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�is study is devoted to constructing an approximate analytic solution of the fractional form of a strongly nonlinear boundary
value problem with multi-fractional derivatives that comes in chemical reactor theory. We construct the solution algorithm based
on the generalized di�erential transform technique in four simple steps.�e fractional derivative is de�ned in the sense of Caputo.
We also mathematically prove the convergence of the algorithm. �e applicability and e�ectiveness of the given scheme are
justi�ed by simulating the equation for given parameter values presented in the system and compared with existing published
results in the case of standard derivatives. In addition, residual error computation is used to check the algorithm’s correctness.�e
results are presented in several tables and �gures. �e goal of this study is to justify the e�ects and importance of the proposed
fractional derivative on the given nonlinear problem. �e generalization of the adopted integer-order problem into a fractional-
order sense which includes the memory in the system is the main novelty of this research.

1. Introduction

Chemical reactors are containers used in chemical engineering
to contain chemical processes. Because of their numerous in-
dustrial uses, these reactors are crucial. Biological treatment,
algae production, and gasoline production are some of the
applications for tubular reactors. �e mathematical model for
an adiabatic tubular chemical reactor that performs an irre-
versible exothermic chemical reaction is examined in this work.
�e model may be simpli�ed into the following nonlinear
ordinary di�erential equation for steady-state solutions [1]:

d2u

dx2
− λ

du

dx
+ λμ(β − u)exp(u) � 0, (1)

where λ, μ, and β are the Péclet number, Damköhler number,
and adiabatic temperature rise, respectively. �e relative
boundary conditions are given by

u′(0) � λu(0), u′(1) � 0. (2)

In references [2, 3], the authors investigated the existence of
a solution to equations (1) and (2). In [1], the researchers
established the existence of numerous solutions. To solve the
problem under speci�c evaluations, certain numerical ap-
proaches were used. Green’s function, for example, is used to
turn the issue into aHammerstein integral equation in [4]. After
that, Adomian’s decomposition approach was used to solve the
resultant equation. �e problem was solved using the Cheby-
shev �nite di�erence approach in [5]. �e authors in [6] used a
solution aligned on embedding Green’s function inside Kras-
noselskii–Mann �xed point iteration method to solve the
problem.

In this article, we incorporate fractional order into (1).
�e following noninteger-order di�erential equation de-
scribes the new equation:
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d
q
u

dxq − λ
d

c
u

dx
c + λμ(β − u)exp(u) � 0, (3)

where dq/dxq and dc/dxc are the Caputo derivative oper-
ators along with fractional orders q ∈ (1, 2], c ∈ (0, 1]

subject to the boundary conditions. (1) can be considered as
a particular form of (3) by fixing the orders q � 2 and c � 1.
*is means the final solution of the fractional-order system
must converge to the solution of the integer-order coun-
terpart of the equation. Some recent results on boundary
value problems in fractional-order sense can be seen in
references [7, 8]. Mostly, the nature of complex dynamics
cannot be better stated by integer-order differential equa-
tions. In the present case, the fractional-order model may
strongly define the nature of the given system. In some
circumstances, fractional models yield superior approxi-
mation results, according to Abbas et al. [9]. Iyiolaa et al. [10]
have also demonstrated that for cancer tumours, the frac-
tional model delivers a better approximation outcome than
the integer-order one. Some recent studies related to the
modeling in terms of fractional-order boundary value
problems can be learned from references [11, 12]. Recently, a
number of nonlinear fractional-order models have been
proposed by the researchers to describe the dynamics of
various real-life problems like AH1N1/09 influenza [13],
childhood diseases [14], human liver dynamics [15],
greenhouse gas effects on the population of aquatic animals
[16], mosaic diseases in plants [17], maize streak virus [18],
and so on.

Fractional calculus has more than three century history
and has progressed steadily to the present day. Rieman and
Liouville were the first ones who defined the fractional-order
differentiation notion in the nineteenth century. Fractional
differential equations (FDEs) have been shown to be a
valuable tool for representing a wide range of scientific and
engineering phenomena. Many FDEs that describe any
phenomenon have lack of analytic solutions. As a result of
the absence of analytic solutions, a significant variety of
techniques for solving FDEs have been devised [19]. FDEs
have attracted much more attention as a part of fractional
calculus. It is worth noting that a general solution strategy
for fractional differential equations is yet to be developed.
*e majority of problem-solving strategies in this field have
been created for certain categories of challenges. For this
reason, a single standard technique for solving problems
related to fractional calculus has not been found. As a result,
identifying compelling and beneficial solution strategies in
combination with quick application techniques is valuable
and worthy of further investigation [20] (see [21–27] for
further information).

Under the best of our investigations, our study intro-
duces the firstly produced numerical solution of (3). For this
target, we are directed to find the approximate solution of (3)
via generalized differential transform method (GDTM)
[28–31].

*is paper is organized as follows. In Section 2, a review
of the GDTM [28] is given and some important prelimi-
naries are given. In Section 3, the solution procedure is

presented. Convergence theorem of the present solution is
proved in Section 4. *e solution approximations for
equations (2) AND (3) are established in Section 5. Some
conclusions are mentioned at the end.

2. The Generalized Differential
Transform Method

For reader’s facility, this part covers a review of the gen-
eralized differential transform [28] as well as some funda-
mental fractional calculus ideas and terminology.

*e generalized differential transform of the kth de-
rivative of the analytic function f(x) is given by

Fα(k) �
1

Γ(αk + 1)
D

α
x0

 
k
f(x) 

x�x0

, (4)

where 0< α≤ 1, (Dα
x0

)k � Dα
x0

.Dα
x0

. . . Dα
x0

, k-times, and Dα
x0

denotes the Caputo fractional differential operator of order α
given by

D
α
af(x) � J

m− α
a D

m
f(x). (5)

Here Dm is the integer-order differential operator of
order m and Jm is the Riemann–Liouville integral operator
of order μ with μ> 0, which is given by

J
μ
af(x) �

1
Γ(μ)


x

a
(x − t)

μ− 1
f(t) dt, x> 0. (6)

*e generalized differential inverse transform of Fα(k) is
defined as

f(x) � 
∞

k�0
Fα(k) x − x0( 

αk
, (7)

which practically can be approximated by the following
finite series:

f(x) � 

M

k�0
Fα(k) x − x0( 

αk
. (8)

Because the initial conditions are represented as integer-
order derivatives, the GDTM defines the transformation of
the initial conditions as follows:

Fα(k) �

1
(αk)!

d(αk)f(x)

dx(αk)
|x�x0

, ifαk ∈ Z+
,

0, ifαk ∉ Z,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

for k � 0, 1, . . . ,
q

α
− 1,

(9)

where q is the order of considered FDEs.
Putting (4) in (7) yields

f(x) � 
∞

k�0
Fα(k) x − x0( 

αk
. (10)
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*e idea of a generalized differential transform is ob-
tained from generalized Taylor’s formula [28]. It is worth
noting that the extended differential transform technique
simplifies to the conventional differential transform method
when α � 1 [32]. Table 1 lists some of the essential features of
GDTM derived from equations (4) and (5).

3. Solution Procedure

For solving (2) and (3), we proceed with the following al-
gorithm steps.

(1) Choose proper value of α that satisfies q/α, α/α ∈ Z+.
(2) Using the generalized differential transform on both

sides of equation (3) and the characteristics men-
tioned in Table 1, we obtain the following recurrence
relation:

Uα k +
q

α
  � β λ

Γ(αk + c + 1)

Γ(αk + 1)
Uα k +

c

α
  − λμ 

k

m�0
Wα(m) βδ(k − m) − Uα(k − m) ⎡⎣ ⎤⎦, (11)

where k � 0, 1, 2, . . . , β � Γ(αk + 1)/Γ(αk + q + 1),
and Wα(k) is the generalized differential transform
of eu(x) which is given by

Wα(j) �
1
j



j− 1

m�0
(m + 1)Uα(m + 1)Wα(j − m − 1),

j �
q

α
,
q

α
+ 1, . . .

(12)

(3) *e boundary conditions given in (2) for x � 0 are
transformed by employing (9) as follows:

Uα(0) � A,

Uα
1
α

  � λA,

Uα(i) � 0,

for
i

α
∉ Z+

,

i � 1, . . . ,
q

α
− 1,

(13)

where A � u(0) is the initial condition. We can
define

Wα(0) � e
A

,

Wα
1
α

  � λAe
A

,

Wα(i) � 0,

i � 1, 2 . . . ,
1
α

− 1,
1
α

− 1, . . . ,
q

α
− 1.

(14)

*e conditions in (2) for x � 1 are transformed by
employing (7) as follows:



N

k�0
(αk)Uα(k) � 0. (15)

(4) Equations (11) and (13) are utilized to find Uα(k) up
to any N-terms. *en, by using (15), the value of A is
evaluated. Also, the Nth order of approximation is

uN(x) � 
N

k�0
Uα(k)x

αk
. (16)

For simplicity, we can generate the solution for
q � 1.9, c � 0.9 by assuming α � 0.1. *en, applying (11) for
k � 0, 1, 2, . . . , 15, we have

u34 � 
34

i�0
U0.1(i)x

i/10

� A +
1
6

Axλ(6 + xλ(3 + xλ)) +
e

A
x
19/10λ(29(A − β) + 10x(A(2 + A) − (1 + A)β)λ)μ

29Γ(29/10)
.

(17)
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*e condition in (15) gives

Aλ + Aλ2 +
Aλ3

2
+
19 Ae

Aλμ − e
Aβλμ 

10Γ(29/10)
+
29 2Ae

Aλ2μ + A
2
e

Aλ2μ − e
Aβλ2μ − Ae

Aβλ2μ 

10Γ(39/10)
� 0. (18)

By fixing the values of λ, μ, and β, it is easy to solve the
equation via the Newton–Raphson method.

4. Convergence Analysis

Lemma 1 (see [33]). The standard power series 
∞
i�0 Uir

i,
r ∈ R, has a radius of convergence R if and only if the
fractional one 

∞
i�0 Uα(i)rαi, r≥ 0, has a radius of R1/μ.

Theorem 1. :e fractional power series:



∞

i�0
Uα(i)r

αi
, (19)

where the coefficients are mentioned in (11), has a positive
radius of convergence.

Proof. From equation (8), we have

Uα(k)≤ θ1λμ 

n− q/α

m�0
W(m) Uα n − m −

q

α
  − βδ n − m −

q

α
   + θ2λ

Γ(nα + c + 1)

Γ(nα + 1)
Uα

c

α
+ n −

q

α
 , (20)

where

θ1 �
Γ((n − q/α)α + 1)

Γ(q +(n − q/α)α + 1)




, (21)

θ2 �
Γ((n − q/α)α + c + 1)

Γ(q +(n − q/α)α + 1)

Γ(nα + 1)

Γ(nα + c + 1)




. (22)

Now, consider the series

z(r) � 
∞

n�0
anr

n
, (23)

for which a0 � |Uα(0)|, a1 � |Uα(1/α)|, and

an � θ1λμ 

n− q/α

m�0
W(m) Uα n − m −

q

α
  − βδ n − m −

q

α
   + θ2λ

Γ(nα + c + 1)

Γ(nα + 1)
Uα

c

α
+ n −

q

α
 




, (24)

Table 1: Basic properties of GDTM [28].

Original function Transformed function
f(x) � g(x) ± h(x) Fα(k) � Gα(k) ± Hα(k)

f(x) � ag(x) Fα(k) � aGα(k)

f(x) � g(x)h(x) Fα(k) � 
k
l�0 Gα(l)Hα(k − l)

f(x) � Dα
x0

g(x), 0< α≤ 1 Fα(k) � Γ(α(k + 1) + 1)/Γ(αk + 1)Gα(k + 1)

f(x) � (x − x0)
c

Fα(k) � δ(k − c/α), δ(k) �
1, ifk � 0
0, ifk≠ 0

f(x) � D
β
x0g(x), m − 1< β≤m, m ∈ Z+

Fα(k) � Γ(αk + β + 1)/Γ(αk + 1)Gα(k + β/α)

f(x) � exp(g(x)) Fα(k) � 
k− 1
i�0 i + 1/kGα(i + 1)Fα(k − i − 1), where Fα(0) � exp(Gα(0))
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for n � q/α, q/α + 1, . . . and an � 0 for 1< n< q/α. *en, define

Ψ � z(r) � a0 + a1r + 

∞

n�0
an+2r

n⎛⎝ ⎞⎠r
2

� a0 + a1r + r
2



∞

n�0
θ1λμ 

n− q/α

m�0
W(m) Y n − m −

q

α
  − βδ n − m −

q

α
   + θ2λ

Γ(nα + c + 1)

Γ(nα + 1)
Y

c

α
+ n −

q

α
 

⎧⎨

⎩

⎫⎬

⎭r
n
.

(25)

Now, we have the function of two variables:

Θ(r,Ψ) � Ψ − a0 − a1r − r
2 θ1λμe

Ψ
(Ψ − β)r

q
+ λθ2 D

cΨ( r
q

 , (26)

which is analytic in the plane (r,Ψ) with the characteristics
Θ(0, a0) � 0 and ΘΨ(0, a0) � 1≠ 0. Since z(r) is an analytic
function in a neighborhood of the point (0, a0) of the
(r,Ψ)-plane with a positive radius of convergence, then by
implicit function theorem, the series in (10) is convergent by
Lemma 1. □

5. Numerical Experiments

*is section derives the numerical experiments of the given
procedure of Section 3 for solving equations (2) and (3).
Because the exact solution to the given problem is not
known, we instead find the absolute residual error function,
which justifies how accurately the numerical solution agrees
to the solution of main problems (2) and (3). So, the absolute
residual error function is

ERN(x)


 �
d

q
uN(x)

dx
q − λ

d
c
uN(x)

dx
c + λμ β − uN(x)( exp uN(x)( 




, 0≤ x≤ 1. (27)

Table 2: Numerical solutions for μ � 0.7, λ � 5, β � 0.8.

x GDTM Method in [4]
0.0 0.10164623151473825557 0.10164623106412275851
0.1 0.15160800347538405664 0.15160800244418513970
0.2 0.19969082693869014133 0.19969082598774598630
0.3 0.24564764071345721042 0.24564763919882120986
0.4 0.28919552846307056138 0.28919552652683175159
0.5 0.32997387678814665835 0.32997387500728383184
0.6 0.36746668503341112233 0.36746668342588013969
0.7 0.40086147483935807845 0.40086147462729197629
0.8 0.42879563627198713505 0.42879563852127257524
0.9 0.44890276956983110601 0.44890277089707031201
1.0 0.45700543796118281437 0.45700543763742257810

Table 3: GDTM solution and numerical solution with its absolute and residual errors for λ � 5, μ � 0.7, β � 0.8.

x GDTM Numerical solution Absolute error Residual error
0.0 0.1016462307 0.1016462315 8.085193209 × 10− 10 1.665334537 × 10− 16

0.1 0.1516080019 0.1516080035 1.624451518 × 10− 9 6.106226635 × 10− 16

0.2 0.199690825 0.1996908269 1.943355393 × 10− 9 4.996003611 × 10− 16

0.3 0.2456476375 0.2456476407 3.187346082 × 10− 9 5.828670879 × 10− 16

0.4 0.2891955237 0.2891955285 4.774220019 × 10− 9 1.276756478 × 10− 15

0.5 0.3299738702 0.3299738768 6.62490951 × 10− 9 8.398837181 × 10− 14

0.6 0.3674666751 0.367466685 9.92236443 × 10− 9 1.042421705 × 10− 11

0.7 0.4008614603 0.4008614748 1.456031457 × 10− 8 6.394951235 × 10− 10

0.8 0.4287956137 0.4287956363 2.26142593 × 10− 8 2.315349923 × 10− 8

0.9 0.4489027282 0.4489027696 4.136782861 × 10− 8 5.61353519 × 10− 7

1.0 0.4570053763 0.457005438 6.16973152 × 10− 8 9.929563344 × 10− 6
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Firstly, we start to generate the results for standard
fractional derivative q � 2, c � 1. By fixing α � 1, N � 21,
Table 2 displays our numerical results and matches them with
those of the mentioned outputs in [4] for the same iteration
number. Numerical solution using default Mathematica
package and the GDTM solution and its absolute error and
residual error are given in Table 3. Moreover, Figure 1 shows
the approximate solutions for μ � 0.7, λ � 5, and β � 0.8.
Figure 1 is in good agreement with Figure 2 given in [5].

Now, we explore the impact of the fractional derivative
on the solution of the model. In Figure 3, we show the
convergence of obtained missing condition A with in-
creasing N when q � 1.9 and c � 0.9. It is clear that the value
of A starts to be fixed when N> 80.

Tables 4 and 5 introduce the approximate solutions and
the residual errors of problems (2) and (3) for different values
of q, c, λ, μ, and β. *e residual error indicator demonstrates
that the results are accurate for at least 6 × 10− 5.

λ=5, μ=0.7, β=0.8

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

u 
(x

)

0.2 0.4 0.6 0.8 1.00.0
x

Figure 1: Graph of numerical outputs for λ � 5, μ � 0.7, and β � 0.8.

λ=5, μ=0.05, β=0.53

0.005

0.010

0.015

0.020

0.025

u 
(x

)

0.2 0.4 0.6 0.8 1.00.0
x

Figure 2: GDTM solution: q � 1.9 and c � 1 (line); q � 1.9 and c � 0.9 (dashed).

A

M

0.005

0.010

0.015

10060 804020

Figure 3: Variation of A with N for the case λ � 5, μ � 0.05, β � 0.53.
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To study the solution behavior, we plot the present
solution for the case of λ � 5, μ � 0.05, β � 0.53 when
q � 1.9, c � 0.9 and q � 1.9, c � 1 in Figure 2. *e solution

for the case of λ � 0.05, μ � 0.5, β � 0.6 when q � 1.9, c � 0.9
and q � 1.9, c � 1 is presented in Figure 4. It is clear that the
fractional derivatives can change the solution behavior.

Table 5: Numerical solutions for λ � 0.05, μ � 0.5, β � 0.6.

x
q � 1.9, c � 0.9 q � 1.9, c � 1.0

GDTM Residual error GDTM Residual error
0.0 0.233482 3.46945 × 10− 18 0.233528 0.
0.1 0.234572 3.46945 × 10− 18 0.23462 3.46945 × 10− 18

0.2 0.23553 3.46945 × 10− 18 0.23558 0.
0.3 0.236365 5.20417 × 10− 18 0.236418 1.73472 × 10− 18

0.4 0.237083 5.20417 × 10− 18 0.237138 1.73472 × 10− 18

0.5 0.237686 1.73472 × 10− 18 0.237744 0.
0.6 0.238176 0. 0.238236 0.
0.7 0.238556 5.20417 × 10− 18 0.238618 0.
0.8 0.238826 3.46945 × 10− 18 0.238889 1.73472 × 10− 18

0.9 0.238987 1.73472 × 10− 18 0.239051 1.73472 × 10− 18

1.0 0.239041 5.20417 × 10− 18 0.239105 0.

λ=0.05, μ=0.5, β=0.6

0.2 0.4 0.6 0.8 1.00.0
x

0.234

0.235

0.236

0.237

0.238

0.239

u 
(x

)

Figure 4: GDTM solution: q � 1.9 and c � 1 (line); q � 1.9 and c � 0.9 (dashed).

Table 4: Numerical outputs for λ � 5, μ � 0.05, β � 0.53.

x
q � 1.9, c � 1.0 q � 1.9, c � 0.9

GDTM Residual error GDTM Residual error
0.0 0.00524258 5.55112 × 10− 17 0.00612891 1.69136 × 10− 17

0.1 0.00785749 2.77556 × 10− 17 0.00905165 9.54098 × 10− 18

0.2 0.0104581 1.5786 × 10− 16 0.0119341 4.55365 × 10− 17

0.3 0.013039 2.43347 × 10− 14 0.0148969 1.82536 × 10− 15

0.4 0.0155894 4.46358 × 10− 12 0.0179996 2.99132 × 10− 13

0.5 0.0180901 2.4929 × 10− 10 0.0212823 1.55918 × 10− 11

0.6 0.0205054 6.57931 × 10− 9 0.0247751 3.86786 × 10− 10

0.7 0.0227707 1.03475 × 10− 7 0.0285021 5.73491 × 10− 9

0.8 0.024768 1.11374 × 10− 6 0.0324832 5.82065 × 10− 8

0.9 0.0262822 8.96982 × 10− 6 0.0367354 4.41167 × 10− 7

1.0 0.0269209 5.7448 × 10− 5 0.0412736 2.64861 × 10− 6
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6. Conclusions

Strongly nonlinear boundary value problem with multi-order
fractional derivative that occurred in the chemical reaction
theory has been successfully solved via the new algorithm based
onGDTM.*e constructed solution has been given in terms of
convergent infinite series as seen in the provided theorem.*e
method was easy to apply, and the results have enough good
accuracy as shown in the experimental results. *e obtained
solution was directly generated without any linearization or
discretization of the domain. *e given method is very pow-
erful and can be easily applied for several kinds of fractional
nonlinear boundary value problems in future.
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