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A R T I C L E  I N F O   

Keywords: 
Glaucoma 
Fundus images 
EfficientNet 

A B S T R A C T   

This paper sets forth a methodology that is based on three-stage-training of a state-of-the-art network archi
tecture previously trained on Imagenet, and iteratively finetuned in three steps; freezing first all layers, then re- 
training a specific number of them and finally training all the architecture from scratch, to achieve a system with 
high accuracy and reliability. To determine the performance of our technique a dataset consisting of 17.070 color 
cropped samples of fundus images, and that includes two classes, normal and abnormal, is used. Extensive 
evaluations using baselines models (VGG16, InceptionV3 and Resnet50) are carried out, in addition to thorough 
experimentation with the proposed pipeline using variants of EfficientNet and EfficientNetV2. The training 
procedure is described accurately, putting emphasis on the number of parameters trained, the confusion matrices 
(with analysis of false positives and false negatives), accuracy, and F1-score obtained at each stage of the pro
posed methodology. The results achieved show that the intelligent system presented for the task at hand is 
reliable, presents high precision, its predictions are consistent and the number of parameters needed to train are 
low compared to other alternatives.   

1. Introduction 

Intelligent systems based on data-driven techniques have been pro
posed in recent years to solve a wide variety of tasks with unprecedented 
level of success. In the case of medical data, applications where methods 
that rely on computer vision and neural networks are used have proven 
to be very effective; (Behrad and Saniee Abadeh, 2022; de Curtò et al., 
2022; Litjens et al., 2017; Ronneberger et al., 2015), showing perfor
mance levels that are similar or even better than human assessment. 

In this article, we propose a three-stage training mechanism to design 
a reliable system to detect and assess glaucoma; (Diaz-Pinto et al., 
2019a; 2019b), an irreversible neuro-generative eye disease that, ac
cording to the World Health Organization (WHO), affects more than 65 
million people around the globe. Early detection and treatment are of 
utmost importance to prevent loss of visual capacity. 

The system introduced achieves state-of-the-art performance on the 
application under consideration, and the methodology is general enough 
to be used in other clinical cases or widespread vision applications 
where learning highly descriptive features from raw pixel intensities is 
crucial. The design principles take into consideration performance, 

reliability, statistical significance, platform-aware latency and FLOPS 
needed to accomplish the task; with the ultimate goal to propose an 
expert system that could be seamlessly integrated with the clinical 
equipment (e.g. retinograph) for early diagnostic and treatment. 

Our network achieves a mean average percentage F1-score across 
folds of 96.6 using EfficientNet-B0 (with standard deviation of 3.7) and 
EfficientNet-B4 (with standard deviation of 2.0), where the best F1 on a 
given fold is 99 on B0 and 98 on B4. For the case of EfficientNetV2, V2- 
B3 achieves a mean average F1-score across folds of 95.7 (with standard 
deviation of 2.3) and V2-S of 95.4 (with standard deviation of 1.6), 
where the best F1 on a given fold is 98 for both V2-B3 and V2-S. These 
results significantly outperform the baselines; VGG16 (83.2), Incep
tionV3 (91.1) and ResNet50 (88.9), and are also clearly better than the 
state-of-the-art reported results found in the literature, (Diaz-Pinto et al., 
2019b). 

Code and data used throughout the manuscript is released publicly 
under the badge initiative on reproducibility by Code Ocean1. A detailed 
notebook addressing all the stages of the methodology, as well as the 
dataset used, can be found in a runnable capsule environment. 

The remainder of this paper is organized as follows: in the next 
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1 Permanent link to reproducible capsule: https://doi.org/10.24433/CO.8342269.v1 

Contents lists available at ScienceDirect 

Intelligent Systems with Applications 

journal homepage: www.journals.elsevier.com/intelligent-systems-with-applications 

https://doi.org/10.1016/j.iswa.2022.200140 
Received 5 August 2022; Received in revised form 20 September 2022; Accepted 6 October 2022   

mailto:dezarza@uoc.edu
mailto:decurto@uoc.edu
mailto:calafate@disca.upv.es
https://doi.org/10.24433/CO.8342269.v1
www.sciencedirect.com/science/journal/26673053
https://www.journals.elsevier.com/intelligent-systems-with-applications
https://doi.org/10.1016/j.iswa.2022.200140
https://doi.org/10.1016/j.iswa.2022.200140
https://doi.org/10.1016/j.iswa.2022.200140
http://crossmark.crossref.org/dialog/?doi=10.1016/j.iswa.2022.200140&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Intelligent Systems with Applications 16 (2022) 200140

2

section we present an overview and state of the art; then an exhaustive 
description of the data and the methods is provided, together with 
visualization, preliminary study, evaluation and selection of the best 
model with thorough experimentation. Finally, conclusions and further 
work are discussed. 

2. Overview and state of the art 

Several approaches to address retinal imaging problems are intro
duced, showing both traditional techniques based on hand-crafted fea
tures and also CNN based methodologies. A brief discussion of each 

procedure is provided as well as the type of data used in the experi
mentation. We broaden the analysis by mentioning the state-of-the-art 
techniques used in our work, that unlike previous publications take 
carefully into account accuracy and number of parameters. 

In Chakravarty and Sivaswamy (2016) they propose a 
semi-supervised learning framework based on bag of words for early 
detection of glaucoma. In Geetha Ramani et al. (2012) they assess the 
pathology by the use of random tree classification, although the exper
iments are only reported on a dataset of 45 samples. Xiong et al. (2014) 
details the use of PCA and BAYES classifier. Mitra et al. (2018) proposes 
the use of CNN to predict bounding boxes with their corresponding class 
probability and confidence score, where initialization is done using 
k-means clustering. Wang et al. (2019) goes beyond this approach and 
applies a pathology-aware feature visualization approach for the diag
nostic, where the method relies heavily on Generative Adversarial 
Networks (GANs). Guo et al. (2020) uses UNet++ in Zhou et al. (2018) 
to segment the Optic Disc and Optic Cup using feature extraction at 
several fields of view and then a gradient boosting decision tree to do the 
screening of glaucoma. Traditional methods have also shown to be 
effective to tackle related medical imaging problems, (Huang et al., 
2021; Yang et al., 2020a; 2020b). For a meticulous analysis of several 
approaches see Barros et al. (2020), where both a description of hand
crafted methods and techniques based on deep convolutional networks 
(Maqsood et al., 2021; Rajinikanth et al., 2021; Wong et al., 2012) are 
presented. However, although most methods provide a well-thought 
effective methodology to address the problem, the majority of them 
have a shortfall on the used data, as are tested on very small datasets 
with limited statistical significance. 

Fig. 1. Example of negative (normal) and positive (abnormal) samples. High
lighted inner circular region corresponds to Optic Cup and outer circular region 
to Optic Disc. Samples that are glaucomatous (right; with severe pathology) 
present abnormal size of the Optic Cup respect to normal samples (left). 
[Source: two random samples from the dataset under study]. 

Fig. 2. Visual exploration of the samples of the pathology glaucoma; first row: positive, second row: negative.  

Table 1 
Statistics of the dataset consisting on 17.070 fundus images with positive (P: abnormal) and negative (N: normal) samples. The data is distributed into 10 folds (0 to 9) 
of 1.707 samples each with corresponding train, validation and test.    

Fold    

0 1 2 3 4 5 6 7 8 9 Total 

Train (N) 754 740 739 743 746 758 754 642 748 733 7452 
(P) 625 639 640 636 633 621 625 737 631 646 6338 

Validation (N) 83 88 83 85 81 71 84 82 80 82 819 
(P) 71 66 71 69 73 83 70 72 74 72 721 

Test (N) 82 91 97 91 92 90 81 100 91 104 919 
(P) 92 83 77 83 82 84 93 74 83 70 821 

Total 1707 1707 1707 1707 1707 1707 1707 1707 1707 1707 17070  

Fig. 3. Statistics of the dataset using a bar plot for sets of training, validation and testing.  
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The architecture proposed is built on EfficientNet in Tan and Le 
(2019) and EfficientNetV2 in Tan and Le (2021), using a three-stage 
training mechanism that broadens the finetuning steps proposed in 
Diaz-Pinto et al. (2019b). These architectures are built using Neural 
Architecture Search (NAS), (Pham et al., 2018; Zoph and Le, 2017; Zoph 
et al., 2018), in particular EfficientNet uses the AutoML MNAS frame
work presented in Tan et al. (2019) that optimizes the networks for 
accuracy and efficiency (FLOPS) and is based on previous work in 
Sandler et al. (2018) and Tan et al. (2019), but with a larger base model. 
Evaluation of the family of models is done from B0 to B5 in the case of 
EfficientNet, and from B0 to B3, S and M in EfficientNetV2. We use 
transfer learning from ImageNet to the particular application under 
study and see that the models achieve high accuracy with a reduced 
number of training parameters, compared to other state-of-the-art 
methodologies. Concomitant approaches in retinal image classification 
show the adequacy of the family of models EfficientNet for the given 
task, (Gupta et al., 2022a; 2022b; Islam et al., 2022; Jaiswal et al., 2021; 
Nawaz et al., 2022; Wang et al., 2020). 

Fig. 4. Visual description of the proposed three-stage training 
system in one fold of the data. Transfer learning from ImageNet 
is put in place. Color layers are re-trained. In particular, 
weights from m1 are used to initialize the network when 
training m2, which unfreezes a given number of layers from the 
full model (in our application 20, keeping layers BatchNorm 
untrained). Afterwards, weights from m2 are used to initialize 
the network when training m3, which retrains the whole ar
chitecture. Finally, in the evaluation stage, the weights ob
tained (Model*) are then fed into 10-fold crossvalidation to 
retrain the network for each fold, and select the best model 
according to F1-score. The procedure is robust against hyper
parameter choices.   

Table 2 
EfficientNet-B0, baseline network. Each row describes a stage c with L̂c layers, 
with input resolution 〈Ĥc, Ŵc〉 and output channels Ĉc.  

Stage Operator Resolution # Channels # Layers 
c F̂ c Ĥc × Ŵc Ĉc L̂c 

1 Convn3x3 224× 224 32 1 
2 MBConvn1, k3x3 112× 112 16 1 
3 MBConvn6, k3x3 112× 112 24 2 
4 MBConvn6, k5x5 56× 56 40 2 
5 MBConvn6, k3x3 28× 28 80 3 
6 MBConvn6, k5x5 14× 14 112 3 
7 MBConvn6, k5x5 14× 14 192 4 
8 MBConvn6, k3x3 7× 7 320 1 
9 Convn1x1 & Pooling & FC 7× 7 1280 1  

Table 3 
EfficientNetV2-S, example architecture. Extension to EfficientNet using both MB 
and Fused-MB Convolutions. Each row describes a stage c with L̂c layers, with 
given stride and output channels Ĉc.  

Stage Operator Stride # Channels # Layers 
c F̂ c  Ĉc L̂c 

0 Convn3x3 2 24 1 
1 Fused-MBConvn1, k3x3 1 24 2 
2 Fused-MBConvn4, k3x3 2 48 4 
3 Fused-MBConvn4, k3x3 2 64 4 
4 MBConvn4, k3x3, SE0.25 2 128 6 
5 MBConvn6, k3x3, SE0.25 1 160 9 
6 MBConvn6, k3x3, SE0.25 2 256 15 
7 Convn1x1 & Pooling & FC - 1280 1  

Table 4 
Three-stage training system for several model baselines. Accuracy in Fold 0.  

Table 5 
Three-stage training system for several variants of EfficientNet. Accuracy in Fold 
0.  
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3. Data and methods 

The dataset under consideration consists on 17.070 fundus images, 
which are digitalized photographs of the posterior part of the eye, with 
positive (abnormal) and negative (normal) samples of the pathology. 
The data is divided into 10 folds of 1.707 instances, each one with its 
corresponding sets of training, validation and testing. The sets are 
relatively balanced to reduce the number of false negatives. These 
samples are obtained using retinography, and thus their characteristics 
in terms of illumination and intensity are very particular and relatively 
homogeneous among all instances; such aspect is central for the correct 
detection of the samples. For this reason, using the raw pixels without 
normalization confers the network with significantly better generaliza
tion than when using min-max normalization, or normalization with 
standard deviation, as these types of preprocessing cause loss of infor
mation. This observation is very important as any type of non-linear 

transformation that affects or alters the brightness of the samples can 
severely degrade the performance of such a system; this can hold also 
when dealing with other medical data where image intensity is crucial. 

Table 6 
Three-stage training system for several variants of EfficientNetV2. Accuracy in 
Fold 0.  

Table 7 
Three-stage training system. Confusion Matrix Baseline Models in Fold 0. 
VGG16, InceptionV3 and ResNet50.  

Table 8 
Three-stage training system. Confusion Matrix EfficientNet in Fold 0.  

Table 9 
Three-stage training system. Confusion Matrix EfficientNetV2 in Fold 0.  
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3.1. Fundus images 

The samples are cropped to improve the sensitivity of the detector. 
The disease is characterized by an abnormal size of the Optic Cup, with 
respect to the Optic Disc, see Fig. 1. This is the reason why many earlier 
approaches were based on the Cup/Disc Ratio (CDR). As our approach is 
data driven, there is no need to use handcrafted intermediate features as 
feature selection. A random subset of the data is shown in Fig. 2, as well 
as, detailed statistics in Table 1 and Fig. 3. 

3.2. Preliminary study and methodology 

The preliminary study focuses on Fold 0 to set forth a design meth
odology that will serve as guiding principle of the manuscript. 

The methodology under study proposes a three-stage training system 
(see Fig. 4 for a visual description) that consists on the following pro
cedure in only one Fold of the data:  

1. Start from a model trained on Imagenet, and only re-train the last 
added layers (GlobalAveragePooling2D, BatchNorm, Dropout and 
Fully Connected) of the system. 

Table 10 
Three-stage training system for several baseline models. F1-score, number of 
trainable parameters and number of non-trainable parameters in Fold 0.     

Method level    

m1 m2 m3 

Model VGG16 F1-score 
(%) 

84 88 76 

# trainable 
parameters 

2.050 14.678.018 14.716.738 

# non- 
trainable 
parameters 

14.715.712 39.744 1.024 

InceptionV3 F1-score 
(%) 

78 82 87 

# trainable 
parameters 

8.194 401.410 21.776.546 

# non- 
trainable 
parameters 

21.806.880 21.413.664 38.528 

ResNet50 F1-score 
(%) 

80 83 89 

# trainable 
parameters 

8.194 5.518.338 23.542.786 

# non- 
trainable 
parameters 

23.591.808 18.081.664 57.216  

Table 11 
Three-stage training system for several variants of EfficientNet. F1-score, num
ber of trainable parameters and number of non-trainable parameters in Fold 0.     

Method level    

m1 m2 m3 

EfficientNet B0 F1-score (%) 79 83 88 
# trainable 
parameters 

5.122 1.126.706 4.012.670 

# non- 
trainable 
parameters 

4.052.131 2.930.547 44.583 

B1 F1-score (%) 81 85 92 
# trainable 
parameters 

5.122 1.355.602 6.518.306 

# non- 
trainable 
parameters 

6.577.799 5.227.319 64.615 

B2 F1-score (%) 81 85 92 
# trainable 
parameters 

5.634 1.637.594 7.706.628 

# non- 
trainable 
parameters 

7.771.385 6.139.425 70.391 

B3 F1-score (%) 81 84 87 
# trainable 
parameters 

6.146 1.946.210 10.702.378 

# non- 
trainable 
parameters 

10.786.607 8.846.543 90.375 

B4 F1-score (%) 80 81 91 
# trainable 
parameters 

7.170 2.643.314 17.555.786 

# non- 
trainable 
parameters 

17.677.407 15.041.263 128.791 

B5 F1-score (%) 80 86 89 
# trainable 
parameters 

8.194 3.446.914 28.348.978 

# non- 
trainable 
parameters 

28.517.623 25.078.903 176.839  

Table 12 
Three-stage training system for several variants of EfficientNetV2. F1-score, 
number of trainable parameters and number of non-trainable parameters in 
Fold 0.     

Method level    

m1 m2 m3 

EfficientNetV2 B0 F1-score 
(%) 

85 85 88 

# trainable 
parameters 

5.122 594.226 6.865.174 

# non- 
trainable 
parameters 

6.933.684 6.344.580 73.632 

B1 F1-score 
(%) 

85 85 86 

# trainable 
parameters 

5.122 594.226 6.865.174 

# non- 
trainable 
parameters 

6.933.684 6.344.580 73.632 

B2 F1-score 
(%) 

82 83 85 

# trainable 
parameters 

5.634 700.406 8.692.720 

# non- 
trainable 
parameters 

8.772.190 8.077.418 85.104 

B3 F1-score 
(%) 

80 85 83 

# trainable 
parameters 

6.146 860.892 12.827.552 

# non- 
trainable 
parameters 

12.933.694 12.078.948 112.288 

S F1-score 
(%) 

85 87 88 

# trainable 
parameters 

5.122 938.050 20.182.610 

# non- 
trainable 
parameters 

20.333.920 19.400.992 156.432 

M F1-score 
(%) 

82 82 91 

# trainable 
parameters 

5.122 3.050.626 52.863.478 

# non- 
trainable 
parameters 

53.152.948 50.107.444 294.592  
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2. Use the weights from the previous stage to initialize a model that 
unfreezes a number of layers of the previous model (excluding 
BatchNorm), and retrain the system.  

3. Use the weights from the previous iteration and retrain the whole 
network. Evaluate the classification report based on both the F1- 
score and confusion matrix to select the best hyperparameters. 

Experimentation is based on baseline models (VGG16 in Simonyan 
and Zisserman (2015), InceptionV3 in Szegedy et al. (2016) and 
ResNet50 in He et al. (2016)) and then extended to variants of Effi
cientNet; Tan and Le (2019), and EfficientNetV2; Tan and Le (2021). 

EfficientNet-B0 base model consists on the following layers, see 
Table 2. In this particular example, model m1 freezes all layers from 

stages 1 to 8, and retrains only layers corresponding to stage 9. Model 
m2 starts from the learned weights on m1 and retrains a subset of layers 
going backwards, in our case 20, while keeping BatchNorm layers un
trained. Finally model m3 starts from the weights of m2 and retrains the 
whole network. The network proceeds in the same way with the case of 
variants of EfficientNetV2 (see Table 3 for a description of the archi
tecture) and model baselines (VGG16, InceptionV3 and ResNet50). 

The family of models EfficientNet and EfficientNetV2 is a composi
tional stack of modules MB and Fused-MB Convolutions (denoted 
MBConvn and Fused-MBConvn). These modules consist on the following 
inner operators: 

Fig. 5. Visual description of the evaluation. The weights obtained in the preliminary stage using Fold 0 (Model*: obtained from m3) are then used in 10-fold 
crossvalidation to retrain the network for each fold, and select the best weights of the model (Model **) according to F1-score. 

Table 13 
Evaluation of the F1-score: baseline models of the method consisting on VGG16, InceptionV3 and ResNet50. Thorough testing across folds with mean and standard 
deviation for the F1-score of all models under evaluation.    

Fold Statistics   

0 1 2 3 4 5 6 7 8 9 Mean stdev 

Baseline models VGG16 83 88 89 83 95 93 60 90 86 65 83,2 1,1 
InceptionV3 91 94 86 92 93 90 91 94 89 92 91,1 2,4 
ResNet50 88 88 82 87 92 85 92 88 91 93 88,9 3,3  

Table 14 
Evaluation of the F1-score (%): methods based on EfficientNet. Thorough testing across folds with mean and standard deviation for the F1-score of all models under 
evaluation.    

Fold Statistics   

0 1 2 3 4 5 6 7 8 9 Mean stdev 

EfficientNet B0 99 99 97 86 97 95 98 98 98 87 96,6 3,7 
B1 92 99 98 94 98 98 97 98 94 93 95,9 2,4 
B2 89 100 96 97 92 98 97 97 98 96 96,1 2,9 
B3 89 99 98 94 98 92 95 98 96 96 95,5 3,0 
B4 97 98 97 98 98 98 96 97 98 91 96,6 2,0 
B5 91 98 97 94 94 96 97 98 94 99 95,8 2,3  

Table 15 
Evaluation of the F1-score (%): methods based on EfficientNetV2. Thorough testing across folds with mean and standard deviation for the F1-score of all models under 
evaluation.    

Fold Statistics   

0 1 2 3 4 5 6 7 8 9 Mean stdev 

EfficientNetV2 B0 86 95 96 97 95 93 94 96 93 97 94,3 3,3 
B1 88 95 92 96 96 93 96 96 95 95 94,2 2,5 
B2 94 99 91 95 94 95 95 98 95 87 94,5 3,1 
B3 95 98 96 96 96 96 97 98 95 89 95,7 2,3 
S 93 97 95 97 95 97 97 98 93 93 95,4 1,6 
M 88 97 92 89 92 94 91 98 93 91 92,4 3,0  
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• MBConvn: a 1 × 1 convolution, followed by a depthwise 3 ×3 
convolution, a SE module in Hu et al. (2018), and finally another 1 ×
1 convolution.  

• Fused-MBConvn: a 3 × 3 convolution, followed by a SE module and 
finally a 1 × 1 convolution. 

Worthy of mention is the fact that EfficientNet-B0 achieves state-of- 
the-art performance while keeping the number of parameters to train 
bounded to the same levels as ResNet50. 

Tables 4, 5 and 6 show the accuracy in validation and training for the 
given three-stage training mechanism: m1 corresponding to the first 
stage where only the last layers are trained, m2 to the second stage 
where a number of layers are unfrozen, and m3 to the third stage where 
the whole network is retrained. 

Confusion matrices of the corresponding models are shown in Ta
bles 7, 8 and 9, where we can see that there is a clear performance in
crease due to the three-stage procedure, causing the number of false 
negatives to be drastically reduced. Although for this particular task we 
consider F1-score as the comparison metric, confusion matrices allow 
for the computation of other measures such as error-rate, accuracy, 

specificity, sensitivity, and precision. 
Numerical progression of F1-score can be observed in Tables 10, 11 

and 12, where the number of trainable and non-trainable parameters are 
reported for each method level under study. 

Regarding the confusion matrices for the three-stage training system, 
we can observe that the expected behavior in terms of incorrect cases is 
having a higher number of false positives than false negatives. This is 
appropriate for designing a system to detect glaucoma, as the principle is 
to be able to always detect the disease if it is present, as the pathology is 
irreversible and early treatment can considerably improve the condition 
of the subject. 

The manuscript uses the F1-score (higher is better), which is calcu
lated as the harmonic mean between precision and recall, to choose 
among models. We can observe the increase in performance that the 
training in three steps confers to the design of the system, very much 
irrespective of the hyperparameters chosen (learning rate, number of 
epochs and optimizer). 

In addition, transfer learning from Imagenet allows us to rapidly fine- 
tune the architecture in three stages, achieving high accuracy with 
limited training time. 

The system is implemented using Keras with the following hyper
parameters:  

• m1 (lr = 1e − 2, dropout = 0.2, epochs = 50)  
• m2 (lr = 1e − 4, epochs = 10)  
• m3 (lr = 1e − 4, epochs = 30) 

where ‘adam’ is the choice of optimizer and the GPU used in the ex
periments is a Tesla V100 SXM2 (16 GB). 

Once the desired model is obtained in Fold 0, we pursue a thorough 
testing across folds (10-fold crossvalidation) to choose the weights that 
give better accuracy on a given test subset, see Fig. 5. In particular, we 
evaluate the mean and the standard deviation to determine statistical 
significance of the result. 

For the evaluation, we perform 10-fold crossvalidation loading the 
weights from m3 and retraining on each fold with epochs = 30. 

3.3. Evaluation and discussion 

The manuscript builds on VGG16, InceptionV3 and ResNet50 as 
baseline models of the methodology, and then propose to use variants of 
EfficientNet to achieve state-of-the-art performance. 

Extensive evaluation of every model across folds is performed. Ta
bles 13, 14 and 15 show the F1-score across all folds of the dataset 
evaluating the method under consideration using as initial weights the 
corresponding weights of m3, that is, the result of the three-stage 
training in one fold, for each given model. Best results are highlighted, 
showing the statistical significance of the outputs by computing the 
mean and standard deviation along the folds. 

Plots of accuracy of every model on the sets of training and validation 
for each fold are shown in Tables 16, 17 and 18 in order to visualize the 
level of generalization of the architecture. 

The three-stage system presented, including variants of both Effi
cientNet and EfficientNetV2, considerably outperforms the given base
lines (VGG16, InceptionV3 and ResNet50), which are similar in scope to 
the models reported in Diaz-Pinto et al. (2019b) but using the 
three-stage training introduced in the manuscript. In the case of the 
baseline models, InceptionV3 has clearly the highest mean F1-score 
(91.1) compared to VGG16 (83.2) and ResNet50 (88.9). Although 
InceptionV3 and ResNet50 show comparative performance in terms of 
number of trained parameters and overall accuracy achieved, the first is 
more effective with the problem at hand considering that we are dealing 
with a dataset in the order of the thousands. Should the data to train be 
increased, it would be expected that ResNet50 achieves slightly better 
performance due to its better handling of the gradient backpropagating 
through the layers. 

Table 16 
Evaluation on several model baselines (VGG16, InceptionV3 and ResNet50). 
Accuracy across folds (from 0 to 9).  
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EfficientNet models perform slightly better in terms of F1-score than 
EfficientNetV2, although variants of EfficientNetV2 show a better 
standard deviation across folds; being B2 the model that achieves higher 
accuracy on a given fold (100 in Fold 1), and B0 and B4 the ones that 
achieve best mean F1 across folds (96.6), where B4 has the lowest 
standard deviation (2.0); thus, a better generalization is achieved since 
the results are more consistent. In the case of EfficientNetV2, V2-B2 
achieves the highest accuracy on a given fold (99 in Fold 1), while V2- 
B3 is the model that gets best mean F1 score across folds (95.7), and 
model S is the more consistent model according to the standard devia
tion of the F1-score (1.6). Error bars with mean and standard deviation 
are showed in Fig. 6. 

Accuracy plots across folds show the considerably good ability to 
generalize of each model, showing the corresponding curves for the sets 
of training and validation. 

The methodology to tackle the problem in many train stages of the 
same architecture presents a robust behavior with state-of-the-art per
formance. Limitations of the technique mainly are due to EfficientNet 
and EfficientNetV2, where we inherit the necessity to train a large 
number of parameters, that is clearly less than other state-of-the-art CNN 
architectures, as the networks are found using NAS optimizing for 
overall FLOPS, but still very high compared to traditional hand-crafted 
methodologies where the number of parameters to learn is very low. 

4. Conclusions and further work 

In this work, an intelligent system to automatically detect glaucoma 
is presented. The methodology is based on a three-stage training pro
cedure based on variants of EfficientNet, a recently proposed family of 
architectures found using NAS that achieves compelling accuracy on 
Imagenet, achieving consistent results that outperform the baseline 
methods. Transfer Learning from Imagenet to the given application 
under study is employed. The training mechanism applied bestows the 
system with robustness against hyperparameter choices. We use a 
dataset consisting of 17.070 fundus images, a considerable size 
compared to the number of samples used in other recent works, and 
where the sets used for training, validation and testing are well 
balanced; such fact confers the obtained models with a low number of 
false negatives, which is clearly desirable given the gravity and irre
versibility of the pathology. Extensive evaluations are reported at each 
stage of the described procedure under study, as well as, visual inter
pretation of the results for the sets of training and validation. The F1- 
score in the test set is used as the target score metric to choose among 
models, along with a classification report and confusion matrix for each 
model in the preliminary stage. The proposed system is reliable, highly- 
accurate, consistent and resource-efficient. 

The methodology achieves a mean average percentage F1-score 
across folds of 96.6 using EfficientNet-B0 (with standard deviation of 
3.7) and EfficientNet-B4 (with standard deviation of 2.0), where the best 
F1 on a given fold is 99 on B0 and 98 on B4. For the case of 

Table 17 
Evaluation on several variants of EfficientNet (B0-5). Accuracy across folds (from 0 to 9).  
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EfficientNetV2, V2-B3 achieves a mean average F1-score across folds of 
95.7 (with standard deviation of 2.3) and V2-S of 95.4 (with standard 
deviation of 1.6), where the best F1 on a given fold is 98 for both V2-B3 

and V2-S. These results significantly outperform the baselines; VGG16 
(83.2), InceptionV3 (91.1) and ResNet50 (88.9), and are also clearly 
better than the state-of-the-art reported results found in the literature, 

Table 18 
Evaluation on several variants of EfficientNetV2 (B0-3, S and M). Accuracy across folds (from 0 to 9).  

Fig. 6. F1 evaluation across folds for each model under study using the three-stage training procedure. Error bars with mean and standard deviation for each model 
are depicted. All architectures based on EfficientNet and EfficientNetV2 outperform the baseline methods (VGG16, InceptionV3 and ResNet50) being EfficientNet B4 
and EfficientNetV2 S the best performing techniques. 
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Diaz-Pinto et al. (2019b). 
The three stage-training mechanism using variants of EfficientNet 

and EfficientNetV2 proposed, although targeted for the particular 
application of detecting the pathology of glaucoma, achieves a superior 
classification baseline to use in other clinical conditions, or in the more 
general case in any vision application where extracting features from 
raw pixel intensities can play an important role. Indeed, visual sensors 
are ubiquitous in many applications, such as self-driving cars or Un
manned Aerial Vehicles, where the use of transfer learning, and subse
quent freeze, training and finetuning has proven to be very effective; 
therefore, the system proposed could be further integrated into the 
detection pipeline of such a system, for instance for lane detection in a 
self-driving vehicle, or for target recognition in drones. 
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València; R&D project PID2021-122580NB-I00, funded by MCIN/AEI/ 
10.13039/501100011033 and ERDF. 

References 

Barros, D., Moura, J., Freire, C., Taleb, A., Valentim, R., & Morais, P. (2020). Machine 
learning applied to retinal image processing for glaucoma detection: Review and 
perspective. BioMedical Engineering OnLine, 19. https://doi.org/10.1186/s12938- 
020-00767-2 

Behrad, F., & Saniee Abadeh, M. (2022). An overview of deep learning methods for 
multimodal medical data mining. Expert Systems with Applications, 200, 117006. 
https://doi.org/10.1016/j.eswa.2022.117006 

Chakravarty, A., & Sivaswamy, J. (2016). Glaucoma classification with a fusion of 
segmentation and image-based features. 2016 IEEE 13th international symposium on 
biomedical imaging (ISBI) (pp. 689–692).10.1109/ISBI.2016.7493360 
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