
Distributed Cryptographic
Protocols

PhD Thesis

Antonio Manuel Larriba Flor

Supervised by

Dr. D. Damián López Rodríguez
Dr. D. José María Sempere Luna

May 9, 2023

2

Agradecimientos

Ha llegado la hora de escribir estas líneas, quizás un poco después de lo que
tenía planeado y con algún año más. El viaje no ha sido siempre fácil, pero
desde luego ha sido entretenido. Y si algo ha hecho más llevadero estos años
ha sido la ayuda recibida, y yo tengo mucho que agradecer.
En primer lugar, si he de agradecer a alguien es a mis tutores, por su ayuda
y su guía a lo largo de este proceso. Especialmente a Damián, por transmi-
tirme su pasión por la criptografía en la carrera, su confianza y ayudarme
cuando más perdido estaba en mi camino como estudiante. También quiero
dar las gracias a Chema por su apoyo, las revisiones y por hacerme entender
que hay problemas que no tienen solución.

También quiero agradecer a mis amigos el apoyo que me han dado todos
estos años, a los de siempre y a los que conocí en el camino. Por las charlas,
los consejos, las visitas a las principales vías fluviales de Europa, los buenos
ratos y por poder evadirnos un rato.

A Manuela, por hacerme tan feliz, y por quererme y aguantarme incluso
cuando no me lo merezco. Por estar allí siempre, por recogerme del suelo
metafórica y literalmente, por las arepas, los montajes y los gatos.

Por último, a los que siempre me han ayudado y dado su cariño, a mi familia.
A mi hermano por entenderme y ayudarme, a mi padre por sus consejos y
sus enseñanzas, y a mi madre por su sentido común y su constancia. Sin
ellos nada de esto hubiera sido posible.

Valencia. 9 de Marzo, 2023

i

ii

Abstract

Trust is the base of modern societies. However, trust is difficult to achieve
and can be exploited easily with devastating results. In this thesis, we ex-
plore the use of distributed cryptographic protocols to build reliable systems
where trust can be replaced by cryptographic and mathematical guarantees.
In these adaptive systems, even if one involved party acts dishonestly, the
integrity and robustness of the system can be ensured as there exist mech-
anisms to overcome these scenarios. Therefore, there is a transition from
systems based in trust, to schemes where trust is distributed between decen-
tralized parties. Individual parties can be audited, and universal verifiability
ensures that any user can compute the final state of these methods, without
compromising individual users’ privacy.

Most collaboration problems we face as societies can be reduced to two
main dilemmas: voting on a proposal or electing political representatives,
or identifying ourselves as valid members of a collective to access a service
or resource. Hence, this doctoral thesis focuses on distributed cryptographic
protocols for electronic voting and anonymous identification.

We have developed three electronic voting schemes that enhance tradi-
tional methods, and protect the privacy of electors while ensuring the in-
tegrity of the whole election. In these systems, we have employed different
cryptographic mechanisms, that fulfill all the desired security properties of
an electronic voting scheme, under different assumptions. Some of them are
secure even in post-quantum scenarios. We have provided a detailed time-
complexity analysis to prove that our proposed methods are efficient and
feasible to implement. We also implemented some voting protocols, or parts
of them, and carried out meticulous experimentation to show the potential

iii

iv

of our contributions.
Finally, we study in detail the identification problem and propose three

distributed and non-interactive methods for anonymous registration and ac-
cess. These three protocols are especially lightweight and application agnos-
tic, making them feasible to be integrated with many purposes. We formally
analyze and demonstrate the security of our identification protocols, and
provide a complete implementation of them to once again show the feasi-
bility and effectiveness of the developed solutions. Using this identification
framework, we can ensure the security of the guarded resource, while also
preserving the anonymity of the users.

Resumen

La confianza es la base de las sociedades modernas. Sin embargo, las rela-
ciones basadas en confianza son difíciles de establecer y pueden ser explotadas
fácilmente con resultados devastadores. En esta tesis exploramos el uso
de protocolos criptográficos distribuidos para construir sistemas confiables
donde la confianza se vea reemplazada por garantías matemáticas y crip-
tográficas. En estos nuevos sistemas dinámicos, incluso si una de las partes
se comporta de manera deshonesta, la integridad y resiliencia del sistema
están garantizadas, ya que existen mecanismos para superar este tipo de
situaciones. Por lo tanto, hay una transición de sistemas basados en la con-
fianza, a esquemas donde esta misma confianza es descentralizada entre un
conjunto de individuos o entidades. Cada miembro de este conjunto puede ser
auditado, y la verificación universal asegura que todos los usuarios puedan
calcular el estado final en cada uno de estos métodos, sin comprometer la
privacidad individual de los usuarios.

La mayoría de los problemas de colaboración a los que nos enfrentamos
como sociedad, pueden reducirse a dos grandes dilemas: el votar una prop-
uesta, o un representante político, ó identificarnos a nosotros mismos como
miembros de un colectivo con derecho de acceso a un recurso o servicio. Por
ello, esta tesis doctoral se centra en los protocolos criptográficos distribuidos
aplicados al voto electrónico y la identificación anónima.

Hemos desarrollado tres protocolos para el voto electrónico que comple-
mentan y mejoran a los métodos más tradicionales, y además protegen la
privacidad de los votantes al mismo tiempo que aseguran la integridad del
proceso de voto. En estos sistemas, hemos empleado diferentes mecanismos
criptográficos que proveen, bajo diferentes asunciones, de las propiedades de

v

vi

seguridad que todo sistema de voto debe tener. Algunos de estos sistemas son
seguros incluso en escenarios pos-cuánticos. También hemos calculado minu-
ciosamente la complejidad temporal de los métodos para demostrar que son
eficientes y factibles de ser implementados. Además, hemos implementado
algunos de estos sistemas, o partes de ellos, y llevado a cabo una detallada
experimentación para demostrar el potencial de nuestras contribuciones.

Finalmente, estudiamos en detalle el problema de la identificación y pro-
ponemos tres métodos no interactivos y distribuidos que permiten el registro
y acceso anónimo. Estos protocolos son especialmente ligeros y agnósticos
en su implementación, lo que permite que puedan ser integrados con múlti-
ples propósitos. Hemos formalizado y demostrado la seguridad de nuestros
protocolos de identificación, y hemos realizado una implementación completa
de ellos para, una vez más, demostrar la factibilidad y eficiencia de las solu-
ciones propuestas. Bajo este marco teórico de identificación, somos capaces
de asegurar el recurso custodiado, sin que ello suponga una violación para el
anonimato de los usuarios.

Resum

La confiança és la base de les societats modernes. No obstant això, les rela-
cions basades en confiança són difícils d’establir i poden ser explotades fàcil-
ment amb resultats devastadors. En aquesta tesi explorem l’ús de protocols
criptogràfics distribuïts per a construir sistemes de confiança on la confi-
ança es veja reemplaçada per garanties matemàtiques i criptogràfiques. En
aquests nous sistemes dinàmics, fins i tot si una de les parts es comporta
de manera deshonesta, la integritat i resiliència del sistema estan garantides,
ja que existeixen mecanismes per a superar aquest tipus de situacions. Per
tant, hi ha una transició de sistemes basats en la confiança, a esquemes on
aquesta acarona confiança és descentralitzada entre un conjunt d’individus o
entitats. Cada membre d’aquest conjunt pot ser auditat, i la verificació uni-
versal assegura que tots els usuaris puguen calcular l’estat final en cadascun
d’aquests mètodes, sense comprometre la privacitat individual dels usuaris.

La majoria dels problemes de colůlaboració als quals ens enfrontem com
a societat, poden reduir-se a dos grans dilemes: el votar una proposta, o un
representant polític, o identificar-nos a nosaltres mateixos com a membres
d’un colůlectiu amb dret d’accés a un recurs o servei. Per això, aquesta tesi
doctoral se centra en els protocols criptogràfics distribuïts aplicats al vot
electrònic i la identificació anònima.

Hem desenvolupat tres protocols per al vot electrònic que complementen
i milloren als mètodes més tradicionals, i a més protegeixen la privacitat
dels votants al mateix temps que asseguren la integritat del procés de vot.
En aquests sistemes, hem emprat diferents mecanismes criptogràfics que
proveeixen, baix diferents assumpcions, de les propietats de seguretat que
tot sistema de vot ha de tindre. Alguns d’aquests sistemes són segurs fins i

vii

viii

tot en escenaris post-quàntics. També hem calculat minuciosament la com-
plexitat temporal dels mètodes per a demostrar que són eficients i factibles
de ser implementats. A més, hem implementats alguns d’aquests sistemes, o
parts d’ells, i dut a terme una detallada experimentació per a demostrar la
potencial de les nostres contribucions.

Finalment, estudiem detalladament el problema de la identificació i pro-
posem tres mètodes no interactius i distribuïts que permeten el registre i
accés anònim. Aquests protocols són especialment lleugers i agnòstics en
la seua implementació, la qual cosa permet que puguen ser integrats amb
múltiples propòsits. Hem formalitzat i demostrat la seguretat dels nostres
protocols d’identificació, i hem realitzat una implementació completa d’ells
per a, una vegada més, demostrar la factibilitat i eficiència de les solucions
proposades. Sota aquest marc teòric d’identificació, som capaces d’assegurar
el recurs custodiat, sense que això supose una violació per a l’anonimat dels
usuaris.

Notation

Symbol References to
a||b Concatenation.
a · b Scalar multiplication.
a · b mod n Modular multiplication.
a−1 mod n Inverse modulo n.
⊙,⊕ General binary operation.
a, . . . , z Scalars.
A, . . . , Z Generators, or elliptic curve points.
| · | Cardinality of a group, field, or set.
{·, . . . , ·} Unordered list.
⟨·, . . . , ·⟩ Ordered list.
f(x) Polynomial.
deg(·) Degree of a polynomial.
G Group.
Gp Finite group.
F Field.
GF Galois Field.
Fp Finite field.
Fpk Extended finite field.
F [x] Set of all possible polynomials over a field F .
ord(·) Order of a group.
E(F) Elliptic curve E over a finite field F .
a ∈ A. Element in a group, field or set.
a ∈R A. Element sampled at random in a group, field or set.

ix

x

Contents

Agradecimientos i

Abstract iii

Resumen v

Resum vii

1 Introduction 1
1.1 Distributed Cryptography . 3
1.2 Electronic Voting . 4
1.3 Anonymous Identification & Access 5
1.4 Thesis Organization . 6

2 Cryptography 9
2.1 Algebra . 10

2.1.1 Groups and Fields . 10
2.1.2 Fields . 12
2.1.3 Polynomials . 13
2.1.4 Elliptic Curves . 14

2.2 Secret Sharing . 16
2.2.1 Verifiable Secret Sharing 16

2.3 Public-Key Cryptography . 17
2.3.1 Diffie-Hellman . 18
2.3.2 RSA . 19
2.3.3 Commitment Schemes 20

xi

xii CONTENTS

2.4 Zero-Knowledge . 21
2.4.1 Schnorr Zero Knowledge Identification 22
2.4.2 Non-interactivity and the Fiat Shamir Heuristic 23

2.5 Complexity & Computability 24
2.5.1 Discrete Logarithm Problem 25
2.5.2 Cryptographic Assumptions 26
2.5.3 Perfect Secrecy . 27

2.6 Digital Signatures . 28
2.6.1 Blind Signatures . 29
2.6.2 Ring Signatures . 30

3 Blockchain 31
3.1 Blockchain Basics & Bitcoin 31

3.1.1 Blockchain Trilemma 33
3.1.2 Block Finality . 34
3.1.3 Addresses . 35

3.2 Ethereum . 36
3.2.1 Gas Fees . 37
3.2.2 Events . 38

3.3 Monero . 38
3.3.1 One Time Public Keys 39
3.3.2 Ring Signature Confidential Transactions 40

3.4 Other Blockchains and Applications 41
3.4.1 Other blockchains . 41
3.4.2 Applications . 43

3.5 Risks . 44

4 Electronic Voting 45
4.1 State of the Art . 50

4.1.1 Blind Signatures . 50
4.1.2 Ring Signatures . 52
4.1.3 Homomorphic Cryptography 53
4.1.4 Zero-Knowledge Proofs 55
4.1.5 Blockchain . 56

4.2 TAVS: A two Authorities Voting scheme 63
4.2.1 Description of our Proposal 65
4.2.2 Properties of the voting scheme 74
4.2.3 Time complexity analysis 76

CONTENTS xiii

4.3 Distributed Trust, a Blockchain Election Scheme 84
4.3.1 Description of our Proposal 85
4.3.2 Properties of the voting scheme 93
4.3.3 Time complexity analysis 96

4.4 SUVS: Secure Unencrypted Voting Scheme 100
4.4.1 Description of our Proposal 101
4.4.2 Properties of the voting scheme 111
4.4.3 Time complexity analysis 115

4.5 Review of the 3 Voting Protocols 118
4.6 Conclusions . 119

4.6.1 Future Work . 120

5 Identification and Distributed Access 121
5.1 State of the Art . 122
5.2 Anonymous Access . 125
5.3 Centralized Registration, Anonymous Access 127

5.3.1 Trusted Registration, Anonymous Access 128
5.4 Distributed Registration, Anonymous Access 132

5.4.1 Trusted distributed registration, anonymous access . . 133
5.4.2 Anonymous registration, anonymous access 137

5.5 Security Analysis . 142
5.5.1 TRA2 Analysis . 142
5.5.2 TDRA2 and ARA2 Analysis 144

5.6 Time Complexity Analysis . 147
5.6.1 TRA2 and TDRA2 time complexity analysis 148
5.6.2 ARA2 time complexity analysis 148

5.7 Applications . 149
5.7.1 Blockchain Airdrop System 149
5.7.2 Electronic Voting Scheme 150

5.8 Conclusions . 151
5.8.1 Future Work . 152

6 Conclusions 153
6.1 PhD Key Results . 154

6.1.1 Electronic Voting . 155
6.1.2 Anonymous Identification 155

xiv CONTENTS

A A Solidity implementation of TAVS 185
A.1 From ECC to RSA . 186

A.1.1 Code Organization . 187
A.2 Tests . 189
A.3 Properties . 190
A.4 How to create your own election 192
A.5 Gas analysis: Costs of having an election 195

B A Benchmark for Ring Signatures 197

C Distributed Trust Technical Specification 201
C.0.1 Blockchain data structures 201
C.0.2 Methods . 205

D How to Grant Anonymous Access Implementation 213

List of Figures

2.1 Elliptic curve examples . 15
2.2 Schnorr’s Zero-Knowledge Proof. 24

3.1 Blockchain Trilemma Problem 34

4.1 TAVS: Pre-ballot structure . 68
4.2 TAVS: Certified ballot structure 70
4.3 TAVS: Submission of ballot 71
4.4 TAVS: Time interaction diagram 72
4.5 Distributed Trust: Generating keys 87
4.6 Distributed Trust: Registration process 89
4.7 Distributed Trust: Casting a ballot 90
4.8 Distributed Trust: Processing of a vote 91
4.9 Distributed Trust: Recovering secret component of the key . . 93
4.10 SUVS: Time interaction diagram 109

5.1 Accessing a guarded resource 130
5.2 Dealers communicating to guards 134
5.3 Anonymous identifying to dealers 135

A.1 STAVS: Time interaction diagram 187

B.1 Ring signature performance times 199

C.1 General view of blockchain data structures 206
C.2 Distributed Trust time interaction diagram 211

xv

xvi LIST OF FIGURES

D.1 TRA2 experimental times . 215
D.2 TDRA2 experimental times 216
D.3 ARA2 experimental times . 216

List of Tables

4.1 TAVS: Elector and system complexity 80
4.2 Distributed Trust: Elector and system complexity 100
4.3 SUVS: Elector and system complexity 118

A.1 STAVS: Costs of running an Election 195
A.2 STAVS: Costs of calling computeWinner method 196

C.1 Transaction structure in Distributed Trust 202
C.2 Transaction’s inputs and outputs structure 202
C.3 Block structure . 203
C.4 First block structure . 204
C.5 Second block structure . 204
C.6 Last block structure . 205

xvii

xviii LIST OF TABLES

List of Algorithms

1 RSA key generation . 19
2 RSA encryption . 19
3 RSA decryption . 20
4 Schnorr’s Zero-Knowledge identification protocol. 23
5 Non-interactive Schnorr’s identification protocol 25
6 Ring Confidential Transaction Generation 41
7 Ring Confidential Transaction Verification 42
8 TAVS: Pre-ballot generation 67
9 TAVS: Pre-ballot certification 69
10 TAVS: Ballot casting . 73
11 SUVS: Ballot crafting . 104
12 SUVS: Ballot certification . 106
13 SUVS: Casting a vote . 107
14 SUVS: Tallying votes . 109
15 TRA2 Algorithm . 131
16 TDRA2 Algorithm . 136
17 ARA2 Algorithm . 139
18 Distributed Trust: Voting process 207
19 Distributed Trust: Validating a transaction 208
20 Distributed Trust: Generating a block 209
21 Distributed Trust: Validating a block 210
22 Distributed Trust: Adding a block 211

xix

xx LIST OF ALGORITHMS

Chapter 1
Introduction

Reputation is what other people
know about you. Honor is what
you know about yourself.

Lois McMaster Bujold

Uhsxwdwlrq lv zkdw rwkhu
shrsoh nqrz derxw brx. Krqru lv
zkdw brx nqrz derxw brxuvhoi.

Caesar Cipher, k = 3

As human beings, we are social by nature. From ancient Greece, through
the Roman Empire, the Middle Ages, the Renaissance, the Enlightenment,
the Industrial Revolution, to the modern age, human societies are collabo-
rative, and therefore based on trust. Social organizations and government
systems have varied through history, but not the need for association and the
fundamental aspect of trust in these systems. Trust enables us to interact
with others and engage in various social, economic, and political activities.
However, in many cases, trust is difficult to establish, and it can be challeng-
ing to ensure that individuals act honestly and transparently.

Game theory has extensively studied collaboration theory Sachs et al.
[2004], Arsenyan et al. [2015], Cai and Kock [2009]. In most cooperative

1

2 CHAPTER 1. INTRODUCTION

dilemmas, we can differentiate two outcomes: the general one, that affects
the system as a whole and averages the result between the involved parties,
and the individual one. And while collaboration might be the optimal solu-
tion for the general outcome of the system, individual parties might benefit,
usually by worsening the outcome of other parties, if they cheat or lie. As in-
dividuals, we are also suited to do good, (e.g. empathy, sharing, helping), but
most social organizations require a hierarchical structure to function prop-
erly. Hence, we have people with varying power and responsibilities in our
social structures. This is not bad per se, but it introduces new challenges.

• Power tends to corrupt, and absolute power corrupts absolutely. While
as individuals, we are also suited to do good, (e.g. empathy, sharing,
helping), the more power, the more potential reward by deceiving the
system.

• To ensure the honest cooperation of most parties, some restrictions
need to be added to these social organizations. Once again, this is
not bad, but the implementation of these restrictions usually degrades
individual privacy in favor of a secure system.

Privacy is a fundamental human right, and it is essential for the func-
tioning of a democratic society. Cryptography provides a solution to these
challenges by allowing the creation of systems where trust is replaced by
mathematical proofs, while also respecting the privacy of the individuals
that operate within these systems. However, these cryptography-based sys-
tems also raise many challenges, including the need to ensure the security
and reliability of the protocols, and the need to balance privacy with other
values, such as transparency and accountability. Most of the collaborative
challenges we face as democratic societies can be reduced to two general and
related problems: voting on a specific topic or handling access to a protected
or limited resource. Voting is intrinsically connected to the governance of
the hierarchical structure that presides over our society and shapes the legal
and economic framework within which we function. Considering its critical
role in our lives and the substantial economic and power incentives for mali-
cious actors to interfere with electoral processes, it is essential to emphasize
the importance of conducting fair, transparent, and secure elections. The
second issue, ensuring secure access to a resource, is equally significant in
guaranteeing a fair and authenticated allocation of resources among parties.
This matter is closely tied to voting, as enforcing appropriate and restricted

1.1. DISTRIBUTED CRYPTOGRAPHY 3

access to a resource, such as a ballot, represents the cornerstone challenge
of voting systems. However, secure access extends beyond voting and is rel-
evant to a variety of other contexts, including online services, reservations,
grant management, and determining eligibility, among others.

In this doctoral thesis, we focus on distributed cryptographic protocols
that enable electronic voting and anonymous identification. Our goal is the
research and implementation of secure and reliable protocols that can be
used in real-world scenarios. We believe that our work can contribute to the
development of secure and privacy-preserving electronic voting and identifi-
cation systems that can be used in a democratic society. We hope that our
research will enable individuals and groups to act collectively in an honest
way, without sacrificing their privacy, and will contribute to the protection
of fundamental human rights in the digital age.

1.1 Distributed Cryptography
Along this thesis, we employ the term Distributed Cryptography, or dis-
tributed cryptographic protocols, to refer to any kind of cryptographic prim-
itive, or protocol, that is executed along a distributed network, to disseminate
power and redistribute responsibility among a set of parties, as opposed to a
centralized computation.

This definition includes, but is broader than, some cryptography terms
such as:

Secure multi-party computation Cramer et al. [2015], Canetti et al. [1996],
where a set of parties collaborate to jointly compute a function over some
secret inputs. In this framework, parties want to preserve their secret inputs
from other parties.

Distributed key generation protocols Damgård and Koprowski [2001],
Frankel et al. [1998] where a set of parties contribute to the calculation of a
shared public key component, and each of them ends with a private share of
the private key component.

Threshold systems Agrawal et al. [2018], Rabin [1998] where at least a
minimum set of parties, of a limited set of them, need to collaborate to be
able to jointly compute a function.

Secret Sharing schemes (see Section 2.2), where a secret is shared in
multiple pieces that do not reveal any information about the secret itself,
between a set of parties. Usually, these parties collaborate under a threshold

4 CHAPTER 1. INTRODUCTION

scheme to recover the original secret.
All these terms are tightly coupled, and many times secure multi-party

computation is used as a general term, while other schemes are considered
methods within the framework, and secret sharing schemes are treated as the
basic building block for those systems. However, this same blend also causes
many specifics of these different schemes to get lost, as sometimes they are
used indistinctly.

Therefore, to mitigate this ambiguity, and refer only to protocols that
actually use this framework to achieve a real decentralization of power, and
not only a centralized system with improved reliability.

1.2 Electronic Voting
Voting is an essential process in any democratic society. It allows individ-
uals to express their preferences and elect representatives who will act on
their behalf. However, voting is not a simple process, and it involves many
challenges. Traditional voting systems usually rely on paper ballots, and
the collaboration of individuals from the whole political spectrum to address
these issues. As the more people with different ideologies oversee the voting
process, the more secure the election is. This idea of distributing the trust
between as many varied parties as possible is powerful, but not sufficient in
traditional elections: this trust is usually only limited to the voting stage
but not the tallying, and electors have no means to check if their vote was
included in the tally, the tally cannot be recomputed by individual electors,
etc. Additionally, traditional elections are tremendously expensive to orga-
nize, as they require in-person interactions in thousands of physical places
distributed across the territory, and they do not handle properly the possibil-
ity of remote voting. In these remote scenarios, these security and audibility
guarantees get degraded as there is a centralized and opaque process that
handles those votes.

Electronic voting is proposed as an alternative to traditional voting.
These systems generally make use of cryptography to formally distribute
the responsibility between as many parties as possible while ensuring the
integrity of the election process. The use of cryptographic commitments
ensures parties act honestly, and the use of encryption preserves the users’
privacy. These new mathematical guarantees open the door to new possi-
bilities: universal verifiability, privacy, and remote and multi-device voting.

1.3. ANONYMOUS IDENTIFICATION & ACCESS 5

So far we described national elections, because it is the most pictured sce-
nario when we discuss elections and voting, but the low cost of electronic
voting enables the same systems to also accommodate all sizes of elections:
regional, city council, or even private elections for companies or shareholders.
Nonetheless, electronic voting also brings new problems: security, which is
largely covered in Section 4, and usability.

We already covered that a huge factor in collaboration is trust. And
while traditional elections have many flaws, people are accustomed to them
and understand the general procedures. However, many people are not that
familiar with cryptography and discrete mathematics, and this creates an
entry barrier to electronic voting for most electors. They find electronic vot-
ing systems complex to use, and this creates a lack of trust that has affected
electronic voting schemes in many instances (e.g. Switzerland Gerlach and
Gasser [2009] or Estonia Maaten [2004], Drechsler and Madise [2004]), de-
spite providing better security and audibility assurances. For this reason, in
this dissertation, we focus on bringing traditional parties into the electronic
process. So that electors can see these protocols, as the natural evolution
of traditional systems with better securities, and not as a fuzzy competing
approach.

1.3 Anonymous Identification & Access
Identification is another critical aspect of modern democratic societies. Iden-
tification refers to the process of identifying individuals, or entities, to an
authority in charge of controlling the access to a service or the dealership of
a product. There are many scenarios where a limited resource (e.g. ballots
for voting, tax deductions), or a sensitive service (e.g. medical aid, financial
or criminal records) need to be guarded. However, the identification, and
later access to this guarded source, can benefit from being private. Here we
describe some issues that can be mitigated by providing anonymous identifi-
cation.

• Security: In some cases, revealing personal information can increase
the risk of identity theft or fraud. Anonymous identification provides
an additional layer of security by allowing individuals to access services
without revealing sensitive information.

• Freedom of speech: In some countries, individuals may be at risk of

6 CHAPTER 1. INTRODUCTION

persecution for expressing certain opinions or beliefs (e.g. political
activism). Anonymous identification can allow individuals to express
their opinions without fear of retribution. There are also many situ-
ations where users may feel more comfortable sharing their thoughts
and opinions without revealing their identities.

• Discrimination: In some cases, individuals may be discriminated against
based on their race, gender, sexual orientation, or other personal char-
acteristics. Anonymous identification can help protect against discrim-
ination by allowing individuals to access services or participate in ac-
tivities without revealing personal information that could be used to
discriminate against them.

Individuals need to prove their identity in various situations, however,
identity verification is not a simple process, and it involves many challenges.
One of the most significant challenges is ensuring that individuals can prove
their identity without revealing their personal information. Cryptography
provides a solution to this problem by allowing the creation of anonymous
identification systems that protect user privacy while ensuring only properly
identified users get access.

In Chapter 5 we define the stages for the identification process (identifica-
tion, registration, and access), and present three decentralized cryptographic
protocols for anonymous registration and access to a service. We show how
the anonymous registration process enables users to get access-keys that can
be later used anonymously without being possible to relate in any way the
access-key to the user. Therefore, users can anonymously access services and
resources without compromising their privacy.

1.4 Thesis Organization
This dissertation is organized into six chapters, related as depicted in the
next Figure. And the content of each chapters it is summarized here:

Chapter 1 summarizes the goal of this thesis, and introduces the fields of
electronic voting and anonymous identification and access. It reviews
the main challenges of these areas and how distributed cryptography
can be used to address them.

1.4. THESIS ORGANIZATION 7

1. Introduction

2. Cryptography

3. Blockchain

4. Electronic Voting 5. Identification and Distributed Access

6. Conclusions

Chapter 2 describes the mathematical framework used to implement the
cryptographic primitives used in our methods. It also addresses the
cryptographic assumptions and computation models that will be rele-
vant in later chapters.

Chapter 3 provides an introduction to distributed ledger technologies as a
way to achieve decentralization. It presents the concept of smart con-
tracts and privacy-oriented solutions for blockchain. It also compares
the most relevant cryptocurrencies that will be later used in the thesis.

Chapter 4 describes the electronic voting approach as opposed to tradi-
tional voting, and describes the properties, every voting scheme should
accomplish. We present here three different voting protocols that fulfill
them under different security assumptions.

Chapter 5 addresses the open problem of anonymous identification. The
problem of anonymous registration is presented, along with three dif-
ferent protocols that allow for anonymous access. All the protocols are
evaluated and their security properties are proved.

Chapter 6 draws the fundamental conclusions of this thesis and enumerates
the main academical results of our research.

Besides these chapters, the thesis also presents four complementary ap-
pendixes. Appendix A describes the implementation of one of the proposed
electronic voting schemes described in Chapter 4 by leveraging blockchain
technology introduced in Chapter 3.

Appendix B provides a Python-based implementation and an analysis of
the ring signature scheme defined in Chapter 3.

8 CHAPTER 1. INTRODUCTION

Appendix C reviews the basic structures and methods to carry out an
election in one of the methods proposed in Chapter 4.

Finally, Appendix D provides a complete implementation and empiric
evaluation of the three identification protocols proposed in Chapter 5.

Chapter 2
Cryptography

Cuando hay clase, la velocidad
es una minucia.

Carlos Ruíz Zafón

Ourvqo tap kyaee, ci iexotqqap
ej caa yiecpim.

Vigenère Cipher, k =marina

Cryptography is the art of secure communication. The word cryptogra-
phy is derived from two Greek words: kryptós (hidden) and graphein (writ-
ing). Together with Cryptoanalysis, which is the art of analyzing secret
systems, they conform the Cryptology field that refers to the study of secret
systems.

The need for secret conversations is as old as humanity itself. Many
civilizations in many ages have tried to develop systems that allowed for
a secure transmission of messages between authorized parties, while also
protecting the messages from undesired attackers. From hiding messages
in obscure places to physical rudimentary devices, to simple substitution
ciphers, to codes, the story of humanity is swamped with cryptography use.
The most comprehensive resource that covers the history of cryptography
from ancient civilizations to the modern age is Codebreakers Kahn [1996].

9

10 CHAPTER 2. CRYPTOGRAPHY

Modern cryptography, which starts in the middle of the 20th century
with the Enigma machine, is profoundly correlated with the information age,
mathematics, and computer systems. Enigma machine is considered one of
the first examples of computational security as opposed to traditional sub-
stitution ciphers. The latest era of cryptography, not only allows for secure
communication between established parties. But also enabled the possibility
of establishing trust between multiple entities without third parties or hard
assumptions. This has contributed to the decentralization and distribution of
computation and has helped to build better systems where the responsibility
and power no longer need to relapse in a single individual.

In this chapter, we only cover the most relevant mathematical foundations
and cryptographic concepts to our research. All the concepts here reviewed
will be relevant in the forthcoming chapters.

2.1 Algebra

2.1.1 Groups and Fields

Groups and fields are algebraic structures that present unique properties
suitable for cryptography. Within this mathematical framework, arbitrary
data can be represented as algebraic elements (encryption). And more im-
portantly, represented back as the original data (decryption). This is possible
only because groups and fields present a unique, and bijective, inverse oper-
ation. They also allow for efficient transformations on encrypted data.

Additionally, elements in this algebraic framework benefit from hard prob-
lems for which no efficient solution has been found, such as the Discrete Log-
arithm Problem (DLP) (see Section 2.5.1). These kinds of problems enable
trapdoor functions in which most of public key cryptography is based (see
Sec. 2.3). Thus, unless some secret values are revealed, algebraic elements
are transformed into new elements that do not reveal much information about
the original data they concealed.

Therefore, because of their efficient representation, and the existence of
problems considered to be unfeasible to solve, groups and fields define the
base of modern cryptography.

2.1. ALGEBRA 11

Groups

Groups were first introduced by the French mathematician Évariste Galois
Galois and Neumann [2011] as a way to represent permutations. Groups
define many symmetric properties that are useful in other mathematical ob-
jects. Hence, the concept of general group is defined as a set of elements G,
and a binary operation ⊙, that present the following properties:

1. G is associative i.e., (a⊙ b)⊙ c = a⊙ (b⊙ c) ∀a, b, c ∈ G.

2. There exists a unique element e ∈ G, called the identity element, such
that a⊙ e = e⊙ a = a.

3. ∀a ∈ G there exists an inverse element a−1 such that a⊙a−1 = a−1⊙a =
e.

The group is represented as (G,⊙), or simply G if there is no ambiguity
with regard to the operation. Any group (G,⊙) that accomplishes the com-
mutative property i.e., a⊙ b = b⊙a, is called commutative group or abelian
group.

So far we have described groups using a general binary operation ⊙.
Usually, the operation can be as intuitive as either the multiplication or the
addition of elements. Thus, the derived groups are usually referred to as
multiplicative (G, ·), or additive (G,+) groups.

For the rest of this document, and unless stated otherwise, we assume
multiplicative groups. For all multiplicative groups, there exists an equation
that relates the inverse of the product of two elements a, b ∈ G:

(a · b)−1 = b−1 · a−1

Subgroups

Let G be a group and H a subset of G. We say H is a subgroup of G, if:

1. e ∈ G, that is H contains the identity element of G.

2. H is closed under the group operation. If a, b ∈ H, then ab ∈ H too.

3. H is closed under the inverse operation. If a ∈ H, then a−1 ∈ H too.

12 CHAPTER 2. CRYPTOGRAPHY

Please note that we can always compute a group from an element g ∈ G by
computing its powers. Indeed, this is the smallest subgroup that contains g
(as any group that contains g must also contain its powers) and we will say
the group < g > was generated by g ∈ G.

By Lagrange’s theorem 2.1.1, the order of a subgroup H, divides the order
of the group G. This is denoted as:

ord(H)|ord(G)

Theorem 2.1.1 (Lagrange). For any finite group G, of order ord(G), the
order of every subgroup of G divides ord(G).

Cyclic groups

Let G be a group, g an element of G, e the identity element of G and n ∈ Z.
If n > 0, we can define:

gn = g · g · . . . · g︸ ︷︷ ︸
n times

If n = 0, we can see that n · g = e. Finally, if n < 0, the multiplication can
be expressed as:

g−n = g−1 · g−1 · . . . · g−1︸ ︷︷ ︸
|n| times

The set of all powers of g ∈ G referred to as the subgroup generated by g, and
as < g >. The same applies to additive groups, and the subgroup generated
by g is called multipliers.

We call any group G, that consists only of powers of a single element g,
cyclic. g is called the generator of G, and the whole group can be expressed
as G =< g >. The order of g ∈ G is denoted as ord(g) = i and stands for
the smallest integer i such that gi = e.

2.1.2 Fields
A field F is an algebraic structure that comprises two binary operations
(+, ·), and satisfies the following properties:

1. (F,+) defines an abelian group with an identity element denoted as 0.

2. (F −{0}, ·) defines an abelian group with an identity element denoted
as 1.

2.1. ALGEBRA 13

3. The operation · is distributive over +, this is, a · (b + c) = a · b + a ·
c ∀a, b, c ∈ R.

In cryptography, finite fields, this is fields with a finite number of ele-
ments, are also referred to as Galois Fields, or simply GF . If we consider the
set of integers Zp = {0, 1, 2, . . . , p− 1}, called integers modulo p. We can be
sure Zp is a field if, and only if, p is prime, and we denote it as Fp.

We say that K is an extension field of Fp, if K contains Fp, Fp ⊆ K. Fp

is also called a subfield of K. We can see extension fields as a vector space
over the original field Fp. This implies that an extended field K contains
k−dimensional vectors of elements in Fp. This is usually represented as
K = Fpk . Therefore, fields are always defined by a prime number, or the
power of a prime number. Elements in Fpk can also be represented as (k−1)-
degree polynomials whose coefficients are elements Fp.

This extended representation of fields is extremely efficient for compu-
tation as we do not need to operate with hauling how we would do in the
arithmetic of natural numbers, and we can be sure the elements remain within
the field. One of the best uses of these properties is the Advanced Encryption
Standard (AES) Nechvatal et al. [2001], where computations are carried out
in the finite field extension F28 , also referred to as GF (28).

2.1.3 Polynomials
Polynomials defined over large finite fields are extremely useful for a multi-
tude of cryptography tasks: secret sharing, errorcorrecting codes, data avail-
ability, and, zero-knowledge proofs, among some of them. Given its rele-
vance, we provide a short formal definition for polynomials and cover some
fundamental algorithms to operate with them.

Let Fp be a finite field defined by a prime p, any expression of the form:

f(x) =
d∑

i=0

aix
i ai ∈ Fp, (2.1)

where d is an arbitrary positive integer, is called a polynomial over Fp.
The set of all possible polynomials over Fp is denoted by Fp[x].

All polynomials have a degree, denoted as deg(f) which is computed as
the highest power of x that appears within the polynomial.

14 CHAPTER 2. CRYPTOGRAPHY

Lagrange’s Interpolation

In many scenarios, we need a method to recover a polynomial from a set
of its points. One of the most popular methods is Lagrange’s interpolation
method.

Lagrange interpolation states that for a set of points

{(x1, y1), (x2, y2), . . . , (xd, yd)}, (2.2)

there exists a unique uni-variate polynomial f(x) of degree at most d − 1
such that:

yi = f(xi) ∀i ∈ (1, 2, . . . , d) (2.3)
To recover the polynomial f(x) we can apply the following equation:

f(x) =

j∑
i=0

yili(x) (2.4)

where li(x), represents each one of the Lagrange basis polynomials.

li(x) =
∏

0≤k≤j
k ̸=i

x− xk

xi − xk

(2.5)

2.1.4 Elliptic Curves
Diophantine equations Mordell [1969] are a branch of number theory that
deals with the roots of polynomial equations in integer, or rational, numbers.
Elliptic curves Koblitz [1987], Miller [1985] are a kind of cubic curves that,
when defined over a finite field, fall under the definition of diophantine. Let
Fp be a finite field defined by a prime p, and a, b ∈ Fp scalars such that the
cubic curve X3 + aX + b has no multiple roots. An elliptic curve over a field
E(Fp) is defined as the set of solutions (x, y) ∈ Fp2 that satisfy the equation:

Y 2 = X3 + aX + b, (2.6)

and a special point called "point at infinity" O. To be considered a valid
elliptic curve, the cubic curve must be non-singular i.e.: all points must have
a defined tangent. Hence, the discriminant d of the curve must be non-zero:

d = −(4a3 + 27b2) ̸= 0 (2.7)

Elliptic curves present two main geometric properties:

2.1. ALGEBRA 15

(a) Secp256k1 elliptic curve. (b) Line intersecting elliptic curve.

Figure 2.1: Elliptic curve examples.

• An elliptic curve is symmetrical with respect to the x-axis. Thus,
given a point P = (x, y) on E(F), we can be sure −P = (x,−y) is also
contained in the curve.

• Any straight line will intersect with an elliptic curve in at most 3 points
(See Figure 2.1b).

Using these properties, the addition operation is defined so that the sum
of three aligned points results in the neutral element. Thus, the addition
of three aligned points, and the identification of the point at infinity with
the neutral element, can be expressed as P + Q + R = 0. Therefore, the
addition of the first two points is equal to the reflection of the third point
with respect to the x-axis, P + Q = −R. See Figure 2.1b for a graphical
representation. We refer the reader to Slinko [2020], Silverman and Tate
[1992] for the demonstration.

An additive abelian group can be built using the points in the curve, and
the point at infinity. This implies we can also find a generator G, as defined
in Sec. 2.1.1, that generates the whole set of points in the curve. This
group, and elliptic curves in general, are especially interesting for the field of
cryptography since the DLP is also present (referred to as the Elliptic DLP
or EDLP), and we can build on top of it to construct secure cryptographic
systems. Elliptic curves also provide an equivalent security level compared
to other structures, with a lower key size, because the cutting-edge results to
solve the DLP in usual groups are not suitable to be applied in elliptic curve

16 CHAPTER 2. CRYPTOGRAPHY

groups. This is especially relevant given the rise of general computing power
available through the years.

2.2 Secret Sharing
Secret sharing schemes enable a secure method to distribute a secret be-
tween a set of parties, in such a way that the individual shares do not leak
any information about the secret, and, when parties, or a subset of them,
collaborate, they can recover the original secret. Adi Shamir Shamir [1979]
introduced a (t, n)-threshold sharing scheme that allowed to share a secret C
among n players, in such a way that any subset of t + 1 players can recover
the secret C. The secret is encoded as the independent term of a polynomial
f(x) and the pieces of information distributed among players are points of
the aforementioned polynomial.

f(x) = atx
t + at−1x

t−1 + . . .+ a1x
1 + C (mod q)

Where t is the degree of the polynomial, C is the encoded secret, and q
is a large prime.

To recover the secret C, any t + 1 parties need to interpolate the poly-
nomial f(x) from the points (xi, yi), we recommend Lagrange’s interpolation
(see Section 2.1.3). However, other methods based on the Discrete Fourier
Transform (DFT) are also widely employed Gentleman and Sande [1966].
DFT introduces some assumptions on the periodicity of the function to in-
terpolate and requires a change of basis, but these drawbacks are outweighed
by its efficiency for large samples.

Please note that in Shamir’s secret sharing scheme, the secrecy of C
does not depend on the computational theory, but on information theory.
Thus, the scheme has comparable security to Perfect Secrecy (see Sec. 2.5.3)
systems, and it is resistant even in post-quantum scenarios.

2.2.1 Verifiable Secret Sharing
The scheme presented by Shamir relies on an honest dealer that generates
partial shares and communicates them. The existence of such a dealer might
not be guaranteed in many scenarios and leaves the parties helpless to a
malicious dealer that sends invalid shares. Feldman Feldman [1987] intro-
duced an extension to Shamir’s work to address this matter. The scheme

2.3. PUBLIC-KEY CRYPTOGRAPHY 17

makes use of homomorphic properties in order to generate commitments of
the polynomial f(x) coefficients. Commitments take the form of:

c0 = gC , c1 = ga1 , . . . , ct = gat (mod q)

Where g is a generator of the group Gp defined by prime p, and p is a
second prime such that q|p− 1 . Any party can verify the correctness of its
share with these commitments. Let (xi, yi) denote the share received by a
concrete party. Parties can verify their share as follows:

gyi = c0c
xi
1 c

x2
i

2 . . . c
xt
i

t =
t∏

j=0

c
xj
i

j =
t∏

j=0

ga
x
j
i

j = g
∑t

j=0 a
x
j
i

j = gf(xi) (mod p)

If the equation holds, the receiving party can be sure that the partial
share is part of a valid secret-sharing scheme.

2.3 Public-Key Cryptography
Traditionally, cryptography was focused on symmetric encryption, hash func-
tions, Message authentication codes (MAC), and other kind of secret-key pro-
tocols. Symmetric encryption imposes severe limitations in its applications
and requires both parties to agree on a secret key. Due to the military nature
of early cryptography standards and implementations, the use of secret-key
cryptography was extensive and these limitations were not a major concern.

With the birth of the Internet in the 70s, the development of cheap digital
hardware, and the declassification of military standards, the need for cryp-
tographic systems that allowed to communicate unknown parties without
trust assumptions, increased. In this context, and with the seminal papers of
Diffie-Hellman and RSA, public-key cryptography was born. A new crypto-
graphic framework, based on hard problems for which no efficient solution has
been found (See Sec. 2.5.2). Public-key cryptography involves two families
of algorithms, an encryption one, and a decryption one. These algorithms
are related through a pair of keys s, v in the space of all possible keys K,
such that they represent invertible transformations over the finite space of
possible messages M. More formally:

• ∀(s, v) ∈ K, s defines a transformation, and v defines the inverse of
that transformation.

18 CHAPTER 2. CRYPTOGRAPHY

• ∀(s, v) ∈ K, the encryption and decryption algorithms are easy to
compute.

• For almost every pair (s, v) ∈ K it is computationally unfeasible to
derive s from v.

• ∀(s, v) ∈ K it is feasible to compute inverse pairs v and s.

We cover the most relevant contributions for this thesis related to public-
key cryptography.

2.3.1 Diffie-Hellman
In Diffie and Hellman [1976], Whitfield Diffie and Martin E. Hellman intro-
duced a novel way to exchange a private key component over an insecure
channel, removing this way the need for a previous key distribution process
over a secure channel. And allowing the conversation between unrelated
entities without trust assumptions or third parties.

Let Fq denote a finite field over a large prime q, and let g denote a gener-
ator on that field. Let A,B be two users wishing to establish communication
with each other over a public channel.

1. Secret generation and commitment.

(a) A generates a secret value a ∈ Fq and computes ga.
(b) B generates a secret value b ∈ Fq and computes gb.

2. Exchange phase.

(a) A sends ga mod q to B over the channel.
(b) B sends gb mod q to A over the channel.

3. Obtaining the key.

(a) A applies his own secret to the received message to obtain the
key. k = (gb)a = gba mod q.

(b) B applies his own secret to the received message to obtain the
key. k = (ga)b = gab mod q.

2.3. PUBLIC-KEY CRYPTOGRAPHY 19

The keys k obtained by A and B in steps 3(a) ad 3(b) are equivalent.
Therefore, A and B established a unique private session key component for
their communications.

Because of the DLP and the Decisional Diffie-Hellman assumption, nei-
ther of the parties, or an eavesdropper, can obtain the counter-party’s secret
(see Sec. 2.5.2).

2.3.2 RSA
RSA Rivest et al. [1978], named after their inventors Ronald Rivest, Adi
Shamir and Leonard Adleman, is one of the most used public-key crypto-
graphic systems. RSA is based on intractability of the integer factorization
problem Montgomery [1994] and consists on three algorithms: key genera-
tion (Algorithm 1), encryption (Algorithm 2) and decryption (Algorithm 3).

Algorithm 1 RSA Key Generation: An entity generates a RSA private key
component and its associated public key component.

1: (a) Generate two large and random primes p and q.
2: (b) Compute n = pq and ϕ = (p− 1)(q − 1).
3: (c) Choose a random integer v, 1 < v < ϕ, such that gcd(v, ϕ) = 1.
4: (d) Compute the unique integer s, 1 < s < ϕ, such that vs ≡ 1 mod ϕ.

5: (e) The public key component is set to (n, v), the private key compo-
nent is s.

Algorithm 2 RSA Encryption: B encrypts a message m for A.
Require: m← Message to be encrypted.
Require: (n, v)← A’s public key component.

1: (a) Encode the message m as an integer in the range [0, n− 1].
2: (b) Compute c = mv mod n.
3: (c) Send ciphertext c to A.

Since the same three algorithms can be used to both encrypt and sign
(depending on the component of the key used), RSA offers great flexibility.
RSA also presents some security issues that need to be taken into account
when implementing the scheme.

20 CHAPTER 2. CRYPTOGRAPHY

Algorithm 3 RSA Decryption: A decrypts a ciphertext c from B.
Require: c← Ciphertext for message m.
Require: m← Message that was encrypted.
Require: s← A’s private key component.

1: (a) Recover m using s : m = cs mod n.

• RSA is sensible to integer factorization Kleinjung et al. [2010]. Care-
fully selected parameters Burns and Mitchell [1994] are required to
avoid the most common attacks, such as the common modulus attack
DeLaurentis [1984].

• RSA is deterministic and encryption/signing always produces the same
output for a constant input. If the space of possible messages is small,
or an attacker’s computational power is not bounded, he could explore
which message produced a given ciphertext.

• RSA is homomorphic and malleable. Therefore, a malicious attacker
could intercept a ciphertext c and compute c

′
= c2v, causing the de-

cryption to be 2m instead of m as originally intended.

For this reason, and to solve the last 2 issues, implementations of RSA
include a masking process, also referred as padding, by which the messages
are extended with a random string or any other method (e.g. hash of the
message) to prevent homomorphic properties to be applied. This removes
the determinism from RSA and ensures that malleable tampering cannot go
undetected.

2.3.3 Commitment Schemes
Commitments are a kind of cryptographic construct that allow to commit
to a secret value, without revealing any information about the secret value.
The general scheme of any commitment scheme is based on two steps:

• Hide: Given a secret input x, the user produces a commitment C such
that, it does not reveal any information of x, and the user cannot
modify x without affecting C.

• Reveal: The creator reveals some information, also called the decom-
mitment string, which allows opening the commitment C and reveal x.

2.4. ZERO-KNOWLEDGE 21

With this information, the verifier can check the integrity and validity
of the commitment.

There are multiple commitments schemes with different properties. One of
the most famous commitments schemes are Pedersen commitments Pedersen
[1991]. Nonetheless, a general commitment can be defined using a hash
function as an oracle function and some source of randomness r.

C(x, r) = H(r||x), (2.8)

where H is a public hash function and r acts as decommitment string.
Once r is made public, everyone can open the commitment and verify its
integrity. If x is meant to be secret, the reveal of the commitment implies to
unveil both x and r.

2.4 Zero-Knowledge
Zero-knowledge proofs Thaler [2022] are a special kind of mathematical
proofs. A proof is defined as any piece of information that convinces some-
one from the validity of a statement. A proof-system is any set of predefined
steps to check if a proof is correct or not. Proof systems must ensure that
no false statement can produce a valid proof (soundness), and that any true
statement should have a corresponding valid proof (completeness). Typically,
in these interactive schemes, two parties are involved: someone that wants to
prove a statement and generates the proof: the Prover. And someone that
is yet to be convinced of the validity of the statement, and verifies the proof:
the Verifier.

Zero-knowledge proofs introduce an additional restriction: the verifier
should learn nothing from the prover other than the validity of the statement.
Zero-knowledge intuition might be easy to grasp Quisquater et al. [1989],
but it is an extensive area of cryptography with thousands of applications.
From interactive proofs Goldwasser et al. [2019], Babai [1985], Goldwasser
et al. [2015], to specific domain zero-knowledge proofs, to the raise of general
purpose zero-knowledge schemes.

Domain specific proofs provide zero-knowledge for some concrete scenar-
ios: proving discrete logarithm solutions are known for a given instance (see
Section 2.4.1), or that a secret value lies within a defined range Morais et al.

22 CHAPTER 2. CRYPTOGRAPHY

[2019]. General purpose zero-knowledge schemes use an intermediate arith-
metic representation to represent arbitrary statements. Despite their heavy
computational requirements, general purpose zero-knowledge schemes have
growth extensively Parno et al. [2016], Chiesa et al. [2020], Maller et al. [2019],
Groth [2016], Gabizon et al. [2019] and made it from theoretical research to
real case scenarios, specially in the blockchain environment.

In this section, we summarize one of the most used proofs in e-voting and
a transformation to make zero-knowledge proofs non-interactive.

2.4.1 Schnorr Zero Knowledge Identification

Schnorr introduced a simple, interactive and efficient zero knowledge scheme
Schnorr [1989] to prove the solution to an instance of the DLP. Schnorr’s proof
is limited to the DLP problem, but it is extensively used in secure multi-party
computation Canetti et al. [1996] or key-exchange scenarios where parties
need to prove the validity of their partial values without revealing them.

Let us assume a prover needs to identify himself by proving he knows the
discrete logarithm x of some group element h = gx ∈ Gq. Where Gq is a
group defined by a prime q. The group Gq and its generator g are public
and known values. h is stored in the service side to properly acknowledge
the identity of the user. Algorithm 4 depicts the steps of the identification
protocol used to access a resource.

Schnorr’s protocol is also sometimes referred as the sigma protocol, be-
cause of the pattern of the interaction between the verifier and the prover.
As shown in Figure 2.2, the flow presents similarity to the sigma (Σ) Greek
letter. But sigma protocols are a broader definition, usually referred to in-
teractive proofs.

Nonetheless, the protocol presents a serious limitation: it is not a com-
plete Zero-Knowledge proof. It is an Honest-Verifier Zero-Knowledge proof
Goldreich et al. [1998], meaning that zero knowledge is only preserved if the
verifier remains honest. A malicious verifier could extract the witness from
the response received from the prover. For this reason, Schnorr’s proof is
always used together with the Fiat-Shamir heuristic, which makes the proof
no longer interactive and prevents a dishonest verifier from acting.

2.4. ZERO-KNOWLEDGE 23

Algorithm 4 Schnorr’s Zero-Knowledge identification protocol.
Require: g ← Generator of Gq.
Require: x← Solution to the DLP for an element h, using g as a generator

that identifies the user.
1: Prover
2: (a) Sample a random value r ∈R Gq.
3: (b) Compute u = gr mod q.
4: (c) Send u to the verifier.
5: Verifier
6: (a) Sample a random challenge c ∈R Gq.
7: (b) Send c to the prover.
8: Prover
9: (d) Compute z = r + xc mod q.

10: (e) Send z to the verifier.
11: Verifier
12: (c) Accept if, and only if, gz = uhc mod q.

2.4.2 Non-interactivity and the Fiat Shamir Heuristic

Fiat-Shamir Fiat and Shamir [1986] heuristic provides a way to produce
non-interactive schemes. Non-interactivity implies fewer messages between
parties and ensures the challenge selected by the verifier is random. Fiat-
Shamir replaces the challenge from step (a) Verifier in Algorithm 4, with a
one-way hash function hash : {0, 1}∗ → {0, 1}k of k-length.

As it can be seen in Algorithm 5, the number of interactions required to
identify the user are reduced, and the previously discussed vulnerability of
Schnorr’s is removed.

Fiat-Shamir transformation is not limited to this example and can be,
and it is, to many other zero-knowledge proof systems. When using this
in a protocol implementation, extraordinary care needs to be taken when
deciding which variables constitute the input of the hash function. Leaving
any value that can be chosen by the prover outside the challenge computation
would result in well known vulnerabilities Bernhard et al. [2012], Haines et al.
[2020]. This implementation flaw is commonly referred as weak Fiat-Shamir.

24 CHAPTER 2. CRYPTOGRAPHY

Prover(x, h = gx) Verifier(h = gx)

r ∈R Zq

u = gr u

c ∈R Zq

c

z = r + cx

z

gz
?
= uhc

0/1

Figure 2.2: Schnorr’s proof interaction scheme.

2.5 Complexity & Computability
Cryptography is deeply tied to theoretical computer science. There are two
major theories in the theory of computation Sipser [1996]: complexity the-
ory Hartmanis and Hopcroft [1971] and computability theory Cooper [2017].
Complexity theory studies how much resources, in terms of time and memory,
it takes to solve a particular problem. Computability theory deals with what
can and cannot be solved by a computer. Thus, it is possible to distinguish
among those problems for which there exists an algorithm to solve them,
known as decidable problems, and those that have no such an algorithm,
which are referred to as undecidable.

Most modern cryptographic systems are based on the complexity theory.
These systems employ mathematical problems with an elevated complexity,
for which no efficient solution is known, to build trapdoor functions. A
trapdoor function is a function that is easy to compute in one direction, but it
is unfeasible to do in the opposite direction (the inverse) unless a secret value
is known. However, the security of systems based on the complexity theory
relies on the current state of available computation, i.e. accessible hardware,

2.5. COMPLEXITY & COMPUTABILITY 25

Algorithm 5 Non-interactive Schnorr’s Zero-Knowledge identification pro-
tocol.
Require: g ← Generator of Gq.
Require: x← Solution to the DLP for an element h, using g as a generator

that identifies the user.
1: Prover
2: (a) Sample a random value r ∈R Gq.
3: (b) Compute u = gr mod q.
4: (c) Compute c = hash(g||q||h||u).
5: (d) Compute z = r + xc mod q.
6: (e) Send u, c, z to the verifier.
7: Verifier
8: (a) Check if c = hash(g||q||h||u).
9: (b) Accept if, and only if, gz = uhc mod q.

and on some unconfirmed hypothesis such as P ̸= NP . Different kinds
of cryptographic systems, based on the computability theory are possible
Sempere [2002, 2004]. Hence, systems are based on undecidable problems.

In this section, we cover some of the most well-known problems and as-
sumptions that make public-key cryptography possible. As well as we intro-
duce the concept of perfect secrecy, an approach not based on complexity
theory.

2.5.1 Discrete Logarithm Problem

The intractability of the Discrete Logarithm Problem (DLP) McCurley [1990]
is the base for many cryptographic protocols.

Let Gp be a finite cyclic group of order p. Let g denote a generator of
Gp, and let a be an element in the same group. The DLP of a to the base g
is the unique integer x, 0 ≤ x ≤ p− 1, such that:

a = gx ⇐⇒ x = logg a mod p (2.9)

When defined over elements of a group, there is no efficient solution for the
DLP. Thus, many cryptographic schemes employ the DLP to build trapdoor
functions that are intractable to solve under the complexity theory.

26 CHAPTER 2. CRYPTOGRAPHY

2.5.2 Cryptographic Assumptions
Most public key cryptographic schemes are based on problems, also called
trapdoor functions, that are assumed to be difficult to solve without the
knowledge of a secret value, These assumptions state that it is difficult to
solve, or even differentiate, instances of the problem without the complete
knowledge of the parameters. We present some of the most well-known and
relevant assumptions in public key cryptography.

DDH: Decisional Diffie-Hellman

Decisional Diffie-Hellman is a computational hardness assumption about the
discrete logarithm problem in cyclic groups. The assumption states the fol-
lowing:

Let Gq be a cyclic group of prime order q, with a generator g. The
following two distributions over Gq3 : A = {(ga, gb, gab) for a, b ∈R
Gq} and B = {(ga, gb, gc) for a, b, c ∈R Gq} are computationally
indistinguishable.

Computationally indistinguishable means that the value gab looks like a
random element in Gq, even if we know ga, gb. DDH is strongly related to
another assumption called Computational Diffie-Hellman, which states that
given g, ga, gb is computationally intractable to compute gab.

These assumptions are stronger than the DLP, as there exist groups for
which the DLP is considered to be hard, but the DDH problem is easy.

RSA & Strong RSA

RSA assumptions are computational hardness assumptions over the RSA
problem. Regular, or weak, RSA assumption differs from the regular RSA
assumption in that it allows the attacker to freely choose the exponent mes-
sage m. Both assumptions imply that RSA works as a one-way trapdoor
function and, unless the secret component is known, there is no efficient
solution for the RSA problem:

Given a RSA public key component (n, e) and a ciphertext c =
me mod n, recover the message m.

2.5. COMPLEXITY & COMPUTABILITY 27

RSA Assumption

The RSA assumption states:

It is hard to solve the RSA problem unless the secret component
of the key is known when the modulus n is large enough and
randomly generated for a random message m.

Strong RSA Assumption

The RSA strong assumption states:

It is hard to solve the RSA problem unless the secret component
of the key is known when the modulus n is large enough and for
any possible message m.

2.5.3 Perfect Secrecy
Perfect secrecy is directly derived from the information theory Shannon [1949]
proposed by Claude Shannon. Information theory relates the space of pos-
sible messages M with the space of possible ciphertexts C. Each possible
transformation between these spaces corresponds to enciphering with a par-
ticular key. Each transformation (i.e. key) and each message have an a priori
probability of being chosen. The combination of these 2 probabilities rep-
resents the a priori knowledge of the situation for a given attacker. If the
attacker intercepts the ciphertext, he could compute its a posteriori proba-
bility by exploring the set of possible messages and keys. This a posteriori
probability represents the problem complexity of cryptanalysis.

If for a given message, its cryptogram reveals nothing about the original
message (e.g.: its length), we obtain perfect secrecy. Or, as more formally
defined in Equation 2.10, perfect secrecy implies that the a priori probability
of a given message m, in the space of all possible messagesM, is equal to the
a posteriori probability of the message given the ciphertext c, in the space of
all possible ciphertexts C.

P (M = m) ≡ P (M = m|C = c) (2.10)

and, thus, that the ciphertexts reveal no information about the message.
All messages are equiprobable for a given ciphertext, making the scheme
secure since the attacker has no method to obtain additional information,

28 CHAPTER 2. CRYPTOGRAPHY

even with selected ciphertexts. Multiple solutions for a given ciphertext can
exist. Hence, even an attacker with unlimited computing resources, could
not guarantee the validity of a solution.

To attain perfect secrecy in a system, the secret key utilized must be
equal to or longer than the message being encrypted Dodis [2012]. In this
dissertation, we make use of polynomials defined over finite fields to achieve
perfect secrecy. Within this framework, the length of the secret key can
always be consistently expanded by modifying the prime p that defines the
field. Therefore increasing the space C and finding longer secret keys to
encode our message.

2.6 Digital Signatures
Digital signatures are a public-key cryptography primitive designed to pro-
vide guarantees of the authenticity of a message. They are the digital counter-
parties to traditional handwritten signatures. Digital signatures schemes
usually consist in three different algorithms:

• Key generation(1λ) → (s, v). As the algorithm that takes as input a
security parameter λ and produces the signing key s and the public
verification key v.

• Sign(m, s) → σ. Which is the algorithm that takes a message m and
the signing key s to produce a signature σ.

• Verify(v, σ,m)→ 1/0 As the verification algorithm that takes the mes-
sage m and the signature σ and verifies them using the public key v.
It outputs a boolean with the result of the verification.

Moreover, digital signatures offer certain attributes that surpass the ca-
pabilities of conventional signatures:

• Authenticity: The message originates from a legitimate party.

• Integrity: The message has not been tampered or modified.

• Non-repudiation: The signing party cannot subsequently deny the fact
they actually signed the message.

2.6. DIGITAL SIGNATURES 29

The properties of public verifiability and non-repudiation, while often
advantageous, may not be universally desirable. Numerous scenarios exist in
which users might prefer to maintain their privacy (e.g., electronic voting)
or restrict third-party verification of their signatures.

To address these concerns, innovative signing schemes have been pro-
posed, frequently referred to as Non-Standard Arroyo et al. [2015] due to
their unique architecture, that diverges from the traditional signer and veri-
fier roles or the deviation from previously outlined properties. These novel,
non-standard schemes include, but are not limited to:

• Blind Signatures. See Section 2.6.1.

• Group and Ring Signatures. See Section 2.6.2.

• Multi-signatures Itakura [1983], wherein multiple signers must sign the
same message for it to be considered legitimate.

• Threshold signatures Desmedt and Frankel [1991], Damgård and Ko-
prowski [2001], which necessitate a minimum number of parties to gen-
erate a single signature.

In the following sections, we cover in detail two of the most employed
signatures schemes in this dissertation: blind signatures and ring signatures.

2.6.1 Blind Signatures
Blind signatures Chaum [1982], Camenisch et al. [1994] were introduced as
a scheme to enable untraceable payment systems. Conceptually, blind sig-
natures allow a user to get some data signed without revealing the actual
information getting signed. Blind signatures enable an entity to verify the
identity of a user and grant a certification without requiring the entity to
see the actual data getting certified. This implies that later on, the properly
identified user can make use of his signed data without being tracked.

Blind signatures take advantage of the homomorphic properties of cryp-
tography to enable the signature of masked data. They can be defined over
multiple cryptographic schemes, as long as they present these homomorphic
features and provide the following functions:

1. A signing function s(x) only known to the signer, and its corresponding
inverse s−1(x) such that s−1(s(x)) = x. Both functions must not reveal
anything about the original message x.

30 CHAPTER 2. CRYPTOGRAPHY

2. A commuting function c(x), and its inverse c−1(x), only known to the
user such that c−1(s−1(c(x))) = s−1(x). Both functions must not reveal
anything about the original message x.

3. A redundancy predicate r, ensures sufficient redundancy to make the
search space for valid signatures impractical.

The main property of blind signatures is the inability to relate the signa-
ture s(x), with the correspondent masked signature s(c(x)). For this reason,
blind signatures are especially relevant in electronic voting schemes. Con-
sult Section 4.2 to see an RSA implementation of blind signatures applied to
voting.

2.6.2 Ring Signatures
Ring signatures are a distinctive form of cryptographic signature, named
after their unique ring structure. Ring signatures utilize the public keys
of multiple individuals to generate a signer-ambiguous signature, where the
identity of the signer is not revealed, only their membership to a specific
group. As any public key within a ring signature could potentially be the
signer, the signature does not uniquely identify the originator.

Ring signatures were initially proposed by Chaum in Chaum and van
Heyst [1991] as a form of group signature. However, this scheme was limited
as it required a group coordinator to set up the signing scheme. To overcome
this limitation, Rivest introduced the first ring signatures in Rivest et al.
[2006], which provided unconditional signer ambiguity without the need for
a group coordinator. In a ring signature scheme, any user can define a set
of possible signers, including themselves, and sign a message using their own
secret key and the public keys of other users in the set, without requiring the
permission or knowledge of those other users. This provides unconditional
signer ambiguity without the need for a group coordinator. However, since
it is impossible to determine which of the users in the set actually signed
the message, nothing would prevent a malicious user from using a different
ring signature to double spend a resource, as the signature would still be
considered valid as long as it was signed by a member of the defined set.
For this reason, ring signature schemes that introduced some mechanism to
prevent double signatures were introduced Wang et al. [2008], Chow et al.
[2005]. See Section 3.3.2 for an implementation of Ring Signature Confiden-
tial Transactions, which leverage these mechanisms.

Chapter 3
Blockchain

Mi infancia son recuerdos de un
patio de Sevilla.

Antonio Machado

Mq ukpbccda iou xteooeffc bk
hb jkbwu lq Dcftblv.RF

Hill Cipher mod 27, Matrix2 2 3
4 3 6
5 8 13

3.1 Blockchain Basics & Bitcoin
A blockchain is a data structure composed of blocks, that are stored sequen-
tially and, therefore, define a chain. These blocks contain ordered lists of
transactions that reflect transactional information between the parties in-
volved in the blockchain. Processing these transactions sequentially allows
us to grasp the current state of the blockchain. The state of the blockchain
is defined as the number of tokens in each one of the addresses at a given
time. For this reason, blockchains are sometimes also referred to as public,

31

32 CHAPTER 3. BLOCKCHAIN

and decentralized, ledgers. Blocks are atomic in the sense that, either they
are processed and a new state is achieved, or they are not processed and
the blockchain state remains the same. Addresses act like accounts and are
managed through keys. The owner of the private key associated with the
address, has complete ownership of the funds and resources in the derived
addresses.

The story of blockchain is slightly tied with Bitcoin Nakamoto [2008] and
cryptocurrencies in general. The proposal of a peer-to-peer electronic cash
network by Satoshi Nakamoto was the first to use blockchain technology in a
decentralized environment and to solve the problem of consensus. In Bitcoin,
parties collaborate to maintain the state of the payment network by using the
blockchain as a distributed ledger that contains all the public information.
This transactional information is used to compute the state and address
of who owns what at a given block height. By giving users the ability to
actively participate as first-class citizens in the network, and managing their
own funds through pseudonymous addresses, Bitcoin was able to introduce
a distributed payment network without any trusted party involved.

Nonetheless, the biggest contribution made in the Bitcoin whitepaper
was solving the consensus problem. In an adversarial network with economic
incentives where everyone has the same power, the obvious problem is how
to prevent malicious parties from altering the state. Bitcoin built on top of
previous electronic cash systems Wei Dai [1998], Szabo [2005] and reduction
spam mechanisms Finney [2004] to develop Proof-of-Work. Proof-of-work
(PoW) is a consensus algorithm that requires some computations to be done
before submitting a block to the blockchain. This creates a trial-and-error
race between parties to be able to add a block. This computational process
is called mining. Assuming that at least 51% of the network is honest, the
blockchain will be filled with valid blocks. In the case of a bifurcation, e.g.
two parties mine a block at the same height, users should always follow the
longest chain, the chain with more work. Proof-of-Work chains become more
secure as the blockchain grows since it would require a malicious attacker
to rewrite many past blocks to change the current state. Other famous
consensus algorithms are Proof-of-Stake (PoS) Nguyen et al. [2019], where
the block finalization depends on a validator set that is chosen based on their
stake, and Practical Byzantine Fault Tolerance Bano et al. [2019].

3.1. BLOCKCHAIN BASICS & BITCOIN 33

3.1.1 Blockchain Trilemma
All distributed systems, no matter if it is a blockchain or a different system,
fall under the CAP theorem Gilbert and Lynch [2002], Brewer [2012]. CAP
theorem states that any distributed system, cannot provide a strong consen-
sus (C), high service availability (A), and partition tolerance (P) at the same
time. Since availability and partition tolerance are binary properties, they
are ensured or not, no middle-ground is possible. Usually, consistency is the
degraded property. This degradation results in different consistency mod-
els Muñoz-Escoí et al. [2019]. We already covered how Bitcoin, and other
blockchains, resolve the consensus problem by using PoW. Nonetheless, PoW
is not a strong consensus algorithm, which affects the finality of the transac-
tions (see Section 3.1.2) and the security and efficiency of the network.

A problem derived from the CAP theorem, that affects all blockchains, no
matter the consensus algorithm employed, relates to their scalability, security,
and decentralization properties.

Security as the property that all transactions are correct and validated, and
the blockchain cannot be manipulated.

Scalability defines the ability of the system to support more users without
degrading the quality of the service.

Decentralization ensures that enough diverse entities participate in the
network and redistribute the power among users.

The problem is known as the blockchain trilemma and states that in
the triangle defined by the mentioned properties (see Figure 3.1), only two
of them can be provided with sufficient guarantees, and with the cost of
degrading the third property. Hence, every design decision in one direction
is a trade-off in the spectrum of these properties. This means, that we can
only focus on one side of the triangle.

Therefore, we can classify blockchains into three different categories:

• Those chains that focus on a strong consensus algorithm and provide
great security, while also ensuring the decentralization of the system.
The main drawback of these systems is their poor scalability, as more
users engage in the system, the costs and times increase significantly.
An example of this category is the Bitcoin network.

34 CHAPTER 3. BLOCKCHAIN

Security

Scalability Decentralization

Poor scalabilityCentralized systems

Weaker consensus

Figure 3.1: Blockchain Trilemma Problem

• Blockchains where the security is ensured and have great scalability so-
lutions, but sacrifice the decentralization of the systems. They usually
have a very reduced validator set that makes them pretty centralized.
An example of this kind of network is Binance BSC.

• Systems where scalability is better, and they are still considered de-
centralized, but the security of the consensus algorithm is usually de-
pendent on economic guarantees instead of the statistical unfeasibility
of attacking the network. A possible example of this is the Ethereum
network, as it employs PoS instead of PoW.

3.1.2 Block Finality
Depending on the consensus algorithm employed, blockchains provide differ-
ent types of finality. By finality, we refer to the amount of time, or blocks
in the chain, needed to consider the submitted transactions as immutable,
or at least statistically unfeasible to modify. Finality simply represents the
process of inclusion in the blockchain and guarantees that past events on the
blockchain are immutable. Unfortunately, strong finality cannot be provided
without some compromises, due to the CAP theorem, and most blockchains
only offer some degree of finality. We list the three degrees of finality most
likely to be found on different networks, from weaker to stronger finality:

• Probabilistic finality: Finality is reached eventually. Under some
assumptions, we can estimate the probability that a given block is
considered final. With each new block added to the chain, older blocks

3.1. BLOCKCHAIN BASICS & BITCOIN 35

become more final. E.g. Bitcoin, and most PoW chains, consider
a block final after 6 blocks since the probability of a fork decreases
exponentially as the chain grows.

• Provable finality: In an effort to provide stronger and faster finality,
some chains include some kind of finality gadget that runs in parallel to
the chain, and performs a Byzantine agreement process over the blocks
already in the chain. Once the gadget has gone over those blocks, and
a consensus is reached, they are considered final. Some examples are
GRANDPA1 on Polkadot, or Casper FFG 2 on Ethereum.

• Absolute finality: At a cost, some blockchains implement Probabilis-
tic Byzantine Fault Tolerant (PBFT) consensus protocols. This means,
once the block is crafted, it is automatically considered final.

3.1.3 Addresses
The state of a blockchain is determined by transactions, and this state is
represented using addresses. Addresses are controlled through digital keys
and represent different pseudonymous identities. Addresses can own both
cryptocurrencies and code in some blockchains.

Different blockchain networks decide to handle addresses differently. There
are mainly two general approaches when handling addresses abstraction:

• Unspent Transaction Output (UTXO): Transactions are repre-
sented as the sum of their inputs and outputs. Every transaction must
prove that the sum of its inputs is equal to or larger than the sum
of its outputs. Each input must be tagged as not yet spent, and the
signature of the transaction must match the owner of the inputs. Un-
spent amounts in the transaction are returned to the owner as special
output called unspent transaction output which gives a name to this
approach. This is the model used in Bitcoin and Monero.

• Account model: In this model, addresses are modeled similarly to
bank accounts. Each one of them has its own storage and balance.
Any block in the chain can alter the state of one of the accounts. A

1https://github.com/w3f/consensus/blob/master/pdf/grandpa.pdf
2https://arxiv.org/pdf/1710.09437.pdf

https://arxiv.org/pdf/1710.09437.pdf

36 CHAPTER 3. BLOCKCHAIN

transaction is valid if the account has enough balance for the transfer.
This accounting model is used in Ethereum.

The account model is easier to manage and allows for more complex in-
teractions. However, since any block can affect the account, you need to
synchronize the whole blockchain in order to verify a transaction. UTXO
model allows to verify a signature given only the inputs and outputs, it pro-
vides slightly better security guarantees as it becomes difficult to link multiple
addresses, and allows for parallel transaction processing. Nonetheless, it is
more limited and imposes severe restrictions in more complicated scenarios
such as the use of smart contracts.

3.2 Ethereum
We devote this section to provide an introduction to the Ethereum ecosystem.
An interested reader can find a comprehensive introduction to Ethereum in
Antonopoulos and Wood [2018].

Ethereum was developed by Vitálik Buterin originally as a Bitcoin im-
provement. But the changes introduced were too ambitious and ended up
being a different blockchain. The main changes introduced by Ethereum with
regard to Bitcoin were:

• The transition from a PoW consensus to a PoS. Now blocks are added
by a set of validators in each epoch of the network. Validators need to
stake a sufficient amount of tokens that provide economic guarantees
to make sure they validate blocks correctly. Please note that originally
Ethereum was also using PoW, but later transitioned to PoS.

• The use of the account model for abstracting addresses as defined in
Section 3.1.3.

• The introduction of smart contracts. Ethereum allows uploading ar-
bitrary code, written in the language they created: Solidity, in the
blockchain. This enables public, decentralized, and auditable code.
The blockchain is no longer a simple transactional network, but a com-
puting platform in which we can develop much more complex protocols.

Ethereum can be conceptualized as a global and decentralized state ma-
chine, wherein the state is established by a sequence of confirmed blocks, and

3.2. ETHEREUM 37

new block proposals dictate modifications to the state. Each block consists
of a set of transactions that define it. Consequently, Ethereum functions as
a distributed virtual machine. The Ethereum yellowpaper Ethereum [2022]
outlines the technical specifications of the Ethereum Virtual Machine (EVM),
which serves as the mechanism responsible for processing transactions and
updating the current state. To function effectively within the Ethereum
ecosystem, all applications and smart contracts must comply with EVM stan-
dards. The EVM constitutes the core technical specification that manages
the blockchain state, while Ethereum typically encompasses a broader scope,
such as client node software, external data structures, and other associated
components.

The Ethereum ecosystem features two distinct types of addresses: Ex-
ternally Owned Accounts (EOAs) and contract addresses. EOAs are owned
and managed by users who can control them using digital private keys, sig-
natures, and address derivation techniques. In contrast, contract addresses
are exclusively managed by the smart contract code itself. Consequently,
contract addresses do not possess any associated private keys, and all opera-
tions on them are initiated by transactions originating from EOAs. However,
an EOA address can own a contract address and make changes to the code.
If a smart contract developer wants to provide a security guarantee of the
immutability of the code, he can transfer the ownership to a special address
(all zeroes address). This process is known as renouncing ownership of a
contract and ensures not even the original developer can apply changes to
the code.

3.2.1 Gas Fees
Ethereum employs gas as the unit of measurement for computational and
storage resources. This system provides economic incentives for validators
to operate nodes on the network and prevents the abuse of the blockchain
through techniques such as infinite loops. As a result, users are required to
pay a fee for each interaction they have with the network. Consequently, opti-
mizing gas usage has become a crucial area of research that heavily influences
smart contract development. To mitigate the prohibitive expense associated
with certain operations, Ethereum includes a reduced set of pre-compiled
contracts specifically designed for commonly used and computationally ex-
pensive mathematical operations, such as elliptic curve arithmetic, hashes,
and signature verification. Without these pre-compiled contracts, imple-

38 CHAPTER 3. BLOCKCHAIN

menting these operations would be excessively costly.
Gas fees are paid in Ethereum’s native currency, ether (ETH), and are

denoted in gweis. A gwei is equivalent to 10−9 ETH. Traditionally gas fees
were calculated by multiplying required gas units and their gas price, Fee =
Gas Units ·Gas price. As an example, assuming 21, 000 units of gas, at a gas
price of 100 gwei and an Ethereum price of 1400$:

Fee = 21, 000 · 100 = 2, 100, 000 gwei = 0, 0021 ETH ≈ 2.96$

After the London update of the network Roughgarden [2020], the gas price
is divided into a Base fee, that gets burned to make the currency deflationary,
and a Priority fee that is sent to miners.

3.2.2 Events
It is important to differentiate between accessibility and public availability.
Ethereum leverages events and indexed parameters to optimize the querying
of the blockchain and enable seamless integration with user interfaces. With-
out such optimizations, blocks, and transactions would be represented solely
as hexadecimal strings that would need to be parsed manually.

Events are used to enable asynchronous triggers and provide context-
specific data related to the event. User interfaces can monitor these events,
which often include return values from transactions initiated by EOAs. Ad-
ditionally, events offer a more cost-effective form of storage, in terms of gas
usage, compared to standard smart contract storage mechanisms.

Events support up to three indexed parameters, allowing for precise in-
dexing of events based on specific values. This feature facilitates the filtering
of events with similar parameters from others with different values. For an
in-depth illustration of the utility of events, please refer to our Solidity im-
plementation of a voting protocol in Appendix A.

3.3 Monero
One of the key points in blockchain is the publicity of the information, any-
one can verify the information and state of the blockchain. While great for
transparency, this means that all the monetary transactional information can

3.3. MONERO 39

be consulted. If a user’s identity is related, by any means, to his blockchain
addresses, all his personal transactions will be traceable.

In an effort to provide better privacy solutions, while also ensuring that
all data in the blockchain is still valid and can be audited, Monero was
introduced. Monero Koe et al., Van Saberhagen [2013] is a PoW blockchain,
under the UTXO model with no support for smart contracts, that leverages
different cryptographic primitives to achieve untraceable transactions over a
public ledger. In order to accomplish this, Monero employs three privacy-
enhancing mechanisms:

• Zero-knowledge proofs (See Section 2.4), specifically Bulletproofs, to
ensure the amounts transferred are within a valid range.

• One Time Public Keys (OTPKs), as defined in Section 3.3.1, to allow
one-time addresses that protect the identity of the receiver.

• Ring Confidential Transactions (RingCT), as defined in Section 3.3.2,
to hide the identity of the sender of a transaction.

3.3.1 One Time Public Keys
To anonymize the receiver of a transaction, Monero employs one-time ad-
dresses. One Time Public Keys (OTPKs) allow the sender to use a new
address for each transaction. These new addresses are generated using a
Diffie-Hellman exchange (see Section 2.3.1). Sending transactions using these
keys preserves the anonymity of the receiver, as they cannot be related to
their identity. The receiver, and only the receiver, is able to recover the
private key of the one-time address, and therefore recover the funds.

In Monero, each user has two public keys (A,B). For any sender to
make a transaction, he needs to compute the OTPK that will be used in the
transaction using the two public keys of the receiver. To do so, the sender
also selects a random number r and computes:

OTPK = Hs(rA)G+B (3.1)

Where Hs is a hash function that maps to integers within the elliptic curve
field used in Monero.

The derived OTPK is used as the public address of the transaction. Note
that R = rG, is also added to the transaction payload. Once the transaction

40 CHAPTER 3. BLOCKCHAIN

is completed, the receiver will be able to recover the private key x associated
with the OTPK using his own private keys (a, b):

x = Hs(aR) + b, (3.2)

such that:
OTPK = xG = (Hs(aR) + b)G (3.3)

It can be seen that Equations 3.1 and 3.3 are equivalent.

Hs(rA)G+B = (Hs(aR) + b)G

(Hs(rA) + b)G = (Hs(aR) + b)G

(Hs(raG) + b)G = (Hs(arG) + b)G

(Hs(aR) + b)G = (Hs(aR) + b)G

3.3.2 Ring Signature Confidential Transactions
To anonymize the sender of a transaction, Monero employs ring signatures
to provide signer ambiguity. As covered in Section 2.6.2, some ring signa-
ture schemes present the problem of double signing. In Monero, that would
imply the ability to double spending a token. are used to sign transactions
with a group of keys, thus giving ambiguity to the sender. In order to pre-
vent that, Ring Signature Confidential Transaction algorithm Noether [2015],
Van Saberhagen [2013] was introduced. This signature scheme combines the
modifications for reducing space consumption described by Back [2015] and
the introduction of Key Images. Key images are a public commitment of the
signer’s private and public keys. They do not leak any information about
the signer’s private key but allow to anonymously link the private key of
the signer. Independently of the public keys on the ring, to the signature.
This allows to prevent the use of the same key to sign two different rings.
Therefore eliminating the possibility of double spending.

Algorithms 6 and 7, formally detail the generation and verification of
RingCT signatures. In the algorithms, Hs represents a hash function that
maps to integers within the elliptic curve field, and Hp is a second hash
function that maps to elliptic curve points. Please note that because the
ring signature generation involves random coefficients, and also depends on
the signer’s private key, the generation algorithm is not deterministic. For
an implementation of these algorithms, please see Appendix B.

3.4. OTHER BLOCKCHAINS AND APPLICATIONS 41

Algorithm 6 Signature Generation
Require: N ← Size of ring signature.

P = {pubk1, pubk2, . . . , pubkN} ← List of public keys used in the signa-
ture.
s← Index in P where the public key of the signer is stored.
x← Signer’s private key paired with the public component pubks.
m← Message to sign.

1: Let r be a list of random numbers empty in the s index.
2: Let α be a random number.
3: Let L,R, c be empty lists.
4: K ← xHp(pubks)
5: Ls ← αG
6: Rs ← αHp(pubks)
7: c(s+1) mod N ← Hs(m,Ls, Rs)
8: i← (s+ 1) mod N
9: while i ̸= s do

10: Li ← riG+ cipubki
11: Ri ← riHp(pubki) + ciK
12: c(i+1) mod N ← Hs(m,Li, Ri)
13: i← (i+ 1) mod N
14: end while
15: rs ← α− csx
16: return (P,K, c0, r)

3.4 Other Blockchains and Applications
Blockchain ecosystems have flourished rapidly in the last decade. They have
transitioned from niche and simple transactional networks, to mature and
established decentralized systems with many applications. In this section,
we provide a brief high-level overview of the most well-known networks and
their most popular applications.

3.4.1 Other blockchains
We can roughly classify blockchains by the goal they were created to solve.

First generation blockchains Their goal is to develop a distributed pay-
ment network that does not depend on third parties. A decentralized

42 CHAPTER 3. BLOCKCHAIN

Algorithm 7 Signature Verification
Require: N ← Size of ring signature.

P = {pubk1, pubk2, . . . , pubkN} ← List of public keys used in the signa-
ture.
K ← Key image associated to the signature.
c0 ← Signature seed that bootstraps the validation algorithm.
{r1, r2, . . . , rN} ← List of random coefficients employed in the generation
algorithm.
ListK ← List of already employed key images.
m← Signed message.

1: if K in ListK then
2: return False
3: end if
4: Let L′, R′, c′ be empty lists.
5: L′

0 ← r0G+ c0pubk0
6: R′

0 ← r0Hp(pubk0) + c0K
7: c′1 ← Hs(m,L′

0, R
′
0)

8: while i < N do
9: L′

i ← riG+ c′ipubki
10: R′

i ← riHp(pubki) + c′iK
11: c′(i+1) mod N ← Hs(m,L′

i, R
′
i)

12: i← (i+ 1)
13: end while
14: return c′0 == c0

cash system that everyone can employ. Bitcoin and Monero are exam-
ples of this first generation blockchains.

Second generation blockchains aim to develop a smart contract layer on
top of the distributed network. This enables third parties to develop
applications and services, leveraging the chain as a settlement layer.
Good examples of this category are Ethereum or Solana3 networks.

Third generation blockchains also support smart contracts but are fo-
cused on network interoperability. This is connecting different blockchain
networks efficiently without introducing new security assumptions. Some

3https://solana.com/es

3.4. OTHER BLOCKCHAINS AND APPLICATIONS 43

examples of these kinds of networks are Polkadot4, which runs multiple
parallel chains connected to a central relay chain, and Cosmos5 that
connects chains through their own trustless communication protocol
called IBC6.

3.4.2 Applications

Smart contracts opened a new and Turing-complete space for application
development. Many projects have benefited from this opportunity and have
brought traditional applications to the blockchain environment, and created
novel ones:

• Decentralized Finances (DeFi): This involves any traditional finance
service that is not implemented as a smart contract: investing incen-
tives, insurance, exchanges, lending, etc. Notable DeFi projects in-
clude: Lido7, Curve8, and Maker9.

• Games: Entertainment has also made use of the blockchain as it en-
sures a public amount of resources, fair competition, and blockchain
collectibles. Main contributors in this category are: Axies infinity10,
and CryptoKitties11

• Non-Fungible Tokens (NFTs). Fungibility refers to the ability to ex-
change a token for another one assuming they are equal, or at least
similar. A non-fungible token is unique, and therefore cannot be con-
sidered equal to other tokens. NFTs are usually related to artistic
expression. Some examples are: OpenSea12, and CryptoPunks13.

4https://polkadot.network/
5https://cosmos.network/
6https://ibcprotocol.org/
7https://lido.fi/
8https://curve.fi/
9https://makerdao.com/es/

10https://axieinfinity.com/
11https://www.cryptokitties.co/
12https://opensea.io/
13https://www.larvalabs.com/cryptopunks

44 CHAPTER 3. BLOCKCHAIN

3.5 Risks
In comparison to numerous well-established, time-tested, and extensively
deployed technological advancements, the advent of blockchain technology
remains relatively recent. Given its novelty, and the fact that is a decentral-
ized network with many participants of varying honesty, it involves certain
risks. While this factors do not impose unsolvable barriers, it is crucial they
are taken into consideration when applying blockchain to some scenarios.
We briefly enumerate the most notorious hazards for blockchain and other
distributed ledger technologies.

• Consensus can be compromised, both Bitcoin and Ethereum have ex-
perienced reorganization attacks in the past Saad et al. [2020]. When
using blockchain, you are inherently trusting its consensus mechanism
and security assumptions. If that fails, it represents a supply-chain
attack to your application.

• Being completely public might entitle challenges in many scenarios.
Some cryptographic techniques, as the zero-knowledge proofs reviewed
in Section 2.4, can be used to obtain privacy. However, these mecha-
nisms do not prevent the user from willfully revealing their own iden-
tities.

• Key management is complicated and relies entirely on the good prac-
tices of users. Misplaced or lost keys may result in lost funds, inability
to access services and sign digital messages.

• The existence of vulnerabilities in smart contracts is well-documented
Destefanis et al. [2018], and these weaknesses can be exploited at a
minimal cost for substantial gains. Such attacks may entail stolen
funds, address impersonation and unauthorized access to user wallets.

• The infrastructure required to access blockchain can be compromised
and used to trace user’s identity or enable Man-in-the-Middle attacks.

• Modifications and updates to blockchain consensus mechanisms are
often more time-consuming to implement than those in permissioned
networks. These network updates usually necessitate an on-chain vot-
ing process, a hard fork and the majority of the network to accept them
before they can be applied.

Chapter 4
Electronic Voting

A man can never have too much
red wine, too many books, or
too much ammunition.

Rudyard Kipling

2C363A4A42775BA3B191FDF3
D0D49AFA294BE4B09A969842
D889D06C3C58F4E14EA402253
9A235B4410D889175F91040A4E
28650C4EC27BB0AA6CDF340E
EE2EFCFBB69997BE6F625424C
4B944296C987

AES, k=RudyardKipling12
CBC mode

Voting is a crucial part of our societies. Elections, and the guarantees
that they must provide, are the cornerstone of our democratic states. They
affect all the aspects in our lives: social interactions, economic exchanges,
organizational structures, personal finances, foreign relationships, etc. For
this reason, all societies that have evolved into democratic structures have
studied voting from different angles. Many different voting schemes exist,
since multiple cultures and different situations require specific obligations.

45

46 CHAPTER 4. ELECTRONIC VOTING

We here present a short, non-exhaustive list of the most used and relevant
voting systems Levin and Nalebuff [1995], Nurmi [2012]:

Plurality: The vote is the name of one candidate. Most voted candidate
wins.

Approval Brams and Fishburn [2007]: You can approve as many candi-
dates as you desire in a multi-candidate race. Most approved candidate
wins.

Borda Saari [2012]: You rank the C candidates. Each one receives C−K
points for being ranked in the Kth position. Candidate with most
points wins.

Condorcet systems Nicolas de Condorcet [1785]: Candidates are ranked.
If a candidate exists that is preferred pairwise (Condorcet winner) over
each other contender by the majority of the votes, then he wins. Since
a Condorcet winner does not always exist, a number of techniques and
heuristics exist to determine a winner given the CXC matrix defining
the relations between candidates.

Instant runoff: Candidates are ranked, the one with the lower number of
votes is eliminated from the election. This process iterates until just
one candidate, the winner, remains.

Range voting: The vote is an integer within a fixed range. Each elector
assigns a range for all the possible candidates. The candidate with
greatest total score wins.

Nonetheless, no matter the system, a voting scheme must be secure
enough to allow the anonymous expression of will. Shamos [1993] enumerates
six commandments every electronic voting system should comply, they are
cited in decreasing order of importance.

I Thou shalt keep each voter’s choices an inviolable secret.

II Thou shalt allow each eligible voter to vote only once, and only for those
offices for which she is authorized to cast a vote.

III Thou shalt not permit tampering with thy voting system, nor the ex-
change of gold for votes.

47

IV Thou shalt report all votes accurately.

V Thy voting system shall remain operable throughout each election.

VI Thou shalt keep an audit trail to detect sins against Commandments
II-IV, but thy audit trail shall not violate Commandment I.

Any violation of the first three commandments must not be tolerated,
it hardly can be considered an election if these principles are not respected.
Commandment IV tends to be more flexible, depending on the jurisdiction
some countries may allow some minor errors (e.g: ± 3 votes) in vote counting.
To the best of our knowledge, commandments V and VI are not enforced
strictly in most elections. These commandments can be translated to more
specific properties that voting schemes are advised to provide.

Democracy The democracy property, also called Elegibility, states that
only electors in the public census are allowed to cast a vote.

Uniqueness Electors can only vote once, double voting is not allowed. This
property is usually implied in the Democracy one, since no election can
be considered democratic if someone votes more than once.

Privacy It is not possible to relate a vote with the elector who casted it.

Verifiability Implies the existence of auditing mechanisms for the election,
ensuring that the voting process has been correctly developed. We can
distinguish three types of verifiability:

• Casted-as-intended: the ballot is sent with the desired vote direc-
tion.

• Recorded-as-casted: the ballot is recorded as it was sent.
• Tallied-as-recorded: the ballot will be tallied with the same vote

direction as recorded.

When a voting scheme achieves the three of them, we can say it is
end-to-end verifiable Benaloh et al. [2015]. End-to-end (E2E) verifia-
bility is crucial property in electronic voting, because as we transition
from paper-based elections, we lose the physical evidence, i.e. paper
ballots, that accompanies votes, which makes detecting errors harder.

48 CHAPTER 4. ELECTRONIC VOTING

E2E verifiability places powerful auditing resources in the hand of elec-
tors. Nonetheless, it is a useless property if electors do not take and
active role challenging the election process. Electors should challenge
the system during the voting itself (casted-as-intended) and after the
voting process (recorded-as-casted and tallied-as-casted). If a sufficient
number of electors take advantage of E2E verifiability, they act as ran-
dom audits that provide sufficient confidence that the election outcome
is correct.
Additionally, if the final tally can be computed and verified by anyone,
part of not of the election process, we say the protocol it is Universally
Verifiable.

Integrity It is unfeasible for any party in the system to modify a ballot
without the forgery being detected.

Accuracy Also known as correctness, it ensures that the results of an elec-
tion are accurate and reflect the actual preferences of the voters. This
requires that no one can change anyone else’s vote, that all valid votes
are included in the final tally, and that no invalid vote will be included
in the tally.

Robustness Robustness ensures that no coalition of electors and/or parties
can disrupt the election process.

Coercion Resistance An elector cannot prove how he voted, or can lie
about the direction of the vote. The voter coercion problem Juels et al.
[2010], Wu et al. [2014] describes an scenario where the elector might
be intimidated (or bribed) to vote in a certain direction. Coercion
resistance, and the problem of vote selling, are also closely related to the
concept of receipt-freeness. An election system is considered receipt-
free if the elector has no means to produce a proof of the direction
of his vote. Since coercion resistant schemes tend to present higher
computational complexity times, many systems resort to an alternative
solution: allowing the modification of the vote. By allowing electors to
later change the direction of their vote, voter coercion, or bribing, lose
effectivity. Since any receipt can be invalidated with a new vote.

Electronic voting (or e-voting), as opposed to traditional voting, enables
a new myriad of possibilities that help to bring voting to better and more

49

secure standards. Traditional elections require physical and in-person atten-
dance, which might be difficult for some people. And, their integrity depends
on multiple individuals and organizations that might fail, or maliciously sab-
otage, to provide a valid election. The verifiability of traditional elections
based on paper is extremely limited. Even in an ideal scenario where not
even the slightest error occurred, electors have no means to verify the final
outcome by themselves. Electronic voting aims to provide a more efficient,
accessible and verifiable elections. Where the honesty and integrity of the
system relies on mathematics and cryptography instead of individuals or lob-
bies. Nonetheless, e-voting also brings new challenges. Mainly security: the
system needs to be secure against new and more sophisticated attacks, and
usability: technology should help electors and facilitate voting instead of
making the process incomprehensible for most citizens.

In this chapter, we review our three proposals for electronic voting , along-
side with some implementations, that tackle these challenges from different
angles. The three proposals provide the security properties previously de-
scribed, although under different scenarios and with varying assumptions.
The three systems later detailed are:

1. A light voting scheme based on blind signatures that only requires 2
authorities to operate.

2. A blockchain based voting protocol focused in public verifiability and
the engagement of usual contenders as authorities.

3. A voting protocol with post-quantum security properties.

While the three presented protocols allow for flexible vote encoding and
potentially could support any kind of voting systems, we only consider single
race and multi-candidate elections for the rest of the document.

For the rest of the document, we will employ the feminine third person
singular she/her to refer to an individual elector engaging with the system,
and the masculine third person singular he/him, or third person plural
they/them, to refer to the party, or parties, that participate making the
election possible. This is done, in the same vein that many works in the
field, with the sole purpose of providing some clarity and distinctly stating
the agents in the system.

50 CHAPTER 4. ELECTRONIC VOTING

4.1 State of the Art
In this section, we review the most relevant works of electronic voting in the
literature. Some of the works here described, are reviewed because of its
importance in the field of electronic voting, others because the similarity in
their goals, and some of them because of the similarity of the cryptographic
primitives employed. We focus on cryptographic electronic voting systems.
Cryptography-free secure systems Rivest [2006], Rivest and Smith [2007] and
cryptographic paper-based systems Chaum [2004], Naor and Shamir [1994],
Chaum et al. [2005], Ryan [2005], Bismark et al. [2009], Chaum et al. [2008],
Essex et al. [2007],
Adida and Rivest [2006] are not the focus of this document, and therefore not
covered unless specifically necessary. For further information on the history
of elections and voting technologies we refer the reader to Saltman [2006].

Electronic voting publications can be categorized by the cryptographic
primitives used to provide privacy while preserving the verifiability of the
election. We can identify systems based in blind signatures, mixnets, ring sig-
natures, zero-knowledge proofs, homomorphic cryptography, and blockchain.
These primitives are detailed in Chapters 2 and 3.

The use of mixnets in an anonymous channel within mail services was the
foundation for the earliest electronic voting scheme proposed Chaum [1981],
Carroll and Grosu [2009]. What made this scheme remarkable was that it did
not rely on a trusted authority, instead requiring only that at least one party
remains honest throughout the cascade of mixes in order for the system to
remain private. Despite the historical relevance of mixnets in e-voting, their
vulnerabilities to correlation attacks Shmatikov and Wang [2006], and the
need for large architectures with many parties have made them an archaic
system for electronic voting. Nevertheless, there are many applications based
on mixnets, such as the Tor browser, that make use of their privacy properties
with remarkable success.

4.1.1 Blind Signatures

Blind signatures (see Section 2.6.1) introduce a method for anonymous sign-
ing. Election authorities can sign ballots from eligible voters, without com-
promising the privacy of the vote, and removing any possible link between
the signed vote and the elector’s identity.

4.1. STATE OF THE ART 51

Juang et al. [2002] present a robust and verifiable multi-authority system,
which enables abstention after the registration phase and allows objections
to the tally without compromising the privacy of the voter. The scheme
utilizes distributed blind signatures Chaum [1983], Camenisch et al. [1994]
to distribute the power of a single authority. The authors propose a com-
plex architecture involving multiple partners such as electors, administrators,
scrutineers, and a counter. The electors first encrypt their votes and apply
blind threshold signature techniques to obtain their votes signed by admin-
istrators. In the voting phase, electors can generate their actual encrypted
votes from the blind encrypted ones, and then send the vote to the counter
through an untraceable electronic mail system. After the voting phase, the
votes are published, and if there are no objections, the scrutineers send their
pieces of the secret key to the counter. The votes are decrypted, and the
results are published. The system ensures the privacy of electors from other
entities of the system. The time complexity of the system depends on the
complexity of the blind threshold signature scheme and the preparation phase
where authorities need to cooperate.

Li et al. [2009a] proposed a multi-authority voting system, which is based
on blind signatures. The system allows electors to cast their votes and blind
them before getting them signed from multiple authorities. The authors
suggest that the authorities should be made up of multiple parties from
across the political spectrum to ensure honest functioning of the system.
The scheme involves four voting phases, four authorities, three pairs of keys
for each authority, and two pairs of keys for each vote. However, the high
number of authorities and the processing of each vote result in a large number
of modular exponentiations required. Additionally, some aspects of the public
key infrastructure and the blind signature functions are not fully elaborated
upon in the paper.

Thi and Dang [2013] proposed a novel election scheme based on blind
signatures and dynamic ballots. The registration process for an elector is
conducted through a chain of authorities, similar to the scheme proposed by
Li et al. [2009a]. To safeguard the privacy of votes from coercion, dynamic
ballots are employed, which change for each elector. The Ballot Center pro-
vides a random permutation of candidates to each voter. In the tallying
phase, Plain-text-equivalence (PET) Jakobsson and Juels [2000] is used to
eliminate invalid and duplicate ballots.

Aziz [2019] proposed an electronic voting system based on blind signa-
tures. The system is designed to be multi-authority and coercion-resistant,

52 CHAPTER 4. ELECTRONIC VOTING

where fake credentials Juels et al. [2010] are used to provide the elector with
an exit mechanism in case of coercion. The system’s registration process be-
gins with the elector anonymously requesting a token from a token authority
after which the ballot is constructed using the parameters in the token. Blind
signatures are employed to sign the ballot from a registrar, and the signed
ballot is cast through a mix-net. After the election, a set of trustees cooper-
ates to decrypt the votes and compute the final tally. Ballots are shuffled and
separated to prevent coercion, which also avoids the elector from knowing if
their vote was tallied as cast. To disseminate trust, the scheme employs a
distributed key generation protocol between a registrar and a set of trustees.

4.1.2 Ring Signatures
Ring signatures (see Section 3.3.2) present a way for electors to identify them-
selves as eligible members of the census, without revealing their identities.
As long as the size of the ring is large enough, electors get sufficient statistical
privacy.

Chen et al. [2008] propose an electronic voting system based on modified
linkable ring signatures, where only designated verifiers can verify the validity
of signatures using their private key. To do so, ring signatures are encrypted
with the verifier’s public key. This adds an extra layer of security to the sys-
tem and prevents designated verifiers from broadcasting information about
a private signature. The election’s private key is generated and distributed
among a group of tallying authorities using a (k, l)-threshold sharing scheme
Gennaro et al. [2007], and the public key is made public before the election
starts. The elector selects the direction of her vote, encrypts it using the
public key of the election, and sends it anonymously to an administrator.
The administrator signs the ballot, adds a timestamp, and returns the ballot
to the elector. Then, the elector crafts the linked ring signature, encrypts it
with the public key of a tallying authority, and publishes it on the bulletin
board. After the voting phase, a minimum if k tallying authorities cooperate
to recover the election private key, and check the validity of the received ring
signatures to decrypt and publish the votes.

Salazar et al. [2010] proposed a novel voting system that leverages short-
linkable ring signatures Tsang and Wei [2004]. The use of short-linkable
signatures allows for the inclusion of a linking tag, which facilitates the asso-
ciation of votes from the same elector without compromising their anonymity.
This important feature effectively mitigates the issue of double-voting while

4.1. STATE OF THE ART 53

ensuring the privacy of the elector. The primary objective of their system is
to minimize the involvement of third-party entities in the election process.
In their approach, only a certification authority, responsible for key issuance
and certificate validation, and a recount authority are required to ensure a
fair and trustworthy election. The use of ring signatures enables signer am-
biguity, while the linking tags serve as receipts that facilitate the removal of
duplicate votes. Importantly, the system only requires the public key of the
recount authority for encryption. However, this also means that a single au-
thority has significant control over the voting process. The proposed system
was later implemented in Tornos et al. [2014], where a modular implemen-
tation was provided in a multi-platform environment. Specifically, a desktop
client, an Android native app, and a Firefox extension were developed to
improve usability and engagement in the voting process.

4.1.3 Homomorphic Cryptography
Homomorphic cryptography Moore et al. [2014] enables a form of encryption
that allows to perform computations over ciphertexts, without having to
decrypt them, and obtain the same results as if we applied the computations
over plaintext. Let p1, p2 denote two plaintext messages, an let E(p1), E(p2)
represent their encryption under some cryptographic scheme. Given two
operations ⊙,⊕, a scheme is said to be homomorphic if, and only if, this
equivalence exists:

p1 ⊕ p2 = E(p1)⊙ E(p2) (4.1)

Most systems, such as RSA, present partial homomorphic properties.
Meaning that the encryptions system only supports some operations un-
der which the previous equivalence holds. Fully Homomorphic Encryption
(FHE) Acar et al. [2018], allows boundless homomorphic computation over
all possible operands supported by the scheme. FHE is the strongest defini-
tion of homomorphic cryptography, but it is based on other primitives that
do require expensive relinearization and refreshment processes. For e-voting,
and for the rest of this thesis, when using homomorphic encryption we refer
to partial homomorphic systems, unless specified otherwise.

Homomorphic cryptography enables the aggregation of votes in such a
way that the identity of individual electors gets diluted. Only the aggregated
sum of votes is decrypted, preserving the privacy about the direction of

54 CHAPTER 4. ELECTRONIC VOTING

individual votes.
Cramer et al. [1997] proposed a novel multi-authority voting system that

relies on zero-knowledge and the homomorphic properties of the ElGamal
cryptosystem ElGamal [1985]. The system employs a threshold scheme
Desmedt [1994] to distribute the decryption private key among n authori-
ties. In this approach, each authority publicly commits to sharing its secret
in order to prevent malicious alterations. At least n

2
+ 1 authorities are re-

quired to recover the secret key, which is used for the decryption of votes.
The cost of the proposed scheme is linear with respect to the number of elec-
tors in ’Yes/No’ elections. However, in the case of a multi-way election, the
number of zero-knowledge proofs needed increases, resulting in a higher cost
for the scheme.

Baudron et al. [2001] developed a multi-candidate and multi-authority
voting system that employs homomorphic properties, zero-knowledge proofs
and a threshold system similar to the one presented by Cramer et al. [1997].
The authors claim that their scheme provides receipt-freeness Benaloh and
Tuinstra [1994]. The presented scheme uses the Paillier cryptosystem Paillier
[1999] and is designed for a large group of electors organized hierarchically un-
der authorities. In this system, votes move up in the hierarchy until their final
decryption. The size of the vote depends on the number of zero-knowledge
proofs, the size of hashed commitments, and the size of the modulus used in
the Paillier system. The proposed scheme offers an improvement over pre-
vious systems by providing receipt-freeness, thereby enhancing the privacy
and security of the voting process. Additionally, the use of a hierarchical
organization of authorities allows for greater scalability in larger elections.

Porkodi et al. [2011] presented a voting scheme based on elliptic curves
(see Section 2.1.4) and homomorphic cryptography. In the system, the elec-
tor encrypts her vote and posts it on a public bulletin board. Next, due
to the homomorphic properties of the encryption, an encrypted tally can be
computed anonymously from the bulletin board, thereby implicitly hiding
the direction of the votes. Finally, the tally is decrypted in the final stage.
The decryption secret key is shared between the authorities using a threshold
scheme. Each authority has to prove that they posted a commitment to their
private share, and each elector has to prove that they encrypted a valid vote.
After this, the final tally is computed and published. However, each vote
must be accompanied by an expensive zero-knowledge proof, and each au-
thority must prove the validity of their commitment. This approach ensures
the privacy and integrity of the vote, but it also increases the computational

4.1. STATE OF THE ART 55

cost of the scheme due to the necessary zero-knowledge proofs.

4.1.4 Zero-Knowledge Proofs
Zero-knowledge proofs (see Section 2.4) present a powerful framework for e-
voting thanks to its privacy properties. The most common approaches using
zero-knowledge proofs usually involve either an elector crafting offline a proof
to prove her entitlement to participate in the election, or the codification of
the vote using an homomorphic scheme, and a prove that ensures the vote is
properly formatted.

Cramer et al. [1996] proposed a novel multi-authority voting system. This
system involves electors casting, encrypting, and distributing shares of their
votes, which are then posted on a public bulletin board. Unlike other ap-
proaches that rely on expensive zero-knowledge proofs, they propose a non-
interactive proof of validity that reduces the cost of the zero-knowledge proof
from quadratic to linear. Each vote on the bulletin board is accompanied
by one of these proofs to ensure its validity. To prevent a single authority
from decrypting the vote, multiple authorities are used in a threshold system,
which is similar to the one proposed by Cramer et al. [1997]. This multi-
authority system is suitable for ’Yes/No’ elections and is compatible with
plurality voting, with minimal overhead. However, for other types of votes,
the number of proofs required may increase significantly. The computational
cost of distributing the commitments and checking the shares is linear for
each partner involved in the elections. Specifically, voters require a linear
effort in relation to the number of authorities and the size of the security
parameter, while authorities require a linear effort in relation to the number
of voters and the size of the security parameter.

Philip et al. [2011] proposed a receipt-free multi-authority system that
takes advantage of the homomorphic features of the ElGamal cryptosystem.
The system is designed for use with n authorities structured in a threshold
scheme, along with a Trusted Center (TC). Prior to the election, the TC
receives identification information from eligible electors and provides them
with a username and pass code. Electors then use this information to register
their vote and verify their eligibility. After each elector has encrypted and
signed their vote, and crafted a zero-knowledge proof of correctness, the
authorities use the distributed secret key to compute the final tally. To
ensure receipt-freeness, votes are re-encrypted through the voting process.
The authors provide a functional system with receipt-freeness, but note that

56 CHAPTER 4. ELECTRONIC VOTING

this comes at the cost of increased computational complexity.
Yang et al. [2017, 2018] propose a ranked voting system where each ballot

is represented as a square matrix. Each element of the matrix is indepen-
dently encrypted using the ElGamal cryptosystem. To prove the correctness
of the ballot, the elector must provide a proof of partial knowledge for ev-
ery encrypted cell of the matrix, along with a zero-knowledge proof for the
whole ballot. The homomorphic properties of the ElGamal cryptosystem al-
low for the combination of the rows of the ballots to compute the final tally
for each candidate However, the decryption process requires the cooperation
of all authorities. An improvement on the initial version of the system in-
volves encoding the ranks of each candidate in binary format. This reduces
the size of the matrix representing the ballot, and hence reduces the time
complexity of the system. However, the main drawback of this approach
remains the time complexity due to the large number of zero-knowledge and
partial-knowledge proofs and modular exponentiations required. Despite this
drawback, the proposed system provides a solution for ranked voting that en-
sures the correctness and privacy of each ballot. It is worth noting that this
system is particularly suitable for small-scale elections, where the number of
voters is limited and the time complexity is manageable.

4.1.5 Blockchain
Blockchain-based systems have become very popular as blockchain technol-
ogy matured from a decentralized transactional system to a general com-
putation and consensus layer. Its positive effect on transparency and voter
confidence issues Moura and Gomes [2017] also helped to bring blockchain
into electronic voting. Nonetheless, blockchain technology it is not risk free as
we covered in Section 3.5. In fact, it can potentially worsen election security
concerns Park et al. [2021] if integrated without proper caution. Introducing
blockchain to the election technology stack might result in new attack vec-
tors, as malicious parties might attack the consensus layer, infrastructure, or
smart contract implementation, rather than the election itself. Additionally,
this incorporation may lead to more complex voting processes and critical
key management issues for users. Despite these trade-offs, blockchain-based
electronic voting systems are nowadays fairly popular.

Works in the literature differ in how they employ the blockchain technol-
ogy. We classify works in two categories: those that employ the blockchain
as a decentralized public bulletin, and those works that employ smart con-

4.1. STATE OF THE ART 57

tracts. We also differentiate between the systems that require to run a private
blockchain, or a private set of nodes, in order to be fully operational. We
refer the interested reader to these surveys to learn more about the challenges
of blockchain systems Taş and Tanrıöver [2020], and their implementations
Curran, Kshetri and Voas [2018].

Blockchain as a Public Bulletin Board

Require Private Blockchain: Ayed [2017] proposed a blockchain-based
voting protocol in which each candidate has its own blockchain, and each
block, except the first one, represents a vote for the candidate. The first
block of each chain contains information about the candidate. To vote, an
elector must first identify herself as a valid elector using her address and some
private information. Then, she can decide the direction of her vote. When
the vote is decided, some private elector’s information is hashed alongside
the hash of the previous block to create the hash of the new block. Finally,
the new block is added to the corresponding candidate blockchain. While
Ayed’s proposal addresses some issues of centralized voting systems, such
as decentralization and transparency, it fails to properly define some crucial
parts of the protocol. Registration is not supported, and identification is
assumed to be solved. Also, the encryption and identification processes are
managed by a centralized interface, which raises concerns about the security
and privacy of the system.

Hardwick et al. [2018] propose a blockchain-based voting system. Their
registration phase involves blind signatures and relies on an honest authority
to identify the electors. Unlike some blockchain voting systems, they do
not employ smart contracts and require manual verification and tallying of
votes by the electors. They also require involvement in block production and
operate in private blockchains.

Do not require a private Blockchain: Noizat [2015] presents a vot-
ing system that utilizes blockchain and Merkle trees to ensure secure and
accurate vote counting. The system employs a triple-key approach, where
each elector uses public keys from the candidate she has chosen to vote for
(KeyC), the election organizers (KeyA), and the voting application (KeyB).
To maintain privacy, the system utilizes 2-of-3 multi-signatures Ruffing and
Moreno-Sanchez [2017], which provide an added layer of security for the elec-
tors. The elector prepares a 2-of-3 multi-signature transaction to craft the
ballot. It is worth noting that it is not possible to identify the elector or

58 CHAPTER 4. ELECTRONIC VOTING

the candidate from a multi-signature address without having knowledge of
all three public keys and who they belong to. To ensure the vote is counted
as intended, the elector can verify the ballot using block explorers to confirm
that their vote has been confirmed.

Lee et al. [2016] proposed a blockchain-based voting system that provides
a secure and transparent approach to voting. The system requires an elector
to send a transaction to the candidate’s address to cast her vote. However,
to vote, the elector must first register as a valid elector, which involves a
two-stage registration process to maintain anonymity. To ensure anonymity,
the registration process is split between two organizations, a registration
organization, and a trusted third party (TTP). The elector sends a hash
of her secret to both organizations to register, with the TTP verifying the
elector’s eligibility to protect her identity from the registration organization.
Once the TTP confirms that the elector is on the census, the elector can
send the transaction to vote for the candidate of her choice. To prevent
multiple voting and ensure the validity of the elector’s list, transactions are
inspected and checked against a permutation of the TTP verified elector’s
list. This step ensures that unverified electors and those who have cast
multiple votes are removed from the tally. The proposed blockchain-based
voting system provides an efficient and secure solution for elections, ensuring
transparency and accuracy. By utilizing a two-stage registration process and
TTP verification, the system maintains the anonymity of electors, thereby
preserving the integrity of the voting process.

Tarasov and Tewari [2017] present a voting protocol based on Zcash.
Zcash, which emerged as a fork of Bitcoin, prioritizes privacy. This cryp-
tocurrency supports two types of addresses: t-addresses, which operate like
standard pseudonymous Bitcoin addresses and enable transparent transac-
tions, and z-addresses, which maintain the anonymity and privacy of trans-
actions. To achieve private-anonymous transactions, Zcash leverages special
zero-knowledge proofs known as zk-SNARKS (see Section 2.4). These proofs
enable the secure exchange of the secret values required to establish a private
transaction between the sender and receiver. After registering, an elector can
execute a transaction to the z-address of the desired candidate. The elector
must also provide a valid t-address. As a result, the direction of the vote re-
mains private, but the transaction itself is publicly visible. At the conclusion
of the voting phase, candidates are expected to send all of the vote tokens to
a central pool, where the final tally is calculated. It is important to note that
this process relies on trust in the system and the candidates, as a malicious

4.1. STATE OF THE ART 59

candidate could potentially interfere with the voting process.
Yang et al. [2020] proposed a blockchain-based voting protocol for range

voting, in which each candidate receives a score, and the candidate with the
highest score wins the election. To maintain the elector’s privacy, the authors
proposed a novel encryption scheme based on El Gamal and group-based
encryption. Each vote is encrypted using the public key of the elector and the
public keys of the candidates. This way, even at the end of the election, when
the candidates release their secret keys, the individual votes remain secret.
The authors take advantage of the homomorphic properties of El Gamal to
compute the final score without decrypting individual votes. Then, the final
score is decrypted by the candidates. Each transaction contains a vote, which
consists of a set of scores, one for each candidate. However, each individual
score needs to be double-encrypted, accompanied by a zero-knowledge proof
and a partial-knowledge proof to ensure that it is a valid score from a valid
voter. This requirement affects both the time and spatial complexity of the
system. Despite this drawback, the authors provide a performance analysis
that proves the validity of their election scheme. The proposed blockchain-
based voting protocol ensures the privacy of individual votes and provides a
secure and transparent approach to range voting.

Gao et al. [2019] propose an e-voting protocol based on blockchain tech-
nology that is resistant to quantum computing attacks. The authors achieve
this by using code-based cryptography Niederreiter [1985], which is an NP-
complete problem, instead of relying on traditional public key cryptography
based on the difficulty of number theory. The protocol is also equipped with
an audit function Al-Riyami and Paterson [2003], Hua-jie et al. [2014], which
is based on public key certificates and enables the detection of fraudulent
voters. To handle the certificates, the authors introduce the concept of a
regulator, who does not participate in the election but has the authority to
revoke voter privacy on demand. The authors provide a detailed computa-
tional time analysis of their protocol to demonstrate its feasibility. Overall,
they present a promising approach to developing a secure and quantum-
resistant e-voting system based on blockchain technology.

Wu [2017] presents a novel voting system that relies on ring signatures
(see Section 2.6.2) and Bitcoin’s blockchain. The protocol comprises two
authorities: a Registration Authority (RA) and an Election Authority (EA).
hese authorities are assumed to be trustworthy and are expected not to share
information. Before the election begins, the EA generates and manages a
public pool of Bitcoin addresses. Since Bitcoin provides anonymity rather

60 CHAPTER 4. ELECTRONIC VOTING

than privacy, a two-phase registration process is carried out by the RA.
This process decouples the elector’s identity from the Bitcoin address and
preserves the elector’s privacy. Once the registration process is complete,
the elector’s public key is marked as valid. To craft a ballot, the elector
must perform a ring signature, using her private key and a list of public
keys, on her desired vote. This produces a ambiguous signature that makes
it impossible to link the vote to her public key. After crafting the ballot, the
elector selects a Bitcoin address from the pre-computed pool of addresses.
The EA provides the elector with the associated private key to that address.
The elector can then send the ballot as a transaction from her own address
to the EA’s address, with the ballot encoded in the transaction itself. The
EA is responsible for retrieving all the ballots and verifying the integrity
of the ring signatures to compute the final tally. Once the election is over,
the list of public keys of electors is made public, allowing anyone to verify
the correctness of the tally. However, since the ring signature used in this
method allows for double voting, the EA checks the transactions coming
from the same address, and only the latest transaction will be considered
valid. It is important to note that the authorities wield great power in the
voting process, which is a drawback of this method. Consequently, one of the
requirements of the protocol is that the authorities comply with the desired
conduct. Wu also developed a complete implementation of the system on
Bitcoin’s testnet, which includes a detailed definition of classes and use cases.

In their work presented by Cruz and Kaji [2017], an e-voting system that
employs blind signatures on the Bitcoin network is proposed. The protocol
involves three main entities: electors, an administrator, and a counter entity.
To cast their votes, electors must first interact with the administrator to
obtain a blind signature of their encrypted vote. After obtaining the blind
signature, they unmask it and send the unmasked vote to the counter. When
the voting period ends, the counter verifies the signatures and decrypts the
received votes. The Bitcoin blockchain is used as a public bulletin board by
both the administrator and the counter. The administrator publishes the
identification and masked votes of the electors, while the counter publishes
the signed votes and addresses used to cast the votes. This approach provides
privacy and anonymity for the electors, as their identities and votes remain
hidden. However, the trustworthiness of the administrator and the counter
is critical to the security and integrity of the system. Furthermore, the use
of Bitcoin as a public bulletin board may limit the scalability of the system
due to the network’s limited transaction processing capabilities.

4.1. STATE OF THE ART 61

Smart contract based elections

Hjalmarsson et al. [2018] propose a smart contract based voting scheme. In
their system, two entities are required to run the election: electors, and elec-
tion administration officers. To obtain a unique wallet, electors need to go
trough an identification process. Solely accredited wallets are able to send a
valid vote. In order to cast their votes, electors must communicate through
ballot smart contracts which are dependent on the district. Verification of
these votes is performed by a Proof-of-Authority (PoA) network that is ex-
ternal to the blockchain and also run by the election administrators. If the
verification process succeeds, the transaction containing the vote is added
to the blockchain by the PoA network. However, this approach has two
main limitations. Firstly, it requires a dedicated PoA network to scan the
blockchain, which can be a resource-intensive task. Secondly, the election
administrators have complete control over the system, including the creation
of the election, the privacy of users, and the validity of the votes. As a result,
the electors’ privacy is not fully guaranteed, and there is no proper distribu-
tion of responsibilities. In other words, the election administrators hold all
the power, which undermines the democratic principles of transparency and
fairness.

Lai and Wu [2018] introduce an elegant voting system that leverages
Ethereum smart contracts and one-time ring signatures. In this system,
each transaction represents a vote, and electors can cast their votes by mak-
ing a transaction to their preferred candidate. The privacy of the elector is
protected by ring signatures, which prevent double voting while also keeping
the identity of the elector anonymous. To ensure fairness and prevent infor-
mation leakage until the tally phase, the electors are advised to consider the
stealth addresses of the candidates when casting their vote. This way, until
the stealth addresses are revealed, the votes remain confidential. To reveal
the stealth addresses, key managers are required. These key managers share
the first private key of a candidate through a Diffie-Hellman interchange. Ad-
ditionally, key managers are required to store some ETH in a deposit prior
to the election. To recover their deposit, they must open their secret during
the tally phase. Once the stealth addresses are revealed, the entire election
process becomes public and can be audited on the Ethereum blockchain. All
the requirements of the protocol are encapsulated within a smart contract,
ensuring transparency and trust in the election process. This system offers
a more democratic approach to voting, where the privacy of the electors is

62 CHAPTER 4. ELECTRONIC VOTING

protected while also ensuring fairness and transparency.
Chouhan and Arora [2022] propose a blockchain-based election scheme

that is built on the Hyperledger1 blockchain framework. This implementa-
tion is designed to be compatible with most election setups and supports an
unlimited number of electors. To maintain the privacy of the election results
until the tallying phase, the authors use Shamir’s secret sharing scheme (see
Section 2.2). In this scheme, votes are encoded as points on a polynomial that
is distributed among a set of trusted authorities. At the end of the voting
phase, these authorities interpolate the polynomial to recover the vote. To
ensure the anonymity of the electors, their identities are mapped to anony-
mous identifications during the registration phase. However, it is important
to note that this approach is only possible because Hyperledger is not com-
pletely transparent and only produces permissioned distributed networks,
not truly decentralized ones. The authors provide a detailed explanation of
the Hyperledger contracts used in the implementation. However, the code is
not open-sourced, which may limit the ability of other researchers to verify
and reproduce the results.

Onur and Yurdakul [2022] propose a smart-contract based election scheme
for ranked voting that employs Zero-Knowledge proofs for privacy. Their
protocol is developed in Solidity for Ethereum compatible chains, and they
provide an open-source implementation. During the registration phase, elec-
tors produce a commitment of their identity that is stored in a Merkle tree
Merkle [1987]. Later on, during the voting phase, they can create a zero-
knowledge proof that demonstrates they are eligible electors in the census
without revealing where their commitment is stored in the Merkle tree. To
keep the vote secret until the tallying phase, a commit and reveal scheme is
used. The authors acknowledge that general zero-knowledge proof systems
are computationally intensive, limiting the number of potential electors by
the size of the Merkle tree. Increasing the size of the Merkle tree in a zero-
knowledge proof system can have a significant impact on the computational
resources required to generate the proof. This is because the proof genera-
tion process involves performing computations that depend on the height of
the Merkle tree, which can be computationally intensive. Therefore, while
increasing the size of the Merkle tree can allow for more potential electors
to participate in the election, it may also make the proof generation process
slower and more resource-intensive. Balancing the size of the Merkle tree

1https://www.hyperledger.org/

4.2. TAVS: A TWO AUTHORITIES VOTING SCHEME 63

with the computational resources available is an important consideration for
this election system.

4.2 TAVS: A two Authorities Voting scheme
We present a verifiable voting scheme that, if some conditions are met, guar-
antees that the desired properties of an electronic voting system, as described
in Section 4, are provided. Particularly, guarantees that an individual voter’s
identity and their choice of candidate cannot be linked (privacy);that no party
can modify a ballot without detection (integrity); that only verified and ac-
curate ballots are included in the final tally (correctness) and any elector
in the census can confirm that their vote has been accounted for accurately
(verifiability).

The Two-Authorities Voting Scheme (TAVS) is a novel protocol, which
can be viewed as a modification of blind signatures (discussed in Section
2.6.1) for electronic voting. TAVS is built on the foundation of two separate
and unrelated authorities: an Identification Authority (IA), which verifies
the eligibility of voters by checking their membership in the census; and
a Remote Polling Station (RPS), which is where voters cast their ballots.
The protocol’s strength lies in its ability to achieve universal verifiability
without relying on time-consuming primitives like zero-knowledge proofs.
With TAVS, the electoral process is made more secure, transparent, and
trustworthy, ensuring the integrity of the results.

Our goal is to introduce a more efficient and simpler voting scheme, where
simpler regards to the number of parties implied in the election, as well as
to the number and complexity of the steps to carry out. The outcome of
these improvements, imply a reduction of the overall time-complexity. The
simplicity of TAVS also allows for a better understanding on how the system
works. Which enables voters to get a better understanding of the scheme
despite not being experts on the field. TAVS allows the elector to verify that
her vote has been included into the final outcome of the election. The final
tally can be also later audited by any interested party, in order to verify the
correction in the count. Privacy is guaranteed in all the election processes.

In order to allow the anonymous certification of the elector’s vote, without
compromising her privacy, we make use of a blind signatures (see Section
2.6.1). We present the scheme taking into account the RSA signature method
(see Section 2.3.2) because of the homomorphic properties of the modular

64 CHAPTER 4. ELECTRONIC VOTING

exponentiation. Nevertheless, the protocol here proposed can be modified to
consider any other scheme with homomorphic properties.

As mentioned above, it is assumed that the two authorities implied are
not related in any way. Also, unlike Chaum’s original proposal of blind
signatures, no communication is established in order to share elector’s infor-
mation. It is not assumed the authorities are honest and provide methods
to detect malicious behavior of the authorities. From now, and during the
formal description of TAVS, we assume:

• We do not enforce any specific way to encode the votes and only takes
into account the numeric value resulting from the binary representation
of the vote, regardless of how it is obtained. Given this flexibility,
TAVS is compatible with many voting modalities (as presented in this
Chapter introduction), as well as single or multiple races.

• TAVS is built upon the assumption that all auxiliary methods and
procedures function correctly and that no weakness in the scheme can
be derived from them. Specifically, the signature and hash functions
are assumed to be secure.

• We assume that the organization responsible for conducting the elec-
tions provides each eligible voter in the census with a private identifi-
cation. This identification is essential for verifying a voter’s eligibility
to participate in the election. Depending on the specific features of the
census and its geographical distribution, the identification can be im-
plemented either physically or electronically and distributed in various
ways before the election date. Moreover, any existing suitable identifier
can be considered as well

• It is assumed that the communication channels used for the electoral
process are secure. This is critical to ensure that the electoral process
remains trustworthy and free from interference or manipulation. It is
important to note that the distributed identification provided to each
eligible voter in the census can be used to implement secure communi-
cation channels between the voters and the authorities involved in the
voting scheme during the elections. These secure channels can help en-
sure the confidentiality and integrity of the communication, preventing
unauthorized access or tampering of the messages exchanged between
the authorities and the voters.

4.2. TAVS: A TWO AUTHORITIES VOTING SCHEME 65

4.2.1 Description of our Proposal

Here we describe our voting protocol, TAVS, based on multiple authorities
and blind signatures. Unlike most of the systems based in blind signatures
described in the Section 4.1, we reduce the number of required authorities to
only 2. Thus, we simplify the voting procedure to just three steps and reduce
the overall time computational cost. Contrary to many e-voting protocols,
the corruption of a single authority does not compromise the security of the
voting protocol, and the elector is able to check the honesty of the authorities.
As described in Section 4.2, TAVS uses RSA to implement blind signatures,
and the computations involved in the signing scheme are fully disclosed. The
blinding scheme is employed to address the identification of the elector, and
potential re-blocking issues and disagreements with the authorities are also
taken into account. Let us once again note that TAVS does not enforce
any specific way to encode the votes, and any protocol implementing the
proposed scheme must clearly state the way the vote is coded. By providing
this flexibility, TAVS can be adapted to various voting modalities and election
scenarios.

TAVS consists on three sequential steps and is fully described in the fol-
lowing sections. In short, the first step consists on the generation of the
pre-ballot. This process is carried out by the elector with no need to inter-
act with any existing authority. The output of this process is an uncertified
masked ballot (the pre-ballot) which cannot be disclosed without the elector
compliance. The second step consists in the submission of the elector’s iden-
tification and the (masked) pre-ballot to the IA in order to certificate the
pre-ballot using an blind signature procedure. This certification is carried
out whenever the identification corresponds to an elector in the census who
has not previously ask for another vote to certificate. The certification pro-
cess ends when the elector acknowledges safe and correct receipt. In the last
step, the elector anonymously submits the certified ballot and the informa-
tion needed to unmask the vote to the RPS. The generation of the pre-ballot
is such that it is unfeasible the manipulation of the certified version of the
ballot in order of obtain more than one valid votes.

In order to maintain privacy and provide democracy and verifiability,
two public bulletin boards are used: the Revoked Board and the elections’
Public Bulletin Board. The use of the Revoked Board prevent malicious
electors from using certified ballots before the end of the certification process.
The elections’ Public Bulletin Board allows the electors to confirm that their

66 CHAPTER 4. ELECTRONIC VOTING

ballot has been counted in the final tally.
Although the details will be provided in Section 4.2.1, we denote with TH

the size of the employed generic hash function, and with TS the size of the
signature key (number of bits in the binary representation of the modulus n),
which will be important in the following because of their role in the coding
of the vote. It is worth noting that regardless of the format in which the
vote is presented, it will be encoded using a fixed number of bits, specifically
TS − TH − 1. This approach ensures that the proposed scheme operates
correctly regardless of the chosen encoding format. Therefore, the primary
concern is to ensure that TS and TH are large enough to accommodate the
encoding of the vote adequately. This provides the necessary flexibility to
use different encoding schemes and ensures compatibility with a variety of
voting modalities.

Pre-ballot generation

Before the voting process begins, it is necessary to agree on the methods to be
used for hashing and electronic signature scheme. Thus, the IA is responsible
for generating an RSA key, and broadcasting the public component of this
key to all members in the census. This enables every member to verify
the correct validation of the ballot. The RSA key generated by the IA
consists of a private component SIA =< s > used for signing, and a public
component VIA =< n, v > used for verification. These components allow
for the certification of the ballots and for checking their correctness in the
tallying process.

Once the public component of the IA signature key has been distributed,
the elector can generate a pre-ballot with her vote. The elector can indepen-
dently perform this process isolated from the other two authorities implied in
the election. The procedure to generate the pre-ballot, a ballot that has been
generated but not yet validated, is depicted in Algorithm 8 and it ensures
the following properties:

• The pre-ballot must be concealed in such a way that no-one but the
elector is able of finding out the direction of the vote. The elector is
the only one that knows the mask that hides the votes.

• In order to prevent double voting, the mask must be linked to the vote
so that it would be unfeasible the manipulation of the pre-ballot.

4.2. TAVS: A TWO AUTHORITIES VOTING SCHEME 67

Algorithm 8 Pre-ballot generation.
Require: IA’s public component of the RSA signature key VIA =< n, v >
Require: A hash function h of TH bits.
Ensure: A pre-ballot ready to be (blindly) signed by the IA

1: Let TS be the number of bits needed to encode n.
2: Let vote be the TS − TH − 1 bits coding of the elector’s choice

3: Let 1 < mask < n be a (private) randomly-generated value such that
gcd(mask, n) = 1

4: Compute mask−1 mod n
5: Let hash = h(vote∥mask)
6: preballot = (vote∥hash) · (maskv mod n) mod n
7: return < preballot, mask >

First, the procedure encodes the direction of the elector’s vote (line 2 in
Algorithm 8), and selects a random generated mask that will be kept secret
until the ballot is submitted to the RPS.

In order to prevent forgery, the concatenation of the elector’s vote and
the mask is hashed. These three elements (the elector’s vote, the randomly
generated mask and the hash) are combined to obtain the pre-ballot (line
6). In order to avoid possible reblocking errors in the certification due to a
pre-ballot greater than n value, the size of the elector’s vote codification is
such that the concatenation of the vote and the computed hash results in a
number lower than n. The structure of the pre-ballot is depicted in Figure
4.1.

We note that the computed hash is not explicitly included in the output
of Algorithm 8 but that it is present in an implicit way. The secrecy of
the mask is critical, and what holds the desired security properties of an
electronic voting system. Once the elector crafts the pre-ballot and the mask,
she interacts with the IA to certificate her ballot.

Elector identification and pre-ballot certification

The next stage in our system involves the blind certification of the pre-ballot
by the IA. First, the elector sends the masked pre-ballot along with her
identification to the IA. This process is outlined in Algorithm 9.

It is important to note that the IA is unable to determine the direction of

68 CHAPTER 4. ELECTRONIC VOTING

v

vote hash mask·

Elector

vote

hash = h(vote⊙mask)

mask

IA
Gets public key v

Elector crafts the pre-ballot

vote

Figure 4.1: The pre-ballot structure is presented graphically with each box
representing a string. The modular exponentiation operation is represented
by a dashed box. Concatenation of boxes represents the concatenation of
strings. This image depicts the organized structure and crafting of the pre-
ballot that the elector will send to the IA, as a result of following the steps
outlined in Algorithm 8).

the elector’s vote as long as the mask remains undisclosed. Thus, the elector
has complete control over her vote and may even choose to cast a blank or
null vote. Upon receiving the masked pre-ballot and identification from the
elector, the IA first checks that the elector has not requested another ballot
for certification previously. If this condition is satisfied, the IA records the
elector’s identifier and proceeds to certify the pre-ballot by signing it using
the publicly shared RSA signature key, as shown in line 7 of Algorithm 9.

We note the effect of the certification process on the mask. We denote
with pb the pre-ballot built by the elector. Because of the homomorphic
properties of the modular exponentiation in RSA it follows that:

4.2. TAVS: A TWO AUTHORITIES VOTING SCHEME 69

Algorithm 9 Pre-ballot certification
Require: A pre-ballot pb generated by an elector
Require: Elector’s identification
Require: The public VIA =< n, v >, and private SIA =< s > components

of IA’s RSA signature key
Ensure: A validated ballot (pre-ballot signed by the IA) or

Forgery attempt
1: if the elector’s identifier is already stored in the IA records then
2: return Forgery attempt
3: end if
4: Store the elector’s identifier in the records
5: endCertification = False
6: while not endCertification do
7: Compute b = pbs mod n // Certified ballot
8: Store b in the Revocation Board
9: Send b to the elector and ask for validation

10: if the elector’s validates b then
11: Remove b from the Revocation Board
12: endCertification = True
13: end if
14: end while

pbs mod n = ((vote∥hash) ·maskv)s mod n =
= (vote∥hash)s · (maskv)s mod n =
= (vote∥hash)s ·mask mod n

The process asks the elector to acknowledge the correct certification of
the ballot, that, because of the structure of the pre-ballot, it only needs the
elector to compute the inverse of the mask modulus n to unmask the ballot:

((vote∥hash)s ·mask mod n) ·mask−1 mod n =
= ((vote∥hash)s ·mask ·mask−1 mod n =
= (vote∥hash)s mod n

afterwards, it is possible to use the public component of the IA signature
key to verify that the certification considered the pre-ballot previously sent
by the elector:

((vote∥hash)s)v mod n = vote∥hash.

70 CHAPTER 4. ELECTRONIC VOTING

s
v

vote hash mask·

vote hash mask·
s

≡
Figure 4.2: The image graphically represents the certification of a ballot as
described in Algorithm 9. Once validated, the IA signs the pre-ballot using
its secret key. Both structures are equivalent thanks to the homomorphic
properties of the modular exponentiation. The same considerations explained
in Figure 4.1 apply.

After the elector receives the certified ballot, she is required to acknowl-
edge the receipt of the ballot. This is necessary to prevent a malicious elec-
tor from claiming that the ballot was non-correct later, which would enable
double-voting. Once the acknowledgment is received, the IA stores the cer-
tified ballot in a board of revoked ballots, as shown in line 8. The ballot is
removed from this board once the elector acknowledges the safe and correct
receipt of the ballot. The complete process of certification and the structure
of the signed ballot can be observed in Figure 4.2.

Submission and publication of the ballot

The third and last step in the voting scheme implies the submission of the
certified vote to the RPS. The procedure is defined in Algorithm 10.

In short, for any certified ballot, an identical procedure to the one that
allows the elector to verify the certification of her ballot, allows the RPS to
access to the masked vote (lines 4 and 5 in Algorithm 10). Thus, the RPS
can obtain the vote itself (line 6) and the hash that relates the vote and the
mask (shown in line 7). The computation of h(vote∥mask) allows the RPS
to check the integrity of the ballot (shown in line 8). Please note that the
certified ballot is not related in any way to the elector’s identity and the vote
cannot be related with her. The process is depicted in Figure 4.3.

4.2. TAVS: A TWO AUTHORITIES VOTING SCHEME 71

s
v

vote hash

vote hash mask·s
mask−1,

≡

vote hash

{ }
≡

mask·
s

· mask−1vote hash

s

vote hash

Elector RPS

1. Remove mask wrapper

2. Decrypt the ballot

3. Check integrity

Figure 4.3: Sending the ballot to the RPS. When the RPS receives the
ballot, and the inverse of the mask, it applies Algorithm 10 to recover the
elector’s vote and its associated hash. Both are published on the bulletin
board.

72 CHAPTER 4. ELECTRONIC VOTING

Elector IARPS

Private: s

Public: v, n

Decide vote choice
Select Mask

hash = h(vote⊙mask)
((vote⊙ hash) ·maskv, id)

PBB

Check Id on the census

Condition

[User in the census]

[Not in the census] Return error

Condition

Check previous validated

votes with the same Id

[Already voted]
Return error

(vote⊙ hash)s ·mask

Loop if answer is not correct

Cast certified ballot
((vote⊙ hash)s ·mask,mask−1)

Condition

Check if the vote was revoked

[Vote revoked]

Return error

Remove mask

Decrypt vote

Check h(hash⊙mask) == hash

Condition[Hashes do not match]Return error

Tally vote

Public hash on the PBB

Initially revoke vote

Confirm vote

Loop [While Disagreement]

Unrevoke the vote

Send pre-ballot

Compute certified ballot (b)
(vote⊙ hash)s ·mask

P
re-b

allot
P
re-b

allot
certifi

cation
B
allot

ca
stin

g
gen

eration
P
re-election

setu
p

Generate parameters
Distribute public key

Figure 4.4: The timing and interaction diagram presented in the figure illus-
trates the entire process that an elector must follow in order to successfully
cast a vote using the proposed voting scheme. The diagram shows the various
computations and interactions required between the different parties involved
in the process.

4.2. TAVS: A TWO AUTHORITIES VOTING SCHEME 73

Algorithm 10 Ballot casting.
Require: A certified ballot b
Require: The mask used in the generation of the pre-ballot mask
Require: The IA public component of the RSA signature key
Require: The agreed hash function h

1: if b is in the Revocation Board then
2: return Forgery − attempt
3: end if
4: Compute pkg = b ·mask−1 mod n
5: Compute pkg = pkgv mod n
6: Set vote equal to the first TS − TH − 1 bits of pkg
7: Set hash equal to the last TH bits of pkg
8: if hash == h(vote∥mask) then
9: Store the casted vote

10: Publish hash in the elections’ Public Bulletin Board
11: return Correct
12: else
13: return Forgery attempt
14: end if

The assumptions we consider in the description of TAVS prevent the
communication between both authorities. Nevertheless, the IA would be
able to recover the direction of the vote of any elector if the public bulletin
board includes some information he could link to an elector identifier. This
is not possible because the hash is not available to the IA, and, therefore,
its publication does not allow anyone to link the elector and her vote.

Figure 4.4 shows the complete voting process: the interactions between
the partners; the timing in the voting scheme; and, the conditions that trigger
different consequences as well. As it can be seen, the process is initiated by
the IA by making public the parameters and the public key components.
Then, the elector carries out Algorithm 8 and sends the pre-ballot to the
IA. Assuming the elector is on the census and did not vote before, the
IA responds the elector with a certified ballot which is considered invalid
until the elector confirms the vote. The elector can independently check the
validity of the received certified ballot and challenge the IA if it does not
match her initial ballot. After the certification phase, the elector send her
ballot to the RPS. There, it is checked if the vote was revoked by the IA.

74 CHAPTER 4. ELECTRONIC VOTING

If the vote is valid, RPS follows Algorithm 10 to check the vote is correctly
crafted. If the algorithm outputs true, the vote is counted and its hash is
posted on the public bulletin.

4.2.2 Properties of the voting scheme
This section focuses on the security analysis of TAVS and how it relates to
the essential properties of voting schemes mentioned in the introduction of
Section 4. To begin, we acknowledge the reliability of RSA and various hash
functions available in the literature that are suitable for use in the TAVS. We
also recognize that the safety of blind signatures and the limited information
that authorities have access to are crucial factors in ensuring the security of
TAVS.

Democracy

The scheme here proposed does not prevent malicious electors to access the
RPS. Nevertheless, on the one hand, we note that it is not feasible for
adversaries to construct a certified ballot unless they could gain access to
the IA signature private key. On the other hand, in order to impersonate
an elector it is necessary to know the identification of the elector, which is
assumed to be private.

Uniqueness

Only one ballot per elector can be certified by the IA. We prove that it
is not feasible to tamper with a certified ballot, nor to maliciously craft a
pre-ballot in order to achieve double voting.

Let us recall that once a ballot is certified by the IA it is of the form
(vote∥hash)s ·mask, where hash = h(vote∥mask). Obtaining another valid
ballot from would imply:

• That (vote∥hash)s can be considered as a mask of a (tampered) vote′

coded into mask.

Indeed, it is feasible that there will exist the inverse of (vote∥hash)s
modulus n and therefore a valid mask for vote′. Nevertheless, taking
into account the construction described in Algorithm 8, to tamper with

4.2. TAVS: A TWO AUTHORITIES VOTING SCHEME 75

the ballot it would also be necessary that mask were such that:

mask = vote′∥hash′,

where hash′ = h(vote′∥(vote∥hash)s). This is highly unfeasible taking
into account that the certification (by signature) can only be carried
out by the IA and the result is unknown for any elector before the cer-
tification process. The hash acts like a redundancy parameter, making
the search for manipulated masks unfeasible. This is related with the
third property needed for blind signatures stated by Chaum (see Sec-
tion 2.6.1). This proves the search for valid blind signatures, through
tampered masks, to be extremely unfeasible, as it would imply the
possibility of finding hash collisions at will.

• That the construction of the ballot considers a mask that can be mod-
ified after the certification of the ballot in order to obtain a new (tam-
pered) vote.

In other words, any attempt to modify the mask used to construct a
certified ballot will result in a different hash value, which in turn will
produce a different ballot. Therefore, attempting to obtain another
valid ballot by modifying the mask is highly unlikely, if not impossible.
This demonstrates the robustness of the TAVS scheme against double
voting attempts.

Taking into account the two points we just described, it is proved that
the uniqueness of the voting is granted. No double voting or tampering is
feasible.

Privacy

It is not possible to relate a vote with the elector who casted it. TAVS
requires the elector to interact with two different authorities: the IA has
access to the elector identifier but he cannot unmask the vote, as the mask
is required to do so, and the RPS has access to the direction of the vote
but the elector identifier is not sent to him. Therefore, it is impossible to
relate an elector with the direction of her vote unless both authorities share
information, which contradicts an assumption of the scheme.

76 CHAPTER 4. ELECTRONIC VOTING

Integrity

A similar reasoning as the one presented in the uniqueness property proves
that TAVS preserves the integrity of the vote. The construction of the ballot
described in Algorithm 8, allows to state that it is unfeasible for any partner
to modify a previously certified vote.

Accuracy

TAVS guarantees that no invalid votes are tallied. We also note that the RPS
has enough information to be audited by any party. Once again, without
access to the IA’s signature (private) key, it is unlikely to design a method
able to substitute a set of valid certified votes by another set of forged ones.

Verifiability

Any elector in the census can verify that her vote has been taken into account
in the way it was cast and included in the final tally. The participation of
an audit authority would provide the electors the confidence their votes have
been counted in the direction they were cast. We note that, because the
unfeasibility of tampering with the ballots, any audit authority is able verify
the tally using only the information stored in the RPS. Hence, TAVS also
presents universal verifiability.

Coercion resistance

Given that there is a trade-off between coercion resistance and performance,
we do not focus on this dichotomy. We provide a scheme where the elector has
mechanisms to be certain that her vote was considered, as well as enough
information for an independent audit authority to anonymously check the
correctness of the tally.

4.2.3 Time complexity analysis
In this section, we shall examine the time complexity of TAVS. Our aim is
to demonstrate that our system has a linear scaling behavior in relation to
the number of votes. While it is common practice in the literature to use
modulo n operations, such as addition, multiplication, and exponentiation,
as the unit of computational cost, the cost of concatenation is not typically

4.2. TAVS: A TWO AUTHORITIES VOTING SCHEME 77

taken into consideration. However, we will analyze the time complexity in
terms of bit operations, with a particular focus on the complexity of various
operations. Throughout this section, we will use n to represent the number
involved in these operations, and log n to denote the number of bits in n.

It is well known that modular addition and subtraction have time com-
plexity of O(log n) bit operations, multiplication and inverse have a complex-
ity of O(log2 n) and modular integer exponentiation is the most expensive
operation with O(log3 n) time complexity. We make use of a hash function,
which we recommend it to be a recognized and established one. We assume
the complexity of applying the hash function is linear with respect to the
input.

Pre-ballot generation

Once the parameters of the election have been decided, the elector must
follow Algorithm 8:

1. The elector must select a random mask in line 4 of Algorithm 8, the
mask must be invertible. Since we require gcd(mask, n) = 1 the in-
verse exists. To find the inverse we suggest extended Euclid’s algorithm
Menezes et al. [1996] which has a complexity of O(log2 n) bit opera-
tions.

2. Applying the hash function of line 5 requires linear effort with respect
the input. In this case, the input is the concatenation of the vote and
the mask. This results in a complexity of O(log n− TH − 1 + log n) =
O(log n) bit operations.

3. To craft the pre-ballot in line 6 of the algorithm, a multiplication and
a modular exponentiation are needed.

The time complexity of Algorithm 8 can be expressed as:

O(log2 n) +O(log n) +O(log2 n) +O(log3 n) = O(log3 n)

Observe that modular integer exponentiation determines the time com-
plexity of the algorithm.

78 CHAPTER 4. ELECTRONIC VOTING

Pre-ballot certification

For Algorithm 9 we assume the best case: IA is benign, the channel is
secure and the elector will validate the ballot. Computing the certified ballot
requires:

1. One modular multiplication and one modular exponentiation are re-
quired in line 7 to sign the ballot.

2. To check if the received certified ballot is correct, the elector needs to
perform one multiplication and one modular exponentiation in line 10.
It is not explicitly shown on Algorithm 9 but it can be seen on Figure
4.4.

The time complexity of Algorithm 9 is O(log2 n)+O(log3 n) = O(log3 n)
bit operations for the elector and O(log2 n) +O(log3 n) = O(log3 n) bit op-
erations, per ballot, for the IA. Again, modular exponentiation determines
the time complexity of the algorithm.

Ballot Casting

Once the elector sends the ballot to the RPS she does not need to perform
more computations. The RPS takes part on Algorithm 10 and performs the
following to decrypt the vote:

1. A multiplication is used in line 4 to remove the mask wrapper from the
ballot.

2. A modular exponentiation is needed in line 5 to recover the vote.

3. To check the integrity of the ballot the hash function must be applied
in line 8 with O(log n− TH − 1 + log n) = O(log n) bit operations.

The time complexity of Algorithm 10 isO(log2 n)+O(log3 n)+O(log n) =
O(log3 n) bit operations per processed ballot. As in the previous algorithms,
the complexity is dominated by the modular exponentiation operation.

4.2. TAVS: A TWO AUTHORITIES VOTING SCHEME 79

TAVS complexity

Here we summarize the total complexity of the system. We differentiate
between the complexity required for the elector to cast a vote and the com-
plexity for the system to undertake the whole election process. The elector
must perform a total of O(log3 n) bit operations to vote, as shown in Algo-
rithms 8 and 9. TAVS must carry out a total of O(log3 n) bit operations per
processed vote (Algorithms 9 and 10).

The computation of modular exponentiations determines time complexity
of our method. If this operation is considered as the atomic operation in the
analysis of the complexity, as many works in the literature do, it is clear that
the elector computes a constant number of exponentiations to vote. The
same applies to the involved authorities: they compute a constant number
of exponentiations per ballot. Therefore, the complexity of the system scales
linearly with the number of votes to be processed. Since the complexity of
the system does not depend on the number of candidates, the number of
authorities involved, or the encoding of the vote, we can state that TAVS
can be easily extended and scaled to adapt more general situations.

For an implementation of TAVS with smart contracts that covers the
costs of running your own election, please see Appendix A.

Comparison with other systems

The purpose of this section is to compare the performance of TAVS with other
works that share similar methods and objectives, as discussed in Section 4.1.
It should be noted, however, that some of the works reviewed in the literature
do not offer a comprehensive analysis of their system’s time complexity or
provide only partial details. In some cases, these works may consider a cen-
tralized authority, leaving decentralization as a future or theoretical exercise.
Here we present a comparison of the theoretical time complexity of previous
methods in the literature and TAVS.

In order to state the time complexity of the methods, we consider ex-
clusively the number of modular exponentiations (the most expensive oper-
ation). The complexity is then expressed as an asymptotic function on the
number of bit operations. When the methods do not specify the protocol
used (e.g: which kind of zero knowledge proof was used) we introduce a new
variable in the cost analysis. If possible, we group the different number of
authorities involved as a single variable. Multi-candidate elections scenarios

80 CHAPTER 4. ELECTRONIC VOTING

are considered. Table 4.1 shows the results of this comparison. We also dif-
ferentiate between the costs assumed by the elector and the costs associated
to the system to process a single vote.

Elector’s Cost System’s Cost per vote

Chaum [1981] O(m log3 n) O(m log3 n)
Cohen and Fischer [1985] O(log5 n) O(log5 n)
Cramer et al. [1997] O(c log3 n) O(ac log3 n)
Juang et al. [2002] O(m log3 n) O(a log3 n)
Baudron et al. [2001] O(log3 n) O(a log3 n)
Cramer et al. [1996] O(t log3 n)) O(a log3 n))
Li et al. [2009a] O(log3 n) O(log3 n)
Philip et al. [2011] O(log3 n) O(a log3 n)
Essex et al. [2012] O(c log3 n) O(ac log3 n)
Thi and Dang [2013] O(log3 n) O(log3 n)
Yang et al. [2018] O(c(logP) log3 n) O(ac(logP) log3 n)
Aziz [2019] O(log3 n) O(log3 n)
TAVS O(log3 n) O(log3 n)

Table 4.1: Table representing the asymptotic cost of the work performed by
the elector and the system in number of bit operations. In the table: m
references the number of layers on a mix-net, a represents the number of
authorities, c represents the number of candidates in the election, t is the
number of different shares a vote is fragmented and P the number of points
awarded in a ranked voting system.

We proceed to briefly explain how the values for Table 4.2 were computed.
In Chaum [1981], an elector needs to encrypt, using RSA, the vote and re-
encrypt it as many times as layers m has the mix-net. The cost for the voter
depends on m, O(m(log3n). Each vote needs to be encrypted m + 1 times,
shuffled and latter on, decrypted m+ 1 times. The cost can be computed as
2 log3 n(m+ 1) ≈ O(m log3 n).

Cohen and Fischer [1985] report a 4 phase protocol. These phases include
several modular exponentiations and nested iterations. The elector needs to
carry out 2 of these phases while the authorities have to complete the other
two. The authors expose that the total expected time required by both the
authorities and the voter phases is O(log5 n). In Cramer et al. [1997], to

4.2. TAVS: A TWO AUTHORITIES VOTING SCHEME 81

cast a vote, the elector needs to perform an encryption of the vote using
ElGamal cryptosystem and a proof of partial knowledge. This encryption
requires 2 modular exponentiations and the proof of validity, in an election
wit c candidates, requires 4c exponentiations. The total cost for the voter,
in bit operations, is 2 + 4c log3 n ≈ O(c log3 n). Each authority a involved
needs to broadcast a proof of its private share, check the proofs of validity of
the users and cooperate between them to decrypt the final tally. The total
cost can be regarded as: a+ ac4 log3 n ≈ O(ac log3 n).

The encryption of the vote in the system presented by Juang et al. [2002],
requires 1 modular exponentiation. Later, each elector needs to send its
encrypted vote to each administrator and construct the signature from the
responses she got. This requires 6 modular exponentiations. To vote she
sends the vote through an untraceable e-mail system (mix-net) requiring m
more exponentiations. The final cost is (7 + m) log3 n ≈ O(m log3 n). To
carry out the blinding signature scheme each authority performs 4 modular
exponentiations, an special authority called the counter, performs 2 for each
vote. Previous to this, an expensive preparation setup is carried out, we do
not count it since it can be performed offline. The cost can be expressed as
4a log3 n+2 log3 n ≈ O(a log3 n) bit operations. Baudron et al. [2001] define
a hierarchical arrangement of authorities, the original paper uses three levels
and we denote the number of levels as l. The elector needs to encrypt his vote
for an authority in each level, requiring l modular exponentiations. She also
needs to provide zero-knowledge proofs for every encryption, and an extra
proof to show all the encryptions contain he same vote. This results in l+ 1
zero-knowledge proofs, each requiring 6 modular exponentiations. Assuming
l is a small constant, the cost can be computed as (l + 6(l + 1)) log3 n =
(7l + 1) log3 n ≈ O(log3 n). Authorities need to interact with the voter for
the zero-knowledge proof, this requires 3 modular exponentiations. Each
authority needs to compute its local result and forward it to its immediate
superior authority. Authorities a in the same level must cooperate to partially
decrypt the results, they also must provide a partial proof of decryption. The
whole system cost can be expressed as 3a + aPp log

3 n ≈ O(a log3 n), being
Pp the cost of the partial proof.

In Cramer et al. [1996], the elector needs to encrypt her vote, using 2
modular exponentiations and the proof of validity, which requires 4 expo-
nentiations. The vote is split in t shares, the shares are sent to t different
authorities together with a commitment. Each commitment requires 2 mod-
ular exponentiations. The cost for the voter is (2+4+2t) log3 n ≈ O(t log3 n).

82 CHAPTER 4. ELECTRONIC VOTING

Each authority checks the proofs of validity of the users, this requires of 4
modular exponentiations. Each tallying authority checks the t shares posted
by an authority employing a2t modular exponentiations. The final cost can
be computed as (4a1+a2t, being a1) log

3 n the authorities and a2 the tallying
authorities. Since t depends on the number votes, and a1, a2 can be grouped
in a authorities the cost can be expressed as O(a log3 n). In the system pre-
sented by Li et al. [2009a], the elector must interact multiple times with the
different authorities to get verified, get a blind signature and cast her en-
crypted vote. This results in a total of 15 modular exponentiations to cast a
vote: 15 log3 n ≈ O(log3 n). Authorities must generate a pair of public keys
for each possible elector, but since this can be pre-computed we will ignore
it in the cost function. Authorities must also generate another pair of keys
for each registered voter, we will count the cost of finding the inverse in the
RSA2 which is O(log2 n) as we saw when analyzing TAVS. Furthermore the
authorities nedd to perform 14 modular exponentiations to decrypt, verify,
sign and re-encrypt each ballot. The cost of the system can be expressed as
O(log2 n) + 14 log3 n ≈ O(log3 n).

Each voter needs to encrypt and sign her vote using ElGamal encryption
in the system developed by Philip et al. [2011]. In addition to this, they also
need to craft a zero knowledge proof for the vote. These processes require
5 modular exponentiations, the total cost for the voter remains constant
5 log3 n ≈ O(log3 n). Each authority a needs to provide a commitment of
his share of the secret key, this uses 1 modular exponentiation. Each re-
encrypted vote needs to be decrypted, requiring 2 modular exponentiations.
The zero-knowledge proofs must be checked by each authority. Finally, the
authorities cooperate to decrypt the valid votes, this process demands 2
modular exponentiations per vote. The total cost can be expressed as (a+2+
a+2) log3 n) ≈ O(a log3 n)). Essex et al. [2012] report an exhaustive analysis
of their system. We ignore the elevated number of modular exponentiations
in the registration phase since it can be performed before the elections. To
cast a vote and submitting a ballot and its credential, the elector needs to
perform (8c + 4) log3 n ≈ O(c log3 n) bit operations. The number of ballots
b can be larger than the number of electors since they can generate fake
ballots. The most expensive part of the system is the ballot authorization

2There are also other costs when computing RSA keys such as primality tests and the
Euler’s totient function, however we prefer to keep it simple for the comparison. We refer
to the original work for more information about the voting protocol.

4.2. TAVS: A TWO AUTHORITIES VOTING SCHEME 83

process. The total cost, in number of bit operations, can be expressed as
((4c+ 4)b+ (280a+ 12ca+ 19a+ 2)b+ 3ac) log3 n) ≈ O(ac log3 n). Being a
the number of authorities and c the number of candidates.

In Thi and Dang [2013], the elector has to communicate multiple times
with the authorities to get identified and get her dynamic ballot. These com-
munications are encrypted using public key cryptography. This results in 10
modular exponentiations for the user, with a cost of 10 log3 n ≈ O(log3 n)
bit operations. The cost of the system is defined by the checks and sig-
natures of certificates (5 modular exponentiations) and the generation of
keys for each registered elector. The total cost, in number of bit operations
can be expressed as 5 log3 n + 2 log2 n ≈ O(log3 n). The elector assigns P
points between c candidates in the ranked vote system introduced by Yang
et al. [2018]. The vote is constructed as a matrix with c rows and logP
columns. The elector must encrypt all the cells in the matrix, requiring
3 modular exponentiations each encryption. She also needs to provide a
partial-knowledge proof for each cell, and an extra zero-knowledge ťproof for
the whole ballot. Partial-knowledge proofs require 8 modular exponentia-
tions each and the zero-knowledge proof requires 5 modular exponentiations.
Finally, the ballot must be signed, requiring 2 modular exponentiations. The
work done by the elector can be summed up as (8c(logP) + 5 + 2) log3 n ≈
O(c(logP) log3 n). The proofs posted by the voters must be checked. The
cost for partial-knowledge proofs is 6 modular exponentiations, and 4 for zero-
knowledge proofs. In addition, all authorities must broadcast a commitment
of their private key share, this requires 1 modular exponentiation. The per-
formance of the whole system can be expressed as (6c(logP)+4+a) log3 n ≈
O(ac(logP) log3 n). In Aziz [2019], the elector needs to request a token, check
the signature of the ballot and cast her vote. This results in 5 modular expo-
nentiations with a cost of 5 log3 n ≈ O(log3 n) bit operations. The authorities
must generate a token and generate a public/private key pair for each elec-
tor, and perform the blind signature. The total cost of the system can be
expressed, in terms of bit operations, as 2 log2 n+ 14 log3 n ≈ O(log3 n).

In Table 4.2, the methods presented by Li et al., Thao et al., and Aziz have
the same theoretical time complexity as TAVS. Nonetheless, there are impor-
tant details to take into account because directly affect to the performance
of the methods (as we mentioned on Section 4.2.3, modular exponentiations
dominate the time-complexity functions and hide other costs of the systems
such as key generation, random permutations, other modular operation etc.)

Li et al. propose a method that requires a heavy public key infrastruc-

84 CHAPTER 4. ELECTRONIC VOTING

ture, generating an asymmetric key for each eligible elector and a second one
for each registered elector at runtime. The use of four authorities increases
the cost of processing a vote by a factor of seven when compared to TAVS.
Although their signature step is similar to our proposal, our approach elimi-
nates the need for the elector to depend on an authority to craft the ballot.

Aziz’s method needs to generate tokens and keys during the election pro-
cess, making the cost of processing a vote seven times higher than TAVS.
Additionally, Aziz shows that voters must cast their votes through an anony-
mous channel, such as a mix-net, but does not measure the time complexity
of this process.

Thao et al. also require key and dynamic ballot generation at runtime
for each elector and rely on PET tests to verify elector identifiers, needing
up to five authorities to operate the system. These factors almost triple the
cost of processing a vote compared to TAVS.

In summary, TAVS does not need to compute keys per user and reduces
the number of authorities required, making it the most efficient voting proto-
col among those presented. Furthermore, unlike other methods, the elector
can independently create their own ballot and and only needs to interact
with 2 authorities along the voting process.

4.3 Distributed Trust, a Blockchain Election
Scheme

Historically, electronic voting systems have employed a public bulletin board
to display the election process and the results. One of many examples is
TAVS, as we covered in Section 4.2. They seek a way of publishing the
voting information to later allow to verify and audit the election. In the last
decade, blockchain technology has proved itself as an effective, distributed
and decentralized public ledger Belotti et al. [2019], Paulavicius et al. [2019].
Thus, many electronic voting schemes have started to employ blockchain as
a way to either have a decentralized, public and reliable bulletin board, or
as a way to develop elections inside the blockchain itself as we discussed in
Section 4.1.

Despite the efforts of e-voting to increase participation, such as remote
and, in some cases, multi-platform access, most people do not trust electronic
voting. It is difficult to trust in a system based on abstract mathematical

4.3. DISTRIBUTED TRUST, A BLOCKCHAIN ELECTION SCHEME85

results that people do not fully understand. E-voting should not be all about
technological issues, but also about trust and about actively engaging all
the involved parts in the democratic process. For this reason, we present
an e-voting protocol in which traditional political parties, to whom people
trust to some extend, take a dynamic and accountable side. We introduce
a new voting scheme inspired by Monero’s one-time public keys (OTPKs),
and ring signatures that employs the blockchain as a bulletin board through
which parties can publicly communicate. In our approach, each party is given
partial power and full accountability in reaching a common interest despite
their antagonistic nature. We develop a new voting scheme focused on trust,
which is scalable, secure and preserves the anonymity and privacy of the
electors.

4.3.1 Description of our Proposal
In this section, we present our voting scheme, called Distributed Trust. Our
scheme presents a fully auditable, public, and distributed voting system that
is based on blockchain technology. All information related to the voting pro-
cess is registered into the blockchain, with each vote being a transaction. All
blocks on the blockchain are open for public consultation. To foster greater
engagement from electors in the voting process, we have assigned a unique
role to political parties in our system. Political parties act as miners who
listen and process transactions, and as such, any party wishing to participate
must provide computing power. Despite their role in the voting process, elec-
tors need not place any trust in these parties, as the entire voting process is
both public and auditable, ensuring privacy and anonymity. In many cases,
individuals feel more confident when they have a party to hold accountable
in the event of any issues arising. Our system takes this into account and
ensures that there are appropriate mechanisms in place to address any con-
cerns.

We employ a Proof of Authority (PoA) consensus algorithm Xiao et al.
[2020], Barinov et al. [2018], as an alternative to Proof of Work. This varia-
tion reduces the computational cost required to run a functional blockchain.
PoA is a permissioned blockchain where only some certified participants are
allowed to carry out certain actions. In our system, parties are responsible
for listening to transactions, verify the signature of the encrypted vote and
make sure the vote is correctly written on the blockchain. Parties are the
only partners with write access to the blockchain, while the rest of partici-

86 CHAPTER 4. ELECTRONIC VOTING

pants have read-only access. PoA can be seen as a variation of Proof of Stake
Xiao et al. [2020], but instead of staking monetary tokens, parties stake their
identity. The trust is distributed among reduced set of parties with adver-
sarial interests, only these parties have write access to the blockchain. A
Nash equilibrium is reached in where different entities collaborate because
there is no reward in following a different strategy. Indeed, since our ap-
proach is fully logged and auditable and the parties are linked with real life
entities, the penalization for indecorous conduct is immense. Their reputa-
tion will be discredited if they misbehave. Parties have write access, but
since transactions are encrypted and anonymously signed, the user’s privacy
is not affected. By using PoA, our approach is faster since it does not require
costly computation, environmentally friendly since it does not consume so
much electricity and simpler to scale.

We consider the process as five different stages: election setup, registra-
tion, vote casting, vote processing and tallying. The system is discussed in
detail in the next sections.

Election Setup

Before the election starts, parties must collaborate to generate the param-
eters of the election. To encrypt the votes electors send to the parties, we
employ RSA, therefore, parties must generate the RSA parameters: the
public modulo n, the public verification key v and the private signature key
s. Since giving the private key s to a single party would result in giving up
too much power, l parties apply the threshold RSA key generation proto-
col proposed by Damgård and Koprowski [2001]. This protocol relies on the
work of Frankel et al. [1998] to remove the necessity of a trusted dealer. It in-
troduces a (k, l)-threshold RSA sharing scheme in which the parameters are
computed in a distributed way and the secret key is generated in l fragments.
To recover the secret key, any subset of at least k parties can collaborate to
find the original secret s. Even if some parties are corrupt, they would need
to collaborate with at least k parties. The same applies to honest parties, k
are required to recover the private key s.

We proceed to give an overview of the aforementioned key generation
protocol. In RSA, modulo n is computed as the product of two large primes
p and q. To distribute the trust, p and q are computed as the sum of different
shares chosen by the parties: n = (p1 + p2 + . . . + pi + . . . + pl)(q1 + q2 +
. . .+ qi+ . . .+ ql). To avoid from parties maliciously changing its share, they

4.3. DISTRIBUTED TRUST, A BLOCKCHAIN ELECTION SCHEME87

P1

P2

P3

P4

P...

Pl

P5

n, v

p1, q1, s1

p2, q2, s2

p3, q3, s3

pl, ql, sl

p..., q..., s...

p5, q5, s5p4, q4, s4

Figure 4.5: Distributed generation of RSA parameters. Generation of n and
v is made of parties’ additive shares pi and qi. Each party ends with a share
of the private key si.

are required to publish a commitment (see Section 2.3.3) during the process.
The distributed computation of n is carried out using a variant of Shamir’s
secret sharing (see Section 2.2). This variant from Frankel et al. [1997], also
employs random polynomials in which the independent term is the secret,
but it allows the computation of n to work outside prime fields.

Once the modulus is agreed, parties can jointly derive the public exponent
v in a similar way, a distributed test division is required to test the primality
of the candidates. When computing s, to prevent from revealing the shares
of the polynomial, the shares vi are used as an exponent to compute: gvi

, being g a generator of the group defined by v. This way each party gets
an additive share of the private key si. Then, they proceed to construct a
(k, l)-threshold polynomial of s. Thus, a distributed generation of RSA, in
which parties only have partial information of the private key s is achieved.
To decrypt or sign a message, parties must collaborate to retrieve the shared
private key. The collaboration process can be seen as a graph (see Figure
4.5), in which each node represents a party, and each edge represents the
interchange of messages. The retrieving protocol is detailed in the following
sections.

We require all the traffic of messages as well as the commitments related
to any vote to be published as transactions on the blockchain. Thus, the

88 CHAPTER 4. ELECTRONIC VOTING

blockchain comprehends all the information related to the election. RSA
parameters n and v are also released to the blockchain. Besides from the
distributed key, each party has its own personal pair of public/private keys.
These keys are used to sign all the transactions they make. All this param-
eters of the election are published in the blockchain as the first block.

Registration

Electors must register before the election starts. For this purpose, a local
administration defines the census of potential electors. It will also store and
manage elector’s keys as well as generate OTPKs for each elector. The ad-
ministration will declare the process through which the electors will identify
and register their public keys, and the end-time of the registration phase.

Any elector willing to participate will generate a two pairs of elliptic curve
keys (a,A),(b, B). Then, the elector will follow the process specified by the
administration, and, in case of correctly identifying herself, the administra-
tion will link their public keys (A,B) to their identity.

Once the elector registration term ends, the administration computes a
OTPK per elector using their public keys and a different random number r
per OTPK. Next, the administration sends the information to the parties.
Parties send a transaction through the blockchain, making public a list with
the OTPKs of each public key pair and the associated R, such that R = rG.
The owners of a given OTPK either will be able to recover the corresponding
private key computing Hs(aR) + b, or can be notified by the administration
in order to save computation time. Where Hs is a hash function that maps
to integers within the elliptic curve field.

The same transaction also includes general configuration information for
the election such as: presented candidates or agreed encoding of the vote.
This second transaction contains all the remaining public parameters of the
election. Figure 4.6 illustrates the process electors carry out in order to
register themselves.

Vote Casting

Once the electors have decided what to vote for, they must follow three steps
to cast a valid vote. First they must encrypt it to protect its direction until
the election is over. To do so, they read the public key v, and the modulo n
from the blockchain and apply a modular exponentiation to encrypt it using

4.3. DISTRIBUTED TRUST, A BLOCKCHAIN ELECTION SCHEME89

Identification

Authority
public keys: A, B

OTPK1, R1

OTPK2, R2

. . .
OTPKN , RN

parameters: n, v

Private share commitments:

Public Blockchain

{gs1 , gs2 , . . . , gsl}

RSA public

Personal public keys:
{vP1

, vP2
, . . . , vPl

}

Configuration blocks

Figure 4.6: Electors register their public keys in a local identification au-
thority. Then, the identification authority computes all the OTPKs. All
the public parameters of the election are added as the first blocks of the
blockchain.

90 CHAPTER 4. ELECTRONIC VOTING

RSA. Before encrypting the vote, the elector must select a fixed length
random mask of her choice to concatenate to the vote. Otherwise, all the
votes in the same direction will result in the same encryption. The elector
will obtain an encrypted value such as evote = (vote∥mask)v mod n.

Craft ring signature σ

Elector

Get N OTPKs
Get public key v

mask

vote
Concatenate an

maskvote

v

Send encypted

encrypt the vote

and signed vote to a party

Figure 4.7: Casting a ballot: Electors obtain election parameters from the
blockchain. Then, they select a fixed length mask and concatenate it to the
vote. Adjacent boxes represent concatenation, while the dashed box repre-
sents encryption using modular exponentiation. Electors craft a ring signa-
ture using the consulted OTPKs. Once the ballot is signed and encrypted,
they encode it as a transaction and send it to any party of their choice.

Next, the elector must sign the vote to prove that it has been casted by an
eligible elector. To perform the ring signature generation procedure described
in Algorithm 6, the electors randomly take N OTPKs from the list of public
keys, including their own. The elector obtains a ballot conformed by the
encrypted vote and its signature: ballot = {evote, σ(evote) = (P,K, c0, r)}.
Note that the number of public keys in the ring N is tightly connected with
the ambiguity of the signer. N acts as a security parameter, larger values
imply more ambiguity, thus more privacy. However, it makes the signature
slower and more expensive in terms of computation. A fixed or a minimum
value for the ring size can be established depending of the security level and
available hardware.

Finally, when the vote has been encrypted and signed, the elector sends
the ballot through a blockchain transaction to a party of her choice or a
random one. Figure 4.7 illustrates the casting process.

Vote Processing

Parties act like miners, listening to the blockchain network and expecting
transactions addressed to them. When a party finds a transaction addressed
to himself in the pool of unprocessed transactions, proceeds to verify the
integrity of the ring signature. Figure 4.8 shows the processing of a vote.

4.3. DISTRIBUTED TRUST, A BLOCKCHAIN ELECTION SCHEME91

When it has received enough transactions to fill the block size, the party
creates a block that is added to the blockchain and later broadcasted to the
rest of parties:

P1

P2

P3

P4

P...

Pl

P5

Public Blockchain

configuration block
Genesis

1. Verify signature

New ballot

2. Create and sign a new block Block hash

Ballot

Transaction Id

Timestamp

σ evaluation

sPl

3. Add block to the blockchain

4. Broadcast ballot

Prev. hash

Figure 4.8: Processing of a vote. Each party is responsible of verifying re-
ceived ballots, and ensuring they are correctly added to the blockchain. All
the published blocks are by the party’s personal private key.

1. It applies Algorithm 7 to the signature to verify its correctness.

2. It creates and signs a block with the following attributes:

• Block Id.
• Votes and transactions Id.
• Timestamp.
• Result of verifying the ring signature.

3. It adds the block to the blockchain.

4. It broadcast the new block to the rest of parties so they can also verify
the votes.

92 CHAPTER 4. ELECTRONIC VOTING

For a more detailed and technical explanation about how the blocks are
created and processed within the blockchain, we refer the reader to the Ap-
pendix C.

Tallying

Once the voting phase finishes, parties stop accepting transactions from elec-
tors and proceed to compute the final tally of the election.

First, parties must recover the secret key s to decrypt votes. To do so,
a subset Λ of at least k honest parties collaborate to compute the original
polynomial containing s. To recover a polynomial from k shares, defined as
s0 = (x0, y0), s1 = (x1, y1), . . . sk = (xk, yk) we employ Lagrange interpola-
tion, as it was introduced in Section 2.1.3. We know recover the equations
that enable this interpolation:

L(x) =
k∑

j=0

yjlj(x) (4.2)

lj(x) =
∏

0≤m≤k
m∈Λ
m ̸=j

x− xm

xj − xm

(4.3)

Once we recover the polynomial L(x), s can be obtained as:

s =
L(0)∆

∆3
(4.4)

being ∆ a factor used when generating the RSA key. Please note that ∆ = l!.
It is used for computing the random polynomials when using Frankel et al.
[1997].

When s is recovered, parties can decrypt the received votes and compute
the final tally. Parties must analyze the received votes directly from electors
and those received from another parties. This way, each party can compute
a global and independent tally. If multiple votes contain the same key image,
only the last vote will be considered valid.

When the tally is completed, each party has to publish a new block
containing each received transaction, the result of checking the ring signature
and the direction of the vote. At the end of the block they must add the
results of the election and the private key of the election s. This message

4.3. DISTRIBUTED TRUST, A BLOCKCHAIN ELECTION SCHEME93

has to be signed by the parties. The private key is also published to allow
electors to compute their own tally. If all the parties agree with the tally the
election is finished. Figure 4.9 depicts the tallying phase.

Public Blockchain

configuration block
Genesis

1. Parties collaborate to recover s

2. Compute tally
Block hash

Received ballot1

Timestamp

s

sPl

3. Add block containing the tally and s

Prev. hash

P1

P2

P3

P4

P...

Pl

P5

s

s1

s2

s3

sl

s...

s5s4

Received ballotb

. . .

Tally results

Figure 4.9: Parties collaborate to recover the private key s. Then, each of
them individually computes a personal tally and adds it to the blockchain.
It contains all the information needed by a third party to audit the tally.

4.3.2 Properties of the voting scheme

A voting scheme can be described by its properties, as defined in Section 4.
These properties define what it can provide and under which circumstances.
We devote this Section to study the security of Distributed Trust, and how it
fulfills all these properties. Let us note our proposal is based on well-known
cryptographic primitives, therefore most of the proofs rely on the underlying
problems of those primitives.

94 CHAPTER 4. ELECTRONIC VOTING

Verifiability

Lemma 4.3.1. Distributed Trust is end-to-end verifiable.

Proof. Key images (see Section 3.3.2) work as a private receipt. Thus, allow-
ing the elector to read from the blockchain to check her ballot was casted,
recorded and tallied properly. As mentioned above, key images are anony-
mous and do not compromise elector’s privacy.

Concerning universal verifiability, we note that any person, participant or
not in the election process, is able to ensure that every vote has been tallied-
as-recorded. This is achieved thanks to the public nature of the blockchain.
Note that this does not ensure that the vote has neither been casted-as-
intended nor recorded-as-casted because that would violate the privacy prop-
erty.

Summarizing, our proposal provides universal verifiability by posting in
the blockchain the key to decrypt the orientation of every vote recorded.
Anyone can take the key and the votes stored in the blockchain to compute
a tally by themselves.

Accuracy

Lemma 4.3.2. As RSA encryption system remains secure, the system is au-
ditable by third parties, and, ring signatures are unforgeable, then Distributed
Trust is accurate.

Proof. We divide the proof in three parts:

(a) No one can change anyone else’s vote: Votes are encrypted using RSA:
assuming that no elector shares his secret key; that at last k parties
are honest; and, that the Discrete Logarithm Problem (DLP) has no
efficient solution for carefully selected parameters, the votes remain
unaltered until the final tally.

(b) All valid votes are included in the final tally: Parties are responsible
for processing and tallying all received valid votes. Given universal
verifiability proved on Lemma 4.3.1, not including all valid votes would
result in an early finalization of the election.

(c) No invalid vote is included in the tally: For a vote to be included
in the final tally, its ring signature must be valid. Assuming that the

4.3. DISTRIBUTED TRUST, A BLOCKCHAIN ELECTION SCHEME95

Elliptic-Curve-DLP(ECDLP) has no efficient solution, no signature can
be forged.

Democracy

Lemma 4.3.3. If the ECDLP is semantically secure, no one can imperson-
ate a valid elector or perform double voting in the Distributed Trust voting
scheme.

Proof. The proof can be separated in two parts:

(a) Eligibility: Only electors in the census are able to register their public
keys in the registration administration. The list of public keys and
elector’s identifier are stored in the blockchain to prevent the adminis-
tration from creating fake electors. If the ECDLP problem is compu-
tationally secure. Then, only the registered elector can recover their
personal OTPK from the public list.

(b) Double voting: Key images work as a commitment of the private and
public key of a elector. As stated previously, if the ECDLP has no
efficient solution, then no modification of the key image can be made.
Therefore, each elector is authorized, without revealing her real iden-
tity, to vote only once.

Privacy

Lemma 4.3.4. If the ECDLP has no efficient solution, elector’s identity
remains private in the Distributed Trust electronic voting scheme.

Proof. Key images, ring signatures and OTPKs are based on ECDLP. These
are the only cryptographic constructs related to elector’s identity. Assuming
that, under the right parameters, no efficient solution exists for ECDLP, we
can conclude there is no method to expose the elector’s identity. Therefore,
the elector is protected by the size of the ring signature, because any member
of the ring is a possible signer with the same probability. We also stress that
even if two equal votes were encrypted using the same ring of public keys,
their signature will differ and privacy will be granted.

96 CHAPTER 4. ELECTRONIC VOTING

Robustness

As mentioned above, in a (k, l)-threshold RSA key sharing scheme l repre-
sents the total number of involved parties, and k represents the minimum of
collaborating parties needed to recover the secret key.

Lemma 4.3.5. In a (k, l)-threshold RSA key sharing scheme, if at least
l − k + 1 parties are honest, Distributed Trust voting scheme is robust.

Proof. Parties are the only ones with write access, thus, electors cannot
directly interfere in any of the processes stages. To recover the private key
and compute the final tally at least k parties must cooperate. If a party
(or any subset of them lower than k) misbehave, their actions are publicly
auditable through the blockchain. Therefore they can be sanctioned and left
out of the process without compromising the running election nor the final
tally. Let us note, that even in the worst case of k malicious parties colliding
to recover the secret key before the election ends, elector’s privacy and the
integrity of the vote will prevail since they depend on the ring signature
bounded to each vote. They will be only capable of knowing the directions
of the votes before the tally phase.

4.3.3 Time complexity analysis
We devote this section to analyze the asymptotic computational time com-
plexity of our election scheme, both for the elector and the involved parties
and, second, to provide a comparison with the most similar systems reviewed
in Section 4.1.

We consider here transactions per second (TPS) as a way to measure the
throughput of our blockchain-based voting scheme. TPS are heavily influ-
enced by the consensus algorithm employed: block proposal, block validation,
and the mechanism used to solve forks among others. Here, we note that, by
using PoA instead of Proof-of-Work, the limiting factor is no longer the block
proposal but the block validation. Because no extensive hashing is required
to propose blocks. Therefore, ring signatures, which are the main factor
in block validation, determine the number of TPS. For a real implementa-
tion and empiric study of the time-complexity of ring signatures, please see
Appendix B.

Next, we summarize the main stages of a consensus protocol and de-
termine the associated computational time complexity. For computing the

4.3. DISTRIBUTED TRUST, A BLOCKCHAIN ELECTION SCHEME97

asymptotic time complexity, we consider the modular exponentiation, em-
ployed in RSA and the crafting/verification of a ring signature, as basic
units. This operation is the most expensive and the basic construction units
of our scheme. Modular exponentiation has a time complexity of O(log3 n)
bit operations Menezes et al. [1996], being n the input and log n its size in
bits.

Block Proposal

Thanks to PoA, no intensive computation is required to propose a new block,
no resource-consuming hashing is employed with respect to Proof-of-Work.
Every identified party who receives enough transactions to craft a block may
propose a new one. Only a modular exponentation is required to sign the
proposed block. Then, the complexity to propose a block can be expressed
as O(log3 n).

Block Validation

The validation of a block requires to check the ring signature of every trans-
action contained within it. The computational complexity of this validation
varies depending on the elliptic curve used and the size of the ring signa-
ture employed. Also note that we require all parties to validate all the new
blocks, therefore the validation process is also affected by the number of in-
volved parties. To validate the block, the signature of the party who created
the block must also be checked. This results in one additional modular expo-
nentiation. The asymptotic complexity of block validation can be expressed
as O(trvp + log3 n), where t represents the number of transactions, rv the
cost of verifying a ring signature and p the number of parties involved in the
consensus.

Information propagation

Message communication is another crucial factor to determine the through-
put of a system. However, since we work with a permissioned blockchain,
the number of nodes that send messages is minimal. A simple broadcast be-
tween parties is enough to communicate new blocks. Therefore, the number
of messages remains linear with respect to the number of blocks b and the
number of parties. Each message must be signed by the sending party, so
the complexity can be regarded as: O(bp log3 n).

98 CHAPTER 4. ELECTRONIC VOTING

Block finalization

For a block to be finally accepted by all parties, it must be added in the
longest chain. If two parties try to add a block at the very same time, a
collision occurs. As we mentioned on the previous section, we follow the
longest chain rule and each party is responsible for checking their blocks are
correctly added to the blockchain. As the validation of a block does not
depend on the previous block’s hash, adding an already validated block for
a second time does not require further computation. However, it is safe to
assume that probably the block would be outdated and a new block proposal
and its corresponding propagation should be carried out. The complexity can
be expressed as O(qbp log3 n), being q the number of collisions requiring a
new block re-added to the blockchain. The number of collisions is difficult to
estimate since it depends on many empirical factors and varies from election
to election. The worst case would be an election on which all the electors
vote at the same time and the ballots sent are equally distributed between
all parties. That would result in many concurrent collisions. Because of the
unequal distribution of a real election, we can assume q will be low when
compared with successful finalized blocks. Nonetheless, if the number of
collisions becomes a problem, we could abandon following longest chain in
favor of a byzantine fault tolerance consensus or a round-based writing Xiao
et al. [2020].

Reward mechanism

In our adaptation of PoA, the reward and the purpose of the election scheme
are the same thing. Parties are, allegedly, interested in carrying out the
election process. Parties are motivated in an adequate election since their
public reputations are at stake. Since the reward is abstract it does not affect
the computational time complexity.

Tallying

For computing the final tally, parties must collaborate to recover the se-
cret key and then proceed to decrypt all the votes. The collaboration re-
quires p signed messages and the decryption needs one modular exponentia-
tion per transaction(vote). The complexity of the tally can be expresses as
O(pt log3 n).

4.3. DISTRIBUTED TRUST, A BLOCKCHAIN ELECTION SCHEME99

Therefore, the total time complexity of the system can be expressed as
O(log3 n)+O(trvp)+O(log3 n)+O(bp log3 n)+O(qbp log3 n)+O(pt log3 n).
Given that the number of blocks b depends linearly on the number of trans-
actions t and that t dominates b, we can substitute b for t. After grouping
some terms, the final complexity can be simplified as O(tp(rv + q log3 n)).
Thus, the system’s time complexity depends on the cost of verifying ring
signatures and on the cost of running modular exponentiations, which are
both affected by the number of involved parties, the number of collisions and
the total transactions processed by the system.

We did not consider the cost of distributely generating the keys for RSA
encryption because it can be done offline before the election process and it is
carried out off the blockchain. Apart from the initial genesis blocks, which
would have only required a pair of modular exponentiations, this process
does not affect the complexity of our scheme.

Besides, one elector willing to craft and cast a vote, only needs to per-
form the encryption of the vote and the associated ring signature. The time
complexity for the final user can be expressed as O(log3 n+ rc), being rc the
cost associated to craft a ring signature.

Comparative evaluation of systems

We devote this section to compare the performance of our proposal with
the most similar ones studied in Section 4.1. Ring signatures and modular
exponentiations determine the time complexity of our approach. For the rest
of the comparison, and as we did for TAVS in Section 4.2, we employ modular
exponentiation as the basic unit in the analysis.

We compare the asymptotic time complexity of the remaining works to
prove the validity of our approach. When the methods do not specify a
part of their protocol or do not provide enough information, we introduce
a variable in the complexity analysis. Table 4.2 summarizes the associated
complexity for the elector and for the protocol to process the received votes.
For more details, we refer the reader to the original works. Protocols em-
ploying different kinds of ring signatures are compared, to provide a fair
example we assume the time to craft rc or to verify rv a signature are compa-
rable and can be agglutinated under the same variable despite their different
implementations.

Note that the number of votes v and the number of transactions t are
semantically equivalent, they both represent the number of processed votes.

100 CHAPTER 4. ELECTRONIC VOTING

Elector’s Cost System’s Cost

Salazar et al. [2010] O(r(log3 n+ rc)) O(vr(log3 n+ rv))
Chen et al. [2008] O(log3 n+ rc) O(vp(log3 n+ rv))
Yang et al. [2020] O(cs log3 n) O(cts log3 n)
Distributed Trust O(log3 n+ rc) O(tp(q log3 n+ rv))

Table 4.2: Table representing the asymptotic time-complexity of the work
performed by electors and the system in number of bit operations. In the ta-
ble: r refers to the number of rounds in the case of round voting, v represents
the number of votes, c refers to the number of candidates, s references the
number of possible scores for each candidate in the case of ranked elections,
t represents the number of transactions in a blockchain environment, and p
the number of parties involved.

On the other hand, the number of candidates c and the number of parties p,
not always represent the same partners. Not all protocols directly involve the
candidates and some systems include extra authorities to handle credentials
or distribute responsibility.

In Table 4.2, the results obtained by our proposal compete with the re-
viewed systems. Indeed, Chen’s system and our proposal require the mini-
mum effort for the final elector. Regarding system’s complexity; it can be
observed that, as for many works, it scales linearly with the number of in-
volved parties and total number of votes. Salazar and Yang’s works are also
affected by other factors given that they support round and ranking e-voting
respectively. Our proposed e-voting protocol is scalable due to its linear com-
plexity and introduces the blockchain as a distributed public ledger without
losing performance with respect to analogous works.

4.4 SUVS: Secure Unencrypted Voting Scheme
Traditionally, electonic voting schemes employ cryptography to encrypt and
secure elector votes. But, as we covered in Section 2.5, there are alterna-
tives to the well-known computational complexity approach. Our proposal,
the Secure Unencrypted Voting Scheme (SUVS), is a voting scheme that
maintains a high level of security, even in the absence of cryptography. Our
approach is inspired by secret sharing schemes, as detailed in Section 2.2.

4.4. SUVS: SECURE UNENCRYPTED VOTING SCHEME 101

By fragmenting the vote into multiple pieces of information, we can conceal
the original vote without revealing any sensitive information about it. Each
individual piece of information alone is meaningless, and offers no clues as
to the content of the vote. However, when the pieces are combined as a
whole, the original vote can be reconstructed with confidence. Our approach
therefore offers a secure and efficient method for conducting voting without
relying on encryption.

Our objective is to design a new, user-friendly voting scheme that is both
efficient and secure. We aim to engage sectors that may be averse to tech-
nology or resistant to change. By fragmenting the ballot into multiple pieces
of information, no individual piece of data reveals any sensitive informa-
tion about the vote. This unique approach ensures that the integrity of the
vote is maintained while allowing for the decentralization of ballot processing
responsibilities. Our proposal opens the door to the possibility of less con-
ventional electronic voting schemes, with the goal of reducing the reluctance
of novice users to engage in the electoral process.

4.4.1 Description of our Proposal
We devote this section to describe our Secure Unencrypted Voting Scheme
(SUVS) scheme. SUVS requires minimum interaction from the elector and
protects the vote using a constructive approach which does not require to
encrypt/decrypt the votes.

The whole scheme is based on the generation of some pieces of informa-
tion, which by separate do not reveal any information about the elector and
her vote, but when combined, these pieces of information reveal the direction
of the vote.

Our voting system comprises three distinct entities: electors who cast
their individual votes; an identification authority (IA) responsible for veri-
fying the eligibility of electors and certifying ballots in a blind manner; and
political parties, who serve two purposes: firstly, to represent themselves
as an option in the election, and secondly, to recover, validate, and tally
the votes cast. To facilitate communication between the different entities,
a Public Bulletin Board (PBB) is employed to provide public information
about the election. As of today, numerous blockchain-based approaches (see
Chapter 3) provide the necessary tools to create a public and distributed
bulletin board.

SUVS consists on five sequential phases: the system setup; the ballot

102 CHAPTER 4. ELECTRONIC VOTING

crafting; the ballot certification; the vote casting; and, the tallying phase.
During these phases, the elector generates a private polynomial that serves
as her own ballot. This polynomial allows the elector to conceal her vote
as a set of points and to cast it during the corresponding phase. We take
advantage of the properties of polynomial interpolation to ensure that the
vote is impossible to recover unless all the points are known. In the final
phase, political parties collaborate to recover the secret polynomial and its
associated vote from the received points. Figure 4.10 illustrates the interac-
tions between the different entities involved in the protocol, while Example
4.4.1 provides a step-by-step illustration of the processes leading up to the
final tallying. In the following sections, we provide a detailed description of
each of the five phases that make up our voting system.

System setup

Before the election process can begin, it is necessary to establish the methods
that will be used to sign the electors’ ballots. The IA is responsible for
elector identification and ballot certification, which requires generating the
parameters for setting up a digital signature scheme.

We employ blind signatures, as described in Section 2.6.1, to prevent
double voting while protecting the privacy of the electors. This allows us to
certify ballots from valid electors without linking their votes to their identi-
ties.

In the description of SUVS, we consider a RSA signature scheme to imple-
ment blind signatures because of its homomorphic properties under modular
exponentiation, although any other method with similar properties could be
used instead. To prepare for the blind signature scheme, the elector uses the
public component of the IA signature key v and the public RSA modulus n,
which will be used to certify the ballots.

The IA also states the hash function to be used, sets up the degree d of
the polynomials to create, sets the maximum number of points the user can
generate l, being l > d, as well as generates the prime p under which modulo
operations will be carried out. Please note, that the degree of the polynomial
d must be, at least, equal to j − 1, being j the number of involved parties
on the election. This enforces the collaboration of all parties to recover the
polynomial. Apart from this consideration, increasing d does not provide a
greater level of security. We detail this issue later in Section 4.4.2.

When the setup phase ends, the IA publicly distributes v, n, d and p so

4.4. SUVS: SECURE UNENCRYPTED VOTING SCHEME 103

that every elector can independently craft her own ballot.

Ballot crafting

Once the elector has decided her vote, she encodes it as an integer C. Then,
she proceeds to generate a d-degree polynomial as shows Equation 4.5.

q(x) = adx
d + ad−1x

d−1 + . . .+ a1x+ C (mod p) (4.5)

such that the independent term contains the encoded vote C. Please
note, that it is not necessary all the coefficients to be non-null to deal with a
d-grade polynomial. Please also note, that coefficients must be smaller than
the prime p, otherwise they will be reduced.

Next, the elector samples from the polynomial at least d+1 points, with
a maximum of l points, see Equation 4.6. For the shake of clarity, we assume
in the rest of the article the user generated the minimum of d + 1 points.
When required, we will order the set of points P taking into account the first
coordinate, in order to transform, unequivocally, any set into a sequence of
points. If we did not order the points, the hash function used to characterize
them will provide non-deterministic hashes.

P = {(x1, q(x1)), (x2, q(x2)), . . . , (xd+1, q(xd+1))} . (4.6)

Anybody who knows P can interpolate the original polynomial q(x), and
therefore recover the vote. This set P is actually, the ballot itself. To cast
it, it will be splitted in shares to be sent to the parties. In order to allow the
reconstruction of the splitted vote, the elector digest the sorted set of points
P using the hash function selected in the system set up phase. Please, once
again note the importance of the points being sorted for the hash function
to produce consistent outputs. For this reason, we define a function shash,
that sorts, accordingly, the received input before applying the hash. The
output of the shash functions acts as a commitment of the points. This
commitment acts as a receipt that ensures the set P has not been tampered,
and demonstrates the validity of the ballot when signed. An outline of the
crafting process is depicted in Algorithm 11.

104 CHAPTER 4. ELECTRONIC VOTING

Algorithm 11 Ballot crafting
1: Elector : Codification of the vote as an integer C.
2: Elector : Generation of a private polynomial q(x) such that C conforms

its independent term:

q(x) = adx
d + ad−1x

d−1 + . . .+ a1x+ C

3: Elector : Generation of P , an ordered sequence of d+ 1 points:

P = ⟨(x1, q(x1)), (x2, q(x2)), . . . , (xd+1, q(xd+1))⟩

4: Elector : Generation of a random mask. Crafting of the ballot:

b = hash(sort(P)) ·maskv mod n.

Ballot certification

In order to prevent double voting, each elector is required to send her ballot
to the IA to be properly certified. To avoid the possibility of relating the
ballot with the elector, our proposal blinds the ballots before sending them
to the authority. To do so, the elector selects a random invertible mask,
considers the verification key v published by the IA and computes the ballot
b as shown in Equation 4.7.

b = shash(P) ·maskv mod n, (4.7)

which is sent to the IA, together with her identification, through a secure
channel.

The IA checks if the identification is valid and the elector is on the census
of registered voters. If the identification is correct, the IA proceeds to sign
the ballot as referenced in Equation 4.8

bs ≡ (shash(P) ·maskv)s (mod n)

bs ≡ shash(P)s · (maskv)s (mod n)

bs ≡ shash(P)s ·mask (mod n)

(4.8)

4.4. SUVS: SECURE UNENCRYPTED VOTING SCHEME 105

Just to clarify, the mask is a randomly generated number that is used
to blind the ballot before it is signed by the IA. The purpose of this is to
prevent the IA from learning the contents of the ballot while still being able
to certify it as valid. Once the masked ballot is signed, the IA cannot know
the original contents of the ballot unless the mask is revealed to them. After
the signature process, the IA replies the elector through a secure channel
with the signed ballot. The IA also publishes on the PBB, a tuple of the
form ⟨id, b = shash(P) ·maskv)s⟩. The goal of this is twofold: it allows the
elector to check that her ballot was received as intended, and it proves that
every ballot comes from a valid identity from the public census.

The elector receives the signed ballot and proceeds to recover the signed
commitment which will certify her vote. Note that, the elector is the only one
who knows the mask and its inverse. Hence, the elector obtains the signed
commitment as indicated in Equation 4.9.

bs ·mask−1 ≡ shash(P)s ·mask ·mask−1 ≡ shash(P)s (mod n) (4.9)

Then, the elector obtains the certified signed commitment that will be
used in the next steps of the election. These phases are detailed on Algorithm
12. Note that, despite requiring her identity in order to sign the ballot, the
IA has no means to link the commitment with the elector. The elector is
also able to check if the signed ballot was tampered during the process, as
she is able to independently verify the integrity of the signed commitment.

106 CHAPTER 4. ELECTRONIC VOTING

Algorithm 12 Ballot certification
Require: delector ← Elector’s identification.
Require: b← Ballot to be certified.

1: Elector → IA : ⟨idelector, b⟩
2: if idelector is valid then
3: Elector ← IA : bs mod n.
4: else
5: Elector ← IA : Error.
6: end if
7: Elector : Recover the signed hash:

bs ·mask−1 ≡ shash(P)s (mod n)

8: return Certified hash: shash(P)s

Vote casting

The elector has a set P that can be used to recover the direction of her vote,
and the signed commitment of the set hash(P)s which identifies her vote as
a valid one.

To finally cast the vote, the elector sends a partition of P (shares of the
ballot) together with the certified commitment to all the parties implied in
the election tallying. Note that a basic property of polynomial interpolation
states the impossibility to recover a d degree polynomial with d or less points
of such polynomial. This allows to send different shares of information to
different parties with certainty that no information of the original vote will
be revealed, unless all the parties collaborate to do so.

Therefore, taking into account that k parties are implied in the election,
the elector partitions the set P into k non-overlapping subsets SPi, such that
P results as the ordered merge of every SPi. See Equation 4.10.

P =

{ ⋃
∀i 1≤i≤k

SPi

}
(4.10)

Each one of the parties receive a share SPi of P together with the hash
and the certified hash: shash(P), shash(P)s (mod n). Please note that the
certified hash operates as digital signature of the hash, and that both are

4.4. SUVS: SECURE UNENCRYPTED VOTING SCHEME 107

sent and needed to check its validity. Also note that the elector can freely
decide which subset is sent to each party.

We also note, that it is possible to reduce the number of shares to put
aside from the process those parties which receive no share of the elector’s
ballot. Note also that this does not affect to the validity of the vote but to the
transparency of the process. However, we force that every party receives one
share. By doing this, we ensure that all parties must collaborate to recover
the vote. Thus, no subset of malicious parties will be able to recover the vote
before the tallying phase.

Once all the subsets have been sent, the vote has been cast. Note that,
unlike what happens in the ballot certification phase, no personal information
goes along with the shares of the vote. Hence, parties have no means to as-
sociate the received shares with an elector’s identity. Please note that, while
parties cannot identify voters, they can reject invalid messages by leveraging
the digital signature of the commitment. Invalid signatures must be rejected,
and this can be used as defense against DDOS attacks. The casting process
is depicted on Algorithm 13.

Algorithm 13 Casting a vote
Require: shash(P)s ← Certified commitment.
Require: P ← Set of points.

1: Elector : Create k non-overlapping shares SPj of the ballot P such that:

P =

{ ⋃
∀j 1≤j≤k

SPj

}

2: for each partyj in the election do
3: Elector → partyj : ⟨shash(P), shash(P)s, SPj⟩
4: end for
5:
6: return One share SPj for each party j.

Tallying

Once the election phase is over and no new votes are accepted, the parties
can proceed to reconstruct the votes and compute the final tally.

108 CHAPTER 4. ELECTRONIC VOTING

In first place, the parties consider the certification that accompanies the
shares to find the set of shares, each one of them received by a different party,
that allow to reconstruct each ballot P . Note that the original sequence can
be easily obtained, by ordering the set P , and that is possible to check the
validity of the certification.

A set of points P such that its certified commitment shash(P)s (mod n)
is not correct, or that its cardinality exceeds the defined maximum, |P | > l,
is discarded. Parties can now, individually, use the points in P to recover
the original polynomial q(x) which contains the vote as its independent term
C. To recover a polynomial from a set of points:

P = {p1 = (x1, y1), p2 = (x2, y2), . . . , pj = (xj, yj)}

we suggest to use Lagrange’s interpolation, introduced in Section 2.1.3, and
represented again in Equations 4.11 and 4.12.

q(x) =

j∑
i=0

yili(x) (4.11)

where:

li(x) =
∏

0≤k≤j
k ̸=i

x− xk

xi − xk

(4.12)

that, when q(x) is interpolated, allow to recover the encoded vote C as illus-
trated in Equation 4.13.

C = q(0) (mod p) (4.13)

Please note that the interpolation operations are not carried out modulo
p. When we forced, on the ballot crafting, the coefficients of the polyno-
mial ad to be smaller than p, we made sure that we would interpolate the
exact same polynomial without the need of modular arithmetic. Otherwise,
we could interpolate a different polynomial, congruent mod p, but with a
different encoded vote C.

The parties publish on the PBB, a 3-tuple per vote containing: the cer-
tification of the ballot (i.e. the signed commitment); the ballot itself (i.e.
the set of points P that conceal the ballot); and the reconstructed vote C.
The final tally obtained by each party can also be published. The PBB is

4.4. SUVS: SECURE UNENCRYPTED VOTING SCHEME 109

Voter
Identification
Authority

Decide vote C

Select mask

Parties

Jointly agree on p, m and d

Generate RSA parameters: s, v, n

Generate q(x)

Generate d+ 1 points (P)

Compute hash h

Craft ballot b shash(P) ·maskv (mod n)

Verify ID

Sign ballotshash(P)s ·mask (mod n)

Remove mask

Recover signed

Partition set of points P

Send partitions

SP1, sC , h
SP2, sC , h

SPj , sC , h
Verify signed hash

Aggregate points
Interpolate polynomials
Recover votes
Publish results

shash(P)s ·mask ·mask−1

. . .

commitment
sC = shash(P)s

Publish ⟨id, b⟩ . . .

h = shash(P)

Figure 4.10: Scheme representing the election phases, its associated agents
and their message interchange.

available to everyone to check that their votes have been counted as intended,
and to verify the integrity of the final tally. Algorithm 14 shows the steps to
compute the final tally.

Algorithm 14 Tallying votes
1: Parties collaborate to obtain all the shares of each ballot by merging and

ordering points with the same shash(P)s.
2: Verify the signed commitment shash(P)s corresponds to the ballot and

check that the cardinality of P does not exceed the predefined maximum
number of points l.

3: Parties (independently) interpolate the original polynomial q(x) using
the d+ 1 points in the ballot.

4: The vote C is recovered and published on a public bulletin alongside the
received shash(P)s and the set of points P .

110 CHAPTER 4. ELECTRONIC VOTING

Example 4.4.1. To illustrate the process, let us consider an election scenario
with three candidates vying for the position. In order to set up the system,
an AI generates an RSA signature key with the public key ⟨v, n⟩ and private
key ⟨d⟩. The specific values of the key and the hash function h used, are not
of particular significance in this example and will be referred to as is. The
authority then announces that a degree of 4 and a modulus of p = 47 will be
used in the process.

After the system has been set up and the values have been published to
the electors, each user encodes their vote as an integer modulus p in order
to prepare the ballot. In this example, the vote is encoded as C = 23. The
elector then generates a polynomial randomly with the codification of their
vote as the independent term. Let us consider the following polynomial as an
example:

q(x) = 11x4 + x+ 23 mod p,

that is now used to generate five random points. Let these points ordered with
respect to the first coordinate be the following:

P = ⟨(7, 27), (13, 12), (29, 45), (31, 17), (45, 9)⟩.

This set of values is actually the ballot the elector will split into pieces.
To obtain a commitment of the ballot, the elector computes shash(P) and
masks the digest using a private invertible integer modulus n:

commitment = shash(P) ·maskv mod n,

the elector then sends the result, along with their identification, to the IA
to obtain a blind signature. It is worth noting that there is no way for the
authority to discern the direction of the vote since it only receives the masked
commitment.

Once the usual checks are carried out, the authority computes the certifi-
cate signing the commitment using its signature private key:

pre_certificate = (shash(P) ·maskv)s mod n.

As explained above, the elector can easily obtain the certificate of the ballot
as:

certificate = pre_certificate ·mask−1 mod n = shash(P)s mod n.

4.4. SUVS: SECURE UNENCRYPTED VOTING SCHEME 111

The ballot is then split into three disjoint pieces (the number of candi-
dates), for instance:

P1 = ⟨(29, 45), (45, 9)⟩
P2 = ⟨(7, 27)⟩
P3 = ⟨(13, 12), (31, 17)⟩

which are sent to the respective candidates together with the certificated com-
mitment. It is worth noting that it is impossible for the candidates to discern
the direction of the vote unless they all agree to share the points for the pur-
pose of interpolating the polynomial. Furthermore, it is infeasible for any
candidate to manipulate the ballot since they lack the necessary information
to do so.

To reconstruct the ballot, candidates use the certified commitment to se-
lect the corresponding pieces of the same ballot, verify their integrity, and
interpolate the polynomial using whichever available method.

4.4.2 Properties of the voting scheme
We now analyze the security properties, as they were defined in Section 4,
of SUVS. We enumerate the desired properties and prove how our system
meets them. Please note, that the security of our scheme, except for the
blind signature in the registration phase, does fall under the information-
theory paradigm. Therefore, and unlike other computational security-based
schemes, we do not need require traditional security parameters. Once some
basic constraints are achieved (e.g. d ≥ j − 1), the overall security does not
rely on larger values to become more secure.

Verifiability

Lemma 4.4.2. SUVS voting protocol is end-to-end verifiable.

Proof. In order to prove the lemma, we will prove first that after the identifi-
cation stage, the elector can verify that her vote was not tampered during the
certification of the commitment, and, second, that at the end of the voting
process, that any vote was correctly recorded and tallied.

First, we note that during the process of commitment certification, the
elector is the only one who knows the mask that conceals the commitment.
Therefore, only she can remove the mask and apply the public key of the
identification authority check if the commitment was correctly certified or

112 CHAPTER 4. ELECTRONIC VOTING

it was somehow modified. She also can check on the PBB that the masked
commitment received by the IA has not been tampered.

Second, regarding universal verifiability, any individual (the elector in-
cluded) can consult on the PBB all the individual votes, that is: their set of
points, and their certified commitment. This information is enough for any
interested party to check the validity and integrity of the votes.

Thus, our method allows anyone to compute the tally, verifying the va-
lidity of all the individual votes, and, therefore, auditing the election pro-
cess.

Privacy

Lemma 4.4.3. SUVS guarantees the elector’s privacy.

Proof. To prove the privacy property, we will prove first, that the identi-
fication authority cannot compute the direction of any elector’s vote, and,
second, that parties can neither do so.

First, note that the elector mask that conceals the commitment of the
vote is a private election, the identification authority has not information to
unmask the commitment, and, therefore, the authority cannot gain knowl-
edge of the elector’s commitment. Thus, the identification authority has no
way to, once the PBB is made public, relate elector’s identification to her
final vote.

Second, we note that the parties do not receive any personal information
from the elector. Hence, they can no relate the vote in any way.

Democracy

In SUVS, the IA responsibility is twofold: it verifies elector’s identification
to check that they are eligible, and, prevents double voting by using blind
signatures.

Please note, that even if the IA acted maliciously, democracy would still
be ensured. The received ballots and its associated identity on the public
census are published on the PBB for everyone to review. A malicious IA
could not forge invalid votes or linked valid ones to their elector. However,
in a different scenario, an attacker could try to bypass IA’s certification and
forge the employed blind signature scheme.

4.4. SUVS: SECURE UNENCRYPTED VOTING SCHEME 113

Lemma 4.4.4. As the RSA scheme employed for blind signature remains
secure, our electronic voting protocol is democratic.

Proof. For a vote to be considered valid, it must be accompanied by a cer-
tified commitment. This certification is carried out by the IA through a
blind signature scheme based on RSA. Assuming that the Discrete Logarithm
Problem (DLP) has no efficient solution for meticulously selected parame-
ters, the attacker has no means, apart from bruteforce, to break the signature
scheme.

Accuracy

Lemma 4.4.5. SUVS voting protocol is accurate.

Proof. We prove the lemma in three independent steps:

1. Valid votes are counted: Parties are responsible of processing all valid
received votes. Both individual and universal verifiability (Lemma
4.4.2), guarantee that electors can check that all valid votes are in-
cluded on the final tally.

2. No invalid votes are considered: In order a vote to be considered valid,
it needs to be correctly certified. As proved on Lemma 4.4.4, the cre-
ation of fake votes is unfeasible. Thanks to verifiability, electors also
can audit the results and check that all individual votes are valid.

3. Vote modification: Any modification to any of the unencrypted shares
of a vote, will be detected because it will make the certified commitment
not match the shares. As long as the hash function used remains secure,
no tampering of the votes will succeed.

Robustness

We first prove that SUVS is robust with the only condition that one party
remains honest. Then, we prove that it is unfeasible a coalition of users could
tamper with new votes.

Lemma 4.4.6. Robustness of SUVS is ensured if at least one contendant
party remains honest.

114 CHAPTER 4. ELECTRONIC VOTING

Proof. We note that parties must cooperate to interpolate the polynomials
and recover the final votes. If at least one contendant party remains honest,
the remaining parties have no way to interpolate the polynomial and access
to the vote. Of course, at a cost of a high reputational loss, a set of parties
can misbehave or refuse to cooperate, in which case the election would have
no tally.

Lemma 4.4.7. It is unfeasible that, according SUVS protocol, a coalition of
electors could tamper with new votes.

Proof. We note that a coalition of malicious electors could take profit of the
multiplicative properties of modular exponentiation, and use their certified
commitments in order to obtain a new tampered one ht. Nevertheless, as
long as the chosen hash function remains secure, it is unfeasible to obtain
a set of points Pt, such that shash(P) = ht, and such that the polynomial
interpolated using Pt codifies in its independent term a valid vote.

Perfect secrecy

Perfect secrecy, as defined in Section 2.5.3, provides security by uncertainty.
The concealing of the vote by partition SUVS is based on provides security
derived entirely from information theory, creating a system where partial
information does not reveal anything about the scheme’s secrets.

As stated on Lemma 4.4.3, there is no mechanism to relate an elector to
her vote. By providing perfect secrecy, we also ensure that, even in post-
quantum scenarios, it is impossible to reveal any information on any vote
unless all the parties are malicious or compromised.

Lemma 4.4.8. SUVS provides perfect secrecy and its encoding is resistant
to post-quantum attacks.

Proof. If an attacker gains knowledge about all the shares of a vote but one,
there is no way he could interpolate the polynomial generated by the user
and, therefore, gain access to the direction of the vote.

Note also that, under modular arithmetic, there exists a combinatorial
number of d-degree polynomials consistent with d points. This implies that,
even if the attacker could find a polynomial that covers the points and encodes
a valid vote, he could never be sure which one was the original vote encoded
by the elector.

4.4. SUVS: SECURE UNENCRYPTED VOTING SCHEME 115

Although this assertion holds for a computationally unbounded attacker,
in a situation where the adversary has access to quantum queries and can
execute superposition attacks, Shamir’s secret sharing scheme may inadver-
tently divulge the secret Damgård et al. [2013]. Notably, this attack is feasible
if, and only if, the attacker successfully corrupts a minimum of t/2 parties
in a (t, n)-threshold secret sharing scheme. Otherwise, the scheme remains
secure.

Malicious Elector Resistance

A malicious elector may try to craft a ballot in such a way that she can
achieve double voting.

Lemma 4.4.9. SUVS is resistant to malicious electors.

Proof. SUVS defines the structure of the ballot as:

b = shash(P) ·maskv mod n

In order to achieve double voting, a malicious elector could generate two
different set of points P1, P2 and craft the ballot as follows:

b = shash(P1) · shash(P2) ·maskv mod n

To the IA, the resulting ballot looks the same as a valid one. So it signs the
ballot and returns it to the malicious elector. Then, the malicious elector
proceeds to remove the mask

shash(P1)
s · shash(P2)

s ·mask ·mask−1 = shash(P1)
s · shash(P2)

s mod n

Nonetheless, the malicious user cannot separate shash(P1)
s and shash(P2)

s

since s is not known by the users. The malicious user would not only not be
able to double vote, she would lose the ability to cast a single vote.

4.4.3 Time complexity analysis
This section is devoted to the analysis of the time-complexity of SUVS. We
demonstrate that our protocol is highly efficient and requires minimal effort
from the involved parties. We differentiate between the computational com-
plexity related to each individual elector and the complexity of the entire

116 CHAPTER 4. ELECTRONIC VOTING

system to process all votes. We have chosen bit operations as the unit for
our time-complexity analysis. As usual, n denotes the input operands, and
log n denotes the number of bits in the input.

In order to certify and cast a vote, the elector needs to carry out a series of
steps, including generating a polynomial, sampling some points, computing a
hash function, and selecting some subsets. However, we neglect some of these
steps in the time-complexity analysis for two main reasons: firstly, most of
these steps can be performed offline before the actual election process starts;
and secondly, they are not relevant in terms of time-complexity analysis
because other operations dominate the overall complexity. For instance, the
sorting of a sequence or a hash of length j is not comparable to the magnitude
of log n, and hence, its complexity can be neglected when compared with the
other operations.

We only consider the mask generation and multiplication and exponenti-
ation operations. They are the most expensive operations and dominate the
time-complexity costs.

Ballot crafting

The user must generate a mask and search for its inverse to certify the ballot.
To find the inverse using the Euclid’s algorithm which has a complexity of
O(log2 n) bit operations. Only one iteration of the algorithm is needed to
find an invertible mask, otherwise it would mean that we broke RSA, i.e.
finding a factor of n.

To craft the ballot the user must perform a modular exponentiation (See
Line 7 on Algorithm 12), which has a cost of O(log3 n) bit operations. Ad-
ditionally, a modular multiplication isť also required on Section 4.4.1. This
operation has cost of O(log2 n) bit operations.

Then, the complete time-complexity for an elector to cast a vote can be
expressed as:

O(log2 n) +O(log2 n) +O(log3 n) ≈ O(log3 n) (4.14)

SUVS Complexity

Now, let us consider the complexity of the whole system. To process a vote,
the SUVS must apply a blind signature to the ballot, and at the end of the
election, it must interpolate a polynomial from a set of points. We do not

4.4. SUVS: SECURE UNENCRYPTED VOTING SCHEME 117

consider the compilation of the shares with the same certified commitment
in the complexity analysis since the shares can be indexed and compiled in
constant time.

• Ballot certification requires one modular exponentiation, which has a
cost of O(log3 n) bit operations.

• Interpolation using Lagrange’s interpolation requires a linear number
of non-modular operations. Addition and subtraction present a time-
complexity of O(log n), while multiplication and division have a com-
plexity of O(log2 n) bit operations. These operations are affected by
the number of shares j (equivalent to the number of parties), as can
be observed in Subsection 4.4.1. The complexity of this step, can be
expressed as (j(O(log2 n) +O(log n)))2 = j2(O(log4 n) +O(2 log3 n) +
O(log2 n)). However, since j is known to be a low and bounded num-
ber, we can treat it as a constant and simplify it in the complexity as
O(log4 n) +O(2 log3 n) +O(log2 n) ≈ O(log4 n)

Thus, the total time-complexity of SUVS scales linearly with the number
of processed votes v and can be expressed as:

v(O(log4 n) +O(log3 n)) = vO(log4 n) (4.15)

Please also note, that the complete number messages sent by the elector
in SUVS can be expressed as 1 + j, while the total number of messages
interchanged between the involved parties is simply j. These figures shows
that the message complexity of SUVS is not affected by the fact of not
encrypting the votes. Additionally, any additional messages that may be
required for the user are non-blocking communications. The elector sends
the shares and does not require any additional communication, and no future
steps are delayed by this aspect.

System Comparison

We also present a comparison between the most similar systems reviewed
in Section 4.1. The purpose of this comparison is twofold. First, it allows
the reader to directly assess the reviewed systems. Secondly, it provides a
common baseline to compare the performance of SUVS.

The nature of SUVS makes difficult to compare it with previous ones
reviewed in the literature (see Section 4.1). Thus, in this case, we focus the

118 CHAPTER 4. ELECTRONIC VOTING

comparison on the feature that can affect most the practical behavior of the
protocol, the average number of messages sent in the protocol. Messaging
between electors and parties is accessible to measure and network delays can
surpass computational times. The results of our analysis are depicted in
Table 4.3.

Elector’s Total Cryptographic
Messages Messages Primitives

Chaum [1982], 2 2v Blind Signatures
Li et al. [2009b] 5 3v Blind Signatures
Thi and Dang [2013] 4 7v Blind Signatures
Larriba et al. [2020] 3 2v + 1 Blind Signatures
Cramer et al. [1997] 1 v + j Homomorphic Prop.
Yang et al. [2017], Yang et al. [2018] 2 2(v + j) Homomorphic Prop.
Tornos et al. [2014] 3 3v + 1 Ring Signatures
Chen et al. [2008] 2 2 + v + 2j Ring Signatures
Yang et al. [2020]* 2 2j Homomorphic Prop.
Gao et al. [2019]* 2 v Ring Signatures
Larriba et al. [2021]* 2 2 + v Ring Signatures

Table 4.3: The table represents the number of messages sent by the elector
and the whole system. In the table: when the number of authorities is not
fixed, they are represented as j in the table, v represents the number of
processed votes, and the ∗ symbol represents systems that are deployed over
blockchain technology.

4.5 Review of the 3 Voting Protocols
After presenting and analyzing our three voting protocols, we now devote this
section to provide a high-level comparison between the three of them. Since
each one has different assumptions, and uses distinct cryptographic primitives
they can be used in different scenarios depending on the requirements.

TAVS It is based in an RSA blind signature scheme and requires 2 non-
colliding and unrelated entities, which might not be feasible in all sce-
narios. As a way to tackle this situation, which might be an issue if

4.6. CONCLUSIONS 119

these 2 antagonic entities do not exist, we can employ our implemen-
tation based on smart contracts (See Appendix A) which reduces the
assumption to a single entity. One of the greatest benefits of TAVS
is the simplicity of its architecture, specially when compared to other
works in the literature with similar goals. This efficient architecture
with only 2 authorities is very feasible to scale to larger elections. The
overall clarity of TAVS is also beneficial when dealing with people re-
luctant with e-voting protocols due to their complexity.

Distributed Trust Introduces the traditional political contenders within
the election process and leverages blockchain, both as a decentralized
PBB and as a way to carry out the election itself. It requires the
parties to run their own blockchain, with limited capabilities, which
might expensive in some scenarios, but builds an honor game where
the reputation of parties it is at stake. This factor also increases the
usability and accessibility to more traditional factions. Ring signatures
are also a great ambiguity mechanism that preserves privacy even if
the IA became malicious. By using blockchain technology, voters are
enabled to verify the election state in any device and develop in top of
it to build indexers and event listeners for the election.

SUVS Also introduces political contenders into the election process. SUVS
requires the elector to take an active role in the ballot crafting: sam-
pling the shares and deciding how to sent them to the authorities.
Thus, providing a higher degree of security. The cryptogaphic prim-
itives used allow to obtain post quantum resilience and demonstrates
the feasibility, and power, of systems based in alternative systems not
backed by complexity theory.

4.6 Conclusions
We covered three electronic voting protocols. These schemes tackle the
challenge of e-voting from different angles, employing distinct cryptographic
primitives, and with varying assumptions, as we discussed in Section 4.5.
But all of them accomplish the required properties that a voting protocol
should satisfy that were covered in Section 4. By providing a detailed time-
complexity analysis for each one of them, we proved that our voting proposals

120 CHAPTER 4. ELECTRONIC VOTING

are lightweight and allow for an efficient scaling. This allows for accommo-
dating elections af any size.

We also provided a formal definition of the structure of a blockchain,
that can be used to carry out whole elections (such as our Distributed Trust
protocol) or used as PBB, in Appendix C. Besides the theoretical analysis
of our voting protocols, we also provided implementations and real-world
performances of ring signatures and the TAVS protocol in Appendixes B
and A respectively. These do not only reinforce and demonstrate our theo-
retic analysis, but also provide the interested reader with a Proof-of-Concept
framework to tests and evaluate the protocols. All the implementations have
been open-sourced to facilitate future research.

4.6.1 Future Work
As for future challenges and possible extensions for these protocols, it would
be interesting to study alternative identification methods, such as the use
of Merkle trees and zero-knowledge proofs, that would make unnecessary to
include a centralized identification authority in the protocols.

For Distributed Trust and SUVS, a possible extension could be focused on
reducing the number of interactions the elector needs to carry out with the
parties without affecting the reliability and trustworthiness of the system.
This way, if an elector does not trust a certain party, she can decide to
arrange and send the required messages without considering that specific
party. This would require to ensure the availability and decentralization
of existing parties to preserve the security properties, while also respecting
elector’s preferences within some threshold parameters.

In the same vein as we did for TAVS, and in order to empirically test
our other proposals in real scenarios, a complete Proof-Of-Concept for SUVS
and Distributed Trust is considered a valuable future goal.

Chapter 5
Identification and Distributed Access

Jamás se descubriría nada si nos
considerásemos satisfechos con
las cosas descubiertas.

Séneca

AZ2hA6DLQ/wxotw41m5vosDt
PhRcPDSd1g1VyZW/mtQrVQg
jOmhD82S54c3l8dMTlnUcbnND
zE4j6Rf/zj7GK4P5i1eMdPMhA
C4yL5lxVIYnRPVgQ22xezY=

Chacha20, k =
>\x88Å\x1eh\x9aõÑ6A\x071

4\x96
©a7ÖPBíÈ\x0cÃ¶\x92\x03\x080
%È©!, nonce= Ec/finMEEZU=

Identification is the process by which a user, or an entity, (from now
on refereed as the Claimant) provides relevant information to guarantee,
beyond any reasonable doubt, to a third party (hereinafter refereed as the
Verifier) they are who the claim to be. This process is generally related
with some kind of authentication policy to get access to a guarded resource.
Identification also plays a crucial role in access systemsFerraiolo et al. [1995],
Sandhu and Samarati [1994], voting schemes, and, controlled reward systems

121

122 CHAPTER 5. IDENTIFICATION AND DISTRIBUTED ACCESS

among others. See Section 5.7 for an example of its direct applications. We
devote this chapter to introduce the open problem of identification and to
present our three protocol to address anonymous registration.

Among all the optics in which identification can be studied, general
anonymous identification Dodis et al. [2004] still remains an open problem
since it involves what at first looks like an oxymoron: determine an identity
as valid while respecting its privacy. Nonetheless, identification is an abstract
concept that might have different meanings in separate contexts. Therefore,
many works in the literature have studied identification and its associated
problems under different relaxations of anonymous identification.

5.1 State of the Art
Let us note that our work, and the other articles here reviewed, are not re-
lated with identity-based cryptography Shamir [1984], Boneh and Franklin
[2001]. Identity-based cryptography, as proposed originally by Shamir, de-
fines a new asymmetric cryptographic scheme in where the public key can
be any random string which is intrinsically associated to the user’s iden-
tity, and hence the name of the approach. Our work is neither related with
key-anonymity protocols Bellare et al. [2001]. These protocols aim to pro-
vide anonymity of the key under which the encryption was performed, even
under chosen-cipher texts attacks. However, the provisioned anonymity is
only against a third-party observer, and does not include the sender. Lastly,
the Claimant/Verifier scheme might remember to the Prover/Verifier scheme
used in Zero-Knowledge proofs (see Section 2.4). However, while Zero-
knowledge can be a crucial part in many identification schemes, proving
that having some information is not the same as to proving the identity in
many contexts.

The conventional method for user authentication involves a registration
phase where the user provides their credentials to a centralized entity. After
successful registration, the user is granted access to the desired service. How-
ever, this approach has its drawbacks as it centralizes all the user’s data in
a single point of failure and requires the user to trust the entity responsible
for authentication and access key management. To address these issues and
enhance user privacy, researchers have explored the possibility of distributing
user authentication among multiple servers. This distributed approach offers
improved resilience against server breaches and offline attacks, especially if

5.1. STATE OF THE ART 123

the servers do not store hashed information. Additionally, by using a proper
threshold scheme, it enhances overall availability, thereby mitigating the risk
of service disruption. Many works have studied distributed token generation
through public key threshold signatures Desmedt and Frankel [1989], Santis
et al. [1994], Gennaro et al. [2008] and threshold authentication codes Boneh
et al. [2013], Naor et al. [1999] to protect the master key against server secu-
rity breaches. Also, a different line of work has studied the use of threshold
password authenticated secret sharing Camenisch et al. [2014], and thresh-
old password-authenticated key-exchange MacKenzie et al. [2002], Raimondo
and Gennaro [2003], Abdalla et al. [2005], as an improvement against the of-
fline dictionary attacks present in more traditional password-authenticated
key-exchange Katz et al. [2001], Bellare et al. [2000].

The methods mentioned before aim to enhance user privacy by distribut-
ing the authentication process, but they do not provide a complete decentral-
ization of trust in the system. In contrast, our proposal offers three protocols
that ensure certain authorities cannot link a user’s identity to their actions
within the system once they gain access. This added layer of privacy protec-
tion is a critical feature that prevents potential abuses of power or unautho-
rized data access by authorities. By implementing our protocols, users can
trust that their privacy is protected, and authorities are held accountable for
their actions within the system.

To tackle the trust distribution problem, Agrawal et al. present a password-
based threshold authentication protocol (PASTA) in Agrawal et al. [2018].
PASTA is a general framework for token generation which distributes the
task among a set of servers, such that any subset of t, can verify and gen-
erate tokens, while no subset of t − 1 servers can forge invalid tokens. In
their work, Agrawal et al. aim to shield the token generation process against
server breaches as well as to reduce the number of interactions needed with
respect to more traditional password sharing works. After a one time regis-
tration, the user provides the credentials to the token-generation servers. If
the credentials are valid, then the servers respond with a part of the token.
Otherwise, the protocol stops. Once the user has interacted with all the
servers, the user proceeds to construct the token with the received parts. To
prevent from offline attacks, the authors employ a threshold oblivious pseudo-
random function (TOPRF) Freedman et al. [2005], Jarecki et al. [2016] on
the server side. Agrawal et al. propose, analyze, and implement PASTA as a
complete and general framework compatible with multiple TOPRF functions
and various threshold token generations algorithms (both for symmetric and

124 CHAPTER 5. IDENTIFICATION AND DISTRIBUTED ACCESS

asymmetric cryptography). To the best of our knowledge, this is the most
similar work to the protocols described in this chapter, but, while PASTA
does not pay attention to the anonymity of users, we are mainly focused on
their anonymity.

Anonymous Credential Systems (ACS) Chaum [1985] were proposed to
provide a scheme where users can obtain access-keys directly from organi-
zations, without the need of third-parties. In an ACS framework, organiza-
tions only know users by pseudonyms and users may have various unlinkable
pseudonyms. Through digital signatures and zero-knowledge proofs, ACSs
provide a set of functionalities such as: unforgeability; anonymous validation
of credentials; unlinkability; or access-key transference between organiza-
tions while preserving user’s privacy. There exist several works that propose
original approaches with different features Chaum and Evertse [1986], Chen
[1995], Damgård [1988], Lysyanskaya et al. [1999]. Nonetheless, as a conse-
quence of the heavy use of zero-knowledge proofs, ACS are usually complex
in terms of cryptographic primitives and have high time complexity. These
factors are an inconvenient for ACS.

Among the papers in the literature we distinguish the one by Camenisch
and Lysyanskaya, Camenisch and Lysyanskaya [2001], where they propose
an ACS with interesting properties such as non-transferable access-keys, op-
tional revocable anonymity, and one-show access-keys. Despite their focus
on making a practical system, their extended protocol still needs up three
rounds of interaction and heavy use of modular exponentiation operations.
Despite these drawbacks, the proposed system was later implemented in Ca-
menisch and Herreweghen [2002]. Also, in Belenkiy et al. [2009], Belenkiy
et al. propose a delegatable ACS, that presents a hierarchical system in
which access-keys can be structured in levels as an intent to model real word
interactions.

Identity Management Systems (IdMs) have been developed to integrate
the latest advancements in biometric and secure hardware technology with
identification systems. These systems aim to provide a comprehensive suite
of tools that handle all aspects of the identification ecosystem, including in-
tegration with biometrics, mobiles, and hardware identification devices. In
order to maintain user privacy, these systems often rely on approximations
such as ACSs. Due to the complexity and importance of their function,
IdMs are typically backed by government or official institutions. In Moreno
et al. [2019], Moreno et al. present an IdMs based on PASTA that provides
unlinkability through distributed identity providers and biometric identifica-

5.2. ANONYMOUS ACCESS 125

tion. In Bernabé et al. [2020], Bernabe et al. evaluate ARIES, an European
IdMs that also includes ID-proofing based on biometrics and breeder doc-
uments handling within their framework. We do not mention IdMs as a
comparable result, but as the current framework that includes identification
methods similar to ours. We note that the scope of our work is much more
limited than a complete IdMs.

5.2 Anonymous Access
A less restrictive scenario than anonymous identification, but also powerful,
aims to provide anonymous access to members of a collective. The paradigm
is shifted from granting access without knowing the identity of the user, to
granting access to a set of identified users without knowing which user is
accessing. This modification mitigates the problem of verifying an anony-
mous digital identity, and if the collective is large enough the user can obtain
a high degree of anonymity. To provide an unambiguous definition of the
anonymous access process, we differentiate the following three steps:

• Identification as the initial process by which a verifier certifies that
the credentials presented by a claimant are valid. And therefore the
claimant is entitled to access the resource or the service.

• Registration as the intermediate step in which the claimant obtains
some access-key (e.g: access token, password) that he will later use to
anonymously access the resource.

• Access as the final step where the claimant provides the access-key to
a verifier to get access to the resource.

This differentiation allows to clearly detach the identification phase, where
the claimant reveals the information that identifies him as an individual, from
the registration phases and the proper access to the resource. Anonymous ac-
cess aims to provide secure and mathematically sound methods that remove
any traceability between these phases. Thus, the access-keys do not reveal
any information about the claimants. To further ensure the anonymity of
the process, decentralized protocols are preferred since they remove a single
point of failure over a centralized entity.

To highlight the benefits from its decentralized nature let us describe a
problem instance where a set of guards safeguard a resource. The access to

126 CHAPTER 5. IDENTIFICATION AND DISTRIBUTED ACCESS

the resource is granted if, and only if, all the guards certify the presented
anonymous access-key is valid. Guards do not trust each other and only trust
the verification process of the access-key.

We present three different non-interactive (see Section 2.4.2) protocols
based on Shamir’s secret sharing (see Section 2.2) that provide anonymous
registration and one-time access under different scenarios. One-time access
prevents the guard’s need from having any kind of saved state on the claimant
information, without losing the generality of the service. The requirements
to access the guarded resource more than once can be checked in the iden-
tification stage, while leaving the access step completely anonymous. This
stateless approach, together with the non-interactive property that minimizes
messaging round-tripping, and, the lightweight computation the methods are
based, make our presented protocols able to work in embedded environments
with limited resources.

• Our first protocol, introduced in Section 5.3.1, presents the most re-
stricted scheme where a trusted centralized entity is responsible for the
identification and dealing with the access-keys.

• The second protocol, introduced in Section 5.4, improves the first ap-
proach and distributes the responsibility between a set of distributed
authorized parties.

• Our third protocol, introduced in Section 5.4.2, further enhances pre-
vious approaches and provides a fully decentralized and anonymous
registration and access.

The first two protocols present unconditional security and quantum re-
sistance properties, since their security is based on information theory and
not on complexity theory (See Section 2.5). Therefore, not even a quantum
attacker with computationally unbounded capabilities could break their se-
curity. It is important to highlight, as mentioned in Section 4.4.2, that a
quantum attacker who also has access to quantum queries and can execute
superposition attacks may potentially compromise the underlying Shamir’s
secret sharing scheme if they manage to corrupt t/2 parties.

Our third method preserves the privacy of the claimants also in post-
quantum scenarios and remains secure, meaning that no access-keys can be
forged, as long as the discrete logarithm problem remains unsolved.

5.3. CENTRALIZED REGISTRATION, ANONYMOUS ACCESS 127

5.3 Centralized Registration, Anonymous Ac-
cess

No matter which identification scheme is proposed, there must be some in-
stant of time when the users provide their identification in order to prove
the right to access a protected resource. In this section, we propose a first
protocol that considers a central authority (assumed honest), a set of guards
commissioned to control the access; and a set of accredited users1. The cen-
tral authority has a dual role in this context. Firstly, it is responsible for
establishing the framework by distributing access keys to users and assigning
distributed access control to guards. Secondly, it serves as an audit authority
to address any identification issues that may arise between users and guards.
It should be noted that the creation of the required private channels is not
within the scope of this paper. Interested readers may refer to the literature
(e.g. Rescorla [2018]) for further details on how to implement them.

In the following, we will use the notation G to refer to the set of N
guards responsible for controlling access to the resource, while C will denote
the group of users seeking to access it. It should be noted that subsets of
both users and guards may exhibit malicious behavior. The Centralized Reg-
istration Anonymous Access scheme can be defined as a system comprising
five probabilistic polynomial time algorithms Koblitz and Menezes [2015].
These algorithms are outlined below:

• SysSetup(1k, N, C) → ({qi}i∈G, pp). This algorithm generates a key-
generation system q(x) and some public parameters pp. The key-
generation system is then randomly partitioned into {qi}i∈G shares,
which are privately distributed among the guards. Only the Central
Authority has access to whole system q(x). The set of shares of q(x)
meet the satisfiability condition described below.

• Registration(id) → akey. This algorithm generates for a correctly
identified user a private access-key akey.

• AccessRequest(akey) → {i, ki}i∈G. This algorithm is a call to the set
of guards, who generate partial keys ki according their share of the
key-generation system. All the guards are committed to share their
results with the rest of guards in G.

1The credentials owned by the users are supposed to be delivered beforehand by some
trustworthy institution.

128 CHAPTER 5. IDENTIFICATION AND DISTRIBUTED ACCESS

• Combine({i, ki}i∈G) → tk. The algorithm considers the partial keys
computed by the guards and obtains an access-token by combining
them.

• GrantAccess(akey, tk) → 1/0. Checks it the token tk corresponds to
access-key akey, in which case the guards agree to grant access (output
1).

Consistency is guaranteed if for any valid id and ak ← Registration(id),
it is hold that:

GrantAccess(ak, Combine(AccessRequest(ak))) = 1.

It is assumed that SysSetup and Registration are exclusive algorithms
of the Central Authority, which is trustworthy in this protocol.

It is important to highlight that the system ensures two important as-
pects. Firstly, only the central authority possesses the ability to link a user’s
identity with the access keys they have been issued. Secondly, the system
does not provide any information regarding the usage of the resource by
users, thereby preventing individual actions from being tracked. However, it
is important to note that if malicious guards and the central authority were
to collude, they may be able to combine their information and gain knowl-
edge of user actions. Nevertheless, we assume that the central authority is
honest in this context.

5.3.1 Trusted Registration, Anonymous Access
Next, we detail our protocol for trusted registration and anonymous access
(TRA2). The setup of the protocol implies the generation of a random prime
p, and a m-degree polynomial modulus p (m < p − 1). Let us note that we
are interested in the maximum degree of the polynomial, therefore, in order
our proposal to work it is not required to consider a polynomial with all the
coefficients non-null:

q(x) = amx
m + am−1x

m−1 + . . .+ a1x+ a0 mod p.

Provided q(x), the authority partitions the polynomial into N polynomi-

5.3. CENTRALIZED REGISTRATION, ANONYMOUS ACCESS 129

als:
q1(x) = a1,mx

m + a1,m−1x
m−1 + . . .+ a1,0 mod p

q2(x) = a2,mx
m + a2,m−1x

m−1 + . . .+ a2,0 mod p
...
qN(x) = aN,mx

m + aN,m−1x
m−1 + . . .+ aN,0 mod p

such that the partitioned polynomials complement each other in order to
obtain the coefficients of q(x), that is:

ai =
∑

1≤j≤N

aj,i, ∀i, 0 ≤ i ≤ m.

The partitioned polynomials are communicated and assigned to the respec-
tive guards in a secure manner. It should be noted that unless all the guards
agree to collude, it is impossible for any subset of guards to interpolate the
polynomial q(x).

Once the system has been established, users can request their access keys.
Users provide their identifications to the authority, who utilizes the polyno-
mial to generate a random point on q(x), which serves as an anonymous
access-keys for the user to access the resource while remaining anonymous
to the guards.ť

It should be emphasized that unless the number of registered users reaches
the bound determined by m, it is impossible for any group of users to suc-
cessfully interpolate q(x) and compromise the system by tampering with new
access keys. Furthermore, the size of the modulus p has not influence in the
security of the protocol, but it must be greater than m. Additionally, that the
use of modular arithmetic bounds the size of the access-keys while does not
prevent the possibility of dealing with a reasonable high number of users2.

Once the access-keys have been delivered, in order for a user to access
to the resource or service, he sends his access-key (point of q(x)) to all the
guards (as illustrates Figure 5.1). The guards must collaborate in order to
decide whether the access-key is correct or not. Thus, given any user u and
his point ⟨xu, q(xu)⟩, access should be granted whenever:

q(xu) =
∑

1≤i≤N

qi(xu) mod p

2A value of m of 40 bits is not a big issue in terms of time complexity and is far enough
to provide access-keys to all the inhabitants in Earth.

130 CHAPTER 5. IDENTIFICATION AND DISTRIBUTED ACCESS

g1

g2

gN

...

q1(xu)

q2(xu)

qN (xu)

User

〈xu, yu〉

Resource

Guards

∑N

i=1
qi(xu) == yu

Reject access

Grant access

Figure 5.1: Users present their access token to the guards to gain access to
a resource. The guards then collaboratively determine the validity of the
provided token in a distributed manner.

In order to prevent the guards misusing the checked access-keys (for in-
stance by distributing them to unauthorized users), we consider access-keys
are single-use. Thus guards should also check the uniqueness of xu to verify
the validity of the request. The central authority is responsible for not gen-
erating two points with the same x coordinate. An outline of the complete
protocol for our trusted registration, anonymous access protocol (TRA2) is
summarized in Algorithm 15 and illustrated in Example 5.3.1.

Example 5.3.1. Consider a scenario in which there are three guards respon-
sible for controlling access to a particular resource, denoted by N = 3. Let
us define p = 7919 and m = 665 as the public integers used to establish the
system. Furthermore, let us also define:

q(x) = 45x665 + 22x13 + 54x7 + 1 mod 7919

, as the polynomial the authority (privately) generates in order to generate
the access tokens. The final step to set up is to partition the polynomial q(x)
into three complementary polynomials to distribute among the guards, for
instance:

q1(x) = 26x665 + 4x7 + 1 mod 7919
q2(x) = 22x13 mod 7919
q3(x) = 19x665 + 50x7 mod 7919

Given that q(21) = 655, a valid access token for a correctly identified user
could be of the form: ⟨xu = 21, yu = 655⟩. Once the guards receive the access

5.3. CENTRALIZED REGISTRATION, ANONYMOUS ACCESS 131

Algorithm 15 TRA2 Algorithm. Trusted registration, anonymous access
protocol.

1: System setup
2: (a) Central authority sets a prime p and generates a m-degree poly-

nomial q(x), where m is greater than the maximum number of users to
identify.

3: (b) Central authority partitions q(x) into N polynomials P =
{q1(x), q2(x), . . . , qN(x)} that, for any x, meet the condition:

q(x) =
∑

1≤i≤N

qi(x) mod p

4: (c) Central authority distributes a polynomial in P to each of the N
guards.

5: User (trusted) identification and registration
6: (a) Users send their identification to the central authority.
7: (b) Central authority verifies the identification credentials.
8: (c) If valid, central authority generates a random xu and replies to the

user with ⟨xu, yu = q(xu) mod p⟩.
9: Anonymous access

10: (a) User sends her access-keys ⟨xu, yu⟩ to each one of the guards.
11: (b) Each guard computes qi(xu).
12: (c) Guards check if yu =

∑
1≤i≤N qi(xu) mod p .

13: (d) If the access-keys are valid, access is granted.

token, each one can work out the result from its polynomial share:

q1(21) = 26x665 + 4x7 + 1 mod 7919 = 7526
q2(21) = 22x13 mod 7919 = 3501
q3(21) = 19x665 + 50x7 mod 7919 = 5466

and must collaborate in order to check whether the token is valid or not.
Indeed, yu = q1(xu) + q2(xu) + q3(xu) mod p, and access should be granted.

132 CHAPTER 5. IDENTIFICATION AND DISTRIBUTED ACCESS

5.4 Distributed Registration, Anonymous Ac-
cess

The TRA2 protocol offers an attractive solution for anonymous access to a
resource, particularly in situations where an honest authority is easily iden-
tifiable. owever, it is worth noting that the reliance on a central authority,
assumed to be honest, could limit its applicability in certain scenarios. To
overcome this limitation, we propose a modification to the protocol that
eliminates the need for a central authority altogether. By distributing both
the access and registration processes, our proposed protocol offers a more
decentralized solution to the problem..

We define the Distributed Registration Anonymous Access scheme as the
following system of seven probabilistic polynomial time algorithms:

• SysSetup(1k, N, C)→ pp. This algorithm generates the public param-
eters pp for the scheme. These can be, either the result of an agreement,
or randomly generated.

• DealersSetup(pp)→ {qj}j∈G. The algorithm is run by every dealer di
that, privately, generates an access-key generator qdi(x). This generator
is randomly partitioned into shares, which are privately distributed
among the guards. The set of shares of q(x) meet the satisfiability
condition described below.

• GuardsSetup({qi}i∈D)→ qgj(x). The algorithm is run by every guard
gj that considers the shares received from the dealers to obtain its own
share of the key-access generator qgj(x).

• Registration(id, ux) → akey. The users call this algorithm to ask for
a set of partial keys from the set of dealers. If correctly identified,
the user receives a set of partial access-keys, the combination of which
returns the user’s access-key akey.

• AccessRequest(akey) → {i, ki}i∈G. This algorithm is a call to the set
of guards, who generate partial keys ki according their shares. All the
guards are committed to share their results with the rest of guards in
G.

5.4. DISTRIBUTED REGISTRATION, ANONYMOUS ACCESS 133

• Combine({i, ki}i∈G) → tk. The algorithm considers the partial keys
computed by the guards and obtains an access-token by combining
them.

• GrantAccess(akey, tk) → 1/0. Checks it the token tk corresponds to
access-key akey, in which case the guards agree to grant access (output
1).

Consistency is guaranteed if, for all k, for any valid id and ak ← Registration(id),
it is hold that:

GrantAccess(ak, Combine(AccessRequest(ak))) = 1.

5.4.1 Trusted distributed registration, anonymous ac-
cess

In this section, we present a protocol that distributes both the registration
and the issuing of access tokens, as well as the access to a resource. To
achieve this, we adopt the same principle utilized in the TRA2 scheme to
distribute the access control. This enables us to replace the central authority
with a set of registration authorities, referred to as dealers, denoted by D.
In this protocol, termed trusted distributed registration, anonymous access
(TDRA2), dealers are assumed to be honest.

Access control is still performed by N guards, who operate in the same
way as in the TRA2 protocol.

To setup the system, the dealers first agree the modulus p, as well as the
m-degree of a polynomial q(x). Once the main parameters are chosen, each
dealer di independently generates a m-degree polynomial qdi(x). In the same
way the access-keys of TRA2 protocol were points of a m-degree polynomial,
we will consider the polynomial q(x) which results of the sum of all the qdi(x)
polynomials generated by the dealers. Note that q(x) is unknown to each
individual dealer.

To ensure that the polynomial q(x) remains unknown to the guards, each
dealer di partitions their polynomial qdi(x) into N complementary polyno-
mials q

gj
di
(x), such that:

qdi(x) =
N∑
j=1

q
gj
di
(x),

134 CHAPTER 5. IDENTIFICATION AND DISTRIBUTED ACCESS

then, dealers proceed to securely send one of their shares to each guard.
Each guard gj considers the shares from all the dealers and computes its
polynomial from the received shares as:

qgj(x) =
D∑
i=1

q
gj
di
(x),

and from this moment on, guards are ready to accept access access-keys.
Figure 5.2 depicts a simple example of the process.

Note that, taking into account the shares of the polynomial known by
the guards and the dealers, the following condition is met:

D∑
i=1

qdi(x) =
N∑
i=1

qgi(x)

that is, dealers and guards consider different shares of the same polynomial
q(x).

Dealers

d1

d2

dD

...

Guards

g1

g2

gN

...

qd1
(x)

qg1(x)
qd2

(x)

qdD
(x)

diqdi
(x)

... qg2(x)

qgN (x)

Figure 5.2: Dealers split their polynomial in N parts and distribute one
piece to each guard. Guards use these pieces to construct its own private
polynomial.

In order to obtain their access-keys, users first choose a unique value xu

and send their identification along with xu to every dealer. Each dealer di
checks the credentials to identify the user and verifies that xu has not been
used before. If the credentials are valid and xu is unique, dealer di computes
qdi(xu) mod p and replies to the user with the result.

⟨xu, yu =
D∑
i=1

qdi(xu) mod p⟩.

5.4. DISTRIBUTED REGISTRATION, ANONYMOUS ACCESS 135

Figure 5.3, illustrates the process (TDRA2 and TRA2 access stages are
the same). Algorithm 16 describes the protocol and Example 5.4.1 depicts
it.

User

Dealers

d1

d2

dD

...
id, xu

qd1
(xu) (mod p)

〈xu,
∑D

i=1 qdi
(xu) (mod p)〉

qd2
(xu) (mod p)

qdD
(xu) (mod p)

Figure 5.3: User sends her identification details, and selected xu to the deal-
ers. Dealers respond with the result of applying its polynomial if the iden-
tification is valid. Then, the user is capable of independently construct his
access token from the response.

Example 5.4.1. Let us consider an scenario with two dealers (D = 2) and
three guards to control the access to some resource (N = 3). We consider
the same public integers considered in Example 5.3.1 (p = 7919 and m =
665). Let also consider the following polynomials (privately) generated by
the dealers in order to generate the access tokens:

qd1(x) = 26x665 + 54x7 + 1 mod 7919
qd2(x) = 19x665 + 22x13 mod 7919

The final set up step implies each dealer to partition his polynomial q(x)
into three complementary polynomials to distribute among the guards. For
instance, consider the partition of the first dealer polynomial as:

qg
1

d1
(x) = 6x665 + 1 mod 7919

qg
2

d1
(x) = 10x665 + 54x7 mod 7919

qg
3

d1
(x) = 10x665 mod 7919

136 CHAPTER 5. IDENTIFICATION AND DISTRIBUTED ACCESS

Algorithm 16 TDRA2 Algorithm. Trusted distributed registration, anony-
mous access.

1: System setup
2: (a) Dealers jointly agree on a prime p and m.
3: (b) Each dealer generates an m degree polynomial qdi(x) modulus p.
4: (c) Each dealer partitions its polynomial into N shares and sends each

one to a different guard.
5: (d) Every guard gj sums the received components to compute its (m-

degree) polynomial qgj(x) modulus p.
6: User identification
7: (a) Users send his identification along with a selected xu to each dealer.

8: (b) Each dealer verifies the identification credentials and check that xu

is unique and has not been used before.
If so, each dealer d replies to the user with {xu, qd(xu) mod p}.

9: (d) Users can compute their credential using the received points from
the dealers as:

⟨xu, yu =
D∑
i=1

qdi(xu) mod p⟩.

10: Anonymous access
11: (a) User sends his access-keys ⟨xu, yu⟩ to each one of the guards.
12: (b) Each guard computes qgj(xu).
13: (c) Guards check if yu =

∑
1≤j≤N qgj(xu) mod p.

14: (d) Access is granted if the access-keys are valid.

, and the partition of the second dealer as:

qg
1

d2
(x) = 19x665 mod 7919

qg
2

d2
(x) = 10x13 mod 7919

qg
3

d2
(x) = 12x13 mod 7919

which implies that the polynomials the guards consider are:

qg1(x) = 25x665 + 1 mod 7919
qg2(x) = 10x665 + 1013 + 547 mod 7919
qg3(x) = 10x665 + 1213 mod 7919

5.4. DISTRIBUTED REGISTRATION, ANONYMOUS ACCESS 137

A user who sends her identification together with xu = 233 to the deal-
ers will be replied with the values 5048 and 6449 from dealers one and two
respectively, and will be able to obtain his access token as:

⟨xu = 233, yu = 5048 + 6449 mod 7919 = 3578⟩.

Once the guards receive the access token, each one obtains the following re-
sults from their polynomial shares:

qq1(233) = 4372; qg2(233) = 4794; qg3(233) = 2331

and must collaborate in order to check whether the token is valid or not.
Actually, qg1(xu) + qg2(xu) + qg3(xu) = 3578 = yu mod p, and the token is
correct.

This approach avoids the polynomial q(x) to be stored in a single point
of failure, and therefore, may lead users to increase their trust in the system.
In Section 5.5.2 we prove the security of the protocol.

5.4.2 Anonymous registration, anonymous access
It is worth mentioning that although TDRA2 protocol effectively distributes
the responsibility of controlling access, and prevents the possibility of the
dealers or guards from forging new access-keys, it falls short in providing
complete privacy to users. This is because a malicious dealer or guard could
collude and potentially relate user identities to the access-tokens issued, al-
lowing them to observe the actions taken by users once they gain access to
the resource. Therefore, additional measures are necessary to ensure full user
privacy in such scenarios.

In order to protect user’s privacy during the registration stage, it is re-
quired to break any traceability between users identities and users access-
keys. To accomplish this, we use homomorphic cryptography to hide the
relationship between identities and access-keys. In this section, we present
a method that allows a user to securely hide the components of the access
token as long as the discrete logarithm problem remains secure.

The resulting protocol for anonymous registration and anonymous access
(ARA2) allows for the distribution of the registration among D dealers, while
the access control will be carried out by a team of N guards. We note that
in this protocol, security is based on the discrete logarithm problem. Thus,

138 CHAPTER 5. IDENTIFICATION AND DISTRIBUTED ACCESS

in order to prevent a coalition of users to use multiplicative properties to
forge new access-keys, a redundancy function is included in the protocol.
Algorithm 17 describes the whole protocol, but, for the sake of brevity, and
without loss of generality, the use of the redundancy function has not been
taken into account in the description of the protocol nor in Example 5.4.2.
We will prove in Section 5.5.2 that, in this protocol, malicious dealers are
not able to reveal the identity of the users nor forge new access tokens.

5.4. DISTRIBUTED REGISTRATION, ANONYMOUS ACCESS 139

Algorithm 17 ARA2 Algorithm. Anonymous registration anonymous ac-
cess.

1: System setup
2: (a) Dealers agree on a prime p and m.
3: (b) Dealers agree a redundancy function f . //e.g. a hash function
4: (c) Each dealer computes its own degree mdi .
5: (d) Each dealer decomposes its own degree mdi and sends a component

to each guard.
6: (e) Every guard gj adds the received components to compute its own

share mgj .
7: User identification
8: (a) Each user generates two private values s and v such that sv ≡ 1

(mod p− 1).
9: (b) Users generate a random value r and set xu as the concatenation

of r and f(r).
10: (c) Users send his identification along with ptu = xv

u (the masked xu)
to each dealer.

11: (d) Dealers verify the identification credentials.
12: (e) If the credentials are valid, each dealer di replies to the user with:

pt
mdi
u mod p.

13: (e) Users can compute their credential (point) from the received points
from the dealers as:

⟨xu, yu =
D∏
i=1

(pt
mdi
u)s mod p⟩.

14: Anonymous access
15: (a) User sends his access-keys ⟨xu, yu⟩ to each one of the guards.
16: (b) Guards check that xu capture the redundancy correctly.
17: (b) Each guard computes (xu)

mgj
mod p.

18: (c) Guards check if yu =
∏

1≤j≤N(xu)
mgj

mod p .
19: (d) Access is granted if the access-keys are valid.

The setup of the scheme implies the dealers to agree a prime p, as well

140 CHAPTER 5. IDENTIFICATION AND DISTRIBUTED ACCESS

as every dealer di to generate a random integer mdi . Then, each dealer
partitions his integer mdi into N parts mgj

di
such that:

mdi =
N∑
j=1

mgj

di
,

and distribute each share to the guards through a secure channel. Thus, a
guard gj can compose an integer mgj as the sum of the received shares from
the dealers:

mgj =
D∑
i=1

mgj

di

Note that, at the end of the distribution phase, both the set of dealers and
the set of guards have different shares of the same secret integer m which is
never stored anywhere and result from the sums:

m =
D∑
i=1

mdi =
N∑
j=1

mgj

Before the registration, each user generates a pair of private integers v
and s such that vs ≡ 1 mod (p− 1). Then, the user u selects an integer xu

and sends his identification together with a pretoken ptu = xv
u mod p to each

dealer.
If the identification is valid, then each dealer di can compute and reply

to the user pt
mdi
u mod p. Note that dealers do not have access to xu, and

therefore, no dealer can track the way the tokens are used by the users. We
also note that, for big enough values of p, the probability that two users
could generate the same xu, which would lead two different users to have the
same access token, is extremely low3.

Once received a reply from all the dealers, the user can now compute his
token ⟨xu, yu⟩ where:

yu =
D∏
i=1

(pt
mdi
u)s mod p.

3Negligible for p values of 1024 bits, which is nowadays a very conservative modular
size.

5.4. DISTRIBUTED REGISTRATION, ANONYMOUS ACCESS 141

Note that the process is such as it guarantees that:

yu =
D∏
i=1

(pt
mdi
u)s mod p =

D∏
i=1

(xv
u)

s)mdi mod p =

= x
∑D

i=1 mdi
u mod p = xm

u mod p

where m is an agreed but unknown integer.
Note that, first, both v and s are private values, enrolled in mask-

ing/unmasking processes in an homomorphic cryptography framework; and,
second, that the fact that the modulus p is a known prime is not a security
issue because: both values v and s will remain secret for everyone but the
user who generated them; and, ptu = xv

u mod p is the only transmitted value
which is not enough to reveal the hidden xu value.

In the access phase the user provides his access token to each guard who
can collectively check if it is valid. Example 5.4.2 illustrates the protocol
taking into account artificially low setup values. We summarize the ARA2
protocol in Algorithm 17 and Example 5.4.2 illustrates the procedure.

Example 5.4.2. Let us consider an scenario with two dealers (D = 2) and
three guards (N = 3) to control the access of users to some resource. As in
previous examples, let p = 7919.

Let md1 = 3401 and md2 = 1034 be the (private) integers generated by
the dealers. Each dealer partitions his integers into N shares and (securely)
send them to the guards. For instance, let consider the partition of md1 as:

mg1

d1
= 1400 mg2

d1
= 1001 mg3

d1
= 1000

and the partition of md2 as:

mg1

d2
= 34 mg2

d2
= 500 mg3

d2
= 500

thuss, subsequently, the guards can obtain:

mg1 = 1434; mg2 = 1501; mg3 = 1500

Consider a user willing to obtain an access token that randomly generates
xu = 103, v = 7717 and, s = 1103. Note that sv ≡ 1 (mod p− 1). All three

142 CHAPTER 5. IDENTIFICATION AND DISTRIBUTED ACCESS

values are kept secret. The user then sends his identification together with
the pretoken ptu = xv

u mod 7919 = 2976 to each dealer, who reply:

pt
md1
u mod p = 1646; pt

md2
u mod p = 5625

and the user now can compute his access token as:

⟨xu = 103, yu = 16461103 · 56251103 mod 7919 = 4271⟩,

note that m = 3401 + 1034 = 4435, and 1034435 = 4271.
Once the guards receive the access token, each one can work out the (par-

tial) modular exponentiation from its integer share:

1031434 mod 7919 = 4898
1031501 mod 7919 = 6001
1031500 mod 7919 = 2211

and must collaborate in order to check whether the token is valid or not.
Indeed, 4898 · 6001 · 2211 mod p = 4271 = yu, and access should be granted.

ARA2 protocol provides a fully decentralized and anonymous way to
obtain access tokens. In Section 5.5.2 we prove that no coalition of guards
and/or dealers and/or users, can reveal the identity of registered users; and,
unless the discrete logarithm problem is solved, they are unable to forge new
credentials.

5.5 Security Analysis
We devote this section to analyze the security properties of our schemes.
In order to prove their unforgeability, against probabilistic polynomial time
adversaries Adv, we propose a security game for each one of the protocols.

5.5.1 TRA2 Analysis
We devote this section to analyze the security properties of the TRA2 pro-
tocol. The security game is defined as:

• The SysSetup is run to get the polynomial q(x), its partition into
{qi}i∈N polynomials, m, and p. The values m and p are given to Adv.

5.5. SECURITY ANALYSIS 143

• Let U ⊊ G be a set of corrupt guards. Give P = {qi}i∈U to Adv.

• Let V ⊆ C be a set of corrupt users where |V | < m. Give the set of
access-keys K = {Registration(idi)}i∈V to Adv.

• Let Ointerp(P,K) be the oracle that, by any method, considers the
available information to interpolate the polynomial:

q(x)−
∑
i∈U

qi.

• Let Onewk(P,K) be the oracle that, by any method, considers the avail-
able information to obtains new pairs (a, b) such that b = q(a).

• Let Osucc(p(x)) be the oracle that returns 1 if p(x) = q(x) and returns
0 otherwise.

Lemma 5.5.1 proves that, when conditions are met, our construction of
the scheme is secure because adversaries cannot forge malicious credentials.

Lemma 5.5.1. Provided that the number of users does not exceed m, and
that not all the guards are malicious, TRA2 is unforgeable and no coalition
of users and/or guards can forge valid access-keys.

Proof. We note that there exist no method to interpolate the polynomial
under the distributed control of the trusted guards (i.e., the result of

∑
i ̸∈U qi).

This is a fact regardless the computational power available to Adv. In the
same way, the probability any call to Onewk to output a new valid access-key
is also negligible, unless there were enough keys (points of the polynomial)
that could eventually allow to interpolate q(x).

We stress that the best the oracles can return, is a guess consistent with
the available data. We note that there exists a combinatorial number of other
many different guesses that are also consistent. Therefore, the probability of
Osucc to return 1 is negligible.

Despite the TRA2 protocol not employing encryption or signature meth-
ods, if the security conditions are met, there is no procedure to confirm the
guesses made by an attacker, therefore TRA2 succeeds in providing security
derived entirely from information theory, creating a system where partial in-
formation does not reveal anything about the scheme’s secrets. Therefore,
TRA2, provides Perfect Secrecy as defined in Sec. 2.5.3.

144 CHAPTER 5. IDENTIFICATION AND DISTRIBUTED ACCESS

5.5.2 TDRA2 and ARA2 Analysis
We analyze in this section the security properties of TDRA2 and ARA2
protocols. We will name D the set of dealers, G the set of N guards that
control the access to the resource, and C will denote the collective of users
that apply for accessing to the resource. We consider that any combination
of a subset of dealers, users and/or guards can collude to forge the protocol.

To analyze the unforgeability of TDRA2, for every probabilistic polyno-
mial time adversary Adv, we propose a security game where:

• SysSetup is run to get m and p values which are given to Adv.

• DealersSetup is run by each dealer that, individually generate an m-
degree polynomial mod p, and divide it into shares that safely send to
each guard.

• Let E ⊊ G be a set of corrupt dealers. Give R = {qi}i∈E to Adv.

• GuardsSetup is run by each guard that, individually combine all the
polynomials received from the dealers to obtain its own m-degree poly-
nomial mod p.

• Let U ⊊ G be a set of corrupt guards. Give P = {qi}i∈U to Adv.

• Let V ⊆ C be a set of corrupt users where |V | < m. Give the set of
access-keys K = {Registration(idi)}i∈V to Adv.

• Let Ointerp(P,R,K) be the oracle that, by any method, consider the
available information to interpolate either the polynomial:

q(x)−
∑
i∈D

qi,

or the polynomial:
q(x)−

∑
i∈U

qi.

• Let Onewk(P,R,K) be the oracle that, by any method, consider the
available information to obtains new pairs (a, b) such that b = q(a).

• Let Osucc(p(x)) be the oracle that returns 1 if p(x) = q(x) and returns
0 otherwise.

5.5. SECURITY ANALYSIS 145

Lemma 5.5.1 proves that, when conditions are met, our TDRA2 protocol
is unforgeable, because, no matter the computational power available to the
adversaries, it is not possible to forge malicious credentials.

Lemma 5.5.2. Provided that the number of users does not exceed m, and
that neither all the guards, nor all the dealers are malicious, TDRA2 is
unforgeable and no coalition of users, and/or dealers, and/or guards can
forge valid access-keys.

Proof. We note first that, after the dealers and guards setup, both collec-
tives distributively guard the same secret polynomial q(x). Second, that,
individually, dealers and guards only have access to shares of q(x). Third,
that the shares from corrupt dealers/guards provided to Adv do not allow to
interpolate q(x), because, no matter the computational power, there exists
no method to do it. Finally, that any number of access-keys provided to
Adv do not change the scenario, unless the number of keys provided exceed
the polynomial degree m. Thus, in any case, the best the oracles can return
is a consistent guess with the available data of q(x), but with no available
method to check the plausibility of the guess against all the other many differ-
ent guesses that, given any amount of information, are consistent. Therefore,
the probability of Osucc to return 1 is negligible.

To sum up, regardless the computational power available to Adv, there
exists no method to interpolate the polynomial under the control of the
dealers and guards, and, therefore, it is not possible to forge new credentials
unless the number of registered users reaches the grade of the polynomial, or
all the dealers/guards collude to forge the system.

We now analyze the security properties of ARA2 protocol. To do so, for
every probabilistic polynomial time adversary Adv, we propose a security
game where:

• SysSetup is run to get the m and p values that are given to Adv.

• DealersSetup is run by each dealer that, individually generate an ex-
ponent mdi , and divide it into shares that are safely sent to each guard.

• Let E ⊊ G be a set of corrupt dealers. Give R = {mi}i∈E to Adv.

• GuardsSetup is run by each guard that, individually combine all the
exponents received from the dealers to obtain its own exponent mgj .

146 CHAPTER 5. IDENTIFICATION AND DISTRIBUTED ACCESS

• Let U ⊊ G be a set of corrupt guards. Give P = {mi}i∈U to Adv.

• Let V ⊆ C be a set of corrupt users. Give the set of access-keys
K = {Registration(idi)}i∈V to Adv.

• Let Odisclog(P,R,K) be the oracle that, by any method, consider the
available information to solve the discrete logarithm problem.

• Let Onewk(P,R,K) be the oracle that, by any method, consider the
available information to obtains a new pair (a, b) such that b = am mod
p.

First, we prove in Lemma 5.5.3 that the protocol, as described, protects
the users’ identity.

Lemma 5.5.3. ARA2 protocol ensures users’ privacy.

Proof. Let us stress that the access-key delivered to any user take into ac-
count a xu value which, before sending them to the dealers, is masked using
a (private exponent) modular exponentiation. Since the user is the only one
who knows the operation to reverse this mask, all the possible values of xu

are equally probable for an Adv. Thus, it is not possible to relate a user
identity to an access-key, even if an Adv intercepts all the dealers’ responses
to the user.

Guards receive no information about the identity of the users, and they
grant access using exclusively the issued access-keys. Therefore, neither a
subset of guards, nor a coalition of dealers and guards can track user identi-
ties.

We now prove in Lemma 5.5.4 that no one can forge new access-keys.

Lemma 5.5.4. According ARA2 protocol’s description, the probability of
forging new access-keys is negligible.

Proof. The protocol states that a user access-keys is of the form:

⟨xu, yu = xm
u mod p⟩.

In order an adversary to forge a new access-key from an existing one, it would
be necessary to partition xu into two different components au and bu, in order
to, afterwards, derive the related amu and bmb , that is:

⟨xu = aubu, yu = (aubu)
m mod p = amu b

m
u ⟩.

5.6. TIME COMPLEXITY ANALYSIS 147

We note that, since m is distributed and unknown, there is not enough
information to factorize yu to obtain amu and bmu . Nevertheless, if eventually
the adversary could carry out this process, it would be necessary, that at
least two out of xu, au and bu, would consider the redundancy function f ,
which is highly unfeasible.

An adversary could try the following approach. Let him to call algorithm
Registration for a chosen xu = ab, and for xv = a−1b as well. Given the re-
spective values yu = (ab)m mod p and yv = (a−1b)m mod p, let the adversary
to proceed as follows:

⟨xuxv mod p = b, (ab)m(a−1b)m mod p⟩ ⇒
⇒ ⟨b, (aba−1b)m mod p = b2m⟩

from which it is possible to efficiently obtain ⟨b, bm mod p⟩. Nevertheless,
in order the access-keys to agree with the redundancy function, xu, xv and
b should capture correctly the redundancy established by f , which again is
highly unfeasible.

Previous lemmas prove that, under ARA2 protocol, the identity of the
users is preserved even in a post-quantum scenario, and that it is not possible
for the partners to forge new access-keys as the discrete logarithm problem
remains unsolved. Thus, we can conclude that ARA2 protocol is secure.

5.6 Time Complexity Analysis
We devote this section to provide a theoretic time complexity analysis of
our identification protocols. We include in Appendix D a Proof of Concept
implementation together with an empirical study of the time-complexity. As
it is usual, we choose bit operation as the basic unit in our time-complexity
analysis. Since all the operations are carried out modulus a prime p, the
complexity of the operations will be expressed in terms of log p. We recall
Menezes et al. [1996] to the interested reader to inspect the complexity of
modular operations.

It is important to note that the methods presented in the protocol require
several steps and different sequential phases to operate effectively. However,
we do not consider the complexity derived from auxiliary procedures, such
as calls to the hash function, or the time devoted to communication between
the parties. These functions typically have low complexity, and their use is

148 CHAPTER 5. IDENTIFICATION AND DISTRIBUTED ACCESS

not extensive. Comments on the influence of auxiliary and communication
procedures are also included in Appendix D.

5.6.1 TRA2 and TDRA2 time complexity analysis
Due to the role of the polynomials in these protocols, we first stress that
dealing with an m-degree polynomial does not imply to deal with m + 1
terms. Security is not affected by considering disperse polynomials in which
the number of terms is bounded by a constant t much lower than m (and,
therefore, also much lower than p). We analyze the time complexity of the
processes carried out by each partner once the parameters have been setup
and the polynomials have been generated. Note that all these procedures can
be carried out off-line and do not affect the complexity of the whole process.

First, regarding the figure of the dealers, for any given user registration
request, each dealer d computes the result of his share of the polynomial,
that can be computed with O(t log3 p) ≈ O(log3 p) bit operations. Second,
regarding the users, once they have received all the messages from the dealers,
they simply carry out an addition modulus p. A process with time complexity
O(t log p) ≈ O(log p). Finally, regarding the guards, each one has to compute
the result of his own share of the polynomial, with time complexity O(log3 p),
and then collaboratively add the partial results of the rest of guards to grant
or revoke the access, with time complexity O(n log p) ≈ O(log p). The whole
identification process is a sequence of these procedures, therefore, for any
single user requesting access, the complexity of the identification process is
O(log3 p) +O(d log p) +O(n log3 p) ≈ O(log3 p).

Let us note that, regarding the time complexity analysis, TRA2 can be
considered as TDRA2 with d = 1. Note also that the number of bit opera-
tions scales linearly with the number of users in the scenario.

5.6.2 ARA2 time complexity analysis
Once again, we analyze the time complexity of the processes carried out by
each partner once the parameters have been setup, and the polynomials have
been generated.

Regarding the time complexity of the procedure carried out by ARA2
dealers, they only need to compute a single modular exponentiation, with
complexity O(log3 p). Regarding the users, to mask the token implies a
modular exponentiation, and, to reconstruct the access-key from the received

5.7. APPLICATIONS 149

shares implies the product of d values and a modular exponentiation, with
time complexity O(d log2 p) + O(log3 p) ≈ O(log3 p). Finally, each guard
carry out a modular exponentiation to compute his partial result, with com-
plexity O(log3 p), and then a set of n multiplications modulus p to combine
all the partial results from all the guards in the collective, with complexity
O(log3 p) +O(n log2 p) ≈ O(log3 p).

Therefore, for any single user requesting access, the complexity of the
whole identification process is O(log3 p) +O(log3 p) +O(log3 p) ≈ O(log3 p),
and it is possible to see that the number of bit operations scale linearly with
the number of users.

5.7 Applications
Our three protocols are application agnostic, meaning that they do not make
any assumption or enforce any policy on how the final application will op-
erate. Therefore, they are extremely portable, and together with their low
time complexity, can be applied to a wide set of scenarios.

We here show how our anonymous access protocols can be used to create
an untraceable blockchain airdrop, as well as an electronic voting scheme. We
assume that we will be working with the ARA2 protocol for the anonymous
registration property, but the presented procedures can be easily modified to
consider the other schemes that we presented.

5.7.1 Blockchain Airdrop System
Airdrops have become a popular method in blockchain projects to increase
engagement, popularity, and market capitalization by distributing free to-
kens to participants. However, ensuring that only legitimate and loyal users
receive rewards is a challenge, as bots and fraudulent accounts can exploit
airdrops. A common technique used to address this issue is the implemen-
tation of a whitelist, where interested participants provide their blockchain
project experience and history for review by the airdrop organizers. How-
ever, this approach has two major limitations: it requires a manual review
process, which can be time-consuming, and it compromises the anonymity of
potential participants.

We propose a novel approach to address the challenges of airdrops using
our ARA2 protocol and smart contracts as dealers. This approach preserves

150 CHAPTER 5. IDENTIFICATION AND DISTRIBUTED ACCESS

anonymity and involves participants proving their activity in the blockchain
space by signing transactions that are old enough to qualify them as legiti-
mate users.

1. Participant generates at random v and s such that vs ≡ 1 (mod p−1).
Where s acts as secret, and v as view factor of a masking scheme. Being
p a large prime number.

2. Participant chooses an old and valid transaction t from its wallet his-
tory.

3. Participant signs a message containing t and the address of the airdrop.
This will be used as identification id = sign(t, address).

4. Participant chooses xu at random and masks it as xu
v mod p.

5. Participant sends the id and xu
v mod p to the airdrop address. The

value is masked using v, preventing from other parties of the network
to see the access-key returned later and front-running the user.

6. The smart contract verifies the identification’s signature and the antiq-
uity of t and stops if the signature is wrong or the transactions is not
old enough.

7. The smart contract returns an access-key, computed using xu
v to the

participant.

8. Participant recovers the access-key by applying the secret factor.

9. Participant sends the access-key to the airdrop organizers and a new
receiving blockchain address tn.

10. Organizers check the access-key and stop if false.

11. Organizers send tokens to tn.

5.7.2 Electronic Voting Scheme
Electronic voting requires two properties that seem counterintuitive at first:
to ensure that no double-voting occurs, while preserving elector’s privacy.
See Chapter 4 for more details.

5.8. CONCLUSIONS 151

We present a simple sketch of a possible voting system that achieves
both privacy and democracy. We separate the registration and the voting
processes, and it implies the existence of an identification authority (IA) that
checks the membership of the electors to the census (and also provides the
access-keys), and a remote polling station whose access is controlled by con-
trollers that verify access-keys and count votes. The system can be modified
to accommodate multiple identification authorities or use other anonymous
access protocols that we have proposed in this Chapter.

1. Elector generates at random v, s such that vs ≡ 1 (mod p− 1).

2. Elector chooses xu at random and masks it as xu
v mod p.

3. Elector sends his personal identification and xu
v mod p to the IA.

4. The IA checks the identification belongs to a valid elector in the census.
It stops if false.

5. The IA computes the access-key and returns it to the elector.

6. Elector sends his vote and access-key to the controllers that guard the
remote polling station.

7. Remote polling station controllers check the validity of the access-key.
They stop if false.

8. Controllers grant electors access to the ballot box, and, once the elec-
tion is finished, count and publish the received votes.

5.8 Conclusions
We covered three anonymous access protocols. The schemes we propose
decouple identification and the actions to carry once the access is granted.
They are based on basic mathematical primitives and allow readily escalation.
The protocols are lightweight and suitable to be implemented on any type of
platform, and support a wide range of applications. We briefly showed how
they could be adapted to support blockchain or e-voting applications.

The third protocol we propose, ARA2, removes the possibility of tracking
the identity of a user of the service and the actions carried out once access
to the service is granted. Under the other two protocols here proposed, the

152 CHAPTER 5. IDENTIFICATION AND DISTRIBUTED ACCESS

users identities are accessible only to a set of (assumed honest) authorities
that are entitled to issue the access-keys that grant access to the resource. All
the protocols we described allow immediate non-interactive registration, and,
prevent users’ multiple access. Two of them also provide post-quantum secu-
rity. To the best of our knowledge, they are the first distributed registration
schemes with these properties.

Compared to Agrawal et al. [2018], our proposals require a single round
interaction for registration and another one for access, and the same mech-
anism enables the distributed registration and allows at the same time the
distributed access. Thus allowing us to reduce the complexity of the protocol,
making, at the same time, unnecessary the use of TOPRFs.

Regarding ACS, our protocols cannot be considered as such, since our
protocols do not present a framework for connecting multiple organizations
to users, nevertheless, our protocols share with ACS the goal of providing
unforgeable, unlikable and anonymous access-keys. Besides, our protocols
allow for one time access with minimal computational load, the whole process
can be distributed, they do not require pseudonyms or multiple rounds of
interaction, and, they provide post-quantum security.

Let us finally note, the three protocols offer different solutions adaptable
to diverse scenarios. If post-quantum security is desired, then TRA2 or
TDRA2 could be the option, while ARA2 is suitable when finding honest
authorities is not feasible.

5.8.1 Future Work
The extension of these methods in order to allow each credential to be used
more than one time is very interesting and we will study it in the future. In
the same vein, allowing the revoking of credentials, or adding time limitations
to them is also an interesting topic of research.

Another possible extension is to introduce some error-tolerance mecha-
nism or failure support on the dealers/guards, because the protocols avail-
ability is affected when one of the dealers/guards is unreachable. An initial
solution can be implemented considering separated sets of dealers/guards,
that can be implemented to, either mirror every individual authority, or mir-
ror the whole authority system. In both cases the time needed for the user
should not be affected and the system should rapidly adapt to the inclusion
or lost of guard entities.

Chapter 6
Conclusions

Hay libros cortos que, para
entenderlos como se merecen, se
necesita una vida muy larga.

Don Francisco de Quevedo

WEPZTBTCERFVGGADXIRI
VRXBLEEWGLWCKUSPSBEZ
GFQQIWWVPMEMGXTRURL
GMFTALAZNKON

One-time pad. k=Pero la
comprensión de ciertos artículos

se dejan como ejercicio para el
lector, continuara

In this thesis we have explored some of the open problems of social col-
laboration as they were presented in Chapter 1. We covered along the chap-
ters,4 and 5 how cryptography enables secure and trustless electronic voting
and anonymous identification. These are two of the most relevant problems
for distributed cooperation and many other problems can be reduced to in-
stances of these dilemmas. Solutions based in well-established cryptographic
protocols (see Chapter 2) and decentralized technologies (see Chapter 3) have
been presented. Both schemes based in complexity and computability theo-

153

154 CHAPTER 6. CONCLUSIONS

ries have been introduced under different assumptions to accommodate the
maximum number of possible scenarios.

More specifically, we designed a voting scheme based on blind signatures
in Section 4.2,that was later implemented as a Solidity smart contract in
Appendix A. Leveraging blockchain technology and the privacy solutions of
Monero, we designed a decentralized voting scheme in Section 4.3.1. This
voting scheme was later expanded in Appendixes B and C with a theoretic
description of the proposed blockchain and an implementation of the ring
signature employed in the protocol. Finally, a voting scheme with perfect
secrecy, and secure even in post-quantum scenarios was introduced in Section
4.4.

Regarding the identification problem, we described a problem where a
set of guards safeguard a resource. The access to the resource is granted
only if all the guards agree on the validity of the presented access-key. In
this scenario, guards do not trust each other and only trust the verification
process of the access-key. Three anonymous registration solutions for this
problem were presented in Sections 5.3.1, 5.4 and 5.4.2. These protocols
address the anonymous registration dilemma under different circumstances
making use of polynomial interpolation, secret sharing schemes and partial
homomorphic properties. No matter the scheme, the three protocols ensure
that no access-keys can be forged. The protocols are later implemented to
show their efficiency and feasibility in Appendix D.

We also stated possible lines of future work and extensions for each one of
these topics. We also open-sourced all of our implementations, so other teams
can benefit from them. Finally, let us note that we designed, implemented
and analyzed protocols that exemplify how distributed cryptography can be
used to build better, more reliable and robust solutions for our democratic
societies. Ensuring the norm is respected, without degrading the privacy of
the final users.

6.1 PhD Key Results

Here we schematically summarize the main academical results of our research
work We differentiate between our two main lines of investigation: electronic
voting and anonymous identification.

6.1. PHD KEY RESULTS 155

6.1.1 Electronic Voting
• A journal article titled "A two authorities electronic vote scheme", Lar-

riba, Antonio M., José M. Sempere, and Damián López. Computers &
Security 97 (2020): 101940.

• A journal article titled "Distributed Trust, a Blockchain Election Scheme",
Larriba, Antonio M., et al. Informatica 32.2 (2021): 321-355.

• A journal article titled "SUVS: Secure Unencrypted Voting Scheme",
Larriba, Antonio M., and Damián López. Informatica 33.4 (2022):
749-769.

• A journal article titled "A Solidity implementation of TAVS" Larriba,
Antonio M., and Damián López. Frontiers in Blockchain 6: 10.

• An open source implementation of the ring signature scheme described
in Section 3.3.2, and employed in the Distributed Trust scheme. The
implementation, which shows the empiric time-complexity and scala-
bility of these signatures, is described in more detail in Appendix B
and can be freely consulted in
https://github.com/Fantoni0/RingCTPerformance.

• An open source implementation of a Proof-Of-Concept that exemplifies
TAVS can be implemented as a Solidity smart contract. The imple-
mentation is described in more detail in Appendix A and can be freely
consulted in https://github.com/Fantoni0/svs.

• A Spanish patent application for SUVS with number P202131209.

6.1.2 Anonymous Identification
• A journal article titled "How to Grant Anonymous Access", Larriba,

Antonio M., and Damián López. IEEE Transactions on Information
Forensics and Security 18 (2022): 613-625.

• An open source implementation of a Proof-Of-Concept that exempli-
fies how these protocols can be implemented. The implementation is
described in more detail in Appendix D and can be freely consulted in
https://github.com/Fantoni0/ara2.

156 CHAPTER 6. CONCLUSIONS

• A Spanish patent with substantive examination, and publication num-
ber ES2904423.

Bibliography

Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval. Password-
based authenticated key exchange in the three-party setting. In Serge
Vaudenay, editor, Public Key Cryptography - PKC 2005, 8th International
Workshop on Theory and Practice in Public Key Cryptography, Les Di-
ablerets, Switzerland, January 23-26, 2005, Proceedings, volume 3386 of
Lecture Notes in Computer Science, pages 65–84. Springer, 2005. doi:
10.1007/978-3-540-30580-4_6. URL https://doi.org/10.1007/978-3
-540-30580-4_6.

Abbas Acar, Hidayet Aksu, A. Selcuk Uluagac, and Mauro Conti. A survey
on homomorphic encryption schemes: Theory and implementation. ACM
Comput. Surv., 51(4):79:1–79:35, 2018. doi: 10.1145/3214303. URL
https://doi.org/10.1145/3214303.

Ben Adida and Ronald L. Rivest. Scratch & vote: self-contained paper-
based cryptographic voting. In Proceedings of the 2006 ACM Workshop
on Privacy in the Electronic Society, WPES 2006, Alexandria, VA, USA,
October 30, 2006, pages 29–40, 2006. doi: 10.1145/1179601.1179607. URL
https://doi.org/10.1145/1179601.1179607.

Shashank Agrawal, Peihan Miao, Payman Mohassel, and Pratyay Mukher-
jee. PASTA: password-based threshold authentication. In David Lie, Mo-
hammad Mannan, Michael Backes, and XiaoFeng Wang, editors, Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018,
pages 2042–2059. ACM, 2018. doi: 10.1145/3243734.3243839. URL
https://doi.org/10.1145/3243734.3243839.

157

https://doi.org/10.1007/978-3-540-30580-4_6
https://doi.org/10.1007/978-3-540-30580-4_6
https://doi.org/10.1145/3214303
https://doi.org/10.1145/1179601.1179607
https://doi.org/10.1145/3243734.3243839

158 BIBLIOGRAPHY

Sattam S. Al-Riyami and Kenneth G. Paterson. Certificateless public key
cryptography. In Chi-Sung Laih, editor, Advances in Cryptology - ASI-
ACRYPT 2003, 9th International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Taipei, Taiwan, November 30
- December 4, 2003, Proceedings, volume 2894 of Lecture Notes in Com-
puter Science, pages 452–473. Springer, 2003. doi: 10.1007/978-3-540-400
61-5_29. URL https://doi.org/10.1007/978-3-540-40061-5_29.

Andreas M Antonopoulos and Gavin Wood. Mastering ethereum: building
smart contracts and dapps. O’reilly Media, 2018.

David Arroyo, Jesus Diaz, and Francisco de Borja Rodríguez. Non-
conventional digital signatures and their implementations - A review. In
Álvaro Herrero, Bruno Baruque, Javier Sedano, Héctor Quintián, and
Emilio Corchado, editors, International Joint Conference - CISIS’15 and
ICEUTE’15, 8th International Conference on Computational Intelligence
in Security for Information Systems / 6th International Conference on
EUropean Transnational Education, Burgos, Spain, 15-17 June, 2015, vol-
ume 369 of Advances in Intelligent Systems and Computing, pages 425–
435. Springer, 2015. doi: 10.1007/978-3-319-19713-5_36. URL
https://doi.org/10.1007/978-3-319-19713-5_36.

Jbid Arsenyan, Gülçin Büyüközkan, and Orhan Feyzioglu. Modeling col-
laboration formation with a game theory approach. Expert Syst. Appl.,
42(4):2073–2085, 2015. doi: 10.1016/j.eswa.2014.10.010. URL https:
//doi.org/10.1016/j.eswa.2014.10.010.

Ahmed Ben Ayed. A conceptual secure blockchain-based electronic voting
system. International Journal of Network Security & Its Applications, 9
(3):01–09, 2017.

Ahsan Aziz. Coercion-resistant e-voting scheme with blind signatures. In
Cybersecurity and Cyberforensics Conference, CCC 2019, Melbourne, Aus-
tralia, May 8-9, 2019, pages 143–151, 2019. doi: 10.1109/CCC.2019.00009.
URL https://doi.org/10.1109/CCC.2019.00009.

László Babai. Trading group theory for randomness. In Robert Sedgewick,
editor, Proceedings of the 17th Annual ACM Symposium on Theory of

https://doi.org/10.1007/978-3-540-40061-5_29
https://doi.org/10.1007/978-3-319-19713-5_36
https://doi.org/10.1016/j.eswa.2014.10.010
https://doi.org/10.1016/j.eswa.2014.10.010
https://doi.org/10.1109/CCC.2019.00009

BIBLIOGRAPHY 159

Computing, May 6-8, 1985, Providence, Rhode Island, USA, pages 421–
429. ACM, 1985. doi: 10.1145/22145.22192. URL https://doi.org/10
.1145/22145.22192.

Adam Back. Ring signature efficiency, 2015. Available at https://bitcoi
ntalk.org/index.php?topic=972541.msg10619684#msg10619684.

Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick
McCorry, Sarah Meiklejohn, and George Danezis. Sok: Consensus in the
age of blockchains. In Proceedings of the 1st ACM Conference on Advances
in Financial Technologies, AFT 2019, Zurich, Switzerland, October 21-23,
2019, pages 183–198. ACM, 2019. doi: 10.1145/3318041.3355458. URL
https://doi.org/10.1145/3318041.3355458.

Igor Barinov, Viktor Baranov, and Pavel Khahulin. Poa network white
paper. URL: https://github. com/poanetwork/wiki/wiki/POA-Network-
Whitepaper, 2018.

Olivier Baudron, Pierre-Alain Fouque, David Pointcheval, Jacques Stern,
and Guillaume Poupard. Practical multi-candidate election system. In
Proceedings of the Twentieth Annual ACM Symposium on Principles of
Distributed Computing, PODC 2001, Newport, Rhode Island, USA, August
26-29, 2001, pages 274–283, 2001. doi: 10.1145/383962.384044. URL
https://doi.org/10.1145/383962.384044.

Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna
Lysyanskaya, and Hovav Shacham. Randomizable proofs and delegat-
able anonymous credentials. In Shai Halevi, editor, Advances in Cryptol-
ogy - CRYPTO 2009, 29th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 16-20, 2009. Proceedings, volume 5677
of Lecture Notes in Computer Science, pages 108–125. Springer, 2009. doi:
10.1007/978-3-642-03356-8_7. URL https://doi.org/10.1007/978-3
-642-03356-8_7.

Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key
exchange secure against dictionary attacks. In Bart Preneel, editor, Ad-
vances in Cryptology - EUROCRYPT 2000, International Conference on
the Theory and Application of Cryptographic Techniques, Bruges, Belgium,
May 14-18, 2000, Proceeding, volume 1807 of Lecture Notes in Computer

https://doi.org/10.1145/22145.22192
https://doi.org/10.1145/22145.22192
https://bitcointalk.org/index.php?topic=972541.msg10619684#msg10619684
https://bitcointalk.org/index.php?topic=972541.msg10619684#msg10619684
https://doi.org/10.1145/3318041.3355458
https://doi.org/10.1145/383962.384044
https://doi.org/10.1007/978-3-642-03356-8_7
https://doi.org/10.1007/978-3-642-03356-8_7

160 BIBLIOGRAPHY

Science, pages 139–155. Springer, 2000. doi: 10.1007/3-540-45539-6_11.
URL https://doi.org/10.1007/3-540-45539-6_11.

Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval.
Key-privacy in public-key encryption. In Colin Boyd, editor, Advances in
Cryptology - ASIACRYPT 2001, 7th International Conference on the The-
ory and Application of Cryptology and Information Security, Gold Coast,
Australia, December 9-13, 2001, Proceedings, volume 2248 of Lecture Notes
in Computer Science, pages 566–582. Springer, 2001. doi: 10.1007/3-540
-45682-1_33. URL https://doi.org/10.1007/3-540-45682-1_33.

Marianna Belotti, Nikola Bozic, Guy Pujolle, and Stefano Secci. A vademe-
cum on blockchain technologies: When, which, and how. IEEE Commun.
Surv. Tutorials, 21(4):3796–3838, 2019. doi: 10.1109/COMST.2019.29281
78. URL https://doi.org/10.1109/COMST.2019.2928178.

Josh Benaloh, Ronald L. Rivest, Peter Y. A. Ryan, Philip B. Stark,
Vanessa Teague, and Poorvi L. Vora. End-to-end verifiability. CoRR,
abs/1504.03778, 2015. URL http://arxiv.org/abs/1504.03778.

Josh Cohen Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elections
(extended abstract). In Proceedings of the Twenty-Sixth Annual ACM
Symposium on Theory of Computing, 23-25 May 1994, Montréal, Québec,
Canada, pages 544–553, 1994. doi: 10.1145/195058.195407. URL https:
//doi.org/10.1145/195058.195407.

Jorge Bernal Bernabé, Martin David, Rafael Torres Moreno, Javier Presa
Cordero, Sébastien Bahloul, and Antonio F. Skarmeta. ARIES: eval-
uation of a reliable and privacy-preserving european identity manage-
ment framework. Future Gener. Comput. Syst., 102:409–425, 2020. doi:
10.1016/j.future.2019.08.017. URL https://doi.org/10.1016/j.futu
re.2019.08.017.

David Bernhard, Olivier Pereira, and Bogdan Warinschi. How not to prove
yourself: Pitfalls of the fiat-shamir heuristic and applications to helios. In
Xiaoyun Wang and Kazue Sako, editors, Advances in Cryptology - ASI-
ACRYPT 2012 - 18th International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Beijing, China, December
2-6, 2012. Proceedings, volume 7658 of Lecture Notes in Computer Science,

https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45682-1_33
https://doi.org/10.1109/COMST.2019.2928178
http://arxiv.org/abs/1504.03778
https://doi.org/10.1145/195058.195407
https://doi.org/10.1145/195058.195407
https://doi.org/10.1016/j.future.2019.08.017
https://doi.org/10.1016/j.future.2019.08.017

BIBLIOGRAPHY 161

pages 626–643. Springer, 2012. doi: 10.1007/978-3-642-34961-4_38. URL
https://doi.org/10.1007/978-3-642-34961-4_38.

David Bismark, James Heather, Roger M. A. Peel, Steve Schneider, Zhe Xia,
and Peter Y. A. Ryan. Experiences gained from the first prêt à voter
implementation. In First International Workshop on Requirements En-
gineering for e-Voting Systems, RE-VOTE 2009, Atlanta, Georgia, USA,
August 31, 2009, pages 19–28, 2009. doi: 10.1109/RE-VOTE.2009.5. URL
https://doi.org/10.1109/RE-VOTE.2009.5.

Dan Boneh and Matthew K. Franklin. Identity-based encryption from the
weil pairing. In Joe Kilian, editor, Advances in Cryptology - CRYPTO
2001, 21st Annual International Cryptology Conference, Santa Barbara,
California, USA, August 19-23, 2001, Proceedings, volume 2139 of Lecture
Notes in Computer Science, pages 213–229. Springer, 2001. doi: 10.1007/
3-540-44647-8_13. URL https://doi.org/10.1007/3-540-44647-8_1
3.

Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghu-
nathan. Key homomorphic prfs and their applications. In Ran Canetti and
Juan A. Garay, editors, Advances in Cryptology - CRYPTO 2013 - 33rd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22,
2013. Proceedings, Part I, volume 8042 of Lecture Notes in Computer Sci-
ence, pages 410–428. Springer, 2013. doi: 10.1007/978-3-642-40041-4_23.
URL https://doi.org/10.1007/978-3-642-40041-4_23.

Steven J. Brams and Peter C. Fishburn. Approval voting, 2nd edition.
Springer, 2007. ISBN 978-0-387-49895-9.

Eric Brewer. CAP twelve years later: How the "rules" have changed. Com-
puter, 45(2):23–29, 2012.

John Burns and Chris J. Mitchell. Parameter selection for server-aided RSA
computation schemes. IEEE Trans. Computers, 43(2):163–174, 1994. doi:
10.1109/12.262121. URL https://doi.org/10.1109/12.262121.

Gangshu Cai and Ned Kock. An evolutionary game theoretic perspective on
e-collaboration: The collaboration effort and media relativeness. Eur. J.
Oper. Res., 194(3):821–833, 2009. doi: 10.1016/j.ejor.2008.01.021. URL
https://doi.org/10.1016/j.ejor.2008.01.021.

https://doi.org/10.1007/978-3-642-34961-4_38
https://doi.org/10.1109/RE-VOTE.2009.5
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1109/12.262121
https://doi.org/10.1016/j.ejor.2008.01.021

162 BIBLIOGRAPHY

Jan Camenisch and Els Van Herreweghen. Design and implementation of
the idemix anonymous credential system. In Vijayalakshmi Atluri, editor,
Proceedings of the 9th ACM Conference on Computer and Communications
Security, CCS 2002, Washington, DC, USA, November 18-22, 2002, pages
21–30. ACM, 2002. doi: 10.1145/586110.586114. URL https://doi.or
g/10.1145/586110.586114.

Jan Camenisch and Anna Lysyanskaya. An efficient system for non-
transferable anonymous credentials with optional anonymity revocation.
In Birgit Pfitzmann, editor, Advances in Cryptology - EUROCRYPT 2001,
International Conference on the Theory and Application of Cryptographic
Techniques, Innsbruck, Austria, May 6-10, 2001, Proceeding, volume 2045
of Lecture Notes in Computer Science, pages 93–118. Springer, 2001. doi:
10.1007/3-540-44987-6_7. URL https://doi.org/10.1007/3-540-4
4987-6_7.

Jan Camenisch, Jean-Marc Piveteau, and Markus Stadler. Blind signatures
based on the discrete logarithm problem. In Advances in Cryptology - EU-
ROCRYPT ’94, Workshop on the Theory and Application of Cryptographic
Techniques, Perugia, Italy, May 9-12, 1994, Proceedings, pages 428–432,
1994.

Jan Camenisch, Anja Lehmann, Anna Lysyanskaya, and Gregory Neven.
Memento: How to reconstruct your secrets from a single password in a
hostile environment. IACR Cryptol. ePrint Arch., 2014:429, 2014. URL
http://eprint.iacr.org/2014/429.

Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively se-
cure multi-party computation. In Gary L. Miller, editor, Proceedings of
the Twenty-Eighth Annual ACM Symposium on the Theory of Computing,
Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 639–648. ACM,
1996. doi: 10.1145/237814.238015. URL https://doi.org/10.1145/23
7814.238015.

Thomas E. Carroll and Daniel Grosu. A secure and anonymous voter-
controlled election scheme. J. Network and Computer Applications, 32
(3):599–606, 2009. doi: 10.1016/j.jnca.2008.07.010. URL https:
//doi.org/10.1016/j.jnca.2008.07.010.

https://doi.org/10.1145/586110.586114
https://doi.org/10.1145/586110.586114
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/3-540-44987-6_7
http://eprint.iacr.org/2014/429
https://doi.org/10.1145/237814.238015
https://doi.org/10.1145/237814.238015
https://doi.org/10.1016/j.jnca.2008.07.010
https://doi.org/10.1016/j.jnca.2008.07.010

BIBLIOGRAPHY 163

David Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84–88, 1981. doi: 10.114
5/358549.358563. URL http://doi.acm.org/10.1145/358549.358563.

David Chaum. Blind signatures for untraceable payments. In Advances in
Cryptology: Proceedings of CRYPTO ’82, Santa Barbara, California, USA,
August 23-25, 1982, pages 199–203, 1982. doi: 10.1007/978-1-4757-0602-4
_18. URL https://doi.org/10.1007/978-1-4757-0602-4_18.

David Chaum. Blind signature system. In David Chaum, editor, Advances
in Cryptology, Proceedings of CRYPTO ’83, Santa Barbara, California,
USA, August 21-24, 1983, page 153. Plenum Press, New York, 1983.

David Chaum. Security without identification: Transaction systems to make
big brother obsolete. Commun. ACM, 28(10):1030–1044, 1985. doi: 10.1
145/4372.4373. URL https://doi.org/10.1145/4372.4373.

David Chaum. Secret-ballot receipts: True voter-verifiable elections. IEEE
Security & Privacy, 2(1):38–47, 2004. doi: 10.1109/MSECP.2004.1264852.
URL https://doi.org/10.1109/MSECP.2004.1264852.

David Chaum and Jan-Hendrik Evertse. A secure and privacy-protecting
protocol for transmitting personal information between organizations. In
Andrew M. Odlyzko, editor, Advances in Cryptology - CRYPTO ’86, Santa
Barbara, California, USA, 1986, Proceedings, volume 263 of Lecture Notes
in Computer Science, pages 118–167. Springer, 1986. doi: 10.1007/3-540
-47721-7_10. URL https://doi.org/10.1007/3-540-47721-7_10.

David Chaum and Eugène van Heyst. Group signatures. In Donald W.
Davies, editor, Advances in Cryptology - EUROCRYPT ’91, Workshop on
the Theory and Application of of Cryptographic Techniques, Brighton, UK,
April 8-11, 1991, Proceedings, volume 547 of Lecture Notes in Computer
Science, pages 257–265. Springer, 1991.

David Chaum, Peter Y. A. Ryan, and Steve A. Schneider. A practi-
cal voter-verifiable election scheme. In Computer Security - ESORICS
2005, 10th European Symposium on Research in Computer Security, Mi-
lan, Italy, September 12-14, 2005, Proceedings, pages 118–139, 2005. doi:
10.1007/11555827_8. URL https://doi.org/10.1007/11555827_8.

http://doi.acm.org/10.1145/358549.358563
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1145/4372.4373
https://doi.org/10.1109/MSECP.2004.1264852
https://doi.org/10.1007/3-540-47721-7_10
https://doi.org/10.1007/11555827_8

164 BIBLIOGRAPHY

David Chaum, Aleksander Essex, Richard Carback, Jeremy Clark, Stefan
Popoveniuc, Alan T. Sherman, and Poorvi L. Vora. Scantegrity: End-to-
end voter-verifiable optical-scan voting. IEEE Security & Privacy, 6(3):
40–46, 2008. doi: 10.1109/MSP.2008.70. URL https://doi.org/10.110
9/MSP.2008.70.

Guomin Chen, Chunhui Wu, Wei Han, Xiaofeng Chen, Hyunrok Lee, and
Kwangjo Kim. A new receipt-free voting scheme based on linkable ring
signature for designated verifiers. In 2008 International Conference on
Embedded Software and Systems Symposia, pages 18–23. IEEE, 2008.

Lidong Chen. Access with pseudonyms. In Ed Dawson and Jovan Dj. Golic,
editors, Cryptography: Policy and Algorithms, International Conference,
Brisbane, Queensland, Australia, July 3-5, 1995, Proceedings, volume 1029
of Lecture Notes in Computer Science, pages 232–243. Springer, 1995. doi:
10.1007/BFb0032362. URL https://doi.org/10.1007/BFb0032362.

Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely,
and Nicholas P. Ward. Marlin: Preprocessing zksnarks with universal
and updatable SRS. In Anne Canteaut and Yuval Ishai, editors, Ad-
vances in Cryptology - EUROCRYPT 2020 - 39th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Zagreb, Croatia, May 10-14, 2020, Proceedings, Part I, volume 12105 of
Lecture Notes in Computer Science, pages 738–768. Springer, 2020. doi:
10.1007/978-3-030-45721-1_26. URL https://doi.org/10.1007/97
8-3-030-45721-1_26.

Vikas Chouhan and Anshul Arora. Blockchain-based secure and transparent
election and vote counting mechanism using secret sharing scheme. Journal
of Ambient Intelligence and Humanized Computing, pages 1–19, 2022.

Sherman S. M. Chow, Siu-Ming Yiu, and Lucas Chi Kwong Hui. Efficient
identity based ring signature. In John Ioannidis, Angelos D. Keromytis,
and Moti Yung, editors, Applied Cryptography and Network Security, Third
International Conference, ACNS 2005, New York, NY, USA, June 7-10,
2005, Proceedings, volume 3531 of Lecture Notes in Computer Science,
pages 499–512, 2005. doi: 10.1007/11496137_34. URL https://doi.or
g/10.1007/11496137_34.

https://doi.org/10.1109/MSP.2008.70
https://doi.org/10.1109/MSP.2008.70
https://doi.org/10.1007/BFb0032362
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/11496137_34
https://doi.org/10.1007/11496137_34

BIBLIOGRAPHY 165

Josh D. Cohen and Michael J. Fischer. A robust and verifiable cryptograph-
ically secure election scheme (extended abstract). In 26th Annual Sympo-
sium on Foundations of Computer Science, Portland, Oregon, USA, 21-23
October 1985, pages 372–382, 1985. doi: 10.1109/SFCS.1985.2. URL
https://doi.org/10.1109/SFCS.1985.2.

S Barry Cooper. Computability theory. Chapman and Hall/CRC, 2017.

Ronald Cramer, Matthew K. Franklin, Berry Schoenmakers, and Moti Yung.
Multi-autority secret-ballot elections with linear work. In Advances in
Cryptology - EUROCRYPT ’96, International Conference on the Theory
and Application of Cryptographic Techniques, Saragossa, Spain, May 12-
16, 1996, Proceeding, pages 72–83, 1996. doi: 10.1007/3-540-68339-9_7.
URL https://doi.org/10.1007/3-540-68339-9_7.

Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and
optimally efficient multi-authority election scheme. European Transactions
on Telecommunications, 8(5):481–490, 1997. doi: 10.1002/ett.4460080506.
URL https://doi.org/10.1002/ett.4460080506.

Ronald Cramer, Ivan Bjerre Damgård, et al. Secure multiparty computation.
Cambridge University Press, 2015.

Jason Paul Cruz and Yuichi Kaji. E-voting system based on the bitcoin pro-
tocol and blind signatures. IPSJ Transactions on Mathematical Modeling
and Its Applications, 10(1):14–22, 2017.

Kevin Curran. E-voting on the blockchain. The Journal of the British
Blockchain Association, 1(2):4451.

Ivan Damgård. Payment systems and credential mechanisms with prov-
able security against abuse by individuals. In Shafi Goldwasser, edi-
tor, Advances in Cryptology - CRYPTO ’88, 8th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 21-25,
1988, Proceedings, volume 403 of Lecture Notes in Computer Science,
pages 328–335. Springer, 1988. doi: 10.1007/0-387-34799-2_26. URL
https://doi.org/10.1007/0-387-34799-2_26.

Ivan Damgård and Maciej Koprowski. Practical threshold RSA signatures
without a trusted dealer. In Advances in Cryptology - EUROCRYPT 2001,

https://doi.org/10.1109/SFCS.1985.2
https://doi.org/10.1007/3-540-68339-9_7
https://doi.org/10.1002/ett.4460080506
https://doi.org/10.1007/0-387-34799-2_26

166 BIBLIOGRAPHY

International Conference on the Theory and Application of Cryptographic
Techniques, Innsbruck, Austria, May 6-10, 2001, Proceeding, pages 152–
165, 2001. doi: 10.1007/3-540-44987-6_10. URL https://doi.org/10
.1007/3-540-44987-6_10.

Ivan Damgård, Jakob Funder, Jesper Buus Nielsen, and Louis Salvail. Su-
perposition attacks on cryptographic protocols. In Carles Padró, edi-
tor, Information Theoretic Security - 7th International Conference, IC-
ITS 2013, Singapore, November 28-30, 2013, Proceedings, volume 8317 of
Lecture Notes in Computer Science, pages 142–161. Springer, 2013. doi:
10.1007/978-3-319-04268-8_9. URL https://doi.org/10.1007/978-3
-319-04268-8_9.

John M. DeLaurentis. A further weakness in the common modulus protocol
for the RSA cryptoalgorithm. Cryptologia, 8(3):253–259, 1984. doi: 10.1
080/0161-118491859060. URL https://doi.org/10.1080/0161-11849
1859060.

Yvo Desmedt. Threshold cryptography. European Transactions on Telecom-
munications, 5(4):449–458, 1994. doi: 10.1002/ett.4460050407. URL
https://doi.org/10.1002/ett.4460050407.

Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Brassard,
editor, Advances in Cryptology - CRYPTO ’89, 9th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 20-24,
1989, Proceedings, volume 435 of Lecture Notes in Computer Science, pages
307–315. Springer, 1989. doi: 10.1007/0-387-34805-0_28. URL https:
//doi.org/10.1007/0-387-34805-0_28.

Yvo Desmedt and Yair Frankel. Shared generation of authenticators and
signatures (extended abstract). In Joan Feigenbaum, editor, Advances in
Cryptology - CRYPTO ’91, 11th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 11-15, 1991, Proceed-
ings, volume 576 of Lecture Notes in Computer Science, pages 457–469.
Springer, 1991. doi: 10.1007/3-540-46766-1_37. URL https:
//doi.org/10.1007/3-540-46766-1_37.

Giuseppe Destefanis, Michele Marchesi, Marco Ortu, Roberto Tonelli, An-
drea Bracciali, and Robert Hierons. Smart contracts vulnerabilities: a call
for blockchain software engineering? In 2018 International Workshop on

https://doi.org/10.1007/3-540-44987-6_10
https://doi.org/10.1007/3-540-44987-6_10
https://doi.org/10.1007/978-3-319-04268-8_9
https://doi.org/10.1007/978-3-319-04268-8_9
https://doi.org/10.1080/0161-118491859060
https://doi.org/10.1080/0161-118491859060
https://doi.org/10.1002/ett.4460050407
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/3-540-46766-1_37
https://doi.org/10.1007/3-540-46766-1_37

BIBLIOGRAPHY 167

Blockchain Oriented Software Engineering (IWBOSE), pages 19–25. IEEE,
2018.

Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Trans. Information Theory, 22(6):644–654, 1976. doi: 10.1109/TI
T.1976.1055638. URL https://doi.org/10.1109/TIT.1976.1055638.

Yevgeniy Dodis. Shannon impossibility, revisited. In Adam D. Smith, edi-
tor, Information Theoretic Security - 6th International Conference, ICITS
2012, Montreal, QC, Canada, August 15-17, 2012. Proceedings, volume
7412 of Lecture Notes in Computer Science, pages 100–110. Springer, 2012.
doi: 10.1007/978-3-642-32284-6_6. URL https://doi.org/10.1007/
978-3-642-32284-6_6.

Yevgeniy Dodis, Aggelos Kiayias, Antonio Nicolosi, and Victor Shoup.
Anonymous identification in ad hoc groups. In Christian Cachin and Jan
Camenisch, editors, Advances in Cryptology - EUROCRYPT 2004, In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques, Interlaken, Switzerland, May 2-6, 2004, Proceedings, volume
3027 of Lecture Notes in Computer Science, pages 609–626. Springer, 2004.
doi: 10.1007/978-3-540-24676-3_36. URL https://doi.org/10.1007/
978-3-540-24676-3_36.

Wolfgang Drechsler and Ülle Madise. Electronic voting in estonia. Electronic
voting and democracy: A comparative analysis, pages 97–108, 2004.

Taher ElGamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. IEEE Trans. Information Theory, 31(4):469–472,
1985. doi: 10.1109/TIT.1985.1057074. URL https://doi.org/10.1109/
TIT.1985.1057074.

Aleks Essex, Jeremy Clark, Richard Carback, and Stefan Popoveniuc. The
punchscan voting system: Vocomp competition submission. Proceedings
of the First University Voting Systems Competition (VoComp), 2007.

Aleksander Essex, Jeremy Clark, and Urs Hengartner. Cobra: Toward con-
current ballot authorization for internet voting. In 2012 Electronic Voting
Technology Workshop / Workshop on Trustworthy Elections, EVT/WOTE
’12, Bellevue, WA, USA, August 6-7, 2012, 2012. URL https://www.us

https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1007/978-3-642-32284-6_6
https://doi.org/10.1007/978-3-642-32284-6_6
https://doi.org/10.1007/978-3-540-24676-3_36
https://doi.org/10.1007/978-3-540-24676-3_36
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1109/TIT.1985.1057074
https://www.usenix.org/conference/evtwote12/workshop-program/presentation/essex

168 BIBLIOGRAPHY

enix.org/conference/evtwote12/workshop-program/presentation/
essex.

W Ethereum. Ethereum yellowpaper. Ethereum. URL:
https://ethereum.github.io/yellowpaper/paper.pdf [accessed Sept, 2022],
2022.

Paul Feldman. A practical scheme for non-interactive verifiable secret
sharing. In 28th Annual Symposium on Foundations of Computer Sci-
ence, Los Angeles, California, USA, 27-29 October 1987, pages 427–
437. IEEE Computer Society, 1987. doi: 10.1109/SFCS.1987.4. URL
https://doi.org/10.1109/SFCS.1987.4.

David Ferraiolo, Janet Cugini, D Richard Kuhn, et al. Role-based access
control (rbac): Features and motivations. In Proceedings of 11th annual
computer security application conference, pages 241–48, 1995.

Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In Andrew M. Odlyzko, editor,
Advances in Cryptology - CRYPTO ’86, Santa Barbara, California, USA,
1986, Proceedings, volume 263 of Lecture Notes in Computer Science, pages
186–194. Springer, 1986. doi: 10.1007/3-540-47721-7_12. URL https:
//doi.org/10.1007/3-540-47721-7_12.

Hal Finney. Reusable proofs of work. Web Archives Homepage, 2004.

Yair Frankel, Peter Gemmell, Philip D. MacKenzie, and Moti Yung. Optimal
resilience proactive public-key cryptosystems. In 38th Annual Symposium
on Foundations of Computer Science, FOCS ’97, Miami Beach, Florida,
USA, October 19-22, 1997, pages 384–393, 1997. doi: 10.1109/SFCS.199
7.646127. URL https://doi.org/10.1109/SFCS.1997.646127.

Yair Frankel, Philip D. MacKenzie, and Moti Yung. Robust efficient dis-
tributed rsa-key generation. In Proceedings of the Thirtieth Annual ACM
Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-
26, 1998, pages 663–672, 1998. doi: 10.1145/276698.276882. URL
https://doi.org/10.1145/276698.276882.

Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Key-
word search and oblivious pseudorandom functions. In Joe Kilian, ed-

https://www.usenix.org/conference/evtwote12/workshop-program/presentation/essex
https://www.usenix.org/conference/evtwote12/workshop-program/presentation/essex
https://www.usenix.org/conference/evtwote12/workshop-program/presentation/essex
https://doi.org/10.1109/SFCS.1987.4
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1109/SFCS.1997.646127
https://doi.org/10.1145/276698.276882

BIBLIOGRAPHY 169

itor, Theory of Cryptography, Second Theory of Cryptography Confer-
ence, TCC 2005, Cambridge, MA, USA, February 10-12, 2005, Proceed-
ings, volume 3378 of Lecture Notes in Computer Science, pages 303–
324. Springer, 2005. doi: 10.1007/978-3-540-30576-7_17. URL
https://doi.org/10.1007/978-3-540-30576-7_17.

Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK:
permutations over lagrange-bases for oecumenical noninteractive argu-
ments of knowledge. IACR Cryptol. ePrint Arch., page 953, 2019. URL
https://eprint.iacr.org/2019/953.

Patrick Gallagher. Digital signature standard (dss). Federal Information
Processing Standards Publications, volume FIPS, 186, 2013.

Évariste Galois and Peter M Neumann. The mathematical writings of
Évariste Galois, volume 6. European mathematical society, 2011.

Shiyao Gao, Dong Zheng, Rui Guo, Chunming Jing, and Chencheng Hu. An
anti-quantum e-voting protocol in blockchain with audit function. IEEE
Access, 7:115304–115316, 2019. doi: 10.1109/ACCESS.2019.2935895.
URL https://doi.org/10.1109/ACCESS.2019.2935895.

Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Se-
cure distributed key generation for discrete-log based cryptosystems. J.
Cryptology, 20(1):51–83, 2007. doi: 10.1007/s00145-006-0347-3. URL
https://doi.org/10.1007/s00145-006-0347-3.

Rosario Gennaro, Shai Halevi, Hugo Krawczyk, and Tal Rabin. Threshold
RSA for dynamic and ad-hoc groups. In Nigel P. Smart, editor, Advances in
Cryptology - EUROCRYPT 2008, 27th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Istanbul,
Turkey, April 13-17, 2008. Proceedings, volume 4965 of Lecture Notes in
Computer Science, pages 88–107. Springer, 2008. doi: 10.1007/978-3-540
-78967-3_6. URL https://doi.org/10.1007/978-3-540-78967-3_6.

W. Morven Gentleman and G. Sande. Fast fourier transforms: for fun
and profit. In American Federation of Information Processing Societies:
Proceedings of the AFIPS ’66 Fall Joint Computer Conference, Novem-
ber 7-10, 1966, San Francisco, California, USA, volume 29 of AFIPS
Conference Proceedings, pages 563–578. AFIPS / ACM / Spartan Books,

https://doi.org/10.1007/978-3-540-30576-7_17
https://eprint.iacr.org/2019/953
https://doi.org/10.1109/ACCESS.2019.2935895
https://doi.org/10.1007/s00145-006-0347-3
https://doi.org/10.1007/978-3-540-78967-3_6

170 BIBLIOGRAPHY

Washington D.C., 1966. doi: 10.1145/1464291.1464352. URL https:
//doi.org/10.1145/1464291.1464352.

Jan Gerlach and Urs Gasser. Three case studies from switzerland: E-voting.
Berkman Center Research Publication No, 3:2009, 2009.

Seth Gilbert and Nancy A. Lynch. Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services. SIGACT News, 33
(2):51–59, 2002.

Oded Goldreich, Amit Sahai, and Salil P. Vadhan. Honest-verifier statistical
zero-knowledge equals general statistical zero-knowledge. In Jeffrey Scott
Vitter, editor, Proceedings of the Thirtieth Annual ACM Symposium on
the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998, pages
399–408. ACM, 1998. doi: 10.1145/276698.276852. URL https://doi.
org/10.1145/276698.276852.

Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating
computation: Interactive proofs for muggles. J. ACM, 62(4):27:1–27:64,
2015. doi: 10.1145/2699436. URL https://doi.org/10.1145/2699436.

Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge com-
plexity of interactive proof-systems. In Oded Goldreich, editor, Providing
Sound Foundations for Cryptography: On the Work of Shafi Goldwasser
and Silvio Micali, pages 203–225. ACM, 2019. doi: 10.1145/3335741.3335
750. URL https://doi.org/10.1145/3335741.3335750.

Jens Groth. On the size of pairing-based non-interactive arguments. In
Annual international conference on the theory and applications of crypto-
graphic techniques, pages 305–326. Springer, 2016.

Thomas Haines, Sarah Jamie Lewis, Olivier Pereira, and Vanessa Teague.
How not to prove your election outcome. In 2020 IEEE Symposium on
Security and Privacy, SP 2020, San Francisco, CA, USA, May 18-21,
2020, pages 644–660. IEEE, 2020. doi: 10.1109/SP40000.2020.00048.
URL https://doi.org/10.1109/SP40000.2020.00048.

Freya Sheer Hardwick, Apostolos Gioulis, Raja Naeem Akram, and Kon-
stantinos Markantonakis. E-voting with blockchain: An e-voting protocol
with decentralisation and voter privacy. In 2018 IEEE International Con-
ference on Internet of Things (iThings) and IEEE Green Computing and

https://doi.org/10.1145/1464291.1464352
https://doi.org/10.1145/1464291.1464352
https://doi.org/10.1145/276698.276852
https://doi.org/10.1145/276698.276852
https://doi.org/10.1145/2699436
https://doi.org/10.1145/3335741.3335750
https://doi.org/10.1109/SP40000.2020.00048

BIBLIOGRAPHY 171

Communications (GreenCom) and IEEE Cyber, Physical and Social Com-
puting (CPSCom) and IEEE Smart Data (SmartData), pages 1561–1567.
IEEE, 2018.

Juris Hartmanis and John E. Hopcroft. An overview of the theory of com-
putational complexity. J. ACM, 18(2):444–475, 1971. doi: 10.1145/3216
50.321661. URL https://doi.org/10.1145/321650.321661.

Friorik P. Hjalmarsson, Gunnlaugur K. Hreioarsson, Mohammad Hamdaqa,
and Gísli Hjálmtýsson. Blockchain-based e-voting system. In 11th IEEE
International Conference on Cloud Computing, CLOUD 2018, San Fran-
cisco, CA, USA, July 2-7, 2018, pages 983–986. IEEE Computer Society,
2018. doi: 10.1109/CLOUD.2018.00151. URL https://doi.org/10.110
9/CLOUD.2018.00151.

Yang Hua-jie, Miao Xiang-hua, Zhu Hai-tao, and Li Yi-ran. Efficient certifi-
cateless ring signature scheme with identity tracing. Information Security
and Technology, (7):9, 2014.

Kazuharu Itakura. A public-key cryptosystem suitable for digital multisig-
natures. NEC J. Res. Dev., 71, 1983.

Markus Jakobsson and Ari Juels. Mix and match: Secure function evalu-
ation via ciphertexts. In Advances in Cryptology - ASIACRYPT 2000,
6th International Conference on the Theory and Application of Cryptol-
ogy and Information Security, Kyoto, Japan, December 3-7, 2000, Pro-
ceedings, pages 162–177, 2000. doi: 10.1007/3-540-44448-3_13. URL
https://doi.org/10.1007/3-540-44448-3_13.

Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Jiayu Xu. Highly-
efficient and composable password-protected secret sharing (or: How to
protect your bitcoin wallet online). In IEEE European Symposium on
Security and Privacy, EuroS&P 2016, Saarbrücken, Germany, March 21-
24, 2016, pages 276–291. IEEE, 2016. doi: 10.1109/EuroSP.2016.30. URL
https://doi.org/10.1109/EuroSP.2016.30.

Wen-Shenq Juang, Chin-Laung Lei, and Horng-Twu Liaw. A verifiable multi-
authority secret election allowing abstention from voting. Comput. J., 45
(6):672–682, 2002. doi: 10.1093/comjnl/45.6.672. URL https://doi.or
g/10.1093/comjnl/45.6.672.

https://doi.org/10.1145/321650.321661
https://doi.org/10.1109/CLOUD.2018.00151
https://doi.org/10.1109/CLOUD.2018.00151
https://doi.org/10.1007/3-540-44448-3_13
https://doi.org/10.1109/EuroSP.2016.30
https://doi.org/10.1093/comjnl/45.6.672
https://doi.org/10.1093/comjnl/45.6.672

172 BIBLIOGRAPHY

Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant elec-
tronic elections. In Towards Trustworthy Elections, New Directions in
Electronic Voting, pages 37–63, 2010. doi: 10.1007/978-3-642-12980-3_2.
URL https://doi.org/10.1007/978-3-642-12980-3_2.

David Kahn. The Codebreakers: The comprehensive history of secret com-
munication from ancient times to the internet. Simon and Schuster, 1996.

Jonathan Katz, Rafail Ostrovsky, and Moti Yung. Efficient password-
authenticated key exchange using human-memorable passwords. In Birgit
Pfitzmann, editor, Advances in Cryptology - EUROCRYPT 2001, Interna-
tional Conference on the Theory and Application of Cryptographic Tech-
niques, Innsbruck, Austria, May 6-10, 2001, Proceeding, volume 2045 of
Lecture Notes in Computer Science, pages 475–494. Springer, 2001. doi:
10.1007/3-540-44987-6_29. URL https://doi.org/10.1007/3-540-4
4987-6_29.

Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen K. Lenstra, Em-
manuel Thomé, Joppe W. Bos, Pierrick Gaudry, Alexander Kruppa, Pe-
ter L. Montgomery, Dag Arne Osvik, Herman J. J. te Riele, Andrey Timo-
feev, and Paul Zimmermann. Factorization of a 768-bit RSA modulus. In
Tal Rabin, editor, Advances in Cryptology - CRYPTO 2010, 30th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010.
Proceedings, volume 6223 of Lecture Notes in Computer Science, pages
333–350. Springer, 2010. doi: 10.1007/978-3-642-14623-7_18. URL
https://doi.org/10.1007/978-3-642-14623-7_18.

Neal Koblitz. Elliptic curve cryptosystems. Mathematics of computation, 48
(177):203–209, 1987.

Neal Koblitz and Alfred J. Menezes. The random oracle model: a twenty-
year retrospective. Des. Codes Cryptogr., 77(2-3):587–610, 2015. doi: 10
.1007/s10623-015-0094-2. URL https://doi.org/10.1007/s10623-015
-0094-2.

Koe, Kurt M. Alonso, and Sarang Noether. Zero to monero: Second edi-
tion. Available at https://web.getmonero.org/library/Zero-to-Monero-2-0-
0.pdf.

https://doi.org/10.1007/978-3-642-12980-3_2
https://doi.org/10.1007/3-540-44987-6_29
https://doi.org/10.1007/3-540-44987-6_29
https://doi.org/10.1007/978-3-642-14623-7_18
https://doi.org/10.1007/s10623-015-0094-2
https://doi.org/10.1007/s10623-015-0094-2

BIBLIOGRAPHY 173

Nir Kshetri and Jeffrey M. Voas. Blockchain-enabled e-voting. IEEE Softw.,
35(4):95–99, 2018. doi: 10.1109/MS.2018.2801546. URL https://doi.or
g/10.1109/MS.2018.2801546.

Wei-Jr Lai and Ja-Ling Wu. An efficient and effective decentralized anony-
mous voting system. CoRR, abs/1804.06674, 2018. URL http://arxiv.
org/abs/1804.06674.

Antonio M. Larriba, José M. Sempere, and Damián López. A two authorities
electronic vote scheme. Comput. Secur., 97:101940, 2020. doi: 10.1016/j.co
se.2020.101940. URL https://doi.org/10.1016/j.cose.2020.101940.

Antonio M. Larriba, Aleix Cerdà-i-Cucó, José M. Sempere, and Damián
López. Distributed trust, a blockchain election scheme. Informatica, 32
(2):321–355, 2021. doi: 10.15388/20-INFOR440. URL https://doi.or
g/10.15388/20-INFOR440.

Kibin Lee, Joshua I. James, Tekachew Gobena Ejeta, and Hyoung Joong
Kim. Electronic voting service using block-chain. J. Digit. Forensics Secur.
Law, 11(2):123–136, 2016. doi: 10.15394/jdfsl.2016.1383. URL https:
//doi.org/10.15394/jdfsl.2016.1383.

Jonathan Levin and Barry Nalebuff. An introduction to vote-counting
schemes. Journal of Economic Perspectives, 9:3–26, 02 1995. doi:
10.1257/jep.9.1.3.

Chun-Ta Li, Min-Shiang Hwang, and Yan-Chi Lai. A verifiable electronic
voting scheme over the internet. In Sixth International Conference on In-
formation Technology: New Generations, ITNG 2009, Las Vegas, Nevada,
USA, 27-29 April 2009, pages 449–454, 2009a. doi: 10.1109/ITNG.2009.93.
URL https://doi.org/10.1109/ITNG.2009.93.

Chun-Ta Li, Min-Shiang Hwang, and Yan-Chi Lai. A verifiable electronic
voting scheme over the internet. In Shahram Latifi, editor, Sixth In-
ternational Conference on Information Technology: New Generations,
ITNG 2009, Las Vegas, Nevada, USA, 27-29 April 2009, pages 449–454.
IEEE Computer Society, 2009b. doi: 10.1109/ITNG.2009.93. URL
https://doi.org/10.1109/ITNG.2009.93.

https://doi.org/10.1109/MS.2018.2801546
https://doi.org/10.1109/MS.2018.2801546
http://arxiv.org/abs/1804.06674
http://arxiv.org/abs/1804.06674
https://doi.org/10.1016/j.cose.2020.101940
https://doi.org/10.15388/20-INFOR440
https://doi.org/10.15388/20-INFOR440
https://doi.org/10.15394/jdfsl.2016.1383
https://doi.org/10.15394/jdfsl.2016.1383
https://doi.org/10.1109/ITNG.2009.93
https://doi.org/10.1109/ITNG.2009.93

174 BIBLIOGRAPHY

Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf.
Pseudonym systems. In Howard M. Heys and Carlisle M. Adams, ed-
itors, Selected Areas in Cryptography, 6th Annual International Work-
shop, SAC’99, Kingston, Ontario, Canada, August 9-10, 1999, Proceed-
ings, volume 1758 of Lecture Notes in Computer Science, pages 184–
199. Springer, 1999. doi: 10.1007/3-540-46513-8_14. URL https:
//doi.org/10.1007/3-540-46513-8_14.

Epp Maaten. Towards remote e-voting: Estonian case. In Alexander Prosser
and Robert Krimmer, editors, Electronic Voting in Europe - Technology,
Law, Politics and Society, Workshop of the ESF TED Programme together
with GI and OCG, July, 7th-9th, 2004, in Schloß Hofen / Bregenz, Lake of
Constance, Austria, Proceedings, volume P-47 of LNI, pages 83–100. GI,
2004. URL https://dl.gi.de/20.500.12116/29132.

Philip D. MacKenzie, Thomas Shrimpton, and Markus Jakobsson. Thresh-
old password-authenticated key exchange. In Moti Yung, editor, Ad-
vances in Cryptology - CRYPTO 2002, 22nd Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 18-22, 2002,
Proceedings, volume 2442 of Lecture Notes in Computer Science, pages
385–400. Springer, 2002. doi: 10.1007/3-540-45708-9_25. URL
https://doi.org/10.1007/3-540-45708-9_25.

Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic:
Zero-knowledge snarks from linear-size universal and updatable structured
reference strings. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang,
and Jonathan Katz, editors, Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS 2019, London,
UK, November 11-15, 2019, pages 2111–2128. ACM, 2019. doi: 10.1145/
3319535.3339817. URL https://doi.org/10.1145/3319535.3339817.

Kevin S McCurley. The discrete logarithm problem. In Proc. of Symp. in
Applied Math, volume 42, pages 49–74. USA, 1990.

Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook
of Applied Cryptography. CRC Press, 1996. ISBN 0-8493-8523-7. doi:
10.1201/9781439821916. URL http://cacr.uwaterloo.ca/hac/.

Ralph C. Merkle. A digital signature based on a conventional encryp-
tion function. In Carl Pomerance, editor, Advances in Cryptology -

https://doi.org/10.1007/3-540-46513-8_14
https://doi.org/10.1007/3-540-46513-8_14
https://dl.gi.de/20.500.12116/29132
https://doi.org/10.1007/3-540-45708-9_25
https://doi.org/10.1145/3319535.3339817
http://cacr.uwaterloo.ca/hac/

BIBLIOGRAPHY 175

CRYPTO ’87, A Conference on the Theory and Applications of Crypto-
graphic Techniques, Santa Barbara, California, USA, August 16-20, 1987,
Proceedings, volume 293 of Lecture Notes in Computer Science, pages
369–378. Springer, 1987. doi: 10.1007/3-540-48184-2_32. URL
https://doi.org/10.1007/3-540-48184-2_32.

Victor S. Miller. Use of elliptic curves in cryptography. In Hugh C. Williams,
editor, Advances in Cryptology - CRYPTO ’85, Santa Barbara, California,
USA, August 18-22, 1985, Proceedings, volume 218 of Lecture Notes in
Computer Science, pages 417–426. Springer, 1985. doi: 10.1007/3-540-397
99-X_31. URL https://doi.org/10.1007/3-540-39799-X_31.

Peter L Montgomery. A survey of modern integer factorization algorithms.
CWI quarterly, 7(4):337–366, 1994.

Ciara Moore, Máire O’Neill, Elizabeth O’Sullivan, Yarkin Doröz, and Berk
Sunar. Practical homomorphic encryption: A survey. In IEEE Inter-
national Symposium on Circuits and Systemss, ISCAS 2014, Melbourne,
Victoria, Australia, June 1-5, 2014, pages 2792–2795. IEEE, 2014. doi:
10.1109/ISCAS.2014.6865753. URL https://doi.org/10.1109/ISCAS.
2014.6865753.

Eduardo Morais, Tommy Koens, Cees van Wijk, and Aleksei Koren. A survey
on zero knowledge range proofs and applications. CoRR, abs/1907.06381,
2019. URL http://arxiv.org/abs/1907.06381.

Louis Joel Mordell. Diophantine equations. Academic press, 1969.

Rafael Torres Moreno, Jorge Bernal Bernabé, Antonio F. Skarmeta, Michael
Stausholm, Tore Kasper Frederiksen, Noelia Martínez, Nuno Ponte, Evan-
gelos Sakkopoulos, and Anja Lehmann. OLYMPUS: towards oblivious
identity management for private and user-friendly services. In 2019
Global IoT Summit, GIoTS 2019, Aarhus, Denmark, June 17-21, 2019,
pages 1–6. IEEE, 2019. doi: 10.1109/GIOTS.2019.8766357. URL
https://doi.org/10.1109/GIOTS.2019.8766357.

Teogenes Moura and Alexandre Gomes. Blockchain voting and its effects
on election transparency and voter confidence. In Proceedings of the 18th
annual international conference on digital government research, pages 574–
575, 2017.

https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1109/ISCAS.2014.6865753
https://doi.org/10.1109/ISCAS.2014.6865753
http://arxiv.org/abs/1907.06381
https://doi.org/10.1109/GIOTS.2019.8766357

176 BIBLIOGRAPHY

Francesc D. Muñoz-Escoí, Rubén de Juan-Marín, José-Ramón García-
Escrivá, José Ramón González de Mendívil, and José M. Bernabéu-Aubán.
CAP theorem: Revision of its related consistency models. Comput. J., 62
(6):943–960, 2019.

Satoshi Nakamoto. Bitcoin whitepaper. URL: https://bitcoin. org/bitcoin.
pdf-(: 17.07. 2019), 2008.

Moni Naor and Adi Shamir. Visual cryptography. In Advances in Cryp-
tology - EUROCRYPT ’94, Workshop on the Theory and Application
of Cryptographic Techniques, Perugia, Italy, May 9-12, 1994, Proceed-
ings, pages 1–12, 1994. doi: 10.1007/BFb0053419. URL https:
//doi.org/10.1007/BFb0053419.

Moni Naor, Benny Pinkas, and Omer Reingold. Distributed pseudo-random
functions and kdcs. In Jacques Stern, editor, Advances in Cryptology -
EUROCRYPT ’99, International Conference on the Theory and Appli-
cation of Cryptographic Techniques, Prague, Czech Republic, May 2-6,
1999, Proceeding, volume 1592 of Lecture Notes in Computer Science,
pages 327–346. Springer, 1999. doi: 10.1007/3-540-48910-X_23. URL
https://doi.org/10.1007/3-540-48910-X_23.

James Nechvatal, Elaine Barker, Lawrence Bassham, William Burr, Morris
Dworkin, James Foti, and Edward Roback. Report on the development
of the advanced encryption standard (aes). Journal of research of the
National Institute of Standards and Technology, 106(3):511, 2001.

Cong T. Nguyen, Dinh Thai Hoang, Diep N. Nguyen, Dusit Niyato,
Huynh Tuong Nguyen, and Eryk Dutkiewicz. Proof-of-stake consen-
sus mechanisms for future blockchain networks: Fundamentals, appli-
cations and opportunities. IEEE Access, 7:85727–85745, 2019. doi:
10.1109/ACCESS.2019.2925010. URL https://doi.org/10.1109/
ACCESS.2019.2925010.

Nicolas de Condorcet. Essai sur l’application de l’analyse à la probabilité des
décisions rendus à la pluralité des voix, 1785.

Harald Niederreiter. A public-key cryptosystem based on shift register se-
quences. In Franz Pichler, editor, Advances in Cryptology - EUROCRYPT

https://doi.org/10.1007/BFb0053419
https://doi.org/10.1007/BFb0053419
https://doi.org/10.1007/3-540-48910-X_23
https://doi.org/10.1109/ACCESS.2019.2925010
https://doi.org/10.1109/ACCESS.2019.2925010

BIBLIOGRAPHY 177

’85, Workshop on the Theory and Application of of Cryptographic Tech-
niques, Linz, Austria, April 1985, Proceedings, volume 219 of Lecture Notes
in Computer Science, pages 35–39. Springer, 1985. doi: 10.1007/3-540-3
9805-8_4. URL https://doi.org/10.1007/3-540-39805-8_4.

Shen Noether. Ring signature confidential transactions for Monero. IACR
Cryptol. ePrint Arch., 2015. Available at https://eprint.iacr.org/20
15/1098.

Pierre Noizat. Blockchain electronic vote. In Handbook of digital currency,
pages 453–461. Elsevier, 2015.

Hannu Nurmi. Comparing voting systems, volume 3. Springer Science &
Business Media, 2012.

Ceyhun Onur and Arda Yurdakul. Electanon: A blockchain-based,
anonymous, robust and scalable ranked-choice voting protocol. CoRR,
abs/2204.00057, 2022. doi: 10.48550/arXiv.2204.00057. URL https:
//doi.org/10.48550/arXiv.2204.00057.

Pascal Paillier. Public-key cryptosystem based on discrete logarithm residues.
EUROCRYPT 1999, 1999.

Sunoo Park, Michael A. Specter, Neha Narula, and Ronald L. Rivest. Go-
ing from bad to worse: from internet voting to blockchain voting. J.
Cybersecur., 7(1), 2021. doi: 10.1093/cybsec/tyaa025. URL https:
//doi.org/10.1093/cybsec/tyaa025.

Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio:
Nearly practical verifiable computation. Communications of the ACM, 59
(2):103–112, 2016.

Remigijus Paulavicius, Saulius Grigaitis, Aleksandr Igumenov, and Ernestas
Filatovas. A decade of blockchain: Review of the current status, challenges,
and future directions. Informatica, 30(4):729–748, 2019. URL https:
//content.iospress.com/articles/informatica/inf1245.

Torben P. Pedersen. Non-interactive and information-theoretic secure ver-
ifiable secret sharing. In Advances in Cryptology - CRYPTO ’91, 11th
Annual International Cryptology Conference, Santa Barbara, California,

https://doi.org/10.1007/3-540-39805-8_4
https://eprint.iacr.org/2015/1098
https://eprint.iacr.org/2015/1098
https://doi.org/10.48550/arXiv.2204.00057
https://doi.org/10.48550/arXiv.2204.00057
https://doi.org/10.1093/cybsec/tyaa025
https://doi.org/10.1093/cybsec/tyaa025
https://content.iospress.com/articles/informatica/inf1245
https://content.iospress.com/articles/informatica/inf1245

178 BIBLIOGRAPHY

USA, August 11-15, 1991, Proceedings, pages 129–140, 1991. doi: 10.1007/
3-540-46766-1_9. URL https://doi.org/10.1007/3-540-46766-1_9.

Adewole A Philip, Sodiya Adesina Simon, and Arowolo Oluremi. A receipt-
free multi-authority e-voting system. International Journal of Computer
Applications, 30(6):15–23, 2011.

Chinniah Porkodi, Ramalingam Arumuganathan, and Krishnasamy Vidya.
Multi-authority electronic voting scheme based on elliptic curves. I. J.
Network Security, 12(2):84–91, 2011. URL http://ijns.femto.com.tw/
contents/ijns-v12-n2/ijns-2011-v12-n2-p84-91.pdf.

Jean-Jacques Quisquater, Myriam Quisquater, Muriel Quisquater, Michaël
Quisquater, Louis C. Guillou, Marie Annick Guillou, Gaïd Guillou, Anna
Guillou, Gwenolé Guillou, Soazig Guillou, and Thomas A. Berson. How
to explain zero-knowledge protocols to your children. In Gilles Brassard,
editor, Advances in Cryptology - CRYPTO ’89, 9th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 20-24,
1989, Proceedings, volume 435 of Lecture Notes in Computer Science, pages
628–631. Springer, 1989. doi: 10.1007/0-387-34805-0_60. URL https:
//doi.org/10.1007/0-387-34805-0_60.

Tal Rabin. A simplified approach to threshold and proactive rsa. In Annual
International Cryptology Conference, pages 89–104. Springer, 1998.

Mario Di Raimondo and Rosario Gennaro. Provably secure threshold
password-authenticated key exchange. In Eli Biham, editor, Advances in
Cryptology - EUROCRYPT 2003, International Conference on the Theory
and Applications of Cryptographic Techniques, Warsaw, Poland, May 4-
8, 2003, Proceedings, volume 2656 of Lecture Notes in Computer Science,
pages 507–523. Springer, 2003. doi: 10.1007/3-540-39200-9_32. URL
https://doi.org/10.1007/3-540-39200-9_32.

Eric Rescorla. The transport layer security (TLS) protocol version 1.3. RFC,
8446:1–160, 2018. doi: 10.17487/RFC8446. URL https://doi.org/10.1
7487/RFC8446.

Ronald L Rivest. The threeballot voting system. 2006.

https://doi.org/10.1007/3-540-46766-1_9
http://ijns.femto.com.tw/contents/ijns-v12-n2/ijns-2011-v12-n2-p84-91.pdf
http://ijns.femto.com.tw/contents/ijns-v12-n2/ijns-2011-v12-n2-p84-91.pdf
https://doi.org/10.1007/0-387-34805-0_60
https://doi.org/10.1007/0-387-34805-0_60
https://doi.org/10.1007/3-540-39200-9_32
https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC8446

BIBLIOGRAPHY 179

Ronald L Rivest and Warren D Smith. Three voting protocols: Threeballot,
vav, and twin. USENIX/ACCURATE Electronic Voting Technology (EVT
2007), 2007.

Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method
for obtaining digital signatures and public-key cryptosystems. Com-
mun. ACM, 21(2):120–126, 1978. doi: 10.1145/359340.359342. URL
http://doi.acm.org/10.1145/359340.359342.

Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret:
Theory and applications of ring signatures. In Oded Goldreich, Arnold L.
Rosenberg, and Alan L. Selman, editors, Theoretical Computer Science,
Essays in Memory of Shimon Even, volume 3895 of Lecture Notes in Com-
puter Science, pages 164–186. Springer, 2006. doi: 10.1007/11685654_7.
URL https://doi.org/10.1007/11685654_7.

Tim Roughgarden. Transaction fee mechanism design for the ethereum
blockchain: An economic analysis of eip-1559. arXiv preprint
arXiv:2012.00854, 2020.

Tim Ruffing and Pedro Moreno-Sanchez. Valueshuffle: Mixing confiden-
tial transactions for comprehensive transaction privacy in bitcoin. LNCS,
10323:133–154, 2017. Proceedings of the International Conference on Fi-
nancial Cryptography and Data Security.

Peter Y. A. Ryan. A variant of the chaum voter-verifiable scheme. In Pro-
ceedings of the POPL 2005 Workshop on Issues in the Theory of Secu-
rity, WITS 2005, Long Beach, California, USA, January 10-11, 2005,
pages 81–88, 2005. doi: 10.1145/1045405.1045414. URL https:
//doi.org/10.1145/1045405.1045414.

Muhammad Saad, Jeffrey Spaulding, Laurent Njilla, Charles Kamhoua,
Sachin Shetty, DaeHun Nyang, and David Mohaisen. Exploring the attack
surface of blockchain: A comprehensive survey. IEEE Communications
Surveys & Tutorials, 22(3):1977–2008, 2020.

Donald G. Saari. Geometry of voting. Springer Science & Business Media,
2012.

http://doi.acm.org/10.1145/359340.359342
https://doi.org/10.1007/11685654_7
https://doi.org/10.1145/1045405.1045414
https://doi.org/10.1145/1045405.1045414

180 BIBLIOGRAPHY

Joel L Sachs, Ulrich G Mueller, Thomas P Wilcox, and James J Bull. The
evolution of cooperation. The Quarterly review of biology, 79(2):135–160,
2004.

José Luis Salazar, Joan Josep Piles, José Ruíz-Mas, and José María Moreno-
Jiménez. Security approaches in e-cognocracy. Computer Standards &
Interfaces, 32(5-6):256–265, 2010. doi: 10.1016/j.csi.2010.01.004. URL
https://doi.org/10.1016/j.csi.2010.01.004.

Roy Saltman. The history and politics of voting technology: In quest of
integrity and public confidence. Springer, 2006.

Ravi S. Sandhu and Pierangela Samarati. Access control: principles and
practice. IEEE Commun. Mag., 32(9):40–48, 1994. doi: 10.1109/35.31284
2. URL https://doi.org/10.1109/35.312842.

Alfredo De Santis, Yvo Desmedt, Yair Frankel, and Moti Yung. How to
share a function securely. In Frank Thomson Leighton and Michael T.
Goodrich, editors, Proceedings of the Twenty-Sixth Annual ACM Sym-
posium on Theory of Computing, 23-25 May 1994, Montréal, Québec,
Canada, pages 522–533. ACM, 1994. doi: 10.1145/195058.195405. URL
https://doi.org/10.1145/195058.195405.

Claus-Peter Schnorr. Efficient identification and signatures for smart cards.
In Gilles Brassard, editor, Advances in Cryptology - CRYPTO ’89, 9th
Annual International Cryptology Conference, Santa Barbara, California,
USA, August 20-24, 1989, Proceedings, volume 435 of Lecture Notes in
Computer Science, pages 239–252. Springer, 1989. doi: 10.1007/0-387-348
05-0_22. URL https://doi.org/10.1007/0-387-34805-0_22.

José M. Sempere. Un sistema de identificación basado en un problema inde-
cidible. In RS. González and C. Martínez, editors, VII Reunión Española
sobre Criptología y Seguridad de la Información (VII RECSI) (Oviedo,
España), volume II, pages 793–803, 2002.

José M. Sempere. Un sistema de cifrado simétrico y algunas consideraciones
sobre la seguridad computacional. In VII Reunión Española sobre Crip-
tología y Seguridad de la Información, pages 131–137, 2004.

https://doi.org/10.1016/j.csi.2010.01.004
https://doi.org/10.1109/35.312842
https://doi.org/10.1145/195058.195405
https://doi.org/10.1007/0-387-34805-0_22

BIBLIOGRAPHY 181

Adi Shamir. How to share a secret. Communications of the ACM, 22(11):
612–613, 1979. doi: 10.1145/359168.359176. URL http://doi.acm.org/
10.1145/359168.359176.

Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R.
Blakley and David Chaum, editors, Advances in Cryptology, Proceedings
of CRYPTO ’84, Santa Barbara, California, USA, August 19-22, 1984,
Proceedings, volume 196 of Lecture Notes in Computer Science, pages 47–
53. Springer, 1984. doi: 10.1007/3-540-39568-7_5. URL https://doi.
org/10.1007/3-540-39568-7_5.

Michael I Shamos. Electronic voting-evaluating the threat. In Third Confer-
ence on Computers, Freedom and Privacy, CPSR, 1993.

Claude E. Shannon. Communication theory of secrecy systems. Bell Syst.
Tech. J., 28(4):656–715, 1949. doi: 10.1002/j.1538-7305.1949.tb00928.x.
URL https://doi.org/10.1002/j.1538-7305.1949.tb00928.x.

Vitaly Shmatikov and Ming-Hsiu Wang. Timing analysis in low-latency mix
networks: Attacks and defenses. In Dieter Gollmann, Jan Meier, and An-
drei Sabelfeld, editors, Computer Security - ESORICS 2006, 11th Euro-
pean Symposium on Research in Computer Security, Hamburg, Germany,
September 18-20, 2006, Proceedings, volume 4189 of Lecture Notes in Com-
puter Science, pages 18–33. Springer, 2006. doi: 10.1007/11863908_2.
URL https://doi.org/10.1007/11863908_2.

Joseph H Silverman and John Torrence Tate. Rational points on elliptic
curves, volume 9. Springer, 1992.

Michael Sipser. Introduction to the theory of computation. SIGACT News,
27(1):27–29, 1996. doi: 10.1145/230514.571645. URL https://doi.org/
10.1145/230514.571645.

Arkadii Slinko. Algebra for Applications. Springer, 2020.

Nick Szabo. Bit gold. Recuperado de https://nakamotoinstitute. org/bit-
gold/TVer página, 2005.

Pavel Tarasov and Hitesh Tewari. Internet voting using zcash. IACR Cryp-
tology ePrint Archive, 2017:585, 2017. URL http://eprint.iacr.org/
2017/585.

http://doi.acm.org/10.1145/359168.359176
http://doi.acm.org/10.1145/359168.359176
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1007/11863908_2
https://doi.org/10.1145/230514.571645
https://doi.org/10.1145/230514.571645
http://eprint.iacr.org/2017/585
http://eprint.iacr.org/2017/585

182 BIBLIOGRAPHY

Ruhi Taş and Ömer Özgür Tanrıöver. A systematic review of challenges and
opportunities of blockchain for e-voting. Symmetry, 12(8):1328, 2020.

Justin Thaler. Proofs, arguments, and zero-knowledge. Found. Trends Priv.
Secur., 4(2-4):117–660, 2022. doi: 10.1561/3300000030. URL https:
//doi.org/10.1561/3300000030.

Ai Thao Nguyen Thi and Tran Khanh Dang. Enhanced security in internet
voting protocol using blind signature and dynamic ballots. Electronic Com-
merce Research, 13(3):257–272, 2013. doi: 10.1007/s10660-013-9120-5.
URL https://doi.org/10.1007/s10660-013-9120-5.

José Luis Tornos, José Luis Salazar, Joan Josep Piles, Jose Saldana, Luis
Casadesus, José Ruíz-Mas, and Julián Fernández-Navajas. An evoting
system based on ring signatures. Network Protocols & Algorithms, 6(2):
38–54, 2014.

Patrick P. Tsang and Victor K. Wei. Short linkable ring signatures for e-
voting, e-cash and attestation. IACR Cryptology ePrint Archive, 2004:
281, 2004. URL http://eprint.iacr.org/2004/281.

Nicolas Van Saberhagen. Cryptonote v 2.0, 2013.

Lingling Wang, Guoyin Zhang, and Chunguang Ma. A survey of ring signa-
ture. Frontiers of Electrical and Electronic Engineering in China, 3:10–19,
2008.

Wei Dai. B-money: anonymous, distributed electronic cash system. http:
//www.weidai.com/bmoney.txt, 1998. Online; accessed 22 February
2023.

Yifan Wu. An e-voting system based on blockchain and ring signature. Mas-
ter. University of Birmingham, 2017.

Zhen Yu Wu, Ju-Chuan Wu, Sung-Chiang Lin, and Charlotte Wang. An
electronic voting mechanism for fighting bribery and coercion. J. Network
and Computer Applications, 40:139–150, 2014. doi: 10.1016/j.jnca.2013.
09.011. URL https://doi.org/10.1016/j.jnca.2013.09.011.

Yang Xiao, Ning Zhang, Wenjing Lou, and Y. Thomas Hou. A survey of
distributed consensus protocols for blockchain networks. IEEE Commun.

https://doi.org/10.1561/3300000030
https://doi.org/10.1561/3300000030
https://doi.org/10.1007/s10660-013-9120-5
http://eprint.iacr.org/2004/281
http://www.weidai.com/bmoney.txt
http://www.weidai.com/bmoney.txt
https://doi.org/10.1016/j.jnca.2013.09.011

BIBLIOGRAPHY 183

Surv. Tutorials, 22(2):1432–1465, 2020. doi: 10.1109/COMST.2020.29697
06. URL https://doi.org/10.1109/COMST.2020.2969706.

Xuechao Yang, Xun Yi, Caspar Ryan, Ron G. van Schyndel, Fengling Han,
Surya Nepal, and Andy Song. A verifiable ranked choice internet voting
system. In Web Information Systems Engineering - WISE 2017 - 18th
International Conference, Puschino, Russia, October 7-11, 2017, Proceed-
ings, Part II, pages 490–501, 2017. doi: 10.1007/978-3-319-68786-5_39.
URL https://doi.org/10.1007/978-3-319-68786-5_39.

Xuechao Yang, Xun Yi, Surya Nepal, Andrei Kelarev, and Fengling Han. A
secure verifiable ranked choice online voting system based on homomorphic
encryption. IEEE Access, 6:20506–20519, 2018. doi: 10.1109/ACCESS.2
018.2817518. URL https://doi.org/10.1109/ACCESS.2018.2817518.

Xuechao Yang, Xun Yi, Surya Nepal, Andrei Kelarev, and Fengling Han.
Blockchain voting: Publicly verifiable online voting protocol without
trusted tallying authorities. Future Gener. Comput. Syst., 112:859–874,
2020. doi: 10.1016/j.future.2020.06.051. URL https://doi.org/10.101
6/j.future.2020.06.051.

https://doi.org/10.1109/COMST.2020.2969706
https://doi.org/10.1007/978-3-319-68786-5_39
https://doi.org/10.1109/ACCESS.2018.2817518
https://doi.org/10.1016/j.future.2020.06.051
https://doi.org/10.1016/j.future.2020.06.051

184 BIBLIOGRAPHY

Appendix A
A Solidity implementation of TAVS

TAVS, as defined in Section 4.2 assumes 2 non-colliding entities to ensure a
secure electronic voting scheme. In some cases, it is possible to encounter
scenarios where two entities involved in an election are unwilling or unable
to share information. However, it is also true that such scenarios might
be rare, and it may be impossible to find unrelated entities to participate
in the election. The implementation detailed in this appendix reduces the
assumption of honesty from two entities to one, without compromising the
security properties of TAVS. This approach allows for greater flexibility in the
selection of participants and can enable a wider range of entities to participate
in the voting process. As a result,TAVS becomes more adaptable and better
suited to meet the unique requirements of different elections.

One way to address the issue of finding two honest entities is to replace
the tallying authority with an immutable smart contract. In doing so, the
problem is resolved as smart contracts are self-governed entities that strictly
adhere to the source code. Our solution satisfies these properties and has
been made available for auditability, contributing to the open source com-
munity. While our implementation is fully equivalent to TAVS in all respects
except for the tallying property, which is made public on the blockchain, al-
lowing anyone to view the votes prior to the election’s conclusion. To address
this discrepancy between our implementation and the original proposal, we
later present a solution that overcomes this issue.

185

186 APPENDIX A. A SOLIDITY IMPLEMENTATION OF TAVS

A.1 From ECC to RSA

Because of its efficient computation, Ethereum is based, as well as Bitcoin,
in the Secp256k1 1 elliptic curve. It also supports some Bn254 2 curve op-
erations, as pre-compiles, because of its friendly pairing properties for zero-
knowledge proofs. It is worth noting that no other cryptographic primitive
currently has native or optimized support. As TAVS requires RSA for the
blind signature scheme, it is imperative for us to address the implementation
of the necessary support.

Solidity is a Turing complete language, so it is possible to implement
any arbitrary system. However, Solidity is a high-level language and only
supports a default word size of 32 bytes, which makes it difficult to implement
direct support for big integers (integers that require more than 32 bytes to
be represented) required in RSA and many other systems based on modular
arithmetic. To handle big integers we employed arrays of bytes and assembly
code in Yul 3. Yul is an intermediate-level programming language that is
designed to be compiled directly into low-level bytecode that can be used
by the EVM. Its primary purpose is to facilitate the creation of assembly
code for the EVM that can handle lower-level details. Yul serves a dual
purpose: it allows for more detailed management of memory, and it can
save gas by optimizing code at a lower level. By providing low-level control
over memory management, Yul enables developers to create more efficient
and optimized code that takes advantage of the unique characteristics of the
EVM. Additionally, Yul’s ability to optimize code at a lower level can lead
to more cost-effective smart contract execution, ultimately benefitting the
end-user.

To implement TAVS, we adapted the big number library developed by
Firo 4 to be compatible with the latest Solidity versions. The developed
library gives support for basic arithmetic operations using big integers as well
as more complex operations that enable cryptographic primitives: modular
exponentiation or computing inverses in a given modulo.

1Standard curve database|Secp256k1 https://neuromancer.sk/std/secg/secp256k1
2Standard curve database|Bn254 https://neuromancer.sk/std/bn/bn254
3Yul|Bytecode Language https://docs.soliditylang.org/en/latest/yul.html
4Github|Solidity Big Number https://github.com/firoorg/solidity-BigNumber

A.1. FROM ECC TO RSA 187

ElectionFactory.sol Election.sol BigNumber.sol

EVM Blockchain

createEletion()

new Election()

sendVote()
modularExp()

computeWinner()

checkHash()

Indexed Events

newVote

Figure A.1: Scheme representing the interaction between the user and the
smart contracts.

A.1.1 Code Organization
The Solidity implementation of TAVS is publicly available in Github
(https://github.com/Fantoni0/svs). A high level overview of the smart con-
tract interaction can be found in Figure A.1. The smart contracts have been
tested in a local EVM-compatible network and also have been deployed to a
real testnet network. We used Mumbai testnet (a testnet to Polygon) because
of the high cost of deploying directly to the main Ethereum network.

All the code has been developed using Solidity version 8.105 and the
development library Hardhat6. Hardhat is one of the most complete Solidity
libraries, it allows for compiling and running Solidity code locally, as well
as it provides multiple helper functions for debugging smart contracts. The

5https://docs.soliditylang.org/en/v0.8.10/
6https://hardhat.org/

https://docs.soliditylang.org/en/v0.8.10/
https://hardhat.org/

188 APPENDIX A. A SOLIDITY IMPLEMENTATION OF TAVS

code is structured as follows:

• contracts: Contains all the smart contracts that constitute the im-
plementation of TAVS. They are smart contracts written in Solidity.

– BigNumber.sol: A Solidity library adapted from the implemen-
tation by Fire 7. Contains all the code needed to deal with big
integers and implement the blind signature scheme based on RSA.

– ElectionFactory.sol: A smart contract that implements the
factory design pattern. It creates and deploys instances of Elec-
tion contracts. Handles and archives the created elections. It
emits a event NewElection when a new Election is created. The
Mumbai network deployment of this contract can be found in ad-
dress
0xEBa9F87654171f88004f519CC18EfBD8A02e9421.

– Election.sol: It contains all the logic to implement a TAVS
election. Handles candidates, verifies votes and stores the current
state of the election. It emits a NewVote event when a new Vote
is received. The Mumbai network deployment of this contract can
be found in address
0x9E459651D2A14B100a310FDd542954bd9565dFC0.

• deploy: Contains files to deploy the contracts in networks outside local
deployment.

– Deploy.ts: Deploys the ElectionFactory smart contract to a spec-
ified network. It creates an Election and sends 10 random votes.

– *Template.ts: A set of template files the interested reader can
use to carry out his own election process. See Sec. A.4 for a
detailed guide.

• verify: Contains the file arguments.js, which contains a description
of the parameters of the Election smart contract constructor needed
to verify the contract. Verifying contracts allows to upload the source
code to blockchain explorers such as Etherscan.

• scripts: Auxiliary files that implement different functionalities.
7Solidity Big Number - https://github.com/firoorg/solidity-BigNumber

A.2. TESTS 189

– Tavs.ts: Utility functions to simulate the IA in TAVS. it also
generates random and valid votes for the scheme.

– Utils.js: Different functions needed for testing: packing param-
eters, list functions etc.

• test: Contains typescript tests to verify the integrity of the smart
contracts. See Sec. A.2 for more details.

A.2 Tests
Ethereum is a global adversarial network that operates on economic incen-
tives. This means that any bug or vulnerability in the code can be exploited
by attackers to obtain an economic reward. Moreover, these types of attacks
do not require physical access and allow the attacker to remain anonymous.
Therefore, testing the code is of utmost importance when developing smart
contracts. The folder test contains various tests that analyze the behav-
ior of the code. To run them and verify the validity of the code, the user
can simply run npx hardhat test. We present here a short list of these
assessments and its expected result.

• ElectionFactory.ts.

1. Creates a valid election. It should create a new election and trigger
the NewElection event.

2. Creates an invalid election. The test should fail and the transac-
tion reverts with error message "No elections shorter than 1 hour
allowed".

3. Creates an invalid election. The test should fail and the transac-
tion reverts with error message "No elections longer than 4 days
allowed".

• Election.ts.

1. Creates a valid vote. It should create and send a new vote and
trigger the NewVote event.

2. Creates an invalid vote with the wrong hash. The test should fail
and the transaction reverts with error message "Invalid hash".

190 APPENDIX A. A SOLIDITY IMPLEMENTATION OF TAVS

3. Cends a vote after the election is finished. The test should fail and
the transaction reverts with error message "Election has already
finished. No more votes accepted".

4. Chould compute the winner of an election. The test sends a
unique vote, forces the election to end and checks the winner is
the voted candidate.

5. Tries to compute the winner of an election before the election is
finished. The test should fail and the transaction reverts with
error message "Election must be finished to compute tally."

6. Simulates and election with multiple votes and proceeds to com-
pute the winner of the election.

A.3 Properties
Our Solidity implementation satisfies all the properties presented by TAVS.
Moreover, our implementation does not compromise the quality of the voting
system. In fact, some properties of our approach benefit from its immutabil-
ity and decentralization. In the following section, we provide a brief overview
of the properties of the TAVS election scheme, and explain how our imple-
mentation satisfies them. For a detailed demonstration of these properties,
please refer to Section 4.2, where they are explicitly stated. Here, we formal-
ize the properties of our implementation in the form of lemmas. Note that
we will not provide a proof for each lemma whenever the proof is a direct
consequence of the arguments presented.

Lemma A.3.1. TAVS is private, and therefore, it is not possible to relate a
vote with the elector who casted it.

Our implementation not only guarantees voters’ privacy, it also improves
the degree of privacy provided in TAVS. TAVS’ privacy is derived from the
assumption of two honest non-colliding entities. Since we substitute the RPS
with a smart contract, this assumption is no longer needed. At first, the idea
of privacy and a public blockchain may seem conflicting. Nonetheless, please
note that ballots sent to the RPS (the smart contract in our implementation),
are not linked to the elector’s identity in any form. Once the ballot has been
signed by the IA, the elector can generate a burner address, not linked to her
in any way, and send the ballot. The validity of the ballot depends on the

A.3. PROPERTIES 191

digital signature by the IA. Hence, we can benefit from the public verifiability
of the blockchain without degrading privacy.

Lemma A.3.2. TAVS guarantees the Integrity of the vote, thus it is unfea-
sible for any partner in the system to modify a ballot without detecting the
forgery.

Lemma A.3.3. TAVS ensures the Correctness of the final tally since it only
considers verified and correct ballots.

Lemma A.3.4. TAVS provides Verifiability since any elector in the census
can verify that her vote has been taken into account in the way it was casted.

Verifiability is hold when all the processing on ballot in order to go
through the process do not affect to the ballot itself. In the implementation
we propose, the logic of the processing is described in a smart contract, and
the results are published in a globally distributed network with thousands
of participants. Thus, the implementation of the protocol is more resilient
to attacks (as, for instance, DDoS attacks) than a clasical implementation
that considers a private-access public bulletin board. Therefore, the veri-
fiability process of the ballots and their integrity can be publicly audited,
guaranteeing that only correct votes are accepted.

Lemma A.3.5. TAVS is a Democratic scheme since only electors in the
census can vote.

Lemma A.3.6. TAVS guarantees the Uniqueness of the votes by ensuring
that electors can only vote once.

Because our implementation maintains the IA and the blind signature
scheme, we provide the same democracy and uniqueness as TAVS. The regis-
tration procedure does not differ from TAVS. Hence, registered electors can
only vote once, since they only have one signed ballot, and, only electors in
the census are able to get the signed ballot.

The only difference with respect to TAVS is the immediateness of the
tally. In TAVS the final tally is computed and only revealed at the end of
the election, since it depends on the authority that plays the role of Remote
Polling Station. In our implementation, everything is in the blockchain,
hence it is public by default. This means that everyone can see partial votes
and compute a partial tally even before the election is finished.

192 APPENDIX A. A SOLIDITY IMPLEMENTATION OF TAVS

Despite this can be considered not as an issue, it is usually considered
as one. To address this (potential) drawback, we note that votes can be
encrypted within a public key cryptosystem, whose key is set before hand
by the IA (or alternatively by a set of parties), broadcasting the public key
together with the election parameters, and revealing the decrypting key only
after the end of the election. If in some scenarios the IA cannot be trusted
with guarding this key. In those cases, a threshold system could be em-
ployed, in such a way that the responsibility of aggregating the key, once
the election is finished, rests on a set of reputed parties. For that end, a
threshold RSA system Rabin [1998], Damgård and Koprowski [2001] can be
used. The parties guarding the keys must hold two requirements: they have
to be interested in the correct development of the election; and, they must
have antagonistic interests. The first ensures the honest participation of the
parties, and the second one prevents malicious collaborations between them.
Hence, political parties and/or a subset of electors could conform a suitable
the set of guarding parties. This threshold scheme can be configured on
demand to tolerate potential errors in the key recovering phase. So that if
some parties are unable or unwilling to participate, a subset of honest parties
can still decrypt the votes and carry on with the election. Please note, that
this would only ensure the anonymity of the tally until the election ends.
Furthermore, the privacy of users would not be affected in any form.

A.4 How to create your own election
In this section we show how to leverage our implementation and the open
sourced code to create a particular election. The deployment and interaction
will be created in the Mumbai network to reduce gas fees. This tutorial
assumes the reader to have an up to date Node.js version installed.

1. Clone and install the code.

git clone https://github.com/Fantoni0/svs && cd svs/
npm install

To compile and verify the smart contracts simply run:

npx hardhat test

A.4. HOW TO CREATE YOUR OWN ELECTION 193

2. Get an address and funds.

To operate in the blockchain environment it is necessary to have an
EOA address. Ownership of addresses is determined by the associ-
ated secret key. It is possible to use services such as Vanity-Eth8 or
Crypterium9 to generate your own key. Once the key is available, it is
necessary to add it in the env/.env file as MUMBAI_PRIVATE_KEY. The
next step is to uncomment the lines adding the Mumbai network in
hardhat.config.ts file. This will let hardhat use the key to send the
transactions.

Once the key is ready, it is mandatory to get some funds available to
pay for the transactions gas. Polygon Faucet10 is a service that gives
away small amounts to allow developers to pay for some transactions.
To do so it is necessary to paste our address and then claim the funds.

3. Generate the keys to simulate the IA.

The open-source implementation already includes a pair of public and
private RSA keys that simulate the IA. This is sufficient for test pur-
poses but a new pair will be needed to generate secure elections. It is
possible to do it using OpenSSL:

openssl genrsa 2048 -out private-key.pem
openssl rsa -pubout -out public-key.pem -in private-key.pem

From the output it is possible to extract the hexadecimal representation
from the generated keys and substitute the modulo, public and private
key instances in the code.

4. Create a particular Election Factory. (Optional)

There is already an instance of the Election Factory, but a new one can
be deployed by running:

npx hardhat deploy --network mumbai --tags ElectionFactory

8https://vanity-eth.tk/
9https://mycrypto.tools/ethaddress.html

10https://faucet.polygon.technology/

https://vanity-eth.tk/
https://mycrypto.tools/ethaddress.html
https://faucet.polygon.technology/

194 APPENDIX A. A SOLIDITY IMPLEMENTATION OF TAVS

If generated, the new address must be copied in the smart contract
to be deployed. We need the Election Factory address to be able to
interact with the contract and create new elections in the future.

5. Create an instance of Election.
It is possible to make use of the file: deploy/electionTemplate.ts
and make the necessary changes to adjust the election to our needs and
run:

npx hardhat deploy --network mumbai --tags Election

As done previously, we will need to copy the address in which the
Election smart contract was deployed. We’ll need the address to send
the future votes.

6. Vote.
To finally send a vote, simply set the vote in
deploy/electionTemplate.ts and execute:

npx hardhat deploy --network mumbai --tags Vote

7. Verify your contract. (Optional)
If it is desired to verify the deployed contracts, we need to obtain
some API keys. First the etherscan_api_key in hardhat.config.ts
must be specified. Second, the ElectionFactory program can be simply
verified by providing the address in which it was deployed.

npx hardhat --network mumbai verify ADDRESS_TO_VERIFY

To verify the Election contract, since it was called with arguments, it is
mandatory to provide the exact same arguments in the deploy/arguments.js,
otherwise the verification will fail. To check for the parameters is is
possible to use the Mumbai Block Explorer.

npx hardhat verify --network mumbai --constructor-args
verify/arguments.js ADDRESS_TO_VERIFY

A.5. GAS ANALYSIS: COSTS OF HAVING AN ELECTION 195

A.5 Gas analysis: Costs of having an election
For the rest of this section, we assume the current prices of ETH (1410$) and
MATIC (0.90$) at the moment of writing. Fees are paid in the currency of
the network. Hence, if we operate in the Mumbai testnet, fees will be paid in
MATIC, and in ETH if the deployment is made in the Ethereum mainnet. In
Table A.1 we depict the gas units and USD costs of running the contracts and
interacting with them in the Mumbai and Ethereum network respectively.
The experiments have been carried out 200 times and the results have been
averaged. Table represents the single execution cost of a given method.

All the tests have been run with the same Hardhat framework used for
development. The plugin
hardhat-gas-reporter provides a detailed report on the gas metrics used
in the tests. As covered in Section A.2, by executing npx hardhat test, the
user can test the implementation itself, and replicate the presented gas cost
analysis. Small variances depending on the average price per gas unit may
occur.

Contract Method Gas Units USD Cost (Mumbai) USD Cost (Ethereum)

Election computeWinner 68, 000 0.0024$ 4.22$
Election sendVote 39, 717 0.015$ 2.47$
ElectionFactory createElection 235, 067 0.01$ 14.56$
ElectionFactory Deployment 4, 209, 467 0.16$ 260.81$

Table A.1: Average costs of execution in the Mumbai and Ethereum network.
Average price per gas unit of 43 gwei.

As shown in Table A.1, the cost of running the election process in Mumbai
is significantly cheaper than carrying out the same process in Ethereum. The
costs for all methods, regardless of the network, show a linear dependency
with their complexity. The more computation and storage required, the
higher the costs. Deploying the ElectionFactory contract is especially costly
since it needs to upload the entire contract into the blockchain.

All methods listed in Table A.1 have constant costs except for the computeWinner
method. This method depends on the internal state of the contract and needs
to iterate over the list of all candidates to compute the most voted one. The
length of the candidate list affects the computation and, consequently, the
gas units and associated costs. Since the previous table only reports average

196 APPENDIX A. A SOLIDITY IMPLEMENTATION OF TAVS

units over the run of multiple tests, the effect of the candidate list on the
computeWinner method is not captured. For this reason, we provide a spe-
cific description of the cost depending on the cardinality of the candidate’s
list in Table A.2. We isolated the cost of calling the method from other tests
to avoid any possible cross-contamination of results. This table shows that
the gas units and associated costs increase linearly with the length of the can-
didate list. Therefore, it is important to consider the size of the candidate
list when estimating the cost of running the computeWinner method.

Number of candidates Gas Units USD Cost (Mumbai) USD Cost (Ethereum)

2 117, 179 0.004$ 7.10$
4 129, 393 0.005$ 7.84$
8 167, 397 0.006$ 10.14$
16 195, 889 0.007$ 11.87$
32 307, 184 0.011$ 18.62$

Table A.2: Costs for computeWinner method. Average price per gas unit of
43 gwei.

As we can see in Table A.2, while the costs of computing the winner
of the election increase with the number of candidates, it is not a severe
change. Specially if we consider that elections with 32 or more candidates
are unlikely, or compare the number of gas units with the deployment of the
smart contract reflected in Table A.1.

Results show that, using our implementation of TAVS is perfectly feasible
and affordable even for large elections. The deployment of TAVS in networks
such as Mumbai is affordable and within reach for everyone, and the use of
Ethereum, although more expensive, is still an effective solution. Moreover,
the costs associated with TAVS are much lower than those related to running
a traditional election. Overall, these results demonstrate the practicality and
cost-effectiveness of TAVS as an e-voting system.

Appendix B
A Benchmark for Ring Signatures

In this Appendix, we present our implementation to craft and verify RingCT
(see Section 3.3.2) signatures. The purpose for this is twofold: show the feasi-
bility of this approach and obtain real empiric values to asses the complexity
of Distributed Trust.

In contrast to modular exponentiation, ring signatures cannot be consid-
ered as a single operator. Ring signatures comprise multiple basic operators,
making the comparison with modular exponentiation non-trivial. The com-
putational time complexity of ring signatures is predominantly dominant due
to their complexity. Furthermore, the time complexity of ring signatures de-
pends on several parameters besides the input size, including the size of the
ring and the desired level of security. For this reason, in Section 4.3.3, we kept
the computational complexity associated with crafting/verifying a signature
as a constant variable to offer a clear perspective of the time complexity.
Nonetheless, we have now provided an implementation of these signatures to
present an empirical result of the actual transactions per second (TPS) of
the system.

To analyze the performance of ring signatures, we developed a Python
3 based code, which is publicly accessible on GitHub1. We have built a
framework to test the impact of different parameters and elliptic curves on
the performance of ring signatures. Our aim with this framework is to offer a
practical implementation and obtain actual performance time measurements.

Figures B.1a and B.1b demonstrate the elapsed time required to craft or
verify a signature respectively, for different parameters. We have compared

1https://github.com/Fantoni0/RingCTPerformance

197

https://github.com/Fantoni0/RingCTPerformance

198 APPENDIX B. A BENCHMARK FOR RING SIGNATURES

four different elliptic curves in this analysis, each providing a distinct level of
security. BrainpoolP160r1 provides 80 bits of security; Curve-192 provides
91 bits; Curve-224 provides 112 bits; and, Curve-256 provides 128 bits. The
Brainpool curve offers a security level equivalent to using RSA with a 1024-
bit modulo Gallagher [2013], which is more than sufficient to safeguard the
voter’s privacy2. As expected, the time required for signature crafting or
verification increases linearly with the size of the ring, or the complexity of
the curve. We believe that utilizing brainpool and a ring size of 64 public
keys is more than adequate to achieve the required security for the voting
scheme of Distributed Trust.

The figures presented here were obtained using a personal computer:
AMD Ryzen 7 3700X with 16 threads. As there are no dependencies be-
tween transactions, verification is a parallelizable task. We take advantage
of this by using multiple cores. Using a professional server’s processor and
decentralizing the task among multiple servers would yield a great perfor-
mance improvement. Nonetheless, a single personal computer is capable of
verifying 3-4 TPS and 200 in a minute, even when using excessively high
standard security parameters.

2A 1024-bit RSA key is deemed safe for the next few decades. No key larger than 829
bits has ever been factored.

199

8 16 32 64

Ring size

0.1

0.2

0.3

0.4

0.5

T
im

e
in

se
co

n
d

s

Time to craft a signature

brainpoolP160r1

secp192r1

secp224r1

secp256r1

(a) Time required to craft a ring signature under different ring sizes and
elliptic curves.

8 16 32 64

Ring size

0.1

0.2

0.3

0.4

0.5

T
im

e
in

se
co

n
d

s

Time to verify a signature

brainpoolP160r1

secp192r1

secp224r1

secp256r1

(b) Time required to verify a ring signature under different ring sizes and
elliptic curves.

Figure B.1: Ring signature performance times for crafting and verifying the
same message under different parameters.

Finally, it is worth noting that the times for crafting and verification are
very similar because the verification algorithm, described in Section 3.3.2,

200 APPENDIX B. A BENCHMARK FOR RING SIGNATURES

requires recreating the signature to check its validity.

Appendix C
Distributed Trust Technical
Specification

This appendix aims to provide the technical specifications of the blockchain
architecture outlined in the Distributed Trust voting scheme described in
Section 4.3.1. The objective is to provide a comprehensive overview of
the required structure and specifics necessary for the implementation of the
blockchain required to execute the voting protocol.

The first section details the essential data structures that will define our
blockchain, including blocks and transactions.

The second section outlines the necessary methods that the blockchain
nodes will need to run to establish a functional blockchain. It is important
to note that certain implementation details, such as node discovery, size
in bytes, and network particulars, are outside the scope of this appendix.
Nonetheless, we will provide enough information for interested readers to
construct a functional blockchain that supports the Distributed Trust voting
scheme.

C.0.1 Blockchain data structures
In our blockchain architecture, we define two fundamental data structures:
transactions and blocks. Our blockchain protocol is designed for electronic
voting, and as such, there is no need for monetary tokens. However, we
have decided to provide support for a token to enhance the flexibility of the
blockchain.

201

202APPENDIX C. DISTRIBUTED TRUST TECHNICAL SPECIFICATION

During the registration phase, parties must provide the OTPKs (see
Section 3.3.1) with enough tokens to create transactions. Sufficient tokens
must be assigned beforehand to allow the elector to vote multiple times,
thereby preventing coercion.

Transactions

Transactions are the basic unit of information on the blockchain. They are
broadcasted into the public network and added to the pool of pending trans-
actions until they are added into a block. Transactions, in the UTXO model,
are defined by their set of inputs and outputs. In Distributed Trust, trans-
actions are as a communication mean to register votes. Inputs represent the
elector’s OTPK, and outputs represent the parties’ (candidates) addresses.
The elector decides the direction of her vote by configuring the outputs of
the transaction. Table C.1 discloses the structure of transactions, and Table
C.2 shows the structure of inputs and outputs.

Field Definition

Version Number version of the protocol
Inputs List of referenced inputs
Outputs List of outputs
Vote Encrypted elector’s vote
Signature Ring signature of the transaction
Transaction ID Hash identifying the transaction

Table C.1: Transaction structure.

Field Definition

Amount Amount of tokens in the key
Address Public key identifying the address

Table C.2: Input and output structure.

Blocks

A block is a set of ordered and validated transactions. Blocks constitute the
basic building component of a blockchain. Table C.3 shows the structure of

203

an ordinary block in Distributed Trust.
The block header is used to verify the integrity of the block, while the

transactions are the actual data stored in the blockchain. The previous block
hash is used to link the current block to the previous block, creating the chain
of blocks. The Merkle root is a hash of all the transactions in the block, which
allows for efficient verification of transaction inclusion in the block. The
nonce is a value that is adjusted by miners to satisfy the difficulty target,
which is a measure of how difficult it is to find a block hash that satisfies the
current network’s consensus rules.

Field Definition

Version Number version of the protocol
Timestamp Time of the block creation
Previous Hash Hash identifying the previous block
Height Distance to the first block
Signature Digital signature of the block creator
Transactions List of the transactions contained
Merkle Root Merkle’s root hash of the transactions
Block ID Hash identifying the block

Table C.3: Block structure.

The configuration blocks are used to store the public parameters and cryp-
tographic keys that are needed to run the election, and they are immutable
once created. The first configuration block (Table C.4) contains the basic
parameters, such as the number of parties, their public keys, their private
key commitments, and the RSA parameters used in the election. The second
configuration block (Table C.5) contains the starting and ending times of the
election and the valid RingCT parameters that can be employed.

The last tallying block (Table C.6) is created after the voting phase is
over, and it contains the encrypted votes and the secret key needed to decrypt
them. It also includes a summary of the election results, such as the total
number of votes cast and the number of votes received by each party.

204APPENDIX C. DISTRIBUTED TRUST TECHNICAL SPECIFICATION

Field Definition

Version Number version of the protocol
Timestamp Time of the block creation
Height Distance to the first block
RSA parameters Public key v and modulus n
Private shares Commitments gsi of the private keys for each party
Public keys Parties’ public keys
Block ID Hash identifying the block

Table C.4: First block in the chain describing configuration parameters.

Field Definition

Version Number version of the protocol
Timestamp Time of the block creation
Previous Hash Hash identifying the previous block
Height Distance to the first block
Start Time Start time of the election
End Time End time of the election
Ring Size Minimun accepted ring size for ring signatures
Options List of options to vote for in the election
OTPKs List of OTPKs and their corresponding random number R
Block ID Hash identifying the block

Table C.5: Second block in the chain describing configuration parameters.

205

Field Definition

Version Number version of the protocol
Timestamp Time of the block creation
Previous Hash Hash identifying the previous block
Height Distance to the first block
Secret key Recovered secret key to decrypt votes
Results Final election tally
List of results Referenced transactions for each result
Block ID Hash identifying the block

Table C.6: Last block in the chain describing the tally results.

In Figure C.1, we can see the structure of a complete blockchain. We
can appreciate how the different blocks work, and how the different data
structures are related to build the blockchain.

C.0.2 Methods
This section presents a set of algorithms that define the methods that blockchain
nodes must follow to operate effectively. These methods provide a compre-
hensive overview of the various scenarios that nodes may encounter, includ-
ing processing new blocks, handling transactions, and following the longest
chain. By following these algorithms, nodes can ensure that they are oper-
ating efficiently and effectively in the blockchain network.

In the following algorithms, we make the assumption that certain func-
tions are already defined. For instance, the hash() function generates a hash
for a given input, and verifySignature() verifies the RSA signature of the
given input. Similarly, we assume the existence of certain variables such as
time, localBlockchain, and other self-explanatory values.

Sending a transaction: Voting

Algorithm 18 describes the process an elector must follow to craft and cast
a vote. The transaction is signed with the elector’s private key, ensuring
its authenticity. Once the transaction is created, it is broadcasted to the
network and added to the pool of unprocessed transactions. The transaction
will remain in the pool until it is validated by a validator. If the transaction is

206APPENDIX C. DISTRIBUTED TRUST TECHNICAL SPECIFICATION

Public Blockchain

Block hash

Version

Height
Timestamp

Public key v
Moudulus n
Private shares gs1 , . . . , gsl

Public keys vP1
, . . . , vPl

Block hash

Version

Height
Timestamp

Start Time
End Time
Ring Size
Options

Previous hash

List of OTPKs
- OTPK1, R1
- OTPK2, R2
-. . .

Block hash

Version

Height
Timestamp

Secret key s
Results

Previous hash

- Option 1: [tx1, tx2, . . .]
- Option 2: [tx3, tx4, . . .]
-. . .

Block hash

Version

Height
Timestamp

Signature σ
Merkle Root

Previous hash

- tx1
- tx2
-. . .

Transactions

. . .

Transaction ID

Version

Outputs
Inputs

Signature σ
Vote

First configuration block Second configuration block Last tallying block

Input

Amount
Address

Ordinary block

Input

Amount
Address

Input

Amount
Address

Output

Amount
Address

Output

Amount
Address

Output

Amount
Address

Figure C.1: Holistic view of all the data structures involved in the blockchain.
We can appreciate the 4 different block types and its inner architecture.

207

deemed valid, it will be added to a new block on the blockchain. Otherwise,
it will be removed from the pool, and the elector will need to create a new
transaction to cast their vote.

Algorithm 18 Voting process(Craft vote and send transaction)
Require: voteDirection ← Vote direction.

partyPublicKey ← Public key of the authority designated to add the
block to the blockchain.
publicKeyList ← List of public keys to form the Ring Signature.
pivateKey ← Private key of the user.
hiddenIndex ← Index in the list publicKeyList where the public key of
the signer is.
rsaPublicKey ← RSA public key to encrypt the vote direction until the
tally.
tokens ← Inputs containing he required tokens.

1: mask ← randomMask()
2: maskedVoteDirection ← (voteDirection ∥ mask)
3: encryptedVoteDirection ← (maskedV oteDirection)rsaPublicKey

4: ringSignature← sign(publicKeyList.length, publicKeyList, hiddenIndex,
privateKey, encryptedVoteDirection) (see Algorithm 6)

5: broadcast(Transaction(
Version: version,
Inputs: tokens,
Outputs: [partyPublicKey],
Signature: ringSignature,
Vote: encryptedVoteDirection,
TransactionID: hash(Version, Inputs, Outputs, Signature, Vote)))

Handling transactions

To ensure the integrity of the voting process, parties must actively monitor
the pool of unprocessed transactions for any new transactions addressed to
them. These new transactions must be validated before they can be added
to the blockchain. The process of validating new transactions is described in
Algorithm 19.

The first step in the validation process involves checking whether the
public keys used in the ring signature are included in the census of authorized

208APPENDIX C. DISTRIBUTED TRUST TECHNICAL SPECIFICATION

electors. This step is crucial to ensure that only authorized electors are able
to cast their votes. Once this is confirmed, the validity of the ring signature
must be verified to ensure that the transaction has not been tampered with.

The final step in the validation process involves checking whether the
inputs have enough tokens to operate on the blockchain. This ensures that
parties cannot cast more votes than they are authorized to. If all of these val-
idation steps are successful, the transaction can be added to the blockchain.

Algorithm 19 Validate Transaction
Require: transaction ← Transaction to validate.

1: if transaction.ID ̸= hash(transaction) then
2: return False
3: end if
4: if ∃ pk ∈ transaction.Signature.PublicKeys | pk /∈ census then
5: return False
6: end if
7: if ¬ verifyRingSignature(transaction) then
8: return False
9: end if

10: if
∑

i∈transaction.Inputs < requiredTokens then
11: return False
12: end if
13: validatedTransactions.append(transaction)
14: return True

Once nodes have received and validated a sufficient number of transac-
tions, they can proceed to generate a new block and broadcast it to the
rest of the network. The process of block generation involves selecting the
transactions to be included in the block, ordering them, and adding a header
to the block containing information about the previous block in the chain.
Algorithm 20 outlines the steps required for generating a new block.

Handling blocks

Blockchain nodes must deal with the blocks received from other parties,
verifying that they follow the longest chain and validating both the received
block and its transactions. Algorithm 21 describes the process that nodes
follow to validate the received blocks. If an invalid transaction is detected

209

Algorithm 20 Generating new blocks
Require: listTransactions ← List of validated transactions.
Require: version ← Version of the used protocol.
Require: lastBlock ← Previous last block added to the longest chain.
Require: localBlockChain ← Blockchain in the node’s memory.

1: version ← version
2: timestamp ← time.now()
3: previousHash ← lastBlock.ID
4: height ← lastBlock.height + 1
5: transactions ← listTransactions
6: merkleRoot ← merkleTreeRoot(transactions)
7: ID ← hash(version, timestamp, previousHash, height, transactions,

merkleRoot)
8: signature ← (version, timestamp, previousHash, height, transactions,

merkleRoot, ID)sP

9: newBlock ← Block(version, timestamp, previousHash, height, transac-
tions, merkleRoot, ID, signature)

10: localBlockChain.append(newBlock)
11: ∀p ∈ Parties send(p, newBlock)

during the process, as indicated in Line 9, the verifying node alerts the other
nodes.

Algorithm 22 outlines the process for adding a block, deemed valid, to
the longest chain. This algorithm presents a simplified logical representation
of how nodes should follow the longest chain, and for an actual implementa-
tion, we refer the reader to the open-source code of Bitcoin. The algorithm
assumes that the node maintains multiple chains in buffers, as Lines 10 and
12 exemplify. the node should employ a set of buffers for storing multiple
chains. If the new chain includes blocks that are missing from the node’s
chain, the node must request those missing blocks from other nodes in the
network, as shown in Line 14.

The interaction diagram shown in Figure C.2 provides an illustration of
the process for casting and processing a vote. The diagram references the
algorithms described above to depict the various stages of the election and
the interactions between the parties and the blockchain.

While the diagram may simplify some of the more complex interactions
between the parties and the blockchain, it provides an accurate representation

210APPENDIX C. DISTRIBUTED TRUST TECHNICAL SPECIFICATION

Algorithm 21 Validate block
Require: block ← Block to validate.

1: if ¬ verifySignature(block.signature) then
2: return False
3: end if
4: if merkleRoot(block.transactions) ̸= block.merkleRoot then
5: return False
6: end if
7: for t ∈ block.Transactions do
8: if t.ID /∈ validatedTransactions ∨

¬ validateTransaction(t) then
9: AlertError(block.ID, t.ID)

10: return False
11: end if
12: end for
13: return True

of the multiple stages of the election and the various partners involved in the
process. By following the sequence of events depicted in the diagram, it is
possible to understand how the voting process works and how the blockchain
is used to ensure the security and transparency of the election.

211

Algorithm 22 Add Block
Require: block ← Block received through the network.
Require: localBlockChain ← Longest blockchain in the node’s memory.

1: if ¬ validateBlock(block) then
2: return False
3: end if
4: last ← localBlockChain.lastestBlock
5: if last.ID = block.previousHash then
6: localBlockChain.append(block)
7: else
8: if block /∈ localBlockChain then
9: if block.height < last.height then

10: addToSecondaryChain(block)
11: else
12: saveAsSecondaryChain(localBlokchain)
13: localBlockchain.append(block)
14: ∀ b | b.height > last.height ∧

b.height < block.height askForBlock(b)
15: end if
16: end if
17: end if

Elector PartiesAdministration Blockchain

V
otin

g
p
h
ase

T
ally

in
g
p
h
ase

P
re-election

setu
p

Apply distributed
RSA generation

Write first
configuration block

Generate pair of ECC keys
(A, a), (B, b)

Send public keys A,B

Compute OTPKs

Send to Parties
Write second

configuration block

Get personal OTPK

Vote (Algorithm 3)

Send transaction to desired party
Validate transaction
(Algorithm 4)

Propose new block
If possible

(Algorithm 5)

Validate block
(Algorithm 6)

Add block
(Algorithm 7)

Recover secret key

Compute tally
Write last

tallying block

Get secret key

Check tally

Write block

Write block

If a block is received

Figure C.2: Timing and partners’ interaction of the proposed voting scheme.
The image shows the different election phases and the processes triggered at
different stages. It shows the computations and the interactions needed as a
time-interaction diagram.

212APPENDIX C. DISTRIBUTED TRUST TECHNICAL SPECIFICATION

Appendix D
How to Grant Anonymous Access
Implementation

In this appendix, we present an implementation, and a empirical study on
the time complexity of our identification protocols as described in Chapter
5. Our analysis demonstrates that for all three protocols, the computational
complexity is predominantly O(log3p), where p denotes the modulus. Addi-
tionally, we demonstrate that the computational complexity scales linearly
with the number of users. However, in a real-world scenario, other factors as
network latency may influence the presented results.

We implemented a Proof of Concept (PoC) of our three protocols to
demonstrate their feasibility and complement our time complexity analysis.
Empirical data illustrates aspects that cannot be considered in the theoretical
complexity analysis, particularly those related to coordination and commu-
nication issues. We used JavaScript and Node.js to implement our protocols
due to the distributed and asynchronous nature of the processes involved.
We utilized the communication layer provided by the ZeroMQ1 framework
to facilitate communication. Please note that the PoC implementation in-
cludes some simplifications, such as the use of a centralized proxy to emulate
a similar behavior to a real deployed implementation. The source code is
available on Github2, but it has not been properly audited and should not
be used in production.

The PoC has been designed such that, in the TRA2 and TDRA2 pro-
1https://zeromq.org/
2https://github.com/Fantoni0/ara2

213

214APPENDIX D. HOW TO GRANT ANONYMOUS ACCESS IMPLEMENTATION

tocols, an increase in the number of guards and/or dealers used in the ex-
periments results in a proportional increase in the number of terms in the
polynomials utilized. For

We have implemented the PoC in a way such that, in the experimentation
of TRA2 and TDRA2, the higher the number of guards and/or dealers, the
higher the number of terms in the polynomials involved. Furthermore, this
approach enables us to assess the impact of polynomial size on the overall sys-
tem performance. However, it is important to note that the number of terms
in the polynomial, and the number of parties involved may not necessarily
be directly correlated.

The experiments were conducted using the Ubuntu OS and executed on a
computer equipped with an AMD Ryzen 7 3700X CPU featuring 16 cores and
32 GB of RAM. To ensure accurate and reliable results, each configuration
was executed 100 times and the resulting data was subsequently averaged to
obtain statistically representative information.

The experimentation results have been summarized in three Figures: Fig-
ure D.1, Figure D.2, and Figure D.3. These Figures depict the total time
required for the user to obtain access, segmented into two components: the
time required for user registration, and the time required for guards to grant
access to the resource.

It is worth highlighting that the reported performance is significantly
impacted by the polynomial size. For instance, a scenario that employs 5
dealers and 8 guards (5D/8G) in the TDRA2 protocol requires the utiliza-
tion of polynomials that contain five times more terms than a scenario that
employs 1 dealer and 8 guards (1D/8G) in the TRA2 protocol. It is impor-
tant to note, however, that the protocol can be implemented with smaller
polynomials without compromising the security of the system. Additionally,
it is pertinent to acknowledge that the number of guards employed in the
protocol is directly proportional to the number of messages required to be
exchanged to enable access, resulting in an increase in the total time required
for access. Moreover, the number of terms in the polynomial utilized also
plays a significant role in the system’s overall performance, as demonstrated
by experiments conducted with different configurations of dealers/guards em-
ploying polynomials of the same size (data not shown).

Regarding ARA2, we observed that the protocol provides acceptable de-
lays while simultaneously offering anonymous access. However, it is impor-
tant to note that ARA2 requires additional time to address synchronization
issues arising from non-deterministic message ordering between the author-

215

1D / 3G 1D / 5G
 Configuration

1D / 6G 1D / 8G
0

100

200

300

400

500

Ti
m

e
(m

s)

Get Token
Get Access
Communication Time

512b 1024b 512b 1024b 512b 1024b 512b 1024b
Bitsize of operations

Figure D.1: TRA2 protocol. Experimental time results considering different
configurations and bitsize of the operations.

ities, which is also present in other protocols albeit with a lower impact on
the overall time.

We would like to note that the code utilized in this Appendix has been
made open-source, enabling interested readers to run additional simulations
and enhance the presented results. It is important to mention that the im-
plementation has been tested with 512, 1024, and 2048 bit keys, but larger
key sizes have not yet been tested. We welcome future improvements to the
code through pull requests on Github. Some of the possible extensions that
can be explored in the future include:

1. Incorporating checks to ensure that the protocol setup completes ap-
propriately.

2. Updating the communication patterns to enforce the use of separate
sockets for each party.

3. Replacing ZMQ sockets with websockets.

4. Adding encryption to communications between parties.

216APPENDIX D. HOW TO GRANT ANONYMOUS ACCESS IMPLEMENTATION

2D / 3G 3D / 5G
 Configuration

4D / 6G 5D / 8G
0

500

1000

1500

2000

2500

3000

3500

4000

Ti
m

e
(m

s)

Get Token
Get Access
Communication Time

512b 1024b 512b 1024b 512b 1024b 512b 1024b
Bitsize of operations

Figure D.2: TDRA2 protocol. Experimental time results considering differ-
ent configurations and bitsize of the operations.

2D / 3G 3D / 5G
 Configuration

4D / 6G 5D / 8G
0

100

200

300

400

500

600

700

800

Ti
m

e
(m

s)

Get Token
Get Access
Communication Time

512b 1024b 512b 1024b 512b 1024b 512b 1024b
Bitsize of operations

Figure D.3: ARA2 protocol. Experimental time results considering different
configurations and bitsize of the operations.

	Agradecimientos
	Abstract
	Resumen
	Resum
	Introduction
	Distributed Cryptography
	Electronic Voting
	Anonymous Identification & Access
	Thesis Organization

	Cryptography
	Algebra
	Groups and Fields
	Fields
	Polynomials
	Elliptic Curves

	Secret Sharing
	Verifiable Secret Sharing

	Public-Key Cryptography
	Diffie-Hellman
	RSA
	Commitment Schemes

	Zero-Knowledge
	Schnorr Zero Knowledge Identification
	Non-interactivity and the Fiat Shamir Heuristic

	Complexity & Computability
	Discrete Logarithm Problem
	Cryptographic Assumptions
	Perfect Secrecy

	Digital Signatures
	Blind Signatures
	Ring Signatures

	Blockchain
	Blockchain Basics & Bitcoin
	Blockchain Trilemma
	Block Finality
	Addresses

	Ethereum
	Gas Fees
	Events

	Monero
	One Time Public Keys
	Ring Signature Confidential Transactions

	Other Blockchains and Applications
	Other blockchains
	Applications

	Risks

	Electronic Voting
	State of the Art
	Blind Signatures
	Ring Signatures
	Homomorphic Cryptography
	Zero-Knowledge Proofs
	Blockchain

	TAVS: A two Authorities Voting scheme
	Description of our Proposal
	Properties of the voting scheme
	Time complexity analysis

	Distributed Trust, a Blockchain Election Scheme
	Description of our Proposal
	Properties of the voting scheme
	Time complexity analysis

	SUVS: Secure Unencrypted Voting Scheme
	Description of our Proposal
	Properties of the voting scheme
	Time complexity analysis

	Review of the 3 Voting Protocols
	Conclusions
	Future Work

	Identification and Distributed Access
	State of the Art
	Anonymous Access
	Centralized Registration, Anonymous Access
	Trusted Registration, Anonymous Access

	Distributed Registration, Anonymous Access
	Trusted distributed registration, anonymous access
	Anonymous registration, anonymous access

	Security Analysis
	TRA2 Analysis
	TDRA2 and ARA2 Analysis

	Time Complexity Analysis
	TRA2 and TDRA2 time complexity analysis
	ARA2 time complexity analysis

	Applications
	Blockchain Airdrop System
	Electronic Voting Scheme

	Conclusions
	Future Work

	Conclusions
	PhD Key Results
	Electronic Voting
	Anonymous Identification

	A Solidity implementation of TAVS
	From ECC to RSA
	Code Organization

	Tests
	Properties
	How to create your own election
	Gas analysis: Costs of having an election

	A Benchmark for Ring Signatures
	Distributed Trust Technical Specification
	Blockchain data structures
	Methods

	How to Grant Anonymous Access Implementation

