

Bachelor’s thesis

Control of a multicopter based on

differential flatness

August 2023

Author: Yara Abreu Infante

Tutor: Eduardo García Breijo

External cotutor: Jerome Jouffroy

1

2

Abstract

Conventional PID controllers can only keep a drone stable around its balance position,

which means they are not effective in handling high pitch and roll angles due to strong

disturbances. Also, these controllers do not allow aggressive maneuvers. To address this

problem, this project focuses on the design of a trajectory control system for multicopters

based on differential flatness theory, which considers all system nonlinearities. To

implement the control system, the tools Matlab and Simulink are used. Finally, the results

are evaluated through a simulation to verify the effectiveness of the system.

Key words: Trajectory control, Simulink, differential flatness.

3

Resumen

Los controladores PID convencionales solo pueden mantener un dron estable alrededor

de su posición de equilibrio, lo que significa que no son efectivos para manejar ángulos

de inclinación y balanceo elevados debido a fuertes perturbaciones. Además, estos

controladores no permiten maniobras agresivas. Para abordar este problema, este

proyecto se centra en el diseño de un sistema de control de trayectorias para multicópteros

basado en la teoría de la planitud diferencial, que considera todas las no linealidades del

sistema. Para implementar el sistema de control, se utilizan las herramientas Matlab y

Simulink. Finalmente, se evalúan los resultados mediante una simulación para verificar

la eficacia del sistema.

Palabras clave: Control de trayectorias, Simulink, planitud diferencial.

4

5

Table of content
Introduction .. 7

Background ... 8

Method .. 10

Modelling .. 10

Feedforward control ... 11

Trajectory generation .. 12

Results ... 14

Reference trajectory ... 14

Feedforward control ... 16

Animation .. 18

Conclusion ... 20

References ... 21

6

Table of figures

Figure 1. Trajectory generation block in Simulink .. 14

Figure 2. Desired position, velocity and acceleration of x coordinate .. 14

Figure 3. Desired position, velocity and acceleration of y coordinate .. 15

Figure 4. Desired position, velocity and acceleration of z coordinate .. 15

Figure 5. Desired variation of the yaw angle .. 15

Figure 6. Simulink block for the control inputs .. 16

Figure 7. Simulink block for feedforward control .. 16

Figure 8. Position, velocity and acceleration of x ... 17

Figure 9. Position, velocity and acceleration of y ... 17

Figure 10. Position, velocity and acceleration of z ... 17

Figure 11. Trajectory in three dimensions ... 18

Figure 12. Drone animation .. 19

7

Introduction

The realm of nonlinear control has witnessed remarkable progress recently, particularly

in tackling the intricate issues surrounding trajectory generation and tracking within

complex systems. At the heart of these endeavors lies a pivotal challenge - how to

dynamically generate trajectories for differentially flat systems in real time. This

demanding task involves devising a delicate balance between upholding stability and

enhancing performance, all while accommodating potential computational delays. In the

subsequent discourse, we introduce a pair of algorithms poised to address the real-time

trajectory generation predicament for differentially flat systems, effectively navigating

the intricate terrain of stability, performance, and system intricacies.

Differentially flat systems possess a unique characteristic: they afford the representation

of their states and inputs through chosen outputs and their derivatives. This fundamental

attribute underpins the very essence of trajectory generation, enabling the

parameterization of state space and input trajectories employing the designated outputs

as a basis. Remarkably, this achievement materializes even in the face of non-minimum

phase and unstable zero dynamics scenarios.

This paper focus on the application of flatness theory to the domain of multicopter

systems. Section 2 explains the historical development and evolution of this theoretical

framework. Subsequently, in Section 3.1, we articulate the mathematical model

characterizing the multicopter system. Proceeding to Section 3.2, we undertake the

calculation of feedforward control pertinent to the system. Section 3.3 is dedicated to a

the planning of the trajectory.

Following this theoretical groundwork, Section 4 presents the outcomes derived from this

research, including graphical representations and simulations. In conclusion, the paper

culminates in Section 5 with a summarize of findings, implications, and potential

improvements for future work.

8

Background

Looking into the flatness theory, there are many components that can describe the

behaviour of the system. Fields such as mathematics, physics, number system, and even

algebraic geometry use flatness theory, however in this report, the main goal is to describe

the relation of flatness theory to control theory and dynamical systems. In order to fully

understand flatness, Jean Levine describes flatness like this: “To give an intuitive idea of

differential flatness, a flat system is a system whose integral curves (curves that satisfy

the system equations) can be mapped in a one-to-one way to ordinary curves (which need

not satisfy any differential equation) in a suitable space, whose dimension is possibly

different than the one of the original system state space.” [1] in other words it is the

process of creating simpler solutions out of complex systems, in order to improve design

strategies and to understand the system’s behaviour. The term flatness theory was

proposed by Michel Fless in the 1990s as a way to describe a mathematical approach

known as the Lie–Backlund method to study the equivalence and flatness of nonlinear

systems. The authors describe it as: “We have proposed a differential geometric approach

for investigating a new system equivalence, the Lie–Backlund equivalence, which can be

realized by endogenous feedback, a special type of dynamic feedback. Such a Lie–

Backlund equivalence is shown to be useful to reduce the dimension of a complex system

and to study differentially or orbitally flat systems." [2].

The Proportional-Integral-Derivative (abbr PID) controller is a feedback control system

commonly used in industrial control systems. The main idea is to control the error value

of a system, and adjust it accordingly to fit the parameters set by the system. The most

common example would be the cruise control set on a car. When the car increases the

speed, the cruise control will lower it, and vice versa. In the context of drone applications

it becomes increasingly more challenging as the natural elements can cause strong

changes of movement that severely adjusts its trajectory, which is supported by Fliess:

”The strange industrial ubiquity of classic PID’s and the great difficulty for tuning them

in complex situations is deduced, via an elementary sampling, from their connections

with iPIDs.“ [3]. Creating an adjustable trajectory with a modern PID system, that

follows the flatness theory will be the key to success in this project.

Another important system is the feedback control, which is important in control theory. It

focuses on the continuous adjustment of a system's inputs or parameters based on the

system's current state and the desired outcomes. This adjustment process involves

comparing the system's actual performance to the preferred performance and then

employing corrective actions to minimize error. Feedback loops play a crucial role in

maintaining stability, enhancing accuracy, and achieving desired performance in dynamic

systems. Hagenmeyer and Delaleau delve into the intricacies of integrating feedback

control mechanisms with flatness-based control strategies, optimizing the maneuvering

capabilities of multicopters. Given the innate complexity of multicopters as dynamic

systems, the incorporation of feedback control mechanisms is important in upholding

stability, precision, and flexibility. This exploration likely entails a comprehensive

examination of how feedback control seamlessly integrates into the overarching control

9

framework of multicopters, enabling instantaneous adaptations concerning variables like

position, orientation, and altitude [4].

The trajectory of the drone will have to change course and allow for multiple natural

elements to interact with it. The paper by Michiel van Nieuwstadt and Richard M. Murray,

explores the idea of real time trajectory generation with delay, using the input that is

received online. The paper presents algorithms for real-time trajectory generation in the

context of a general control paradigm for nonlinear systems. The goal is to generate

feasible trajectories that allow trade-offs between stability and performance [5]. Using

some of the examples in this paper, it can be concluded that while it can be beneficial to

gather inputs online, there are some different methods that needs to be used to overcome

the challenges of the tradeoff of stability and performance.

10

Method

Modelling
In this section, differential flatness theory will be applied to the non-linear model of a

quadrocopter, whose differential equations are shown below [6].

[
�̈�
�̈�
�̈�

] =
𝑇

𝑚
 [

cos 𝜓 · sin 𝜃 · cos 𝜙 + sin 𝜓 · sin 𝜙
sin 𝜓 · sin 𝜃 · cos 𝜙 − cos 𝜓 · sin 𝜙

cos 𝜃 · cos 𝜙
] − 𝑔 [

0
0
1

]

(1)

The formula where �̈�, �̈� and �̈� represent the linear acceleration in the inertial frame; 𝜙, 𝜃

and 𝜓 are Euler's angles corresponding to the roll, pitch and yaw angle respectively. T

corresponds with the thrust, m and g are the mass of the drone and the gravity acceleration

with values of 0.320 kg and 9.81 m/s2, respectively.

The rotation dynamics of the drone can be expressed with the following equations.

 𝐽𝑥�̇�𝑥 + (𝐽𝑧 − 𝐽𝑦)𝜔𝑧𝜔𝑦 = 𝜏𝑥 (2)

 𝐽𝑦�̇�𝑦 + (𝐽𝑥 − 𝐽𝑧)𝜔𝑥𝜔𝑧 = 𝜏𝑦 (3)

 𝐽𝑧�̇�𝑧 + (𝐽𝑦 − 𝐽𝑥)𝜔𝑥𝜔𝑦 = 𝜏𝑧 (4)

The relation between the angular velocities and the derivatives of the Euler angles is

shown below.

 [

𝜔𝑥

𝜔𝑦

𝜔𝑧

] = [
1 0 − sin 𝜃
0 cos 𝜙 cos 𝜃 sin 𝜙
0 − sin 𝜙 cos 𝜃 cos 𝜙

] [

�̇�

�̇�
�̇�

] (5)

11

Feedforward control

Flatness theory states that a nonlinear system of the form �̇� = 𝑓(𝑥, 𝑢) will be controllable

when two conditions are met:

• There exists a nonlinear function of F (flat output) describing the state x and its

derivatives.

• There exists a nonlinear function of F describing the input u and its derivatives.

When selecting the flat outputs, it is important to consider the dimension of the input

vector u, as both the inputs and outputs should have the same dimensions.

In the drone example, there are four inputs representing the Euler angles and thrust.

Consequently, the vector F should also have a dimension of four. The flat outputs will

include the x, y, and z position coordinates, along with the yaw angle. These outputs are

chosen to represent the direction the drone follows in its trajectory.

 𝐹 = [

𝐹1

𝐹2

𝐹3

𝐹4

] = [

𝑥
𝑦
𝑧
𝜓

] (6)

After identifying the flat outputs, our next step involves representing each of the control

inputs using a function of the vector F and its derivatives. By working with the equations

in (1) and solving for each input, we arrive at the following expressions.

 𝑇 = 𝑚 √�̈�1
2 + �̈�2

2 + (�̈�3
2 + 𝑔)2 (7)

 𝜃 = arctan
�̈�1 cos 𝐹4 + �̈�2 sin 𝐹4

�̈�3 + 𝑔
 (8)

𝜙 = arctan

�̈�1 sin 𝐹4 − �̈�2 cos 𝐹4

√(�̈�3
2 + 𝑔)2 + (�̈�1 cos 𝐹4 + �̈�2 sin 𝐹4)2

(9)

Thus, the vector of control inputs would be as follows:

 𝑢 = 𝜓𝑢 (𝐹, �̇�, �̈�) = [

𝑇
𝜙
𝜃
𝜓

] (10)

To check the correct functioning of the feedforward control, it is tested in Simulink by

following a reference path that is detailed in section 3.3.

12

Trajectory generation
When planning a trajectory, it is essential to not only consider the way-points but also

the transitions between them. A trajectory is considered smooth when these transitions

are continuous, avoiding abrupt changes in position, velocity and even acceleration.

This smoothness is crucial in fields such as robotics, where aggressive manoeuvres can

degrade system performance and lead to mechanical or electronic wear and tear.

The cubic spline is one of the most powerful and well-known tools for generating

smooth curves. It is a data interpolation technique that generates different third-degree

polynomial segments that meet at user-specified points, also known as nodes, to provide

a smooth and continuous transition between them. The advantage of cubic splines is that

they can be derived twice, guaranteeing smoothness in position values and speed.

However, this technique does not allow to specify the desired speed values, which is

possible with a higher degree polynomial. However, increasing the degree of the

polynomial can lead to an increase in the curve oscillation. Therefore, it is essential to

consider the needs of the application in order to choose the most appropriate degree.

Each segment of the curve is represented as follows [7]:

 𝑠𝑗(𝑡) = 𝑎𝑗 + 𝑏𝑗𝑡 + 𝑐𝑗𝑡2 + 𝑑𝑗𝑡3 (11)

where j = 1,2,..., n-1, being n the number of segments, and the parameters a, b, c and d,

the coefficients of the polynomial.

Knowing that (11) represents the position values, deriving it gives the velocity and

acceleration equations.

 𝑠′𝑗(𝑡) = 𝑏𝑗 + 2𝑐𝑗𝑡 + 3𝑑𝑗𝑡2 (12)

 𝑠′′𝑗(𝑡) = 2𝑐𝑗 + 6𝑑𝑗𝑡 (13)

The trajectory designed in this project consists of eight points, which is a seven segments

curve. This means that the value of 28 coefficients must be found. To do so, a matrix

equation system with the following form must be solved:

 𝐴 · 𝑋 = 𝑏 (14)

where A is an invertible square matrix of dimension 28.

13

Since the positions for each instant are known, the first equations will be obtained using

(11).

 𝑠𝑗(𝑡𝑗−1) = 𝑎𝑗 + 𝑏𝑗𝑡𝑗−1 + 𝑐𝑗𝑡𝑗−1
2 + 𝑑𝑗𝑡𝑗−1

3 = 𝑓(𝑡𝑗−1) (15)

 𝑠𝑗(𝑡𝑗) = 𝑎𝑗 + 𝑏𝑗𝑡𝑗 + 𝑐𝑗𝑡𝑗
2 + 𝑑𝑗𝑡𝑗

3 = 𝑓(𝑡𝑗) (16)

From (15) and (16), 14 equations are obtained, where 𝑓(𝑡𝑗−1) and 𝑓(𝑡𝑗) represent the

positions at instants 𝑡𝑗−1and 𝑡𝑗.

It is then necessary to ensure that the velocity at the nodes is the same for the adjacent

segments. To do that, (12) is used as follows.

 𝑠′𝑗(𝑡𝑗) = 𝑠′𝑗+1(𝑡𝑗) (17)

which can also be expressed as

 𝑠′𝑗(𝑡𝑗) − 𝑠′
𝑗+1(𝑡𝑗) = 0 (18)

Only six equations are obtained for this case since the initial and final instants are not

used.

For the acceleration, the same process is repeated using the following equation.

 𝑠′′𝑗(𝑡𝑗) − 𝑠′′
𝑗+1(𝑡𝑗) = 0 (19)

So far, 26 equations have been obtained, so to get the two left, natural boundary conditions

are defined by making the acceleration equal to 0 at the beginning and end of the

trajectory.

 𝑠′′
𝑗(𝑡𝑗) = 0 (20)

 𝑠′′
𝑗(𝑡𝑛) = 0 (21)

Solving (14) for X would give the coefficients of the polynomials.

14

Results

Reference trajectory
The desired trajectory consists of 8 points, which led to the definition in MATLAB of

three position vectors for each coordinate: pos_x = [1, 2, 3, 4, 5, 5, 4, 3], pos_y = [1, 2, 2,

4, 5, 6, 7, 7], and pos_z = [1, 1, 1, 1, 2, 4, 2, 2]. The time instances corresponding to each

point were established using the vector T = [0, 2, 3, 4, 5, 7, 9, 10].

By employing these parameters within the 'coeffcalculation()' function, we successfully

derived the coefficients required for generating curves. Utilizing a Matlab function block

within Simulink (see figure 1), we were able to visualize the resulting position, velocity,

and acceleration curves (figures 2, 3 and 4).

Figure 1. Trajectory generation block in Simulink

Figure 2. Desired position, velocity and acceleration of x coordinate

15

Figure 3. Desired position, velocity and acceleration of y coordinate

Figure 4. Desired position, velocity and acceleration of z coordinate

The yaw angle is intricately tied to the positional values of the x and y coordinates,

representing the vehicle's forward direction. To obtain its temporal values, we computed

the arctangent of the y-position divided by the x-position, as depicted in figure 1. This

process yielded the yaw angle curve illustrated in figure 5, expressed in radians.

Figure 5. Desired variation of the yaw angle

16

Feedforward control
After acquiring the reference signals associated with the flat outputs, a subsystem was

developed in Simulink. Within this subsystem (figure 6), control inputs were derived by

employing mathematical blocks based on the equations 7, 8 and 9.

Figure 6. Simulink block for the control inputs

Following the generation of control inputs, a feedforward control was executed based on

the drone model defined in (1). This led to the calculation of accelerations in the x, y, and

z directions. For acquiring velocities and positions, simple integration of these

accelerations is good enough.

Figure 7. Simulink block for feedforward control

To validate the efficacy of the feedforward control, a comparison was drawn between the

reference signal graphs and those obtained post-control. The graphical representations

(figures 8, 9 and 10) demonstrated an identical match, confirming the functionality of the

control. Notably, this system is ideal – devoid of external influences like air friction or

wind force – resulting in the absence of discrepancies between the obtained graphs.

17

However, in an experimental application of the control system to an actual drone,

incorporating feedback control would be indispensable to rectify any deviations caused

by real-world factors.

Figure 8. Position, velocity and acceleration of x

Figure 9. Position, velocity and acceleration of y

Figure 10. Position, velocity and acceleration of z

18

Animation
Finally, a 3D graph was made showing the desired trajectory and the trajectory obtained.

Figure 11. Trajectory in three dimensions

As can be seen in Figure 11, and confirming the graphs shown above, the final trajectory

of the drone follows perfectly the desired path.

When planning the flight of the drone, it must be ensured that the turning angles are not

aggressive. Therefore, to check that the drone flight is smooth, an animation was made

using Matlab, where it is possible to observe not only the translational movement of the

drone, but also its rotation.

19

Figure 12. Drone animation

From the animation it was possible to check the complete flight of the drone as well as

its turning angles.

20

Conclusion
In conclusion, the field of nonlinear control is advancing, particularly in the realm of

making complex systems follow desired paths in real-time. This study focuses on a

method that takes advantage of the unique characteristics of these systems, allowing us

to describe and control them effectively by selecting specific measurements as reference

points. To validate this approach, a simulation and animation were made where we could

see the accuracy with which the drone followed the desired path.

However, the conditions in which the drone was tested were ideal, since it is a simulation

where the effect of external aspects such as air friction or sudden disturbances is not taken

into account. For this reason, the implementation of feedforward control alone was

sufficient for this case. If the drone were going to be tested in the real world, it would be

convenient to also design a feedback control, which corrects the trajectory errors caused

by these external disturbances or noise caused by the system itself.

Thus, combining traditional feedback control with flatness-based methods enhances the

agility and precision of multicopter maneuvers.

21

References
[1] Jean Lévine. Analysis and Control of Nonlinear Systems A Flatness-based Approach.

May 2009.

[2] M. Fliess et al. “A Lie-Backlund approach to equivalence and flatness of nonlinear

systems”. In: IEEE Transactions on Automatic Control 44.5 (1999), pp. 922-937.

[3] Michel Fliess and Cédric Join. “Model-free control”. In: International Journal of

Control 86 (May 2013).

[4] Veit Hagenmeyer and Emmanuel Delaleau. “Exact feedforward linearization based on

differential flatness”. In: 76 (2003), pp. 537-556.

[5] Michiel van Nieuwstadt and Richard M. Murray. “REAL TIME; TRAJECTORY

GENERATION FOR DIFFERENTIALLY FLAT SYSTEMS”. In: 29 (1996), pp. 2301-

2306.

[6] Armando Sanca, Pablo Alsina, and Jes Cerqueira. “Dynamic Modelling of a Quadrotor

Aerial Vehicle with nonlinear Inputs”. In: Latin American Robotics Symposium and

Intelligent Robotics Meeting 0 (Oct. 2008), pp. 143-148.

[7] A Jaramillo-Botero, JF Correa, and IJ Osorio. “Trajectory planning in ROBOMOSP”.

In: Robotics and Automation Group (2004).

