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Resum
En aquest TFG, proposem un sistema d’augment de dades textuals paral·leles per a

llenguatges o dominis de baixos recursos utilitzant diferents tecnologies com ara models
de llenguatge emmascarat, grans models lingüístics i eines i recursos de processament
de llenguatge natural. El sistema detecta parts del text objetiu que es poden reemplaçar
per altres de noves amb la mateixa categoria gramatical a nivell de paraula. Després, la
paraula reemplaçada es troba al text font utilitzant alineació de paraules entre frases per
reemplaçar-la amb un sinònim adequat. El procés inclou passos iteratius per identificar
i reemplaçar paraules fins que no es puguin produir més canvis. El nostre enfocament
aborda la necessitat de conjunts de dades més extenses i d’alta qualitat en tasques de
processament del llenguatge natural en situacions de baixos recursos. El procés proposat
està dissenyat per admetre múltiples idiomes i diversos tipus de text. Es poden utilitzar
grans models lingüístics per mantenir la qualitat de les dades augmentades respecte a les
originals i facilitar diversos conjunts de dades textuals tant en casos monolingües com
multilingües. La qualitat de les dades augmentades és avaluada per humans en funció de
diversos criteris, com ara fluïdesa, coherència i rellevància, i es realitzen avaluacions au-
tomàtiques per comprovar la millora en el rendiment del model de llenguatge. Aquesta
avaluació automatitzada utilitza mètriques de darrera generació com BLEU, TER i chrF.
El sistema proposat té com a objectiu millorar la qualitat i quantitat de dades textuals
que es poden utilitzar per a tasques de processament del llenguatge natural, com ara la
traducció automàtica.

Paraules clau: augment de dades, grans models de llenguatge, grans models lingüístics,
processament de llenguatge natural, traducció automàtica, generació de text
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Resumen
En este TFG, proponemos un sistema de aumento de datos textuales paralelos para

lenguajes o dominios de bajos recursos utilizando diferentes tecnologías como modelos
de lenguaje enmascarado, grandes modelos de lenguaje y herramientas y recursos de
procesamiento de lenguaje natural. El sistema detecta partes del texto objetivo que pue-
den reemplazarse por otras nuevas con la misma categoría gramatical a nivel de palabra.
Luego, la palabra reemplazada se encuentra en el texto fuente utilizando alineación de
palabras entre frases para reemplazarla con un sinónimo adecuado. El proceso incluye
pasos iterativos para identificar y reemplazar palabras hasta que no puedan ocurrir más
cambios. Nuestro enfoque aborda la necesidad de conjuntos de datos más extensos y
de alta calidad en tareas de procesamiento del lenguaje natural en situaciones de bajos
recursos. El proceso propuesto está diseñado para admitir múltiples idiomas y varios ti-
pos de texto. Se pueden utilizar modelos de lenguaje grandes para mantener la calidad
de los datos aumentados respecto a los originales y facilitar diversos conjuntos de datos
textuales tanto en casos monolingües como multilingües. La calidad de los datos aumen-
tados es evaluada por humanos en función de varios criterios, como fluidez, coherencia y
relevancia, y se realizan evaluaciones automáticas para comprobar la mejora en el rendi-
miento del modelo de lenguaje. Esta evaluación automatizada emplea métricas de última
generación como BLEU, TER y chrF. El sistema propuesto tiene como objetivo mejorar la
calidad y cantidad de datos textuales que se pueden utilizar para tareas de procesamiento
del lenguaje natural, como la traducción automática.

Palabras clave: aumento de datos, grandes modelos de lenguaje, procesamiento de len-
guaje natural, traducción automática, generación de texto
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Abstract
This work proposes a parallel textual data augmentation framework for low-resource

languages or low-resource domains using different technologies like Masked Language
Models, Large Language Models, and Natural Language Processing tools and resources. The
framework detects parts of the target text that can be replaced with new ones with the
same grammatical category at the word level. Then, the replaced word is found in the
source text using word alignment to replace it with a suitable synonym. The process in-
cludes iterative steps of identifying and replacing words until no further changes can oc-
cur. Our approach addresses the need for more extensive high-quality datasets in natural
language processing tasks for low-resource situations. The proposed process is designed
to support multiple languages and various text types. Large Language Models can be
used to maintain the augmented data’s quality and facilitate diverse textual datasets in
both monolingual and multilingual cases. The quality of the augmented data is evalu-
ated by humans based on various criteria such as fluency, coherence, and relevance, and
automatic evaluations are performed to check the improvement in the language model’s
performance. This automated evaluation employs state-of-the-art metrics such as BLEU,
TER, and chrF. The proposed framework aims to improve the quality and quantity of
textual data that can be used for natural language processing tasks, such as machine
translation.

Keywords: data augmentation, large language models, natural language processing, ma-
chine translation, text generation
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CHAPTER 1

Introduction

Machine translation (MT) is a research field that harnesses computer algorithms and arti-
ficial intelligence to seamlessly translate text or speech from one language to another [1].
It involves a complex interplay of linguistic and statistical techniques, breaking a source
language sentence’s intricate structures and meaning to craft an equivalent expression
in the target language. The journey towards achieving accurate computer-based transla-
tions has been lengthy, spanning decades of dedicated research and development. Yet,
it wasn’t until the advent of neural networks that the field of MT witnessed a quantum
leap in performance.

The emergence of Neural Machine Translation (NMT) in recent years has started a
groundbreaking era in the domain of automated language translation [1]. These sophis-
ticated models, powered by deep learning prowess, have showcased remarkable pro-
ficiency when applied to many language pairs. However, it’s crucial to recognize that
the efficacy of MT hinges significantly upon the accessibility and scale of high-quality
training datasets. When faced with inadequate or limited data, NMT models may fal-
ter, leading to translation inaccuracies, less-than-fluid prose, and suboptimal linguistic
conversions.

One formidable obstacle that looms over the effective training of NMT models is the
absence of extensive, quality training datasets [1]. Creating and meticulously filtering
parallel corpora for each conceivable language pairing is an arduous and time-intensive,
often demanding substantial human resources and domain expertise. Consequently, re-
searchers and practitioners encounter formidable constraints in their quest to develop
robust NMT systems, especially when addressing low-resource languages or specialized
domains offering scanty data reservoirs.

In summary, MT remains a dynamic and promising field that relies on cutting-edge
technology, and NMT has unlocked remarkable potential. However, the enduring chal-
lenge of data scarcity underscores the intricate nature of this evolving domain. It em-
phasizes the need for innovative solutions to ensure that the benefits of automated trans-
lation are accessible to a broader range of languages and specialized domains, bridging
linguistic gaps and fostering global communication.

1.1 Motivation

Since the performance of MT models is usually linked to the amount of data used to train
them, there is a need to create high-quality datasets. It is an essential concern in MT
providers, such as Pangeanic, where I have developed this project and then applied it
to the working pipeline. I decided to go for this project because there is little research
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2 Introduction

related to this topic, which attracted me. In addition, I am passionate about the artifi-
cial intelligence field and recent state-of-the-art language models. This passion started
mainly due to two courses taught during my degree at university: Perception during the
3rd year and Machine Learning during the 4th year. Therefore, I found the perfect oppor-
tunity to learn and understand how this technology works and make this a basis for my
future work in this field.

1.2 Objectives

The primary objective of this DFP is to explore and evaluate the effectiveness of enhanc-
ing textual datasets for MT or other NLP tasks using large language models. We want to
achieve that by creating new synthetic data for the datasets used for training MT mod-
els. After fine-tuning the models with the enhanced dataset with synthetic data, we will
evaluate the overall performance to check the effectiveness of the proposed data aug-
mentation technique for parallel texts.

1.3 Memory structure

This work is structured into 6 chapters, each addressing a specific aspect of the research.
First, we will explain what NLP is, the leading use cases, and the problems it has to deal
with. We will also explain how computers understand text and process it. The next chap-
ter will review the state-of-the-art technology used in this field and how it has improved
MT. This chapter will also explore the evolution of the different techniques used to gener-
ate synthetic text. The following chapter introduces our approach to enhancing parallel
datasets and providing an easy data augmentation tool. Finally, we evaluate and analyze
the results obtained with our solution using different metrics, ending with a conclusion
and assessment of the work with proposals for future work.



CHAPTER 2

Natural Language Processing

Natural Language Processing (NLP) is a subfield of artificial intelligence and computational
linguistics that focuses on the interaction between computers and human language [1, 2].
This research field had its roots in the 1950s when Alan Turing published the article Com-
puting Machinery and Intelligence [3], where he introduced the Turing test as an intelligence
criterion for the first time. The test included tasks on generating and understanding
natural language by computers. In subsequent decades, this discipline studied linguis-
tic aspects of human-human and human-machine communication, developing linguistic
models that employed computational frameworks to implement processes with these
models.

Contrary to what someone may think, computers cannot understand language di-
rectly, so this has to be converted to representations computers can understand and pro-
cess. It involves developing and applying algorithms and techniques to enable comput-
ers to understand, interpret, and generate human language meaningfully and practically.
However, researchers have to face many problems in this process due to the intrinsic
complexity of human language. This research field is essential and encompasses various
computational tasks and applications, such as MT, text understanding, sentiment analy-
sis, question answering, and text generation.

2.1 Main NLP tasks

Since its birth, NLP has tried to automate many natural language tasks that people pre-
viously could only do [1, 2]. Thanks to state-of-the-art technologies, a good deal of work
can now be automated using computers and algorithms [4]. The main tasks involving
this field are:

• Machine Translation (MT): The first approach in this field was made in 1954 by
IBM when the Georgetown experiment [5] achieved the fully automatic translation
of more than sixty Russian sentences into English. Since then, many NLP tech-
niques have been used to develop MT systems that automatically translate text or
speech from one language to another. These systems leverage statistical models,
neural networks, and language resources to bridge the linguistic and cultural gaps
between different languages, as reviewed in section 3.1.

• Natural-Language Understanding (NLU): Since the early 60s, researchers have
made efforts to create algorithms that aim to understand the meaning and context
of written text, including tasks such as part-of-speech tagging, named entity recog-
nition, and syntactic parsing. These techniques enable computers to extract struc-
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4 Natural Language Processing

tured information from unstructured text data, being very useful today in tasks
such as anonymization.

• Question Answering: NLP systems can process natural language questions and
provide relevant and accurate answers by extracting information from extensive
collections of documents or knowledge bases. This is particularly useful for infor-
mation retrieval and virtual assistants.

• Text Generation: State-of-the-art NLP techniques and large language models en-
able computers to generate human-like text, including automated article writing,
chatbots, and even creative writing. These systems employ language modeling,
text summarization, and dialogue generation to produce coherent and contextually
appropriate text, as seen in section 3.5.

• Sentiment Analysis: NLP algorithms focus on determining the polarity of a text,
whether it is positive, negative or neutral, but it can go beyond that, detecting spe-
cific feelings and emotions, urgency and even intentions. This analysis can be help-
ful for understanding public opinion, customer feedback, and social media trends,
among other applications.

This project focuses on the field of MT but it is important to understand what some of
the other tasks involved in NLP consist of, as they are mentioned throughout the project.

2.2 NLP problems

Given that computers work with binary language, the NLP field faces many challenges
in its pursuit to enable computers to comprehend natural language [1]. These challenges
stem from natural language’s inherent complexity and richness, which exhibits ambigu-
ity [6], syntactic intricacies, contextual nuances, and a lack of explicit semantics [7]. Un-
derstanding and processing natural language requires tackling problems such as resolv-
ing ambiguity, grasping the contextual meaning [8], handling grammatical variations,
and inferring implicit information. Additionally, the scarcity of annotated data, the vari-
ability of language [9], and the influence of cultural and social factors further compound
the difficulties NLP research face. In this section, we delve into these NLP problems:

• Syntax and Grammar: Natural language has complex syntactic and grammatical
rules. Understanding sentence structure, verb tenses, subject-object relationships,
and other grammatical aspects is essential for proper comprehension. Handling
grammatical errors, colloquial language, and variations in linguistic patterns across
different languages further complicates the task.

• Ambiguity: Natural language is often ambiguous, also for people, and the exact
words or phrases can have multiple meanings depending on the context. For ex-
ample, the sentence "The lecturer said on Friday she would take a test" can either mean
the lecturer told the students about the test on Friday or that the test will be held
on Friday. Resolving this ambiguity requires a deep understanding of the context,
background knowledge, and world events. Another ambiguity example: "Time flies
like an arrow; fruit flies like a banana.". In the first sentence, flies is the main verb, while
in the second sentence, flies is the subject. Humans can rely on background knowl-
edge, common sense, and world experience to fill in gaps, but these are challenging
for machines to acquire and utilize effectively.
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• Contextual Understanding: Interpreting natural language requires considering the
broader context beyond individual words or sentences. For instance, in the sen-
tence "Academic writing can be intimidating, especially when they only get negative feed-
back." the pronoun they do not specify to whom it refers. However, since it is about
academic writing, we can assume it refers to students. Understanding pronoun
references, implicit meaning, sarcasm, metaphor, and other nuances of language
often requires a grasp of world knowledge, cultural context, and common sense
reasoning.

• Variability and Creativity: As time goes by, natural language exhibits tremendous
variability in terms of vocabulary, sentence structure, and expressions. This vari-
ability speed increases as society evolves faster, creating, modifying or creating new
expressions. For instance, "That’s a piece of cake." is an idiom that means something
is easy. Nonetheless, it is hard for a computer to recognize and interpret such cre-
ative expressions and understand their figurative meanings. People often use cre-
ative language, slang, idioms, and figurative speech, which can be challenging for
machines to interpret accurately.

• Data Sparsity: Obtaining large-scale quality datasets can be challenging, especially
for specific domains or low-resource languages. This is one of the most significant
issues of NLP since language models’ performance usually relies on the amount
of data they have been trained on and its quality. This project will address an
approach, explained in Chapter 4.1, to enhance datasets, specifically for MT, and
improve its results.

2.3 Text normalization

As explained above, natural language is complex, and making a good text representation
for computers was very challenging in the early stages of this field. A computer’s lan-
guage processing and understanding depend on how text is represented. Capturing the
meaning and characteristics of a word is complex, and this could only be achieved with
the appearance of deep learning.

Starting with the most basic, computers represent characters, including words, using
character encoding. Character encoding is a system that assigns numeric codes to each
character in a character set, allowing computers to store, represent and manipulate text
data. There are various character encoding, but the most commonly used today is The
Unicode Standard 1, based on an ISO international standard. This standard defines many
formats, but the most common is UTF-8 (Unicode Transformation Format 8-bit). This
variable-length encoding scheme can represent the entire Unicode character set, which
includes a vast range of characters from different languages, symbols, emojis, and special
characters. Each character is represented in this encoding by a variable-length 8-bit bytes
sequence. This encoding takes advantage of this and it is better than other encodings like
ASCII [10], whose characters are represented using a single byte. This is why it is limited
to 128 different characters, the Latin alphabet, numbers, and basic symbols. For instance:

• The character ’A’ is represented as 4116, or 010000012, in ASCII encoding and UTF-8
encoding.

• The character ’Ω’, the Greek capital letter Omega, can only be represented using
UTF-8 as the sequence of bytes CE16 A916, or 110011102 101010012.

1The Unicode Consortium. Consulted in https://www.unicode.org/standard/principles.html

https://www.unicode.org/standard/principles.html


6 Natural Language Processing

Now we know that text is a sequence of these representations equivalent to a se-
quence of numbers. However, a text must be converted to a more convenient, standard
form. This process is called text normalization [1], where tokenization plays an essential
role [11]. Tokenization consists of splitting a text into smaller pieces called tokens which
can be sentences, words, subwords, or characters. During word tokenization, words can
be converted to lowercase and punctuation and symbols can be removed, depending on
the process’s technic and final purpose. However, we must keep punctuation for most
NLP applications, like MT, since it can change the text’s meaning. For instance, in En-
glish, whitespace often separates words, but whitespace is not the only separator. In the
sentence, "I’m happy." there are 3 words as I and am are different words. In some texts
like tweets, emoticons like :) or hashtags like #NLP have to be tokenized. Furthermore,
in some languages, such as Chinese and Japanese, words are not separated by whites-
pace, which makes them more challenging to tokenize. In fact, for many Chinese NLP
tasks, it works better to take characters rather than words as input. This occurs because
characters are at a reasonable semantic lever for most applications, resulting in a vast
vocabulary with a large number of rare words [21].

There is a third option to tokenize text, which does not tokenize words or characters
but uses data to automatically tell what the tokens should be [1]. This is especially use-
ful in dealing with unknown words, a fundamental problem in language processing. As
we will see in the chapter 3, NLP algorithms learn characteristics about language from a
training corpus and then use these characteristics to make decisions about a different cor-
pus and its language. Let us say a training corpus contains the words slow, fast, faster, but
not slower. Then, if the word slower appears during an inference computation, the system
will not know what to do with it. To deal with the problem of unknown words, modern
tokenizers often automatically induce tokens smaller than words, called subwords. Sub-
words can be arbitrary substrings or meaning-bearing units like the morphemes -est or
-er, which are the smallest unit of a language with meaning. For example, the word un-
happiest has the morphemes un-, happy, and -est. Thus, the unseen word slower can be rep-
resented by a sequence of learned subword units, such as slow and -er. These tokenization
systems comprise 2 parts: a token learner, which induces a set of tokens from the training
corpus, and a token segmenter, which takes a raw text during inference and segments it
into the learned tokens. 3 algorithms are widely used: Byte-Pair Encoding [12], Unigram
Language Modeling [13] and WordPiece [14].

Another common task in text normalization is lemmatization [1], which determines
that 2 words have the same origin, despite their surface differences. For example, the
terms wrote, written and writes are different verb conjugations of write. In this case, the
term write is the lemma of these words, and they are mapped to write. This process is
beneficial in morphologically complex languages like Arabic. A simpler version of this
process is called stemming and mainly consists of striping suffixes from the end of the
word.

After text normalization, we obtain a text representation that NLP systems can pro-
cess to compute a satisfactory result. For instance, an MT system preprocesses the source
sentence, and after the text normalization, it computes a sentence in the target language
with an equivalent meaning. Yet, this is a lexical representation that lacks meaning. Rep-
resenting the meaning of tokens is a challenging question still nowadays. We will review
how this meaning is captured in numbers in section 2.4.
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2.4 Vectorial representations

The standard way to represent the meaning of language in NLP is by using numerical
vectors that help the model mitigate many of the language aspects explained in sec-
tion 2.2. This process is called vector semantics and has its roots in the 1950s, when 2
ideas merged. The first one was representing the connotation of a word with multidi-
mensional vectors. While the second consisted of defining the meaning by its distribu-
tion in language and exposed that words with similar meanings will occur in very similar
distributions. The main idea is to represent text tokens as a point in a multidimensional
semantic space derived from the distributions of the token neighbors in a text. The vec-
tors used to represent the token’s meaning are called embeddings, whose name comes
from the mathematical sense of mapping between different spaces or structures [1].

2.4.1. Term Frequency-Inverse Document Frequency

An early approach used in information retrieval, Term Frequency-Inverse Document Fre-
quency (TF-IDF) [1], represented the relevance of a word by counting the nearby words.
As its name says, it is the product of 2 terms. The first is the frequency of a word t in
a document d, tft,d, defined as count(t, d), squashed by using the log10 of the frequency.
This squashing is done to avoid a word appearing 100 times more likely to be relevant
than a word appearing 10 times. The second term gives higher weights to words that
occur in a few documents. So it measures the rarity of a term across the entire document
collection. The inverse document frequency idft is defined as N/dft, where N is the num-
ber of documents, and dft is the number of documents in which term t occurs. Since a
large amount of documents can be found in many collections, this term is also squashed
with a log10 function. The final function that defines TF-IDF results in a weighted value
wt,d for the word t in a document d combining the previous terms:

wt,d = tft,d × idft = log10(count(t, d) + 1)× log10(
N
dft

)

The TF-IDF score can be calculated for each term in a document, creating co-occurrence
matrices that capture the importance of each term. This vector representation can be used
for various purposes, such as document similarity comparisons, keyword extraction, and
information retrieval. However, it resulted in very long sparse vectors with mostly zeros
and failed to capture words’ semantic properties.

2.4.2. Positive pointwise mutual information

The following approach took TF-IDF as a base and focused on representing associations
between 2 words, instead of between words and documents. Pointwise mutual information
(PMI) [1] measures how often 2 events x and y occur together. In NLP, it counts how
often 2 tokens co-occur in a corpus. Given a target word w and a context word c, its PMI
can be defined as:

PMI(w, c) = log2
P(w, c)

P(w)P(c)

Where P(w, c) is the probability of observing the 2 words together, and the denomi-
nator tells us the probability of the 2 words occurring by chance. This ratio helps us find
words that have a strong association. Since this function returns values ranging from
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negative to positive infinity, a positive version is often used. Positive PMI (PPMI) re-
places all negative values with zero since negative values are unreliable unless our texts
are enormous. So we can define the association of words x and c as max(PMI(w, c), 0).
However, we will want to have a weighted association between all words in a text. To
do this, we first create a co-occurrence matrix F with W rows and C columns, where each
row is a word, each column is a context, and fij is the number of occurrences of the word
wi with the context cj. Then, we can define the function PPMIij or PPMI(w = i, c = j),
which returns the PPMI value for the word wi with context cj:

pij =
fij

∑W
i=1 ∑C

j=1 fij
, pi∗ =

∑C
j=1 fij

∑W
i=1 ∑C

j=1 fij
, p∗j =

∑W
i=1 fij

∑W
i=1 ∑C

j=1 fij

PPMIij = max(log2
pij

pi∗p∗j
, 0)

Let us see how it works in a small example. In Table 2.1, we have a co-occurrence
matrix of a small sample of 4 words in 5 contexts, extracted from the Wikipedia corpus 2

and assuming the other words and contexts do not matter for the calculation.

laptop data result pie sugar count(w)
lemon 2 8 9 440 23 482
strawberry 0 0 1 50 90 141
digital 1651 1634 65 4 3 3357
information 3320 3971 370 5 15 7681
count(c) 4973 5613 445 499 131 11661

Table 2.1: Co-occurrence matrix extracted from the Wikipedia corpus for 4 words in 5 contexts,
together with the marginals.

laptop data result pie sugar
lemon 0 0 0 4,41 2,08
strawberry 0 0 0 3,05 5,83
digital 0,2 0,02 0 0 0
information 0,02 0,1 0,34 0 0

Table 2.2: Representing the association between words and contexts with a PPMI matrix.

Using this table, we can compute the association between words and context words
using PPMI and get a new matrix, represented in Table 2.2. For example, we could com-
pute the PPMI for the word digital and the context laptop.

P(w = digital, c = laptop) =
1651
11661

= 0, 1415

P(w = digital) =
3357
11661

= 0, 2878

P(c = laptop) =
4973
11661

= 0, 4265

PPMI(w = digital, laptop) = max(log2(
0, 1415

0, 2878 ∗ 0, 4265
), 0) = 0, 2051

2Available at https://huggingface.co/datasets/wikipedia

https://huggingface.co/datasets/wikipedia
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After getting the whole matrix of PPMI values, we can observe that lemon and straw-
berry are strongly associated with pie and sugar, and digital and laptop are mildly asso-
ciated too. We can find many zeros that were negative values, meaning that there is no
relation between that word and the context. This system has limitations since infrequent
words tend to have very high values, which creates a bias toward infrequent events. Fur-
thermore, both techniques, TF-IDF and PPMI, resulted in very long sparse vectors with
mostly zeros and failed to capture words’ semantic properties. This issue is because the
resulting vectors had a dimension as high as the number of documents, in TF-iDF, or
known words, in PPMI.

2.4.3. Word2vec

To address the sparse vectors problem, researchers found that dense vectors performed
better in capturing the semantic meaning of language [1]. Unlike the long sparse vectors
seen above, these embeddings are short dense vectors with positive and negative real
numbers. The dimension of these vectors ranges from 50 to 1000 dimensions, rather than
the large number of terms in a vocabulary or documents in a collection.

It turned out that these vectors are better for NLP tasks since models have to learn
fewer weights. Besides, they succeed in capturing synonymy and helping with general-
ization. For example, the dimensions for synonyms like the words pet and fish could be
very unrelated and distinct in sparse vectors. Thus it would fail to catch the similarity
of a term with pet as a neighbor and a term with fish as a neighbor. The idea of using
dense vectors was first developed by Google in 2013 with word2vec [15], a software that
combines 2 algorithms. These 2 algorithms are explained below.

• Continuous Skip-gram Model: This model predicts the context words given a tar-
get word. It operates by sliding a fixed-size window over a sentence and training
the model to predict the surrounding words given a central target word within that
window. It is fed with a one-hot encoded vector, a zeros vector of the vocabulary
size, where there is only a 1 in the position corresponding to that word. The out-
put of this model is a probability distribution over the vocabulary for the context
words.
The model’s objective is to maximize the likelihood of the context words given the
target word. It achieves this by learning to update the word vectors to increase
the similarity between the target word’s vector and the context word vectors. The
training process involves iteratively adjusting the word vectors using gradient de-
scent to minimize the difference between the predicted probabilities and the actual
context words’ one-hot encoded vectors.

• Continuous Bag-of-Words Model (CBOW): This model, on the other hand, focuses
on predicting a target word based on its surrounding context words. It works by
taking a window of context words and training the model to predict the central
target word. It is fed with the one-hot encoded vectors of the context words and
returns a probability distribution over the vocabulary for the target word.
The objective of the CBOW model is similar to that of the skip-gram model: to
maximize the likelihood of the target word given its context words. The model
adjusts the word vectors to increase the similarity between the context word vectors
and the target word’s vector. Like the skip-gram model, the CBOW model employs
gradient descent to iteratively update the word vectors to minimize the difference
between predicted probabilities and actual target words’ one-hot encoded vectors.
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2.4.4. Embeddings from Language Models

Unlike the above word embeddings, Embeddings from Language Models (ELMo) [16] word
representations are functions of the entire input sentence. ELMo is designed to capture
the contextual meaning of words in a sentence, which is crucial for tasks like sentiment
analysis, MT, and question answering. ELMo uses a bidirectional Long Short-Term Mem-
ory (LSTM) network to generate word embeddings, a type of recurrent neural network, see
section 3.3. This network can capture dependencies and relationships between words in
both directions within a sentence, forward and backward. ELMo uses a stacked, two-
layer LSTM network. ELMo also incorporates character-level information to generate
word embeddings. It creates a character-level representation for each word in the vocab-
ulary using a character convolutional neural network, which allows the model to capture
morphological and subword information.

The critical innovation of ELMo is that instead of generating a single, fixed vector rep-
resentation for each word, ELMo produces multiple embeddings for each word, which
are context-dependent. It does this by running the bidirectional LSTM over the sentence
and obtaining hidden states at each time step for each word. These hidden states are
vectors that capture the word’s contextual information. To combine these contextual em-
beddings, ELMo uses a weighted sum. Each embedding is assigned a weight learned
during the training process and these weights depend on the target task, making the
model adaptable to different NLP tasks.

Then, ELMo embeddings can be integrated into downstream NLP models, concate-
nating or averaging ELMo embeddings with traditional word embeddings to enhance
their performance in various tasks. Experiments confirmed that ELMo efficiently encodes
different types of syntactic and semantic information about words’ context, improving
overall task performance. It was one of the groundbreaking models for contextual word
embeddings. Nevertheless, later technologies outperformed ELMo representations, like
BERT’s architecture, based on the Transformer model, which is more sophisticated and
powerful than ELMo in several ways. Transformer architecture is explained in section 3.4.

2.4.5. Data2vec

Data2vec [17] is a framework for either speech, NLP, or computer vision which uses the
same learning method. It aims to predict latent representations of the entire input data
based on a masked input in a self-distillation setup, which uses a standard Transformer
architecture. The method combines masked prediction with the learning of latent target
representations. Still, it generalizes this by using many network layers as targets, allow-
ing it working across several data types.

Figure 2.1: Data2vec learning process for different data types. Figure taken from data2vec’s research
paper [17].
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The approach consists of training a Transformer network, which is used either in
teacher or student mode, as seen in Figure 2.1. First, representations of the total input
data are built to serve as targets in the learning task for the model in teacher-mode. Next, a
masked version of the input sample is encoded in the model in student-mode to predict the
full data representations. The weights of the teacher are an exponentially decaying aver-
age of the student. Since different modalities have vastly different inputs, each modality
uses specific feature encoders and masking strategies from the literature.

Compared to prior NLP algorithms, data2vec predicts a continuous and contextu-
alized representation instead of discrete linguistic tokens such as words, sub-words, or
bytes. Thus, the model manages to adapt to a particular input example since the tar-
gets are not predefined, nor are their number limited. Besides, targets are contextualized,
taking context information into account.

Experiments’ results show that language models trained using data2vec outperform
the previous techniques. Researchers successfully pre-trained the first NLP model which
does not use discrete units as the training target, like words, subwords, characters, or
bytes. Instead, the model predicts a contextualized latent representation emerging from
self-attention over the entire unmasked text. This allows the model to compute targets
with specific nuances of the current text instead of tokens that are generic to every text in
which the particular discrete unit occurs. For this reason, the set of training targets is not
a closed vocabulary, and the model can choose to define new targets as it sees fit.

2.5 Problem analysis

As mentioned, NLP algorithms rely on statistical models, machine learning techniques,
and linguistic rules to process and analyze language data. Besides, they require large
amounts of labeled training data to learn patterns and generalize from examples [1]. We
will focus on the nature of the data used during the training of MT systems.

MT models are trained on a parallel corpus, a text that appears in 2 or more languages.
There are several parallel corpora available with different origins. They can be govern-
mental, like the Europarl corpus [18], which contains between 400 000 and 2 M sentences
from 21 European languages extracted from the proceedings of the European Parliament.
Other parallel corpora have been made crawling general web text, like ParaCrawl [20].
This large-scale corpus is automatically crawled from the internet periodically, cover-
ing various domains and multiple languages. Movie and TV subtitles have also been
employed to create datasets, like the OpenSubtitles corpus [19]. This data for MT train-
ing come as aligned pairs of sentences. These sentence alignments must be created when
crafting new corpora for low-resource languages or new domains, for example. The prob-
lem appears here since creating corpora for low-resource languages or specific domains
is challenging. There are a lot of large parallel corpora with translations between English
and other languages, but most of the world’s languages have few or no parallel texts
available. Moreover, the resource problem can be worst when translating low-resource
domains, even for high-resource languages [1].

How to deal with this data sparsity is an essential ongoing research question, and
several approaches have been developed to address it. These approaches are included
in a general statistical technique called data augmentation (DA), which aims to generate
new synthetic data from the current natural data available. The origins of DA can be
traced back to computer vision and image classification tasks, where it has been used
for decades. Researchers and practitioners found that applying simple geometric and
color transformations to images could substantially improve the performance of image
classification models. This practice became particularly important when working with
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small or limited datasets. Data augmentation has since been extended to other domains,
including NLP and speech recognition, where techniques like text paraphrasing and au-
dio speed perturbation are used to create augmented datasets. Synthetic data helps the
model learn invariant features and patterns, which is essential for better generalization.
It exposes the model to a broader range of possible inputs.

We will review some approaches to augment text data in section 3.6 and present our
solution for enhancing training datasets for MT models in section 4.1.



CHAPTER 3

State-of-the-art

Before presenting our solution to the problem, we must explain how the technologies
that appear in this project work and the advances they have experienced over time to get
to the point they are now. We will explore the underlying principles, methodologies, and
recent advancements in MT and LLMs. Furthermore, we will review some approaches
in related works in enhancing datasets for machine translation.

3.1 Machine Translation

Communication between different countries and cultures is essential, enabling informa-
tion exchange and the continuity of our evolution. However, the sender and receiver
of the information usually understand different languages, so this information must be
translated into the receiver language to complete the communication. That is why trans-
lation, in its full generality, is now more critical than ever due to the great globalization
that the world is suffering. Unfortunately, translation requires qualified people with ex-
cellent knowledge of the communication’s source and target languages. The service of
these translators is usually costly and even difficult to find for low-resource languages.
For this reason, new ways of translating using technology began to be sought.

Machine translation (MT) [1], the process of automatically translating text from one lan-
guage to another using computers, has been a big goal in the field of artificial intelligence
for a long time. It has witnessed a remarkable evolution over the years, transforming how
we bridge language barriers and facilitate global communication. MT has enabled the in-
formation access to anyone worldwide, no matter what language they speak. This fact
has also helped to reduce the so-called digital divide, as much more information is avail-
able in English and languages spoken in wealthy countries. Speakers of lower-resourced
languages can benefit from high-quality translation to receive information and knowl-
edge.

From the early days of rule-based systems, which relied on manually crafted linguis-
tic rules, to the statistical models that used the power of vast bilingual corpora, and fi-
nally, the breakthrough of neural networks with its deep learning architectures, MT has
continuously evolved to deliver increasingly accurate and fluent translations. We will
assess this evolution below.

3.1.1. Rule-Based Machine Translation

Rule-Based Machine Translation (RBMT) is an early approach in MT developed in the early
1970s, wherein translation is achieved through manually crafted linguistic rules and dic-

13
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tionaries. RBMT systems operate by employing a set of predefined rules and syntactic
structures specific to both the source and target languages [22].

The RBMT process encompasses several distinct stages. Initially, the source sentence
undergoes analysis, examining its grammatical structure and extracting relevant linguis-
tic information. This analysis involves parsing the sentence and identifying components
such as elements of speech, verb conjugation, noun declension, and other linguistic fea-
tures. Subsequently, the transfer stage is employed, wherein linguistic rules are applied
to transform the analyzed source sentence into an intermediate representation that cap-
tures the intended meaning. This transformation involves various operations, including
word order modifications, verb form adjustments, and structural transformations tai-
lored to align the source sentence with the target language’s requirements. Once the
transfer stage is completed, the RBMT system proceeds to the generation phase, wherein
the translated sentence is produced in the target language. This process entails mapping
the intermediate representation to the target language’s appropriate linguistic structures
and vocabulary. Lexical and grammatical rules are employed to ensure accurate and flu-
ent translations.

Critical technical aspects of RBMT enclose the utilization of linguistic rules, dictionar-
ies, and knowledge engineering. Linguistic rules are manually constructed by linguists
and domain experts, encompassing various linguistic aspects such as grammar, syntax,
morphology, and semantics. These rules define patterns and transformations required to
convert the source language structure into the corresponding target language structure.
RBMT systems also rely on dictionaries that contain word lists, lexicons, and morpho-
logical information for both the source and target languages. These dictionaries provide
the necessary vocabulary and semantic mappings crucial for accurate translations. Ad-
ditionally, knowledge engineering plays a pivotal role in RBMT system development,
involving extensive analysis of linguistic properties and collaboration between linguists
and experts to refine rules and dictionaries based on linguistic knowledge and data anal-
ysis.

Nevertheless, RBMT also exhibits certain limitations. The development of RBMT sys-
tems needs comprehensive linguistic resources, which can be arduous and expensive to
create. Furthermore, RBMT encounters challenges in handling natural language nuances,
such as idiomatic expressions, ambiguity, and word sense disambiguation. Adaptation
to new languages or domains also poses difficulties for RBMT, often requiring exten-
sive manual rule development. While RBMT serves as a foundational approach in ma-
chine translation and contributes valuable insights into language structure and transla-
tion principles, its utilization has diminished in recent years.

3.1.2. Statistical Machine Translation

Statistical machine translation (SMT) is the following approach that appears to automati-
cally translate text from one language to another, first introduced in 1988 [23]. It is based
on statistical models that learn patterns and relationships between words, phrases, and
sentences in a parallel corpus.

The core idea behind SMT is to leverage the statistical properties observed in the
training data to make translation decisions in data the model has not seen. In SMT, a text
is translated according to the probability distribution P(y|x) that the target language y is
the translation of the source language x, given a set of model parameters θ [24]. When
translating a new sentence, the goal is to find the translation ŷ with maximum probability,
expressed as:
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ŷ = arg max
y

P(y|x; θ)

One approach that works well for computer implementation is applying Bayes The-
orem, that is P(y|x; θ) = P(x|y; θtm)P(y; θlm), where the translation model P(x|y; θtm) is
the probability that x is the translation of y according to a set of parameters θtm learned
during training, and the language model P(y; θlm) is the probability of seeing y. A lan-
guage model is a probability distribution over a sequence of words according to a set of
parameters θlm generated with the training data. So the above equation can be re-written
as:

ŷ = arg max
y

P(y|x; θ) = arg max
y

P(x|y; θtm)P(y; θlm)

The translation model in addition, is defined as a generative model, which is disinte-
grated via latent structures:

P(x|y; θtm) = ∑
z

P(x, y|z; θtm)

where z denotes these latent structures that can be word-based or phrase-based. In word-
based systems, a technique called word alignment is used, which role is to find correspon-
dence between words in the training parallel corpus. The problem with this approach is
that generalizing is hard due to dependencies between sub-models. To solve this issue,
in 2002 log-linear models were used to introduce knowledge sources:

P(y, x|θ) = ∑z exp(θ ∗ ψ(x, y, z))
∑′

y ∑′
z exp(θ ∗ ψ(x′, y, z′)

where ψ(x, y, z) is a set of features defining the translation process and θ denotes the
corresponding weights for each feature. Later in 2003, a new phrase-based translational
model [25] was introduced, where source and target sentences are divided into smaller
units called phrases. A phrase is a contiguous sequence of words that appears frequently
in the training data. Each phrase pair, consisting of a source phrase and its corresponding
target phrase, is assigned a weight in θtm that represents the likelihood of that transla-
tion. During the training phase, these weights are learned by examining the frequency of
phrase pairs in the parallel corpus. During the translation process, the source sentence is
segmented into phrases, and the system searches for the best translation of each source
phrase based on the learned phrase pair weights. This search is guided by the language
model, which estimates the probability of a target sentence based on the target language
alone based on the parameters θlm. The translation output is selected by optimizing a
scoring function that combines the phrase pair weights θtm, the language model proba-
bilities θlm, and other factors like phrase reordering and distortion [24].

To train an SMT system, a large parallel corpus is required, consisting of aligned sen-
tences in the source and target languages. The training process involves several steps,
including extraction and alignment of the latent structures and model estimation. While
SMT has been widely used and has achieved significant success in various translation
tasks, it does have limitations [24]. These problems are data sparsity and feature engi-
neering. The first one is due to the discrete symbol representation, which results in a
weak model’s effectiveness in capturing the features of the language. The last one is that
SMT includes annotating hand-crafted attributes to capture local syntactic and semantic
features. Designing general features is a challenge, since there can be millions of such
features and mapping them between languages can be a cumbersome task.
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3.1.3. Neural Machine Translation

Neural Machine Translation (NMT) has revolutionized the field of automated translation
by employing deep learning techniques to generate high-quality translations. Unlike
traditional SMT systems, NMT directly learns the mapping between a source language
sentence and its target language translation without relying on explicit phrase-based or
alignment models. They are are able to learn complex relationships among natural lan-
guages from the data without the need to manually hand features, which are hard to
design [24]. The main idea remains the same, given a sentence x = x1, . . . , xj, . . . , xJ , of
length J in the source language, and a sentence y = y1, . . . , yi, . . . , yI of length I in the tar-
get language, NMT tries to factor a sentence-level translation probability into sub-word
translation probabilities:

P(y|x; θ) =
I

∏
i=1

P(yi|x, y<i; θ)

where y<i is referred to as a partial translation of y. This system has to face some is-
sues, like the fact the context between the source sentence and the target sentence can
be dispersed when the sentences become too long. To solve this issue, the seminal pa-
per Sequence to Sequence Learning with Neural Networks [26], published in 2014, proposed
an encoder-decoder network that could represent variable-length sentences into a vector
representation of fixed length and use it to translate. This architecture is explained in
section 3.2. However, before explaining the encoder-decoder architecture and its types,
we must delve into how a neural network works.

A neural network is a network of small computing units, each taking a vector of in-
put values and producing a single output value [1]. At its heart, a neural unit takes a
weighted sum of its inputs, with one additional term, called a bias term, in the sum. So
given a vector of real-valued numbers x, a unit has a corresponding vector of weights θ
and a bias b that uses to compute a weighted sum z:

z = b + ∑
i

θixi = θ · x + b

The sum can be replaced by a dot product to use a more convenient vector notation.
Then, instead of using z as output, resulting from a linear function of x, a non-linear
function f is applied to z. This non-linear function is called the activation function, and
its result is the activation value for the neuronal unit, y. Since it is a neural network
of only one unit, the result of the whole network would be y = f (z). A diagram of a
simple neural network with only one neuron can be seen in Figure 3.1, where the input
is a three-dimensional vector x.

Depending on the purpose of the neural network, an activation function that fits the
task is chosen. There are many activation functions, but 3 are the most popular [1]:

• Sigmoid: This function maps the output into the range (0, 1), which helps nor-
malize concentrating the values between 0 and 1 and enables it to be used as a
probability. This function is differentiable, crucial for gradient-based optimization
algorithms like backpropagation. In practice, it is not commonly used as an activa-
tion function but fits in binary classification problems where the goal is to classify
inputs into 2 classes.

y = σ(z) =
1

1 + e−z
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Figure 3.1: A single-neuron neuronal network, with a three-dimensional vector x as input, a
weighted vector θ and a bias b.

• Hyperbolic Tangent (tanh): This function is a variant of the sigmoid function and
maps the output between the range (−1, 1), so it is centered at 0 and provides
stronger non-linearity. It maps negative inputs to negative values close to −1, posi-
tive inputs to positive values close to 1, and 0 input to 0. This is often used in hidden
layers of neural networks, as it can handle both positive and negative inputs and it
is beneficial for capturing complex relationships.

y = tanh(z) =
ez − e−z

ez + e−z

• Rectified Linear Unit (ReLU): This function is the simplest and possibly the most
used. It is a simple thresholding function that sets negative values to 0 and leaves
positive values unchanged. Besides, it introduces sparsity and non-linearity into
the neural network, and it is computationally efficient and alleviates the vanishing
gradient problem, which can occur with other activation functions. ReLU is widely
used in deep learning models as it helps to mitigate the overfitting problem and
accelerates training convergence.

y = ReLU(z) = max(z, 0)

Knowing how a neuron works, we can now assume that a neural network is a set
of connected units that compute the result. The training process in NMT uses parallel
corpora to maximize the logarithmic likelihood of the source and target language and
learn the optimal parameters θ̂. So we can define the objective function:

θ̂ = arg max
θ

I

∑
i=1

log P(y(i)|x(i); θ)

After training, the learned parameters θ̂ are used to inference a translation ŷ:

ŷ = arg max
y

P(y|x; θ̂)
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Figure 3.2: Encoder-Decoder Architecture.

3.2 Encode-Decoder Architecture

The encoder-decoder architecture is a fundamental framework in deep learning, first pro-
posed in 2014 [26]. This architecture consists of a two-stage process, where the input is
introduced into an encoder unit that maps its information into a numerical representa-
tion. This numerical representation is also called context vector, which is then fed into the
decoder network to generate the output. We will focus on the MT encoder-decoder ar-
chitecture and how these parts work, assuming the inputs and the outputs are sequences
of text tokens. The architectural flow of a basic encoder-decoder based network can be
seen in Figure 3.2.

• Encoder: During the encoding process, each token in the input sequence is fed into
the encoder network sequentially. The encoder maintains an internal state that cap-
tures the information from the previously processed tokens. This internal state is
updated at each step based on the current input token and the previous internal
state. This allows the encoder to capture the contextual information and dependen-
cies within the input sequence.

• Context vector: The encoder’s final output is a condensed representation of the
entire input sequence in a fixed-length numerical vector. It contains the accumu-
lated features and context necessary to generate the output sequence. The model’s
performance depends on how well the decoder can represent the input’s character-
istics.

• Decoder: The decoder network takes the fixed-length context vector generated by
the encoder and generates the output sequence token by token. At each step of the
decoding process, the decoder receives an input token from the previously gener-
ated sequence. The decoder maintains its own internal state, which is initialized
with the context vector from the encoder.

Since source and target sentences are usually of different lengths, these encoder and
decoder units are usually based on recurrent neural networks (RNNs), explained in sec-
tion 3.3. However, RNNs showed some limitations, like vanishing or exploding gradi-
ents, which led to the encoder-decoder transformer architecture, explained in section 3.4.
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3.3 Recurrent Neural Networks

Language is an inherently temporal phenomenon. Spoken language is a sequence of
acoustic events over time, and we comprehend and produce both spoken and written
language as a continuous input stream. Recurrent Neural Networks (RNNs) [24] are a fam-
ily of neural networks explicitly designed for sequential data processing, such as speech
and text. The main idea behind RNNs is to benefit from this sequential data structure,
and they are given this name since they work recurrently [1, 26]. Thus, any network with
a cycle within its connections is recurrent, meaning that the value of some unit is directly
or indirectly dependent on its own earlier outputs as an input. We will focus on encoder-
decoder RNNs, also called sequence-to-sequence networks, which work well for MT.
These models are instrumental in MT since they allow the source and target sentences to
be of different lengths. Unlike SMT, this architecture does not maps tokens between the
input and the output, which does not work for many languages. For example, in some
languages, verbs are at the end; in others, the verb is at the end of the sentence.

As mentioned in section 3.2, an encoder-decoder architecture is based on a pair of
RNNs. This type of langauge models try to predict the next word in a sequence given
a preceding context. For example, if the proceeding context is "I love" and we want to
know how likely the next word is "you", we would compute P(you | I love). Then, we
can assign a probability to the whole sentence "I love you", using the chain rule:

P(I love you) = P(I) P(love | I) P(you | I love)

The starting point to build the encoder and decoder units is the RNN language model
P(y), which stands for the probability of a sequence y of length n:

P(y1:n) =
n

∏
i=1

P(pi | p<i) = p(y1)p(y2 | y1) . . . P(yn | y1, . . . , yn−1)

RNNs process one word of the sequence y at a time. Each word is represented as
an embedding, explained in section 2.4. The encoder can be seen as a series of intercon-
nected computational units, where each unit takes the current word’s embedding and
the computed state, also called the hidden state, of the previous unit as inputs. The en-
coder would have n computational units, with each unit corresponding to one word in
the sentence. This allows the encoder to gradually incorporate information about the sen-
tence by considering each word’s context in relation to the previous words. Processing
the words sequentially and updating the hidden state at each step captures the relevant
information in the input sequence. The encoding process ends with the hidden state of
the last word, which becomes the context vector. Then, the decoder unit uses the context
vector as the starting point to generate the first word of the target sentence. This word is
generated using the context vector and a unique token which determines that the source
text has finished and the target text will start. The generated word is then fed into the
next unit along with the current hidden state to generate the next word. Finally, the de-
coding process continues until a special token determines that the sentence has finished.
More formally, the output of a unit at a particular time t can be defined as:

ht = g(ht−1, xt)

yt = f (ht)

Where g is an activation function, like tanh or ReLU, of the vector embedding rep-
resenting the input word xt and the hidden state of the previous unit ht−1. The final
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Figure 3.3: An inference example of a vanilla encoder-decoder with RNNs. Taken from Speech and
Language Processing [1].

result at time t is a word embedding determined with a softmax function f of the hid-
den state. A softmax is a function that takes a vector of arbitrary values and maps them
to a probability distribution, with each value ranging from 0 to 1 and all summing to 1.
After applying the softmax function, the resulting probability distribution represents the
model’s belief about the likelihood of each known word in the model learned vocabulary.
This process can be hard to imagine, so the figure 3.3 shows an example of an inference
process, where the English sentence "the green witch arrived" is translated into Spanish. In
this example, the token <s> separates the source and target sentences, and the token </s>
ends the target sentence.

Encoder-decoder models with RNNs are trained with parallel corpus with sentences
from the source and target languages. These sentences are fed into the model as one
input. Thus, the source sentence is concatenated with the target sentence with a separator
between them and a final unique token that determines the end of the sequence. Then
a self-supervision algorithm is used to predict the next token at each time step t. It is
called self-supervised because the data used is not labeled, and the model learns from
the structure of the data. The model weights are learned by minimizing the error in
predicting the next token in the training data, and they are adjusted using cross-entropy as
a loss function. A loss function computes the difference between the correct distribution
and the predicted probability distribution. So at time t, the cross-entropy loss LCE is the
negative log probability the model allocates to the next token wt+1 in the sequence.

LCE(ŷt, yt) = − log ŷt[wt+1]

where ŷt is the predicted token and yt is the correct token that comes from the training
data. Thus, at each time step t, the model inputs the correct sequence of tokens w1:t,
and uses them to compute a probability distribution over possible following words to
compute the model’s loss for the next token wt+1. Then we move to the next word,
ignoring what the model predicted and instead, it uses the correct sequence of tokens
to predict the word wt + 2. This technique is called teacher forcing, which gives each time
step the correct sequence to predict the next token.

This approach has weaknesses when predicting the target sentence since as the output
sequence is generated, the influence of the context vector will decrease. This issue can
be solved by making the context vector available at each step in the decoding process
by adding it as a parameter to the computation of the current hidden state. However,
it still presents another problem. Since the decoder has the context vector as the only
representation of the source sentence, it should capture all the meaning in the source
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sentence. Regardless, in large sentences, the information at the beginning of the sentence
can be less representative due to the recurrent computation of the context vector. The
attention mechanism is a solution to the bottleneck created by the context vector. The idea
of attention is focusing on a particular part of the source text relevant to the token the
decoder is currently producing. The context vector is created as a weighted sum of all the
encoder hidden states, depending on the token being decoded. To compute this dynamic
vector ci, at each decoding step i, we focus on how relevant each encoding state he

j is
for the previous decoding hidden state hd

i−1. The relevance is calculated as a score in
many ways. The simplest way is to compute the dot-product attention. Then, these scores
are normalized using a softmax function to create a vector of weights αij, which sets the
relevance for each encoder hidden state j to the prior hidden decoder state hd

i−1.

αij = softmax(hd
i−1 · he

j ) =
exp(hd

i−1 · he
j )

∑k exp(hd
i−1 · he

k)
∀j ∈ e

Finally, we get a context vector ci for the current decoder state with a weighted av-
erage over the encoder hidden states he

j . This process considers information from all the
input tokens depending on the generated token.

ci = ∑
j

αij he
j

The attention mechanism significantly improved the performance of the translation.
However, NMT still had some changes to overcome. The large number of computations
in RNNs and the need to maintain the hidden state at each step of training made the
training highly inefficient and time-consuming. In 2017, convolution networks [31] were
suggested to deal with this issue. The main advantage of this approach is that convolu-
tion operation does not depend on previously computed values and can be parallelized
for multi-core training, making them faster for long sentences. Convolution networks can
be stacked one after the other to substitute RNNs in the encoder-decoder architecture.
While RNNs compute dependency among tokens in a sentence in O(n), a convolution
network can achieve the same in O(logk n), where k is the size of a small matrix used in
the convolution computation.

3.4 Transformers

In 2017 a new Transformer architecture was presented in the paper Attention Is All You
Need [28], proposed by Google’s researchers. This approach avoids recurrence and relies
entirely on an attention mechanism to trace global dependencies between input and out-
put. In the above networks, the required number of operations to create relations among
2 arbitrary tokens in the input or the output grows linearly in the distance between them.
In the Transformer architecture, the number of operations is reduced to a constant num-
ber of operations since it does not use RNNs or convolution.

This architecture follows the encoder-decoder structure, where the encoder maps a
text sequence X = x1, . . . , xT to a sequence of continuous representation Henc = h1, . . . , hT.
Given Henc, the decoder generates the output sequence Y = y1, . . . , yS, token by token. At
each step, the decoder is fed the previously generated tokens to generate the new ones,
which is auto-regressive. Figure 3.4 represents the model’s distribution and the compo-
nents inside the encoder and the decoder. Both encoder and decoder transformers are
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a stack with the same number of layers N. The input is fed into the encoder tokenized,
representing each token as an embedding.

Figure 3.4: Encoder-decoder Tranformer architecture. Where N is the number of layers in the
encoder and decoder units. Figure taken from Attention Is All You Need [28].

The encoder is a stack of 6 identical layers, each with 2 sub-layers. The first is a multi-
head self-attention mechanism. A self-attention layer maps input sequences x with output
sequences y of the same length. The unit only has access to the previous inputs x1:i, and
itself, to process the value for the current token xi, but it has no access to the information
of the tokens beyond it. In addition, these computations are independent, so they are
easily parallelizable. Figure 3.5 shows how the relations in this layer would be for an
input of 5 tokens. For instance, y3 is computed using x1, x2, and x3. Instead of the simple
dot product comparison used in RNNs, transformers have a more sophisticated way of
representing the contribution of each word in the representation of longer inputs. Each
input embedding can play 3 different roles during the attention process: a role query,
as the current focus of attention when being compared to all the preceding inputs, a role
key, as a preceding input being compared to the current focus of attention, and as a value
used to compute the output for the current focus of attention. 3 weight matrices, WQ, WK

and WV , are introduced to project each input xi into a representation of its roles:

qi = WQxi; ki = WKxi; vi = WVxi

All the inputs x and outputs y, as well as the intermediate vectors, have the same di-
mensionality 1× d. Thus, the dimensionalities for the transform matrices are WQ ∈ Rd×d,
WK ∈ Rd×d, and WV ∈ Rd×d. Given these projections, the similarity score between the
current focus of attention xi and an element in the preceding context xj is a product dot
between its query vector qi and the preceding tokens’ key vectors kj. However, since a
dot product can result in arbitrarily large values, it needs to be escalated by a square root



3.4 Transformers 23

Figure 3.5: Self-attention layer. Example for an input x of 5 tokens where the yi is computed
using the x1:i

of the dimensionality of the vectors to avoid numerical issues and get effective loss of
gradients. As in the RNNs, this score has to be normalized with a softmax function to
create a vector of weights that sum 1:

αij = softmax
(

qi · kj√
d

)
=

exp
(

qi ·kj√
d

)
∑i

k=1 exp
(

qi ·kj√
d

) ∀j ≤ i

The final output yi is a weighted sum over the value vectors v. Each output is calcu-
lated independently, so the entire process can be parallelized using matrix multiplication.
Thus, the input embeddings of the sequence of length N can be packed into a matrix
X ∈ RN×d, where each row is an input embedding. The above equations can then be
re-written as matrices multiplications to produce Q ∈ RN×d, K ∈ RN×d, and V ∈ RN×d

that contain all key, query, and value vectors:

Q = XWQ; K = XWK; V = XWV

Given these matrices, the similarity score can be obtained multiplying Q and KT, and
after taking the softmax, multiply it by V. The result of the multi-head attention layer is
then a matrix of shape N × d, that we can define as the function SelfAttention(Q, K, V):

SelfAttention(Q, K, V) = softmax
(

QKT
√

d

)
V

Nonetheless, the calculation of the matrices Q and KT computes the values that fol-
low the query, so the upper-triangular portion of the matrix is set to −∞ to avoid any
knowledge of the words that follow the sequence. Besides, instead of performing a sin-
gle attention function with d dimensional keys, values and queries, the model linearly
projects the queries, keys and values h times with different learned linear projections dk,
dk and dv, respectively. On each of these projections, the attention function is performed
in parallel resulting in vectors of dimension dv. These vectors are then concatenated and
projected again, resulting in the final output.
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MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO

where headi = SelfAttention(QWQ
i , KWK

i , VWV
i )

where the projections are parameters matrices WQ
i ∈ Rd×dk , WK

i ∈ Rd×dk , WV
i ∈ Rd×dv

and WO
i ∈ Rhdv×d. Thanks to this multi-head layer, the model can simultaneously com-

pute how each sequence word relates to the others. For example, different syntactic,
semantic and discourse relationships between verbs and their arguments in a sentence
can be held.

Figure 3.6: A simple feedforward network with an input x, a hidden layer h and an output layer
y, given a matrix of weights W and a bias vector b.

Then, the result of the multi-head self-attention layer is fed into the feedforward layer.
A feedforward network is a multi-layer network in which the units are connected with-
out cycles. Thus, the outputs from the units in each layer are passed to the units in the
next higher layer, and no result is passed back to the lower layers. Simple feedforward
networks have 3 types of nodes: input units, hidden units and output units. The core
of neural networks is the hidden layer h formed by hidden units hi, each of which is a
neural unit, as introduced in the section 3.1.3. These layers are usually fully-connected,
meaning all units take all the outputs from all the units in the previous layer as input.
Each hidden unit has a weight vector wi and a bias bi as parameters. Each weight vector
and bias can be combined to form a matrix W and a vector b for each layer in the net-
work. Thus, each element Wji represents the weight of the connection between the input
unit xi to the hidden unit hj. Using a weight matrix simplifies the computations and can
be done efficiently with matrix operations. The output of the hidden layer h is computed
by multiplying the weight matrix W by the input vector x, adding the bias vector b, and
applying an activation function g to each element in the result, such as sigmoid, tanh or
ReLU:

h = g(Wx + b)
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Figure 3.6 shows an example of a feedforward network with an input x ∈ Rn0 , a
hidden layer h ∈ Rn1 and a vector x ∈ Rn1 . The above equation will compute the value
of each hi using the matrix W ∈ Rn1×n0 . Then, the goal of the output layer is to compute a
final vector y ∈ Rn2 taking h. Like the hidden layer, the output layer has a weight matrix
U ∈ Rn2×n1 , which is multiplied by h to produce the intermediate output z ∈ Rn2 . Similar
to the matrix W, each element Uij is the weight value from the unit j to the output unit
i. In some models, the bias is not added in this layer, so we will eliminate it to simplify.
Finally, each value in z is normalized using a softmax function to compute final output y:

z = Uh

yi = softmax(zi) =
exp(zi)

∑d
j=1 exp(zj)

1 ≤ i ≤ n2

This feedforward network is called a 2-layer network. However, depending on the
task, these networks can have as many layers as desired. Feedforward networks with
multiple hidden layers are called deep neural networks, which give birth to a new ma-
chine learning field, deep learning. In the case of the transformer architecture, the output
of the self-attention layer Z is fed into this feedforward network to produce the output Y.
The network is applied to each position separately and identically, consisting in 2 linear
transformations with a ReLU activation in between:

FFN(z) = max(0, zW1 + b1)W2 + b2

These layers are inside a transformer block, which can be stacked to match the input
and output dimensions. As shown in figure 3.4, a residual connection and a normal-
ization layer follow the feedforward network and the self-attention layers. In deep net-
works, the residual connections pass information to a higher layer without going through
an intermediate layer. This residual connection improves learning by allowing informa-
tion from the activation to go forward, and the gradient to go backwards. In transformers,
these connections are implemented by adding the layer input to its output before passing
it on. Then these summed vectors are normalized using layer normalization. Simplify-
ing, we can express the computation of each resulting vector Y of the transformer block
as:

z = LayerNorm(x + SelfAttention(x))
y = LayerNorm(z + FFN(z))

Layer normalization is a variation of the standard scores of similarity seen above. The
first step is to calculate the mean µ and the standard deviation σ over the elements over
the elements of the vector x. Given the dimensionality of the hidden layer d, these values
are computed as:

µ =
1
d

d

∑
i=1

xi

σ =

√√√√1
d

d

∑
i=1

(xi − µ)2
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Given these values, the vector components are normalized by subtracting the mean
from each and dividing by the standard deviation. This computation results in a new
vector whose mean is 0 and whose standard deviation is 1. Then, 2 learnable parameters
are introduced, α and β, representing gain and offset values.

x̂ =
x − µ

σ
LayerNorm(x) = αx̂ + β

The output of the encoder blocks is represented as Henc, which is the context for the
decoder unit representing the input. As well as the encoder, the decoder has a multi-
head attention layer, followed by a normalization layer, a feedforward network, and an-
other normalization layer. However, decoder blocks have an extra layer called the cross-
attention layer. This layer is very similar to the multi-head self-attention layer, except the
keys and values come from the output of the encoder. Thus, the encoder output is mul-
tiplied by the cross-attention layer’s key weights WK and WV value weights. The query
weights WQ, on the other hand, are multiplied by the output from the prior decoder layer
Hdec[i−1]:

Q = WQHdec[i−1]; K = WKHenc; V = WVHenc

CrossAttention(Q, K, V) = softmax
(

QKT
√

dk

)
V

As encoder-decoder models with RNNs, encoder-decoder transformers are trained
with parallel corpus with sentences from the source and target languages. These sen-
tences are fed into the model as one input. Thus, the source sentence is concatenated
with the target sentence with a separator between them, and a final unique token deter-
mines the end of the sequence. Then, a self-supervision algorithm is used to predict the
next word at each time step t and model weights are adjusted using cross-entropy as a loss
function. So at time t, the cross-entropy loss LCE is the negative logarithmic probability
the model assigns to the next token wt+1 in the training sequence.

LCE(ŷt, yt) = − log ŷt[wt+1]

where ŷt is the predicted token and yt is the correct token that comes from the training
data. Thus, at each time step t, the model inputs the correct sequence of tokens w1:t, using
teacher forcing.

3.5 Pre-trained Transformer models

The Transformer architecture significantly advanced the capabilities of LLMs. The self-
attention mechanism allows the model to attend to different positions in the input se-
quence, capturing dependencies more effectively. The Transformer models demonstrated
superior performance in various NLP tasks, including language modeling, MT, and text
generation.

This outcome led to the birth of new transformer-based LLMs, eventually bringing us
to today’s revolution. Transformer-based models are trained in vast amounts of data and
require much power to carry on the necessary training process. Big tech companies with
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access to extensive computer clusters and data centers with substantial computational
resources are the only ones capable of doing this process. It is vital to be aware of this
process’s environmental impact due to the significant energy consumed that can result in
a substantial carbon footprint [32].

This booming technology continually evolves, and new models are presented almost
daily. We will review some of the most popular and crucial models below. Yet, we should
mention that there are a lot more with similar performance.

3.5.1. Generative Pre-trained Transformer (GPT)

Generative Pre-trained Transformer (GPT) represents a groundbreaking milestone in the de-
velopment of large language models. It was the first pre-trained Transformer model that
achieved significant success in fine-tuning for various NLP tasks, leading to state-of-the-
art results. GPT, introduced by OpenAI in 2018 [33], leverages the transformer archi-
tecture and a massive amount of unsupervised text data for pre-training. Its training
process consists of 2 stages. The first stage is an unsupervised pre-training on a large
corpus of text. Given the corpus of tokens X = {x1, . . . , xn}, the objective is to maximize
the following likelihood:

L1(X ) = ∑
i

log P(xi|xi−k, . . . , xi−1; Θ)

where k is the size of the context window, and the conditional probability P is modeled
using a neural network with parameters Θ. These parameters are trained using stochastic
gradient descent.

The GPT model uses a multi-layer Transformer decoder for the language model, ap-
plying a multi-headed self-attention operation over the input context tokens followed by
position-wise feedforward layers to produce an output distribution over target tokens:

h0 = UWe + Wp

hl = transformerBlock(hl−1)∀i ∈ [1, n]

P(x) = softmax(hnWT
e )

where X = (x−k, . . . , x−1) is the context vector of tokens, n is the number of layers, We
is the token embedding matrix, and Wp is the position embedding matrix. After the
pre-training, the parameters are adapted to the supervised target task, which can be clas-
sification, entailment, similarity or multiple choice. Assuming a labeled dataset C, where
each instance consists of a sequence of input tokens, x1, . . . , xm, along with a label y, the
inputs are passed through the pre-trained model to obtain the final transformer block’s
activation hm

l , which is then fed into an added linear output layer with parameters Wy to
predict y:

P(y|x1, . . . , xm) = softmax(hm
l Wy)

This gives the objective L2 to maximize, which is then combined with the previous
one L1 to make a weighted objective L3, with weight λ:

L2(C) = ∑
(x,y)

log P(y|x1, . . . , xm)

L3(C) = L2(C) + λ ∗ L1(C)

For some tasks, like text classification, the model can be fine-tuned as described
above. Other tasks, like question answering or textual entailment, have structured in-
puts such as ordered sentence pairs or triplets of documents, questions, and answers.
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Figure 3.7: On the left is the Transformer architecture used and the training objectives. On the
right are the input transformations for fine-tuning on different tasks. All inputs are converted
to sequences of tokens processed by the pre-trained model, followed by a linear+softmax layer.

Figure taken from Improving language understanding by generative pre-training [33].

Since the pre-trained model was trained on contiguous sequences of text, applying it to
these tasks requires some modifications. These changes imply converting structured in-
puts into an ordered sequence that the pre-trained model can process. For example, the
premise p and hypothesis h token sequences are concatenated for entailment tasks, with
a delimiter token ⟨$⟩ in between, a start token ⟨s⟩, and an ending token ⟨e⟩. These input
transformations prevent extensive architecture changes across tasks but require indepen-
dent processing, as shown in Figure 3.7.

The GPT model showcased its capacity for coherent text generation, text completion,
and limited language understanding. While it could complete sentences, suggest word
predictions, and even provide basic translations and summaries, its generated content
sometimes lacked accuracy and coherence. Despite its capabilities, GPT exhibited limi-
tations such as generating implausible responses, struggling with unfamiliar topics, and
not consistently providing accurate answers to questions.

One year later, in 2019, GPT-2 was presented [34], an evolved version of GPT-1 that
brought several technical improvements and differences compared to its predecessor.
GPT-2 is significantly larger, with models ranging from 117 M to 1, 5 B parameters. The
larger model sizes contribute to improved performance but also require more computa-
tional resources. It was trained on a more extensive and diverse dataset, encompassing
a broader range of topics and writing styles, which increased scale and contributed to
its improved language understanding and generation capabilities. GPT-2 showed some
ability for few-shot and even zero-shot learning, performing tasks with just a few or even
zero examples.

In 2020, OpenAI presented GPT-3 [35], a massive model with 175 B parameters, mak-
ing it substantially larger than any version of GPT-2. It demonstrated exceptional capa-
bilities in language generation, understanding, and a wide range of tasks. GPT-3 could
generate creative stories, answer questions accurately, provide translations, write code
in various languages, and much more with minimal task-specific fine-tuning. OpenAI
took advantage of this performance and launched a variant of the GPT-3.5 model, an
improved version of GPT-3, fine-tuned specifically for conversational interactions, using
labeled data for further training. The AI trainers play as users and AI assistants to build
the answers based on prompts. Then, the answers with prompts are used as supervised
data for further training of the pre-trained model. This model, called chatGPT, could gen-
erate human-like text responses in a chatbot or dialogue format. For this reason, OpenAI
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made the power of this LLM available for everyone in a user-friendly chatbot interface.
Its excellent performance in simulating a conversation with a human and its coherent
responses led it to an unprecedented popularity in the field of AI, reaching ordinary peo-
ple.

The research on GPT continued until, in 2023, GPT-4 was presented [36]. It is a large
multimodal model, that accepts image and text inputs to emit text outputs. It exhibits
human-level performance on various professional and academic benchmarks to the point
that it beats 90% of people who take the exam to become lawyers [37]. In fact, it scores in
the top ranks for at least 34 different tests of ability in fields as diverse as macroeconomics,
writing, math, and much more. This model shows astonishing performance and hints at
a bright future for LLMs.

3.5.2. Bidirectional Encoder Representations from Transformers (BERT)

In 2018, Google AI presented the Bidirectional Encoder Representations from Transformers
(BERT) [38], whose architecture is a multi-layer bidirectional Transformer encoder based
on the original implementation described in section 3.4. BERT’s Transformer uses bidi-
rectional self-attention, while the GPT Transformer uses constrained self-attention where
every token can only attend to the context to its left. It was released with different sizes,
in which the number of layers and self-attention heads differed. The base model was as
big as GPT-1 for comparison purposes. BERT uses WordPiece tokenization, which splits
words into subwords, allowing the model to handle out-of-vocabulary words and im-
prove generalization. The first token of every sequence is always [CLS], and [SEP] is
used to separate the target sentence and as the ending token. The final input representa-
tion E for a given token is the sum of the corresponding token embedding, the position
embedding and the segment embedding, indicating whether the token belongs to sen-
tence A or B.

Figure 3.8: BERT pre-training and fine-tuning methods. The same architectures are used in pre-
training and fine-tuning, except in the output layers. The same pre-trained parameters are used

to initialize the models for different tasks. Figure taken from BERT’s research paper [38].

As GPT, BERT is pre-trained on a large corpus of text data, learning to predict missing
words in sentences. It does this by masking out a certain percentage of the words in
each sentence with the token [MASK] and learning to predict them based on the context
provided by the surrounding tokens on the left and the right. Additionally, BERT learns
to predict whether 2 sentences in a pair follow each other in the original text or not.
Specifically, when choosing the sentences A and B for each pre-training example, 50% of
the time B is the actual next sentence that follows A, labeled as IsNext, and 50% of the
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time it is a random sentence from the corpus, labeled as NotNext. This process helps the
model learn contextual relationships between words and sentences.

After pre-training, BERT can be fine-tuned on specific NLP tasks such as text classi-
fication, named entity recognition, question-answering, and more. The specific inputs
and outputs are fed into BERT for each task, and all the parameters end-to-end are fine-
tuned, as seen in Figure 3.8. At the input, sentence A and sentence B from pre-training are
analogous to:

1. Paraphrase: Sentence pairs.

2. Entailment: Hypothesis-premise pairs.

3. Question answering: Question-passage pairs.

4. Text classification: A degenerate text-∅ pair.

At the output, the token representations are fed into an output layer for token-level
tasks, such as sequence tagging or question answering, and the [CLS] representation is
fed into an output layer for classification, such as entailment or sentiment analysis. This
fine-tuning enables BERT to adapt its knowledge to the nuances of the task. Compared
to pre-training, fine-tuning is relatively inexpensive.

BERT’s key innovation lies in its ability to capture complex contextual relationships
in language, and it achieved state-of-the-art performance on a wide range of tasks with-
out requiring extensive task-specific architecture modifications. This performance led to
the research of new models based on BERT. Researchers extended BERT’s architecture
to develop models that perform well in specific languages, such as BETO for Spanish,
developed by the Barcelona Supercomputing Center [39], BERTje for Dutch, BERTurk for
Turkish, and more. mBERT, multilingual version of the model trained in 104 languages,
was also released in the same year.

Facebook AI presented a Robustly Optimized BERT Pre-training Approach (RoBERTa) [40]
in 2019, a model that builds upon BERT’s architecture and training methodology. It opti-
mized various hyperparameters and training techniques, improving performance on var-
ious NLP tasks. RoBERTa drops the Next Sentence Prediction objective and focuses solely
on the Mask Language Model task, masking a larger percentage of words in each sentence
and sampling different masked words for each training epoch. RoBERTa demonstrated
that careful tuning of training strategies can lead to substantial performance gains.

Facebook AI also released Bidirectional and Auto-Regressive Transformers (BART) [41]
in 2019, a BERT-based model combining bidirectional and auto-regressive training objec-
tives. Like BERT, BART is trained to predict masked words in sentences, and also learns
to reconstruct corrupted sentences. The denoising autoencoder reconstruction objective
involves corrupting the input sentences and training the model to reconstruct the original
sentences. This autoencoder-style training contributes to BART’s auto-regressive gener-
ation capability. This combination makes BART suitable for tasks involving language
understanding and text generation, such as summarization, translation, and more.

3.5.3. Text-To-Text Transfer Transformer (T5)

Google AI presented a model architecture called Text-to-Text Transfer Transformer (T5) in
2020 [42]. It is a variant of the Transformer architecture designed to be trained in all
NLP tasks with a unified text-to-text format, where inputs and outputs are treated as text
sequences. For example, if we want to translate I love you. from English to German, the
model would be fed the sequence "translate English to German: I love you." and it would
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be trained to output "Ich liebe dich." This approach allows T5 to handle a wide range of
tasks, including classification, translation, summarization, and more, using a consistent
framework.

T5 encoder-decoder implementation is roughly equivalent to the original Transformer
architecture described in Section 3.4, except for removing the Layer Norm bias, placing
the layer normalization outside the residual path, and using a different position embed-
ding scheme. While the original Transformer used a sinusoidal position signal or learned
position embeddings, T5 uses relative position embeddings. These simplified position
embeddings are simply a scalar, representing the offset between the key and query, added
to the corresponding logit for computing the attention weights. For efficiency, the posi-
tion embedding parameters are shared across all layers in the model, though each atten-
tion head uses a different learned position embedding within a given layer.

The encoder and decoder consist of 12 blocks, each comprising self-attention, optional
encoder-decoder attention, and a feed-forward network. The feed-forward networks in
each block consist of a dense layer with an output dimensionality of d f f = 3 072, fol-
lowed by a ReLU nonlinearity and another dense layer. The key and query matrices of all
attention mechanisms have an inner dimensionality of dkv = 64 and all attention mech-
anisms have 12 heads. All other sub-layers and embeddings have a dimensionality of
dmodel = 768. This results in a model with about 220 million parameters, almost twice the
number of parameters of BERTBASE.

T5 is pre-trained in a large unlabeled corpus made by the research team called the
Colossal Clean Crawled Corpus (C4), a cleaned version of the Common Crawl dataset, a
publicly-available web archive that provides "web extracted text" by non-text content
from the scraped HTML files. The team cleaned this dataset following some heuristics
to obtain 750 GB of natural language in English. A model for each task was pre-trained
for 219 = 524 288 steps on C4 before fine-tuning. An inverse square root learning rate
schedule was used during pre-training:

1√
max(n, k)

where n is the current training iteration and k is the number of warm-up steps, set to 104

in all the experiments. This formula sets a constant learning rate of 0, 01 for the first 104
steps, then exponentially decays the learning rate until pre-training is over. Then, models
were fine-tuned for 218 = 262 144 steps on all tasks.

T5’s consistently strong performance across a broad spectrum of tasks established
its reputation as a competent and versatile model in the field of NLP. Because of this,
in 2021, Google Research launched mT5 [43], a multilingual version of the T5 model.
This model was pre-trained in similar conditions to T5 with a multilingual dataset called
mC4, containing more than 100 different languages. Researchers demonstrated that the
T5 recipe can be applied to the multilingual setting and achieved strong performance on
diverse benchmarks.

3.5.4. BLOOM

In 2022, the BLOOM model was released [44], a multilingual Transformer model based
on GPT-2 and developed collaboratively by over 1 000 researchers from more than 70
countries and more than 250 institutions. It is designed to address the issue of limited ac-
cessibility to powerful LLMs, which are typically only available to large industrial labs.
The model utilizes a decoder-only architecture, which generates text in 46 natural lan-
guages and 13 programming languages based on previous tokens without direct access
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to future tokens. BLOOM has 176 B parameters and comprises 70 layers with 112 atten-
tion heads each. This model represents the most extensive collaboration of AI researchers
on a single project. It was trained transparently over a year, with the final training run
lasting 117 days on the Jean Zay supercomputer in Paris, France. Competitive results can
be achieved with zero-shot or few-shot learning, which can be improved after multitask-
ing fine-tuning.

3.6 Data augmentation

Data augmentation (DA) is the process of artificially increasing datasets by creating new
samples using the existing data. We can distinguish 2 results depending on the technique.
The first approach involves minor modifications to the items in the dataset, resulting
in augmented data. Nonetheless, recent methods rely on deep learning to create new
synthetic data without the original database. DA can be used for many data types, such
as images, audio, video, or text. This section will explain the main approaches of NLP
data augmentation techniques.

3.6.1. Easy Data Augmentation

Easy Data Augmentation (EDA) was one of the initial text augmenting techniques pro-
posed in 2019 [45]. It randomly selected 4 simple operations: synonym replacement,
random insertion, random deletion, and random swap. These operations aimed to cre-
ate new examples by perturbing the original text while preserving its meaning to some
extent.

• Synonym Replacement: Randomly select n words from the text that are rarely
used. Subsequently, replace them by one of its synonyms randomly choosen. For
example, given the first sentence, replacing 2 random words could result in the
second sentence:

This project will focus on explaining the best how to augment a dataset.

This work will focus on explaining the best how to extend a dataset.

• Random Insertion: Randomly select n words from the text that are rarely used.
Subsequently, add one of its synonyms at a random sentence position. For example,
given the first sentence, inserting one word at a random position could result in the
second sentence:

The kids were playing in the park.

The kids were enjoying playing in the park.

• Random Swap: Randomly select 2 words from the text that are rarely used and
swap their positions. For example, given the first sentence, swapping 2 random
could result in the second sentence:

The quick brown fox jumps over the lazy dog.

The lazy brown fox jumps over the quick dog.

• Random Deletion: Each word in the sentence is randomly removed with probabil-
ity p. For example, given the first sentence, randomly removing each word could
result in the second sentence:

The dos was sitting on the couch.

The dog was on the couch.
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Since sentences can vary in length, changing too many words in short sentences can
lead to modifying the meaning or losing coherence. To compensate the length difference,
the number of words changed n is based on the sentence length with the formula n = αl,
where α is the percentage of words changed in the sentence, and l is the sentence’s length.
In the case of random deletion, p is equal to α. We should also mention that words were
selected in the above examples to produce coherent sentences. However, in a normal
process, words will be chosen randomly, and the resulting sentences may have incoherent
meanings or nonsense. For this reason, EDA is a good technique for text classification
but not for other NLP tasks like MT, where sentence quality is essential for the model
performance.

3.6.2. Back-translation

Back-translation is the most common technique to augment datasets in MT. Parallel cor-
pora can be challenging to find, and in the case of finding some bitext, it may be limited
for some languages or domains. However, we often find a larger monolingual corpus
that we can use and add to the parallel corpus.

Back-translation aims to improve MT models, given a small or limited parallel corpus
and some monolingual data in the target language [1]. The first step is training an MT
system in the reverse direction, from the source to the target language. Then, this model
is used to translate the monolingual data in the target language to the source language.
The resulting parallel corpus is finally added to the existing parallel corpus to train our
objective MT model.

Many works and experiments have been done using this technique. For instance,
in the ETSINF, this technique has been used to improve MT systems in a DFP, called
Using back-translation for machine translation based on transformer, proposed by Vladyslav
Mazurkevych [46]. This work aimed to enhance parallel corpus in 4 language pairs: En-
glish to French, English to German, German to English, and French to English. Then, he
compared MT systems trained on the original parallel datasets with MT systems trained
on the synthetic data added to the original. Despite being a limited experiment with
low resources and relatively little training data, the results showed that the MT systems
improved the performance.

Thus, in general, back-translation works surprisingly well. Some estimations say that
an MT system trained on back-translated data can achieve about 2/3 of the gain as would
training on the same amount of natural parallel data.

3.6.3. Masked Language Models

Contextual augmentation is another word-level data augmentation method that uses
Masked Language Models (MLMs) such as BERT and RoBERTA to generate new text based
on the context [47, 48]. It consists of inserting <mask> tokens in some text positions or
replacing some words with <mask> tokens and then letting the MLM predict what words,
different from the original, could be put in these masked positions. Since MLMs are pre-
trained on many texts, contextual augmentation can usually generate meaningful new
texts.

This approach has some meaningful parameters, like selecting the percentage of words
that will be masked to be changed. If the percentage is too low, the sentences will be al-
most identical, and the change will be minimal. On the other hand, if the percentage is
too large, there is a danger that by changing too many words, the meaning or sentiment
of the sentence will be lost. That behavior is not desired in text classification datasets or
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sentiment analysis datasets. The most common range is from 20 % to 50 % replacement
rate.

Another critical parameter is what words are selected for masking. The easiest way
is to select them randomly, which can make undesired changes that lead to incoherent
sentences. A more sophisticated approach is to select the words depending on their part
of speech (POS) [47]. This can be done with some NLP packages, like spaCy 1, which uses
trained models on a specific language, or multilingual, that can predict the POS tagging
of each word. For instance, replacing nouns, adjectives, and adverbs carries less danger
of losing coherence and meaning. Yet, it can make the sentence lose the sentiment and
transform it into the opposite. Let’s see an example:

The movie I saw in the cinema looked pretty interesting to me.

The movie I saw in the cinema looked pretty <mask> to me.

The movie I saw in the cinema looked pretty boring to me.

Moreover, these models can sometimes tag words incorrectly since the tagging is
made individually without considering the context. For instance, the word book can be
either a noun or a verb:

This book is interesting.

I will book a table for two.

Using MLMs can result in good data augmentation depending on the purpose of the
dataset and the above parameters. In some tasks like sentiment analysis, it is common
to lose the sentiment and break the dataset. In other tasks, like text classification or MT,
suitable data can be obtained to improve the model’s performance.

3.6.4. Large Language Models for Paraphrasing

Researchers found a new way to augment text using the state-of-the-art performance of
Large Language Models (LLMs) fine-tuned for conversations [49]. We can highlight the
chatGPT model or open-spurce models like Dolly-v2 2, and StableVicuna 3. The method-
ology is as simple as asking them to paraphrase the sentences to augment. Their language
knowledge allows them to substitute not just individual words but an entire phrase or
expression. These substitutions lead to a successful data augmentation since the sen-
tence meaning and sentiment are almost identical or identical. As seen in Figure 3.9, this
approach has been used recently to augment multilingual text datasets for text classifi-
cation, sentiment analysis, or question answering. LLMs can even be used to augment
complex datasets like:

• XCOPA, a multilingual Choice of Plausible Alternatives dataset. Each instance con-
sists of a premise, a question, and 2 alternatives and the task is to predict the more
plausible alternative.

• XWinograd, a multilingual dataset that consists of pronoun resolution problems
aiming to evaluate the commonsense reasoning ability of a machine. Given a state-
ment with 2 noun phrases and a pronoun, the challenge of the dataset is determin-
ing the referent of the pronoun, which can only be inferred from the context.

1Official GitHub page with source code and documentation: https://github.com/explosion/spaCy
2Official GitHub page with source code and documentation: https://github.com/databrickslabs/

dolly
3Official page with documentation: https://lmsys.org/blog/2023-03-30-vicuna/

https://github.com/explosion/spaCy
https://github.com/databrickslabs/dolly
https://github.com/databrickslabs/dolly
https://lmsys.org/blog/2023-03-30-vicuna/
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• XStoryCloze, a multilingual dataset in which each example consists of a four-sentence
commonsense story, a correct ending, and a wrong ending.

Figure 3.9: Sentence augmentation by chatGPT. An example of text augmentation in a text clas-
sification dataset using chatGPT. Figure taken from AugGPT’s research paper [49].

LLMs can augment commonsense reasoning data and generate new samples with
sense and coherence. Currently, this approach has limitations, but it is expected that in
the future, the evolution of these models will improve its responses will improve.

Augment text using LLMs involves carefully designing and crafting prompts, called
prompt engineering. Prompt engineering aims to guide the model’s behavior and output
to produce the desired results or responses. Sometimes, a few examples are required
to show the model what the output should look like. Figure 3.10 shows the 2 options
available to prompt chatGPT. The single-turn dialogue includes the instruction in each
message, which will unnecessarily augment the number of tokens used. On the other
hand, the multi-turn dialogue includes the instruction in a first message with a special
role system. Then, each sentence to augment is sent in separate messages as the user and
the assistant will answer the number of results requested. This solution avoids repeating
the instruction in each message, resulting in less token usage. The number of tokens is
essential since it can be translated into the used power or money, since these massive
models are expensive.

Figure 3.10: Prompt examples for DA in chatGPT. Single-turn dialogue and multi-turn-dialogue
for DA in chatGPT. Figure taken from AugGPT’s research paper [49].

Effective prompt engineering can help ensure that the model produces accurate and
relevant responses. However, LLMs show some limitations, like recognizing and aug-
menting medical texts, since they can produce incorrect augmentation results due to the
lack of domain knowledge. Moreover, these models perform less in low-resource lan-
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guages since their vocabulary and knowledge are more limited than in high-resource
languages. In general, unlike other methods, LLMs can expand the limited data at the
semantic level to enhance data consistency and robustness, which results in a better per-
formance than most of the current text data augmentation methods.



CHAPTER 4

Experimental framework

This chapter presents a comprehensive experimental framework to address the challenge
of training MT systems in low-resource conditions by proposing an innovative solution
for augmenting parallel datasets. The proposed solution unifies advanced techniques
from NLP and ML, offering a promising avenue for enriching parallel datasets. The sub-
sequent sections of this chapter delineate the critical components of this experimental
framework, comprising the proposed solution, the corpora selected to augment, and the
experiments done to check the solution’s effectiveness.

While at the company as an intern, I made many experiments to augment text. After
many experiments and trying different techniques to augment text data, I wrote a library
in Python 1 called DataAug with different functions to augment corpora. This library is
composed of 2 classes:

• FastAug: This class is designed to perform fast since sentences are not processed.
It breaks text into tokens using a regular expression, and only words can be can-
didates to be masked. From the candidate tokens, it randomly selects n tokens to
mask based on the sentence tokens count l and a replace rate λ. That means it will
replace n = ⌊l ∗ λ⌋ if the masking is successful. Masking is successful if there is a
word that is not equal to the original in the top_k predictions of the model. At least
one word must have been substituted to save the augmented sentence. Forbidden
words can be set not to be masked, and the model cannot return forbidden tokens
if desired.

• DeepAug: This class is designed to get higher quality results but with a slower per-
formance. It is slower than FastAug because each sentence is processed with spaCy,
an NLP library in Python. This library is responsible for tokenizing the sentences,
assigning a part-of-speech tag that indicates the word’s grammatical category, and
identifying named entities such as persons, organizations, locations, dates, and
more within the text. This analysis uses a trained model in the text’s language
to predict these characteristics. This analysis allows specific word categories to be
chosen as candidates for the masking process. For example, the default option only
selects nouns, adjectives, and adverbs. As in FastAug, a replace rate λ can be set,
so n = ⌊l ∗ λ⌋ words will be substituted, where l is the number of tokens in the
sentence. At least one word must have been substituted to save the augmented
sentence. Forbidden words can be set not to be masked, and the model cannot
return forbidden tokens if desired. It also has the option of augmenting only the
vocabulary. That means words can only be replaced with words not in the corpus.

1Official page with source code and documentation: https://www.python.org/
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FastAug can only augment monolingual data, but DeepAug can augment both mono-
lingual and parallel corpora. We will focus our experiments on parallel corpora augmen-
tation, which will be explained below. The source code is not publicly available since it
was developed for commercial and research purposes in the company. The experiments
have been adapted to the available computational resources since the augmenting of the
data and the training processes are done outside the company with personal resources.

4.1 Proposed solution

The proposed solution comprises a method integrated into the DeepAug library to aug-
ment parallel texts. To begin, let us review the parameters available in this method:

• model (str): The model’s name in the Hugging Face that will be used for mask-
ing the selected words. Hugging Face 2 is a platform for sharing, discovering, and
fine-tuning AI models. Its Python library, transformers, will download and load
the model parameters and configuration files. This setting allows one to choose a
specific language or domain model.

• top_k (int): The number of predictions the model will compute for each word.
The computations are slower when this number is large, but each token has more
chances to be substituted. On the other hand, if the number is small, the computa-
tions are faster, but a word has fewer chances to be changed.

• data (pandas.DataFrame): The data to augment is fed as a data frame using pandas 3,
an open-source data analysis and manipulation tool coded in Python. This data
frame comprises 2 columns whose names are its language 2-letter code, which must
equal the following 2 parameters. The rows are the sentence pairs.

• src_lang (str): The 2-letter code of the source language.

• tgt_lang (str): The 2-letter code of the target language.

• result (str): The file name where the results are saved.

• vocabulary (bool, optional): Either to augment the vocabulary in the target lan-
guage corpus. This option saves a dictionary with all the words in the target cor-
pus, and only words not included in it will be accepted as replacements. The default
value is False since this reduces the chances of replacing a word successfully.

• allow (list, optional): The list of allowed POS tags, based on the Universal POS
tags 4. Only words with these tags can be selected for masking. The default value is
["ADV", "ADJ", "NOUN"], which stands for adjectives, adverbs, and nouns.

• replace_rate (float, optional): The replace rate that defines the number of words to
select for masking. The default value is 0, 3.

• forbidden_words (list, optional): The list of forbidden words that cannot be se-
lected for masking or returned by the model. The default value is an empty list.

• min_sentence_length (int, optional): The minimum sentence word length to be
selected for augmenting. The default value is 5.

2Official page: https://huggingface.co/
3Official page with source code and documentation: https://pandas.pydata.org/
4Official page with all POS tags: https://universaldependencies.org/u/pos/

https://huggingface.co/
https://pandas.pydata.org/
https://universaldependencies.org/u/pos/
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• max_sentence_length (int, optional): The maximum length of a sentence to aug-
ment. The default value is 80 since sentences that are too long can last many seconds
to be augmented.

• verbose (bool, optional): Choose to print in which step or sentence pair is the
script. The default value is False.

• cuda (bool, optional): Choose if CUDA should be used and perform the model
computations on GPU. The default value is True.

The first step of the process is downloading and loading the selected model and its
configuration files, which is done automatically by the library transformers. This pro-
cess is done with the pipeline method, whose input is the masked sentence in plain
text, and the output is the decoded top_k tokens predicted by the model. This method
compresses several steps into one, making the process more accessible.

Then, the correspondent spaCy trained model for each language is loaded. After load-
ing, sentence pairs are saved into 2 spaCy Corpus, one per language. The trained model
processes sentences before being saved into the corpus. After processing, sentences are
tokenized, and words are POS-tagged. This process can be computed in parallel using
multi-threading to speed up. In this step, if the vocabulary parameter is set to True, all
unique words in the target sentences will be saved in a dictionary.

Once all sentences are processed and saved, the augmenting loop starts. First, it dis-
cards all the sentence pairs with fewer words than min_sentence_length or more words
than max_sentence_length. Then, it is time for a crucial part of the process: the word align-
ment between sentences. The alignment is powered by the awesome-align library, which
can extract word alignments from multilingual BERT [51]. This produces a mapping in
i-j pairs. A pair i-j represents that the ith word of the source sentence is aligned with the
jth word of the target sentence. However, this mapping needs an adaptation to the actual
word positions since BERT has subword tokens. After many tests, it has been proven that
the mapping works well in most high-resource languages. In some cases, some tokens
do not have any pair, and in some cases, a token is related to more than one token in the
other sentence.

Then, the candidate tokens for masking are selected in the target sentence. The re-
quirements are that it has a pair in the source language, it has an allowed POS tag, it is a
word, and it is not in the forbidden_words list. With the replace_rate as λ, if the number of
candidate words is lower than n = ⌊l ∗ λ⌋, it will try substituting all the candidate words.
If the number of candidate words is larger than n, the method will try substituting n ran-
dom words of the candidate ones. When a word has been selected, it is substituted by the
token <mask>, and the sentence is fed into the model. Then, it loops over the predictions
to find a word different from the original, not in the forbidden words, and with the same
POS tag as the original word. If the vocabulary parameter is set to True, the word cannot
be in the vocabulary. If the prediction meets all these conditions, it tries to find a suitable
synonym for the source sentence using the above mapping.

The query for a synonym is made to the Panlex API 5, a large-scale linguistic database
and resource that aims to connect and catalog the world’s languages. One call can return
many synonyms of the requested word in the source language, but only the first that
equals the POS tag of the requested word is accepted. This requirement reduces the loss
of coherence in the sentence. If the word is not found, it returns to the last sentence and
selects a new word in the target sentence to mask. If the word is found and replaced
successfully in the source sentence, the new pair is saved with the changes and returns

5Official page with API documentation: https://api.panlex.org/v2/

https://api.panlex.org/v2/
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to the loop of selecting words. This loop ends when n correctly substituted words are
reached, or no more candidate words are left. At least one word has to be changed to
save the sentence pair as a new synthetic pair.

4.2 Corpora

The goal of this project is to improve datasets in low-resource cases. These cases can be ei-
ther because it is a low-resource language or a specific domain with limited parallel data.
The case chosen for this project is a low-resource domain like the medical. The dataset is
called EMEA 6 and it is a parallel corpus of PDF documents from the European Medicines
Agency in 22 languages, comprising 23 M sentence fragments or 311, 65 M tokens. It was
downloaded from OPUS [52], a free language resource of parallel corpora.

For this project, we have selected 3 familiar languages as the target language and
English as the source language, resulting in the pairs: English-Spanish, English-French,
and English-Greek. The original bitexts have almost 1, 1 M sentence pairs, but many
are too short or mainly composed of numbers. To obtain quality data, all sentence pairs
with less than five words in any language are eliminated. This filter results in around
600 K pairs in each language pair. Detailed statistics of the sentence count can be seen in
Table 4.1.

Language pair Original dataset Filtered dataset
English-Spanish 1 098 333 618 308
English-French 1 092 568 617 364
English-Greek 1 073 225 584 160

Table 4.1: EMEA dataset statistics. Number of sentence pairs before and after the filtering.

During the dataset construction, files were automatically converted from PDF to plain
text using pdftotext, a method from the PDF rendering library Poppler 7, with the com-
mand line arguments -layout -nopgbrk -eol unix. There are some known problems
with tables and multi-column layouts, but in general, the quality of the alignment is suit-
able.

4.3 Experiments

The purpose of the experiments is to check if the addition of the synthetic data to the orig-
inal data can impact the model’s performance. The experiment’s selected model is the
mT5 model [43], explained in section 3.5.3. This model was selected because it was pre-
trained with several languages, including those selected for this project. Its pre-trained
knowledge from large-scale datasets allows it to capture a wide range of language pat-
terns and nuances, which is crucial for accurate translation. Besides, its text-to-text format
makes it easy to handle the translation task by taking source text as input and generating
target text as output. mT5 has consistently demonstrated state-of-the-art performance
across various NLP tasks, including MT. Since mT5 benefits from transfer learning, it
can be fine-tuned on specific translation datasets, making it more effective in generat-
ing high-quality translations. Thus, a model for each language pair is fine-tuned with
the original dataset, and the same model is fine-tuned with the original dataset plus the
synthetic dataset.

6Data files for all language pairs are available at https://opus.nlpl.eu/EMEA.php
7Source code available at https://poppler.freedesktop.org/

https://opus.nlpl.eu/EMEA.php
https://poppler.freedesktop.org/
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The filtered dataset is split into 3 sets for the experiments: 70 % is used for training the
models, 20 % is used for the evaluation during the training to tune hyperparameters and
assess the model’s performance, and 10 % is reserved for testing purposes. The count of
sentence pairs obtained for each language pair is shown in Table 4.2.

Filtered dataset Training set Evaluation set Test set
Percentage 100 % 70 % 20 % 10 %

English-Spanish 618 308 432 815 123 662 61 831
English-French 617 364 432 154 123 473 61 737
English-Greek 584 160 408 912 116 832 58 416

Table 4.2: Dataset splits. Number of sentence pairs for training, evaluation and test subsets.

Then, the training set is fed to the augmenting pipeline to obtain synthetic data from
the original sentence pairs. A replace rate of 25 % is used, and only nouns, adjectives,
and adverbs are the allowed word categories to be masked. The model chosen to calcu-
late the predictions for the masked words is XLM-RoBERTa [53], a multilingual version
of RoBERTa trained in 100 different languages. Its advantages include determining the
correct language from the input text and having the same implementation as RoBERTa.
The number of predictions computed by the model is set to 5. These parameters generate
each new sentence pair in around 5 seconds. This time limits the number of synthetic
data generated with the available resources. Synthetic data has been generated using one
computer with an Intel i9-11900H, 16 GB of RAM, and an NVIDIA GeForce RTX 3060 Lap-
top GPU with 6 GB dedicated memory. The model’s predictions are computed with the
GPU using CUDA 12 8. Even though it is suitable hardware, the data generation is slow
and consumes many resources. After days of computations, the generated data equals
almost a quarter of the training dataset. That means the original data has increased by
25 %. The detailed statistics for each language pair are in Table 4.3.

Language pair Training set Synthetic set
Training set

+
Synthetic set

Increase

English-Spanish 432 815 104 308 537 123 ∆ 24, 1 %
English-French 432 154 105 014 537 168 ∆ 24, 3 %
English-Greek 408 912 101 410 510 322 ∆ 24, 8 %

Table 4.3: Synthetic data statistics. Number of sentence pairs generated with the proposed
solution and the increase of their respective training set.

As mentioned above, the fine-tuning process is done with limited personal resources.
This process cannot be done with the same hardware as data generation since it requires
more computational power and memory. Thus, the fine-tuning is done in Google Colab-
oratory 9, a Google’s cloud-based platform that allows users to run and collaborate on
Python code, particularly for data analysis and machine learning tasks. It also provides
access to free GPU resources, which makes it perfect for our project. The used environ-
ment has 13 GB of RAM and an NVIDIA Tesla T4 with 15 GB of dedicated memory. This
hardware allows us to fine-tune the smallest version of mT5, which has around 300 M
parameters. So, 6 models will be fine-tuned: 3 with the original datasets and 3 with the
original datasets plus the synthetic dataset to check if the new data impacts the model
performance.

8Official page with software and documentation: https://developer.nvidia.com/cuda-toolkit
9Available at: https://colab.research.google.com/

https://developer.nvidia.com/cuda-toolkit
https://colab.research.google.com/
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T5 is usually trained using a prefix that explains the desired task. For instance, for
translating, the source text would be: translate English to Spanish: It is done. However, mT5
was only pre-trained on mC4, excluding any supervised training. Since mT5 was pre-
trained unsupervised, there is no actual advantage in using a task prefix for fine-tuning in
a single task. The model learns that the task is translating from source to target language.
The T5 tokenizer is used to tokenize the sentences since it has the same architecture as
T5. All models are trained in one epoch with a learning rate of 10−3, a batch size of 16,
and a maximum sequence length of 128. Adafactor is used as the optimizer, a stochastic
optimization method based on Adam that reduces memory usage while retaining the
empirical benefits of adaptivity [54].

In order to evaluate the models’ performance, we will use 3 state-of-the-art metrics
employed to assess MT quality:

• BLEU ↑ (Bilingual evaluation understudy) [55]: This metric calculates the score
of a translation by measuring the number of n-grams of varying lengths that occur
within the set of references and in the model prediction. The BLEU metric ranges
from 0 to 1, with 1 being the highest score. Thus, it is usually represented as a
percentage.

• chrF ↑ (Character n-gram F-score) [56]: This metric uses the F-score based on char-
acter n-grams. F-score is a metric that combines the precision and the recall metrics
with a coefficient β [57]:

Fβ = (1 + β2)
PR

β2P + R

where P is the precision, that represents the proportion of tokens the MT system re-
turns that are accurately correct, and R is the recall, that indicates how many tokens
that should have been found were found:

P =
|true positives|

|true positives|+ |false positives|

R =
|true positives|

|true positives|+ |false negatives|

The general formula for the chrF score is:

chrFβ = (1 + β2)
chrP chrR

β2chrP + chrR

where chrP and chrR stand for character n-gram precision and recall arithmetically
averaged over all n-grams and β is a coefficient which assigns β times more impor-
tance to recall than to precision. Thus, if β = 1, they have the same importance. In
contrast to related metrics, it is simple since it does not require any additional tools
and knowledge sources and is independent of the language and the tokenization of
the text. The chrF metric ranges from 0 to 1, with 1 indicating a perfect match at the
character level. Thus, it is usually represented as a percentage.

• TER ↓ (Translation Edit Rate) [58]: This metric compares a translation against a
set of reference translations and assigns a score to the similarity. Lower scores are
given to hypotheses more similar to the references, so 0 means an exact match.
When TER is used with multiple references, it does not combine them but scores
the hypothesis against each reference individually. The reference against which
the hypothesis has the fewest edits is deemed the closest. Possible edits include
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the insertion, deletion, and substitution of single words as well as shifts of word
sequences. Thus, it is defined as the minimum number of edits E needed to change
a hypothesis to match one of the references, normalized by the average length of
the references µ:

TER =
E
µ

The above metrics will be computed automatically using sacreBLEU [59], a Python
library that aims to unify how these metrics are computed and make them easy to use.





CHAPTER 5

Experimental results

This chapter aims to present the experiments’ results and assess whether synthetic data
has positively impacted the models’ performance. First, we will see some examples of
synthetic data generated by the designed data augmentation pipeline. Then, the testing
results for the original models will be compared with the models that added the synthetic
data for training.

5.1 Synthetic data analysis

The proposed solution has been applied to 3 languages: Spanish, French, and Greek. At
first, the purpose was to evaluate the synthetic data by human translators. However,
this was not possible with the current workload in the company. For this reason, the
data has been evaluated by people who know the language but are not experts. Random
samples were chosen to check if the changes are coherent and if the target sentence is a
suitable translation for the source sentence. During the experiments in the company, it
was proven that the process works well in all these languages, but it has some limita-
tions. We will review some samples for each language pair. We will examine both correct
examples and examples that show some errors. The original words are highlighted in
red, while the new words generated by the solution are highlighted in blue.

English Spanish
Keep the pre-filled syringe in the
outer carton adequate space in order to

protect from light contamination .

Mantener la jeringa precargada en el
embalaje exterior espacio adecuado

para protegerla de la luz
contaminación .

Therefore, in patients children with

renal anaemia serious disease the
medicinal product treatment has to be
administered intravenously.

Por lo tanto, en los pacientes niños

con anemia renal enfermedad grave , el

producto tratamiento debe adminis-
trarse por vía intravenosa.

Keep the pre-filled fresh-filled syringe

dough in the outer original carton in
order to protect from light.

Mantener la jeringa precargada

pasta fresca en el embalaje exterior

original para protegerla de la luz.

Table 5.1: Synthetic English-Spanish correct pairs samples generated by the solution.

Table 5.1 shows some examples of generated sentences for the English-Spanish pair.
These examples are successful cases where the translation is literal, and they have co-
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herence. The substitution works without matter of the position of the words, so we can
say the word alignment does an excellent job in many cases. We can observe that it even
works well in many composed terms like pre-filled, substituted with fresh-filled. Yet, in the
samples shown in Table 5.2, 2 words are replaced by words that do not fit the context.
The word consejos is replaced by councils, which is a correct translation but does not fit
in that context. The same goes for the word cuadro, which is replaced by picture in the
English sentence.

English Spanish

Effects Councils on ability to drive and
use machines vehicles

Efectos consejos sobre la capacidad

para conducir y utilizar máquinas

vehículos
A physician´s evaluation of the in-
dividual patient´s clinical course
hormonal situation and condition
picture is necessary important .

Es necesario importante que el médico

evalúe la evolución situación y el
estado clínico cuadro hormonal del pa-

ciente.

Table 5.2: Synthetic English-Spanish incorrect pairs samples generated by the solution.

Table 5.3 shows some examples of generated sentences for the English-French pair.
The solution has worked perfectly for the first 4 pairs since both source and target main-
tain coherence, and they are equivalent or almost equivalent. Here, the system manages
to replace apostrophized words like L’efficacité by L’activité, which is very useful for lan-
guages like Catalan.

English French

Increase in dosage rate of probenecid

salt or sulfinpyrazone sugar may be
necessary.

Une augmentation du dosage taux de

probénécide sel ou de sulfinpyrazone
sucre peut être nécessaire.

Respiratory, thoracic and mediastinal
miscellaneous disorders:

Troubles respiratoires, thoraciques et
médiastinaux diverses :

The efficacy activity of irbesartan is not

influenced by age or gender weight .

L’efficacité L’activité d’Irbesartan Krka
est indépendante de l’âge ou du sexe
poids .

Within each frequency grouping table ,

undesirable effects equipment are pre-

sented in order of decreasing seriousness
frequency .

Dans chaque groupe tableau de

fréquence, les effets équipements
indésirables sont présentés par ordre
décroissant de gravité fréquence .

Table 5.3: Synthetic English-French correct pairs samples generated by the solution.

As seen in Table 5.4 There are also incorrect predictions, like the word père, replaced
in English with father, making the sentence incoherent. Besides, there is one significant
limitation here: the MLM sometimes changes the number of a word from singular to
plural or vice versa, and it can even change the genre of a word. In romance languages,
the articles, adjectives, and verbs that affect a word must also be changed. For instance,
the word effets is replaced by its singular effet, but the preceding article Les is plural.
On the other hand, English exhibits remarkable genre and number independence, with
articles, adjectives, and verbs remaining unchanged when the words they modify shift in
gender or number.
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English French

In rabbits father , abortion
menstruation or early resorption

menstruation was noted at doses
children causing significant maternal

toxicity, including mortality.

Chez le lapin père , des avortements

règles ou des résorptions règles préco-

ces ont été observés à des doses enfants
entraînant des effets toxiques importants
y compris létaux pour la mère.

The effects effect of CYP2C9 induc-
ers such as rifampicin on the pharma-
cokinetic of irbesartan child have not
never been evaluated.

Les effets effet des inducteurs du
CYP2C9, tels tel que la rifampicine,
sur la pharmacocinétique de l’irbésartan
l’enfant n’ont pas jamais été évalués.

Table 5.4: Synthetic English-French incorrect pairs samples generated by the solution.

The same happens in the English-Greek dataset. Table 5.5 shows some examples of
correct and incorrect generated pairs. The first 2 pairs are coherent and the meaning is
very related or equal. Nonetheless, the last 2 pairs are incorrect. The word λεπτομέρειες
is replaced by the word particulars in English, which is a synonym but does not fit the
context. Something similar happens with the word έως, which is replaced by until, but
the correct term should be up to, unfeasible with our solution.

English Greek
Epoetins are growth factors that
primarily no stimulate red blood

cell production development .

Οι ερυθροποιητίνες είναι αυξητικοί παρά-

γοντες που κυρίως δεν διεγείρουν την

παραγωγή ανάπτυξη ερυθροκυττάρων.

Medicinal product object subject to

medical prescription approval .

Φαρμακευτικό προϊόν αντικείμενο για το

οποίο απαιτείται ιατρική συνταγή έγκριση .

If you want more information
particulars about this medicine

subject , please contact the local rep-
resentative

λέ ιπ Εάν χρειάζεστε περισσότερες

πληροφορίες λεπτομέρειες για το

φάρμακο θέμα αυτό, παρακαλούμε

επικοινωνήστε με τον

is approximately until 25% lower than

the previous dose price .

επίπεδο περίπου έως 25% κάτω από την

προηγούμενη δόση τιμή .

Table 5.5: Synthetic English-Greek pairs samples generated by the solution. The first 2 pairs
are correct and the last 2 pairs are incorrect or inexact.

In general, the solution generates good results except for some cases. The reviewed
limitations are incorrect synonym substitutions, wrong word substitutions in the source
sentence, or the loss of coherence. Filtering nouns, adjectives, and adverbs prevents erro-
neous substitutions. In English, verbal conjugations, adjectives, nouns, and articles usu-
ally have the same form for all pronouns. In contrast, in romance languages, the same
verbal conjugation, adjective, article, and noun changes depending on the grammatical
person, the genre, and the number. This behaviour makes it hard to correctly match and
replace parallel words in the sentences.
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5.2 Testing results

Performance cannot be compared with any base model since it cannot translate without
fine-tuning it. So, we will limit the assessment to the effect of the synthetic data compared
with the original dataset. First, a mT5-small model per language pair has been fine-tuned
with the mentioned configuration. The fine-tuning took 6 hours, and the evaluation took
around 5 more hours for each model. The metrics results are presented in Table 5.6.

Data Model BLEU ↑ chrF ↑ TER ↓

Original data
English-Spanish 42, 2 65 48, 5
English-French 38, 1 61, 4 56, 6
English-Greek 26, 9 52, 9 70, 1

Table 5.6: MT evaluation results for the models fine-tuned with the original data. These results
are suitable for an in-domain translation.

The best model is the English-Spanish with 42 points of BLEU, then the English-
French model with 38 points of BLEU, and finally, the English-Greek model with 27
points of BLEU. These results make sense if we observe the percentage of training exam-
ples from each language during the pre-training of mT5. A correlation can be observed
between the quality of the translations and their respective rates, as seen in the Figure 5.1.
This correlation demonstrates that the translations benefit from the pre-trained knowl-
edge of the model in each language. These results are suitable for an in-domain trans-
lation, given the number of samples in the training data and the size of the fine-tuned
model.

Figure 5.1: mT5 percentage of languages in the pre-training data. There is a correlation between
these ratios and the evaluation results. Figure taken from mT5’s research paper [43].

The next step is training 3 more mT5-small but including the generated synthetic data
in the training set. Since the number of samples to learn is more significant, the training
took around 2 more hours than the previous models. The metrics results are presented in
Table 5.7.

Data Model BLEU ↑ chrF ↑ TER ↓
Original data

+
Synthetic data

English-Spanish 45 67, 3 46, 8
English-French 40, 2 62, 8 55, 6
English-Greek 27, 7 53, 6 70, 4

Table 5.7: MT evaluation results for the models fine-tuned with the original data plus the
synthetic data.

The results show an improvement in almost all metrics per each language pair. For
BLEU, the gain goes from almost 1 to 3 points. For chrF, the increase goes from nearly
1 point to 2 points. And finally, TER is inversed, so a decrease means an improvement
in the quality, which is obtained in Spanish in almost 2 points and French in 1 point.
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However, the TER for Greek shows a small decay. All differences in the metrics can be
seen in Table 5.8. The difference is not very significant but offers a good trend.

Model ∆ BLEU ↑ ∆ chrF ↑ ∆ TER ↓
English-Spanish 2, 8 2, 3 1, 7
English-French 2, 1 1, 4 1
English-Greek 0, 8 0, 7 −0, 3

Table 5.8: Metrics improvement with the synthetic data.

The improvement is suitable given that the generated data only represents 20 % of
the training set. In the case of Greek, the word alignment may have more fails than for
French or Spanish.





CHAPTER 6

Conclusions

This chapter aims to extract some conclusions from the work done and the results ex-
posed in the previous chapter. We also propose future work to continue studying this
solution or improve it.

6.1 Conclusion

This project aimed to develop a DA method to enhance low-resource datasets for MT.
For this purpose, we have used LLMs and grammatical resources to build a bitext aug-
menting pipeline. This pipeline also works for many languages in any direction, making
it versatile and easy to use. It also allows specialization for a specific language or domain
with the choice of the desired MLM.

The solution’s effectiveness has been proven by fine-tuning an MT model with the
original data and the same model fine-tuned by adding the synthetic data generated.
Then, these models’ quality was evaluated using state-of-the-art metrics in MT, and re-
sults showed a slight increase in performance. Given the limited resources and the little
generated data, this approach marks a positive trend. Its disadvantages are the time it
takes to generate new sentence pairs and the failure in word alignment in some cases,
especially in low-resource languages.

6.2 Future work

As seen in the previous sections, the experiments showed some limitations. Future stud-
ies would test the solution with more languages, such as low-resource, and fine-tune
different models. For instance, a bigger version of mT5, like mT5-base and mT5-large,
or even other multilingual models. It is also interesting to generate the same number of
synthetic data as the original data to fine-tune a model only with the synthetic data. This
way, we can check how the designed solution affects the dataset’s quality. Also, train a
model with the original dataset plus the generated data, doubling the number of training
samples.

Since it is slow to generate new sentence pairs, a new line of research would make the
pipeline more efficient, making the process less expensive. For instance, using or training
an MLM for the target language that computes the predictions faster and more efficiently.
Another option would be removing the Panlex API step, which delays the entire process
since it uses the network. That would require making a parallel glossary for the language
pair to augment.
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Finally, a good improvement will be using a conversational model to generate the
synthetic pairs. This process would require designing an effective prompt so that the
model understands explicitly the requested task. For instance, BLOOM has multilingual
support and performed well in the tests, achieving zero-shot learning. Using an LLM will
reduce the failure of the word alignments or the use of words unsuitable for the context.
The LLM could even be used to evaluate the sentence pairs generated. Some studies have
verified that LLMs are state-of-the-art MT evaluators [60].

Moreover, preliminary studies show the potential of ChatGPT as an evaluator of nat-
ural language generation, even in complex tasks [61]. Researchers conclude that shortly,
chatGPT will exceed performance and become a reliable evaluator. However, the perfor-
mance of the evaluation is sensitive to the format of the prompt, so the prompt should
be carefully designed to obtain the expected results. LLMs models are even being used
to compare the responses of different LLMs and assign a score on par with the latest
evaluation methods [62].

Using chatGPT would be ideal because of its knowledge and understanding of nat-
ural language in many languages. However, for now, this option is still too costly to
implement due to its price.
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APPENDIX A 

Sustainable Development Goals 
 

 
 
Degree of relationship of the work with the Sustainable Development Goals (SDG). 
 

Sustainable Development Goals High Medium Low 
Not 

Applicable 

SDG 1. No poverty.     × 

SDG 2. Zero hunger.     × 

SDG 3. Good health and well-being.     × 

SDG 4. Quality education.  ×    

SDG 5. Gender equality.     × 

SDG 6. Clean water and sanitation.     × 

SDG 7. Affordable and clean energy.     × 

SDG 8. Decent work and economic growth.     × 

SDG 9. Industry, Innovation and Infrastructure.  ×    

SDG 10. Reduced inequality.   ×   

SDG 11. Sustainable cities and communities.     × 

SDG 12. Responsible consumption and production.     × 

SDG 13. Climate action.     × 

SDG 14. Life below water.     × 

SDG 15. Life on land.     × 

SDG 16. Peace, justice and strong institutions.    ×  

SDG 17. Partnership for the goals.   ×   
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Reflection on the relationship of the DFP with the most related SDGs. 
 

This DFP constitutes a comprehensive effort to enhance the quality of model 
training datasets for machine translation, thereby making a small contribution to the 
broader field of translation. The goal of this endeavor can be aligned closely with several 
of the United Nations Sustainable Development Goals (SDGs), representing an approach 
to help address pressing global challenges. 

The pivotal role that these machine translation models play in advancing quality 
education (SDG 4) cannot be overstated. They offer the potential to make educational 
content accessible in many languages, transcending geographical and linguistic barriers. 
Currently, the digital divide continues to affect millions of individuals living in regions 
where low-resource languages are spoken. The limited availability of educational 
content in these languages compounds the challenges these communities face. However, 
an effective automatic translation system can bridge this divide by ensuring that 
knowledge and educational materials are readily accessible to a broader audience. By 
facilitating the translation of educational content into diverse languages, this initiative 
aims to democratize access to education, thereby enhancing its availability and 
accessibility across diverse regions and cultures. In an era of increasing globalization, 
where multiculturalism is celebrated, accessing educational resources in one's native 
language can significantly elevate the quality of education. Moreover, addressing this 
issue directly contributes to reducing inequalities (SDG 10) between nations, as 
disparities often stem from unequal access to information and educational resources. 

In addition to its role in education, machine translation holds promise in addressing 
another critical SDG: promoting peace and international cooperation (SDG 16). Effective 
communication is the base of diplomacy and international relations. In this context, 
automatic translation systems can be a crucial element, facilitating conflict resolution 
and fostering robust international relationships. It has the potential to bridge language 
gaps, break down communication barriers, and enable more effective dialogue between 
nations. Furthermore, machine translation can be instrumental in strengthening global 
collaboration and cooperation across various sectors. Governments, businesses, and 
academia can harness the power of this technology to form international alliances, 
collaborate on shared objectives, and collectively address global challenges (SDG 17). 

Beyond its contributions to education and international relations, improving 
automatic translation models also aligns with the goal of driving industry and 
innovation (SDG 9). The advancement of natural language processing and the 
integration of efficient machine translation systems into various industries can lead to 
greater productivity, innovation, and economic growth. Industries ranging from e-
commerce to customer support to content localization can benefit immensely from these 
technological advancements. 
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In summary, this DFP constitutes a multifaceted approach to address several key 
global challenges. By enhancing machine translation capabilities, it seeks to democratize 
access to education, bridge linguistic divides, facilitate diplomatic communication, and 
drive innovation across industries. Doing so contributes to the broader mission of 
sustainable development in our increasingly interconnected and diverse world. 
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