋𝑝} be the
complementary subset into 𝑋. The partial dependence of the response
on 𝑍𝑠 is defined by

𝑓𝑠(𝑍𝑠) = 𝐸[𝑓 (𝑍𝑠, 𝑍𝑝−𝑠)]𝑧𝑝−𝑠 = ∫ 𝑓 (𝑍𝑠, 𝑍𝑝−𝑠)𝐩𝑝−𝑠(𝑍𝑝−𝑠)𝑑𝑍𝑝−𝑠 (8)

where the function 𝐩𝑝−𝑠 represents the marginal density of the subset
𝑝−𝑠. Let n be the number of observations in the training data 𝑍𝑖,𝑝−𝑠 ∈
𝑍1,𝑠+1,… , 𝑍𝑛,𝑝} for each single indicator, then the model (8) can be
stimated by

𝑓 𝑠(𝑍𝑠) =
1

𝑛
∑

𝑓 (𝑍𝑠, 𝑍𝑖,𝑝−𝑠) (9)

𝑛 𝑖=1
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Notice that this function depends on 𝑍𝑠 indicators and all obser-
vations are assessed in the complementary set of indicators. In fact,
𝑓 𝑠(𝑍𝑠) is an average over the set {𝑍𝑝−1,… , 𝑍𝑝−𝑠}. Therefore, for each
indicator – or subset of indicators – we can compute the average out of
the effects of all the other indicators in the model (5). Without loss of
generality, we select 𝑍𝑗 = 𝑋𝑗 for each 𝑗 ∈ {1,… , 𝑚}, thus the score of
the indicator 𝑋𝑗 is defined by

𝑖(𝑋𝑗 ) =

√

√

√

√

√

1
𝑛 − 1

𝑛
∑

𝑖=1

[

𝑓 𝑗 (𝑥𝑖𝑗 ) −
1
𝑛

𝑛
∑

𝑖=1
𝑓 (𝑥𝑖𝑗 )

]2

(10)

Zhou et al. (2010) provide a novel methodology to minimize the
loss of information in the aggregation of single indicators to build the
composite indicator. In our study, the weighs are defined as scores in
the fuzzy metric with respect to each single indicator, namely, assigning
its respective scores to the parameters 𝑘𝑗 , 𝑗 ∈ {1,… , 𝑚} which generates
a specific importance for each single indicator. The final composite
indicator is constituted by full/partial information depending on the
sensitivity computed in the previous step of all fuzzy metrics.3

In brief, the methodology presented in this study incorporates the
non-linearities and the machine learning tool in order to obtain a com-
posite indicator as close as possible to the nature of the data and their
interactions with the analysed model. Notice that PDP could generate
erroneous results if the single indicators are strongly correlated. In this
case we will recommend using the Accumulated Local Effects (ALE)
plots in order to minimize these interactions (Apley & Zhu, 2016).

4. Algorithm for building the composite indicator

Once the method for constructing the composite indicator has been
studied, the next step focuses on its practical implementation.4 In
this section we analyse the iterative method of calculation, and the
statistical properties required for the iterative process to stop.

Let 𝛺 be the set of single indicators 𝛺 = {1,… , 𝑚}, where 𝑚 denotes
the number of single indicators selected and let (𝑋𝑗 ,𝑀𝑗 , ∗) be fuzzy
metric spaces under the same t-norm ∗ and 𝑗 ∈ 𝛺. Let 𝑥∗ be the m-
dimension reference vector performed by the baseline of each indicator
and let 𝑥𝑖 be the m-dimension observation where each component
𝑥𝑖𝑗 ∈ 𝑋𝑗 , and 𝑖 ∈ {1,… , 𝑛} being 𝑛 be the number of observations
considered. In this study, all single indicators 𝑋𝑗 are performed by real
numbers and normalized. For all 𝑥𝑖 ∈ 𝑋𝑗 we select the fuzzy metric as
we pointed out in a previous section

𝑀𝑗 (𝑥∗𝑗 , 𝑥𝑖𝑗 ) =
𝑘𝑗

𝑘𝑗 + 𝑑(𝑥∗𝑗 , 𝑥𝑖𝑗 )
(11)

where 𝑘𝑗 , 𝑗 ∈ 𝛺 represents the sensitivity scores for each indica-
tor according to PDP described in the previous section. Finally, 𝑑 is
the absolute value of the difference between the target 𝑥∗𝑗 and the
i-observation 𝑥𝑖𝑗 of the j-observation.

3 Notice that one can impute scores to the fuzzy metric according to the
mportance that the researcher decides to assign to each single indicator. How-
ver, the subjectivity of this choice may, in some cases, bias the information of
he composite indicator towards the indicators with the most weight. Partial
ependence plots assign the scores from the data information avoiding this
ubjectivity, although it is worth noting that from the observed data (samples)
partial information can be derived that is far from what we are really looking

or. Therefore, these two approaches must be taken into account before using
he methodology presented in this paper.

4 The algorithm was developed with R software. Caret package has been
5

sed to estimate the scores of the single indicators (Kuhn, 2008). o
4.1. Iterations

We start computing the composite indicator with identical sensi-
tivity 𝑘(0)1 = ⋯ = 𝑘(0)𝑚 = 0.5, namely all indicators have the same
importance, for each indicator which is defined by the composite fuzzy
indicator 𝐶𝐹𝐼 (0). Assuming 𝐶𝐹𝐼 (0) as an output variable, MARS and
CV are used to select in Eq. (5) the optimal disjoint basis functions to
approximate the function relation between the 𝐶𝐹𝐼 (0) and the single
indicators. As presented in a previous section, we determine the sen-
sitivity score of single indicators through PDP. Those single indicators
whose sensitivity is close to zero contract its metric by subtracting rele-
vance, those whose sensitivity is maximum will approximate the metric
to one endowing with more importance. To impute these relevance to
the new composite indicator, we assign the sensitivity scores to each
fuzzy metric Eq. (11) through 𝑘(1)𝑗 for each 𝑗 ∈ {1,… , 𝑚}, obtaining a
new composite indicator 𝐶𝐹𝐼 (1). In turn, this new composite indicator
generates new sensitivity scores for each of the single indicators. This
iterative process generates a sequence of sensitivity scores (𝑘(𝓁)𝑗 )(𝓁) and
composite indicators (𝐶𝐹𝐼 (𝓁))(𝓁) for all 𝑗 ∈ {1,… , 𝑚} and 𝓁 = {0, 1, 2...}.

𝐶𝐹𝐼(𝑥∗, 𝑥𝑖)(𝓁) =
𝑚
∏

𝑘=1

𝑘(𝓁)𝑗

𝑘(𝓁)𝑗 + 𝑑(𝑥∗𝑗 , 𝑥𝑖𝑗 )
(12)

4.2. When will the iterative process stop?

The iterative process will stop when a similar rank correlation
between two composite indicators 𝐶𝐹𝐼(𝑥∗, 𝑥𝑖)(𝓁) and 𝐶𝐹𝐼(𝑥∗, 𝑥𝑖)(𝓁−1)

s met. In order to measure this rank correlation, the three most
ommonly measures used are Pearson’s 𝑟, Spearman’s 𝜌 and Kendall’s 𝜏

coefficients for monotone association in continuous data. The normality
of the variables analysed is the main assumption for the first one.
However, this assumption is not necessary for the other tests. The
second one takes account of the Pearson’s coefficient used for continu-
ous non-normal data. Nonetheless, Kendall’s 𝜏 provides the difference
between the probability that the composite indicators 𝐶𝐹𝐼(𝑥∗, 𝑥𝑖)(𝓁),
𝐶𝐹𝐼(𝑥∗, 𝑥𝑖)(𝓁−1) are in the same order versus the probability that the
composite indicators 𝐶𝐹𝐼(𝑥∗, 𝑥𝑖)(𝓁), 𝐼(𝑥∗, 𝑥𝑖)(𝓁−1) are not in the same
order (Hauze & Kossowski, 2011).

Another rank correlation measure designed for ordinal data is the
𝛾 rank correlation measure (Goodman & Kruskal, 1954). In all these
tests, the null hypothesis 𝐻0 assumes that the two composite indicators
are independent, whereas the alternative hypothesis 𝐻1 assumes that
they are dependent. In order to compute the 𝑝-value and therefore
computing the test statistic on the given data, the knowledge of the
statistic’s distribution associated to the null hypothesis is required.
However, this information is not known for the classical gamma and
Kendall’s test. The robust 𝛾 rank correlation measures by using some
fuzzy ordering with smooth transitions is a new approach that does
not require these assumptions and generalizes the classical 𝛾 rank
correlation (Bodenhofer & Klawonn, 2008; Bodenhofer et al., 2013).
The robust 𝛾 rank correlation coefficient is defined as:

𝛾 = 𝐶 −𝐷
𝐶 +𝐷

(13)

where C represents the number of concordant pairs and D the number
of discordant pairs. For instance, if we consider an extremal case where
all observations of two data set are equal (𝐷 = 0), we will obtain a
gamma rank correlation equal to one.

One advantage of this test is that it solves the difficulty of unknown
distribution through permutation testing, which assumes that the two
concatenated composite indicators are independent, namely, any com-
bination of two observations is likely to be equal. In this setting, fixed
𝓁, if we compute the test statistic for 𝐶𝐹𝐼(𝑥∗, 𝑥𝑖)(𝓁) and all possible
ermutations of 𝐶𝐹𝐼(𝑥∗, 𝑥𝑖)(𝓁−1) varying in the set {1,… , 𝑛, }, the 𝑝-
alue corresponding to the two-sided tails means the relative frequency
f how many times the absolute value of the test statistics for the
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permuted observations is at least as large as the absolute value of the
statistic test for the no permuted observations.

We use the 𝑝-value and the robust gamma rank correlation coef-
ficient as control parameters in our algorithm. Fixed a level of sig-
nificance 𝛼 and a threshold 𝛾, the iterative method is stopped when
wo properties are satisfied. The first one is reached when the 𝑝-

value is lower than the fixed level of significance, therefore we will
have empirical evidence that the two composite indicators are not
independent. The second one has to fulfil that the calculated robust
gamma statistic is higher than the figurative threshold. In this case, we
obtain that the compared composite indicators are significantly similar
and then the iterative process stops. The pseudo-code of the purposed
algorithm can be described as Algorithm 1.

Algorithm 1: Algorithm of the Composite Fuzzy Indicator
𝐶𝐹𝐼(𝑥∗, 𝑥𝑖) with respect to a reference vector.

Data: (Inputs) 𝑒𝑟𝑟𝑜𝑟 = 𝛼,
𝓁 = 1, 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 𝑝, 𝑝 − 𝑣𝑎𝑙𝑢𝑒1 = 1, 𝜌;
Result: (Output) Composite indicator 𝐶𝐹𝐼(𝑥∗, 𝑥𝑖)(𝓁)

1 Initialization: Compute 𝐶𝐹𝐼(𝑥∗, 𝑥𝑖)(0) and the sensitivity scores
{𝑘(0)1 , ..., 𝑘(0)𝑚 };

2 repeat
3 Compute 𝐶𝐹𝐼(𝑥∗, 𝑥𝑖)(𝓁) using the sensitivity scores

{𝑘(𝓁−1)1 , ..., 𝑘(𝓁−1)𝑚 }
4 Compute the sensitivity scores {𝑘(𝓁)1 , ..., 𝑘(𝓁)𝑚 } of the composite

indicator 𝐶𝐹𝐼(𝑥∗, 𝑥𝑖)(𝓁)

5 Apply gamma robust correlation to 𝐶𝐹𝐼(𝑥∗, 𝑥𝑖)(𝓁) and
𝐶𝐹𝐼(𝑥∗, 𝑥𝑖)(𝓁−1)

6 Compute 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝓁
7 Compute 𝜌(𝓁)
8 𝓁 = 𝓁 + 1;
9 until 𝓁 ≤ iterations or (𝜌𝓁 ≤ 𝜌 and 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝓁 < 𝑒𝑟𝑟𝑜𝑟);

5. Properties of the aggregation methods

As far as we know, the analysis of mathematical properties that a
composite indicator must fulfil in order to allow us to study its goodness
of fit is scarcely treated in the literature. In this section we present the
mathematical properties of our methodological proposal according to
what was pointed out by Pena Trapero (1977, 2009), Zarzosa Espina
(1996). In addition, we review whether the traditional methods to build
composite indicator fulfil these properties.

5.1. Mathematical properties of the composite Fuzzy indicator

The main properties that our proposal CFI satisfies are: existence,
transitivity, invariance, exhaustiveness, monotony and symmetry.

• 1th. Existence and determination. The aggregation method
(Eq. (3)) is well-defined for all 𝑖 ∈ {𝑖,… , 𝑛} due to Definition 2.

• 2th. Transitivity. Due to the range of the composite indicator
belongs into ]0, 1], the transitivity property (if 𝐼𝑖 > 𝐼𝑗 and 𝐼𝑗 > 𝐼𝑘
implies 𝐼𝑖 > 𝐼𝑘) is satisfied.

• 3th

roposition 6. The aggregation method is invariant by origin and scale
hanges.

roof. Let 𝑋𝑗 be a single indicator such that ‖𝑋𝑗‖2 = 1. For each
∈ {1,… , 𝑚}, we define 𝑍𝑗 = (𝛼𝑋𝑗 + 𝐵𝑗 )∕‖𝛼𝑋𝑗 + 𝐵𝑗‖2 where 𝛼 is a

onstant and 𝐵𝑗 = (𝛽𝑗 ,… , 𝛽𝑗 ) is a n-dimension vector.

𝑗 (𝑧∗𝑗 , 𝑧𝑖𝑗 ) =
𝑘𝑗

𝑘𝑗 + |𝑧∗𝑗 − 𝑧𝑖𝑗 |
=

𝑘𝑗

𝑘 + |𝛼𝑥∗𝑗+𝛽𝑗−𝛼𝑥𝑖𝑗−𝛽𝑗 |
6

𝑗
‖𝛼𝑋𝑗+𝐵𝑗‖2
=
𝑘𝑗

𝑘𝑗 +
|𝛼𝑥∗𝑗−𝛼𝑥∗𝑗 |
‖𝛼𝑋𝑗‖2

= 𝑀𝑗 (𝑥∗𝑗 , 𝑥𝑖𝑗 )

Therefore the fuzzy metric is invariant by origin and scale changes, in
turn, the composite indicator too. □

• 4th. Exhaustiveness. The weighs of the single indicators are in-
troduced according to their relevance through variable impor-
tance scores, therefore, the composite indicator presented in this
study compiles the information of the indicators in a hierarchical
way through the variable function importance. This property is
called exhaustiveness by some authors Pena Trapero (1977, 2009),
Zarzosa Espina (1996).

• 5th.

roposition 7. Let 𝑋𝑗 be the single indicator, the CFI defined as Eq. (3)
s monotone.

roof. If we are measuring the proximity to a phenomenon in which
he closer 1 the CFI indicates the better real situation is (i.e. compet-
tiveness, economic development, technological level, socio-economic
tatus,etc.), an increase in a single indicator with positive polarity, it
ust also generate an increase in the composite indicator.

Suppose that some 𝑋𝑗 single indicator has positive polarity 𝑗 ∈
1,… , 𝑚}, 𝑥𝑖𝑗 < 𝑥𝓁𝑗 < 𝑥∗𝑗 where 𝑥∗𝑗 is the best scenario. If we

are measuring the proximity to a phenomenon in which the closer 1
the CFI indicates the worst real situation (i.e. poverty, vulnerability,
corruption, etc.), the reference vector shows the worse real situation is
in each single indicator.

𝑥𝑖𝑗 − 𝑥∗𝑗 < 𝑥𝓁𝑗 − 𝑥∗𝑗 ;

|𝑥∗𝑗 − 𝑥𝑖𝑗 | > |𝑥∗𝑗 − 𝑥𝓁𝑗 |;

𝑘𝑗
𝑘𝑗 + |𝑥∗𝑗 − 𝑥𝑖𝑗 |

<
𝑘𝑗

𝑘𝑗 + |𝑥∗𝑗 − 𝑥𝓁𝑗 |
;

𝑀𝑗 (𝑥∗𝑗 , 𝑥𝑖𝑗 ) < 𝑀𝑗 (𝑥∗𝑗 , 𝑥𝓁𝑗 ).

Conversely, supposing that some 𝑋𝑗 single indicator has negative po-
larity 𝑗 ∈ {1,… , 𝑚}, an increase in a single indicator must generate a
decrease in the composite indicator. 𝑥∗𝑗 < 𝑥𝑖𝑗 < 𝑥𝓁𝑗 where 𝑥∗𝑗 is the
best scenario.

𝑥𝑖𝑗 − 𝑥∗𝑗 < 𝑥𝓁𝑗 − 𝑥∗𝑗 ;

|𝑥𝑖𝑗 − 𝑥∗𝑗 | < |𝑥𝓁𝑗 − 𝑥∗𝑗 |;

𝑘𝑗
𝑘𝑗 + |𝑥∗𝑗 − 𝑥𝑖𝑗 |

>
𝑘𝑗

𝑘𝑗 + |𝑥∗𝑗 − 𝑥𝓁𝑗 |
;

𝑀𝑗 (𝑥∗𝑗 , 𝑥𝑖𝑗 ) > 𝑀𝑗 (𝑥∗𝑗 , 𝑥𝓁𝑗 ).

Taking as a reference an indicator with positive polarity, if one
single indicator shows a better situation, whereas the rest of indicators
remain constant, the composite indicator must reflect this improve-
ment, and vice versa. We suppose that 𝑀𝑝(𝑥∗𝑝, 𝑥𝑖𝑝) < 𝑀𝑝(𝑥∗𝑝, 𝑥𝓁𝑝) for
any 𝑖 ≠ 𝓁,where 𝑖,𝓁 ∈ {1,… , 𝑛} and 𝑀𝑗 (𝑥∗𝑗 , 𝑥𝑖𝑗 ) = 𝑀𝑗 (𝑥∗𝑗 , 𝑥𝓁𝑗 ) for all
𝑗 ≠ 𝑝, then

𝐶𝐹𝐼(𝑥∗, 𝑥𝑖) =
𝑝−1
∏

𝑗=1
𝑀𝑗 (𝑥∗𝑗 , 𝑥𝑖𝑗 ) ⋅𝑀𝑝(𝑥∗𝑝, 𝑥𝑖𝑝) ⋅

𝑚
∏

𝑗=𝑝+1
𝑀𝑗 (𝑥∗𝑗 , 𝑥𝑖𝑗 )

<
𝑝−1
∏

𝑗=1
𝑀𝑗 (𝑥∗𝑗 , 𝑥𝓁𝑗 ) ⋅𝑀𝑝(𝑥∗𝑝, 𝑥𝓁𝑝) ⋅

𝑚
∏

𝑗=𝑝+1
𝑀𝑗 (𝑥∗𝑗 , 𝑥𝓁𝑗 )

= 𝐶𝐹𝐼(𝑥∗, 𝑥𝓁)
The proof taking an indicator with negative polarity is symmetrical. □
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Table 1
Comparison of aggregation methods.

Arithmetic
mean

Geometric
mean

PCA CFI

Existence ✔ ✖ ✔ ✔

Transitivity ✔ ✔ ✔ ✔

Invariance ✔ ✔ ✖ ✔

Exhaustiveness ✖ ✖ ✖ ✔

Monotonicity ✔ ✔ ✖ ✔

Symmetry ✔ ✔ ✔ ✔

Homogeneity ✔ ✖ ✖ ✖

PCA = Principal components analysis. CFI = composite fuzzy indicator.

• 6th. The composite indicator defined as Eq. (3) is symmetric. The
value of the composite indicator, as result of method presented in
this study does not depend on the order of the single indicators.
According to Grabisch et al. (2011), Proposition 5), we test sev-
eral permutations in the order in which the single indicators have
been introduced, obtaining the same result. Proof of this property
will be shown in the following section.

.2. Comparison with other aggregation methods

In this section we compare the widest applied methods to build
omposite indicators with our proposal CFM. Table 1 illustrates that
he composite indicators built with the arithmetic mean, the geometric
ean and PCA do not fulfil all the six properties analysed in the
revious section, and also that our CFI proposal does not observe
he property of homogeneity. Next, these cases are stressed. A more
etailed analysis about the mathematical properties can be consulted
n Herrero et al. (2012) (for arithmetic and geometric means) and
iménez-Fernández and Ruiz-Martos (2020), Jolliffe (2002) and (OECD,
008) (for PCA). Firstly, the geometric mean is indeterminate in the
ase that one of the indicators, in any unit, takes the value zero or
egative. In the case of PCA, the values of the composite indicators
epend on the extraction method and the rotation of axes used, so that
he results are more easily interpretable.

Secondly, composite indicators built with the arithmetic mean, the
eometric mean and PCA are not unique to scale changes (invariance
roperty), hence the results are affected by the choice of normalization
alues.

Thirdly, regarding exhaustiveness, arithmetic mean and geometric
ean do not avoid the duplication of information provided by the

ingle indicators, so that an increase in information does not necessarily
ranslate into a better composite indicator. Although PCA avoids the
uplicity of information provided by the single indicators, it only
emoves the linear redundant information. Additionally, the PCA com-
osite indicators derived from just the first component do not take full
dvantage because they ignore any useful non-redundant information
resent in the data.

Fourthly, the PCA composite indicators verify the monotonicity as
ong as single indicators with equal polarities are positively correlated;
therwise inconsistent results would be reached (Mazziotta & Pareto,
019).

Finally, the property of homogeneity referred to the composite
ndicator is a degree 1 homogeneous function with respect to the
ingle indicators. This would mean that if all the single indicators are
ultiplied by a constant, the composite indicator is also multiplied by

he same constant. Our CFI proposal does not verify this property due to
he multiplicative nature of its calculation formula. The same happens
o the geometric mean. For PCA composite indicators, if all the single
ndicators are multiplied by a constant, the values of the composite
ndicator will not change, because the correlation matrix is the same in
oth cases (namely, the matrix of data and the matrix of data multiplied
7

y a constant).
6. Robustness of the composite indicator

Checking the robustness of a composite indicator is a crucial step to
increase its transparency and also to prevent drawing misleading im-
plications from it. In spite of the importance of robustness check, little
attention has been paid to this step in the empirical applications (see
Greco et al., 2019). Uncertainty and sensitivity analyses are the widest
used techniques for checking the robustness under the framework of
the traditional methods for building composite indicators (OECD, 2008;
Saisana et al., 2005).

In order to analyse the robustness of the composite indicator in-
troduced in this study, three strategies are used. In all of them, we
start from an input set artificially generated by using a random uniform
sample where four hundred observations (𝑖 ∈ {1,… , 400}) are ranked
according to the composite indicator presented in this study. We as-
sume that 10 single indicators have been considered (𝑗 ∈ {1,… , 10}) to
arry out the experiment. Likewise, in the three strategies, the goodness
f the model will be referred to changes observed in the final outcome
f the composite indicator, that is the changes in the ranking of the
nits studied.

The first strategy analyses the degree of importance of each single
ndicator in the composite indicator. As described above, we determine
he importance of the single indicators identifying the subset of the

single indicators that best explain the composite indicator through
DP. According to the 6th property of the aggregation method, we
erform two permutations of the single indicators. We exchange the
irst indicator with the last one, and the first indicator with the second
ne. We obtain the same rank in the observations for all permutations.
herefore, the order of the composite indicator observations is invariant
y permutations of the single indicators.

In order to visualize the geometric behaviour of each single indica-
or with respect to the composite indicator while remains constant all
he other single indicators, we use PDP. Fig. 2 displays the projection
f that particular single indicator on the model’s predictions for the
andom sample considered in this study. As shown, in the database
tudied and for all the single indicators, a truncated association is
bserved between the simple indicator and the composite indicator. In
his case, this result gives the intuition that it would not be correct to
pply a unique type of adjustment between a single indicator and a
omposite indicator for the entire data sample. Accordingly, the use of
he MARS procedure seems a suitable option.

In addition, Table 2 shows a statistical description of the averages
f the residues of all the samples used in the procedure carried out
hrough the Monte Carlo method. In the same way that Fig. 2, MARS
odel is the best model according to cross-validated horizontal axis,
oot-Mean-Square-Error (RMSE) for our Monte Carlo random samples.

The second strategy analyses variability of the composite indicator
cores when some units are randomly deleted. To carry out this test,
e perform a Monte Carlo procedure. To perform this analysis, firstly,
0 random observations or units are deleted of the database. The com-
osite indicator (CFI) is calculated on the remaining 390 observations.
econdly, we use the original database with the 400 units to calculate
he CFI. Once computed, we remove the 10 observations CFI results
orresponding to the same units that were eliminated in the previous
tep. The two performed CFI have been compared using Spearman’s,
endall and robust rank correlation statistics. Assuming a type I error
= 0.05, and also a coefficient 𝛾, as parameters of robust gamma

ank correlation the algorithm stops when the 𝑝-value is smaller than
𝛼 and 𝛾 greater than 0.9. One hundred random sample data set were
analysed, for which 10 observations were randomly deleted for each
sample following the previous steps. The results show 𝛾 computed as
significance. As shown in Fig. 3, except in the case of the Kendall
test, in which correlation is also evident, the others present strong
evidence of correlation between the two composite indices analysed in

each iteration. Table 3 summarizes the statistical outputs for each test.
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Fig. 2. Projection over single indicators. Single indicators horizontal axis and composite indicator in vertical axis.
Table 2
Statistical outputs of the residuals of estimates of fit between CFI and single indicators.

Min 1st Qu. Median Mean 3rd Qu. Max

OLS 0.000823 0.000864 0.001030 0.001144 0.001121 0.002335
PCR 0.000883 0.000985 0.001139 0.0011300 0.001424 0.002432
PLS 0.000833 0.000867 0.001025 0.001143 0.001120 0.002320
Elastic net 0.000748 0.000811 0.001004 0.001135 0.001167 0.002412
MARS 0.000625 0.000771 0.001018 0.001046 0.001324 0.001446

Note. CFI: Composite fuzzy indicator. OLS: Ordinary less squares. PCR: Principal component regression. PLS:
Partial least squares. Elastic net: Regularized regression. MARS: Multivariate adaptive regression splines.
Residual calculated by cross-validated Root-Mean-Square-Error (RMSE).
Fig. 3. Results of simulations of composite fuzzy indicators when ten observations are randomly deleted.
Table 3
Statistical summary of the ranking test.

Min 1st Qu. Median Mean 3rd Qu. Max

Spearman 0.8551 0.9252 0.9370 0.9359 0.9487 0.9786
Kendall 0.6720 0.7697 0.7884 0.7898 0.8084 0.8794
Robust 𝛾 0.9372 0.9727 0.9785 0.9774 0.9831 0.9966

This allows us to deduce that the ranking associated to the composite
indicators are significantly the same when we eliminate observations.
8

The third strategy to check the robustness of the method proposed
focuses on influence analysis. We generate an input as random convex
linear combinations of the original single indicators called Xadded,
which is included in the underlying model. Monte Carlo procedure
assesses one hundred random convex linear combinations. Variable
importance scores provided by the algorithm indicates in all the cases
the irrelevance in the underline model of the added indicator (Fig. 4).

Fig. 4 shows that on average the most important single indicators
in the underlying model are 2 and 4, the added single indicator being
irrelevant because it provides redundant information. If we compare
the composite indicators of the original model with respect to the
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Fig. 4. Importance of single indicators in one hundred iterations.
Table 4
Influence analysis test.

Spearman Kendall Robust rho

Min. :0.8823 Min. :0.7038 Min. :0.9609
1st Qu. :0.9389 1st Qu. :0.7922 1st Qu. :0.9849
Median :0.9517 Median :0.8125 Median :0.9888
Mean :0.9479 Mean :0.8124 Mean :0.9868
3rd Qu. :0.9649 3rd Qu. :0.8420 3rd Qu. :0.9927
Max. :0.9896 Max. :0.9163 Max. :0.9989

model with the added linearly dependent indicator, we observe that the
correlation in range is significantly equal, being especially similar when
using the Spearman tests and robust rank 𝛾 correlation test (Table 4).

Therefore, it does not seem to be significant differences in the
range of observations when adding single indicators that are linear
combinations of the rest, that is the algorithm discriminates the in-
formation linearly redundant. This technique commonly referred to as
influence analysis gives us a 0 weight for Xadded single indicator, and
therefore minimizes their influence on the resulting composite indicator
(Table 5).

7. Conclusions and remarks

There is an increasing popularity of rankings obtained with com-
posite indicators based on simple methods, but these are not reliable
in some cases (Becker et al., 2017; Jiménez-Fernández & Ruiz-Martos,
2020). This paper aims at developing a new method for building
composite indicators which allows making more accurate and reliable
estimations of the concept being studied.

The methodology is designed for formative measurement models
using a set of indicators measured on different scales (quantitative,
ordinal and binary) and it is partially compensatory. The CFI composite
indicator is a fuzzy metric that is obtained from the grouping of a
set of fuzzy metrics (George & Veeramani, 1994). The use of this
mathematical approach is very appropriate for the study of phenomena
in which their boundaries are not well defined. In this regard, as a
limitation of our proposal, it is worth noting that the method we present
is sensitive to the change of metric and t-norm. An appropriate metric
must be used in each case and, therefore, an appropriate choice of the
t-norm that makes its use compatible too (Gregori et al., 2011). The CFI
will be more realistic, or its goodness of fit will be better, to the extent
that the researcher has the ability to provide the most suitable metric
to apply to each single indicator in the context of the concept studied.
9

In this study we have been concerned with the allocation of the
weights of the single indicators and the method of aggregation. From
the comparison made of the mathematical properties that verify the
composite indicators built with arithmetic mean, geometric mean, PCA
and CFI, we found that one of the major disadvantages of the most
popular methods is the lack of exhaustiveness. To be exhaustive, a
composite indicator should take full advantage, and in a useful way,
of the information provided by the single indicators (Zarzosa Espina,
1996). That is, a composite indicator is better than another if it provides
more useful information about the phenomenon studied. In turn, this
implies that it should be able to eliminate duplicate information. These
aspects are key to performing a rigorous benchmarking. In our pro-
posed method for building composite indicators, we use unsupervised
machine learning techniques. Most of the current methodologies for
the construction of composite indicators deal with this issue by using
algorithms that are intrinsically linear or models that adapt to the non-
linear patterns of the data a priori. In contrast, in the methodology
presented in this study it is not necessary to explicitly know or specify
the exact form of non-linearity before the model’s training. In this vein,
the algorithms provided will look for, and discover, non-linearity in
the data that will help to optimize the relationships. Once the func-
tional relationship is detected, the relationships between the composite
indicator and the individual indicators are quantified through partial
dependency plots (PDP). The weight attributed to each single indicator
will show the relevance of each single indicator in the constructed
metric. The resulting composite indicator will be the result of a metric
structure that allows the comparison of observations and contains the
precise information provided by each single indicator.

A common practice is to make comparisons between the most
popular methodologies for the construction of composite indicators
and the proposed methodology grounded on the outcomes. However,
this type of analysis is omitted for the following three reasons. Firstly,
unlike the more traditional methods, the proposed methodology is a
metric and, in addition, it satisfies the properties of existence, transi-
tivity, invariance, exhaustiveness, monotony and symmetry. Secondly,
to eliminate the implicit subjective choices of other methodologies, un-
supervised machine-learning techniques are used. Thirdly, the concept
of fuzzy metrics is used to provide a more realistic approach to the
concepts that will be modelled. Henceforth, the methodology presented
is diametrically different from the traditional ones, so that, from our
point of view, the comparison of the results that would be obtained with
the same database would lack conceptual solidity. Instead, we have
studied and compared the mathematical properties that satisfy the most
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Table 5
Sensitivity scores by single indicator.

X1 X2 X3 X4 X5 X6

Min. :0.0000 Min. :0.1950 Min. :0.1748 Min. :0.3175 Min. :0.2107 Min. :0.0000
1st Qu. :0.4788 1st Qu. :0.7245 1st Qu. :0.5396 1st Qu. :0.4810 1st Qu. :0.4460 1st Qu. :0.3136
Median :0.5846 Median :0.8931 Median :0.7263 Median :0.5357 Median :0.5217 Median :0.3587
Mean :0.5878 Mean :0.8354 Mean :0.6636 Mean :0.5517 Mean :0.5340 Mean :0.3842
3rd Qu. :0.7169 3rd Qu. :1.0000 3rd Qu. :0.8241 3rd Qu. :0.5964 3rd Qu. :0.5983 3rd Qu. :0.4358
Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :0.9232 Max. :0.9516

X7 X8 X9 X10 Xadded

Min. :0.0000 Min. :0.2267 Min. :0.2437 Min. :0.2447 Min. :0
1st Qu. :0.3754 1st Qu. :0.6959 1st Qu. :0.6290 1st Qu. :0.6063 1st Qu. :0
Median :0.4337 Median :0.8652 Median :0.6841 Median :0.7812 Median :0
Mean :0.5301 Mean :0.7919 Mean :0.6943 Mean :0.7565 Mean :0
3rd Qu. :0.6642 3rd Qu. :0.9200 3rd Qu. :0.7521 3rd Qu. :0.9966 3rd Qu. :0
Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :0
A
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B

B
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C

C
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G

G

G

G

G

H

H

J

J
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K
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commonly used methods for constructing composite indicators and our
proposal. We have found that, except for the property of homogeneity,
our method verifies all the properties indicated in the literature of
composite indicators, whereas the most traditional methods presented
a worse balance.

Additionally, simulation methods have been employed to investi-
gate the robustness of composite indicators and the conclusions based
on them. More specifically, we developed specific strategies to check
the robustness in three directions. Firstly, we checked that the compos-
ite indicator is invariant regarding the permutations of single indica-
tors. Secondly, it has been tested that the method is not sensitive to the
elimination of observations. The CFI composite indicator is stable when
observations are removed. In other words, the ranking of the units does
not register significant alterations when some of the units are elimi-
nated. Finally, with the addition of noise to the model for the detection
of multicollinearity problems, we showed that our method is able to
solve problems of this nature. In other words, the multicollinearity
problem generates composite indicators with redundant information,
thus giving to some indicators a greater weight than they should have.
This anomaly must be addressed. From a Monte-Carlo test it is found
that our methodology is capable of correcting multicollinearity.

To sum up, and without seeking to be presumptuous, we strongly
believe that our methodology to build composite indicators solves to
a great extent those aspects that have not been resolved by classical
methodologies, providing a more realistic and faithful vision of the
phenomenon studied.
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