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Abstract

Noise pollution has become a cause of major health problems, such as
sleep, cardiovascular or cognitive alterations. In urban areas, the high values
of transport and other human-activity-related noise can be especially harmful.
This issue is a large subject of study, due to the broad nature of noise and
its range of possible sources (and therefore the potential solutions to alleviate
each of them). This Thesis focuses on the minimization of (i) exhaust system
noise, which can be addressed by the use of mufflers (which in turn have other
applications, such as in HVAC systems, i.e., heating, ventilation, and air con-
ditioning), and (ii) general noise and vibration caused by transport, such as
railway rolling noise, and the use of sound barriers to alleviate it.

On the one hand, mufflers (which can be divided into reactive, dissipative,
and hybrid configurations) were long ago adopted in the exhaust line, but also
the use of catalytic converters and diesel particulate filters has become spread,
and, while their use responds to environmental rather than noise reduction rea-
sons, they have an impact in the acoustic performance of the exhaust system.
Diverse techniques for the modelling of sound propagation within ducts and the
other aforementioned devices are reviewed, and several optimization schemes
are proposed for the minimization of noise transmission. This includes (i) the
sizing optimization of mufflers (including reactive and dissipative chambers),
(ii) the topology optimization of the dissipative material (its density layout)
within the dissipative chamber, and (iii) the sizing optimization of exhaust
aftertreatment devices (catalytic converters and diesel particulate filters).

On the other hand, sound barriers have a wide range of applications, such
as traffic noise barriers, train wheel fairings or even HVAC duct coatings.
At this point, it is required to pair the acoustic and the elastic problems at
the air-structure boundary to obtain the vibroacoustic problem. A hybrid
displacement-pressure formulation is recalled here and applied to several case
studies, in order to obtain acoustically-optimized elastic designs.
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Resumen

La contaminación acústica se ha convertido en una causa de importantes
problemas de salud, como alteraciones del sueño, cardiovasculares o cogniti-
vas. En áreas urbanas, los altos valores del ruido debido al transporte y a
otras actividades humanas pueden ser especialmente dañinos. Se trata de un
tema de estudio abierto, debido a la amplia naturaleza del ruido y su gama
de posibles fuentes (y, por lo tanto, las posibles soluciones para paliar cada
una de ellas). Esta tesis se centra en la minimización del (i) ruido del sistema
de escape, que puede abordarse mediante el uso de silenciadores (que a su vez
tienen otras aplicaciones, como en los sistemas HVAC, es decir, calefacción,
ventilación y aire acondicionado), así como del (ii) ruido y las vibraciones gen-
erales causados por el transporte, como por ejemplo el ruido de rodadura de
los ferrocarriles, y el uso de barreras acústicas para mitigarlo.

Por un lado, los silenciadores (que se pueden dividir en configuraciones
reactivas, disipativas e híbridas) fueron adoptados hace tiempo en la línea de
escape, pero también se ha extendido el uso de convertidores catalíticos y filtros
de partículas diésel, los cuales, si bien su uso responde a razones medioambi-
entales más que de reducción del ruido, tienen un impacto en el rendimiento
acústico del sistema de escape. En este punto, se revisan diversas técnicas
para la simulación numérica de la propagación del sonido dentro de conductos
y demás dispositivos mencionados, y se proponen varios esquemas de opti-
mización para la minimización de la transmisión del ruido. Esto incluye (i) la
optimización dimensional de los silenciadores (incluidas las cámaras reactivas
y disipativas), (ii) la optimización topológica del material disipativo (su dis-
tribución de densidad) dentro de la cámara disipativa y (iii) la optimización
dimensional de los dispositivos de postratamiento de escape (convertidores
catalíticos y filtros de partículas diésel).

Por otro lado, el apantallamiento acústico tiene una amplia gama de aplica-
ciones, como las barreras acústicas de tráfico, carenados de ruedas de trenes o
incluso revestimientos de conductos HVAC. En este punto, se requiere acoplar
los problemas acústico y elástico en el contorno aire-estructura para obtener
el problema vibroacústico. Aquí se plantea una formulación híbrida en des-
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plazamiento-presión y se aplica a varios casos prácticos, con el fin de obtener
diseños elásticos acústicamente optimizados.
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Resum

La contaminació acústica s’ha convertit en una causa d’importants prob-
lemes de salut, com ara alteracions del son, cardiovasculars o cognitives. En
àrees urbanes, els alts valors del soroll degut al transport i a altres activitats
humanes poden ser especialment nocius. Es tracta d’un tema d’estudi obert,
a causa de l’àmplia naturalesa del soroll i la gamma de possibles fonts (i, per
tant, les possibles solucions per pal·liar cadascuna). Aquesta tesi se centra
en la minimització del (i) soroll del sistema d’escapament, que es pot abor-
dar mitjançant l’ús de silenciadors (que alhora tenen altres aplicacions, com
en els sistemes HVAC, és a dir, calefacció, ventilació i aire condicionat), així
com del (ii) soroll i les vibracions generals causats pel transport, com ara el
soroll de rodament dels ferrocarrils, i l’ús de barreres acústiques per mitigar-lo.

D’una banda, els silenciadors (que es poden dividir en configuracions reac-
tives, dissipatives i híbrides) van ser adoptats fa temps a la línia d’escapament,
però també s’ha estès l’ús de convertidors catalítics i filtres de partícules dièsel,
els quals, si bé el seu ús respon a raons mediambientals més que de reducció
del soroll, tenen un impacte en el rendiment acústic del sistema d’escapament.
En aquest punt, es revisen diverses tècniques per a la simulació numèrica
de la propagació del so dins de conductes i altres dispositius esmentats, i es
proposen diversos esquemes d’optimització per minimitzar la transmissió del
soroll. Això inclou (i) l’optimització dimensional dels silenciadors (incloses
les càmeres reactives i dissipatives), (ii) l’optimització topològica del mate-
rial disipatiu (la distribució de densitat) dins de la càmera disipativa i (iii)
l’optimització dimensional dels dispositius de posttractament d’escapament
(convertidors catalítics i filtres de partícules dièsel).

D’altra banda, l’apantallament acústic té una àmplia gamma d’aplicacions,
com ara les barreres acústiques de trànsit, carenats de rodes de trens o fins i tot
revestiments de conductes HVAC. En aquest punt, cal acoblar els problemes
acústic i elàstic al contorn aire-estructura per obtenir el problema vibroacús-
tic. Aquí es planteja una formulació híbrida en desplaçament-pressió i s’aplica
a diversos casos pràctics per obtenir dissenys elàstics acústicament optimitzats.
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Chapter 1
Introduction

In this Chapter, the acoustic optimization problem is intro-
duced, along with the main objectives of the present Thesis. The
use of different numerical models and optimization approaches for
each type of subproblem addressed in later chapters is justified for
the sake of efficiency and computation speed. Finally, the general
arrangement of the Thesis is explained.
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1.1. Motivation and background

1.1. Motivation and background

Transport-related noise, such as the one originated by automobiles and
trains, is one of the major sources of environmental noise pollution [1]. Over
the last decades, this problem has been a growing concern in highly popu-
lated areas, since prolonged exposure to noise has been related by the World
Health Organization (WHO) to a higher likelihood of major health problems,
such as sleep disturbance, cardiovascular disease or cognitive impairment in
children [2].

Some of the main sources of automotive noise are: engine noise coming
out through the exhaust line, the induction system, noise caused by acces-
sories (cooling fan, etc.), and noise radiated by the engine [1]. This Thesis
focuses on the acoustic modelling of the exhaust line, and special attention is
given to mufflers (which can be split into reactive, dissipative and hybrid con-
figurations, depending on the physical phenomena that take place primarily
within their chambers). Regarding railway noise, its most important types are
squeal (due to the wheel-rail stick-slip effect, especially during sharp curves),
aerodynamic, and rolling noise (due to wheel-rail roughness, it results in a
vibration-excitation of the wheel) [3]. Some examples of strategies to reduce
the emissions of wheel rolling noise are the modification of the wheel’s web
geometry, the use of wheel perforations, and the use of viscoelastic coatings
on the wheel [3–7].

Additionally, transport is related to a big share of the world’s energy con-
sumption [1]; in industrialized countries, it is linked to 25-30 % of the total
greenhouse emissions. In addition to emitting CO2, internal combustion en-
gines produce air pollutants such as unburned hydrocarbons (HC), carbon
monoxide (CO), nitrogen oxides (NOx) or particulate matter (PM) [8]. The
use of catalytic converters (CC) and diesel particulate filters (DPF) is widely
spread in the automotive industry in order to alleviate this problem. These
devices, located along the exhaust line, in turn have an impact on the exhaust
noise.

In this context, the present Thesis explores the application of acoustic
optimization schemes to several noise-absorbing devices, in combination with
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1. Introduction

efficient modelling algorithms, with the aim of obtaining optimized designs
that minimize transport-related noise emissions.

1.2. Objectives

The present Thesis aims to obtain nontrivial optimized sound-absorbing
designs with a view to reducing noise emissions within a range of acoustic and
vibroacoustic applications, specifically, it addresses the acoustic topology opti-
mization (ATO) of the following devices: reactive and dissipative (and hybrid)
mufflers, aftertreatment devices such as catalytic converters and diesel partic-
ulate filters, and noise barriers such as wheel fairings and duct insulations.
Such purpose is accomplished by the implementation of efficient acoustic fi-
nite element (FE) models, in combination with optimization schemes, such as
the method of moving asymptotes (MMA) or genetic algorithms (GA). The
following objectives are proposed:

(i) Implementation of FE models capable of solving the three-dimensional
behaviour of axisymmetric dissipative and hybrid mufflers with non-
homogeneous distributions of the absorbing material within the dissipa-
tive chamber, i.e., allowing for arbitrary position-dependent layouts of
the material bulk’s density. Additional working conditions under con-
sideration include: presence of mean flow along the central duct, non-
uniform temperature functions, etc.

(ii) Implementation of efficient analytical-numerical models for the evalua-
tion of aftertreatment devices (such as CC and DPF) of arbitrary cross
section. The numerical FE computation of the transversal pressure
modes for the inlet/outlet ducts and chamber, combined with the mode
matching technique for the longitudinal analysis, allows the inexpensive
evaluation of the device’s acoustic behaviour.

(iii) Development and implementation of efficient FE models capable of solv-
ing several vibroacoustic problems, by the combination of the versatile
mixed displacement/pressure (u/p) formulation (within the design do-
main), along with the standard pressure formulation (within the air do-
main).
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1.3. Organization and development of the Thesis

(iv) Definition of objective functions F0 for the aforementioned problems (i –
iii), and development of sensitivity analysis algorithms for the straight-
forward obtaining of the sensitivities of F0 with respect to the design
variables.

(v) Implementation of topology optimization (TO) algorithms for the ob-
taining of nontrivial designs, concerning problems (i, iii). Additional
consideration of lateral constraints, for example, by the use of the MMA.

(vi) Revision of the available two-material and three-material interpolation
methods, e.g., the rational approximation of material properties (RAMP)
or the solid isotropic material with penalization (SIMP), required for ad-
dressing the TO problem via a gradient-based algorithm.

(vii) Parametrization of different arbitrary cross section geometries (such as
triangular, rectangular, etc.) for the analysis of atertreatment devices
defined in (ii), and implementation of a GA to optimize certain param-
eters of CC and DPF (such as chamber lengths, monolith type, cross-
sectional geometric parameters, etc.).

1.3. Organization and development of the
Thesis

The Thesis is structured in seven different chapters. Aside from the present
introduction, these are organized as follows:

• In Chapter 2, some fundamental concepts are presented concerning di-
verse fields such as: theory of sound propagation, the wave equation,
the acoustics of ducts and mufflers and their FE modelling, the fluid-
structure interaction problem, and the basics of structural shape opti-
mization. A state-of-the-art literature review concerning the existing
modelling techniques and optimization algorithms is performed, with a
view to applying this ideas in the following chapters.

• In Chapter 3, an existing FE model is recalled for the acoustic simulation
of axisymmetric dissipative and hybrid mufflers with non-uniform bulk
density distributions of the absorbing material. Next, an ATO problem
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1. Introduction

is set up with the aim of finding optimized designs that increase the
muffler’s mean transmission loss (TL) within a desired frequency range.
For this purpose, each element of the dissipative chamber is assigned a
variable υj , which denotes the fibre’s local bulk density which, in turn,
has an influence on the sound propagation properties of the medium
within the element’s domain. Next, a scheme for the computing of the
sensitivities of the TL with respect all design variables is defined. Some
lateral constraints (such as the maximum allowed amount of dissipative
fibre) are added. Finally, three case studies, with different working con-
ditions and optimization frequency ranges, are performed, and results
are discussed.

• In Chapter 4, an existing multidimensional technique for the evaluation
of the acoustic behaviour of aftertreatment devices (CC and DPF) is
recalled. The mode-matching method allows for longitudinally uniform,
arbitrary cross sections of the chamber being studied, and therefore, a
tool is developed here for the generation and meshing of any chamber ge-
ometry and location of the inlet and outlet ducts. The monolith present
within the chamber is replaced in this work by a four-pole transfer ma-
trix, by using the analytical models presented in Chapter 2. Due to
the low number of design variables, a GA is set up to carry out the
optimization process, enabling a global search of design solutions. Fi-
nally, optimal designs of CC and DPF are obtained for different target
frequency ranges and results are discussed.

• In Chapter 5, the computationally costly but versatile u/p formulation
presented in Chapter 2 is combined with the standard pressure formu-
lation, in order to address 2D vibroacoustic problems. Three different
case studies are generated, by including a noise source, a design region
(which is meshed with u/p elements) and a distant absorbing boundary,
where the noise emission is to be minimized. A software is implemented
in order to allow for designs containing air, solid and porous materi-
als. Next, a three-material interpolation scheme with two variables per
element is set up in order to allow the vibroacoustic properties of the
elements within the design region to range from those of the air to those
of the elastic solid or the porous absorbing materials. In a similar way
to Chapter 3, the adjoint method is used to obtain the sensitivities of
F0 with respect to each υj . Finally, the optimization results are shown
and discussed.
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1.3. Organization and development of the Thesis

• In Chapter 6, the main conclusions are withdrawn from the presented
work, and possible future works following the current line of research are
proposed and briefly discussed.

• In Chapter 7, the major contributions derived from the context of the
present Thesis are detailed, including journal papers, as well as national
and international conference works.
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Chapter 2
Fundamentals: modelling of

acoustic problems and optimization
techniques

In this Chapter, a literature review is carried out on diverse
topics such as the fundamentals of sound propagation, addressing
different topics such as the acoustics of ducts and mufflers, and the
acoustic characterization of several absorbent materials, perforated
surfaces and monoliths. Next, the principles of vibroacoustics are
presented, and a mixed u/p formulation is introduced, allowing to
solve the topology optimization problem. Finally, a revision of the
existing shape and topology optimization methods is performed.
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2.1. The acoustic problem

2.1. The acoustic problem

2.1.1. Introduction
Sound propagation can be modelled by the corresponding mathematical

equations [9–11], of higher or lower complexity, depending on the number and
nature of the conveniently verified simplifying hypotheses. The solution ob-
tained will model temporal and spatial distributions of acoustic variables such
as pressure, velocity, density, etc.

In this Section, some physical models are recalled, regarding the modelling
of the acoustic problem. First, the general sound propagation equations are
introduced, and the corresponding simplifications are made in Section 2.1.3.

2.1.2. Models for the acoustic calculation
Several acoustic models can be taken into account in order to address the

acoustic problem [12, 13]. First, the nonlinear fluid dynamic model is pre-
sented. Second, the linear acoustic model (considered throughout this Thesis)
is introduced.

2.1.2.1. Dynamic model

The solving of a general fluid dynamic problem requires the study of three
equations simultaneously:

• Continuity equation (2.1).

• Dynamic equilibrium equation (2.3–2.5).

• Energy equation (2.7).

Furthermore, three additional equations are also necessary, these are the
state equation, the internal energy equation and a viscosity model, in order to
evaluate the relationship among pressure, density, temperature, fluid velocity,
viscosity and internal energy.
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First, the continuity equation is fulfilled by any fluid which satisfies the
law of conservation of mass, i.e., the difference between the mass entering and
leaving any arbitrary volume equals the change of its corresponding mass. It
can be stated locally as [14]:

∂ρ

∂t
+ ∂

∂x
(ρu) + ∂

∂y
(ρv) + ∂

∂z
(ρw) = 0 , (2.1)

or in the corresponding vector form:

∂ρ

∂t
+ ∇T (ρu) = 0 , (2.2)

where the velocity vector u contains the three components u, v and w; while ρ
and t denote density and time, and ∇T is the divergence operator. Secondly,
the dynamic equilibrium equation for a Newtonian fluid [14] can be stated as:

ρax = ρBx − ∂p

∂x
+ ∂

∂x

(
2µ∂u
∂x

+
(
ζ − 2

3µ
)

∇T u
)

+ ∂

∂y

(
µ

(
∂u

∂y
+ ∂v

∂x

))
+ ∂

∂z

(
µ

(
∂u

∂z
+ ∂w

∂x

)) , (2.3)

ρay = ρBy − ∂p

∂y
+ ∂

∂y

(
2µ∂v
∂y

+
(
ζ − 2

3µ
)

∇T u
)

+ ∂

∂z

(
µ

(
∂v

∂z
+ ∂w

∂y

))
+ ∂

∂x

(
µ

(
∂v

∂x
+ ∂u

∂y

)) , (2.4)

ρaz = ρBz − ∂p

∂z
+ ∂

∂z

(
2µ∂w

∂z
+
(
ζ − 2

3µ
)

∇T u
)

+ ∂

∂x

(
µ

(
∂w

∂x
+ ∂u

∂z

))
+ ∂

∂y

(
µ

(
∂w

∂y
+ ∂v

∂z

))
,

(2.5)

where ρBx, ρBy and ρBz denote the volumetric forces, p is the pressure, µ
refers to the dynamic viscosity and ζ is the second viscosity coefficient (which
for monoatomic gases is null). Components of acceleration a are defined as
ax = Du/Dt, ay = Dv/Dt and az = Dw/Dt; and D/Dt refers to the total
time derivative:

D

Dt
= ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
. (2.6)

For non-isothermal flows with a temperature-dependant viscosity, the con-
tinuity and dynamic equilibrium equations are coupled with the equation of

14
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energy. The latter can be expressed in the following form:

∂

∂x

(
κ
∂T

∂x

)
+ ∂

∂y

(
κ
∂T

∂y

)
+ ∂

∂z

(
κ
∂T

∂z

)
+ ∂Q

∂t
+ Φd − ∇T qr

= ∂

∂x
(pu) + ∂

∂y
(pv) + ∂

∂z
(pw) + ρ

2
D

Dt

(
u2 + v2 + w2

)
+ ρ

DE

Dt
,

(2.7)

and expresses equilibrium among incoming, outgoing and accumulated energy.
κ denotes the thermal conductivity, T the temperature, Q is the generated heat
per unit volume, qr the vector of heat radiation flux, E the internal energy
and Φd refers to the heat dissipation function, expressed by Eq. (2.8):

Φd = λ

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)2
+ 2µ

((
∂u

∂x

)2
+
(
∂v

∂y

)2
+
(
∂w

∂z

)2)

+µ
((

∂w

∂y
+ ∂v

∂z

)2
+
(
∂u

∂z
+ ∂w

∂x

)2
+
(
∂v

∂x
+ ∂u

∂y

)2)
,

(2.8)

where λ = ζ − 2/3µ. The three aforementioned additional equations [14]
(equation of state, and the internal energy and the viscosity equations) can be
stated in general form as:

ρ = ρ(p, T ) , (2.9)
E = E(p, T ) , (2.10)
µ = µ(p, T ) . (2.11)

Therefore, the solving of a general flow problem requires obtaining the ve-
locity field u, density ρ, internal energy E, pressure p, temperature T , and
viscosity µ, given a domain and corresponding boundary and initial conditions,
by solving eight equations. This System (2.1, 2.3–2.5, 2.7, 2.9–2.11) can be of
high complexity since the acting forces and temperature can deform the do-
main boundary yielding to a fully coupled nonlinear fluid-structure interaction
(FSI) problem.

2.1.2.2. Linear acoustic model

The linear acoustic model takes its name from the assumed hypotheses
made in order to derive the wave equation (called Helmholtz equation in the
harmonic case) [13] resulting from linearizing the continuity, dynamic equilib-
rium and constitutive equations. This linearization assumes that the incre-
ments of density and pressure of the particles are small with respect to their
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mean or equilibrium values. It seems evident that the range of application of
this equation is restricted to acoustic phenomena of low amplitude, such as
those present within the mufflers and catalytic converters, where the excitation
does not usually exceed 140 dB [15,16].

2.1.3. Wave equation
The mathematical deduction of the liniarized wave equation is carried out

in this Section, due to its importance in this Thesis. With the aim of simplify-
ing the nomenclature, total variables are denoted hereinafter by subscript T ,
whereas subscript 0 refers to average values. Variables related to the acoustic
perturbation used in order to carry out the linearization are denoted with no
subscript. First, the initial hypotheses considered to derive the linearized wave
equation are named:

• The acoustic wave propagates across an ideal fluid (with no viscosity),
more specifically an ideal gas.

• Wave propagation is considered to be adiabatic. Entropy of the fluid
particles remains almost invariable, since the thermal energy exchange
among them is considered to be small. In fact, the temperature of a
fluid increases during the process of compression, and decreases during
its expansion. Hence the propagation of a sound wave would produce a
longitudinal heat transfer from a condensation to a nearby rarefaction,
located half a wavelength λ/2 away. The amount of heat transmitted
depends on the thermal conductivity of the fluid. Audible frequencies
(20 Hz – 20 kHz) have a wavelength λ that is too large, and a suffi-
ciently low thermal conductivity to produce appreciable heat transfer,
and the aforementioned process is hence considered adiabatic [17]. Along
with the previous hypotheses, this leads to the process being considered
isoentropic, satisfying:

pT = Cργ
T , (2.12)

γ being the adiabatic coefficient or ratio of specific heat capacities (at
constant-pressure to constant volume) [17,18].

• As aforementioned, small fluctuations of pressure, density and parti-
cle velocity are assumed, what enables the problem to be liniarized by
adding small acoustic amplitudes to the average pressure, density and
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velocity:

ρT = ρ0 + ρ , (2.13)
pT = p0 + p , (2.14)
uT = u0 + u . (2.15)

For the moving medium, this results in the convective wave equation. On
the contrary, particles only present a vibratory motion around their equilib-
rium point in a non-moving medium [19].

The ideal fluid hypothesis implies that no viscosity effects are taken into
consideration. The Navier-Stokes equations (2.3–2.5) can be expressed here
as:

ρT
DuT

Dt
= ρTBx − ∂pT

∂x
,

ρT
DvT

Dt
= ρTBy − ∂pT

∂y
,

ρT
DwT

Dt
= ρTBz − ∂pT

∂z
,

(2.16)

also known as Euler equations. In vector form these lead to:

ρT
Du
Dt

= ρT B − ∇pT . (2.17)

From certain thermodynamic considerations [9], it can be deduced that:

DpT

Dt
= c2

0
DρT

Dt
, (2.18)

where the speed of sound in the air is given by:

c2
0 =

(
∂pT

∂ρT

)
s

, (2.19)

where subscript s denotes derivative at constant entropy. For an ideal gas,
and taking into account Eqs. (2.12) and (2.19), it yields:

c2
0 =

(
∂pT

∂ρT

)
s

= γ (p0 + p)
ρ0 + ρ

≈ γp0
ρ0

. (2.20)

Applying the definition of total derivative (2.6) to the continuity equation
(2.1) yields:

DρT

Dt
+ ρT ∇T uT = 0 , (2.21)
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and by merging Equations (2.18) and (2.21) it is obtained:
DpT

Dt
+ ρT c

2
0∇T uT = 0 . (2.22)

By differentiating with respect to time, one obtains:
D2pT

Dt2
+ D

Dt

(
ρT c

2
0∇T uT

)
= 0 . (2.23)

On the other side, after neglecting gravitatory effects, Euler’s equation
(2.17) turns into:

ρT
Du
Dt

= −∇pT . (2.24)

The linear equations that describe the acoustic perturbations are obtained
by using the first-order terms of the initial nonlinear equations. Zeroth-order
terms are not included, since ambient values of the variables correspond to a
valid state of the system. For Equation (2.24), it is satisfied that:

ρ0

(
u0
∂u0
∂x

+ v0
∂u0
∂y

+ w0
∂u0
∂z

)
+ ∂p0
∂x

= 0 ,

ρ0

(
u0
∂v0
∂x

+ v0
∂v0
∂y

+ w0
∂v0
∂z

)
+ ∂p0

∂y
= 0 ,

ρ0

(
u0
∂w0
∂x

+ v0
∂w0
∂y

+ w0
∂w0
∂z

)
+ ∂p0

∂z
= 0 ,

(2.25)

whose integration leads to the steady-flow Bernoulli equation [20].

2.1.3.1. Non-moving medium

In this case, u0 is null and therefore uT = u (see Eq. (2.15)). According
to Expression (2.25), it is derived that ∇p0 = 0, and linearization of Equation
(2.22) yields:

∂p

∂t
+ ρ0c

2
0∇T u = 0 , (2.26)

and Eq. (2.24) leads to:
ρ0
∂u
∂t

= −∇p . (2.27)

By differentiating Eq. (2.26) with respect to time, taking ∇T of Eq. (2.27),
and finally combining both, the wave equation for non-moving medium is
obtained:

ρ0∇
( 1
ρ0

∇p
)

− 1
c2

0

∂2p

∂t2
= 0 , (2.28)
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where it is assumed that c0 and ρ0 are time-independent. Additionally, for
spatially homogeneous propagation properties in the medium, it yields:

∇2p− 1
c2

0

∂2p

∂t2
= 0 . (2.29)

By assuming a harmonic solution p = Pejωt, the Helmholtz equation is
obtained:

∇2P + k2
0P = 0 , (2.30)

k0 = ω/c0 being the wavenumber, P the spatially dependent complex acoustic
pressure amplitude, ω = 2πf the angular frequency and j the imaginary unit.
Equations (2.28–2.30) are of great importance and have been used throughout
this Thesis.

2.1.3.2. Moving medium

For stationary flows, with position-independent ρ0 and c0, the convective
wave equation can be deduced from Eqs. (2.23–2.25) [19]:

∇2p− 1
c2

0

D2p

Dt2
+ 2ρ0

(
∂u0
∂x

∂u

∂x
+ ∂v0
∂x

∂u

∂y
+ ∂w0

∂x

∂u

∂z

+∂u0
∂y

∂v

∂x
+ ∂v0

∂y

∂v

∂y
+ ∂w0

∂y

∂v

∂z
+ ∂u0

∂z

∂w

∂x
+ ∂v0

∂z

∂w

∂y
+ ∂w0

∂z

∂w

∂z

)
= 0 ,

(2.31)

or in compact form:

∇2p− 1
c2

0

D2p

Dt2
+ 2ρ0

3∑
i=1

3∑
j=1

∂u0j

∂xi

∂ui

∂xj
= 0 , (2.32)

where ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the Laplace operator, and x1 = x,
x2 = y, x3 = z, u1 = u, u2 = v, u3 = w, u01 = u0, u02 = v0 and u03 = w0. For
uniform (non-spatially dependent) steady flows with mean flow velocity u0, it
yields [13]:

∇2p− 1
c2

0

D2p

Dt2
= 0 , (2.33)

the total time derivative being defined here in the following terms:

D

Dt
= ∂

∂t
+ u0

∂

∂x
+ v0

∂

∂y
+ w0

∂

∂z
. (2.34)
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Equation (2.33) has been used throughout the actual Thesis in order to
obtain the acoustic field within areas with uniform mean flow. However, for
spatially non-uniform u0, an approach based on the acoustic velocity potential
function ϕ [19, 21] can be used in order to simplify Expression (2.32). By
defining ϕ so that u = ∇ϕ, it is obtained:

∇2ϕ− 1
c2

0

D2ϕ

Dt2
= 0 , (2.35)

where ϕ can be also defined as [13]:

p = −ρ0
Dϕ

Dt
. (2.36)

The mean flow velocity can be derived from the mean flow velocity poten-
tial ϕ0, which satisfies the Laplace equation:

∇2ϕ0 = 0 , (2.37)

following the relation u0 = ∇ϕ0. On the other hand, if ρ0 and c0 vary with
position, the appropriate form of Equation (2.35) is [19]:

1
ρ0

∇ (ρ0∇ϕ) − D

Dt

( 1
c2

0

Dϕ

Dt

)
= 0 . (2.38)

Equations (2.35) and (2.38) are of great importance and will be used
throughout the present Thesis.

2.1.4. One-dimensional acoustics of ducts
One of the most elementary applications of the previously derived wave

equations (see Section 2.1.3) is the unidimensional propagation which origi-
nates the traditional plane wave models [13,22–27].

2.1.4.1. Non-moving medium

Starting from the Helmholtz equation (2.30), a rigid-wall duct is supposed,
whose axis is parallel to axis z. By assuming that the solution is only a function
of z (plane wave), it is obtained:

∂2P

∂z2 + k2
0P = 0 , (2.39)
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which is valid for a homogeneous propagating medium, and its solution can
be expressed as:

P (z) = P+e−jk0z + P−ejk0z , (2.40)

P+ and P− being the associated amplitudes to the progressive and regressive
waves, respectively. Analogously, Euler’s equation (2.24) yields:

U (z) = −1
jρ0ω

∂P (z)
∂z

= 1
Z0

(
P+e−jk0z − P−ejk0z

)
, (2.41)

where Z0 = ρ0c0 is the characteristic impedance of the air. Additionally, the
second acoustic variable, i.e., the mass flow V can be defined for a duct with
cross-sectional area S, as:

V (z) = ρ0SU = 1
Y0

(
P+e−jk0z − P−ejk0z

)
, (2.42)

Y0 = c0/S being the characteristic impedance of the duct. Coefficients P+ and
P− are solved by taking into account the corresponding boundary conditions
applied at the duct (see Section 2.1.5).

2.1.4.2. Moving medium

For the case of a moving medium, a rigid-walled duct is considered, as well
as a one-dimensional uniform flow with speed Umf . The relative speed of sound
with respect to the moving medium is still c0, and therefore the propagation
speed of the progressive and regressive waves are respectively Umf + c0 and
Umf −c0 due to the convective effect. The one-dimensional form of Equation
(2.33) can be written as:

∂2p

∂z2 − 1
c2

0

D2p

Dt2
= 0 , (2.43)

where the total derivative is:

D

Dt
= ∂

∂t
+ Umf

∂

∂z
, (2.44)

and by combining Eqs. (2.43) and (2.44), it is obtained:

(
1 −M2

mf

) ∂2p

∂z2 − 2Mmf

c0

∂2p

∂z∂t
− 1
c2

0

∂2p

∂t2
= 0 , (2.45)
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Mmf = Umf/c0 being the Mach number of the mean flow. The harmonic form
of Eq. (2.45) is:

(
1 −M2

mf

) ∂2P

∂z2 − 2jk0Mmf
∂P

∂z
+ k2

0P = 0 , (2.46)

and the corresponding solution can be expressed as:

P (z) = P+e

−jk0z

1+Mmf + P−e

jk0z

1−Mmf . (2.47)

Euler’s equation (2.27) can be rewritten, for the one-dimensional case, as:

ρ0

(
jωU + Umf

∂U

∂z

)
= −∂P

∂z
, (2.48)

and expressions for the acoustic velocity and mass flow can be built analogously
to the previous case:

U (z) = 1
Z0

(
P+e

−jk0z

1+Mmf − P−e

jk0z

1−Mmf

)
, (2.49)

V (z) = 1
Y0

(
P+e

−jk0z

1+Mmf − P−e

jk0z

1−Mmf

)
, (2.50)

where the medium and duct impedances are defined previously for the case of
non-moving medium (see Eqs. (2.41) and (2.42)).

2.1.5. Plane wave models. Matrix representations
The global acoustic performance of an exhaust system depends on its work-

ing conditions, the noise source and outlet type, as well as the acoustic contri-
bution of each device included in the exhaust line. With the aim of studying
the global acoustic performance of the exhaust line, a matrix method has been
applied in this Thesis, which facilitates the definition of each device in an iso-
lated manner.

In this way, a complex system can be decomposed into different sub-
elements. The global response is hence given, by combining the four-pole
matrices [13,28] corresponding to all devices involved. This philosophy can be
applied both to mufflers, as well as to aftertreatment devices (such as catalytic
converters and diesel particulate filters).
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2.1.5.1. Generalities

Figure 2.1 shows a simplified scheme of an exhaust system, which consists
of a noise source (engine), and two elements connected downstream: a muffler
and a catalytic converter [17].

Figure 2.1: Scheme of an exhaust line.

The interest variables to be considered at the inlet and outlet of each
element are usually the acoustic pressure and velocity. For the CC, this can
be expressed as: {

P1
U1

}
=
[
Ac Bc

Cc Dc

]{
P2
U2

}
= T

{
P2
U2

}
. (2.51)

This means that the acoustic perturbation at duct 1, defined by the state
vector {P1, U1}T , can be expressed by the perturbation at a point located
downstream {P2, U2}T , and the transfer matrix T relative to the element that
links 1 and 2, provided that plane wave propagation occurs at both points 1
and 2.

The evaluation of the four poles of the transfer matrix must be carried out
by applying the appropiate boundary conditions to the acoustic system. From
Eq. (2.51), it is obtained:

Ac = P1
P2

∣∣∣∣
U2=0

, Bc = P1
U2

∣∣∣∣
P2=0

, Cc = U1
P2

∣∣∣∣
U2=0

, Dc = U1
U2

∣∣∣∣
P2=0

,

(2.52)

where the boundary condition P2 = 0 refers to an open end at the outlet, and
U2 = 0 refers to a rigid wall (closed duct). Both expressions can be used with
ease during the analytical or experimental obtaining of the transfer matrix.
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2.1.5.2. Transfer matrix of a duct

In this Section, the tranfer matrix of a duct of length L and cross section
S (see Figure 2.2), is obtained. Acoustic pressure and velocity are given by:

P (z) = P+e−jk0z + P−ejk0z , (2.53)

U (z) = 1
Z0

(
P+e−jk0z − P−ejk0z

)
. (2.54)

Figure 2.2: Constant cross section duct.

According to (2.52), two analyses must be performed, each one with dif-
ferent boundary conditions. To start with, a closed duct termination U2 = 0
and an arbitrary unitary pressure P1 = 1 at the inlet are imposed. This leads
to:

P (z = 0) = P1 = P+ + P− = 1 , (2.55)

U(z = L) = U2 = 1
Z0

(
P+e−jk0L − P−ejk0L

)
= 0 . (2.56)

The solution to the previous system can be written as:

P+ = 1
2

cos (k0L) + j sin (k0L)
cos (k0L) , (2.57)

P− = 1
2

cos (k0L) − j sin (k0L)
cos (k0L) , (2.58)

and therefore terms A and C of the transfer matrix (defined in Eq. (2.52))
are:

A = P1
P2

∣∣∣∣
U2=0

= cos (k0L) , (2.59)

C = U1
P2

∣∣∣∣
U2=0

= j

Z0
sin (k0L) . (2.60)

24



2.1. The acoustic problem

With a view to obtaining terms B and D, P2 is set to zero, which leads to:

P (z = 0) = P1 = P+ + P− = 1 , (2.61)
P (z = L) = P2 = P+e−jk0L + P−ejk0L = 0 , (2.62)

solving for P+ and P− gives:

P+ = −j
2

cos (k0L) + j sin (k0L)
sin (k0L) , (2.63)

P− = 1
2

sin (k0L) + j cos (k0L)
sin (k0L) , (2.64)

and the remaining terms are:

B = P1
U2

∣∣∣∣
P2=0

= jZ0 sin (k0L) , (2.65)

D = U1
U2

∣∣∣∣
P2=0

= cos (k0L) . (2.66)

By joining Eqs. (2.51, 2.59–2.60, 2.65–2.66), it is obtained:
{
P1
U1

}
=

 cos (k0L) jZ0 sin (k0L)
j

Z0
sin (k0L) cos (k0L)

{P2
U2

}
. (2.67)

In a similar form, previous Eq. (2.67) can be expressed by means of pres-
sure and mass flow as:{

P1
V1

}
=

 cos (k0L) jY0 sin (k0L)
j

Y0
sin (k0L) cos (k0L)

{P2
V2

}
. (2.68)

In case of considering a uniform mean flow along the duct, the same pro-
cedure can be applied to Eqs. (2.47) and (2.49) [13], obtaining:

{
P1
U1

}
= e

−jMmf

k0
1−M2

mf

L


cos

(
k0

1 −M2
mf

L

)
jZ0 sin

(
k0

1−M2
mf

L

)
j

Z0
sin
(

k0
1−M2

mf

L

)
cos

(
k0

1 −M2
mf

L

)

{
P2
U2

}
.

(2.69)
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2.1.5.3. Transfer matrix at expansions and contractions

Figure 2.3 shows the sketch of two unions of ducts with different cross
sections: a tube expansion (S2 > S1) and a contraction (S2 < S1). As afore-
mentioned, these form the basis for the functioning of reactive mufflers [13].

Figure 2.3: Duct expansion (left) and contraction (right).

With a view to obtaining the four-pole transfer matrix of the aforemen-
tioned cross section changes, a similar approach to the one described in Section
2.1.5.2 is followed. In absence of mean flow, pressure and mass flow do not
change at both sides of the geometric discontinuity:

P ′
1 = P ′

2 , (2.70)
ρ0S1U

′
1 = ρ0S2U

′
2 . (2.71)

This can be expressed in matrix form as:{
P ′

1
U ′

1

}
=

1 0

0 S2
S1

{P ′
2

U ′
2

}
, (2.72)

{
P ′

1
V ′

1

}
=
[
1 0
0 1

]{
P ′

2
V ′

2

}
. (2.73)

Equations (2.72) and (2.73) are of wide use for the matrix modelling of
exhaust lines, since these normally contain several cross section changes. How-
ever, velocity fields must be continuous at the section change, and hence some
multidimensional effects appear [29–31]. This effect is specially relevant at
high frequencies, and therefore the afore introduced matrices are only valid in
the low frequency range.
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Finally, once the four-pole transfer matrix of the cross section change is
known, the relation between the acoustic variables at planes 1 and 2 in Figure
2.3 can be built:{
P1
U1

}
=

 cos (k0L1) jZ0 sin (k0L1)
j

Z0
sin (k0L1) cos (k0L1)

1 0

0 S2
S1

 cos (k0L2) jZ0 sin (k0L2)
j

Z0
sin (k0L2) cos (k0L2)

{P2
U2

}
.

(2.74)

2.2. The fluid-structure interaction
problem

Chapter 5 of the present Thesis deals with the application of TO algo-
rithms to the FSI problem, with the aim of reducing noise emissions in diverse
problems. Hence, the basic principles of this kind of multi-physics problem
are introduced below.

Figure 2.4 shows the set-up of a typical vibroacoustic problem, consisting
of an elastic screen placed between an acoustic source and a receiver located at
PS and PR respectively. The domain is split into the air and solid subdomains
Ωa and Ωs, whose boundaries are respectively referred to as Γa and Γs, while
the coupling interface between them is denoted by Γas = Γa ∩Γs. The outward
normal unit vectors to the aforementioned boundaries are symbolized by na

and ns; note that na = −ns along Γas. Γo denotes the absorbing boundary,
and should be placed at a sufficient distance from geometric singularities in
order to guarantee that the acoustic velocity at the wave front is perpendic-
ular to it. Finally, ΓDir denotes a subregion of Γs where Dirichlet boundary
conditions are applied.
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Figure 2.4: Fluid-structure interaction problem scheme.

Sound propagation in the homogeneous fluid corresponding to Ωa can be
described by the Helmholtz equation [13,32]:

∇2P + ω2

c2
0
P = 0 in Ωa , (2.75)

where P , ω and c0 are the acoustic pressure’s amplitude, the excitation an-
gular frequency and the speed of sound respectively. On the other hand, the
governing equilibrium equation in Ωs for time-harmonic linear elasticity is [32]:

∇ · σ + ω2ρsU = 0 in Ωs , (2.76)

where σ and ρs are the stress tensor and density of the solid material, whereas
U denotes in this point the vector of displacement amplitudes {U, V }T , from
which the time-harmonic solution can be derived by applying u = Uejωt and v =
V ejωt. As for the coupling of Ωa and Ωs, both subdomains move together in
the normal direction of Γas: whereas the vibration of the structure induces
an acoustic field on the surrounding acoustic domain, a perturbation in sound
pressure p act as an external force on the surface, as described respectively by
the compatibility Equations (2.77) and (2.78) [32]:

(∇P )T na − ω2ρ0UT na = 0 in Γas , (2.77)
σns + Pns = 0 in Γas , (2.78)

where ρ0 refers to the air density. Equations (2.75 – 2.78) provide the standard
way to solve the FSI problem, provided that a well-defined air-solid interface
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Γas is known. However, in the process of TO, the concept of well-defined
geometry is disregarded, and fictitious intermediate materials can take place
within any element, specially at early stages of the optimization process.

2.2.1. Displacement/pressure mixed formulation in
2D

The mixed U/p formulation [33, 34] permits to solve the coupled vibroa-
coustic problem by varying the vibroacoustic properties of each element, hence
without explicitly defining the air-solid interface. This formulation is recalled
next for the sake of completeness.

By applying the Newton’s second law to a control volume in any conti-
nuum, and neglecting the body force term, the following expression is obtained
[34]:

∇ · σ = −ω2ρU , (2.79)

where the stress tensor can be decomposed into its volumetric and deviatoric
components:

σ = KεvI + 2Ge , (2.80)

εv and e being the volumetric strain and the deviatoric strain tensor, and I
being the identity matrix. The vibroacoustic behaviour of both structure and
air can be characterized by varying the bulk and shear moduli K and G [33].
εv is defined for the 2D case as:

εv = ∆V
V

= εxx + εyy = mTε , (2.81)

where the strain vector is ε = {εxx, εyy, εxy}T , and m =
{

1, 1, 0
}T

. As an
alternative to the pure displacement formulation, acoustic pressure p is also
included as a variable [34]:

p = −Kεv = −KmTε , (2.82)

whereas the deviatoric strain e (here in vector form) in 2D can be calculated
as:

e = ε − mεv

2 = D ε , (2.83)
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where D = I − 1/2 mmT . The weak form of Eqs. (2.79) and (2.80) can be
stated as:∫

Ω
δεT 2Ge dΩ−

∫
Ω
δεT (mp) dΩ−ω2

∫
Ω
ρδUT U dΩ−

∫
Γ
δUT (σn) dΓ = 0 ,

(2.84)
and by taking into account Eqs. 2.81 and 2.83, it yields:∫

Ω
2GδεT Dε dΩ −

∫
Ω
δεT mp dΩ −ω2

∫
Ω
ρδUT U dΩ −

∫
Γ
δUT (σn) dΓ = 0 .

(2.85)
On the other hand, the weak form of Eq. (2.82) is:∫

Ω
δp
(
p/K + mTε

)
dΩ = 0 . (2.86)

Equations (2.85) and (2.86) are of great use in Chapter 5 of this Thesis.
Their FE version is recalled in Section 5.2, and due to its high computa-
tional cost, its application is restricted to a certain design region (vibroacous-
tic domain) of the problem, whereas the surrounding pure acoustic domain is
meshed with the standard pressure formulation.

2.3. Structural shape optimization

2.3.1. Introduction
Simulation-based models, such as the finite element method (FEM) [35],

the boundary element method (BEM) or computational fluid dynamics (CFD)
are effectively applied during the early stages of product development [36]. In
addition, these numerical techniques can be coupled up with deterministic or
stochastic optimization methods in order to find optimal designs that min-
imize a physical quantity, such as the mean compliance (external work) or
the peak stress under a certain load case, required weight, etc. [37]. Different
optimization approaches are [36]:

• Sizing optimization: it consists, for example, in finding the optimal thick-
ness of a linearly elastic plate. Its main feature is that the problem’s
domain is fixed throughout the optimization process [38].

30



2.3. Structural shape optimization

• Shape optimization: it concerns the shape optimization of the structure’s
domain, i.e., the problem is defined in a domain that is, simultaneously,
the design variable. This is achieved by selecting a set of variables that
define the domain’s boundary, given a fixed topology.

• Topology optimization: it serves to determine the number and size of
holes, as well as the connectivity of the structure’s domain. In this prob-
lem, only some boundary conditions (such as loads, possible supports,
etc.) and further manufacturing constraints are given beforehand.

2.3.2. Optimization algorithms
A different optimization approach is required to solve each type of op-

timization problem. Mainly, optimization algorithms fall into one of these
two categories: deterministic and stochastic algorithms [39], according to the
scheme below:

Optimization algorithms



Deterministic



Linear programming
Nonlinear programming
...
Gradient-based
Non-gradient-based

Stochastic


Heuristic

Metaheuristic
{

Population-based
Trajectory-based

In this Thesis, the deterministic, nonlinear, gradient-based Method of mov-
ing asymptotes (MMA) has been considered to approach topology optimiza-
tion problems, due to its capacity to efficiently handle a high amount of vari-
ables, despite the possibility to converge at local optimum points in non-convex
optimization problems. On the contrary, in the proposed shape optimization
problem (see Chapter 4), a small number of variables define the geometry.
Therefore, the stochastic, metaheuristic, population-based Genetic algorithms
(GA) have been used due to their ability to carry out a global search with
a reasonable computational cost. Next, both aforementioned optimization
methods are briefly recalled for the sake of completeness.
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2.3.2.1. Method of moving asymptotes (MMA)

The Method of Moving Asymptotes (MMA) for nonlinear programming
was first introduced by K. Svanberg [40] in 1987 and has since then been ap-
plied in numerous different ATO problems [33,41–45]. This method is applied
widely in the present Thesis and is recalled below for the sake of completeness.

Consider an optimization problem with the objective function F0 and a
number M of inequality constraints Fi:

min
υ

F0 (υ) ,

subject to: Fi (υ) ≤ 0 , for i = 1, ...,M ,

υmin
j ≤ υj ≤ υmax

j , for j = 1, ..., N ,

(2.87)

where υ = {υ1, υ2, ..., υN }T is the vector of N design variables, and υmin
j and

υmax
j are the lower and upper bounds of each υj . The next lines show briefly

the workflow of the MMA algorithm. At each iteration k, a convex approxi-
mating subproblem to Problem (2.87) is generated by a summation of rational
functions using gradient information. The corresponding approximating func-
tions F̃ (k)

i can be expressed, for i = 0, 1, ...,M , as [40]:

F̃ (k)
i (υ) =

N∑
j=1

 p
(k)
ij

U
(k)
j − υj

+
q

(k)
ij

υj − L
(k)
j

+ r
(k)
i , (2.88)

where the lower L and upper U asymptotes are chosen so that L(k)
j < υ

(k)
j <

U
(k)
j [46], and coefficients p(k)

ij and q(k)
ij are chosen at each iteration k by using

gradient information ∇Fj at the corresponding design point υ(k). It yields:

p
(k)
ij =


(
U

(k)
j − υ

(k)
j

)2
∂Fi/∂υj , if ∂Fi/∂υj > 0 ,

0 , if ∂Fi/∂υj ≤ 0 ,
(2.89)

q
(k)
ij =

 0 , if ∂Fi/∂υj ≥ 0 ,
−
(
υ

(k)
j − L

(k)
j

)2
∂Fi/∂υj , if ∂Fi/∂υj < 0 ,

(2.90)

and r
(k)
i is chosen so that the value of the approximating function matches

that of the corresponding original function at the current design point:

r
(k)
i = Fi(υ(k)) −

N∑
j=1

 p
(k)
ij

U
(k)
j − υ

(k)
j

+
q

(k)
ij

υ
(k)
j − L

(k)
j

 . (2.91)
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Finally, Problem (2.87) turns into:

min
υ

F̃ (k)
0 (υ) ,

subject to: F̃ (k)
i (υ) ≤ 0 , for i = 1, ...,M ,

υmin
j ≤ υj ≤ υmax

j , for j = 1, ..., N .

(2.92)

The convex approximating optimization problem (2.92) can be then solved
by means of the Karush-Kuhn-Tucker (KKT) multipliers contained in vectors
λ, ξ and η [40, 47], and the new loss function to minimize can be expressed
as:

L(υ,λ, ξ,η) = F̃0 (υ)+
M∑

i=1
λiF̃i (υ)+

N∑
j=1

(
ξj

(
υmin

j − υj

)
+ ηj

(
υj − υmax

j

))
,

(2.93)
where not only the objective function, but also the lateral and additional
constraints have been taken into account. The corresponding KKT conditions
[40] are:

∂L(υ,λ, ξ,η)
∂υj

= 0 , for j = 1, ..., N (minimization) , (2.94)

λiF̃i(υ) = 0 , for i = 1, ...,M (complimentary slackness) , (2.95)

ξj

(
υmin

j − υj

)
= 0 , for j = 1, ..., N (complimentary slackness) , (2.96)

ηj

(
υj − υmax

j

)
= 0 , for j = 1, ..., N (complimentary slackness) . (2.97)

This system of equations can be solved, for example, by applying a Newton-
Rhapson method, and the implementation used throughout this Thesis can be
found in [47].

2.3.2.2. Sensitivity analysis

Gradient-based optimization algorithms (such as the aforementioned MMA)
require the obtaining of the sensitivities of the objective function F0(υ) with
respect to each design variables. The finite difference method [48] involves
solving the global system of equations (2.98) for a small variation of each
parameter, and is hence a suitable approach given a small number of design
variables (and high number of objective functions, if applicable). However,
for TO problems where the number of optimization parameters is high (one
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density per element), the adjoint method [48] can reduce significantly the com-
putational cost in comparison to the aforementioned method, and is therefore
explained below.

The standard adjoint method [48] can be used to obtain the gradient of
F0(υ) with respect to the design variables υj . Given a standard finite element
algebraic system (3.52) of the form:

κ(υ)θ(υ) = F , (2.98)

where κ contains the global matrices, the column vector θ consists of the
complex nodal solution (unknowns) of the problem, and the source term F
does not vary with the design variables. The augmented objective function
F̂0 can be defined at each iteration as follows (note that a suitable form for
complex-variable problems has been adopted here):

F̂0 (θ(υ)) = F0 (θ(υ)) − ΥT (υ) (κ(υ)θ(υ) − F) − Υ
T (υ)

(
κ(υ)θ(υ) − F

)
,

(2.99)
where Υ(υ) denotes the Lagrange multipliers column vector, and · being the
complex conjugate of ·. Differentiating Eq. (2.99) with respect to any design
variable υj and reordering the terms yields:

DF̂0
Dυj

= ∂F0
∂υj

+
(
∂θℜ
∂υj

)T (
−κTΥ − κTΥ +∂F0

∂θℜ

)

+
(
∂θℑ
∂υj

)T (
−jκTΥ + jκTΥ+ ∂F0

∂θℑ

)

− ΥT

(
∂κ

∂υj
θ

)
− Υ

T

(
∂κ

∂υj
θ

)
. (2.100)

Note that the vectors of sensitivities of the objective function with respect
to the real and imaginary parts of the nodal solution ∂F0/∂θℜ and ∂F0/∂θℑ
can be derived analytically from the definition of F0 for a given problem.
However, the sensitivities of the nodal solution ∂θℜ/∂υj and ∂θℑ/∂υj cannot
be easily obtained, and Υ(υ) is chosen so that:

−κTΥ − κTΥ + ∂F0
∂θℜ

= 0 , (2.101)

−jκTΥ + jκTΥ + ∂F0
∂θℑ

= 0 . (2.102)
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Therefore, by multiplying Eq. (2.102) by −j and adding Eq. (2.101), it is
obtained [48]:

Υ = 1
2
(
κT (υ)

)−1
(
∂F0
∂θℜ

− j
∂F0
∂θℑ

)
. (2.103)

Finally, the sensitivities of the objective function are calculated as [48]:

DF̂0
Dυj

= −2ℜ
{
ΥT

(
∂κ

∂υj
θ

)}
for j = 1, ..., N , (2.104)

where ℜ is the real part operator. Note that Υ is solved only once per iteration,
and then all the sensitivities can be obtained in a straightforward way, hence
reducing the computational cost with respect to the finite difference method.

2.3.2.3. Genetic algorithms

Genetic algorithms (GA) [49] are a type of population-based global search
algorithms first developed by John Holland [49] in the 1960s, and probably the
most popular type of non-gradient-based optimization algorithms. Together
with evolution strategies [50] and evolutionary programming [51], they belong
to a larger class called evolutionary algorithms (EA). GA try to mimic the
whole process of biological evolution defined by Charles Darwin’s theory of
natural selection [52]. This theory states that all species develop via the nat-
ural selection of small, inheritated variations that can increase or decrease the
ability of each individual to compete for the resources, survive, or find a mate
to reproduce with. Thus, at any iteration (also known as generation) k, there
is a population of spop individuals [53], each of which is described by the cor-
responding design vector (called chromosome) υ

(k)
i whose entries (variables)

{υ1, υ2, ..., υN }T are called genes.

GA involve (i) the generation of an initial population of spop chromosomes
by means of stochastic methods, (ii) the evaluation of the fitness function
(objective function) for every chromosome of the population, (iii) the selec-
tion of those individuals that will produce the next generation (parents), (iv)
the establishment of the new generation of individuals (offspring) by fitness-
proportionate genetic operations, and (v) the replacing of the old population
by the new one. Steps (iii-v) are then repeated for a number of generations
until the stopping criterion is met [54]. The aforementioned genetic operators
are:
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• Selection. It selects the parents that will be employed in the establish-
ment of the new generation by taking into account their fitness value.
By default, Matlab uses a scaling function where a line is divided in
sections whose lengths Li are inversely proportional to the rank of each
individual (Li = 1 for the fittest individual, 1/√spop for the following in-
dividuals). Then a stochastic algorithm jumps a fixed distance along the
line, and each time it selects as a parent the individual it lands on [54].

• Crossover. It creates a pair of children as the combination of genes from
two parents. The number of crossover children scross = pc (spop − selit) is
defined according to the crossover fraction pc (which is usually high, e.g.,
within [0.7, 1]) and the elite count selit, i.e., the number of individuals
with the lowest fitness value that are guaranteed to survive to the next
generation (without mutation).

• Mutation. Finally, a number of mutation children smut = spop −
(scross + selit) are obtained by applying random changes to a single indi-
vidual in the current generation (parent) in order to create a child. The
mutation probability pm determines whether a gene will be flipped from
its original value when transmitted to the child, and is usually small, in
the interval [0.001, 0.05], to prevent the algorithm from jumping around
an optimal solution when this is near [54].

A graphical representation of the three aforementioned genetic operators
is shown in Figure 2.5.
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Figure 2.5: Selection, crossover, and mutation genetic operators. The design vectors
corresponding to several individuals are represented above. Different numerical entries
are depicted as colours black, red, and white for simplicity.

2.3.3. Topology optimization
Topology optimization (TO) is an optimization framework generally used

to obtain the optimal topology (i.e., material distribution within a specific de-
sign domain) that minimizes a given objective function, via the parametriza-
tion of the material’s properties in the continuum [37].

The traditional approach to TO considers as continuous variables the den-
sities υj of the material within each element of the design’s domain [55]. These
usually range from 0 (which corresponds to air elements) to 1 (which refers
to the solid material). Additionally, several continuous material interpolation
functions exist [37,46,56], which allow obtaining fictitious material properties
for intermediate values of υj , e.g., the solid isotropic material with penaliza-
tion (SIMP) and the rational approximation of material properties (RAMP)
penalty methods, which are further explained below.
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2.3.3.1. Material interpolation schemes

Considering a TO problem in which the optimal material distribution is
to be found, at each design point υ(k), material properties ϱ are interpolated
within each element from those of the air (usually ϱ0 = 0) to those of the solid
material (usually ϱs = 1), depending on υj . Several penalty approaches are
suggested in the literature in order to penalize undesired intermediate values
of υj , such as the SIMP [55] method:

ϱ(υj) = ϱ0 + (ϱs − ϱ0)υj
p , (2.105)

where p is the penalty factor (usually p = 3) [56]. On the other hand, the
RAMP method [46] can be applied by following:

ϱ(υj) = ϱ0 + (ϱs − ϱ0)ϕ (υj) , (2.106)

where the penalty function ϕ depends on the penalty factor, usually with
q = 4:

ϕ (υj) = υj

1 + q(1 − υj) . (2.107)

Additionally, a three-material RAMP scheme has been studied in Chapter
5 of this Thesis.

Figure 2.6: Comparison of SIMP and RAMP interpolation schemes.

In Figure 2.6 the two aforementioned penalty methods are compared to
the linear interpolation of any material property ϱ.
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Chapter 3
Acoustic optimization of dissipative

and hybrid mufflers

Existing schemes for the acoustic optimization of automotive
and any other type of mufflers can be classified into three groups:
(i) the shape optimization of reactive mufflers refers to the obtain-
ing of their optimal configuration (number of chambers, chamber
partitions, extended inlet/outlet ducts, etc.) and the respective di-
mensions of each of the aforementioned elements; (ii) the shape
optimization of dissipative mufflers involves the consideration of
some additional variables, such as absorbent fibre type and bulk
density into each dissipative chamber, as well as certain features
of the perforated plate located between the chamber and the cen-
tral air duct, such as porosity, thickness, etc. Usually it is fea-
sible to perform low-dimensional problems such as (i) and (ii) by
means of heuristic optimization algorithms like GA, due to the
relatively small amount of design variables and high convergence
speed. However, (iii) the topology optimization of reactive mufflers
is performed by gradient-based methods, which allow the obtaining
of more intricate partitions within the chambers.

Additionally, (iv) the topology optimization of dissipative and
hybrid mufflers has been addressed in this Chapter, by allowing for
non-uniform distributions of the absorbent material’s bulk density
within the chamber.
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3.1. Introduction

Mufflers are passive devices which are connected to a noise source, and
whose objective is to reduce the acoustic level downstream to an acceptable
value. Nowadays there exist several muffler configurations, with designs rang-
ing from a single expansion chamber to intricate set-ups including several
cavities and resonators connected together. Generally speaking, mufflers are
divided into two groups (reactive and dissipative), depending on the working
principle [13].

3.1.1. Classification of mufflers

3.1.1.1. Reactive configuration

In a reactive muffler, a change of the duct’s cross section and other geo-
metric particularities make part of the acoustic energy to be reflected back to
the source, causing a destructive wave interaction [13].

Figure 3.1: Reactive muffler consisting of one expansion chamber.

One particular type of reactive mufflers are resonators. These include
cavities and geometric discontinuities, which at certain (natural) frequencies
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can partially enter into resonance, thus absorbing most of the acoustic energy,
and preventing it to be transmitted.

3.1.1.2. Dissipative configuration

In a dissipative muffler, attenuation is achieved by means of the use of
absorbent materials with high specific area (normally fibres), which convert
the acoustic energy into heat. The use of perforated surfaces and tubes can
also lead to a reduction of the transmitted acoustic energy.

Figure 3.2: Dissipative muffler with absorbent material.

In addition to the absorbing material, some additional attenuation is achieved
due to the reactive effects taking place at the expansion and contraction of
the chamber. In a similar way, the flow of a real fluid along a reactive muf-
fler produces some dissipation of acoustic energy, due to the aforementioned
changes of the cross section of the tube.

Additionally, hybrid mufflers containing both reactive and dissipative cham-
bers have also been studied in this Chapter.

3.1.2. Optimization of mufflers

3.1.2.1. Optimization of reactive mufflers

Reactive mufflers can provide good acoustic attenuation at low to mid
frequencies, even with relatively reduced dimensions [13], and their acoustic
behaviour can be improved, at target frequencies, by applying shape opti-
mization to the components of the muffler, e.g., expansion chamber, extended
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ducts, resonators, etc. Barbieri and Barbieri [57] found an optimized geometry
of a circular reactive chamber with extended inlet and outlet ducts by em-
ploying the Zoutendijk’s feasible directions method [58]. Chang and Chiu [59]
performed sizing optimization to designs with perforated duct using GA (see
Section 2.3.2). GA were also used by De Lima et al. [60] in order to conduct
the parametric optimization of a reactive muffler with extended ducts, as well
as the shape optimization of the duct’s profile by the use of control points to
approximate its boundary with cubic curves.

TO [61] can also be applied to reactive mufflers in order to distribute rigid
material and create partitions inside the reactive chamber. The density ap-
proach is applied by employing material interpolation schemes, such as the
RAMP [46] in order to make the acoustic properties associated with each el-
ement of the FE mesh to vary from those of the air to those of sound-hard
material [62, 63]. The sensitivities of the objective function with respect to
the element densities are normally filtered [41] in order to avoid numerical
instabilities and mesh-dependent solutions. Lee [64] used the MMA [40] to
create partitions in a reactive muffler and to increase the Transmission Loss
(TL) at target frequencies, experimentally validating the results. Lee and
Kim [62] used the RAMP model along with the MMA to create partitions in
an expansion chamber. Yedeg et al. [63] also used the MMA to create internal
walls within a perforated muffler, obtaining components that resembled cylin-
drical pipes and Helmholtz resonators. On the other hand, Azevedo et al. [65]
used the discrete optimization approach by employing Bi-directional Evolu-
tionary Structural Optimization (BESO) method to create barriers within an
expansion chamber using discrete variables.

3.1.2.2. Optimization of dissipative and hybrid mufflers

Regarding dissipative mufflers, i.e., those containing absorbent material,
they offer broadband attenuation essentially at mid and high frequencies [13].
Yoon [66] and Lee et al. [64] used the MMA to distribute elastic and poro-
elastic material elements (as well as air elements) within the muffler’s reactive
chamber by the use of a three-phase material scheme (air,porous,elastic). Fur-
thermore, Selamet et al. [67, 68] studied the acoustic behaviour of dissipative
mufflers containing several layers of material with different compaction densi-
ties.
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Considerable attenuation can be obtained in a broad range of the spectrum
by using the so-called hybrid muffler, that combines reactive and dissipative
chambers [69]. Chiu [70] used GA to maximize the attenuation of a hybrid
muffler in a target frequency range, by optimizing the dimensions and the
amount of absorbent material within the dissipative chamber (hence its filling
density).

3.2. Acoustic modelling of reactive and
dissipative mufflers

3.2.1. Previous considerations: perforated ducts
and absorbing materials

Perforated plates can be usually found in a muffler [13,71–73], specially in
order to separate the central air passage from the annular chambers. Their
acoustic behaviour can be characterized by means of the corresponding impedance
Zp.

Likewise, the absorbent material can be modelled as an equivalent fluid by
using the corresponding complex acoustic properties [22].

3.2.1.1. Characteristic impedance of a perforated surface

The impedance of a perforated plate is used to relate the pressure at both
sides of the plate, and the velocity of the air across the orifices. It is defined
as:

Zp = Pin − Pout

Un
= R0 + jX0 , (3.1)

where Pin, Pout and Un are the acoustic pressure at both sides (inlet/outlet)
of the orifice, and the mean acoustic velocity through the hole’s section. The
impedance can be expressed in terms of resistance R0 and reactance X0, as
denoted in Equation (3.1).
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3.2. Acoustic modelling of reactive and dissipative mufflers

The airflow across the holes involves several reflective and dissipative ef-
fects. The acoustic field in the vicinity of the perforated element can be rela-
tively complex [74], and is studied in the literature in a simplified way [75–77],
according to Equation (3.1).

(i) Reactive chamber and non-moving medium

The first case corresponds to a perforated plate separating two acoustic
domains in absence of mean flow. A wide variety of impedance models can
be found in the literature [71]. However, in this Section only the most com-
mon models are introduced, which will be hence used hereinafter in this Thesis.

The expression by Sullivan and Crocker can be found in references [72,73]:

Zp = ρ0c0
6 · 10−3 + jk0 (tp + 0.75dh)

σ
, (3.2)

dh, tp and σ being the diameter of the orifices, the thickness of the plate and
the porosity, respectively.

(ii) Reactive chamber and mean flow along the central duct

In order to model the acoustic coupling at a perforated circular duct sep-
arating an air passage with grazing mean flow and a reactive chamber (with
no absorbent material), the empirical impedance model presented by Lee and
Ih [71] was found to show good correlation with experimental data [78] and is
therefore used in this study. The dimensionless impedance ςp for a perforated
surface in the presence of mean flow is:

ςp = Zp

ρ0c0
= α+ jβ , (3.3)

where the values of the real (resistance) and imaginary (reactance) parts de-
pend on the geometric parameters of the perforated plate [15]:

α = α0 (1 + α1 |f − fcrit|) (1 + α2Mmf ) (1 + α3dh) (1 + α4tp)
σ

, (3.4)

β = β0 (1 + β1dh) (1 + β2tp) (1 + β3Mmf ) (1 + β4f)
σ

. (3.5)

The coefficients for the evaluation of the resistance αj and reactance βj ,
as well as the valid range of values for the parameters involved in Eqs. (3.4)
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3. Acoustic optimization of dissipative and hybrid mufflers

and (3.5), are shown in Table 3.1 (note that some of these coefficients have
dimensions, here in SI units) [71].

α0 0.000394 β0 -0.006
α1 0.00784 β1 194
α2 14.9 β2 432
α3 296 β3 -1.72
α4 -127 β4 -0.00662

Table 3.1: Coefficients for the evaluation of
the acoustic impedance.

Minimum Maximum
f 60 Hz 4000 Hz

Mmf 0 0.2
dh 0.002 m 0.009 m
tp 0.001 m 0.005 m
σ 2.79 % 22.3 %

Table 3.2: Valid range of the parameters

The valid range of values for the parameters involved in Eqs. (3.4) and
(3.5) is shown in Table 3.2. Also, the critical frequency fcrit is related to Mmf

and dh following the relation:

fcrit = ϕ1
1 + ϕ2Mmf

1 + ϕ3dh
, (3.6)

with ϕ1 = 412, ϕ2 = 104 and ϕ3 = 274 [71].

(iii) Dissipative chamber

In case of a dissipative chamber, the effect of the fibrous material within the
chamber should be captured, and good correlation with experimental results
was found for Kirby and Denia’s expression shown below [78]:

Zp = Z0

(
ςp + j0.425k0dh (ρm/ρ0 − 1)F (σ)

σ

)
, (3.7)

where the hole interaction factor F (σ) has been approximated throughout this
study by the mean value [77, 78] of the expressions given by Ingard [79] and
Fok [80], denoted below by FI and FF , respectively:

FI (σ) =1 − 0.7
√
σ , (3.8)

FF (σ) =1 − 1.41
√
σ + 0.34

√
σ3 + 0.34

√
σ5 . (3.9)
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3.2. Acoustic modelling of reactive and dissipative mufflers

3.2.1.2. Absorbent materials

Delany and Bazley’s empirical model [81] has been used in this study to
estimate the characteristic acoustic impedance Zm and material wavenumber
km (or equivalently the propagation constant) in terms of frequency f and
steady airflow resistivity R.

Absorbent material characterization

First, R can be evaluated at room temperature (R0) as a function of the
filling or bulk density ρb by the expression [82]:

R0 = A1ρ
A2
b , (3.10)

where coefficients A1 = 1.0831 and A2 = 1.8279 have been obtained from ex-
perimental data for the material considered throughout this Thesis, (Owens
Corning texturized fibreglass roving) [69]: R0 = 4896 Pa s/m2 for ρb = 100
kg/m3, and R0 = 17378 Pa s/m2 for ρb = 200 kg/m3 [67]. This interpola-
tion has been hereinafter considered valid for ρb between 50 kg/m3 and 250
kg/m3 [67–69], and any value of filling density between these two limits has
been therefore considered suitable from a manufacturing point of view.

Additionally, Christie’s power law [83] has been used in this study to eval-
uate R at high temperature:

R = R0

(
T + 273.15
T0 + 273.15

)0.6
, (3.11)

with T0 = 25 ◦C. Once R at the working conditions are known, Delany and
Bazley’s aforementioned expressions for Zm and km are [81]:

Zm = Z0 (1 + a5ξ
a6 − ja7ξ

a8) , (3.12)
km = k0 (1 + a3ξ

a4 − ja1ξ
a2) , (3.13)

Z0 and k0 being the acoustic characteristic impedance of the air and its
wavenumber, while the dimensionless frequency parameter is defined as ξ =
ρ0f/R. Coefficients and exponents ai for the material under study are shown
in Table 3.3, and have been kept constant with temperature [83–85]. Finally,
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3. Acoustic optimization of dissipative and hybrid mufflers

the complex equivalent density ρm and speed of sound cm are expressed as:

ρm = Zm

cm
, (3.14)

cm = ω

km
, (3.15)

ω being the angular frequency of the acoustic excitation.

Texturized fibre glass
a1 0.189
a2 -0.595
a3 0.160
a4 -0.577
a5 0.095
a6 -0.754
a7 0.085
a8 -0.732

Table 3.3: Coefficients and exponents for the calculation of the equivalent acoustic proper-
ties.

3.2.2. Finite element method
This Section describes the FE formulation of the acoustic problem and

the role played by the design variables (such as the filling density ρb of each
element or the chamber dimensions Lx and Lr) in the equations.

Figure 3.3 shows a sketch of the perforated dissipative muffler considered
in this Chapter. It consists of a central air passage carrying a mean flow,
and a surrounding annular chamber filled with absorbent material. Addi-
tionally, the perforated surface between the chamber and the central duct
allows for acoustic interaction between them, while reducing back-pressure
and preventing the absorbent material from being dragged out by the exhaust
flow [15,67–69,86,87].
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3.2. Acoustic modelling of reactive and dissipative mufflers

Figure 3.3: Perforated dissipative muffler with heterogeneous absorbent material.

The noise control device has been divided into two subdomains: the cen-
tral passage, denoted by Ωa, and the annular dissipative chamber, Ωm. Γp

denotes the perforated surface between them, Γa and Γm represent the rigid
boundaries of the muffler (with normal velocity Un equal to zero), while Γin

and Γout stand for the inlet and outlet sections of the muffler.

Following the approach presented in [15], an axial temperature gradient
has been considered at the central passage, which causes not only the acoustic
properties of the air (density ρ0 and speed of sound c0) to vary with respect to
the x coordinate, but also the mean flow speed Umf . On the other hand, axial
and radial temperature variations have also been considered inside the cham-
ber. The fibrous medium can be modelled as an equivalent fluid, in terms of
its position-dependent complex equivalent properties, ρm(x) and cm(x), which
can be expressed, for a given material, as a function of filling density ρb(x),
temperature T (x) and acoustic frequency f . Finally, the perforated duct has
been modelled by evaluating the acoustic impedance Z̃p(x).

The FE model described in [15] has been used throughout this Chapter
and recalled below for the sake of completeness. Wave propagation has been
formulated in terms of acoustic velocity potential within Ωa, and in terms
of acoustic pressure within Ωm, as explained in Sections 3.2.2.1 and 3.2.2.2,
whereas the coupling between them across the perforated surface is recalled
in Section 3.2.2.3.
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3. Acoustic optimization of dissipative and hybrid mufflers

3.2.2.1. Wave propagation along the central passage domain
Ωa

An axial temperature gradient has been considered along the central pas-
sage. This implies the acoustic properties of the air c0(x) and ρ0(x) to vary
axially within Ωa. In addition, a mean axial flow may be considered, with
velocity Umf (x) = {Umf (x), 0, 0}. A convenient form of the wave equation
for the described medium is the one formulated in terms of velocity potential
ϕ in Eq. (2.38):

∇ · (ρ0∇ϕ) − ρ0
D
Dt

( 1
c2

0

D
Dtϕ

)
= 0 . (3.16)

Acoustic velocity u and pressure p can be obtained from ϕ as [19]:

u = {u, v, w}T = ∇ϕ , (3.17)

p = −ρ0
Dϕ
Dt . (3.18)

A harmonic time dependence of the acoustic magnitudes involved has been
assumed, with ϕ(x, t) = Φ(x)ejωt and p(x, t) = P (x)ejωt. Hence the total time
derivative can be written as:

D
Dt = ∂

∂t
+ Umf · ∇ = jω + Umf

∂

∂x
, (3.19)

j being the imaginary unit. By introducing Eq. (3.19) into Eq. (3.16), it is
obtained [15]:

∇ · (ρ0∇Φ) −
ρ0U

2
mf

c2
0

∂2Φ
∂x2 − 2ρ0jωUmf

c02
∂Φ
∂x

− ρ0U
2
mf

∂
(
1/c2

0
)

∂x

∂Φ
∂x

− ρ0Umf

c2
0

∂Umf

∂x

∂Φ
∂x

− ρ0jωUmf
∂
(
1/c2

0
)

∂x
Φ + ρ0ω

2

c2
0

Φ = 0 . (3.20)

The weighted residual statement (with weighting function Ψ) and the di-
vergence theorem [35] are applied to Eq. (3.20). After further manipulation,
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3.2. Acoustic modelling of reactive and dissipative mufflers

it yields [15]:

−
∫

Ωa

ρ0∇T ΨM∇Φ dΩ

+
∫

Ωa

Ψ
(
U2

mf

c2
0

∂ρ0
∂x

+ ρ0Umf

c2
0

∂Umf

∂x
− 2ρ0jωUmf

c2
0

)
∂Φ
∂x

dΩ

+
∫

Ωa

Ψ
(

−ρ0jωUmf
∂
(
1/c2

0
)

∂x
+ ρ0ω

2

c2
0

)
Φ dΩ +

∫
Γa

ρ0ΨnT M∇Φ dΓ = 0 ,

(3.21)

where n is the outward normal unit vector to the boundary Γ , and M is the
matrix defined by:

M =

1 −Mmf
2 0 0

0 1 0
0 0 1

 , (3.22)

Mmf (x) = Umf (x)/c0(x) being the Mach number. The FE discretization given
by Eqs. (3.23) and (3.24) is applied to Eq. (3.21), where N is the row vector
of nodal shape functions, and Φ̃ and Ψ̃ are the vectors containing the nodal
values of Φ and Ψ :

Φ(x) = N(x)Φ̃ , (3.23)
Ψ(x) = N(x)Ψ̃ . (3.24)

The use of the Galerkin approach [35] leads to the following algebraic
system, expressed here in compact notation [15]:(

Ka + jω (Ca1 + Ca2) − ω2Ma

)
Φ̃ = Fa , (3.25)
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3. Acoustic optimization of dissipative and hybrid mufflers

where the stiffness, damping and mass matrices, as well as the force vector are
respectively [15]:

Ka =
Ne

a∑
e=1

∫
Ωe

a

ρ0 (∇N)T M∇N dΩ , (3.26)

Ca1 =
Ne

a∑
e=1

∫
Ωe

a

2ρ0Umf

c2
0

NT ∂N
∂x

dΩ , (3.27)

Ca2 =
Ne

a∑
e=1

∫
Ωe

a

ρ0Umf
∂
(
1/c2

0
)

∂x
NT N dΩ , (3.28)

Ma =
Ne

a∑
e=1

∫
Ωe

a

ρ0
c2

0
NT N dΩ , (3.29)

Fa =
Ne

a∑
e=1

∫
Γe

a∩Γ
ρ0NT nT M∇Φ dΓ

=
Ne

a∑
e=1

∫
Γe

a∩Γbc

ρ0NT
(
1 −M2

mf

) ∂Φ
∂n

+
∫

Γe
a∩Γp

ρ0NT ∂Φ
∂n

dΓ , (3.30)

N e
a , Ωe

a and Γe
a being the number of elements within Ωa, as well as the domain

and boundary of each of these elements in the summation term. A normal
acoustic velocity to the boundaries may exist where the natural rigid wall
condition is not satisfied [88], i.e., Γbc = Γin ∪ Γout (inlet/outlet sections) and
Γp (perforated duct surface).

3.2.2.2. Wave propagation in the dissipative chamber Ωm

In the absence of mean flow, and considering a heterogeneous medium, the
simpler harmonic form of the wave equation expressed in terms of pressure
(harmonic form of Eq.(2.28)) can be used [15,19,86,87]:

∇ ·
( 1
ρm

∇P
)

+ ω2

ρmc2
m

P = 0 . (3.31)

The FE method has been applied to Eq. (3.31) in an analogous way
to Section 3.2.2.1, yielding the following algebraic system, expressed here in
compact form [15]: (

Km − ω2Mm

)
P̃ = Fm , (3.32)
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where the matrices Km, Mm and the vector Fm are defined below: [15]

Km =
Ne

m∑
e=1

∫
Ωe

m

1
ρm

(∇N)T (∇N) dΩ , (3.33)

Mm =
Ne

m∑
e=1

∫
Ωe

m

1
ρmc2

m

NT N dΩ , (3.34)

Fm =
Ne

m∑
e=1

∫
Γe

m∩Γp

1
ρm

NT ∂P

∂n
dΓ , (3.35)

N e
m, Ωe

m and Γe
m being the number of elements within Ωm, as well as the

domain and boundary of each of these elements in the summation term. The
equivalent acoustic properties of the poroelastic medium ρm and cm have been
calculated according to Eqs. (3.14) and (3.15). Note that, although just one
variable ρb is assigned to each element, ρm and cm might vary within Ωe

m due
to thermal effects.

3.2.2.3. Acoustic coupling at the perforated duct

The acoustic coupling between Ωa and Ωm has been modelled by means
of an impedance associated with the perforated surface. This is defined as
the ratio of the acoustic pressure drop between both sides of the plate to the
acoustic velocity across the orifices Un [13]:

Zp = Pa − Pm

Un
, (3.36)

where Pa and Pm are the pressures at both sides of the perforated screen. The
reader is referred to Section 3.2.1.1 for the calculation of Zp. On the other
hand, recalling Eqs. (3.17 – 3.19) within Ωa yields:

Pa = −ρ0 (jωΦ + Umf ∂Φ/∂x) . (3.37)

Assuming continuity of normal velocity across the perforated surface [78],
Una = −Unm , and substituting ∂Φ/∂n = Un from Eq. (3.36) into the second
term of Eq. (3.30), the contribution of the perforated surface to Fa is obtained
[15]:

FZp
a =

∫
Γe

a∩Γp

ρ0NT

(
−ρ0 (jωΦ + Umf ∂Φ/∂x)

Zp
− Pm

Zp

)
dΓ . (3.38)
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FZp
m can be derived analogously, replacing the term ∂Pm/∂n = −ρmjω(−Un)

into Eq. (3.35), where Unm is obtained from Eq. (3.36) [15]:

FZp
m =

∫
Γe

a∩Γp

NT

(
ρ0ω

2Φ − ρ0jωUmf ∂Φ/∂x
Zp

− jωPm

Zp

)
dΓ . (3.39)

No mesh continuity is required between both domains, although a con-
forming mesh has been used between Ωa and Ωm in order to simplify the
computations, and shape functions at both sides of the perforated surface are
therefore equal [15]. The force terms described in Eqs. (3.38) and (3.39) are
moved to the left-hand side of the algebraic system, following the relations:

FZp
a =

(
−KZp

aa − jωCZp
aa

)
Φ̃a − KZp

amP̃m , (3.40)

FZp
m =

(
−jωCZp

ma + ω2MZp
ma

)
Φ̃a − jωCZp

mmP̃m , (3.41)

obtaining the following new terms [15]:

KZp
aa =

Ne
a∑

e=1

∫
Γe

a∩Γp

ρ2
0Umf NT

Z̃p

∂N
∂x

dΓ , (3.42)

KZp
am =

Ne
a∑

e=1

∫
Γe

a∩Γp

ρ0NT N
Z̃p

dΓ , (3.43)

CZp
aa =

Ne
a∑

e=1

∫
Γe

a∩Γp

ρ2
0NT N
Z̃p

dΓ , (3.44)

CZp
mm =

Ne
a∑

e=1

∫
Γe

m∩Γp

NT N
Z̃p

dΓ , (3.45)

CZp
ma =

Ne
a∑

e=1

∫
Γe

m∩Γp

ρ0Umf NT

Z̃p

∂N
∂x

dΓ , (3.46)

MZp
ma =

Ne
a∑

e=1

∫
Γe

m∩Γp

ρ0NT N
Z̃p

dΓ . (3.47)

3.2.2.4. Boundary conditions at the outlet

TL computations require an anechoic termination [13]. This has been
achieved by prescribing an acoustic impedance at the outlet section equal to
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the characteristic impedance of the propagation medium:

Z = P

Un
= P

∂Φ/∂x = Z0 = ρ0c0 . (3.48)

Introducing P from Eq. (3.48) into Eq. (3.37), and solving for ∂Φ/∂x
leads to [15]:

∂Φ
∂x

= − jωρ0Φ
Z0 + ρ0Umf

. (3.49)

Eq. (3.49) is then introduced into the first term of Eq. (3.30), and the
resultant expression is evaluated at the outlet section, obtaining:

FZout
a = −jωρ2

0
1 −M2

mf

Z + ρ0Umf

Nout
e∑

e=1

∫
Γe∩Γout

NT Φ dΓ . (3.50)

Eq. (3.50) is moved to the left-hand side of Eq. (3.25). In compact form,
FZout

a = −jωCZout
a Φ̃a, with the new matrix CZout

a given by:

CZout
a = ρ2

0
1 −M2

mf

Z + ρ0Umf

Nout
e∑

e=1

∫
Γe∩Γout

NT N dΓ . (3.51)

3.2.2.5. Final system of equations

The resulting global system of equations is:([
Ka + KZp

aa KZp
am

0 Km

]
+ jω

[
Ca1 + Ca2 + CZout

a + CZp
aa 0

CZp
ma CZp

mm

]

−ω2
[

Ma 0
MZp

ma Mm

]){
Φ̃a

P̃m

}
=
{

Fin
a

0

}
. (3.52)

However, in the present study excitation at the inlet section has been
modelled by means of Dirichlet boundary conditions, with Φ = 1 on Γin for
simplicity, following [89]. Additionally, Fin

a = 0.

3.3. Objective Function: Transmission loss

Acoustic attenuation of the muffler can be measured in terms of Transmis-
sion Loss (TL), which is defined as the ratio of the incident power on the noise
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control device to the one transmitted through the outlet section (considering
an anechoic end). It can be expressed as [13]:

TL (υ) = 10 log


∣∣∣P+

in

∣∣∣2 Sin
(
1 +M2

in

)
/ (2ρincin)∣∣∣P+

out

∣∣∣2 Sout
(
1 +M2

out

)
/ (2ρoutcout)

 , (3.53)

where P+, S and M denote the amplitude of the progressive wave, the cross-
section area of the tube and the Mach number, respectively (subscripts in
and out denote the inlet and outlet sections). By assuming that the inlet
and outlet ducts are long enough to avoid three-dimensional effects at Γin

and Γout (generated at the expansion and contraction of the muffler chamber),
plane wave propagation is guaranteed for the frequencies analyzed (up to 3200
Hz), and the progressive wave at the inlet section is P+

in = (Pin + Z0Uin) /2,
whereas the lack of regressive wave at the outlet tube leads to P+

out = Pout [87].
Given Eqs. (3.17–3.19), it leads to:

P+
in = 1

2

(
−ρin

(
jω Φ|nin

1
+ U in

mf

∂Φ
∂x

∣∣∣∣
nin

1

)
+ Z0

∂Φ
∂x

∣∣∣∣
nin

1

)
, (3.54)

P+
out = −ρout

(
jω Φ|nout

3
+ Uout

mf

∂Φ
∂x

∣∣∣∣
nout

3

)
, (3.55)

where nin
1 and nout

3 are the central nodes of Γin and Γout, respectively. The
computation of ∂Φ/∂x at nin

1 and nout
3 can be carried out, for example, through

the nodal solution of Φ at additional nodes nin
2 , nin

3 , nout
1 and nout

2 within the
corresponding elements (see Figure 3.4).

Figure 3.4: Nodes of the finite element mesh of a dissipative muffler.
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3.4. Optimization problem

The optimization problem of designing a muffler target frequency to oper-
ate in the frequency range [f0, f1] can be stated as:

max
υ

F0
(
Φ̃a(υ)

)
= 1
f1 − f0

∫ f1

f0
TL(Φ̃a(υ), f) df ,

subject to: Fi (υ) ≤ 0 , for i = 1, ...,M ,

υmin
j ≤ υj ≤ υmax

j , for j = 1, ..., N ,

(3.56)

i.e., optimizing a set of N design variables υj , in order to maximize the mean
TL in the target frequency range, while satisfying the M constraints Fi(υ).
Note that υ is a general representation of the design variables. In general,
υ contains the bulk densities corresponding to the elements of the chamber.
However in Section 3.5.3 it may contain some additional variables such as the
dimensions of the dissipative and reactive chambers. A weight W constraint
has been included to limit the maximum amount of fibre:

F1(υ) = W (υ) −W0 ≤ 0 , (3.57)

W0 being the maximally allowed weight. Simpson’s numerical integration
rule [90] with frequency spacing ∆f of 5 Hz has been used in this study to
approximate the integral in (3.56). The optimization problem has been solved
at each iteration by the use of the gradient-based MMA [40] recalled in Section
2.3.2.1 due to the high number of design variables. However, it has not been
proven that the problem is convex, hence it is not possible to state that the so-
lution reached after meeting the stopping criterion is the optimal design. The
computation of the sensitivities of F0 with respect to a perturbation of the
design variables can be sped up (with respect to the finite difference method)
by using the standard adjoint method [48] (see Section 2.3.2.2), and no filter-
ing of sensitivities has been performed.

Opposite to standard TO approaches, which look for material-void designs,
the proposed method also allows for intermediate values of filling density, since
obtaining areas with these filling density values is possible from a manufactur-
ing point of view. Hence intermediate values of ρb are not penalized (as via
SIMP or RAMP interpolation schemes).
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3.5. Results

The acoustic model described in Section 3.2 has been implemented in
Matlab®for the axisymmetric case in order to optimize the density layout of
the absorbent material within the dissipative chamber.

Given a muffler geometry, temperature distribution and Mach number at
the inlet, computations have been carried out with a view to maximize acous-
tic attenuation performance in the target frequency range. The TO method
described in Section 3.4 is applied below to two different muffler configura-
tions: a dissipative muffler with one chamber and perforated tube, as well as
a hybrid muffler containing a dissipative chamber with perforated tube, and a
reactive chamber with extended outlet tube. The effect of temperature gradi-
ents on the design of the noise control device has been included, as described
in Section 3.5.1, as well as the simultaneous design of the density layout and
the muffler’s geometry given a constant temperature within it.

3.5.1. Temperature distribution
The temperature distribution within the muffler depends on the muffler

configuration, as well as the engine load and speed, and affects the sound
propagation properties of both the air and fibrous mediums. The effect of
the absorbent material filling density on the temperature function has not
been included in this study, and therefore temperature can be expressed as a
function of position T = T (x, r) at all stages of optimization: a linear axial
variation has been assumed along the perforated section Tduct(x), whereas
temperatures at the inlet Tin and outlet tubes Tout are considered constant
due to their short length with respect to the total length of the muffler, in
accordance with reference [15].
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3.5. Results

Figure 3.5: Axisymmetric temperature distribution studied.

Regarding the temperature function at the annular chamber, Tchamber(x, r),
a quadratic variation along the radial direction has been added in order to ap-
proximate the logarithmic temperature function through a cylindrical domain.
The example cases studied are shown in Table 3.4 [15].

Tin Tout T1 T2 T3 T4 T5 T6 Tavg

Case T-I 25 25 25 25 25 25 25 25 25
Case T-II 300 200 300 235 200 200 135 100 181
Case T-III 181 181 181 181 181 181 181 181 181

Table 3.4: Definition of the temperature field (◦C).

3.5.2. Multi-frequency topology optimization of a
dissipative muffler

The configuration to optimize is shown in Fig. 3.6. The muffler consists
of a single dissipative chamber, filled with Owens Corning texturized fibre-
glass roving [69] (see properties in Table 3.3). Its dimensions are: inner radius
Rt = 0.0268 m, outer radius Rc = 0.0886 m, and chamber length Lc = 0.3 m.
The perforated duct properties are: thickness tp = 0.001 m, porosity σ = 20%,
and orifice diameter dh = 0.0035 m.

Ωa and Ωm have been meshed using 8-node quadrilateral elements, whose
maximum length has been set to 0.005 m (the wavelength of 3200 Hz sounds
in the air is 0.108 m at 25◦C, i.e., a minimum of 21 elements per wavelength
is considered in this study). 780 elements are obtained within Ωm (therefore,
780 design variables are considered), with maximum and minimum element
filling density values set to 50 and 250 kg/m3 respectively. Initially, a homo-
geneous filling density of 120 kg/m3 has been assigned to every finite element
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of the chamber, using 0.8066 kg of absorbent material. This initial weight has
been defined as the maximum admissible weight: W0 = W (υ0). Finally, the
maximum change in each variable per iteration has been restricted to 10% of
the range.

Figure 3.6: Initial design.

3.5.2.1. Design 1. Cold condition optimization. Low frequency
range

First, the TO process has been carried out for the case T-I described in
Table 3.4 (cold condition). Mach number at the inlet section is 0.05. The
target frequency range where TL is to be improved has been set to [100, 200]
Hz. The acoustic analysis has been performed by employing 4500 degrees of
freedom, and the sensitivities of F0 have been obtained for each of the 101
frequencies of the Simpson’s quadrature, with ∆f = 5 Hz. The MMA method
has been then used to optimize the material distribution by using gradient
information.

The stopping criterion has been defined as the relative variation (in ab-
solute value) in each design variable being below 1% of its range. Figure 3.7
shows the muffler design after meeting the stopping criterion at iteration 27.

Figure 3.7: Optimized topology. Design 1.
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As shown in Figure 3.7, the improved design has the minimum density as-
sociated with most of the elements of Ωm. Therefore the final design uses only
0.3656 kg of absorbent material. In accordance with Selamet et al. in [67],
a slight improvement in TL at low frequencies can be achieved by using low
filling density, even though this may result in a worse attenuation in the rest
of the frequency range, as shown in Figure 3.9.

Even if this optimized muffler could be difficult or expensive to manu-
facture, the TO process yields basic ideas to construct a high-performance
manufacturable muffler for these specific working conditions. In particular,
optimization indicates the need of including an extended duct.

3.5.2.2. Design 1a. Manufacturable muffler with ρb = 50
kg/m3 and extended ducts

Design 1 shown in Figure 3.7 shows maximum density in two thin regions
at both sides of the perforated surface. Although Design 1 is difficult to ob-
tain by standard fabrication methods, it can give some guidelines in order
to generate new designs. The increase in bulk density up to the maximum
value next to the perforated duct tends to form acoustically independent sub-
domains, similar to an extended duct separating the central passage and the
outer chamber. Therefore, it is suggested that Design 1 can be replaced by a
muffler with homogeneous minimum filling density in the chamber and duct
extensions (Design 1a). Figure 3.8 shows the easily manufacturable design
with a homogeneous ρb of 50 kg/m3 and extended ducts of length 0.075 m
each, as suggested by Figure 3.7.

Figure 3.8: Manufacturable design. Design 1a.
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3.5.2.3. Results discussion. Designs 1 and 1a

The attenuation performance of the optimized topology shown in Figure
3.7 (Design 1) and the manufacturable muffler shown in Figure 3.8 (Design
1a) are compared with the initial topology. As shown in Figure 3.9, the man-
ufacturable design provides an improvement in terms of TL which is similar
to the optimized design in the target frequency range, with respect to the ini-
tial design. In addition, both Designs 1 and 1a show worse attenuation with
respect to the initial topology, for frequencies out of the attenuation range.
The addition of the extended ducts does affect the TL prediction for higher
frequencies: the manufacturable design shows better performance up to 1000
Hz with respect to the optimized design, while it provides worse attenuation
in the range from 1000 to 3200 Hz.

Figure 3.9: TL for the initial and optimized topologies (Design 1 and 1a).

3.5.2.4. Design 2. Cold condition optimization. Mid frequency
range

Next, the target frequency range has been switched to [500, 1000] Hz. The
TO process is repeated for the same temperature case (T-I in Table 3.4).
Figure 3.10 shows an intermediate design of the optimization process, after 9
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iterations. At this stage of the process, the design still includes many areas
with intermediate values of density.

Figure 3.10: Optimized topology. Design 2 at iteration 9.

Figure 3.11 shows that F0 improves at every iteration, from the starting
value of 28.39 dB to 35.65 dB at iteration 43. However, the value of the
weight constraint F1 oscillates until converging to a value near zero. This
implies that the optimized design shown in Figure 3.13 (once optimization
finishes at iteration 43) uses 0.8066 kg of material, as much as the initial one.

Figure 3.11: Case 2. Evolution of F0(υ).

This suggests that better attenuation at mid frequencies could be obtained
by the use of a higher amount of fibrous material, in accordance with reference
[67].
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Figure 3.12: Case 2. Evolution of F1(υ).

The resultant design resembling a configuration with five rings with alter-
nating maximum and minimum filling densities [68], is shown in Figure 3.13.
As for Design 1 presented in Section 3.5.2.1, TO suggests the use of extended
inlet/outlet duct (of 4 elements of length).

Figure 3.13: Optimized topology. Design 2.

3.5.2.5. Design 2a. Manufacturable muffler with a ring design

Analogously to Case study 1, the optimized topology shown in Figure 3.13
is not easily manufacturable. Additionally, a ring configuration consisting of 5
rings of material with filling densities of 50 and 250 kg/m3 has been studied,
as TO suggests. The rings are 0.065 m and 0.0525 m wide respectively, as
shown in Figure 3.14, in order to maintain the amount of dissipative material
used.
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Figure 3.14: Manufacturable design. Design 2a.

3.5.2.6. Design 2b. Manufacturable muffler with a ring design
and extended ducts

Design 2 shown in Figure 3.13 includes small regions of dissipative material
with high density over both sides of the perforated surface, reducing the acous-
tic coupling between the subdomains Ωa and Ωm in these sections of the tube.
Figure 3.10 shows that these areas tend to adopt the maximum bulk density
faster than any other region in the chamber. As shown in the literature [77],
the use of extended inlet/outlet ducts can help to increase attenuation at cer-
tain ranges of frequency. Therefore, an additional design including extended
tubes with 0.02 m of length (equal to the axial length of 4 finite elements
within Ωm) has been studied (sketched in Figure 3.15). The acoustic perfor-
mance provided by Designs 2, 2a and 2b is shown in Figures 3.17 and 3.18,
and results are discussed below in this section.

Figure 3.15: Manufacturable design. Design 2b.

3.5.2.7. Design 3. Operating (hot) condition optimization.
Middle frequency range

The effect of temperature over the TO process has been studied in this
Section. The TL provided by a given muffler can differ substantially when
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considering thermal effects. Also, peaks in TL can shift to different frequen-
cies [15, 87, 91]. Additionally, by considering mufflers with large dimensions
and fibre volume, high temperature and highly resistive fibres [91], it is likely
that the topologies obtained by cold and hot TO could exhibit differences in
some cases.

The effect of temperature on the TO process has been studied by con-
sidering the operating temperature case T-II described in Table 3.4, while
maintaining the frequency range of interest in [500 − 1000] Hz. The initial
density distribution is the one used in previous sections (see Fig. 3.6). The
improved topology after stopping criterion is met at iteration 39 is plotted in
Fig. 3.16.

Figure 3.16: Optimized topology. Design 3.

As shown in Figure 3.16, by considering the high-temperature effect, a
similar optimized topology to Design 2a (resultant of the cold TO) has been
obtained. It consists of 5 rings alternating minimum and maximum ρb. The
final weight is again 0.8066 kg.

3.5.2.8. Results discussion. Designs 2, 2a, 2b and 3

The initial design as well as Designs 2, 2a, 2b and 3 have been evaluated
at the cold temperature case T-I described in Table 3.4. The initial homo-
geneous topology of 120 kg/m3 provides a mean TL in the target frequency
range of 28.65 dB. As it can be seen in Figure 3.17, the result of TO for the
cold working condition (Design 2), shows good acoustic attenuation improve-
ment in terms of TL (35.65 dB). Design 2a, consisting of 5 rings inferred from
Design 2, provides a similar mean TL of 34.80 dB. However, Design 2b with
rings and extended ducts improves noise mitigation up to 37.02 dB.
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This suggests that the small regions with maximum ρb that appear at
both sides of the perforated surface have a physical meaning: the algorithm
increases filling density in these small areas in order to reduce the acoustic
coupling between the duct and the chamber in these regions of the perforated
duct, similar to duct extensions. As shown in Figure 3.10, at iteration 9 of
the TO, these small regions already show maximum ρb, whereas the rest of
the finite elements within Ωm are associated with intermediate filling densi-
ties. Therefore, removing the acoustic coupling at these regions by means
of extended ducts increases attenuation in the problem under analysis. Fi-
nally, Design 3 shows worse attenuation than Design 2 at target frequencies
(mean TL of 35.12 dB). Nonetheless, the differences in material performance
observed in the literature [85, 91] can justify the use of the complete model,
which considers thermal effects.

Figure 3.17: TL for the initial and optimized topologies. Designs 2, 2a, 2b and 3.

On the other hand, the topologies obtained with the different working con-
ditions have been tested considering the high temperature field T-II defined
in Table 3.4. Results are shown in Figure 3.18. The initial topology with
uniform ρb of 120 kg/m3 provides a mean TL at the target frequency range of
27.65 dB. Design 2, resultant of the cold TO (case T-I of Table 3.4), provides
a mean TL of 36.72 dB in the target frequency range.
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Design 3, obtained by considering T-II temperature case, provides a good
improvement in TL in the target frequency range, up to 37.35 dB. This proves
that higher attenuation can be achieved with the same amount of material, by
considering the appropriate operating conditions. Figure 3.18 shows a peak in
attenuation with 60 dB at around 1200 Hz for this last design.

Design Description mean TL
(cold eval.) [dB]

mean TL
(hot eval.) [dB]

Initial ρb = 120 kg/m3 28.65 27.65
2 Cold (T-I) TO 35.65 36.72

2a Rings 34.80 35.30
2b Rings + ext. ducts 37.02 37.42
3 Hot (T-II) TO 35.12 37.35

Table 3.5: Results summary. TL evaluation for the range [500, 1000] Hz.

Design 2a, consisting of rings, shows a mean TL of 35.30 dB, which is
worse than Designs 2 and 3, but still better than the initial design. However,
the addition of the extended ducts improves the mean TL up to 37.42 dB,
however, their length is larger than the length suggested by Design 3 (see
Figure 3.16).

Figure 3.18: TL for the initial and optimized topologies. Designs 2, 2a, 2b and 3.
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For both cold and hot evaluations, all the optimized designs show worse TL
than the initial design from around 1500 to 3200 Hz, proving that optimization
in one range of frequencies can lead in some cases to worse attenuation at other
frequencies.

3.5.3. Multi-frequency shape optimization of a
hybrid muffler with multiple constraints

3.5.3.1. Design 4. Broad frequency range

A hybrid muffler, which consists of a dissipative chamber and a reactive
one with an extended outlet duct, has been considered in this Section in order
to maximize the attenuation in a wide range of frequencies. A baffle with
0.005 m in thickness has been added between both chambers. In order to
obtain potentially manufacturable designs, and taking into account the op-
timized topology obtained in previous cases, 5 annular rings with constant
filling density have been defined, each one containing several elements of the
FE mesh, hence reducing the number of design variables.

The dimensions of these rings have also been considered design variables
υj , as shown in Figure 3.19. The maximum and minimum values of each design
variable can be checked in Table 3.6. The sensitivities of F0 with respect to
these dimensions are also required at each iteration. Temperature gradients
are neglected in this case for simplicity, and the operating uniform-temperature
case T-III, detailed in Table 3.4, has been considered. The target frequency
range has been set to [500, 2000] Hz.

Figure 3.19: Initial design and design variables.

The model has been meshed in a similar way to the dissipative muffler,
8146 nodes have been obtained. Additional constraints have been added in
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this case in order to keep the muffler under 1 m in length and both chambers
with the same radii. The mean Mach number at the inlet has been set to zero.
The optimization has stopped after 22 iterations producing the result shown
in Figure 3.20.

Figure 3.20: Optimized topology. Design 4.

3.5.3.2. Results discussion. Design 4

Figure 3.20 shows the optimized design. The left dissipative chamber con-
tains two lateral rings with minimum ρb and three central rings with around
150 kg/m3. This chamber resembles the muffler configuration with two short
lateral chambers and a central dissipative region, already studied in refer-
ence [92]. Also, an overall length increase of the dissipative chamber has
been observed, increasing the perforated surface length (and hence the area of
acoustic coupling). The reactive chamber has decreased in length while con-
taining a longer extended tube. Results are shown in detail in Table 3.6. The
optimized design uses 0.8054 kg of absorbent material, and both additional
constraints are satisfied (the muffler length is 0.838 m and both chambers have
the same radius, 0.0872 m).

The mean TL increase along the range of frequencies under study can be
checked in Figure 3.21. The optimized design shows higher mean attenuation
in the target frequency range (63.84 dB) than the initial design (56.31 dB),
although it might be lower at some specific frequencies. Also, the peaks in TL
shift to the left in Figure 3.21 as a result of the increase in the extended duct
length.
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υj υmin
j υmax

j υ0
j υopt

j

ρ1 (kg/m3) 50 250 120 51.07
ρ2 (kg/m3) 50 250 120 145.81
ρ3 (kg/m3) 50 250 120 148.27
ρ4 (kg/m3) 50 250 120 141.17
ρ5 (kg/m3) 50 250 120 50.00
Lx1 (m) 0.0420 0.7800 0.0600 0.0733
Lx2 (m) 0.0420 0.7800 0.0600 0.0686
Lx3 (m) 0.0420 0.7800 0.0600 0.0685
Lx4 (m) 0.0420 0.7800 0.0600 0.0685
Lx5 (m) 0.0420 0.7800 0.0600 0.0664
Lr1 (m) 0.0433 0.0803 0.0618 0.0604
Lx6 (m) 0.1050 0.1950 0.1500 0.1050
Lx7 (m) 0.1050 0.1950 0.1500 0.1747
Lr2 (m) 0.0433 0.0803 0.0618 0.0604

Table 3.6: Optimization summary. Design parameter υj, minimum υmin
j and maximum

υmax
j limits, initial υ0

j and optimized υopt
j values. Design 4.

Figure 3.21: TL for the initial and optimized designs. Design 4.
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3.6. Conclusions

This Chapter presents a combination of geometry and topology optimiza-
tion methods to effectively increase the attenuation of dissipative and hybrid
mufflers at certain frequency ranges.

The evaluation of the TL has been performed using a FE hybrid acous-
tic model valid for mufflers with heterogeneous absorbent material layout and
perforated duct, in the presence of mean flow and temperature gradients. The
optimization problem has been solved by the use of the iterative algorithm
MMA, which requires the gradient of both the objective function and the re-
strictions with respect to all design variables at each design step. The adjoint
method, along with the analytical derivation of the global matrices with re-
spect to each design variable, allows for calculating efficiently the sensitivities
of the objective function.

For low frequencies, TO results in a reduction of the amount of dissipative
material used in the dissipative chamber and a slight improvement in TL at
target frequencies, which can worsen the acoustic behaviour at mid to high
frequencies. Regarding the optimization at mid frequencies, the optimization
scheme has been set up for two case studies with different thermal gradients,
obtaining the optimized absorbent material layout in each case. Although
little discrepancy in the optimized material distribution has been observed,
results show the importance of considering temperature in the optimization
process. The proposed methodology is able to provide a predesign for build-
ing manufacturable mufflers. These have been inferred from the topologies
proposed by the optimization algorithm and keep most of the improvement
in acoustic performance at target frequencies. This fact enables the proposed
methodology to be a powerful tool for engineers and designers to build efficient
mufflers for practical applications.

Finally, an optimization of a hybrid muffler has been carried out. The
density layout obtained from the previously optimized dissipative mufflers has
been combined with the shape optimization of the reactive chamber and the
size of the dissipative rings. The optimization has also been carried out by us-
ing the MMA. Significant TL increase at target frequencies has been achieved
in every case under study.
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Chapter 4
Acoustic optimization of exhaust

aftertreatment devices

In this Chapter, the existing modelling techniques for the
acoustic behaviour of exhaust devices including monoliths, such as
catalytic converters (CC) and diesel particulate filters (DPF), have
been recalled. Taking advantage of the fact that, in many cases,
these aftertreatment devices have an arbitrary but axially-uniform
cross section, a hybrid numerical-analytical approach has been re-
viewed in order to efficiently simulate their acoustic behaviour via
modal expansion, which has a notable effect on the global TL pro-
vided by the exhaust system.

The mode matching (MM) method allows the efficient evalu-
ation of the sound attenuation performance through TL computa-
tion. This method is based on the decomposition of the acoustic
pressure field into a set of transversal and axial modes within each
subdomain. First, the transversal modes have been solved through
a 2D FEM approoach, whereas axial compatibility conditions of the
acoustic fields within the device have been later applied analytically.

Finally, a GA-based optimization scheme has been set-up in
order to determine the best configuration of several devices with
different working requirements, including the optimization of the
lengths and cross section of the lengths and geometry of the cham-
bers involved, the type of monolith, as well as the location of the
inlet and outlet ducts.
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4.1. Introduction

As expressed in Section 1.1, air pollutants produced by internal combus-
tion engines, such as unburned hydrocarbons (HC), carbon monoxide (CO),
nitrogen oxides (NOx) and particulate matter (PM) [8, 93], are a major envi-
ronmental problem in most of today’s cities. The actual environmental regu-
lations have made the use of CC and DPF to become widespread in the au-
tomotive industry. Although the use of these aftertreatment devices is based
on environmental reasons, they have an effect on the exhaust system’s overall
attenuation, and their acoustic performance should be hence evaluated.

Meanwhile, whereas the acoustic modelling of CC and DPF has been ad-
dressed [17, 94–99], their acoustic optimization appears not to have been ad-
dressed previously in the literature. In this Chapter, a genetic algorithm has
been applied to the former acoustic model [99] in order to perform not only
a longitudinal sizing optimization of the chamber and the monolith, but also
the arbitrary cross section (given a predefined shape) and the position of the
inlet and outlet ducts, with a view to maximizing the TL.

4.2. Acoustic modelling of aftertreatment
devices

Figure 4.1 shows a simplified scheme of an exhaust aftertreatment device.
It is composed by two inlet and outlet cylindrical ducts and the main chamber
that contains the monolith (CC or DPF). In the case under study, the config-
uration has an arbitrary axially-uniform cross section [17,87,100].

75



4. Acoustic optimization of exhaust aftertreatment devices

Figure 4.1: Scheme of an automotive exhaust device with monolith.

This allows for the modal expansion method to be used [17,87,100], where
for each duct, the acoustic pressure solution can be obtained by means of
the superposition of evanescent and propagating transversal pressure modes.
Additionally, sound propagation within the monolith can be replaced by a
four-pole transfer matrix, which relates the acoustic fields of both the inlet
and outlet sections of the monolith. This is in agreement with the actual
acoustic phenomena taking place within the long capillary ducts. Further
information can be found in the works [96–98].

Subsections 4.2.1 and 4.2.2 are dedicated to the acoustic characterization
of the monolith (CC and DPF) via four-pole transfer matrices.

4.2.1. Catalytic converter
A catalytic converter usually consists of an expansion, a monolith and a

contraction prior to the exhaust muffler(s), as shown in Figure 4.2a. The cat-
alyst substrate is composed of multiple cells which have a density from 5 · 105

up to 106 capillaries per square meter [96].
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(a) Simplified view. (b) Monolith.

Figure 4.2: Catalytic converter

4.2.1.1. 1-D acoustic modelling of the monolith

The acoustic modelling of the monolith involves the consideration of vis-
cosity and heat transfer effects. In the present Thesis, the model introduced
by Allard [22] has been used in absence of mean flow. This model was success-
fully applied by Selamet et al. [96]. Resistivity R is used here as the principal
factor in order to characterize the monolith. On the other hand, the model
developed by Dokumaci can be used in presence of mean flow, and the reader
is referred to [94,101] for its derivation.

In absence of mean flow, a set of capillaries can be acoustically modelled
by means of the equivalent density and speed of sound [22]. Both parameters
are complex, frequency-dependent, and can be expressed as a function of resis-
tivity R. By taking into account viscous and heat transfer effects, continuity,
dynamic equilibrium and energy equations are [102]:

∂ρm

∂t
+ ρ0∇um = 0 , (4.1)

∇pm + ρ0
∂um

∂t
− µ

(
∇2um + 1

3∇ (∇um)
)

= 0 , (4.2)

∂Tm

∂t
− 1
ρ0Cp

∂pm

∂t
= κ

ρ0Cp
∇2Tm , (4.3)

ρ0 and ρm being the air density and the equivalent density within the mono-
lith, κ the thermal conductivity, Cp the specific heat at constant pressure, and
µ the viscosity. Subscript m denotes the acoustic variables within the mono-
lith.
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After assuming a fully developed laminar flow along the capillaries (their
transversal dimensions are significantly small with respect to their length and
the wavelength) [95], Eq. (4.2) can be rewritten as:

∇pm + ρ0
∂um

∂t
+ Rum = 0 , (4.4)

and a harmonic solution um = Ume
jωt is assumed, yielding:

∇pm + ρm
∂um

∂t
= 0 , (4.5)

the equivalent density ρm being:

ρm = ρ0 + R

jω
, (4.6)

where R depends on the frequency and on the cross section of the capillary,
and can be calculated as [22]:

R = RϕGc (s) , (4.7)

where R and ϕ are the stationary resistance and the monolith’s porosity. Func-
tion Gc is defined as:

Gc (s) =
−s

4
√

−j J1
(
s
√

−j
)

J0
(
s
√

−j
)

1 − 2
s
√

−j
J1
(
s
√

−j
)

J0
(
s
√

−j
) , (4.8)

J0 and J1 being the zeroth-order and first order Bessel functions of the first
kind, respectively. On the other side, s is the tangential wavenumber, which
can be expressed as:

s = α

√
8ωρ0
Rϕ

, (4.9)

where α in Eq. (4.9) depends on the capillary’s cross section shape. Table 4.1
shows the value of α for several capillary section’s geometries [99].

Cross-section α

Circle 1
Square 1.07

Equilateral triangle 1.14
Rectangle 0.78

Table 4.1: Value of α for different capillary cross section’s shape.
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The equivalent speed of sound cm can be obtained from the equivalent
density ρm and bulk modulus Km, defined as [22]:

Km = γP0
γ − (γ − 1)F , (4.10)

γ and P0 being the specific heat ratio and the mean environment pressure,
and F being defined by:

F = 1

1 + Rϕ

jPr ωρ0
Gc

(√
Pr s

) , (4.11)

where the Prandtl number is Pr = µCp/κ. Finally, cm can be expressed as:

cm =
√
Km

ρm
= c0√(

1 + Rϕ

jωρ0
Gc (s)

)
(γ − (γ − 1)F )

, (4.12)

where c0 =
√
γP0/ρ0.

Once the monolith is characterized by means of cm and ρm, plane wave
models can be used with a view to replace the monolith by a four-pole transfer
matrix, in a similar way to Section 2.1.5.2. For a monolith of longitude Lm,
it yields: {

P1
U1

}
=

 cos (kmLm) jZm sin (kmLm)
j

Zm
sin (kmLm) cos (kmLm)

{P2
U2

}
, (4.13)

where the equivalent wavenumber and characteristic impedance are km =
ω/cm and Zm = ρmcm, respectively, and subscripts 1 and 2 denote the in-
let and outlet sections. The four-pole matrix presented in Eq. (4.13) is of
great importance in this Chapter and has been used later in Eq. (4.40) of
Section 4.2.4.2 when considering catalytic converters.

4.2.2. Diesel particulate filters
Diesel particulate filters (DPF) are commonly used on the exhaust line to

reduce the harmful emissions of soot particles. Due to their characteristics,
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they also affect the overall acoustic behaviour of the exhaust system.

As Figure 4.3a shows, DPF capillaries are characterized by channel ends
alternatively plugged to force the flow through the porous walls. The air
enters an inflow channel, which is closed at the outlet, hence being forced to
pass through the porous walls of the filter to the four outflow neighbouring
channels, which are open downstream. In order to increase the amount of
soot it can absorb, the DPF unit is placed within a chamber, which allows to
increase its size. Moreover, for typical engines a regeneration is needed each
500-1000 km in order to prevent the soot layer to create an undesired high
back-pressure, what increases fuel consumption [97].

(a) Simplified view. (b) Filter element.

Figure 4.3: Diesel particulate filter.

The model used throughout this Thesis for the modelling of the DPF has
been the one developed by Allam and Åbom [97], which has been recalled
in Sections 4.2.2.1 – 4.2.2.3. This method described the DPF as a system of
coupled channels carrying plane waves. It also assumes that the mean Mach
number is small (Mmf < 0.1), and neglects the temperature and mean flow
speed gradients in the axial direction, as well as the chemical reaction effects.
The coupling through the porous walls is described via the Darcy’s law [102].

4.2.2.1. The 1-D wave model

According to Fig. 4.4, a DPF unit cell can be divided into 5 sections: the
inlet cross section (IN), a first short region with impermeable walls (I), the
filter area with porous walls (II), another short impermeable duct (III), and
the outlet cross section (OUT) [97]. In the plane wave range, each section can
be modelled via two-port transfer matrices T. The resulting transfer matrix

80



4.2. Acoustic modelling of aftertreatment devices

is:
TDP F = TIN TITIITIIITOUT , (4.14)

Figure 4.4: Cross-section of the DPF cells. Flow path through the filter.

4.2.2.2. The in- and oulet sections (IN+I and III+OUT)

According to Eq. (4.14), two-port models are also needed for the short
straight pipe sections (I and III). Since their length is very small, they can be
modelled as an additional mass plug (end correction) to the inlet and outlet
sections (IN and OUT) [98]. A lumped impedance model can be used, as
proposed in Reference [97]:

TX =
[
1 ZX

0 1

]
, (4.15)

where X = IN+I or III+OUT, and the associated lumped impedance is defined
as:

Zx = rx + jYX = rx + jρXωlX
d2

hN
, (4.16)

rX and YX being the acoustic resistance and the mass plug impedance, and
lX and N being the end correction and the number of open channels [97]. By
considering conservation of energy at the inlet, and conservation of momentum
at the outlet (due to flow separation) [13,25], the following expressions for ZX

are obtained [98]:

ZX =
{
ZINMIN

(
1/m2

IN − 1
)

+ jYI ,

2ZOUTMOUT (1 − 1/mOUT ) + jYIII ,
(4.17)

where ZIN = ρINcIN/AIN , ZOUT = ρOUT cOUT /AOUT , and mIN and mOUT

are the open area ratios at the inlet and outlet, respectively.
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4.2.2.3. The filter section (II)

The continuity (2.1) and momentum (2.3) equations can be linearized in
1-D for a DPF cell, assuming a homogeneous mean flow, yielding [103]:

∂ρj

∂t
+ Umf

j

∂ρj

∂x
+ ρ0j

∂uj

∂x
= (−1)j 4ρw

dhj
uw , (4.18)

ρ0j

(
∂

∂t
+ Umf

j

∂

∂x

)
uj = −∂pj

∂x
− αjuj , (4.19)

where j = {1, 2} refer to the inflow and outflow channels of square cross sec-
tion (see Figure 4.4), Umf , uw and ρw are the time-average flow speed along
the capillary, the particle velocity fluctuation through the wall and the gas
density at the wall, whereas the pressure drop factor is defined as αj = µε/d2

h,
where µ is the dynamic viscosity and ε is the channel pressure drop factor [97].

On the other hand, the steady-state flow resistance Rw is defined by the
Darcy’s law:

Rw = µwht

σw
, (4.20)

where σw and µw is the permeability of the wall and the dynamic viscosity of
the fluid. Rw can be used to relate the acoustic fields:

Rwuw = (p1 − p2) . (4.21)

A fluctuating solution
(
ejωt

)
to the problem defined in Eqs. (4.18) and

(4.19) is assumed, whose amplitudes are:

Pj(z) = P̂je
−jKz , Uj(z) = Ûje

−jKz , (4.22)
P̂j = c2

j ρ̂j , P̂j = ZjÛj , (4.23)

where ·̂ denote complex variables, whereas K, c and Z represent the wavenum-
ber, speed of sound and wave impedance inside the channels. Further manip-
ulation of Eqs. (4.18) and (4.19) yields a system of differential equations [97],
whose eigenvalue solution is:{

P1(z)
P2(z)

}
=

4∑
n=1

âne
−jKnzen , (4.24)

where for each mode n = 1, 2, 3, 4, ân and en are the modal amplitudes and
eigenvectors corresponding to the free wave of wavenumber Kn. Additionally,
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the volume flow can be expressed as:{
Q1(z)
Q2(z)

}
=

4∑
n=1

âne
−jKnze′

n , (4.25)

where e′
n = end

2
h/Zj,n. For the no flow case Umf

1 = Umf
2 = 0, the solution can

be found analytically, yielding [97]:

K1 = −K2 = k , e1 = e2 =
{

1
1

}
, (4.26)

K3 = −K4 = k
√

1 − 8jB/k , e3 = e4 =
{

1
−1

}
, (4.27)

with B = cρw/ (dhjRw). By defining matrix H(z) as:
P1(z)
P2(z)
Q1(z)
Q2(z)

 = H(z)


â1
â2
â3
â4

 =
[
e−jK1ze1 e−jK2ze2 e−jK3ze3 e−jK4ze4
e−jK1ze′

1 e−jK2ze′
2 e−jK3ze′

3 e−jK4ze′
4

]
â1
â2
â3
â4

 ,

(4.28)
p and q at the inlet of the filter section can be related with those at the outlet
via the four-port matrix S = H(0)H−1(L):

P1(0)
P2(0)
Q1(0)
Q2(0)

 = S


P1(L)
P2(L)
Q1(L)
Q2(L)

 . (4.29)

Finally, by applying the rigid wall boundary condition at the correspond-
ing plugged side of each channel, Q1(L) = Q2(0) = 0, the transfer matrix
corresponding to one DPF unit is obtained:{
P1(0)
Q1(0)

}
= T

{
P2(L)
Q2(L)

}
=
[
S12 − S42S11/S41 S14 − S44S11/S41
S32 − S42S31/S41 S34 − S44S31/S41

]{
P2(L)
Q2(L)

}
.

(4.30)
With a view to obtaining the transfer matrix of the whole filter TII (see Eq.

(4.14)), the volume flows of all channels NQ1 and NQ2 should be considered.
It yields:

TII =
[
T11 T12/N
NT21 T22

]
. (4.31)
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The four-pole matrix presented in Eq. (4.14) is of great importance in this
Chapter and has been used later in Eq. (4.40) of Section 4.2.4.2 when consid-
ering diesel particulate filters.

4.2.3. Modal expansion method
As aforementioned, in this study only uniform cross section devices have

been considered [17, 87, 100]. In Figure 4.5, a device is presented containing
an axially-uniform cross section.

Figure 4.5: Scheme of an exhaust aftertreatment device with a monolith inside the
chamber.

Thus, the sound propagation inside the rigid-wall inlet duct A (and anal-
ogously the rest of ducts and chambers) can be expressed in terms of the
following modal expansion [13,78,100]:

PA(x, y, z) =
∞∑

n=1

(
A+

n e
−jkA,nz +A−

n e
jkA,nz

)
ψA,n (x, y) , (4.32)

UA(x, y, z) = 1
ρ0ω

∞∑
n=1

kA,n

(
A+

n e
−jkA,nz −A−

n e
jkA,nz

)
ψA,n (x, y) , (4.33)

where ψA,n are the transversal pressure modes of the cross section SA, A+
n

and A−
n are the complex amplitudes of the progressive and regressive waves

(unknowns of the problem) respectively, and kA,n the corresponding wavenum-
ber for each mode. Expressions for the acoustic pressure and velocity can be
obtained for ducts B, D and E analogously to Eqs. (4.32) and (4.33).
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4.2.4. Mode matching technique

4.2.4.1. Mode matching at the device expansion

Regarding the geometric expansion between ducts A and chamber B, conti-
nuity of acoustic pressure and axial velocity is imposed. The following relations
are satisfied:

PA(x, y, z = 0) = PB

(
x, y, z′ = −LB

)
(x, y) ∈ SA , (4.34)

UA(x, y, z = 0) = UB

(
x, y, z′ = −LB

)
(x, y) ∈ SA . (4.35)

The rigid wall boundary condition is applied at the left plate of the cham-
ber, with zero axial velocity:

UB

(
x, y, z′ = −LB

)
= 0 (x, y) ∈ SB − SA . (4.36)

A weighted integration of Eqs. (4.34) and (4.35) is performed, using the
transversal pressure modes as the weight functions. Note that expressions for
the acoustic pressure and velocity defined in Eqs. (4.32) and (4.33) are trun-
cated by using a number NA of transversal modes within the inlet duct, NM

for the chamber’s cross section, and NE at the outlet duct.

Multiplying Eq. (4.34) by each mode ψA,i, and integrating over the cross
section, it yields:∫

SA

PA (x, y, z = 0)ψA,i (x, y) dS =
∫

SA

PB

(
x, y, z′ = −LB

)
ψA,i (x, y) dS .

(4.37)
Applying the aforementioned truncation, as well as the orthogonality prop-

erties of the transversal modes (
∫

SA
ψA,iψA,j dS = 0 , for i ̸= j) [100], NA

equations of the following form are obtained:

(
A+

i +A−
i

) ∫
SA

ψ2
A,i (x, y) dS =

NM∑
n=1

[(
B+

n e
−jkB,n(−LB) +B−

n e
jkB,n(−LB)

) ∫
SA

ψB,n (x, y)ψA,i (x, y) dS
]
,

for i = 1, ..., NA . (4.38)

Next, Eqs. (4.35) and (4.36) are multiplied by ψB,i, with i = 1, ..., NM ,
and integrated over the corresponding areas. After summing both equations,
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it is obtained [100]:

NA∑
n=1

[
kA,n

(
A+

n −A−
n

) ∫
SA

ψA,n (x, y)ψB,i (x, y) dS
]

=

kB,i

(
B+

i e
−jkB,i(−LB) −B−

i e
jkB,i(−LB)

) ∫
SB

ψ2
B,i (x, y) dS ,

for i = 1, ..., NM . (4.39)

Integrals in Eq. (4.39) can be evaluated analytically for simple geometries,
e.g., circular or square cross sections. However, the 2D FE formulation is used
in case of arbitrary cross sections, hence reducing the computational cost.

4.2.4.2. Transfer matrix of the monolith

1-D propagation is assumed along each capillary of the monolith, and the
acoustic pressure and velocity can be related at both sides of it via a transfer
matrix T:{

PB(x, y, z′ = 0)
UB(x, y, z′ = 0)

}
=
[
Tm

11 Tm
12

Tm
21 Tm

22

]{
PD(x, y, z′′ = 0)
UD(x, y, z′′ = 0)

}
(x, y) ∈ SB ≡ SD ,

(4.40)
where the computation of T is explained for both catalytic converter and
diesel particulate filter in Sections 4.2.1 and 4.2.2, respectively. The same
aforementioned approach based on mode matching with weighted integration
is applied to the previous System of equations (4.40), multiplying it by the
modes ψB,i ≡ ψD,i, with i = 1, ..., NM . Further manipulation of the resulting
equations [100] yields:

B+
i +B−

i = Tm
11

(
D+

i +D−
i

)
+ Tm

12
kD,i

ρ0ω

(
D+

i +D−
i

)
, for i = 1, ..., NM ,

(4.41)
kB,i

ρ0ω

(
B+

i −B−
i

)
= Tm

21

(
D+

i +D−
i

)
+ Tm

22
kD,i

ρ0ω

(
D+

i +D−
i

)
, for i = 1, ..., NM .

(4.42)

The orthogonality of all modes allows the obtaining of a direct relation of
modal amplitudes, with no coupling between different-order modes. Addition-
ally, the equation is independent of the cross-sectional geometry.
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4.2.4.3. Mode matching at the device contraction

The same process implemented for the geometric expansion can be ap-
plied to the contraction involving chamber D and duct E, by considering the
compatibility conditions:

PD

(
x, y, z′′ = LD

)
= PE

(
x, y, z′′′ = 0

)
(x, y) ∈ SE , (4.43)

UD

(
x, y, z′′ = LD

)
= UE

(
x, y, z′′′ = 0

)
(x, y) ∈ SE , (4.44)

UD

(
x, y, z′′ = LD

)
= 0 (x, y) ∈ SD − SE . (4.45)

For the pressure continuity expressed in Eq. (4.43), NE equations are
obtained:

NM∑
n=1

[(
D+

n e
−jkD,iLD +D−

n e
jkD,iLD

) ∫
SE

ψD,n (x, y)ψE,i (x, y) dS
]

=

(
E+

i + E−
i

) ∫
SE

ψ2
E,i (x, y) dS , for i = 1, ..., NE , (4.46)

whereas for the acoustic velocity continuity, and the rigid-wall condition, ex-
pressed respectively in Eqs. (4.44) and (4.45), NM equations are obtained:

kD,i

(
D+

i e
−jkD,iLD −D−

i e
jkD,iLD

) ∫
SD

ψ2
D,i (x, y) dS =

NE∑
n=1

[
kE,n

(
E+

n − E−
n

) ∫
SE

ψE,n (x, y)ψD,i (x, y) dS
]
, for i = 1, ..., NM .

(4.47)

4.2.4.4. Final system of equations

NA + 4NM +NE equations (4.38, 4.39, 4.41, 4.42, 4.46, 4.47) are obtained
by using the mode matching method. With a view to solving for the modal
amplitudes {A±

1 , ..., A
±
NA

, B±
1 , ..., B

±
NM

, D±
1 , ..., D

±
NM

, E±
1 , ..., E

±
NE

}, additional
boundary conditions at the inlet and outlet are needed. An incident plane
wave is considered at the inlet, with A+

1 = 1, A+
n = 0 for n > 1; whereas the

anechoic termination involves no regressive waves at the outlet (E−
n = 0 ∀ n).
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4.3. Objective function: Transmission loss

For the frequency range (up to 3200 Hz) and the dimensions of the out-
let duct considered in this Thesis, higher order modes transmitted along the
outlet duct E will decay rapidly with distance, hence assuming plane wave
propagation at the outlet section. Therefore TL is given by [100]:

TL (υ) = 10 log


∣∣∣P+

in

∣∣∣2 Sin∣∣∣P+
out

∣∣∣2 Sout

 = −20 log
(
rE

rA

∣∣∣E+
1

∣∣∣) , (4.48)

where rA and rE are the radii of the inlet and outlet ducts, respectively.
Contrary to Chapter 3, the objective function F0 to maximize in Section 4.4
will be defined as the mean TL minus its standard deviation, in order to obtain
a more uniform attenuation, while reducing the possible appearance of strong
resonant peaks at local frequencies, and also to prove the versatility of the
method.

4.4. Optimization problem

The acoustic optimization problem of designing an aftertreatment device
targeted to operate in the frequency range [f0, f1] can be stated as:

max
υ

F0 (υ) = µ (TL(υ)) − σ (TL(υ)) ,

subject to: υmin
j ≤ υj ≤ υmax

j , for j = 1, ..., N ,

where µ and σ are the mean and standard deviation of TL within the frequency
range, by using a set of samples equally spaced by 10 Hz.

4.5. Results

To obtain the results, the scheme defined in Section 4.2 has been imple-
mented in Matlab®. The number of modes to evaluate the TL is NA =
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NE = 10 at the inlet/outlet ducts and NM = 20 at the chamber. The use
of the mode matching technique has been simplified by the use of conforming
meshes to evaluate mode cross multiplications relative to the chamber and the
inlet/outlet ducts (see Eqs. (4.38, 4.39, 4.46, 4.47)). An additional tool has
been implemented in Matlab®to generate the analyzed geometries (consist-
ing of SA, SB ≡ SC ≡ SD and SE , see Figures 4.8 and 4.11) and to mesh them
with a maximum element length of 0.005 m.

Finally, a GA has been used to find the global maximum of F0. For all case
studies, an initial population of 50 individuals is chosen, and the maximum
number of generations is set to 300.

4.5.1. Design 1. Shape optimization of a catalytic
converter

In this example, the acoustic behaviour of a catalytic converter with a
circular cross section such as the one shown in Figure 4.6 is to be optimized.

Figure 4.6: Scheme of the optimization.

The radius of the chamber rC has been fixed to 0.1275 m, as well as the
radii of the inlet and outlet ducts rA = rE = 0.0258 m. Hence, the variables
under consideration are: lengths of the chambers LB and LD, and the mono-
lith LC , the porosity σ of the latter, the resistivity of the capillaries R and
their shape factor α (1 for circular, 1.07 for square and 1.14 for triangular
cross section, see Section 4.2.1). Additionally, the position {x, y} of the inlet
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and outlet ducts (A and E) is also to be optimized.

Optimization has been carried out at 25 ◦C and Min = 0. Table 4.2 shows
the admissible range

{
υmin

j , υmax
j

}
for every design variable, as well as their

optimal value for the frequency range [10, 3200] Hz (see Design 1).

υj υmin
j υmax

j Design 1 Design 1a Design 1b
LB (m) 0.05 0.15 0.0535 0.0535 0.0535
LC (m) 0.1 0.3 0.3 0.3 0.3
LD (m) 0.05 0.15 0.0674 0.0674 0.0674

R (Pa·s/m2) 500 1000 1000 1000 1000
σ 0.7 0.9 0.9 0.9 0.9
α {1, 1.07, 1.14} 1.14 1.14 1.14

xA (m) -0.1 0.1 -0.0778 0 0
yA (m) -0.1 0.1 0.0111 0 0
xE (m) -0.1 0.1 0.0026 -0.0778 0
yE (m) -0.1 0.1 -0.008 0.0111 0

Table 4.2: Optimization summary. Range for each variable υi. Optimal values for Designs
1 (offset inlet, nearly centered outlet), 1a (centered inlet, offset outlet) and 1b (centered inlet
and outlet).

Figure 4.7: Optimized catalytic converter. Design 1.

As expected, optimization maximized LC and R [99] (see Design 1). Trian-
gular capillaries also increased attenuation, in line with [99]. Additionally, it
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can be seen that a set-up with a nearly centered outlet (duct E) and an offset
inlet (duct A) contributes beneficially to attenuation. Concretely, an offset of
0.0778 m (or equivalently 0.616 rC) has been obtained, as depicted in Figure
4.7. This phenomenon has been explained in Section 4.5.1.1, and to this aim
two additional designs have been analysed: Design 1a (with a centered inlet
and offset outlet), and Design 1b (with centered inlet and outlet).

Finally, the FE mesh used for the optimal SA, SB ≡ SC ≡ SD and SE are
shown below. Note that they are conforming at SA and SE .

Figure 4.8: SA, SB ≡ SC ≡ SD and SE FE meshes. Design 1.

4.5.1.1. Influence of duct offsets

Figure 4.9 shows the first 20 transversal pressure modes considered for the
acoustic propagation within the central chamber.

As suggested in [99, 104, 105], the inlet and outlet ducts should be posi-
tioned in such a way that the modes most excited by the inlet do not propagate
their acoustic energy to the outlet duct. As it has been found by GA, an offset
inlet duct by 0.616 rC can effectively improve attenuation within the studied
frequency range since it matches the nodal line of Mode 6 (at 1626.5 Hz, see
Figure 4.9). Additionally, the centered outlet matches the nodal line of the
other non-constant pressure Modes 2, 3, 4 and 5 which, although they are
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indeed excited by the inlet, do not propagate acoustic energy to the outlet
duct.

Figure 4.9: Pressure modes of circular section SB ≡ SD, here sorted by increasing
natural frequency (they can also be classified into radial and circumferential modes,
or a combination of both).
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Similarly, due to reciprocity, the same effect can be obtained by offsetting
the outlet by the same distance (and centering the inlet). This design will be
hereinafter referred to as Design 1a. An additional configuration with both
ducts centered has also been studied and will be referred to as Design 1b (see
Table 4.2).

Figure 4.10: TL for Designs υopt, υ1 and υ2.

TL has been evaluated for Designs 1, 1a and 1b; and results are shown in
Figure 4.10. It has been obtained that the performance of Design 1b (with
centered inlet and outlet ducts) degrades with respect to Designs 1 (with offset
inlet) and 1a (with offset outlet) for frequencies from 1100 Hz up, due to the
propagation of axisymmetric Mode 6. However, for Designs 1 and 1a with one
offset duct, TL exhibits a regular behaviour until higher-order modes play a
role in acoustic propagation.

4.5.2. Design 2. Shape optimization of a diesel
particulate filter

Next, a DPF with triangular cross section has been optimized. The equi-
lateral triangle’s sides measure 0.35 m, and its height is hence h = 0.3031 m.
Additionally, it is chamfered with a chamfer’s radius of 0.0310 m. For the
sake of computational speed, the inlet and outlet ducts have a fixed position,
allowing the use of the same FE mesh along all iterations (see Figure 4.11).
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Figure 4.11: SA, SB ≡ SD and SE FE meshes. Design 2.

The inlet duct is positioned at the center of the equilateral triangle, whereas
the outlet duct is placed 0.1824 m above the triangle’s base, i.e., 0.602h, in
order to match the nodal line of the higher order mode at 1228 Hz (see Figure
4.12) [99]. The radius of the inlet and outlet ducts is rA = rE = 0.0258
m. Finally, optimization has been carried out for TL at a supposed working
temperature of 501.85 ◦C [99] and Min = 0.02.
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Figure 4.12: Pressure modes of triangular section SB ≡ SD.

On the other hand, four DPF cell types have been found in the literature
[97]. Data for their characterization is shown below in Table 4.3. Additionally,
the length of the channel plug has been supposed to be lI = lIII = 0.005 m
for both the inlet and outlet of the capillary ducts.
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Filter name dh [m] ht [m] σw [m2] channels (2N)
[1/m2]

1 EX 200/14 1.44 × 10−3 3.55 × 10−4 2.5 × 10−13 3.10 × 105

2 EX 100/17 2.11 × 10−3 4.30 × 10−4 2.5 × 10−13 1.55 × 105

3 RC 200/12 1.50 × 10−3 3.04 × 10−4 25 × 10−13 3.87 × 105

4 RC 200/20 1.30 × 10−3 5.08 × 10−4 25 × 10−13 2.48 × 105

Table 4.3: Data for the DPF units under study.

GA have been applied to the DPF design problem, optimizing the lengths
of the chambers and monolith, as well as the type of DPF unit employed. The
optimal designs for two target frequency ranges [20 − 3200] Hz and [20 − 1000]
Hz are shown in Table 4.4, named Designs 2 and 2a respectively.

υj υmin
j υmax

j Design 2 Design 2a
LB (m) 0.05 0.15 0.15 0.15
LC (m) 0.1 0.3 0.3 0.1
LD (m) 0.05 0.15 0.0926 0.15

DPF type {EX 200/14,EX 100/17,
RC 200/12,RC 200/20} EX 200/14 EX 100/17

Table 4.4: Optimization summary. The range for each variable υj. Optimal values for
Designs 2 (optimized at [20 − 3200] Hz), and 2a (optimized at [20 − 1000] Hz).

Table 4.4 shows that lengths LB and LD of the chambers tend to their
maximum bound for the low-frequency range as expected (Design 2a). How-
ever, it has been found by the GA optimization that the shortest possible DPF
monolith increases attenuation in this case.
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Figure 4.13: Optimized diesel particulate filter. Design 2.
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Figure 4.14: Optimized diesel particulate filter. Design 2a.

On the contrary, for the full frequency range, i.e., [20 − 3200] Hz, the
length of the monolith increases to the maximum value, and the downstream
chamber length LD decreases (see Design 2 in Table 4.4).
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Figure 4.15: TL for Designs 2 and 2a.

Table 4.5 shows the results of the TL evaluation for both Designs 2 and
2a. In line with Chapter 3, results show the importance of considering the
right target (working) frequencies during the optimization process, since the
optimization of TL within a narrow frequency range can result in a worse
performance at frequencies outside it. For example, Design 2a improves F0 in
the low-frequency range only by 2 dB with respect to Design 2 (see Table 4.5),
whereas it delivers a TL around 15 dB lower at 2000 Hz (see Figure 4.15).

υ F0 (dB) at [20,3200] Hz F0 (dB) at [20,1000] Hz
Design 2 25.59 18.26
Design 2a 24.09 20.13

Table 4.5: Optimization summary. Objective function F0 for Designs υopt,1 and υopt,2,
evaluated at both the whole and low frequency ranges.

4.6. Conclusions

This Chapter presents a shape optimization methodology to effectively in-
crease the attenuation of aftertreatment devices including a monolith (such as
catalytic converters and diesel particulate filters). The evaluation of the TL
has been performed via a hybrid analytical-numerical model which allows the
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consideration of arbitrary (axially uniform) cross sections for the chamber, as
well as offset inlet/outlet ducts.

The combination of modal expansion and mode matching methodologies
allows the efficient calculation of the TL for a wide set of frequencies, once the
chamber’s transversal pressure modes are obtained.

Due to the low number of design variables, the optimization problem has
been solved by the use of genetic algorithms, which also permit applying lat-
eral constraints, while performing a more global search in comparison with
gradient-based algorithms.

Results showed that for a given cross section, the influence of the position
of the inlet/outlet ducts, as well as the length of the monolith, is crucial, and
important increases in TL can be accomplished by strategically placing both
ducts in different positions so that the acoustic energy associated with the
incident modes is not transmitted to the outlet.
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Chapter 5
Topology optimization of
fluid-structure problems

Transport-related noise is one of today’s main sources of
acoustic pollution. In this context, the obtaining of optimized
lightweight structures with low acoustic emission is of great impor-
tance. Thus, one way to perform this would be to extend the appli-
cation of the aforementioned algorithms to the vibroacoustic prob-
lem. Topology optimization has been successfully applied to both
elasticity and acoustic problems in order to obtain non-intuitive
air-material designs that minimize an objective function. As we
know, the concept of shape is disregarded in this method, and the
equation to solve is the same within the whole design domain of the
proposed problem, whether (i) the linear elasticity equation, or (ii)
the linear sound wave (Helmholtz) equation; with different proper-
ties being assigned to each element, depending on their respective
state value, which continuously ranges from 0 (air) to 1 (material).

However, for vibroacoustic problems where the equation to
solve is different for both the fluid and structural domains, topology
optimization algorithms do not seem appropriate due to the nature
of the mentioned method. In this Chapter, the mixed displacemen-
t/pressure formulation [33] is recalled. This approach allows the
modelling of both the fluid and solid phases by means of a single
equation. However, the use of this costly formulation is limited
here to a small area of the problem’s domain. Finally, a three-
material interpolating scheme is set up in order to obtain designs
consisting of solid and porous parts.
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5.1. Introduction

The obtaining of algorithms that allow the design of resistant lightweight
structural parts with high acoustic isolation performance is of great impor-
tance in today’s transport. For example, railway rolling noise can be reduced
by the use of wheel perforations [4], the modification of the wheel’s web ge-
ometry [5], or the use of lower train fairings.

Previous literature provides several ways for solving the vibroacoustic TO
problem: some studies disregard the elasticity of the structure, i.e., only the
wave equation is solved in the whole domain. Hence, the acoustic impedance
Z of each element is interpolated as a function of density υj , ranging from the
characteristic impedance of the air Z0 to a very large value Zs >> Z0 which
imitates the behaviour of rigid walls. Thus, solid partitions can be introduced
via the standard iterative process by evaluating the sensibilities of F0 (often
defined as the acoustic pressure’s amplitude at a chosen location). In [106],
an optimized horn was obtained with a view to minimizing the amplitude of
the reflected wave going back into the waveguide. In [42], the shape of a room
ceiling was optimized by TO to reduce the noise at a target location. In [43],
a dissipative highway noise barrier was obtained by adopting a three-material
interpolating scheme, with air, solid, and porous material. In this Chapter,
the use of three-material schemes, which require defining a pair of design vari-
ables per element, has been studied.

Another way to proceed is to account for the elasticity of the structural
part, without modifying the fluid-structure boundary: only inner components
are designed by TO. In [107], an enclosure was stiffened by applying TO to
reduce the interior low-frequency noise. In [108], a bi-material surface was op-
timized with the aim of reducing sound emission under a harmonic load. The
shell of a hearing instrument was stiffened by TO methods in reference [109],
minimizing the sound pressure at certain microphone locations.

The coupling boundary can be modified by using an alternative algorithm
to the conventional density-based TO method. The level-set method [110] and
the bi-directional evolutionary structural optimization (BESO) [111] have ef-
fectively been used along with a two-phase scheme in order to optimize noise
barriers while solving the sound propagation and linear elasticity equations
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within the acoustic and solid subdomains Ωa and Ωs, respectively. However,
the final shape depends on the initial guess, e.g. number of initial holes, which
is not always easily obtainable in an intuitive way for complex problems such
as the acoustic topology optimization (ATO).

With the aim of considering both the elastic and acoustic parts, and not
having to define the coupling boundary at every iteration, the displacement/
pressure (u/p) mixed formulation has been proposed. In [33], the u/p formu-
lation [34, 41] was employed to design a noise barrier within a duct by means
of TO algorithms.

In the present study, the three-material scheme (air, solid and porous ma-
terial) [43] has been considered by introducing a pair of variables per element:
{υj,1, υj,2}. The porous medium is modelled as an equivalent fluid, which does
not provide structural stiffness [112], and therefore the wave equation has been
solved within it [45]. In addition, this work proposes to limit the use of the
costly u/p formulation to only Ωd, which usually comprises a small portion of
the problem’s total domain; whereas the wave propagation equation in terms
of p is solved in the remaining acoustic domain.

5.2. Vibroacoustic modelling of a
fluid-structure interaction problem

The scheme of the standard vibroacoustic domain has been introduced in
Figure 2.4, where the problem domain has been split into structural (solid
elastic) Ωs and acoustic (air) Ωa subdomains. Figure 5.1 shows a modified
definition of the vibroacoustic problem where the design subdomain Ωd can
contain solid, porous and air elements, since the mixed u/p formulation is
employed here; whereas the acoustic subdomain Ωa is meshed with standard
pressure elements:
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Figure 5.1: Modified fluid-structure interaction problem scheme.

where PS and PR denote the position of the noise source (emitter) and receiver
(at which the noise level is to be reduced), Γa and Γd refer to the respective
boundaries of Ωa and Ωd, na and nd are their corresponding outward unit
vectors, and Γo and ΓDir denote the absorbing boundary and the boundary
where Dirichlet conditions are applied.

5.2.1. Mixed finite element method in Ωd

The FE discretization [33] is applied to the two-dimensional weak form of
the mixed u/p formulation Eqs. (2.85) and (2.86), recalled in Section 2.2. In
order to fulfill the Inf-Sup condition [34], first and second-order shape functions
are used for pressure and displacement degrees of freedom, respectively. This
leads to the following system of equations [33,34,56]:[

Kuu
d − ω2Muu

d Cup
d(

Cup
d

)T Dpp
d

] [
Ũd

P̃d

]
=
[
Fu

0

]
, (5.1)

where vectors Ũd and P̃d contain the unknown nodal values of displacements
and pressure, and subscript d refers to the design subdomain Ωd, where a set
of solid, air and porous elements is expected. Matrices present in Eq. (5.1)
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are assembled as:

Kuu
d =

Nd∑
e=1

∫
Ωe

2GBT
u DdBu dΩ , (5.2)

Muu
d =

Nd∑
e=1

∫
Ωe

ρNT
u Nu dΩ , (5.3)

Cup
d =

Nd∑
e=1

−
∫

Ωe

BT
u mNp dΩ , (5.4)

Dpp
d =

Nd∑
e=1

−
∫

Ωe

1
K

NT
p Np dΩ , (5.5)

Fu =
Nd∑
e=1

∫
Γe∩Γd

NT
u (σnd) dΓ , (5.6)

where Nd is the number of elements within Ωd; Np and Nu denote the matrices
containing the nodal values of the corresponding shape functions; Bu refers
to the strain-displacement relation; and

∑
represents the usual FE matrix

assembly operator.

5.2.2. Helmholtz equation in Ωa

The acoustic field within Ωa (see Figure 2.4) can be easily obtained by
extending the mixed formulation described in Section 5.2.1. However, the
computational cost can be sensibly reduced by adopting here the standard
pressure formulation. In order to illustrate this, Problem 1 (see Section 5.6.2)
will be adopted here as an example. Figure 5.2 shows both approaches in order
to mesh the problem, by using square elements in all domains (0.01 m x 0.01
m here for simplicity). Figure 5.2a shows the resulting nodes by extending the
mixed u/p formulation to both Ωd and Ωa [33, 41]. In contrast, the approach
proposed in this study is shown in Figure 5.2b: Helmholtz equation is solved
within Ωa by means of the standard p formulation in order to reduce the
number of total degrees of freedom (d.o.f.).
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(a) Mixed formulation extended to both Ωa

and Ωd.
(b) Mixed formulation limited to Ωd.

Figure 5.2: Position of p (•) and u (+) nodes. Case study 1.

The proposed methodology allows to speed up the computation of the
problem. This advantage becomes of special importance in case that Ωd rep-
resents a small extension of the whole domain, such as in the ATO problem.
Table 5.1 shows the size of the resulting FE mesh, and the computation time
for the aforementioned case study, by using 0.001 x 0.001 m square elements
in Problem 1 (see Section 5.6.2):

Extended u/p
formulation

u/p in Ωd

p in Ωa

No. of p nodes 90651 90651
No. of u nodes 271301 30501
No. of d.o.f. 633253 151653
Computation time (s) 158.28 15.27

Table 5.1: Formulation comparison for Problem 1 of Section 5.6.2. An Intel® Xeon® CPU
with a 16 GB memory was used to perform the calculations.

The standard FE method for the acoustic problem will be hence briefly
recalled next for the sake of completeness. In the homogeneous non-moving
medium corresponding to Ωa, sound propagation can be described by Eq.
(2.30). By applying the FE discretization [35], it yields the following system
of equations [113]: (

Ka − ω2Ma

)
P̃a = Fa , (5.7)
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P̃a being the pressure value at the nodes of Ωa. The stiffness, mass and force
terms are given by:

Ka =
Na∑
e=1

∫
Ωe

BT
p Bp dΩ , (5.8)

Ma = 1
c2

0

Na∑
e=1

∫
Ωe

NT
p Np dΩ , (5.9)

Fa =
Na∑
e=1

∫
Γe∩Γa

NT
p

∂P

∂na
dΓ , (5.10)

where Na is the number of elements within Ωa, and Bp = ∇Np.

5.2.3. Subdomain coupling
In order to couple subdomains Ωd and Ωa, Eqs. (2.77) and (2.78) are

considered. The pressure gradient normal to the boundary Γcoup = Γd ∩ Γa

induced by the vibration of the structure can be expressed as:

∂P

∂na
= na

T ∇P = nT
a ω

2ρ0U , (5.11)

and by evaluating this in Eq. (5.10), the effect of the structure on the sur-
rounding air is obtained:

Fcoup,1
a =

Na∑
e=1

∫
Γe∩Γcoup

NT
p nT

a ω
2ρ0U dΓ = ω2ρ0

Na∑
e=1

∫
Γe∩Γcoup

NT
p nT

a Nu dΓ Ũd .

(5.12)
This term is then moved to the left-hand side of Eq. (5.7) by means of an

additional mass term following the relation ω2Mcoup
a Ũd = Fcoup,1

a , yielding:

Mcoup
a = ρ0

Na∑
e=1

∫
Γe∩Γcoup

NT
p nT

a Nu dΓ . (5.13)

On the other hand, the acoustic pressure over the surface Γcoup is intro-
duced into Eq. (5.6) to obtain:

Fcoup,2
a =

Nd∑
e=1

∫
Γe∩Γcoup

NT
u (−Pnd) dΓ = −

Nd∑
e=1

∫
Γe∩Γcoup

NT
u ndNp dΓ P̃a .

(5.14)
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Further manipulation leads to a new term in Eq. (5.1):

Kcoup
d =

Nd∑
e=1

∫
Γe∩Γcoup

NT
u ndNp dΓ . (5.15)

Finally the global system of equations can be written as:Kuu
d − ω2Muu

d Cup
d Kcoup

d(
Cup

d

)T Dpp
d 0

−ω2Mcoup
a 0 Ka − ω2Ma


Ũd

P̃d

P̃a

 =

Fu

0
Fa

 . (5.16)

5.2.4. Absorbing boundary Γo
Absorbing boundaries Γo will be modelled in Sections 5.6.2–5.6.4. Note

that they should be placed at a minimum distance of 2 wavelengths of any ge-
ometric singularity in order to ensure that the wave front of the wave incoming
is parallel to them. This boundary condition can be expressed by:

na · ∇P + jkap = 2jkaPe , (5.17)

where the excitation’s amplitude Pe is zero for the anechoic outlet [33,87].

5.3. Two-material interpolation schemes of
vibroacoustic properties

According to the u/p formulation explained in Section 2.2.1, the vibroa-
coustic behaviour within the air, solid and porous elements of Ωd can be charac-
terized by their bulk and shear moduli, denoted by K and G respectively, and
density ρ. For the structural material, Ks and Gs are related to Young’s mod-
ulus E and Poisson’s ratio ν. In the case of two-dimensional plane strain [33]:

Ks = E

2(1 + ν)(1 − 2ν) , (5.18)

Gs = E

2(1 + ν) , (5.19)
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whereas for the non-structural/acoustic media, K is related to ρ and c, and
G = 0 [33]:

K0 = ρ0c
2
0 , Kp = ρpc

2
p , (5.20)

G0 = 0 , Gp = 0 , (5.21)

where subscripts (·)0 and (·)p refer to the air and porous medium, respec-
tively. G = 0 implies that System (5.1) turns into the Helmholtz sound wave
propagation equation [33,112]. Note that cp and ρp are complex and frequency-
dependent properties in order to account for the acoustic energy dissipation
within the sound-absorbing porous material.

The use of gradient-based algorithms requires continuous models for any
material property ϱ, which in this three-material study should be evaluated as
a function of the element’s variable pair {υ1,j , υ2,j}. Following the standard
RAMP method [33,108] described in Section 2.3.3.1, it is obtained:

ϱ(υ1,j , υ2,j) = ϱ0 + (ϱs − ϱ0)ϕ (υ1,j) + (ϱp − ϱ0)ϕ (υ2,j) , (5.22)

where ϱ0, ϱs and ϱp denote any vibroacoustic property (K, G) for the selected
air, solid and porous materials. Expression (5.22) implies that {υ1,j , υ2,j}
equals {0, 0} for air elements, {1, 0} for the structure and {0, 1} for the porous
medium. However, a correction is needed so that solid and absorbent materials
do not appear at once for the pair {1, 1}. A new pair of design variables
{ψ1,j , ψ2,j} is then considered [108] for the RAMP approach:

ψ1,j = υ1,j , (5.23)
ψ2,j = υ2,j(1 − υ1,j) . (5.24)

The interpolation scheme of vibroacoustic properties is therefore:

K(ψ1,j , ψ2,j) = K0 + (Ks −K0)ϕ(ψ1,j) + (Kp −K0)ϕ(ψ1,j , ψ2,j) , (5.25)
G(ψ1,j) = Gsϕ1(ψ1,j) , (5.26)

ϕ being the RAMP penalty function [33,108], as explained in Section 2.3.3.1:

ϕ(ψi,j) = ψi,j

1 + (1 − ψi,j)q for i = {1, 2} , (5.27)
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where a penalty factor q of value 3 [33, 108] has been used throughout this
Chapter to penalize intermediate values of {υ1, υ2}. On the other side, how-
ever, density is interpolated linearly without penalizing intermediate values
[33], following:

ρ(ψ1,j , ψ2,j) = ρ0 + (ρs − ρ0)ψ1,j + (ρp − ρ0)ψ2,j . (5.28)

5.4. Objective function

As observed in [33], the process of acoustically optimizing a structure at
a certain frequency f is equivalent to modifying its design so that its natural
frequencies lay further from f (so the response of the structure is low at this
frequency). Thus, the consideration of high frequencies can result in opti-
mized structures consisting of a very high mass suspended by thin walls (the
lower natural frequencies will be shifted to the left, i.e., will become lower),
which are not feasible from the structural point of view. In [33], this problem
is circumvented by including sensitivities obtained for a lower excitation fre-
quency of f/3. In this Chapter, the aforementioned problem has been solved
by considering a standard linear-elasticity TO problem, where a realistic load
case has been regarded in each case. Then, the objective function has been
built by weighing both contributions with corresponding weights w1 and w2,
respectively:

F0 (υ) = w1
F (1)

0 (υ)
F (1)

0 (υ0)
+ w2

F (2)
0 (υ)

F (2)
0 (υ0)

, (5.29)

where F (1)
0 and F (2)

0 refer to the objective functions corresponding to the
aforementioned acoustic and elastic problems (defined in Sections 5.4.1 and
5.4.2, respectively), and υ0 refers to the initial design.

5.4.1. Acoustic contribution
As stated in Section 5.2.4, the acoustic domain is extended in every prob-

lem by means of a distant absorbing boundary Γo so that no wave reflections
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take place. Hence, the integral of the acoustic amplitude along Γo can give a
hint of the total noise radiation to the surroundings. For the frequency range
of interest [f0, f1], this yields:

F (1)
0 (υ) = 1

f1 − f0

∫ f1

f0

∫
Γo

|P (υ)| dΩ df . (5.30)

5.4.2. Static load case
As aforementioned, a standard static structural TO problem [56] is con-

sidered with a view to avoiding unrealistic designs , and by considering only
Ωd (the stiffness of the air elements is negligible), the compliance c is defined
as:

F (2)
0 (υ) = c (υ) =

∫
Ωd

UT KU dω , (5.31)

after solving KU = F where K is the stiffness matrix, and U and F are the
nodal displacement and force vectors, which contain prescribed entries.

5.5. Optimization problem

The multi-objective optimization problem stated in Section 5.4 is formally
expressed below:

min
υ

F0 (υ) ,

subject to: Fi (υ) ≤ 0 , for i = 1, ...,M ,

υmin
1 ≤ υ1,j ≤ υmax

1 , for j = 1, ..., Nd ,

υmin
2 ≤ υ2,j ≤ υmax

2 , for j = 1, ..., Nd ,

(5.32)

where subscripts 1 and 2 denote the solid and porous material variable pair
for each elements. Two additional constraints Fi(υ) are added in order not to
use a higher amount W (i) of material than the allowed one W (i)

0 both for solid
(i = 1) and porous (i = 2):

F1(υ) =W (1)(υ) −W
(1)
0 ≤ 0 , (5.33)

F2(υ) =W (2)(υ) −W
(2)
0 ≤ 0 . (5.34)
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As in Chapter 3, the optimization problem is solved at each iteration by
the use of the gradient-based MMA [40] due to the high number of design
variables, which involves that it is not possible to state that the solution
reached after meeting the stopping criterion is the global optimal design. The
computation of the sensitivities of F0 with respect to the design variables is
performed by using the standard adjoint method [48]. Additionally, no filtering
of sensitivities is performed.

5.5.1. Stopping criteria
Contrary to Chapter 3.5 where intermediate values of υj were acceptable in

terms of manufacturability, in this Chapter, the final design should consist of
air, solid and porous elements (respectively black/white/red in the following
figures), and therefore all variable pairs {υ1,j , υ2,j} should be either 0 or 1.
In order to speed up calculations, the optimization process will be stopped
when a certain amount of grey (intermediate values of υi,j) is achieved, with
Fgrey ≤ 0.02 for Problems 1–3, where Fgrey is defined below:

Fgrey (υ) = 2
Nd

2∑
i=1

Nd∑
j=1

υi,j (1 − υi,j) . (5.35)

5.6. Results

5.6.1. Material properties
The aim of this study is to obtain acoustically optimized bi-material struc-

tures consisting of solid and porous parts. A plastic polymer with Es = 1.6
GPa, ρs = 920 kg/m3 and νs = 0.4 has been considered hereinafter in this
Section. Additionally, a polyurethane foam of low flow resistivity (R =5000
Pa·s/m2) has been considered as a porous material. The equivalent acoustic
impedance Zp and wavenumber kp are provided by the Delany-Bazley equa-
tions [81], recalled in Section 3.2.1.2:

Zp = Z0 (1 + a5σ
a6 − ja7σ

a8) , (5.36)
kp = k0 (1 + a3σ

a4 − ja1σ
a2) , (5.37)
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where σ = fρ0/R and a1 = 0.168, a2 = −0.715, a3 = 0.136, a4 = −0.491,
a5 = 0.114, a6 = −0.369, a7 = 0.0985, a8 = −0.758 were empirically obtained
for the aforementioned material [114]. Finally, the impedance and wavenumber
of the air are Z0 = ρ0c0, k0 = 2πf/c0, assuming ρ0 = 1.225 kg/m3 and c0
= 340 m/s . The reader is referred to Section 5.3 for the obtaining of the
vibroacoustic properties K and G.

5.6.2. Design 1. Duct screen
A first problem has been performed to illustrate the behaviour of the imple-

mented methodology and compare it with similar results in the literature [33],
where only air and material have been considered. The flexible duct partition
shown in Figure 5.3 is optimized, in order to minimize the integral of the pres-
sure’s absolute value at the outlet section Γo. The excitation is modelled via
a 500 Hz incoming wave through the left boundary Γe, whereas Γo is an ane-
choic termination. Both boundary conditions can be expressed by Eq. (5.17),
where the excitation’s amplitude Pe is chosen to be 1 Pa; whereas it is zero
for the anechoic outlet [33, 87]. The domain has been meshed using 0.001 m
square elements, obtaining 10000 elements within Ωd.

Figure 5.3: Problem 1 scheme.

Optimization has been set up with initial {υ1,j = 0.4, υ2,j = 0.6} for j =
1, ..., Nd; obtaining W

(1)
0 = 0.4 and W

(2)
0 = 0.36, whereas a volume fraction

of 0.24 has been obtained for the air. The weight of the acoustic analysis
w1 has been set to 1, whereas no structural TO problem has been considered
(w2 = 0), based on a preliminary test, and since the optimization frequency
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is relatively low (see Figure 5.5). After 20 iterations, the stopping criterion is
met. The optimized topology υopt has been shown in Figure 5.4.

Figure 5.4: Optimized topology of Ωd. Design 1.

As depicted in Figure 5.4, a chain-like solid structure has been obtained
(similar to the one obtained in [33]), with porous material inside. The par-
tition’s acoustic performance for both initial (Fig. 5.3) and optimized (Fig.
5.4) topologies have been evaluated in a wide range of frequencies. Results
are shown in Figure 5.5:
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Figure 5.5: F (1)
0 provided by the initial and optimized topologies. Design 1.

It was expected that by optimizing at 500 Hz, the first natural frequency of
the structure (initially at around 600 Hz) would be normally shifted right (i.e,
moved away from the optimization frequency). However, for the optimized
structure a new natural frequency has appeared at around 200 Hz. In any
case, F (1)

0 decreases at 500 Hz from 3.660·10−3 Pa·m to 1.124·10−4 Pa·m.

5.6.3. Design 2. Duct shielding
Second, a ventilation duct’s shielding has been optimized at 4000 Hz. A 2D

simplified scheme of the problem is shown in Figure 5.6a (only one quarter of
the domain is modelled due to biaxial symmetry). In order to model the sound
source, a pressure value PE of 1 Pa is prescribed at the centre of the duct.
As in Problem 1 (see Section 5.6.2), the pressure’s absolute value has been
integrated along Γo in order to obtain F (1)

0 (υ). However, an additional elastic
problem has been introduced in order to guarantee the structural continuity
for the solid material. A distributed force pint of 1 Pa/m has been considered
along the inner boundary of the duct (see Figure 5.6b).
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(a) Fluid-structure problem.

(b) Elastic problem.

Figure 5.6: Problem 2 scheme.

117



5. Topology optimization of fluid-structure problems

By setting w1 = 1 (acoustic problem) and w2 = 0.4 (elastic problem), and
after 40 iterations, the optimized topology is shown in Figure 5.7, and it can
be seen that a structure with holes has been obtained again for the solid phase.
The duct contains solid material in both the inner and outer faces, i.e., it is
structurally convenient, thanks to the contribution of the elastic TO problem
shown in Figure 5.6b.

Figure 5.7: Optimized topology of Ωd. Design 2.

The acoustic performance of both initial and optimized topologies has been
evaluated and is shown in Figure 5.8. F (1)

0 at 4000 Hz effectively drops from
4.528·10−3 Pa·m (initial design) to 2.174·10−3 Pa·m (for the optimized de-
sign). Additionally, the compliance of the structure under the inner pressure
decreases from 1.495·10−2 J (for the initial topology) to 5.872·10−4 J (after
optimization).
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Figure 5.8: F (1)
0 provided by the initial and optimized topologies. Design 2.

Finally, Figure 5.9 shows the distribution of acoustic pressure within Ωa

for both topologies.

(a) Initial topology. (b) Optimized topology.

Figure 5.9: Amplitude of pressure oscillation |p|. Design 2.
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5.6.4. Design 3. Train fairing
Finally, a train fairing has been optimized in order to reduce the rolling

noise radiated to the environment. In order to show the ability of the method
to consider a wide variety of excitation types, the response of the wheel studied
in [115] to a 400 Hz excitation is obtained and plugged as a displacement field
U perpendicular to the wheel’s surface Γe ⊂ Γa by following Eq. (5.11). An
additional static problem is considered, based on a preliminary test, in order to
guarantee the structural continuity of the optimized topology. A distributed
force fd with a resultant of 1 N is applied at the lower tip of the fairing (see
Figure 5.10b).

(a) Fluid-structure problem. (b) Elastic problem.

Figure 5.10: Problem 3 scheme.

By setting coefficients w1 = 1 (acoustic problem) and w2 = 0.4 (elastic
problem), and after 19 iterations, the optimized topology is shown in Figure
5.11. Regarding the solid material, a design resembling a chain with holes has
been obtained again, whereas the porous material design consists of equally
spaced bands.
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Figure 5.11: Optimized topology of Ωd. Design 3.

The acoustic performance of both initial and optimized topologies has been
evaluated and is shown in Figure 5.12. The acoustic objective function F (1)

0 at
400 Hz decreases from 4.193 Pa·m (for the initial topology) to 0.9400 Pa·m (for
the optimized design). Figure 5.13 shows the distribution of acoustic pressure
within Ωa for both topologies.
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Figure 5.12: F (1)
0 provided by the initial and optimized topologies. Design 3.

Additionally, the compliance of the structure F (2)
0 under the load case

depicted in Figure 5.10b halves from 0.03160 J to 0.01679 J after optimization.
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(a) Initial topology. (b) Optimized topology.

Figure 5.13: Amplitude of pressure oscillation |p|. Design 3.

5.7. Conclusions

This Chapter presents a topology optimization method to effectively in-
crease the attenuation of elastic screens by applying the u/p mixed formu-
lation in the vibroacoustic area whereas the standard pressure formulation is
employed in the rest of the problem’s domain, hence decreasing computational
cost.

A three-material interpolation scheme is also introduced in this Chapter
in order to obtain designs with both solid and porous material.
The optimization problem is solved by the use of the iterative algorithm MMA,
which requires the gradient of both the objective function and the restrictions
with respect to all design variables at each design step. The adjoint method,
along with the analytical derivation of the global matrices with respect to
each design variable, allows the evaluation of the sensitivities of the objective
function.

Results show that for the solid material, optimized designs resemble a
chain with several aligned holes; whereas the distribution of porous material
is harder to generalize. Also, [33] showed that structural continuity is not
ensured for high optimization frequencies in comparison to the first natural
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frequencies of the initial structure. In this Chapter, a static TO problem with
a realistic structural force is introduced in order to circumvent this problem.
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Chapter 6
Conclusions

In this Chapter, the main conclusions and contributions ob-
tained in the present Thesis are presented.
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The conclusions obtained in the present Thesis, concerning the develop-
ment of efficient acoustic optimization methods of mufflers, aftertreatment
devices, and sound barriers, are detailed below.

The fundamentals of sound theory have been recalled. The use of three-
dimensional models (such as the pressure-formulation FEM, a hybrid pressure-
velocity potential FEM, and other simplified approaches such as the MMM
in combination with the FEM) has been justified for the acoustic analysis
of mufflers and aftertreatment devices, considering thermal gradients and
non-homogeneous bulk density distributions of dissipative material within the
chamber.

A TO procedure has been proposed for the acoustic optimization (TL max-
imization) of dissipative and hybrid mufflers along a target frequency range.
For this purpose, the MMA and the adjoint method have been successfully ap-
plied to the scheme. Non-trivial distributions of the dissipative material within
the chamber have been obtained, that resemble designs already studied, in-
cluding several rings with different material densities, and extended ducts.

To conclude, the aforementioned scheme has allowed obtaining high levels
of attenuation, even with small amounts of porous material, by optimizing its
distribution within the chamber.

Additionally, a sizing and shape optimization of aftertreatment devices
(CC and DPF) has been implemented, by using a previous in-house code that
combines the use of the MMM and the FEM for the study of axially-uniform
cross sections of the chamber. A GA has been applied to optimize the position
of the inlet and outlet ducts, but also other geometric parameters, such as the
length of the monolith and chamber, and the type of the former. It has been
derived from the study that the position of the inlet and outlet ducts has the
biggest influence, and should be different, such that the transversal acoustic
modes excited by the inlet are not able to transmit their energy to the out-
let. Therefore the latter should be strategically positioned at the nodes of the
modes transmitting the most energy, at the given frequency.

Finally, the vibroacoustic TO problem has been addressed by consider-
ing the mixed displacement-pressure formulation (applied only in the design
region), in combination with the standard pressure formulation. A three-
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material scheme is considered for the obtaining of two-material (solid, porous)
sound barriers.

A methodology has been obtained, for designing non trivial structures
containing holes and porous infills, with a view to reducing noise emissions in
multiple applications, such as a ventilation duct coating or a train fairing.
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Chapter 7
Further publications

Some relevant contributions related to the present PhD Thesis are listed
below:

7.1. International journals (JCR)

i. B. Ferrándiz, F.D. Denia, J. Martínez-Casas, E. Nadal, J.J. Rodenas,
“Topology and shape optimization of dissipative and hybrid mufflers”,
Structural and Multidisciplinary Optimization, vol. 62, pp. 269–284,
2020. https://doi.org/10.1007/s00158-020-02490-x.

ii. B. Ferrándiz, F.D. Denia, J. Martínez-Casas, E. Nadal, J.J. Ródenas,
“Acoustic topology optimization using a mixed formulation and a three-
material scheme”, submitted to Structural and Multidisciplinary Opti-
mization, 2023.

7.2. National congresses

i. B. Ferrándiz, E. Nadal, J. Martínez-Casas, J.J. Ródenas, F.D. Denia.
“Metodologías avanzadas de optimización geométrica y topológica en
dispositivos de control de ruido”, XXII Congreso Nacional de Ingeniería
Mecánica (CNIM), pp. 1278-1288. ISSN 0212-5072. Madrid 2018.

ii. B. Ferrándiz, F.D. Denia, J. Martínez-Casas, E. Nadal, J.J. Ródenas,
“Control pasivo de ruido ferroviario mediante optimización topológica
y formulación mixta”, Congreso de Métodos Numéricos en Ingeniería
(CMN), pp. 161-173. ISBN 978-989-54496-0-6. Guimaraes 2019.
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7. Further publications

iii. E.M. Sánchez-Orgaz, F.D. Denia, B. Ferrándiz, J. Martínez-Casas, E.
Nadal, “Optimización acústica de catalizadores de automoción”, Con-
greso de Métodos Numéricos en Ingeniería (CMN), pp. 112-125. ISBN
978-989-54496-0-6. Guimaraes 2019.

7.3. International congresses

i. B. Ferrándiz, L. Giovannelli, J. Albelda, E. Nadal, M. Tur. “Structural
Simulation of metal foams from CT scans using machine learning tech-
niques in the cgFEM framework”, 6th European Conference on Compu-
tational Mechanics. 7th European Conference on Computational Fluid
Dynamics (ECCM-ECFD). Glasgow 2018.

ii. E. Nadal, B. Ferrándiz, M. Tur Valiente, J.J. Ródenas, F.J. Fuenmayor
Fernández. “Image-base material homogenization using Neural Net-
works under the cgFEM framework”, 13th World Congress on Com-
putational Mechanics (WCCM). New York 2018.
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Noise Control Devices”, 6th International Conference on Engineering
Optimization (ENGOPT), pp. 1154-1165. ISBN 978-3-319-97772-0. Lis-
bon 2018. http://doi.org/10.1007/978-3-319-97773-7_100

iv. B. Ferrándiz, F.D. Denia, J. Martínez-Casas, E. Nadal, J.J. Ródenas.
“Railway rolling noise minimization by topology optimization techniques
using the mixed FE formulation”, IX International Conference on Adap-
tive Modeling and Simulation (ADMOS). El Campello 2019.

v. B. Ferrándiz, E. Nadal, J. Martínez-Casas, F.D. Denia, J.J Ródenas,
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using the mixed FE formulation”, 48th International Congress and Ex-
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vi. F.D. Denia, E.M. Sánchez-Orgaz, B. Ferrándiz, J. Martínez-Casas, L.
Baeza, “Efficient finite element modelling of sound propagation in af-
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