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Abstract. We analyze the basic structure of certain metric models, which are constituted by an
index I acting on a metric space (D, d) representing a relevant property of the elements of D.
We call such a structure (D, d, I) an index space and define on it normalization and consistency
constants that measure to what extent I is compatible with the metric d. The “best” indices are those
with such constants equal to 1 (standard indices), and we show an approximation method for other
indices using them. With the help of Lipschitz extensions, we show how to apply these tools: a new
model for the triage process in the emergency department of a hospital is presented.

Keywords: metric model, index space, standard index, Lipschitz extension, triage.

1 Introduction

Ratings and indices are used today as elementary but fundamental tools that enable in-
dividuals and institutions to make relevant strategic decisions. For example, in the spe-
cific field of education, indices have been widely used in the context of higher educa-
tion (ARWU, QS World University Ranking, Webometrics, see, for example, [1]); also,
control and monitoring of the economy of countries is mainly based on indices and
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rankings (see [4,17,22]). Our conceptualization of these models takes the form of a math-
ematical structure that makes it possible to control the construction of a given index by
ensuring its consistency with the distance between the elements of the underlying metric
model.

Due to the mathematical nature of the present paper, let us mention first the main
reference that appears when we check the scientific literature regarding indices and rank-
ings. Directly related to statistical arguments, the theory of rankings is understood to be
the study of how, given a matrix of scores (for example, given by the pairwise comparison
among the elements of a set), a ranking for these elements can be set according to the
given relations. This happens, for example, when we have several teams playing against
each other in a soccer league and we know already a part the results. The reader can
find a complete explanation of related methods in [11] and the references therein. These
methods provide different ways of giving orderings among the elements of the set based
on the known data, but they are not centered in the definition of a similarity relation given
by a distance among the elements. Therefore, although the relations with our purpose
can be checked, the starting point of the method is exactly the opposite one to ours since
there is no an underlying metric space: ordered differences among elements rather than
similarities are used. Indices are also useful in image processing in which some tools
are defined using specific indices in order to measure similarity of pictures. For instance,
in [6], it can be found a complete explanation of use of such an instrument, this time in
a metric space framework as in the case that we show in the present paper.

Theoretical approaches based on families of rankings that have already been proven
by use can also be found. In [5], the comparison between the different approaches is
used to obtain a general idea of what a ranking should be, which allows to give the
foundations of a common framework of analysis at least in a specific area. Other relevant
example of the analysis of ranking and indices is the paper [22] in which a systematic
method for defining coherent rankings and ratings is presented. A great effort is made to
analyze the correctness and applicability of the indexes, producing a decalogue of rules to
develop multidimensional measures. Essentially, this decalogue—which can be structured
as a sequence of consecutive steps to be applied— can be summarized as follows: a first
step for the construction of the theoretical framework, a second step of data selection and
processing, a third step that refers to mathematical (mainly statistical) processing, and
a last step that refers to data synthesis and visualization. Let us briefly explain how these
items fit into the general scheme of our mathematical construction: (i) In our purpose,
the first step (theoretical framework) is used to define a metric space: the set of entities
on which the model works is first fixed. Then we use a distance to quantify similarity
among these elements. (ii) An index in it (the essence of any ranking, rating or indicator
construction) is nothing more than a positive function that is intended to be consistent with
the metric. Small distances in the metric space have to be reflected in small differences
between index values: Lipschitz functions appear. (iii) The analysis of the resulting
metric/index structure together with statistics and data visualization come into play to
provide the final results.

Let us see a concrete example. We begin by considering a general class that we want
to analyze, that is, the set D to which the final index should be applied: the set of all
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universities in a country. Consider then some variables to compare them; for example, the
overall funding of the institution per year or the number of students. Using them, we can
define a distance d between two universities: for example, the norm of the vector provided
by the values of these variables.

Let us now suppose that we intend to define an index I in this metric space (a positive
real number), which will allow in the next step to define a ranking, given canonically by
the order provided by the index. We need it to be coherent with the metric d in space since
this structure represents the properties that we are interested in taking into account for our
analysis. A trivial example of such a “coherent” index is given by the distance itself as
follows: for all b ∈ D, we define I0 by I0(b) := d(a0, b), where a0 ∈ D is a fixed element
of D. Indices defined in this way will play a central role in the paper and will be called
standard indices. For example, the element a0 could be the best university in a given
country, and so the index measures how far any other university is from meeting the
standards of a0. Putting the three objects together—a set D, a metric d and an index I—,
we get what we call an index space (D, d, I). This has been called a metric-index model
in [10] in the context of the extension of indexes defined for university rankings.

This structure can be understood as a general analytical instrument. For example,
imputation of data is an important process in modeling, especially, in the case of index
construction. An up-to-date survey on the subject can be found at [13] (see also [18] and
the references therein). The problem of giving concrete values of a given index when
we do not control all the variables in its definition becomes a central issue in many
cases. The Lipschitz extension can be used as a method for data imputation when the
statistical methods are not adequate. This is why we also study the extension of the indices
as Lipschitz functions: they allow to fill in missing values of the indices preserving the
similarity relations (distances).

The paper is organized as follows. In Section 2, main concepts and definitions are
introduced. Section 3 is devoted to the development of the main mathematical results
on the indexable spaces and index spaces: natural topologies, relevant subsets, compact-
ness results, approximation and extension of indices. In Section 4, we will show the
compatibility of the classical formulas for the extension of Lipschitz functions with the
original metric structure of the indices, providing in this way an analytical tool for seeing
how far extensions can be represented by means of standard indices. Other extension
formulas coming from what are called absolutely minimizing Lipschitz extensions ensure
a better local behavior than the ones we propose (see [2, 14]), and could be also used in
further studies; however, this research plan exceeds the aim of the present paper. Finally
(Section 5), we show as an example how to apply our general technique for creating
a triage automatic system to establish the order of attendance in an emergency service of
a hospital based on the professional experience of some doctors.

2 Basic definitions

We present in this section the basic definitions and results that are needed in the paper.
All of them can be found in books on general topology as [15, 21]. If R+ is the set of
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positive real numbers (including 0), we define a distance (or a metric) in a set D as
a function d : D ×D → R+ such that for a, b ∈ D, (i) d(a, b) = 0 if and only if a = b,
(ii) d(a, b) = d(b, a), and (iii) if c ∈ D, then d(a, b) 6 d(a, c) + d(c, b).

In [9], the interested reader can find a lot of examples and particular metrics con-
structed for solving specific problems. Each metric defines a topology on the space D
in which it is defined, that has a basis of neighborhoods of any element x ∈ D the balls
Bε(x) = {y ∈ D: d(a, b) < ε}, ε > 0. These sets give an intuitive idea of what a distance
is in terms of who the neighbors of a given element a are: an element b belongs to Bε(x)
if it is as close as ε to a; the lower the ε, the higher the closeness from b to a.

A function acting in a metric space (D, d) and with values on other metric space (R, r)
is said to be Lipschitz if r(f(a), f(b)) 6 Kd(a, b) holds for a certain constantK > 0 and
for every a, b ∈ D. The Lipschitz constant of f is the infimum of the constants K in the
inequality. In case we have to refer to the function, we will write Lip(f) for it, but often
we will use simply K in case this reference is not needed. Although the definitions and
results on Lipschitz functions can be found in a lot of works, we mainly use the recent
exhaustive book [8].

The main reason for using this family of functions is the useful extension formulas
that can be applied for them. This will allow to apply our model for the construction of
specific indices and its generalization to a broader class of institutions of education. The
McShane–Whitney theorem establishes that if B is a subspace of a metric space (D, d)

and f : B → R is a Lipschitz function with Lipschitz constant K, there is an extension f̂
of f to D such that f̂ is also a Lipschitz function with the same Lipschitz constant K
[8, Thm. 4.1.1].

Two classical extensions are given by the so-called McShane and Whitney formulas
that are (respectively)

fM (b) := sup
a∈B

{
f(a)−Kd(b, a)

}
and fW (b) := inf

a∈B

{
f(a) +Kd(b, a)

}
,

which are defined for all b ∈ D and equal to f if b ∈ B. We will use as extension formula
for the application of our structure an interpolation of these two extreme situations.

3 Index spaces

The object of our model is a metric space (D, d) and an index I . Such an index is
basically a Lipschitz real function and in our model represents a “meaningful quantity”—
for the decision maker that is defining the model—that allows to construct a ranking
on D by ordering the values of I(a) for all a ∈ D. We will call a triplet (D, d, I) an
index space. Throughout the paper, we will assume that the metric is bounded, that is,
supa,b∈D d(a, b) = d(D,D) <∞.

Under this assumption, we will say that the couple (D, d) is an indexable space.
The control of I using the metric d is the main idea of our model, which assumes that
I is in some sense compatible with d, that is, it represents a quantity whose properties
are implicitly represented by d. This is the reason why we assume that I is a Lipschitz
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function. Also, for mathematical reasons and in order to give a better structure to work
with, we will impose some normalization and coherency conditions for the index I with
regard to the distance d. Basically, we require that there is some proportion among the
index and the distance that can be established in terms of two control inequalities. The
first definition concerns the control on the size of the indices.

Definition 1. Let C > 0. An index I : (D, d) → R is C-bounded if it satisfies that
supa∈D |I(a)| 6 C. The constantB(I) := supa∈D |I(a)| will be called the boundedness
constant of I . An index will be said to be bounded if it is C-bounded for some C > 0.

For further comparison between several indexes, we will impose the following nor-
malization property for a given constant Q that could allow to control the relation of d
with the index I . As we will see, a complementary control will be given by the Lipschitz
inequality for the index and the metric.

Definition 2. Let Q > 0. Let (D, d) be an indexable space. We will say that an index
I : (D, d)→ R is Q-normalized if

d(a, b) 6 Q
(∣∣I(a)

∣∣ +
∣∣I(b)

∣∣) for all a, b ∈ D.

We will say that the positive number N(I) is the normalization constant of I if the
infimum of the constants Q satisfying the property above is equal to N(I). We will write
N(I) <∞ for denoting that there exists such a normalization constant for I . Note that if
I is Q-normalized, we have that d(D,D) 6 2QB(I).

Obviously, the definition above can be rewritten without the absolute value in case
that the index is positive. However, although we are dealing with positive indices in most
of the cases, in principle, we cannot assume that every suitable extension of a positive
index is positive. Since these extensions are essential in our formalism, we prefer to write
the normalization condition in this form. Note also that, since∣∣∣∣I(a)

∣∣− ∣∣I(b)
∣∣∣∣ 6 ∥∥I(a)− I(b)

∥∥ =
∣∣I(a)− I(b)

∣∣ for all a, b ∈ D,

we have that the new index Abs(I) given by Abs(I)(·) := |I(·)| is also Lipschitz if I is,
and for its constant, we have that Lip(Abs(I)) 6 Lip(I).

Remark 1. Notice that the hypothesis thatN(I) <∞—that is, I is normalized for some
K > 0—, imply that I can be zero only at one point. Indeed, if we have that I(a0) =
I(b0) = 0 for a0, b0 ∈ D, d(a0, b0) 6 I(a0)+ I(b0) = 0, and so d(a0, b0) = 0. This will
mean in our formalism that there is only one “optimal” element in the space, in the sense
that the value of any index is allowed to be 0 only in one point. The extension of the results
for having several optimal elements would need to change metrics by pseudometrics.

Definition 3. Let K > 0. An index I : (D, d) → R+ is K-coherent if it satisfies the
Lipschitz inequality for the constant K. That is,∣∣I(a)− I(b)

∣∣ 6 Kd(a, b) for all a, b ∈ D.
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We will say that C(I) is the coherence constant of I if the infimum of all constants K
satisfying this property is equal to C(I), that is, C(I) is the Lipschitz constant of I . We
will write C(I) <∞ for denoting that there exists such a coherence constant. Note that

sup
a,b∈D

∣∣I(a)− I(b)
∣∣ 6 2 sup

a∈D
I(a) 6 2B(I).

More obvious relation among the just introduced constants can be seen and will be
useful in the next sections. For example, if inf(I) = R ∈ R+, we have that

B(I)−R = sup
a∈D

I(a)−R 6 sup
a,b∈D

∣∣I(a)− I(b)
∣∣ 6 C(I)d(D,D),

and so
B(I) 6 C(I)d(D,D) +R,

what means that every Lipschitz map (that is, C(I) <∞) acting in an indexable space is
always bounded. The set of indices satisfying that inf(I) = 0 will be relevant in the next
sections; so we have that all of them are bounded whenever they are K-coherent for any
constant K <∞, and

B(I) 6 C(I) · d(D,D).

In case we have that the index has also a finite normalization constant N(I), we get

B(I) 6 C(I) · d(D,D) 6 2C(I) ·N(I) ·B(I).

3.1 Basic structure and compactness results for index spaces

Let C > 0 and consider the space FC of uniformly bounded indices defined on an
indexable space (D, d), FC = {I : D → R: B(I) 6 C}.

We can define two natural topologies on it. The first one is the uniform topology
given by the normB(·) of the indices as bounded functions and with basic neighborhoods
Vε(I0) = {I ∈ FC : B(I0 − I) < ε}, ε > 0, I0 ∈ FC . The second one is the topology
of the pointwise convergence with basic neighborhoods Vε,a1,...,an(I0) = {I ∈ FC :
|I0(ai)− I(ai)| < ε, i = 1, . . . , n} for I0 ∈ FC , ε > 0, n ∈ N, and a1, . . . , an ∈ D.

Proposition 1. The following subspaces of FC are compact with respect to the topology
of pointwise convergence:

(i) FC and
F0
C := {I ∈ FC : I > 0}.

(ii) For K > 0, {
I ∈ FC : I > 0,

∣∣I(a)− I(b)
∣∣ 6 Kd(a, b), a, b ∈ D

}
.

(iii) For K > 0, Q > 0 and R > 0,{
I ∈ FC : I > 0,

∣∣I(a)− I(b)
∣∣ 6 Kd(a, b),

R+ d(a, b) 6 Q
(
I(a) + I(b)

)
, a, b ∈ D

}
.
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Proof. (i) First, note that the pointwise limit limη Iη of a net of functions (Iη)η∈Λ in FC
is again a function in FC . Indeed, for each a ∈ D, limη Iη(a) ∈ [−C,C]; if the function
is in F0

C , we have that limη Iη(a) ∈ [0, C]. A classical argument identifying each such
a function with an element of the Cartesian product Πa∈D[−C,C] (Πa∈D[0, C] for F0

C)
that are compact since they are products of compact spaces with the product (Hausdorff)
topology, gives the result by Tychonoff’s theorem.

(ii) Fix a, b ∈ D and note that | limη Iη(a) − limη Iη(b)| 6 Kd(a, b) for a net of
functions (Iη)η∈Λ that converges pointwise since |Iη(a) − Iη(b)| 6 Kd(a, b) for every
η ∈ Λ. So limits of nets belonging to the set written in (ii) gives a function also in this
set, what means that it is closed. Together with (i), this gives the result.

(iii) Again, for a fixed pair a, b ∈ D, we have d(a, b) 6 Q(limη Iη(a) + limη Iη(b)),
and so the set is closed in a compact set.

This basic compactness results for meaningful subsets of indices opens the door for
a basic approximation tool that will be improved in the next sections by considering
sequences and particular values of the constants appearing in the subsets in Proposition 1.
The natural approximation that we can expect regarding subsets of indices is clearly
related to the pointwise topology: given any net (Iη)η∈∆, there is a subnet (Iη0)η0∈∆0

and an index I0 in the subset such that limη0 Iη0 = I0 with respect to the topology of
pointwise convergence, that is, for every a ∈ D, limη0 Iη0(a) = I0(a). Moreover, if
we know in advance that we have a pointwise Cauchy net (Iη)η∈∆ belonging to any of
the subsets in Proposition 1, we have that its pointwise limit I0 always defines an index
belonging to the set, limη Iη(a) = I0(a), a ∈ D.

3.2 Standard indices and representation of general indices

In case we do not have a distinguished index in the model (D, d, I), those requirements
(Q-normalization and K-coherence) will give us at least some control about how far
the index I is of the natural behavior of the metric d for the elements of D. However,
the very structure of the model (D, d) provides standard indices that are associated with
individual points a ∈ D and which we denote by Ia. It can be defined as follows after
choosing a reference point a ∈ D. Tipically, a is understood to be the element(s) having
the “minimum value” of a given property, but it can be chosen to be any element ofD. We
define a (the) standard index (associated to a specific element a ∈ D) as Ia(b) := d(a, b),
where b ∈ D. Next proposition explains why an index defined in this fashion can be
considered as “standard”.

Proposition 2. A standard index Ia has both the normalization and the coherence con-
stants equal to 1.

Proof. Note first that d(b, c) 6 d(b, a)+d(a, c) = Ia(b)+Ia(c), and so the normalization
constant Q 6 1. On the other hand, taking b = a, we get d(a, c) = d(a, a) + d(a, c) =
Ia(a)+Ia(c), and soQ > 1. Therefore,Q = 1, and Ia is 1-normalized. For the coherence
constant, it is clear by the triangle inequality of d that |Ia(c) − Ia(b)| = |d(a, c) −
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d(a, b)| 6 d(c, b). So, K 6 1. Moreover, for b = a, we get |Ia(c) − Ia(a)| = d(c, a) −
d(a, a) = d(c, a), and so 1 6 K, and so K = 1.

The following corollary states the certainty that, given an indexable space and a point
a in it, it is always possible to construct a standard indexed space with an index centered
on this point a.

Corollary 1. For every indexable space (D, d) and every a ∈ D, there is a 1-coherent
and 1-normalized index I such that I(a) = 0 and I(b) > 0 for every a 6= b ∈ D.

Proof. Just take I := Ia and apply Proposition 2.

A sort of converse of this result is also true as we show in Proposition 3. It gives
a characterization of those indices that can be identified with standard indices.

Proposition 3. Let I : D → R be a 1-coherent and 1-normalized index, and suppose
that there is an element a ∈ D such that I(a) = 0. Then I coincides with the standard
index Ia.

Proof. For every b ∈ D, we have that I(b) = I(b) − I(a) 6 |I(b) − I(a)| 6 d(a, b).
Also, we have d(a, b) 6 I(a) + I(b) = I(b). Both inequalities together imply I(b) =
d(a, b) = Ia(b) for every b ∈ D as desired.

In the rest of this section, we analyze the structure of the spaces of indices and the
approximation properties that can be obtained using the metric subspace of the standard
indices. Fix an indexable space (D, d). We will give a description of the closure of this
space with respect to the topology of pointwise convergence. The idea is to show that,
under some requirements, every index in the space can be approximated by (translations
of) standard indices. Thus, the natural extension of the class of standard indices is given
by considering its closure. Also, the condition minb∈D Ia(b) = 0 —that is trivially
satisfied by standard indices— can be adapted for getting a more useful space having
better topological properties regarding completion. Let us write inf(I) for infa∈D I(a).

Definition 4. Take a sequence (an) in D. Let us say that it is pointwise Cauchy if for
every b ∈ D, the limit limn d(an, b) of the sequence of real numbers (d(an, b)) exists.

If the sequence (an) is convergent with respect to the metric d, then it is trivially
pointwise Cauchy. The restriction of the real line with the Euclidean metric to the interval
D = (0, 1] and the sequence (1/n) ⊂ D gives a trivial example of such a (nonconvergent)
pointwise Cauchy sequence.

The following theorem is the main result of this section. It is a general version of
Proposition 3 and provides a complete characterization of those indices that can be ap-
proximated by a translation of standard indices. As the reader may notice in the definition
of RC below, many of the indices we are interested in —that is, those indices that
occur in the applications we propose, and in general, in all practical situations in which
indices appear— satisfy the requirement of belonging to such a set. In the case that the
requirements of the inequalities must be relaxed to consider a given index I , one could
use instead Proposition 4.
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Theorem 1 [Representation theorem for bounded indices]. Consider the set

RC :=
{
I > 0:

∣∣I(a)− I(b)
∣∣ 6 d(a, b), 2 inf(I) + d(a, b) 6 I(a) + I(b),

B(I) 6 C
}
.

Then for every I ∈ RC , there is a pointwise Cauchy sequence (an) such that for every
b ∈ D, I(b) = inf(I) + limn d(an, b).

Proof. Consider b ∈ D. Fix n ∈ N and take an element an such that I(an) − 1/n 6
inf(I). Then

inf(I) + d(an, b) 6 I(an) + I(b)− inf(I)

6 I(b) + I(an)−
(
I(an)− 1

n

)
= I(b) +

1

n
.

On the other hand,

I(b)− I(an) 6
∣∣I(b)− I(an)

∣∣ 6 d(an, b),

and so

I(b) 6 d(an, b) + I(an) 6 d(an, b) + inf(I) +
1

n
6 I(b) +

2

n
.

Consequently,
lim
n
d(an, b)=I(b)− inf(I) ∈ R

for every b, and so (an) is pointwise Cauchy. Also, this gives the desired representation
I(b) = inf(I) + limn d(an, b), b ∈ D.

Remark 2. The converse of Theorem 1 is also true. Indeed, we have that if I(a) =
inf(I) + limn(an, a) for a certain pointwise Cauchy sequence (an) and a, b ∈ D,

2 inf(I) + d(a, b) 6 inf(I) + d(an, a) + inf(I) + d(an, b),

and so

2 inf(I) + d(a, b) 6 inf(I) + lim
n
d(an, a) + inf(I) + lim

n
d(an, b)

= I(a) + I(b).

Thus, we have a characterization of those indices that can be represented as a constant
plus a standard index defined by the metric d. For example, we have that the indices
that have normalization and coherence constants equal to one (N(I) = C(I) = 1)
and inf(I) = 0 are exactly the ones with a representation as I(·) = limn d(an, ·) for
a pointwise Cauchy sequence (an). Moreover, by Proposition 1(iii) we have that the
closure of this set with respect to the topology of pointwise convergence is compact since
it is included in a (many) set(s) as the one(s) defined there.
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Remark 3. More concrete results can be given for the case that the indexable space
(D, d) is compact. Indeed, in this case, we have that for every sequence (an), there is
a subsequence (ank

) that converges with respect to d to an element a0 ∈ D. Thus, if (an)
is Cauchy with respect to the pointwise topology, we have that limn d(an, b) exists, and so
it coincides with the limit of the convergent subsequence limk d(ank

, b) = d(limk ank
, b).

Therefore, if I(b) = limn d(an, b) we have that I(b) = d(a0, b) for all b ∈ D. Also
inf(I) = minb∈D I(b) = d(a0, a0) = 0, and so the indices considered in the above
results are given by a formula as I(·) = R + d(a0, ·) for R > 0. Consequently, in this
case the limit of indices defined in this way as limits of indices with infimum equal to R
have also infimum equal to R, and the sets considered above are compact.

We are assuming in the results above that we have a good control on N(I) and C(I)
for which we suppose that they are equal to one. However, this is not always the case
in the applications we propose at the end of the present paper. To finish this section,
we show that it is still possible to get some control on the general indices having finite
normalization and coherence constants by means of standard indices even in the case that
these constants are different from one. We present these bounds in the next proposition.
Note that for a general index, we can assume w.l.o.g. that either the coherence or the
normalization constant is equal to one; in other case, just divide by one of these constants
the metric to obtain an equivalent metric with exactly the same properties that the original
one, and note that the corresponding constant is now equal to one.

Proposition 4. Let R > 0 and K > 1. Let I > 0 and index I that satisfies that
C(I) = 1 and R + d(a, b) 6 K(I(a) + I(b)) for a, b ∈ D. Then for every ε > 0,
there is aε ∈ D such that I(b) 6 d(aε, b) + inf(I) + ε 6 ∆ε + KI(b) for all b ∈ D,
where ∆ε = (1 +K)(inf(I) + ε)−R. In particular,

(i) if inf(I) = min(I), then ε can be assumed to be 0, and
(ii) if min(I) = 0, there exists a0 ∈ D such that I(b) 6 d(a0, b) 6 KI(b), b ∈ D.

Proof. Take ε > 0 and an element aε ∈ D such that I(aε) 6 inf(I)+ε. By the Lipschitz
character of I and using that the corresponding constant is equal to 1, we directly get

I(b) 6 d(aε, b) + I(aε) 6 d(aε, b) + inf(I) + ε

6 (1 +K)
(
inf(I) + ε

)
+KI(b)−R

=
(
(1 +K)

(
inf(I) + ε

)
−R

)
+KI(b)

for all b ∈ D. Note that the conditions on the statement of the result give that ∆ε =
(1 +K)(inf(I) + ε)−R is greater or equal to 0. (i) and (ii) are easy consequences of the
obtained inequalities and the existence of the minimum of I .

The reader can also notice that some other results in the direction of Proposition 4 are
also possible and easy to prove using the arguments of this section. For example, assuming
that the indexable space (D, d) is compact, d(aε, ·) could be changed by a formula as
limn d(an, ·) for a pointwise Cauchy sequence (an) in the results above, and so using
compactness, by a formula of the type d(a0, ·) for a certain a0 ∈ D.
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4 Normalization and coherence constants

As we explained in the introduction, identification of general indexes with (translations
of limits of) standard indices is the first tool we propose for modelling certain natural
and social systems by means of index spaces. The application we propose in this paper is
related to a problem of prospective design: how to extend a given index, which provides
information about the state of certain elements of a metric space to the whole space. Let
us explain our methodological approach.

(i) The first option we propose is to identify/approximate the given index of the index
space that constitutes the model with standard indices. The theoretical tools to do
it have been already explained in Section 3.

(ii) The second option consists of using classical extension formulas —as the ones of
McShane and Whitney— for getting a prospective of the values of an index that
is known only in a subspace of the indexable space that models the problem in
the context of a classical Lipschitz regression procedure.

In this section, we focus our attention on the explanation of the methodological op-
tion (ii). Let us state the problem in clear mathematical terms. Consider a model that is
based on an indexable space (D, d) in which an index is (partially) defined. That is, the
index I is only defined for the elements of a subset D0 ⊆ D, and we want to use some
methods to find a controlled extension of I to the whole set D. As we have said, we can
use two well-known extension formulas, which provide an upper extension (Whitney’s
formula) and a lower extension (McShane’s formula). Broadly speaking, the Whitney
formula gives an estimate of I for the values of D \D0 composed by higher values than
the ones “reasonably expected”, and the McShane formula gives an estimate with lower
values than expected. It must be said that other (in a sense “better”) extension procedures
than those provided by these formulas are known today. Lipschitz extension procedures
are a recognized theoretical source for the construction of the machine learning methods
that are currently being introduced. For example, existence results are known on what
is called minimum and absolutely minimizing extension of Lipschitz functions, which
ensure that the resulting function has locally the best Lipschitz constants (see [12, 14]).
The corresponding theory and some well developed applications can be found in [2] and
also in [16] for the case of Lipschitz functions on graphs. However, for the purpose of
the present work, it is better to use the classical Whitney and McShane formulas since
we can easily test for them the variation of the coherence and normalization constants
when the indexes are extended. Thus, it is possible to directly compare the extension
results with those obtained by characterizing the indexes with standard indexes. This will
become clear in Section 5, where both procedures presented above —(i) identification
with standard indices, and (ii) index extension—, will be used.

To complete the overview of applications of the extension of Lipschitz functions in
machine learning, the reader can find more recent developments in the context of Lipschitz
regression and reinforcement learning in [3, 7, 10] (see also references therein).

Thus, in this section, we demonstrate some results on how the McShane and Whitney
extension formulas preserve the main constants that allow to control the approximation of
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general indexes by standard indexes. From a theoretical construction point of view, this is
necessary to exploit the possibility of combining these formulas with the use of standard
indexes. As we have already shown, small values of N(I) and C(I) —around 1—
makes it advisable to use the direct identification of any index I with a standard index
for extrapolation, while in case this control is not so good, extension formulas can be
used instead. Here we show the quantization of how the control in the extension is being
lost as N(I) and C(I) increase.

Although we will have to use the two extension formulas considered, let us show that
Whitney equation preserves the normalization and coherence constants, while McShane
formula preserves only the coherence constant (i.e., the Lipschitz constant). Convex com-
binations of such formulas could be used, so this will suffice to provide bounds for N(Î)
and C(Î) for the extension Î of any index I . This gives at least an indicator of how
the extension procedures deteriorate the values of these constants, showing that, although
there is some control, it is always better if the method of analysis is based on identification
with a standard index, at least theoretically. In this case, as demonstrated in Section 3,
the constants N(Î) and C(Î) are always equal to 1. In the development of the application
shown in Section 5, we will see that, in fact, both techniques can give comparable results.

Proposition 5. Let (B, d) be a metric subspace of the indexable space (D, d). Suppose
that I : (B, d)→ R+ is a Q-normalized and K-coherent index —that is, N(I) 6 Q and
C(I) 6 K— for Q · K > 1. Then its Whitney extension IW : (D, d) → R+ is also
a Q-normalized and K-coherent index in (D, d).

Proof. Assume that the index I acting in B satisfies the requirements for Q and K such
that Q ·K > 1. Take c, d ∈ D (but not necessarily in B). Then for all a, b ∈ B,

d(c, d) 6 d(c, a) + d(a, d) 6 d(c, a) + d(a, b) + d(b, d)

6 d(c, a) +QI(a) +QI(b) + d(b, d)

6 QKd(c, a) +QI(a) +QI(b) +QKd(b, d)

6 Q
(
I(a) +Kd(c, a)

)
+Q

(
I(b) +Kd(b, d)

)
.

Consequently,

d(c, d) 6 Q inf
a∈B

{
I(a) +Kd(c, a)

}
+Q inf

b∈B

{
I(b) +Kd(b, d)

}
6 Q

(
IW (c) + IW (d)

)
.

On the other hand, the classical McShane–Whitney theorem gives the preservation of the
Lipschitz inequality for the same constant K, and when we use the Whitney extension
IW , the normalization constant Q is also preserved.

Note that, in case the requirement 1 6 Q·K does not hold, we can get also an estimate
depending on the value of the constant Q · K just using the inequalities in the proof of
Proposition 5. For the McShane extension, we do not obtain the same result, although an
estimate of the constant appearing in the Q-normalization property can be also given. In
some cases, we could obtain the same than in the Whitney case.
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Proposition 6. Let (B, d) be a metric subspace of (D, d). Suppose that I : (B, d)→ R+

is a Q-normalized and K-coherent index for Q ·K > 1, define the constant

E(B,D) := sup
c∈D

inf
a∈B

∣∣∣∣I(a) +Kd(c, a)

I(a)−Kd(c, a)

∣∣∣∣,
and assume that it is finite. Then its McShane extension IM : (D, d) → R is a Q′-nor-
malized —for Q′ = Q · E(B,D)— and K-coherent index in (D, d).

Proof. Take c, d ∈ D. Then, taking into account that 1/Q 6 K, for all a, b ∈ B,

d(c, d) 6 d(c, a) + d(a, d) 6 d(c, a) + d(a, b) + d(b, d)

6 d(c, a) +QI(a) +QI(b) + d(b, d)

6 Q

(
1

Q
d(c, a) + I(a) +

1

Q
d(b, d) + I(b)

)
6 Q

(∣∣∣∣I(a) +Kd(c, a)

I(a)−Kd(c, a)

∣∣∣∣ · ∣∣I(a)−Kd(c, a)
∣∣

+

∣∣∣∣I(b) +Kd(b, d)

I(b)−Kd(b, d)

∣∣∣∣ · ∣∣I(b)−Kd(b, d)
∣∣)

6 Q

(∣∣∣∣I(a) +Kd(c, a)

I(a)−Kd(c, a)

∣∣∣∣ · ∣∣IM (c)
∣∣ +

∣∣∣∣I(b) +Kd(b, d)

I(b)−Kd(b, d)

∣∣∣∣ · ∣∣IM (d)
∣∣).

Since these inequalities can be written for any pair a, b ∈ B, we finally get

d(c, d) 6 Q

(
inf
a∈B

{∣∣∣∣I(a) +Kd(c, a)

I(a)−Kd(c, a)

∣∣∣∣}∣∣IM (c)
∣∣

+ inf
b∈B

{∣∣∣∣I(b) +Kd(b, d)

I(b)−Kd(b, d)

∣∣∣∣}∣∣IM (d)
∣∣).

Remark 4. Since I represents an index, we can always assume that I(a) > 0 for all
a ∈ D. Notice that, in case we have an element b ∈ D that attains the minimum (what of
course always happens if the set is finite or compact) and this minimum is 0, we have that
for every a ∈ D,

I(a) = I(a)− I(b) =
∣∣I(a)− I(b)

∣∣ 6 Kd(a, b)

6 KQ
(
I(a) + I(b)

)
= KQI(a).

Consequently, if we assume that this condition holds (that is, there is b ∈ D such that
I(b) = 0), we always have that Q ·K > 1 as required in Proposition 5. Note also that,
for a given index I acting in a compact indexable space (D, d), we can always define its
translation I0(a) := I(a) − infc I(c) = I(a) − I(b). This new index, that will have the
same order properties as indicator, will always satisfy the requirement of the existence of
an element b such that I0(b) = 0 and I0 > 0. Therefore, the result given by Proposition 5
is in a sense universal.
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5 Application: Automatic triage in a hospital

Let us show an application concerning control systems in the context of the hospital
management. Suppose that we need to give an order in the process of care of an emer-
gency service in a hospital. The idea is to give an adapted criterion based on a previous
classification of a group of patients who have already been monitored by the hospital by
a team of specialized physicians on a given subset of individuals in the group. To solve
this problem, we use the two possible procedures explained in the previous sections. The
set of all patients is assumed to be endowed with a metric, which models how similar two
patients are in terms of the severity of their disease.

Suppose we have a ranking —given by an index— of the level of severity of a group
of patients, which come to the hospital, provided by a group of experts. We try to find an
index on any other group of patients presenting to the hospital, extrapolating the experts’
criteria, so that the resulting extension is as appropriate as possible. The first procedure
consists of approximate/identify the original index by what we have called a standard
index. That is, we choose a patient —preferably the sickest one— and identify the index
for any patient with the distance to her/him. After the results of Section 3, we known
that this procedure is as good as the coherence and normalization constants are close
to 1. The second option is just to use the McShane–Whitney extension formulas for
extrapolating the original values of the index. We can control the adequacy by means
of the bounds established for the McShane–Whitney extensions in the previous section
taking into account the values for the original index.

We will explain these constructions on a real data set. The data we use to measure the
distance between patients is part of the data used in the document [20], which is published
on the webpage [19]. We consider the variables “Age”, “Main Complaint”, “NMC”
(Numerical Value for Main Complaint), “NRS pain” (Numeric Rating Scale for pain),
“HR” (Heart Rate) and “Saturation” (Oxygen saturation in the blood). The explanation
for all of these, except “NMC”, is standard. The “Main Complaint” is a descriptive
variable that measures the patient’s level of complaint with respect to how they feel.
Since it is not a numeric character, to include it in the count, a numeric value out of
100 is assigned to each complaint. The highest point, 100, is given to the most critical
complaints, such as mental change or respiratory failure. Of course, the same numerical
value is given to all patients with the same complaint.

We considered these variables because they describe the situation of a patient upon
arrival at the hospital, and therefore have a direct consequence on decision making. We
worked with 55 patients for whom all these variables are available in the recorded data.
Using these variables, we define a metric matrix calculated using a weighted Euclidean
norm that defines the required distance in an indexable space. The formula for the ele-
ments of the matrix is

d(p, q) =
(
10−3

(
Age(p)−Age(q)

)2
+ 3 · 10−3

(
NMC(p)−NMC(q)

)2
+ 2 · 10−3

(
NRS pain(p)−NRS pain(q)

)2
+ 10−3

(
HR(p)−HR(q)

)2
+ 10−3

(
Saturation(p)− Saturation(q)

)2)1/2
,
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Table 1. Some predicted values of McShane–Whitney extension and standard index with the decision of experts.

Age Main Complaint NMC NRS pain HR Saturation Experts McShane–Whitney Standard Index
39 both leg pain 25 3 93 99 5 4.73 5.31
41 leg pain 25 3 88 98 5 4.71 5.28
40 IV injection 20 2 99 98 5 4.99 5.57
81 abdominal pain 60 5 88 97 3 3.28 3.12
44 LLQ pain 60 6 85 98 3 3.24 3.47
46 F/C-fever/chills 40 2 104 98 4 4.50 4.49
46 blurred vision 35 2 80 98 4 4.32 4.72
48 Foreign Body Sense 40 3 100 96 4 4.46 4.46
69 epigastric pain 70 6 72 98 2 2.59 2.76
74 ant. chest pain 90 6 60 96 2 1.77 2.07
67 ant. chest pain 90 3 80 94 2 1.63 1.74
74 ant. chest pain 90 3 80 98 2 1.50 1.63

where p, q belong to the set of 55 patients. The decision maker could change the weights
in the standard or could use other variables that are considered more efficient in the
calculation.

(i) McShane–Whitney extrapolation. For the first construction, the first 11 patients are
separated as a test set. There is no special reason to choose exactly 11 patients, we simply
prefer to take a test set of few items and extend the indexing process to as large a set as
possible to test the efficacy of our procedures. For this reason, we included only 20% of
the patients in the test set. Note that there are many missing variable values in the original
data set we refer to, so only a small subset is suitable to be included in our calculations.

By using a convex combination of the McShane and the Whitney formulas, we obtain
an ordering for the rest 44 patients. The best values of the approximation is obtained by
the following convex combination:

IM,W(p) = 0.5, IM(p) + 0.5 IW(p),

where p is one of the 55 patients.

(ii) Standard index. For the second construction, we chose the first patient as the
reference point since this patient occupies the first place in the triage performed in the
hospital. The same metric is used again with one difference: only the distances between
the first patient and the others are considered. Let us denote the first patient by p1. Then
and index formula given by Ip1(p) = d(p1, p), where p is each of the 55 patients,
can be considered. As noted above, the standard index starts at 0, but the first value in
the ordering of a triage is 1. To ensure consistency, we will give the triage ordering
by Ip1(p) + 1, thus obtaining one of the canonical types of indexes —a translation of
a standard index— of those studied in Section 3.

Some values of the extension of the original triage index, given by both the McShane–
Whitney extension and the standard index explained, are presented in Table 1. The triages
given by our approximations are decimal numbers, so it is necessary to round to the
nearest whole number to give the triage order, although the decimal value can be used
to decide between patients for whom the same triage order is obtained. Indeed, a more
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sensitive triage is given by the decimal numbers. To see what it means, consider the last
two patients with the McShane–Whitney extension in the table. The Main Complaints
of these patients are the same, and the predicted triages are 1.63 and 1.50. Rounding the
predictions, the second order is given to the patients for triage. But 1.63 > 1.50, and this
shows that the last patient has priority. This is significant as the last patient is elder, and
this is the only main difference between the patients. The same effect is also observed for
the standard index.

Figure 1 provides a representation for both predicted triages together with the original
triage of the experts. 55 patients are represented in the axis OX . Note that, as expected,
the approximations obtained by McShane–Whitney extension coincide with the original
triage when the patients belong to the test set. The patients in this set are the first 11
points in the axis OX . This criterion is followed in all the figures presented below. To
see a comparison of the triages, we give a representation of the graphics in the same
coordinate system in Fig. 2.

A representation for the errors of both predicted triages are presented in Fig. 3, and
comparison of the errors is shown in Fig. 4.

As the reader can see, both prospective methods seem to be good enough for providing
a useful automatic triage tool. Of course, it is better to get the evaluation of the triage
number by experts for an small group and to extend it to the rest of the cases than make
it necessary to get such a decision for the experts team at every new patient entering
the hospital. Only four variables are needed, that are the direct result of rapid physical
measures and observation. After the analysis of the figures, we can state three main
conclusions:

(a) The set of variables that have been chosen is good enough for the description of
the triage process: experts should have enough information with these values for
doing a good triage: the standard index we have chosen is given by the metric
without using any expert’s triage for the extension.

(b) The expert’s triage is also succesfully extended by Lipschitz extrapolation:
McShane–Whitney extension gives good results when compared to real triage
ordering.

(c) We have seen that there is a high compatibility between the distance and the
index, so the standard index and the McShane–Whitney extension provide similar
results. The respective error distributions are also similar (Figs. 3 and 4). The
coincidence of both methods is a symptom of a correct relationship between
distance and index, and so the proposed index space provides a strong model.

Therefore, index spaces, standard index approximation and Lipschitz extensions on
them can be used to model triage processes in a hospital and can provide a basis for
a machine learning method for hospital management. The proposed example opens the
door to the construction of more sophisticated procedures, where the distance could
contain more variables and the training set could be extended.

To finish, let us summarize the main contents of the paper. We have shown an ele-
mentary structure for modeling physical and social systems —index spaces—, which are
described as metric spaces endowed with numerical properties that can be represented
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Figure 1. Representation of the experts’ original triage and of the triages predicted by both the McShane–
Whitney extension and the standard index.

Figure 2. Joint representation of the comparison of the original triages and the triages predicted by our two
methods.

as real-valued indices. The main properties of the structure of these models have been
presented, as well as some properties of approximation by indices that behave well with
respect to the metric —standard indices—.
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Figure 3. Representation of the errors committed by the McShane–Whitney extension and by the standard
index.

Figure 4. Representation of the comparison of errors of the predicted triages.

It has also been shown how to perform Lipschitz extrapolation on these index spaces
by showing control formulas on how the extension preserves the good properties of
the original model —normalization and coherence constants—. These three components
—index spaces, standard indexes and McShane–Whitney extensions— are thus proposed
as complementary tools for metric modeling and foresight, providing a complete analyti-
cal framework.
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