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Resum
Històricament, la traducció automàtica (TA) ha sigut una de les àrees més actives dins

de la intel·ligència artificial i, més precisament, dins del camp de l’aprenentatge automà-
tic. Gràcies a l’important progrés en l’entrenament de grans xarxes neuronals utilitzant
grans col·leccions de dades que han aportat els principals proveïdors tecnològics, com
Google, Meta, Microsoft, etc., la traducció automàtica multilingüe i els grans models de
llenguatge s’han convertit en productes bàsics que aborden tasques àmplies que en al-
guns casos manquen d’especificitat. Encara que el rendiment general d’aquests models
està fora de discussió, no és clar en quina mesura també aconsegueixen una precisió su-
perior per a dominis específics amb accés limitat a grans infraestructures informàtiques.
En aquest context, aquest treball avalua el rendiment de grans models quan s’adapten a
tasques de TA amb factors limitants, com a especificitats de domini, pareixes d’idiomes
involucrats i capacitat de còmput. Per a ser més precisos, aquest treball avalua l’apli-
cabilitat de models neuronals grans en comparació amb models basi sòlids en traduir
de l’anglès a idiomes europeus dins del domini mèdic en el marc del projecte europeu
INTERACT-EUROPE.

Paraules clau: Xarxes neuronals, Traducció automàtica, Adaptació de models grans

Resumen
Históricamente, la traducción automática (TA) ha sido una de las áreas más activas

dentro de la inteligencia artificial y, más precisamente, dentro del campo del aprendizaje
automático. Gracias al importante progreso en el entrenamiento de grandes redes neuro-
nales utilizando grandes colecciones de datos que han aportado los principales provee-
dores tecnológicos, como Google, Meta, Microsoft, etc., la traducción automática multi-
lingüe y los grandes modelos de lenguaje se han convertido en productos básicos que
abordan tareas amplias que en algunos casos carecen de especificidad. Aunque el ren-
dimiento general de estos modelos está fuera de discusión, no está claro en qué medida
también logran una precisión superior para dominios específicos con acceso limitado a
grandes infraestructuras informáticas. En este contexto, este trabajo evalúa el rendimien-
to de grandes modelos cuando se adaptan a tareas de TA con factores limitantes, como
especificidades de dominio, pares de idiomas involucrados y capacidad de cómputo. Pa-
ra ser más precisos, este trabajo evalúa la aplicabilidad de modelos neuronales grandes en
comparación con modelos base sólidos al traducir del inglés a idiomas europeos dentro
del dominio médico en el marco del proyecto europeo INTERACT-EUROPE.

Palabras clave: Redes neuronales, Traducción automática, Adaptación de modelos gran-
des
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Abstract
Historically, machine translation (MT) has been one of the most active areas within

artificial intelligence and more precisely, within the field of machine learning. Thanks to
the significant progress in training large neural networks on massive collections of data
brought to the table by major technological providers, such as Google, Meta, Microsoft,
etc., multilingual MT and large language models have become staple products tackling
broad tasks that in some cases lack specificity. Although the overall performance of these
models is out-of-question, it is not clear to which degree they also achieve superior accu-
racy for specific domains with limited access to large computing infrastructures. In this
context, this work evaluates the performance of large models when they are adapted to
MT tasks with limiting factors, such as domain specificity’s, language pairs involved and
computing power. To be more precise, this work evaluates the applicability of large neu-
ral models in comparison with strong baselines when translating from English into Eu-
ropean languages within the medical domain in the framework of the European project
INTERACT-EUROPE.

Key words: Neural networks, Machine translation, Adaptation of large models
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CHAPTER 1

Introduction

This work explores the current state of Machine Translation (MT), with a particular focus
on the trend of using massively scaled-up models, often referred as "Large Language
Models" (LLMs), whose popularity has risen in the recent years. Within this framework,
we examine the potential of multilingual LLMs as translation models from English into
other European languages in the context of a resource-constrained scenario. To achieve
this, cost effective techniques are explored to adapt these models. These are compared to
a more traditional bilingual MT baseline in order to assess the extent to which LLMs can
truly deliver competitive results in MT.

This chapter contains the motivation and context of this work, as well as a brief intro-
duction to key general concepts of Machine Learning that the reader needs to be familiar
with in order to understand the rest of this work.

1.1 Motivation

With the rise of globalization during the past decades, an ever-increasing necessity of
tools that facilitate cross-linguistic communication has appeared. In this context, the act
of translation has been of great necessity in helping bridging the gaps of day-to-day com-
munications.

One of the major breakthroughs that has lead to the wide availability of translation
in the modern world is the appearance of automatic machine translation systems (MT)
which are capable of achieving human-level translation accuracy. These cutting-edge
systems, utilizing neural networks trained on extensive web-scraped datasets, offer a
fast and dependable solution for translating text for the common citizen, institutions and
companies alike.

In this regard, during recent years, major technological giants, such as Google, Meta
or Microsoft, have been key in the development of the technology and at the forefront of
implementing these systems in their commercial products. As such, through their eco-
nomic power and general advances in hardware accelerators, there has been a increasing
"gold rush" between these players to scale up these systems to never seen before heights
at the promise of better performance and new capabilities.

This has led to the current landscape, where the list of publicly available neural net-
works capable of MT has been increasing at a surprisingly rapid pace. It is interesting to
consider and study how well these large models, some of which have not even been di-
rectly trained for the MT task, compare to smaller and more affordable models in realistic
scenarios, where the accuracy on specific domains and limited computing budgets may
favor the latter.

1



2 Introduction

1.2 Framework

This work has been done under the context of the INTERACT-EUROPE [1] project. This
is an initiative by the European Union aiming to develop a European inter-specialty can-
cer training program involving all main oncology disciplines and professions. One of
the main ideas of the project is to create an international curriculum for oncology experts
which will be open to participants from various European countries. For this purpose,
career specialists across Europe will have access to a series of training videos on the on-
cology domain.

Although the vehicular language of the project is English, not all cancer professionals
master this language, and thus, the usage of ASR and MT adapted to the oncology do-
main has been one aspect that the project explores in order for the curriculum to reach
all oncology professionals no matter their native language. In this context, the MLLP
research group is responsible for the development of ASR and MT technology in the
INTERACT-EUROPE project, with the work presented here corresponding to the latter
part.

1.3 Objectives

The main objectives of this work are:

• To develop state-of-the-art MT systems for the usage in the INTERACT-EUROPE
project.

• To adapt and evaluate the effectiveness of publicly available large models on MT.

• To explore how the latest advances and techniques in language modeling can be
used in the creation of MT systems.

1.4 Document structure

Some parts of chapter 1 and 2 have been adapted from the bachelor degree dissertation
of the author [2]. The document is structured into 6 chapters. Chapter 1 serves as a
brief introduction to the field of Machine Learning. Chapter 2 introduces the field of
modern MT, describing the Transformer architecture, as well as covering the usage of
LLMs on MT and used evaluation metrics. Chapter 3 describes the datasets used for
model training alongside how they were recollected and processed. Chapter 4 describes
the training procedure and results on a series of baseline MT bilingual models in the
context of the INTERACT-EUROPE project. Chapter 5 presents results on a series of
adapted large multilingual models by taking into consideration the previous baselines
and possible computing limitations. Lastly, Chapter 6 ends with a general overview of
the conclusions and findings from this work, as well as a review on possible future work.
In addition to the main chapters of this work, Appendix A provides additional figures
related to training procedures and experimentation results.
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1.5 Machine Learning

Within the vast field of Artificial Intelligence (AI), Machine Learning (ML) is in charge of
the study and development of applications and systems capable of learning from data or
past experiences, with the purpose of solving specific tasks and problems [3].

Fundamentally, the operation of these systems is governed by statistical models. The
learning of the system consists in the search of some model that generalizes a set of data,
i.e., that manages to predict and return the desired result when introducing new input
data that has not been previously seen. Thus, the objective is that by means of some
algorithm A, through a set of training data, the optimum value of the parameters or
weights that determine the output of the system is learned by a statistical model.

ML problems are usually categorized according to the domain of the system output.
In classification problems, it is desired to predict the output y that takes values inside a
set of C classes, such that y ∈ {1, . . . , C}. On the other hand, in regression problems one
wishes to predict the output y that takes values within a non-numerable set A such as
R. In other words, in classification problems we output discrete values and in regression
problems continuous values.

Depending on the availability of the correct output for given input data, ML algo-
rithms are classified in different paradigms. In the context of this work, we primarily
focus on supervised learning, which is typically used when dealing with problems in
Natural Language Processing (NLP). In this paradigm, for each input data x, a y label is
provided identifying the value that represents the sample. When training the model, a
more appropriate decision can be made by varying the parameters θ of the model and
observing how much x differs or not from the y ground truth sample.

1.5.1. Neural Networks

Although today neural networks are the most common model in ML, the first notion of a
neural network (NN) can be traced back to 1958, with the Perceptron [4]. This structure,
together with the backpropagation algorithm [5] introduced in 1986, are the cornerstones
of modern NN modeling.

Hidden
Layer 1

Hidden
Layer 2

Input
layer

Output
layer

Figure 1.1: Example of a multilayer Perceptron with 3 neurons in the input layer, 2 hidden layers
with 4 neurons each and an output layer with a single neuron.1

0Based on: https://tex.stackexchange.com/q/362238.

https://tex.stackexchange.com/q/362238


4 Introduction

For a better understanding of the underlying operation of NN, the most basic network
that implements these concepts, the multilayer Perceptron (MLP), is introduced, with an
example of its structure displayed in Fig. 1.1. Formally, it is defined as a feed-forward
neural network, in which a series of values flow through a graph from input to output,
passing through a series of hidden layers, operating and modifying each output value
of the previous layer. Each of these layers is made up of a number of nodes, commonly
referred to as neurons, which are fully connected to all neurons in the next layer. The
equations defining the values taken by the neurons in the hidden layer h(i) are

h(i) = f (i)(z(i)) (1.1)

z(i) =

{
W (1)x + b(1) i f i = 1
W (i)h(i−1) + b(i) else

(1.2)

where:

• x is the initial vector of features supplied to the input layer.

• W (i) is the matrix containing the weights of the incoming connections to the neu-
rons of the hidden layer i.

• f (i) is the vector of activation functions of the layer. An activation function f (·)
is usually defined by a nonlinear function that transforms the output of a neuron
defined in turn by a function z(i). In this way, the model can learn nonlinear re-
lationships. Examples of such activation functions are the sigmoid, the hyperbolic
tangent or the ReLU [6].

• b(i) is the vector of bias. These constants have the function of adding learnable
parameters to each neuron so that the model is able to better learn the underlying
function by giving it the possibility of adjusting and shifting the values correspond-
ing to the output function of each neuron.

Over the years, different variations of neural networks have been developed based
on the ideas put forward by the MLP. For example, Recurrent Neural Networks (RNN)
[7], with its special variants such as LSTMs [8] or GRUs [9], allow the existence of cycles
in their graph of connections to access information from previous time instants.

Globally, a neural network defines a discriminant function composed of other func-
tions. It is desired that the optimal values of parameters θ that define it, which in this case
are the weights and bias described above, are learned by the model in order to optimize
a cost or objective loss function L(·).

In regression problems, this function is usually defined as the mean absolute error
(MAE or L1)

MAE =
1
n

n

∑
i=1

| yi − ŷi | (1.3)

or the mean square error (MSE o L2)

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (1.4)

for the predicted values ŷi and the real values yi. On the other hand, for classification
problems such as MT, the Cross-Entropy (CE) loss H(p, q), which measures dissimilarity
between two distributions, p and q, is a popular choice, and defined as

H(p, q) = ∑
c

p(c) log(q(c)) (1.5)
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The goal is therefore to minimize one of these functions. In this regard, the optimization
comes from gradient descent, where for iteration i of the model, the parameters θ are

θi = θi−1 − ρ∇θL(θ) (1.6)

with ∇θ being the gradient of the loss function with respect to its parameters and ρ being
a learning factor that regulates the update ratio of them. The premise of this method
can be summarized as the computation of parameters that, knowing the steepness of
the slope of the function and going in the opposite direction, brings us closer to a good
minimum of the loss function.

The aforementioned backpropagation algorithm is in charge of the gradient calcula-
tion. The details of this algorithm are beyond the scope of this work, but it is recom-
mended for readers which may not be familiar with it to read § 6.5 of [10] for a better
understanding of it.

It is important to note that the cost of computing the gradient is high, especially as
the size of the datasets and the network increases, so modern neural networks typically
make use of methods such as Stochastic Gradient Descent (SGD). In it, the gradient of
the system is approximated by updating the underlying model in terms of aggregates of
smaller data block referred as mini-batches, as opposed to calculating it with respect to
the entire training dataset. Consequently, one may think that the resulting approximation
of the global gradient of the model may be suboptimal, but the higher update frequency
ends up resulting in a more robust convergence and computational efficiency, specially
for the case of high-dimensional problems.

Another interesting fact to note is that, due to the way the gradient is calculated, if no
preventive measures are taken sometimes the resulting values may turn out to be very
small or big. In these cases, some weights may not be updated in a meaningful way by
means of SGD and backpropagation and in the worst cases, may result into a situation
where the network weights enter states where it can no longer be trained. These cases
are often referred as situations where the gradient has vanished [11] [12] or exploded in
value.





CHAPTER 2

Neural Machine Translation

This chapter introduces the main concepts, ideas and terminology of neural machine
translation (NMT). The Seq2Seq paradigm is explored through an in-depth overview of
the widely popular Transformer architecture. The second part of this chapter introduces
the concept of Large Language Models (LLMs) and how they can be used for NMT, as
well as highlighting the evaluation metrics that will be used with the rest of this work.

2.1 Machine Translation

We can define the goal of Machine Translation as that of constructing systems that are
able to automatically translate texts from a natural language to another. Formally, given
an input text x = x1, x2, . . . , xn made up of n distinct text tokens in a source language,
we want to obtain the best possible translation ŷ out of all y = y1, y2, . . . , ym possible
translations in a given target language such that

ŷ = argmax
y

p(y | x). (2.1)

Historically, the first viable MT systems were introduced during the late 1970s through
the usage of rule-base techniques and methodologies that relied heavily on the knowl-
edge of linguists and human experts [13]. Latter, during the early 1990s, Statistical Ma-
chine Translation (SMT) [14] emerged as an efficient data-driven alternative represented
by the IBM models [15], [16] based on word-to-word alignments. This idea of SMT was
latter improved and popularized through the 2000s by the introduction of phrase based
models [17] and toolkits such as Moses [18], which worked by learning to translate sig-
nificant "phrases" that were better in capturing translation subtleties.

During the early 2010s1 these previous approaches were superseded by NMT that,
with the progress on hardware accelerators and related software such as the CUDA
Toolkit [20], proved to achieve better results and scalability. In its purest form, we can
refer to NMT as the modelization of the MT process by a neural network.

For training NMT models, the CE loss (Eq. 1.5) can be used and rewritten as

−
n

∑
t=1

log pθ(yt | y<t, x) (2.2)

where y<t = (y0, y1, . . . , yt−1) indicates the partial target sequence, y0 the special start
token and θ the model parameters. As such, by optimizing the CE, we expect to optimize
the output probability distribution over vocabulary V such that pθ(·|y<t, x) ∈ R|V| is the
best approximation to the real MT mapping.

1There was work in NMT prior to the 2000s such as in [19].

7



8 Neural Machine Translation

2.2 Attention-based models

2.2.1. Seq2Seq and the attention mechanism

ML problems where input and output are sequences of variable length, such as in the
case of MT, are usually denoted as Sequence-2-Sequence, or Seq2Seq tasks. In most of
these types of problems, it is important for models to be able to compress, retain and
recall relevant information for the task at hand across time and input dimension.

To deal with this type of problem, the use of models with a structure based on an en-
coder and a decoder was proposed in works such as [21]. The encoder, which historically
has been implemented by a RNN, processes the input and produces a projection from a
discrete V space of vocabulary tokens to a continuous one of dimension N that represents
part of its features. This representation, referred to as the encoder’s hidden states (h), is
processed by the decoder (usually another RNN), generating the desired output. Repre-
sentations such as h, which compress information about some input features, are known
as embeddings.

However, a problem arises with this type of structure. The fixed, reduced dimensional
nature of the hidden states h restricts the memory that the system has on the input. This
not only affects the speed of inference, but gives bad results in sequences where the size
is sufficiently large and there are long term dependencies in the sentence.

To solve this problem, in [22] the concept of attention was introduced. In this, we
replace the vector of hidden states h by a context vector c that is dynamically computed
for each iteration of the decoder such that:

ci =
N

∑
j=1

αijhj (2.3)

where the weights αi,j are calculated for each hidden state hj using the softmax function:

αij =
exp(eij)

∑N
k=1 exp(eik)

(2.4)

and in Seq2Seq problems

eij = a(si−1, hj) (2.5)

where si−1 is the hidden state of the system after the last decoder iteration and a(·) a
scoring function that returns the degree of attention or energy eij, typically implemented
by a feed-forward layer.

An alternative way to view the attention mechanism, as defined in [23], is as a lookup
over a dictionary. In this view, we compare a query value Q to a set of key-value pairs
(K, V), returning a weighted sum of the values, where the weight assigned to each value
is calculated by a function that measures the compatibility of the query with the corre-
sponding key. For example, in the above case the compatibility function would be Eq. 2.4.
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2.2.2. Transformers

The Transformer architecture, originally introduced in [23], emerged as a substitute to
the use of RNNs using the attention mechanism introduced in Sec. 2.2.1. The general
encoder-decoder structure proposed in [23] can be seen in Fig. 2.1.

Figure 2.1: Original Transformer architecture (Post-LN) as seen in [23].

The main components and ideas of this Transformer are the following:

• Scoring function: Taking the definition of attention as the Q, K, V dictionary lookup
presented in Sec. 2.2.1, we define the a(·) as the dot product and scale results by the
inverse factor of the K dimension size, dk, passing the result through a softmax such
that

Attention(Q, K, V) = so f tmax
(

QK√
dk

)
V (2.6)

• Multi-Head Attention: Instead of computing a single attention function for each
query Q, multiple attention functions, or heads, are computed with projections for
each set of queries, key and value Q, K, V , which are then concatenated and re-
projected into a common space O

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO (2.7)

and

headi = Attention(QW Q
i , KWK

i , VWV
i ) (2.8)
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where W Q
i , WK

i , WV
i and WO are the corresponding learnable matrices.

This procedure allows the system to adapt and identify similarities and dependen-
cies in various dimensional ranges. In addition, by splitting the attention compu-
tation, the number of sequential operations is reduced, allowing a higher degree of
parallelization of the model, and therefore, higher training speeds.

Inside the Transformer, depending on the nature of the input vectors, we can dis-
tinguish two distinct attention blocks:

– Self-attention: Where Q, K, V correspond to the output of the previous layer
of the encoder or decoder.

– Cross-attention: When in the decoder, Q is taken from the decoder previous
layer, and K, V are extracted from the output of the last encoder layer. This
way, each decoder position can attend to all positions of the input stream si-
multaneously.

• Causal masking: To prevent the usage of future information, the values of the ini-
tial self-attention block on the decoder are masked to −∞ before the softmax so that
predictions only attend to tokens at previous positions.

• Positional Encodings: In RNNs the order of the input tokens can be easily inferred,
since it is implicitly defined with the sequential analysis that there are token to
token. However, with the Transformer structure this information disappears and
some other mechanism has to be implemented to extract the relative or absolute
position of the tokens in the input sequence. For this, the original authors propose
a representation that is summed to the outputs of the initial word embedding layer,
with the position of each token implicitly represented in a vector whose values are
calculated based on a sine function that is described as

PEpos,2i = sin
( pos

G2i/dmodel

)
(2.9)

where posi corresponds to the input position with respect dimension i, and the con-
stant G, which in the original paper takes the value of 10.000, restricts the function
into a specific range. More precisely, this function represents a geometrical pro-
gression in the range of [2pi, 2piG], which authors hypothesize facilitates the model
in the process of learning to attend to relative positions. For a more detailed view
behind the reasoning of this mechanism, we refer the reader to [24].

• Normalization and skip connections: To better control the gradient flow in the
network and improve training stability, the Transformers blocks include skip con-
nections [25] and layer normalization [26]. For the latter, in the original Transformer
paper this component is placed after each residual block (Post-LN). However, con-
trary to this, in the original Tensor2Tensor implementation [27], the layer norm was
placed in the residual before the attention and feed-forward layers (Pre-LN). This
second configuration has been found to generally be more stable, specially when
scaling up the number of parameters of Transformers [28].

2.2.3. Scaling the Transformer Architecture

The following is a list of different trends and best practices popular in Transformer train-
ing and inference which improves it in terms of efficiency, generalization and adaptation
capabilities [29]:
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• Multi-GPU training: With the increasing complexity and size of Transformer mod-
els, training on a single GPU can become time-consuming and computationally
intensive. For effective scaling of Transformer models, proper usage of multiple
GPU training is a must. By harnessing the power of multiple GPUs, the training of
a model can be effectively parallelized and scaled up along different nodes, and at
the same time, allow bigger batch sizes, which have been proved to be important
to obtain good results in Transformers [30].

Although hard to implement by their own, fortunately the majority of deep learn-
ing toolkits, such as PyTorch [31], already implement ready-to-use wrappers of dis-
tributed training paradigms. For smaller sized models, Distributed Data Parallel
(DDP) [32] is a popular choice. In DDP, a process is assigned to each computing
device with its own local model replica and optimizer, receiving at the forward
step a portion of the input chunked along the batch dimension. Then, during the
backward pass, the gradients are synchronized making sure that the all replicated
model end up at the same updated final state.

Although effective, two major problems appear when using DDP: One, is that the
model needs to fit on all GPUs used in the training procedure, and two, is that
at large scale training, model replication derives in a major overhead of memory
usage. A popular alternative to DDP is Fully Sharded Data Parallel (FDSP) [33],
which is inspired by stage 32 of the ZeRO optimizer (ZeRO) [34]. In essence, in
FDSP the optimizer states, gradients and model parameters are sharded into units
along all devices, which are later communicated and recovered on-demand before
computations are made through the usage of distributed computing primitives
such as gather and scatter. Additionally, CPU offloading of optimizer states and
gradients is habitual in FDSP.

• Half-precision training and quantization: Without taking any special measure, the
choice of numeric precision of model can easily become a major computing bottle-
neck, specially as parameter count increases in large scale training. Historically,
neural networks have been trained in float32 precision, but current hardware ac-
celerators support faster training with lower precision, without any performance
degradation. In this regard, float16 training, as presented in [35], is widely used
in the training of Transformers, and other floating point types such as bfloat16 [36]
and float8 [37] remain as popular choices. In this regard, bfloat16 offers similar
results to float16, but it has been observed to have better stability during training,
while float8 is considerably faster but more unstable than the 16-bit variants.3

Moreover, integer types have also been widely explored for model quantization,
particularly in regards to model inference, such as in the case of int8 [38], which
remains a popular choice for its balance between stability and speed. Additionally,
there also has been recent works that leverage int4 formats [39] for LLM adapta-
tion, and there has been even cases where with some architectural changes to the
Transformer, 1-bit model training is possible [40].

• Gradient Accumulation: As previously mentioned, Transformers benefit greatly
through the usage of big batch sizes, but it is quite common in practice to find that
the necessary batch size for a given model size does not fit into device memory. A
popular technique to alleviate this and simulate larger batches is gradient accumu-
lation [41]. In it, instead of updating the network weights on every batch, gradient
values are accumulated for each batch and the backward pass is delayed by K steps.

2Accordingly, stage 1 of ZeRO only shards optimizer states, while stage 2 also shards gradients.
3float8 was introduced for NVIDIA Hopper hardware accelerators in late 2022.
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• Data Augmentation: Compared to other traditional ML models, Transformers are
quite data-hungry and require to be trained in the ranges of billions or even tril-
lions of tokens. The curation of large-scale, high-quality datasets, is then key in or-
der to obtain good performance of Transformer models. However, more often than
not, data recollection can be challenging for many domains, with situations where
data may be limited, expensive to collect, or subject to privacy concerns. Moreover,
datasets may lack diversity, representing only a narrow range of instances and fail-
ing to capture the variability present in real-world scenarios. For these reasons, the
creation of synthetic data, or data-augmentation, which seek mitigate these prob-
lems, is a popular topic research among NLP practitioners that use Transformers.

In the context of MT, a popular data-augmentation strategy is the creation of addi-
tional parallel corpora from monolingual data. In parallel MT corpora we can dis-
tinguish phrases from the direction that they were translated from, that is, if they
are source-original or target-original. Following this taxonomy, we can classify MT
data-augmentation techniques if they create data from source-side or target-side
phrases, which are named accordingly as forward-translations (FT) [42] and back-
translations (BT) [43], with the latter technique having been found to be generally
more effective than the former [44].

For BT, the synthetic source-side is typically obtained from a reverse translation
model, trained with the corresponding src ! tgt data to be used on the final model.
Additionally, the usage of "tags" [45] to distinguish original-source-side phrases in
BT has been found to decrease quality degradation that can be introduced by the
technique such as the case of translationese artifacts [46], [47].

Apart from the previous points, there exist in the literature many modifications to
the Transformer that improve its base performance which we have omitted for the sake
of brevity. Some examples of the most popular modifications are the usage of alterna-
tive positional embedding formulations [48], [49] and activation functions [50] or faster
decoding methods [51], [52] and attention calculations [53].

2.3 Large Language Models

Although originally a model specialized for NMT, the Transformer architecture explained
in Sec. 2.2.2, through its derivatives, is currently one, if not the most popular architecture
for text-based ML tasks. Apart from this, the Transformer and its ideas have seen a wide
usage in other realms such as Computer Vision [54], Automatic Speech Recognition [55]
or Text-to-Speech [56], [57], obtaining state-of-the-art results in these tasks. The main
key to the success of the Transformer architecture can be mostly attributed to four main
components:

• The parallel processing capabilities and speed.

• The ability to handle long-range dependencies when compared to older architec-
tures.

• The adaptability of the model to any type of input sequences.

• The positive response to scalability regarding size and data for obtaining better
results.

For these reasons, ever since its popularization, the Transformer has successfully
served as a standard solution for many problems in ML. With the promise of Trans-
formers to serve as a "jack-of-all-trades", each passing year researchers and companies
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alike have been scaling up these models to sizes that a few yeas ago would be considered
unheard of. As an example, compare the size of the original Transformer 300-million pa-
rameter variant, which was regarded at the time of release as a relatively big model, to
the 175-billion parameters count of GPT-3 [58] or 540-billion of PALM [59].

These pre-trained large Transformers, along other contemporary models based in lan-
guage modeling tasks [60], [61] with a similar parameter size and computing budgets,
are currently widely referred under the umbrella term of Large Language Models, or
LLMs [62], and have seen a major increase of interest both in industry and mainstream
discourse of ML.

A popular taxonomy used to identify LLMs is the division between three large fami-
lies of Transformer models depending on whether they make exclusive use of the Trans-
former encoder, decoder or both, such as in the original paper. In this regard we can
identify, BERT [63], GPT [64] and T5 [65] as the first works which popularized each de-
scribed variant for general purpose usage. It is important to note that, for the most part,
decoder-only models have remained as the most popular choice in recent years, and as
such, by classifying a model as a "LLM" it is often implied that it is a decoder-only model.

2.3.1. In-Context Learning

One of the key concepts that is fundamental to the effectiveness and versatility of LLMs
is that of In-Context Learning (ICL) [66], which was originally introduced in [58]. In the
latter work, ICL is referred as the capacity of a given pre-trained language model or LLM
to be conditioned on a natural language instruction and/or a few demonstrations of a
given task, and subsequently, solving it by treating it as language modeling task. That
is, by simply predicting the most probable tokens that follows the conditioning input, a
LLM can resolve complex Natural Language Understating and Generations tasks (NLU,
NLG) that were not seen during training given enough input information.

A common way to refer to these conditioning inputs on the literature is "prompts",
with each example of the task that is passed to the input counting as a "shot". Ac-
cordingly, when no example is present in the input a "zero-shot" setting occurs, which
contrasts with the k-shot or "few-shot" setting in the presence of them. Depending on
the model, the quality of prompt and shots can greatly impact downstream task perfor-
mance. As such, when leveraging ICL, formatting of the prompts with techniques such
as Chain-of-Thought (COT) [67] or adequate selection methods of them is crucial. Addi-
tionally model parameter size has been observed to greatly influence the capability and
effectiveness of ICL.4

While the exact workings of ICL in LLMs are not yet fully understood, there have
been recent works exploring this topic that seems to indicate that ICL in LLMs may be
attributed by the ability of large enough models to learn adaptable functions that are
implicitly "fine-tuned" through gradient updates in the model’s forward passes [71], [72],
[73].

4In the LLM literature it has been observed that, at certain size thresholds, some models enter "phase
transitions" where "emergent capabilities" [68] for certain tasks may appear unpredictably and in a sharp
manner that were not previously seen in smaller models. However, this view has been recently criticized
in [69], [70], which respectively attribute these results to the innate capabilities of ICL and the misuse of
evaluation metrics.
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2.3.2. Applying LLMs to MT

Small bilingual encoder-decoder models have remained, for the most part, as the go-to ar-
chitecture when training NMT models. Nevertheless, recent work showed that decoder-
only language models can achieve similar, if not better results for MT, when simply con-
catenating the source phrase in the input [74], [75] [76]. This discovery, along the ICL
capabilities of LLMs, has lead to an explosion of works during the last year exploring
the capabilities in MT of multilingual decoder-only LLMs which have not been explicitly
been trained in the task. As examples, the following works explore MT for different type
of LLMs [77], OpenAI’s GPTs [78] [79] [80], BLOOM [81], XLGM [82], GLM [83], and
PALM [84]. From the previous mentioned works, we can extract the following points
regarding LLMs usage in MT:

• LLMs translations can produce higher quality metrics that tend to be less literal
[85], as well as having different types of translation errors compared to regular
NMT models [86]. This has been pointed out in works such as [84], [86] to have
the effect of discrepancies between traditional count based and neural metrics on
resulting LLMs translations, with the former seemingly being less accurate than the
latter at reflecting human preferences [87].

• Precise prompts and on-topic shots can greatly help in boosting translation qual-
ity and resolving uncertainties. Prompt adaptation can be easily used to naively
enforce specific tones or glossary for translation [88].

• Part of the MT capabilities of LLMs can be partially explained due to bitext contam-
ination present in the training data [89]. This raises questions at how beneficial is
training LLMs with general data if MT is the downstream objective.

• "Bigger is better", in the sense that model quality for LLMs in MT tend to follow
general LLMS scaling laws [90], as well as observed bilingual [91] and multilingual
[92] MT scaling laws.

2.3.3. Parameter Efficient Fine-Tuning

After the training process of a model, it is quite often common to further train or "fine-
tune" it5 to improve performance on a downstream task or domain. Some general ap-
proaches to fine-tuning rely on modifying all model parameters or partially freeze some
layers and blocking gradient updates on them. However, applied trivially, the former
can become quite expensive, specially for larger models, and prone to suffer from catas-
trophic forgetting, while in the latter, layer selection can be cumbersome, with results that
are often suboptimal in relation to the ones obtained in full parameter fine-tuning.

For these reasons, in the wake of LLMs, the ML community has been in the search of
Parameter Efficient Fine-Tuning (PEFT) [93] methods that take into account possible com-
puting resources limitations, updating only the necessary amount of model parameters
for the adaptation of it to a new task. Out of these methods, LoRA [94], as presented in
Fig. 2.2, is one of the most popular PEFT architectures. It is mostly based on the observa-
tion that large enough models tend to have a low intrinsic dimension, that is, that within
a certain level of approximation error the learned function by the model can be effectively
represented in a small dimensional subspace [95], [96]. Following this, LoRA introduces
the necessary updates to adapt to a new task as learnable small low-rank matrix decom-
positions of selected W dense matrices of the original model, which is in turn freezed

5By fine-tuning, we refer in this case to parameter fine-tuning, as opposed to hyperparameter exploration
and optimization.
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completely during the fine-tuning procedure. In the case of Transformers, Q, K, V and O
attention matrices are usually selected to be updated by the W matrices. More formally,
for each weight matrix W0 update ∇W we constrained them such that for ∇W = BA

h = W0 +
α

r
BA (2.10)

where B ∈ Rd×r and A ∈ Rr×k are the learnable decompositions with rank r ≪ min(d, k)
and scaling factor α. In the original implementation, A and B are respectively initial-
ized to a random Gaussian distribution and zero. After finishing training, ∇W adapter
weights can be merged with the base model for zero additional inference latency, which
contrasts with other adapter methods that with the introduction of additional parameters
make the resulting model slower and heavier in size.

Pretrained
Weigths

²

Figure 2.2: LoRA architecture. Adapted from [94].

2.4 Evaluation Metrics for Machine Translation

Ideally, MT systems are to be evaluated manually by human experts, which ultimately
are the final judges which can assess the quality of a given translation. However, these
evaluations are costly and cannot be easily scaled, so this has led the MT community to
the creation of fast automatic evaluation metrics that try to correlate as close as possible
to human judgment, This has allowed the scientific community to easily evaluate and
compare performance of several models during the experimentation phases of their work
and against results of other research papers.

Historically, the definition of automatic evaluation metrics in MT has been a hot topic
among researchers. Although there is a clear degree of underlying "objective quality"
between a translation and its original text, there also lies a clear degree of subjectivity and
fuzziness in translation that makes it difficult to solidify one quality measuring metric
as a definitive one. Compare this, for instance, to the case of ASR, where the scientific
community has converged into a de facto usage of Word Error Rate (WER) and Character
Error Rate (CER) as quality metrics.

The underlying evaluation problem of MT can be easily traced back to the one-to-
many nature of the task, where more than one target translation can be correct, combined
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with the amount of ambiguities that can easily appear with the usage of different registers
or dialects inside a language. Nevertheless, even with these problems, through the years
the usage of automatic quality measuring metrics has been solidified as the standard way
of evaluating different MT models.

Count based metrics

In terms of traditional automatic metrics, the most popular metric used in MT is the Bilin-
gual Evaluation Understudy, or BLEU [97]. This metric is based on an modified average
n-gram based precision pn, such that it clips precision with the assumption that n-gram
should appear at maximum the same amount of times in both the reference r and a can-
didate c translation. We calculate

AveragePrecision(N) =
1
N

N

∑
n=1

log pn (2.11)

with the precision weighted by a brevity penalty between reference and candidate lengths

BrevityPenalty =

{
1 i f cl > rl

e(1−
rl
cl
) i f cl ≤ rl

(2.12)

such that, typically with N=4, we have

BLEU = BrevityPenalty ∗ AveragePrecision(4) (2.13)

giving a value between 0 and 1 that is typically multiplied by 100 for better readability,
with higher values denoting better translations.

Apart from BLEU, other popular count based metrics are the n-gram based chrF [98],
[99] or the edit-distance based Translation Error Rate (TER) [100]. Alongside BLEU, these
metrics can take different parameters, and as such, inconsistencies can appear that distort
model evaluation, specially if text normalization and tokenization between hypotheses
and references is not preserved. For this reason, it is standard to calculate these three met-
rics through usage of the SacreBLEU library [101] for the sake of consistency. Apart from
this, it is heavily recommended when reporting results to attach the output signature of
this tool which describes metrics parameters for better result reproducibility.

Neural based metrics

These metrics are mostly based on the usage of the embedding representation of pre-
trained neural encoders such as BERT for MT evaluation. Overall, these metrics have
been found to generally better correlate with human preference compared to traditional
count based metrics [102], [103]. In [104], the authors identify two mains approaches in
the literature:

• Embedding-distance metrics: These metrics substitute the word/n-gram matching
of classical metrics by leveraging the fuzziness introduced by distance similarities
scores between embedding representation from pre-trained models for capturing
semantic similarity without making modifications to the representation: BERTScore
[105].

• More recent fine-tuned metrics: Which modify the underlying embedding rep-
resentation to try to better adapt the models to the MT quality assessment task,
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adding additional training objectives to make the resulting learned metrics more
sensitive to specific errors or hallucinations [106] in translations:6 BLEURT [108],
[109] and the COMET family [110], [104].

COMET-22, which will be used to compare models in future chapters, is one of the
current neural based metric which has seen wide adoption by the community. This met-
ric makes use of a pre-trained, multi-lingual model XLM-RoBERTa [111], which has been
modified and trained on high quality translation pairs in order to use it as a translation
quality score regressor. This metric works as follows: First, source, hypothesis, and ref-
erence sentences are encoded into multiple word embeddings from intermediate layers
of the model, which are then passed through a trainable layer-wise attention mechanism,
concatenated and average pooled, resulting in sentence-level embeddings vectors h, s
and r. These are then transformed into multiple representations h ⊙ s, h ⊙ r, |h − s|, and
|h − r|, which along h and r are concatenated and feed into a trainable forward regressor
that outputs scores between 0 and 1, with the minimum indicating random input and
the maximum, a perfect translation. The resulting score are normally reported by further
scaling them to 0 and 100.

Other remarks on MT metrics

Currently, the majority of MT metrics are reference-based. These compare output trans-
lations of a model respect a ground-truth translation obtained from human experts. Al-
though more expensive than reference-free7 solutions such as Round-Trip Translation [113],
these tend to be preferred by the MT scientific community since they have historically
given more precise estimates.

Another important fact to have in mind is that all previously named metrics make
evaluation at an individual sentence level, and require a previous segmentation before
evaluation. In more specific tasks like Speech Translation [114] or Document Level MT
[115], [116], [117], the previous metrics tend to be suboptimal, and more specific metrics
are used.

6As an example, the Robustness MT evaluation framework SMAUG [107], identifies deviations in named
entities, numbers or meaning, or the insertion and removal of content, as typical errors in MT systems.

7In the literature, reference-free metrics are also typically referred as "Quality Estimation" (QE) [112].





CHAPTER 3

Datasets

This chapter introduces the dataset compilation process for training the baseline mod-
els of the INTERACT-EUROPE project. Furthermore, the used data-processing pipeline
is discussed alongside the tokenization scheme that will be used for the models of the
following chapters.

3.1 Datasets

3.1.1. Evaluation sets

The European School of Oncology1 (ESO) provided a series of video conferences with
English transcriptions from which a subset was sampled to select development and test
sets for model evaluation. More precisely, a series of 10 videos were split into two sub-
groups for a total of 3.5h and 3.8h of speech respectively, which were given to a profes-
sional translation agency2 resulting in a series of non-aligned translations from English
to French, Spanish, German and Slovene. From these, a first pass clean-up to the text
was made with a curated list of regular expressions. Following this, sentence-level bi-
text was obtained for each language direction through the extraction of phrases of the
evaluation sets with the Moses toolkit script split-sentences.perl, which were further
processed with the neural based alignment tool Vecalign [118]. Finally, a second manual
clean-up was made to correct alignment errors and mistakes which were not detected on
the initial clean-up. The total number of sentences for each language pair evaluation sets
is presented in Table 3.1.

Table 3.1: Total number of sentence-level bitext for INTERACT-EUROPE evaluation sets.

en ! Dev Test
f r 1445 1407
es 1450 1405
de 1424 1399
sl 1458 1407

1https://www.eso.net/
2All translators were asked to follow their usual translation workflow except for two points: Translations

must be obtained from scratch without the usage of any MT tooling, and literal translations were to be
preferred.

19
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3.1.2. Training sets

For the training of baseline models, parallel corpora from all explored language direc-
tions was mainly extracted from the OPUS [119] platform.3 These corpora are made out
of a mix of filtered web-crawled data such as Paracrawl [120] and high quality texts de-
rived from sources such as books or parliamentary debates, as is the case of UNPC [121].
For the case of en ! de, the WMT22 main shared task data recipe was followed.4 In addi-
tion to this, for en ! es, de, f r additional data from Medline abstracts was added based
on the list provided by the WMT22 Biomedical Translation Task [122] 5, which were pro-
cessed into bitext by the split-sentences.perl and Vecalign procedure described in
Sec. 3.1.1.

For the case of en ! sl, due to the data scarcity compared to other language pairs,
back-translations were considered with additional Slovene data that was scrapped from
oncology journals and books sources presented by the Institute of Oncology of Ljubljana 6

along the usage of the SiParl [123] corpora. Apart from these, the incorporation of noisier
bitext was considered by testing the effect of the CCMatrix [124] corpus on the resulting
models. The previously selected data was cleaned by discarding non-Slovene phrases
chosen by the language identification model lid.176.bin from fastText [125] combined
with the fixing and elimination of low scoring sentences by the Bifixor and Bicleaner tools
[126], [127].

A overview of bitext corpora selected for each language pair is reported in Tables
3.2, 3.3, 3.4 and 3.5 respectively, as well as the extra monolingual data for the en ! sl
direction in Table 3.6. Overall, total data amount rounds up to 340.9 million sentences for
en ! es, followed by 309.0M for en ! f r and 289.0M for en ! de, with en ! sl around
the 74.8M mark when counting the extra bilingual and monolingual data.

Table 3.2: General domain corpora for language pair en ! f r, where K=103, M=106 and G=109.

Corpus Bitext Words
English French

ParaCrawl [120] 216.6 M 3.7 G 4.1 G
UNPC [128] 30.3 M 658.4 M 816.4 M
Giga Fr-En [129] 22.5 M 575.8 M 672.2 M
EUBookshop [130] 10.8 M 224.6 M 244.5 M
CCAligned [131] 15.6 M 156.7 M 171.1 M
DGT-TM [132] 4.9 M 86.3 M 95.4 M
WikiMatrix [133] 2.7 M 57.8 M 63.1 M
WikiMedia [129] 1.0 M 24.1 M 25.8 M
Europarl [121] 1.2 M 28.6 M 29.9 M
News Commentary [129] 3.2 M 70.7 M 76.6 M
CommonCrawl7 0.1 M 4.1 M 4.7 M
Medline-WMT22 110.6 K 2.4 M 3.0 M
Europarl-ST [134] 96.5 K 2.3 M 2.6 M
Total 309.0 M 5.6 G 6.3 G

3https://opus.nlpl.eu/
4https://www.statmt.org/wmt22/mtdata/index.html
5https://github.com/biomedical-translation-corpora/corpora
6https://www.onko-i.si/eng/sectors/research_and_education/medical_and_other_scientific_

publication
7https://commoncrawl.org
7https://europat.net/

https://opus.nlpl.eu/
https://www.statmt.org/wmt22/mtdata/index.html
https://github.com/biomedical-translation-corpora/corpora
https://www.onko-i.si/eng/sectors/research_and_education/medical_and_other_scientific_publication
https://www.onko-i.si/eng/sectors/research_and_education/medical_and_other_scientific_publication
https://commoncrawl.org
https://europat.net/
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Table 3.3: General domain corpora for language pair en ! es, where K=103, M=106 and G=109.

Corpus Bitext Words
English Spanish

ParaCrawl [120] 269.4 M 5.0 G 5.4 G
EuroPat 8 51.4 M 1.7 G 1.8 G
MultiUN [135] 11.4 M 29.7 M 330.2 M
DGT-TM [132] 5.2M 113.5 M 121.7 M
Wikipedia [136] 1.8 M 41.2 M 44.9 M
Europarl [121] 1.1 M 28.8 M 27.6 M
Medline-WMT22 153.8 K 3.6 M 4.2 M
Total 340.9 M 6.9 G 7.7 G

Table 3.4: General domain corpora for language pair en ! de, where K=103, M=106 and G=109.

Corpus Bitext Words
English German

ParaCrawl [120] 278.3 M 4.2 G 4.0 G
TildeMODEL [137] 5.1 M 131.4 M 108.8 M
CommonCrawl-WMT13 [138] 2.3 M 58.8 M 54.5 M
WikiTitles-WMT19 [139] 1.4 M 44.0 M 35.9 M
Europarl [121] 1.1 M 27.9 M 25.8 M
News-Commentary [140] 388.4 K 9.2 M 9.1 M
Europarl-ST [134] 105.3 K 2.3 M 2.2 M
Medline-WMT22 95.5 K 2.0 M 2.2 M
Total 289.0 M 4.4 G 4.1 G

Table 3.5: General domain corpora for language pair en ! sl, where K=103, M=106 and G=109.

Corpus Bitext Words
English Slovene

OpenSubtitles [141] 19.6 M 129.0 M 98.0 M
ParaCrawl [120] 9.5 M 151.6 M 137.8 M
DGT-TM [132] 5.1 M 86.5 M 76.0 M
TildeMODEL [142] 2.0 M 42.2 M 38.2 M
EMEA 9 1.0 M 11.7 M 11.6 M
Europarl [121] 633.4 K 15.0 M 12.5 M
EUbookshop 10 405.6 K 8.8 M 7.9 M
EuTV 11 181.1 K 1.7 M 1.4 M
Wikipedia [136] 140.1 K 2.2 M 2.9 M
JRC-Acquis12 53.3 K 879.1 K 724.5 K
Ted2020 [143] 44.3 K 733.4 K 443.3 K
WikiMedia [129] 31.7 K 806.6 K 689.1 K
WIT3 [144] 17.1 K 285.4 K 235.5 K
Total 38.8 M 452.6 M 387.1 M
Extra: CCMatrix [124] 27.4 M 364.9 M 216.4 M
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Table 3.6: Monolingual corpora for language pair en ! sl, where K=103, M=106 and G=109.

Corpus Monotext Words
SiParl [123] 8.7 M 192.5 M
Oncology-Institute 36.1 K 859.1 K

3.1.3. Data processing pipeline

All data is pre-tokenized using the Moses cleaned with Moses clean-corpus script to
discard sentences with more than 250 tokens. After that, a Truecasing [145] model is used
to reduce overall vocabulary size. Truecasing can be seen as a normalization technique
where a model tries to transform text into its most appropriate form in upper or lower
case by collecting different statistics and building a prediction model out of these. In
Moses, the Truecasing model only changes the words at the beginning of a sentence to
their most common form, as well as any words in which their current form is unknown.

All data is then tokenized with a trained subword vocabulary from the collected data,
which offer an economic way of simulating large vocabularies and solve OOV problems.
As a way to illustrate the benefits of subword tokenization, consider the following exam-
ple. Let V be a word-level Spanish vocabulary such that V = [traducción , conducir].
A model trained with V would only be able to identify these words. However, a model
trained with a vocabulary made out of subword V = [ción, tra, duc, con, ir, duc] could
additionally identify words such as ir, conducción or contra.

For subword-based tokenization, in this work we use the SentencePiece library [146].
SentencePiece provides a robust and fast C++ implementation of a subword tokenizer
with various partitioning algorithms such as Byte-Pair Encoding [147], [148] and unigram-
based language models [149]. This library also offers other benefits such as automatic
NFKC UTF-8 text normalization, possible regularization of subwords and language ag-
nostic representations through special treatment of whitespaces.13

For this work, BPE was chosen as the partitioning algorithm. Roughly speaking, BPE
fragments the text at character level and learns text joins (merge operations) to extract a
vocabulary taking into account character level frequency and character sequences in the
training corpus. This process runs up to the vocabulary limit or until the maximum
defined merge operations is reached. An example of a training sentence after applying
Truecasing and SentencePiece is shown in Fig. 3.1.

Original Secondly, I understand the worry of ...
Truecase and SPM secondly ,_ I_ understand_ the_ wor ry_ of_ ...

Figure 3.1: Comparison between a training sentence after applying Truecasing and SentencePiece.
Note the transformation from Secondly to secondly by Truecasing and the escaping of spaces by

_ and segmentation into subwords of worry by SentencePiece.

12https://www.ema.europa.eu
12http://bookshop.europa.eu
12https://multimedia.europarl.europa.eu/en
12https://ec.europa.eu/jrc/en/language-technologies/jrc-acquis
13Whitespace is escaped by default in SentencePiece with the Unicode character (U+2581).

https://www.ema.europa.eu
http://bookshop.europa.eu
https://multimedia.europarl.europa.eu/en
https://ec.europa.eu/jrc/en/language-technologies/jrc-acquis


CHAPTER 4

Baseline Translation Systems for
INTERACT-EUROPE

This chapter introduces the baseline translation systems trained for the INTERACT-EUROPE
project, the followed training procedure and the experimentation done to refine their
overall quality.

4.1 Baseline Models

All baseline models from this chapter were trained with Fairseq [150], a toolkit developed
by the Meta AI team for the training of Seq2Seq models using the PyTorch framework
[31]. In a similar vein to projects such as OpenNMT [151], Fairseq offers an extensible
API with an extensive collection of tools for neural network development, with high-
lights such as the list of available pre-trained models and the out-of-the-box support of
techniques such as multi-GPU and mixed precision training or advanced decoding algo-
rithms. The most common way to train models in Fairseq is the usage of its CLI tooling,
which also allows the use of hierarchical configuration files through Hydra [152]. The
most common CLI entry points are:

• fairseq-preprocess: Data preprocessing and binarization for training.

• fairseq-train: Launching of the training with the architecture configuration and
hyperparameters of the model.

• fairseq-interactive/fairseq-generate: Configuration and launching of the mo-
del inference.

Initial baseline models, referred to as Baseline-300M, were trained in float16 using
the "Post-LN" Transformer Big architecture of the original paper. A BPE SentencePiece
vocabulary was trained for each language pair with a max size of 50.000 tokens and
0.9995 character coverage. For the optimizer, Adam [153] with β1 = 0.9, β2 = 0.98 was
used following a inverse square root learning rate scheduler with lr = 5e − 4 and a
warm up period of 4000 steps with initial lr = 1e − 07. Label-smoothing and dropout
were respectively used with 0.1 and encoder-decoding weight embedding matrices were
"tied-up" [154]. Models were trained on multiple NVIDIA’s 2080 Ti GPUs through DDP
for an effective batch size of 16.000 tokens, and checkpoints were kept between 10.000
updates for averaging of the last 7 to obtain the final model. Models were trained until
convergence was observed on dev test or training reached one million steps. As for the
decoding algorithm, beam search with size 6 was chosen for all models. Fig. A.1 in the
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appendix shows the configuration of fairseq-train used for the training of one of these
baseline models.

4.1.1. Refinements on Baseline Models

For en ! es, de, f r, fine-tuning (FT) was done by further training the final model with
a fixed learning rate during a few iterations. For the FT data, a split was chosen made
up of the complete Medline-WMT22, Europarl-ST and MuST-C [155] datasets. The data
selection was made by trying to balance the close in-domain medical data with a subset
of cleaner corpora that were closer to the field of spoken language.

With respect to en ! sl, an ablation study was made by trying an aggressive filtering
with the previously mentioned Bicleaner and Bifixor,1 the usage of CCMatrix cleaned
with these tools and the addition of tagged back-translations obtained from a baseline
model trained on the reverse direction with the monolingual data in Table 3.6.

In addition to this, and in order to corroborate the theory around Transformer scaling
in MT [91], we experimented by training for each language pair a Pre-Norm Transformer
with double the amount of layers (Baseline-600M)2 and an increased effective batch size
of 192.000 tokens, following [156]. The 1.3B variation (24x24) of the previous paper was
also tried on preliminary study by training a en ! f r model with FDSP, but results were
found out to be slightly worse than the 600M variant. This, combined with the higher
computing budget associated for training with this model size, led us to the decision of
not exploring the rest of language pairs for this size. These higher variants were trained
on a combination of computing nodes with NVIDIA A40s and A30s GPUs.

4.2 Evaluation of Baseline Models

Tables 4.1 and 4.2 present model evaluation with BLEU3 and COMET-22 for each lan-
guage direction. For the most part, the effect of fine-tuning these models seem relatively
small, with ≤ 1 changes on both metrics. For the small en ! f r, es directions, we see how
the effectiveness of the fine-tuning differs if we take into account one of the chosen met-
rics respect the other, with BLEU indicating a worse performance of FT models respect to
the baseline, while COMET indicating the opposite. As for en ! de, both metrics seem
to indicate a boost in performance with FT.

In en ! sl, we observe how the initial cleaning slightly hurts performance, but the
addition of CCMatrix and back-translations improves both BLEU and COMET, having
the former show a boost of 0.8 points with respect to the baseline, while the latter still
not closing the performance gap made by the cleaning procedure. We theorize that this
discrepancy of metrics may be due to the noisier nature of CCMatrix that, alongside
back-translations, may introduce unnatural phrase structures which BLEU could not pe-
nalizing as much as opposed to COMET.

Regarding the 600M parameters variants, we see a considerable improvement of both
BLEU and COMET scores for en ! f r, es, de when measuring against the smaller vari-
ants, both with and without fine-tuning. Interestingly, for en ! f r there is a huge jump
of +5 points of BLEU, but COMET-22 surprisingly seems to reflect that the bigger model
is of the same quality as the smaller fine-tuned variant. For en ! sl, we see how the im-

1From 38.8M to 14.5M phrases after cleaning, ∼ 37% of the original data is preserved.
2Baseline has the same amount of layers respectively for the encoder and decoder component (6x6), so

we roughly double the amount of parameters (12x12).
3SacreBLEU signature: BLEU|nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1
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provement seems to be much smaller as opposed to the other directions, and for the case
of BLEU, the CCMatrix and BT variants seem to be better in this case. Smaller BLEU vari-
ations in results for en ! sl seem to indicate that the amount of training data compared
to other directions may be overall hurting our ability of benefiting from model scaling.

Overviewing the results, we can affirm that the achieved translation quality are good,
which are reflected in the obtained BLEU scores on the range of 40-50+, values that for
this metric are normally considered in the range of high quality translations. This is also
supported by the obtained COMET-22 scores, which reach the 80+ mark, a value that
in the literature seems to generally correlate to similar quality translations respect those
given as reference.

Table 4.1: Results of baseline en ! f r, es, de models on the INTERACT dev set.

en ! fr, es, de
French Spanish German

Model BLEU COMET-22 BLEU COMET-22 BLEU COMET-22

Baseline-300M 51.5 81.8 56.4 85.4 40.9 81.5
+ FT 50.6 82.2 56.2 85.5 41.2 82.1

Baseline-600M 56.4 82.1 58.9 85.9 43.8 82.4

Table 4.2: Results of baseline en ! sl models on the INTERACT dev set.

en ! sl
Slovene

Model BLEU COMET-22

Baseline-300M 40.0 84.5
+ Cleaning 39.7 83.3

+ CCMatrix 40.4 83.6
+ BT 40.8 84.1

Baseline-600M 40.3 84.7





CHAPTER 5

Adaptation of Multilingual Large
Neural Models

This chapter explores the performance of publicly available multilingual pre-trained neu-
ral models respect the previous baselines of Chapter 4. Further adaptation of these mod-
els is explored to improve their performance MT, both for multilingual encoder-decoder
models and decoder-only LLMs. All models from this chapter were trained through the
HuggingFace Transformers [157] library.

5.1 Multilingual Encoder-Decoder Models

In the previous chapter, individual models were trained for each language pair. The
problem with this methodology is that, with the increase of language directions, there is
a higher deployment cost at training and inference since more models are needed to cover
all directions. On the other hand, the training of a multilingual MT model (MMT) offers a
great solution to this problem by unifying all directions into a unique model, thus highly
reducing deployment costs. On top of this, MMT can make use of the internal representa-
tion of the model between similar languages pairs and distill knowledge, yielding better
translation quality among similar language pairs. For example, MMT models have been
observed to generally offer a better performance for low-resource or zero-shot language
pairs [158].

However, MMT has not gained as much widespread adoption due to the additional
complexity of these models and potential performance challenges that may arise. In par-
ticular, issues related to model capacity bottlenecks or poor data balancing can hinder
effective generalization capabilities. When coupled with other problems such as acci-
dental code-switching,1 these can lead MMT to have an overall performance downgrade
compared to traditional bidirectional baselines [158].

As such, during recent years the study of multilingual MT models has risen in popu-
larity in order to minimize their problems while reaping their benefits and matching the
performance of traditional bidirectional models. In this context, it is interesting to see
how one of these state-of-the-art MMT models compare to our trained models and see if
it can be better adapted to our domain.

1As in changing output language during inference.
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5.1.1. No Language Left Behind

No Language Left Behind (NLLB) [159] is a series of MMT Transformer models released
by the Meta research team that supports bidirectional translation of up to 200 languages.
These have been observed to obtain high quality translations for the majority of language
pairs which they cover. In order to maximize performance, the models were trained tak-
ing into account the quirks that may appear in MMT model training through a careful
selection of techniques such as curriculum learning and data balancing. This was com-
bined, among other things, with a complex data-mining pipeline, which stands out by
its quality and scale. Respect its structure, all NLLB models follow a Pre-Norm encoder-
decoder architecture along some additional modifications, such as the usage of Sparsely
Activated Mixture of Experts (MoE) in its biggest variant.2 Multilingualism is achieved
by a shared SentencePiece vocabulary with special language tokens for each available
language, which are added as prefixes to each part of the model: the source token with
the encoder, and the target token with the decoder.

5.1.2. Experimentation on NLLB

A case study was conducted to assess the performance of the dense variants of NLLB,
which range from 600M, 1.3B and 3.3B parameters, on all INTERACT dev sets. In addi-
tion to this, a collection of LoRAs were trained for each of these sizes and all language
directions to study the effectiveness of this method as a lightweight domain adaptation
tool. This approach aims to further specialize MMT models in a specific language direc-
tion after training. That is, by using LoRAs, possible biases in the representation space of
the models resulting of multilingualism might be mitigated.

Table 5.1: LORA hyperparameters for the trained decoder models.

Hyperparameter Value

Optimizer AdamW [160]
Warm up Ratio 0.06
LR Schedule Linear
Effective Batch Size ≈ 16.000 tokens

Epochs 3 or until convergence
Initial Learning Rate 2e-4
Lora Dropout 0.1
Target Modules Q, K, V , O
LoRA rank config. rQ = rK = rV = rO = 16
LoRA α 32

Trainable parameters3 0.1-0.4%

To train the LoRAs, the fine-tuning sets introduced on Sec. 4.2 were utilized for en !
f r, es, de, ensuring consistency with the rest of the experiments of this work. As a unique
case, for en ! sl, we opted to utilize a random subset of medical data from the EMEA
corpus and previous Oncology-Institute back-translations that approximately matched
the number of sentences found in the other fine-tuning datasets. The LORA hyperpa-
rameters chosen for NLLB are presented in Table 5.1, and remained consistent across all
language pairs. At evaluation time, inference hyperparameters were replicated based on
those chosen for the Fairseq models of Chapter 4 alongside the use of beam search with
size 6 as the decoding algorithm.

2In MoE, the FFN layers of the Transformer are split and activated by gates such that only a subset of
model parameters, or "experts" is activated per input. For more information see §6.2 [159].

3Depends on the dimension and quantity of Q, K, V , O matrices, which varies between models.
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Table 5.2 presents the BLEU and COMET-22 scores of the NLLB experiments along
model sizes and LoRA usage. Results are divided between parameter count and lan-
guage pair, as well as by usage of the corresponding trained LoRA. Baseline-600M mod-
els of Chapter 4 are also reported to serve as reference. First, in terms of scale we can see
how, for all language pairs, both metrics indicate a performance boost of bigger models
compared to NLLB-600M, having BLEU improvements that range from 0.5 in en ! es up
to 5.5 for en ! sl. These results are also reflected on a significant, but smaller scale, for
the COMET-22 results. For non-LoRA variants, we observe how for all language pairs
NLLB-600M performance is equal or worse depending on the metric, but on higher sizes
and language direction results vary:

• For French, NLLB-1.3/3.3B ≤ Baseline-600M on BLEU and COMET.

• For Spanish, NLLB-1.3/3.3B ∼ Baseline-600M for BLEU, but < in COMET.

• For German, NLLB-1.3/3.3B < Baseline-600M for BLEU and COMET.

• For Slovene, NLLB-1.3/3.3B ≪ Baseline-600M for BLEU, but > in COMET.

Analyzing the LoRA results reveals a significant enhancement across all models. No-
tably, for the majority of cases the trained LoRAs tend to exhibit substantially larger
deltas in both metrics when compared to scaling model size. The most remarkable im-
provements in quality are observed in the 1.3B and 3.3B variants of en ! es, resulting in
respective performance boosts of 4.0/1.5 and 2.7/1.2 points in BLEU and COMET-22. In
comparison to the Baseline-600M model, the LoRA models for en ! f r, es achieve per-
formance parity for both metrics when they reach the 1.3B parameter size. Conversely,
for en ! de, sl, BLEU scores lag behind at all sizes, but COMET-22 indicates performance
gains starting from the 1.3B parameter mark.

Table 5.2: Results for NLLB models in the INTERACT dev sets with respect to the best baseline
model.

en ! fr, es, de, sl
French Spanish German Slovene

Model LORA BLEU COMET BLEU COMET BLEU COMET BLEU COMET

Baseline-600M - 56.4 82.1 58.9 85.9 43.8 82.4 40.3 84.7

NLLB-600M
✗

53.5 82.1 55.8 85.2 38.0 81.2 33.3 83.1
NLLB-1.3B 55.6 82.8 56.4 85.5 39.7 81.9 36.2 85.0
NLLB-3.3B 56.4 82.8 56.3 85.6 41.5 82.0 38.8 85.2

NLLB-600M
✓

53.8 82.9 56.4 85.3 39.0 82.4 35.0 84.1
NLLB-1.3B 56.5 83.8 59.1 86.7 41.1 83.4 38.8 86.3
NLLB-3.3B 57.5 84.3 60.3 87.1 41.8 83.7 39.7 87.0

5.2 Multilingual Decoder-Only Models

5.2.1. BLOOM and LLAMA-2

Following the points outlined in Sec. 2.3.2 of LLMs for MT, we choose to study and ex-
periment last years BLOOM [161] family of Transformer models, which have remained
widely used by the scientific community since their release. These are a collection of open
source multilingual decoder-only language models trained by the BigScience project with
ROOTS [162], a massive 1.6TB corpora which covers 59 languages. In terms of architec-
ture, these models are very similar to the base decoder of the original Transformer, with
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the major differences being the usage of bfloat16 precision, the GeLU activation function
[50], ALiBI Positional Embeddings [49] and an extra normalization layer after the embed-
dings for better training stability. Although there exists instruction-finetuned versions of
these models which offer a general performance boost, referred as BLOOMZ [157], these
were not chosen due to the findings of the original paper on the degradation of quality
of generation based tasks like MT.

Alongside BLOOM, and considering the apparent lack of German and Slovene data in
the ROOTS corpus, the evaluation of the recently released LLAMA-2 models [163] pub-
lished by Meta, was also chosen as an object of our study. These are an improvement of
the LLAMA models released earlier this year [164] by the same team. They were trained
with over 40% more tokens and double the context window compared to the original
versions, as well as a variation of the attention mechanism called Grouped-Query At-
tention (GQA) [165]. In terms of architecture, both the LLAMA and LLAMA-2 follow
closely the decoder-only approach, with only three major differences: the usage of Pre-
Norm with RMSNorm [166], the SwiGLU activation function [167] and Rotary Positional
Embeddings [48]. In the same way as BLOOM, there exists variants of LLAMA-2 fine-
tuned with instruction datasets, in this case with Reinforcement Learning With Human
Feedback (RLHF) [168], which is currently a popular technique for aligning LLMs to de-
sired preferences and behaviors. These, however, were left out from this study due to
the nature of being biased to chat assistant applications, which for the case of MT on the
INTERACT domain, may generate unnecessary remarks regarding its role as an assistant
and end up hurting performance.

5.2.2. Experiments on decoder models

The In-Context Learning capabilities of both BLOOM and LLAMA-2 are evaluated by
varying the amount of translation pair shots on model input from 0 to 3. Alongside this,
we consider the usage of LoRAs to see which methodology or combination obtains better
downstream task performance. The previous fine-tuning datasets from Chapter 4 and
EMEA/Oncology-BT mix from Sec. 5.1.2 are used for both shot selection and LORA fine-
tuning datasets. In case of the former, a preliminary study was made for smart prompt
selection through the retrieval of the k-best-shots of a FAISS [169] index built from the
training data. In it, cosine similarity between embeddings obtained from the sentence
embedding model LaBSE [170] on source phrases was used. Results on this strategy were
ultimately found to have no statistical significance on evaluation metrics when compared
to randomly selecting input prompts. LoRAs were trained with the same hyperparame-
ters of Table 5.1. Inference hyperparameters where kept consistent to those selected for
the NLLB models, with the exception of the restriction of forcing the model to not repeat
any previously generated 6-grams, which helped alleviate word repetition problems that
were observed in preliminary experiments.

[PROMPT ] ! [INSTRUCTION ]([SHOT ])*

[INSTRUCTION ] ! Translate from {src_name} to {tgt_name}:\n
([SHOT ])* ! {src_name}: {src_phrase} = {tgt_name}: {tgt_phrase}\n

Figure 5.1: Prompt format for decoder models. Square brackets tags are not present on input, and
are provided for better context on overall prompt structure.
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All data was formatted to follow the prompt structure of Fig. 5.1, which can be di-
vided between an [INSTRUCTION ] header and one or more [SHOT ] translation phrases.
Each curly braces pair, such as src_name, indicates a substitution by their corresponding
values. For the source and target names, these were given by transforming input lan-
guage codes to the corresponding names from the langcodes4 library. As indicated by
the regex style mark on Fig. 5.1, possible k-shots translation examples were introduced
with the shot format phrase after the instruction header and before the last shot, which
acted as the input phrase. During training and inference, the tgt_phrase variable acted
as the target labels, leaving the rest of the prompt as input. Due to memory constraints,
no additional shots were provided to the model during training except the phrase to be
translated.

On the basis of previous results with BLOOM on MT [81], and in order for compar-
isons to be fair with respect the previous studied models and realistic resource contained
scenarios, we mainly restrict the study to the experimentation with the 3.3B variation of
BLOOM and the smallest variant of LLAMA-2 with 7B, which although has higher pa-
rameter count, we found had similar speed and memory usage at inference time, which
we attribute to the usage of the GQA mechanism. We additionally try the biggest model
size of BLOOM, which reaches the 175B parameter count, for en ! es, f r to test the lim-
its of LLMs in MT without limitations. For the inference of this bigger model, we map
weights along 8 A40 GPUs, quantize model parameters to int8, CPU-offload part of them
and make use of greedy-decoding. While quantization often introduces a performance
hit, BLOOM was found to be relatively more robust than other LLMs when it comes to
post-training quantization [171].

Table 5.3: Results for NLLB in the INTERACT dev sets with respect to the best baseline model.

en ! fr, es, de, sl
French Spanish German Slovene

Model Shots LORA BLEU COMET BLEU COMET BLEU COMET BLEU COMET

Baseline-600M - - 56.4 82.1 58.4 85.9 43.8 82.4 40.3 84.7

BLOOM-3B 0

✗

12.6 65.6 35.9 78.3 5.8 54.0 0.7 39.6
1 36.8 78.9 41.1 80.0 9.3 53.0 0.5 40.8
2 38.0 77.0 40.2 79.2 8.3 50.8 0.2 40.8
3 39.4 79.0 39.8 78.2 7.1 48.9 0.0 41.0

0 ✓ 45.5 82.1 52.0 85.3 25.6 73.6 7.6 55.4

LLAMA-2-7B 0

✗

18.2 64.8 15.9 64.7 13.2 66.7 8.9 55.7
1 32.6 75.3 34.2 74.5 18.9 72.4 12.9 67.0
2 34.8 75.7 41.0 81.7 22.7 74.4 15.0 70.7
3 35.3 75.6 42.4 82.7 24.6 75.6 15.6 72.7

0 ✓ 48.5 82.7 52.0 85.6 34.6 82.4 21.9 81.9

BLOOM-175 0
✗

45.3 80.1 45.2 82.7
- -

1 48.5 82.2 50.3 82.9

Table 5.3 shows results for each language pair across k-shots and LoRA usage. In the
case of en ! f r, es, de we see very similar results with both BLOOM-3B and LLAMA-2-7B
showing a considerable jump of quality for both metrics passing from 0 to 1-shot, with
smaller, but significant smaller jumps for 2 and 3-shots. The only exceptions to this rule
are the respective en ! es, de BLOOM-3B models, which plateau at 1-shot, having slight
performances hits when increasing the shot amount. For the en ! f r direction, when
shots are provided, BLOOM-3B works better than LLAMA-2-7B, while for en ! es, de the
opposite is true. Regarding the results of BLOOM-175B, 0-shot and 1-shot performance
is considerably higher at 175B when compared to its smaller variant, specially for the
en ! f r direction.

4https://pypi.org/project/langcodes/

https://pypi.org/project/langcodes/
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As for en ! sl, we see how BLOOM-3B fails completely at the MT task. LLAMA-
2-7B, on the other hand, is able to obtain translations, although they are still relatively
worse than the results of the baseline models and NLLB.5 For base BLOOM-3B, we can
also observe relatively low quality scores for en ! de. This behavior of BLOOM can be
attributed to the previously mentioned lack of German and Slovene data of the ROOTS
corpus.

Regarding the trained LoRAs, we see a major boost in performance with increases
as high of +10 points of BLEU for the majority of models and directions, with similar
COMET-22 jumps in the range of 3-7 points. For en ! f r, de, sl LLAMA-2-7B LoRAs
outperform their BLOOM-3B counterparts, while in en ! es both methods have the same
BLEU scores, with LLAMA-2-7B being slightly better by 0.3 points of COMET-22.

Compared to the Baseline-600M models, we see how our trained LLMs seem to be not
as competitive in terms of BLEU, but the LLAMA-2-7B LoRAs close the gap considerably
when looking at COMET-22 results for en ! f r, de. We can see also observe how both
BLOOM-3B and LLAMA-2-7B LoRAs are able to match performance of the BLOOM-175B
model.

Interestingly, when increasing k-shots with LoRA we observe that performance is de-
graded and fluctuates greatly. This behavior can be seen in Tab.A.1 of Appendix A, and
we attribute it to a biasing of the model to the input prompt format being 0-shot during
training, overwriting possible ICL capabilities. We also observe for the previous language
pairs that hallucinations typical in the usage of MT LLMs [86] decrease considerably for
our models when jumping from 0-shot to 1-shot, and mostly disappear when using LoRA
with no shots.

5.3 Evaluation on INTERACT-EUROPE test sets

In order to compare results of all trained models of this work, we report results on the
INTERACT-EUROPE test sets. Table 5.4 summarizes the performance of the best mod-
els of each model category: The encoder-decoders of the bilingual baselines (Baseline-
600M) and the multilingual LLMs (NLLB-600M/3.3B), as well as the best decoder-only
configurations (LLAMA-2-7B). For NLLB and LLAMA, LoRA models are selected for
en ! f r, es, de, sl. In the case of NLLB, we choose to report both 600M and 3.3B to have
comparisons that are more fair to the parameter count of Baseline-600M and LLAMA-2-
7B.

Table 5.4: Results for best trained models of each architecture in the INTERACT test set.

en ! fr, es, de, sl
French Spanish German Slovene

Name BLEU COMET BLEU COMET BLEU COMET BLEU COMET

Baseline-600M 56.0 84.2 58.8 86.9 43.3 83.4 39.9 85.9

NLLB-600M 50.1 81.3 56.8 86.7 39.4 83.2 34.1 85.1
NLLB-3B 52.5 82.0 59.8 87.7 42.7 84.9 39.4 86.6

LLAMA-2-7B 47.5 83.9 51.9 86.3 34.7 83.7 20.4 80.2

In all language pairs, performance of Baseline-600M is better than NLLB-600M in
both BLEU and COMET-22 scores. As for NLLB-3B, in en ! f r the baseline models
scores are still superior by a considerable margin of 3.5/2.2 points, in en ! es NLLB

5Respect our translation directions, the total language distribution of the pre-training data of LLAMA-2
is: English|89.70%, German|0.17%, French|0.16% Spanish|0.13%, Slovene|0.01%.
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scores are higher in both metrics by 1.0/0.8 points and in en ! de, sl the Baseline-600M
slightly outperforms in terms of BLUE, but worsens in COMET-22. As for the LLAMA-
2-7B, performance of en ! sl is poor, and BLEU of the rest of languages is lower than
that of the rest of models. However, if we look at the COMET-22 scores, they reach
similar or even better values for some cases of en ! f r, es, de. We theorize that this
contradictory behavior between BLEU and COMET-22 scores are due to the previously
mentioned nature of LLMs translations on Sec. 2.3.2 and its interaction with MT metrics.

5.3.1. Evaluation considering computing constraints

In the context of the INTERACT-EUROPE project, where these models are being de-
ployed on for both offline and online usage in real-world applications, it is crucial to not
only take into account the previously reported differences between evaluation metrics,
but consider latency, possible computing limitations and overall generation stability of
these models. For each type of model, we can distinguish a series of advantages and dis-
advantages. For the case of the bilingual baselines, we overall find the best performance
and speed inference trade-off for all languages pairs, but at the same time there is consid-
erable overhead in data collection, model training and lastly, memory usage if multiple
language directions need to be translating at the same time. As for the pre-trained multi-
lingual models, we find that for the proper MT based encoder-decoder models we could
easily extend them to other European language directions that may be interesting to the
project, but performance parity with Baseline models could only be reached by taking
the small training overhead of PEFT and a 5.5x increase in size, the latter being reflected
in an approximate two times slower inference time. Regarding the decoder-only models,
we have overall more flexibility, such as in the ways we could control the resulting MT
through ICL or extend the resulting model to other related language tasks, but looking
at the results we cannot be sure of the stability of the models without further testing,
especially if LoRA is not used and were only left ICL, which gets very expensive as the
number of shots increases.

Taking these points into account, we highlight the following observations: First, that
if you have the computing power, data and time, bilingual models are still a solid choice
for training a reliable NMT model, specially if offering a high amount of translations di-
rections is not of your interest. Second, that by assuming a slight trade off in speed, pre-
trained multilingual models can further achieve similar performance to bilingual base-
lines. Third, that PEFT is a fast and efficient way to further improve general model per-
formance. And last, that in a similar way to the results that have been observed in the
literature, decoder LLMs are adaptable and can achieve solid results in MT, but the sta-
bility, necessity of model size for effectiveness on the task and uncertainty of translation
quality, leaves these models with still much to be desired for them to be established as
the go-to choice when building a MT system.





CHAPTER 6

Conclusions

This chapter serves as a comprehensive summary of all the tasks undertaken in this study,
aligning them with the objectives initially outlined in Sec. 1.3. Additionally, we delve into
the conclusions drawn from these endeavors and explore possible avenues for future
research.

Chapter 1 has laid the foundation for this work by introducing the overarching frame-
work and essential theoretical fundamentals within the field of Machine Learning. In
Chapter 2, we have taken a thorough examination of the theories and tools pertinent to
NMT, with a particular emphasis on the Transformer architecture and the developments
surrounding the so called LLMs and the ways in which these are adapted into NMT.

Chapter 3 has introduced the data used for the model training and evaluation used
throughout the work, and Chapter 4 has described the subsequent training and eval-
uation of a series of bilingual NMT models on the language pairs of the INTERACT-
EUROPE project. Lastly, in Chapter 5 we have delved in the adaptation of different mul-
tilingual pretrained models through different methodologies to the MT task. Here, as
closing remarks we have presented a comprehensive evaluation of the overall perfor-
mance of each best model per trained architecture on the INTERACT-EUROPE test set,
with an intricate analysis on the possible strengths and weaknesses when applying the
models on real-world scenarios.

Regarding the proposed objectives, we can affirm that each one has been properly
addressed on throughout our work. Our best trained model across all language pairs
featured in the INTERACT-EUROPE datasets are performance-wise on pair with other
available state-of-the-art large models on MT. In addition to this we have explored pub-
licly available models in the form of NLLB, BLOOM and LLAMA. Lastly, we made an
study on the adaptation of LLMs for the MT task by considering the latest advancements
and techniques of the field.

Concerning future work, several areas warrant additional exploration and consider-
ation. With the clear performance boost with model scale, further research in optimizing
time and size constraints of general purpose Transformers and LLMs usage with PEFT
methods and model quantization is key. In this context, the exploration of the recently
line of work on the construction of a non-parametric datastore via k-Nearest-Neighbor
retrieval [172], [173], [174], [175] makes for an interesting way to cheaply adapt models
to further domains and language pairs. Further work for adaptability of LLMs on real-
world scenarios, such as part of end-to-end Speech Translation pipeline or a Interactive
MT system, also make for a interesting proposal to undertake with the lessons learned
from this work. Lastly, additional exploration on performance trade-offs between bilin-
gual and multilingual MT models needs to be considered in future work after the ob-
served results.
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[98] Maja Popović. chrF: character n-gram F-score for automatic MT evaluation. In
Proceedings of the Tenth Workshop on Statistical Machine Translation, pages 392–395,
Lisbon, Portugal, September 2015. Association for Computational Linguistics.
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APPENDIX A

Additional experiments
information

Fairseq CLI parameters

Fig.A.1 shows the list of Fairseq CLI options used when training baseline models.

--arch transformer_vaswani_wmt_en_fr_big \
--share-all-embeddings \
--optimizer adam \
--adam-betas ’(0.9, 0.98)’ \
--clip-norm 0.0 \
--lr-scheduler inverse_sqrt \
--warmup-init-lr 1e-07 \
--warmup-updates 4000 \
--lr 0.0005 \
--min-lr 1e-09 \
--dropout 0.1 \
--weight-decay 0.0 \
--criterion label_smoothed_cross_entropy \
--label-smoothing 0.1 \
--max-tokens 2000 \
--update-freq 8 \
--log-interval 100 \
--max-update 1000000 \
--max-source-positions 250 \
--max-target-positions 250 \
--fp16

Figure A.1: Flags and hyperparameters indicated to fairseq-train relevant to the architecture
and training of a baseline model (Transformer Big).
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ICL degradation results with LoRA

Table A.1 shows the BLEU and COMET-22 scores of LoRA across 1-3 shots and all lan-
guage pairs, where we can observe the ICL degradation previously discussed on Sec.5.2.2.

Table A.1: Results for decoder models in the INTERACT dev set for the 1-3 shots LoRA variants
of the trained decoder LLMs.

French Spanish German Slovene

Modelo shots LORA BLEU COMET-22 BLEU COMET-22 BLEU COMET-22 BLEU COMET-22

BLOOM-3B 1
✗

38.1 78.0 38.2 73.1 8.0 48.1 4.8 49.7
2 36.1 80.3 38.1 74.2 8.2 49.1 4.6 47.0
3 32.9 78.6 41.9 77.7 8.0 50.4 3.0 45.6

LLAMA-2-7B 1
✗

32.1 70.3 50.2 84.3 32.3 80.2 21.3 80.2
2 20.3 59.5 47.8 47.8 30.5 77.2 20.0 73.9
3 26.9 62.8 45.6 45.6 29.3 76.8 19.3 72.3



ANEXO

OBJETIVOS DE DESARROLLO SOSTENIBLE

Grado de relación del trabajo con los Objetivos de Desarrollo Sostenible (ODS).

Objetivos de Desarrollo Sostenible Alto Medio Bajo No

procede

ODS 1. Fin de la pobreza. X

ODS 2. Hambre cero. X

ODS 3. Salud y bienestar. X

ODS 4. Educación de calidad. X

ODS 5. Igualdad de género. X

ODS 6. Agua limpia y saneamiento. X

ODS 7. Enerǵıa asequible y no contaminante. X

ODS 8. Trabajo decente y crecimiento económico. X

ODS 9. Industria, innovación e infraestructuras. X

ODS 10. Reducción de las desigualdades. X

ODS 11. Ciudades y comunidades sostenibles. X

ODS 12. Producción y consumo responsables. X

ODS 13. Acción por el clima. X

ODS 14. Vida submarina. X

ODS 15. Vida de ecosistemas terrestres. X

ODS 16. Paz, justicia e instituciones sólidas. X

ODS 17. Alianzas para lograr objetivos. X
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Reflexión sobre la relación del TFG con los ODS más relacionados.

Es muy importante analizar la contribución que se hace cuando se realizan trabajos cient́ıficos
y las mejoras que se pretenden alcanzar con estos.

A partir de los Objetivos de Desarrollo Sostenibles elaborados por la ONU en el marco de la
Agenda 2030 (aprobados en 2015), se han relacionado los siguientes ODS como los más relevantes
respecto a los objetivos del proyecto:

• Educación de calidad (ODS 4): La traducción automática es una herramienta poderosa
para la mejora de la calidad educativa. Este ODS está estrechamente relacionado con este
TFM, dado que el trabajo de investigación desarrollado dentro del proyecto INTERACT-
EUROPE tiene el obetivo final de facilitar el acceso de profesionales medicos a contenido
educativo que no esté en su lengua nativa.

• Industria, innovación e infraestructuras (ODS 9): En el trabajo se trata el apren-
dizaje automático, que con los recientes avances se ha establecido como una de las áreas
ĺıderes en innovación tecnológica, recibiendo multitud de usos en la industria y en el d́ıa
a d́ıa. Desde los últimos años, el interés de esta área no hace más que aumentar a medida
que siguen apareciendo más y más aplicaciones que integran esta tecnoloǵıa en su flujo de
trabajo diario. La investigación de las capacidades de LLMs es extremadamente relevante
en este caso.

• Reducción de las desigualdades (ODS 10): El uso de modelos de traducción au-
tomática en este trabajo tiene un especial interés para crear sistemas que logren romper
las barreras lingǘısticas y de comunicación. La traducción automática, junto a otras tec-
noloǵıas del procesamiento natural del lenguaje como el ASR o el TTS, pueden usarse en
conjunto para crear productos con gran relevancia en el d́ıa a d́ıa.

• Salud y bienestar (ODS 3): Los modelos han sido entrenados en el contexto del
proyecto INTERACT para su uso dentro del campo oncológico para facilitar el acceso
a información a individuos, y que por ende, puedan proporcionar mejores cuidados a pa-
cientes.

Además de estos, se ha identificado que los ODS deTrabajo decente y crecimiento económico
(ODS 8) y Alianzas para lograr objetivos (ODS 17) también pueden aplicarse a este tra-
bajo. En el caso del ODS 8, el uso de la traducción automatica por profesionales médicos
también puede facilitar el crecimiento económico agilizando la comunicación y cooperación en
el ámbito laboral de equipos con miembros en distintos páıses. Por último, en relación con el
ODS 17, la traducción automática puede facilitar la comunicación dentro de las instituciones
med́ıcas y gubernamentales de distintos páıses.

Respecto al resto de ODS, se ha considerado que no proceden, dado que o bien no están rela-
cionados con el área de investigación de este trabajo, o bien el uso de la tecnoloǵıa propuesta
no ha podido extenderse para cubrirlos.
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