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Abstract

Learning, as a discovery task from past observations, is interesting in engi-

neering contexts for identifying structures and improving accuracy. Learning in

planning scenarios aims at recognizing past behavior to predict action models

to improve decisions. This is appealing because practical scenarios are usu-

ally complex, sometimes difficult to be described formally, which require expert

knowledge and engineering that becomes impractical in real-world applications.

We introduce a Constraint Satisfaction formulation for learning PDDL2.1 tem-

poral action models in planning. Given a collection of observations on multiple

plans and a set of empty operators, we automatically create a learning task that

identifies which conditions+effects are necessary, together with their temporal

annotation, and induces durations and costs. Our formulation encapsulates

planning (causal links, threats and effect interferences) and mutex (to avoid

contradictions) constraints to be fully satisfied from the observed plans. The

formulation is simple, but it proves very effective and easily adaptable to dif-

ferent levels of expressiveness. We evaluate such effectiveness in different IPC

domains and compare the quality of the learning vs. other state-of-the-art learn-

ing approaches.

Keywords: learning action models, planning, temporal planning, constraint

satisfaction
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1. Introduction

Learning, as a feature discovery task from raw or past empirical data, is

appealing in academic and industrial environments to identify common struc-

tures/behaviors that lead to improvements in diagnostic expertise and reduce

the need for manual operations [1, 2, 3, 4, 5, 6].5

The use of AI planning, defined as the task that elaborates a plan of ac-

tions to reach certain goals, is crucial in industrial applications (e.g. public

transportation, logistics, motion planning, robotics and autonomous systems,

cognitive assistants, data analysis, plant control, cybersecurity, service compo-

sition, etc. [7, 8]). Focusing on AI planning, learning is specially interesting10

to recognize past behavior in order to anticipate action models that improve

knowledge and help further decisions.

In order to build plans, automated planning relies on an action model that

captures the physics of the problem, in terms of which conditions are needed

for an action to be executed and which effects are achieved once the action is15

executed. Metaphorically speaking, the conditions and effects would resemble

the left- and right- hand sides of a rule, respectively, in a rule-based system. Ac-

tion models are defined by using different languages, such as STRIPS (Stanford

Research Institute Problem Solver [9]), Functional Strips [10] that introduces

function symbols that can be nested and provide more efficient encodings, ADL20

(Action Description Language [11]) with conditional effects and quantification,

or PDDL (Planning Domain Definition Language [12]). PDDL is the de facto

standard language for classical planning, where all actions are instantaneous

and only have one type of conditions and effects. Although PDDL models are

very useful, there are difficulties and limitations to model real-world problems25

because they cannot reason on temporal and resource-intensive features. For

instance, if we are modeling a logistics scenario, a boarding action will have a

different duration than flying between two remote cities. Also, locking and un-

locking a shared resource within the same action is impossible, as they represent

two contradictory effects.30
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PDDL2.1 [13] extends PDDL to deal with a more expressive version for

temporal planning that meets the challenges of real applications and overcomes

the above PDDL limitations. In PDDL2.1, actions are durative, overlap in

different ways, and conditions+effects are temporally annotated (i.e., there are

three types of conditions and two types of effects, which show much more flexible35

than in PDDL).

Defining action models (to represent planning domains) from scratch is of-

ten a challenge; it is a difficult, error-prone and time-consuming engineering

task [14, 15], even for domain experts. There are many reasons for this chal-

lenge [16]. Realistic scenarios contain hundreds of objects and different agents,40

with different capabilities, able to perform a large variety of actions. Modeling

such worlds soon gets confusing [16]. In other words, not only is it necessary to

describe the full semantics of all actions and agents to be able to acquire the

goals, but also to represent the dependence relationships among them (with-

out introducing unnecessary orderings). These difficulties are more evident in45

expressive and temporal planning scenarios, where it becomes necessary to de-

fine the temporal annotation of conditions+goals, and even resources. These

difficulties pose a challenge and jeopardize the real application of planning.

Consequently, there is a growing interest in learning action models because it

has the potential to foster the field of AI planning in real-world applications.50

Particularly, learning in planning provides us with some compelling strategies

that allow us to:

� Acquire procedural knowledge through partial observations [5, 15]. Learn-

ing from observations of plan traces can be exploited in many scenar-

ios: recognition of past behavior for prediction and anticipation, decision55

taking and recommendation, programming and modeling, teleoperation,

macro recording, sensing and controlling, robotics motion capturing and

planning, etc. [4].

� Reduce the human effort in design tasks. Learning is appealing to reduce

the expert knowledge and engineering burden that becomes impractical60
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in some planning scenarios, which are even more complex when tempo-

ral features are required. Moreover, in many real-world applications it is

expensive, or even impossible, to collect large datasets of observations for

training; this happens when the number of samples is limited or when a hu-

man needs to perform repetitive actions (learning by demonstration [4]).65

Therefore, reducing the effort to deal with tractable datasets is desir-

able [2].

� Improve model accuracy [17]. A wide number of scenarios can benefit

from the discovery of a precise model of actions: diagnostic expertise,

activity, plan and goal recognition, explainable planning, reformulation70

and simplification of existing models, etc. [5, 18, 19, 20, 21]. Additionally,

a learned model can be used to automatically elaborate similar models for

similar scenarios, e.g. knowledge transfer or transfer learning [2].

The underlying idea in learning is to solve the inverse problem of planning:

rather than creating plans from a given action model, we are now interested in75

learning an action model from observations of multiple plans. In more detail,

the aim of learning action models is to capture common structures (typically

conditions, effects and even costs) from an input of observed plans that are

consistent with them. By consistent we mean that the learned action model

is fully specified and satisfies the constraints imposed by all plans; e.g., if a80

condition is learned for an action, that condition must hold any time the action

appears in any of the plans, which means it must be achieved previously, and

analogously for the happening of the effects.

In this paper we propose a Constraint Satisfaction (CS) approach to learn

temporal action models, where the model is the representation of the planning85

domain, from multiple plans that does not require observations on intermediate

states. Learning classical models is common [15, 22, 23, 24] but, to the best of

our knowledge, learning temporal action models with costs is uncommon. The

difficulty of learning temporal models is twofold. First, we need to acquire the

action conditions+effects, like in classical model learning. Second, we need to90
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identify their temporal annotation (in temporal planning conditions/effects can

hold/happen at different times) and try to estimate the durations, when they

are not precisely given, from input parallel plans where actions can overlap in

very different ways [13, 25]. Intuitively, learning temporal models means to

learn which and when. Additionally, we need to estimate the action costs that95

fit the observations.

This work is inspired by our incipient CS formulation for temporal learn-

ing [26]. The work presented here redefines and generalizes our previous formu-

lation in several ways, thus including significant features that are not specifically

addressed in other approaches. These features form our main contributions:100

1. The CS formulation is inspired by POCL (Partial Order Causal Link [41,

42]) planning, where the causal relationships and the branching schemes

are explicitly represented.

2. Reasoning on action duration is more generic now: durations can be fully

(un)known or observed with noise.105

3. The CS formulation now learns from multiple plans, rather than just from

one single plan, which allows us to learn more accurate models and address

problems that were previously unmanageable.

4. Reasoning on mutex information is more generic now, as it is formulated

over the domain information rather than over the plan information, which110

leads to a more compact and efficient representation.

5. The CS formulation has been extended to support learning action costs,

which is traditionally ignored in literature.

6. We now include a better support for intermediate state observability that

allows us to compare to other (classical) learning approaches, thus proving115

that our approach is highly competitive over IPC (International Planning

Competition) domains.

This paper is organized as follows. Section 2 addresses related work. Sec-

tion 3 presents the planning terminology and formalization, necessary for the

CS formulation for learning, detailed in Section 4. In Section 5 we provide a120
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thorough evaluation of our experiments and compare with other learning ap-

proaches. Finally, Section 6 concludes the paper.

2. Related Work

From the constraint point of view, constraint acquisition approaches have

been studied as user-machine interactive processes to learn constraints from125

positive and negative examples of solutions. CONACQ [27] is highly related to

planning as it learns a constraint network, which represents a sequence of ac-

tions, from a set of traces and a library of constraints. ConstraintSeeker [28]

and ModelSeeker [29] are also related to constraint acquisition. ConstraintSeeker

creates a ranked list of constraints over a constraint catalog to be returned to130

users. ModelSeeker generalizes models from positive+negative traces and sug-

gests potential solutions. Similarly, QuAcq [30] learns constraints by asking the

user to classify partial queries, that is, examples the user needs to classify as

solutions or non-solutions. Inductive logic programming [31, 32] constructs first-

order clausal theories by also using environment knowledge. In [33], authors use135

event calculus to learn action models from positive+negative solutions and in-

formation about state changes. All these approaches exploit regular structures

of constraint problems to find common patterns, but they rely on user’s inter-

action, and focus more on a categorization of constraints than on real learning.

Hence, constraint acquisition/induction differ from learning action models as:140

� They require a strong interaction and common knowledge, in the form of

queries, to communicate between the user and the machine.

� They need positive and negative plans (note that negative plans in plan-

ning are useless as they do not achieve the goals).

� The solution found is not a real model of actions, but a set of constraints.145

Despite the gap these differences create, constraint acquisition and our CS

approach to learn action models share the idea of learning by taking advantage
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of constraint reasoning, which means that their learning relies on knowledge-

based information, rather than on statistics-based data.

From the planning point of view, learning classical action models is a spe-150

cial type of classification that has been addressed by different approaches that

require large datasets of observed plans with information on their intermediate

states and actions. Table 1 summarizes these approaches in terms of: i) the

technique used; ii) the action model and the supported features; iii) the degree

of state/action observability (full, if all states/actions in the plans are observed,155

vs. partial, if some states/actions are missing in the plans); and iv) the number

of plans used for learning. Note that the last row represents our CS formulation.

ARMS [24] is one of the pioneer approaches, which builds a weighted propo-

sitional MAXimum-SATisfiability problem to learn models of actions without

costs from scratch. Regarding observability, it requires a partial sequence of160

states (as some of them can be omitted) and the full sequence of noiseless ac-

tions. LAMP [15] supports more expressiveness and learns action models with

quantifiers and logical implications by using Markov Logic Networks. It re-

quires the same observability of ARMS. Other approaches like AMAN [34] and

RIM [35] include noisy observations and incomplete models, respectively, which165

means that observations of plans may be captured by imperfect sensors, thus

introducing uncertainty under a full degree of observability. LOCM [36, 37] ini-

tiated a family of inductive learning systems that use Finite State Machines to

learn even from null state information, i.e., without the need of initial, goal or

intermediate states. NLOCM [38] is a Numeric extension of LOCM, and it is the170

only approach in recent literature that learns action costs, with the only obser-

vation of the total cost of each plan. LOUGA [39] uses a genetic algorithm to

learn an action model with negative conditions, whereas FAMA [22] compiles a

planning task and uses a planner to learn from minimal observability, i.e., from

incomplete or empty plans with just the initial and goal state. These approaches175

ignore temporal planning and mutex reasoning, and they typically require hun-

dreds of input plans. Moreover, their statistics-based orientation might lead to

learn a little from each plan, but not a model that satisfies every individual plan.
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Name Technique used Action model & features

supported

Observability on

states/actions

Dataset size

ARMS MAX-SAT STRIPS Partial states

Full actions

160 plans

LAMP Markov logic networks STRIPS & quantifiers

and logical implications

Partial states

Full actions

100-200 plans

AMAN Probabilistic graphical

model

STRIPS & noisy actions Full states

Full actions

40-200 plans

RIM MAX-SAT STRIPS & incomplete

action models

Full states

Full actions

30-150 plans

LOCM Finite state machines STRIPS Partial/null states

Full actions

Unknown

NLOCM Finite state automata &

constraint programming

Action costs & plan cost Partial states

Full actions

100-1000 plans

LOUGA Genetic algorithm STRIPS & negative con-

ditions

Partial states

Full actions

160 plans

FAMA Planning STRIPS Partial states

Partial actions

1-10 plans

CS Constraint satisfaction PDDL2.1 durative ac-

tions & noisy durations

& action costs & plan

cost & mutex info

Partial states

Full actions

1-10 plans

Table 1: Summary of learning action models approaches (in chronological order). The dataset

size for LOCM is not provided in their paper.

This is a limitation when learning from multiple plans. Consequently, exploiting

CS technology seems very promising (and worth investigating in comparison to180

other approaches) in order to address a list of features that are typically ig-

nored. More specifically, in our approach we provide a flexible formulation that

integrates PDDL2.1 durative actions with noisy durations, action costs, mutex

information representation, partial state observability and full satisfaction of

every plan. These are capabilities that altogether are unsupported by other185

state-of-the-art approaches.
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3. Terminology and Formalization

3.1. Temporal Planning in PDDL2.1

We define our temporal planning scenario by following the PDDL2.1 struc-

ture, i.e., planning domain, problem and plan.190

3.1.1. Durative actions in PDDL2.1

Many planning domains have temporal features that can be expressed as

durations associated with actions. Before PDDL2.1, this temporal planning

setting was simply ignored (like in PDDL) or addressed in the same conservative

way imposed by PDDL: two actions cannot overlap in any way if they have195

conflicting conditions or effects, because conditions must be maintained all over

the execution of the durative action and effects only happen when the action

ends. This makes it possible to produce reasonable plans in some planning

domains, but there exist many practical problems which require a richer model

of actions in which better quality plans can be found [13, 40].200

PDDL2.1 introduces a rich model of durative actions, which includes local

conditions and effects that are temporally annotated (at start, invariant to

be maintained throughout the action execution, and at end), to achieve a fuller

exploitation of concurrency. In short, a conservative model of temporal planning

only has one type of condition and one type of effect, vs. the three types205

of conditions and two types of effects of PDDL2.1. This entails a more precise

modeling of the state transitions within the durative interval of the action, which

would exclude many valid plans before PDDL2.1. For instance, in PDDL2.1 it

is possible to lock a resource at start and unlock it at end, or to require it just

at start, rather than maintaining it all over the execution of the action.210
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3.1.2. The domain

Let us assume a hierarchy of types T and a set of predicates P, with a list of

typed parameters over T . A planning domain1 defines a set of T -parameterized

operators O. The number and type of the parameters restrict the subset of

predicates to be used per operator. In PDDL2.1, each operator o ∈ O is defined215

by the tuple 〈dur(o), conds(o), condi(o), conde(o), effs(o), effe(o), cost(o)〉. dur(o)

is a positive value indicating the duration of o. For simplicity, and without

lack of completeness, we assign the duration to the operator (this is typically

known as a simple-time domain). We will discuss this simplification later in

Section 4.2.1. conds(o), condi(o), conde(o), represent the temporally annotated220

conditions: they must hold before o is executed (at start), over all the duration

of o (invariant) or when o finishes (at end), respectively. For simplicity, we

assume only positive conditions but negative conditions can be easily managed

by creating dummy predicates (e.g., q = ¬p). effs(o) and effe(o) represent the

two types of effects, which can happen at start or at end of o, and can be positive225

(asserted) or negative (retracted). We extend the definition of o with a positive

cost(o) that represents the cost of applying o, thus allowing planners to optimize

the plan cost. A temporal planning domain is defined as δ = 〈T ,P,O〉.

Figure 1 depicts part of the zenotravel domain2, with its types, predicates

and operators3. In short, this domain involves transporting people around in230

planes. It has actions to board and disembark passengers onto aircraft that

can fly between cities at two speeds (fast/slow for zoom/fly respectively) and

consume fuel at different levels according to the speed of travel; fuel can be

refueled. Problem instances require to transport passengers and minimize

1Note that in planning, the domain refers indistinctly to both the application domain and

the domain model. Particularly, the application domain represents the physics of the planning

scenario whereas the action model is the representation (in PDDL2.1) to be learned.
2See https://ipc02.icaps-conference.org for more information on this domain.
3PDDL2.1 uses the construct durative-action instead of operator. To avoid confusion, we

distinguish between operators, i.e., templates with parameters, and actions, i.e., instantiated

operators where all parameters are grounded to constant values.
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some linear combination of time, fuel use and/or cost. The cost is modeled as a235

particular numeric effect that increases a cost expression, but we represent it as

cost(o); in our example, cost(board) = 2, cost(refuel) = 5 and cost(zoom) = 10.

Mutual exclusion (mutex) constraints. P has the potential to be large, but this

does not mean that any pair of predicates is simultaneously possible in δ. If

two predicates pi, pj ∈ P cannot hold together (as this entails a contradiction)240

we say they are mutex in δ. We define the set of mutex predicates as µ(δ) =

{〈pi, pj〉}. For instance, in zenotravel we know that 〈(at ?x - locatable ?y1

- city), (at ?x - locatable ?y2 - city)〉 are mutex if different parameter

names involve different values: ?x cannot be at two different cities ?y1 and

?y2 simultaneously. The domain expert knows this while modeling because it is245

part of the physics of the domain and can be intuitive, but this knowledge is not

explicitly represented in PDDL2.1. Actually, this knowledge is only specified if,

given two mutex predicates that appear as effects in the same operator, if one

predicate is asserted the other must be retracted and vice versa (contradictory

effects). Note that in PDDL2.1 the temporal annotation of mutex effects might250

vary, i.e., one effect might be asserted as at start and the other retracted as at

end, or vice versa, or both at the same time.

Static information. P may contain predicates that never change in δ, which are

known as static. They are part of the physics of the domain but only relevant for

the planning grounding stage. Note the (next ?l1 ?l2 - flevel) predicate255

in Figure 1, which represents the natural order between ?l1 and ?l2. Static

predicates are never used as effects since no operator can change the physics of

zenotravel : one fuel level is always before another. Since static predicates always

hold, they could eventually be learned as conditions in all the operators with

those parameters. Static information is not explicitly modeled in PDDL2.1, but260

can be easily detected.

Input knowledge for learning. Planners perform some kind of reasoning to dis-

cover mutex constraints and static information because it improves the planning
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(:types locatable city flevel - object ;description of the object hierarchy

aircraft person - locatable)

(:predicates (at ?x - locatable ?c - city) ;plane or person ?x is at city ?c

(in ?p - person ?a - aircraft) ;person ?p is onboard plane ?a

(next ?l1 ?l2 - flevel) ...) ;fuel-level ?l2 is equivalent to ?l1+1

(:durative-action board ;name

:parameters (?p - person ?a - aircraft ?c - city) ;three parameters ?p, ?a and ?c

:duration (= ?duration 20) ;duration

:condition (and (at start (at ?p ?c)) ;person ?p initially at ?c

(over all (at ?a ?c))) ;plane ?a must remain at ?c

:effect (and (at start (not (at ?p ?c))) ;initially person ?p is no longer at ?c

(at end (in ?p ?a)) ;finally person ?p is onboard ?a

(at end (increase (cost) 2)))) ;finally increasing the cost

(:durative-action refuel

:parameters (?a - aircraft ?c - city ?l1 ?l2 - flevel)

:duration (= ?duration 73)

:condition (and (at start (fuel-level ?a ?l1)) ;initial fuel-level ?l1 for plane ?a

(at start (next ?l1 ?l2)) ;ordering between ?l1 and ?l2

(over all (at ?a ?c)))

:effect (and (at end (fuel-level ?a ?l2)) ;new fuel-level ?l2 for plane ?a

(at end (not (fuel-level ?a ?l1))) ;removing previous fuel-level ?l1 for plane ?a

(at end (increase (cost) 5))))

(:durative-action zoom

:parameters (?a - aircraft ?c1 ?c2 - city ?l1 ?l2 ?l3 - flevel)

:duration (= ?duration 100)

:condition (and (at start (at ?a ?c1)) (at start (fuel-level ?a ?l1))

(at start (next ?l2 ?l1)) (at start (next ?l3 ?l2)))

:effect (and (at start (not (at ?a ?c1))) (at end (at ?a ?c2)) ;moving plane ?a from city ?c1 to ?c2

(at end (not (fuel-level ?a ?l1))) (at end (fuel-level ?a ?l3)) ;fuel consumption, from ?l1 to ?l3

(at end (increase (cost) 10))))

Figure 1: Fragment of the zenotravel domain with comments on the meaning. Other operators

are debark and fly. This is known as the reference or ground truth model.
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task. Similarly, a learning task can also be improved by providing additional

input knowledge. First, giving the set of mutex predicates µ(δ). Second, giv-265

ing a set of predicates P ′ ⊆ P, where P ′ contains no static predicates. This

knowledge is very valuable for the learning task, as we will see in Section 3.3.

3.1.3. The problem

Let us assume a domain δ = 〈T ,P,O〉. Given a set of T -typed constant

values, we define V and A. V is the set of Boolean variables instantiating these270

values in P, thus defining a mapping between P and V. A is the set of durative

actions, which are instantiated from the operators O. All the parameters in

A are grounded, and the same for their conditions+effects, which are thereby

instantiated and mapped in V. For instance, from Figure 1 and given the

constant values {plane1 - aircraft, person1 - person, city0 - city} we275

obtain the variables {(at plane1 city0), (at person1 city0), (in person1

plane1)} and the action (board person1 plane1 city0). We also define a

state S as an assignment of true/false values to variables in V. S is a full state

if |S| = |V| and a partial state if |S| < |V|. A temporal planning problem ρ for

δ is defined as ρ = 〈δ,V, I,G,A〉, where I is the initial full state and G is the280

goal state. Although G can be a partial or full state, it is typically defined as a

partial state.

3.1.4. The plan

Let us assume a problem ρ = 〈δ,V, I,G,A〉. A temporal plan for ρ is a

tuple π(ρ) = 〈{〈t1, a1〉, 〈t2, a2〉 . . . 〈tn, an〉},K〉. Each 〈ti, ai〉 contains an action285

ai ∈ A, where its duration can be (un)known, and ti as the start time of ai.

Actions inA can have several occurrences in π(ρ) provided they start at different

times, and different actions can start at the same time because the plan is a

parallel one. K is the cost of the plan. π(ρ) induces a chronologically-ordered

sequence of full states 〈S0 . . .Send〉, where S0 = I and G ⊆ Send. The term290

makespan represents the time of the state Send. Figure 2 shows a fragment of

a PDDL2.1 plan for zenotravel that includes the start time, the action and its
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1: (refuel plane1 city0 fl1 fl2) [73]

1: (board person2 plane2 city1) [20]

1: (board person1 plane1 city0) [20]

75: (zoom plane1 city0 city1 fl2 fl1 fl0) [100]

22: (zoom plane2 city1 city2 fl3 fl2 fl1) [100]

176: (debark person1 plane1 city1) [30]

...

Figure 2: Fragment of a temporal plan for zenotravel with a cost K.

duration.

3.2. Constraint Satisfaction Problem

A Constraint Satisfaction Problem (CSP) is a tuple 〈X ,D, C〉, where X is a295

set of variables, D represents the domain for each of these variables and C is a

set of constraints among the variables in X that bound their possible values in

D.

An evaluation of values to variables is consistent if it does not violate any of

the constraints in C. A consistent evaluation is a solution if it includes values300

for all variables in X . A CSP can have many solutions. If we do not define a

metric over X , we are dealing with a pure satisfaction problem, rather than a

constraint optimization problem. Thus, many solutions are possible and equally

valid.

3.3. Learning Task305

Let us consider a domain δ = 〈T ,P,O〉 and a set of empty operators O?. O

and O? are equal, but by empty we mean that the conditions+effects (and their

temporal annotation at start, over all or at end), durations and costs are un-

known. We assume the name, or a unique identifier, and the parameters of oper-

ators inO? are known. Such assumption, frequent in literature of learning action310

models, may seem a bit strong but it is minimally necessary to identify relation-

ships and establish common structures. The parameters are needed to automat-
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ically generate a set of candidate predicates that can be potentially used in ev-

ery operator. For instance, (board ?p - person ?a - aircraft ?c - city)

and (refuel ?a - aircraft ?c - city ?l1 ?l2 - flevel) are empty op-315

erators for the operators of Figure 1. Let us also consider a set of n problems

for δ and their corresponding observed plans Πn(δ) = {π(ρ1) . . . π(ρn)}. We de-

fine the learning task from Πn(δ) as the tuple Ln = 〈δ,Πn(δ), µ(δ),O?〉, where

the mutex information in µ(δ) can be optionally empty.

A solution for the learning task Ln, denoted as O(Ln), is an approxima-320

tion of O? to the original operators in O, used as the reference model. It is an

approximation because the learned operators are not always identical to the ref-

erence ones; e.g., the number and the temporal annotation of conditions/effects

and the durations/costs may differ. O(Ln) must satisfy all plans in Πn(δ) (com-

pleteness) and the operator model must imply no contradictions nor mutexes in325

any plan (soundness). Broadly speaking, the learning task needs to complete

the operators in O? by reasoning over a collection of plans. This reasoning is

a little inductive and a little abductive: inductive because it makes inferences

based on what is observed on the plans and abductive because it forms a proba-

ble, though not necessarily unique, conclusion from those plans. More formally,330

O(Ln) must be consistent with the information in Ln. This means that if ac-

tions Ai in every π(ρi) are instantiated versions of the operators in O(Ln), all

plans in Πn(δ) are consistent: i) Gi is achieved from Ii; and ii) the learned

durations/costs induce the observed makespan/cost of π(ρi).

4. CS Formulation for Learning Temporal Action Models335

Our CS formulation represents a learning task Ln, thus encoding the condi-

tions and effects (i.e., causal relationships), duration and cost of each operator,

and the actions of the observed plans. Such formulation follows a POCL plan-

ning fashion, where the causal relationships are explicitly represented via causal

links. A causal link consists of two actions and a predicate: the first action340

achieves the predicate that the second action needs, thus imposing an ordering
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between the first and the second action.

4.1. Preprocessing

Before proceeding with the formulation, we need to populate the potential

candidate predicates that can be learned as conditions+effects.345

Given the domain δ and the set O?, we define the alphabet of o ∈ O?, de-

noted as α(o), as the set of all predicates p ∈ P whose types belong to the types

of the parameters of o. For instance, according to Figure 1, α(board)={(at ?p

- person ?c - city), (at ?a - aircraft ?c - city), (in ?p - person ?a

- aircraft)}. This alphabet produces the candidate predicates: the sets {pi}350

and {pi ∪ ¬pi}, where pi ∈ α(o), denote the candidates that can be condi-

tions and effects of o, respectively. We deal with positive conditions and pos-

itive+negative effects, as the same predicate can be asserted and retracted at

different times. The number of potential candidates is, therefore, 3*|α(o)|.

In order to facilitate the formulation, we create a mapping between the355

operators in the domain and the actions in a plan. For each π ∈ Πn(δ), let

oπ be an action in π that is the result of instantiating an operator o ∈ O?.

Let p ∈ α(o) be a predicate of o that is instantiated for any action oπ, and

denoted as pπ. For instance, given the operator o=(board ?p - person ?a

- aircraft ?c - city) and the predicate p=(at ?p - person ?c - city),360

a possible mapping is for action oπ=(board person1 plane1 city0) and the

variable pπ=(at person1 city0). The learning task implies that, for example,

if p is learned as an over all condition in o, any pπ must be consistent with such

decision in any π.

4.2. The Formulation365

4.2.1. The variables

We define nine types of variables (X1..X9), which are grouped into two blocks

that are shown in Figure 3. X1..X4 model the information of the domain (o ∈ O?

and p ∈ α(o)). X5..X9 need to be repeated per each mapped action/variable

(oπ/pπ) present in each plan π ∈ Πn(δ). In comparison with our previous370
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Id. Variable Domain

X1 dur(o) Z+ ∪ {0}

X2 cost(o) Z+ ∪ {0}

X3 cond(p, o) {no cond, at start, overall, at end}

X4.1 eff(p, o) {no eff, at start, at end}

X4.2 eff(¬p, o) {no eff, at start, at end}

X5 start(oπ) [0..makespan(π)]

X6 end(oπ) end(oπ) = start(oπ) + dur(o)

X7.1 req start(pπ, oπ) {start(oπ), end(oπ)}

X7.2 req end(pπ, oπ) {start(oπ), end(oπ)}

X8.1 time(pπ, oπ) {start(oπ), end(oπ)}

X8.2 time(¬pπ, oπ) {start(oπ), end(oπ)}

X9 sup(pπ, oπ) ∅ ∪ {o′π} ∈ π

Figure 3: Formulation of variables and their domain.

formulation in [26], all variables have been now redefined to differentiate between

operators and actions of multiple input plans, and X2..X4 are completely new.

X1 models the duration of the operator and X2 its cost (for simplicity, we

use discrete domains). As indicated in Section 3.1.2, we assign durations and

costs to operators. Although we might assign different durations and costs to375

different actions (thus being parameter-dependent) by creating more variables,

distinct problems over the same domain are unrelated in PDDL2.1. For in-

stance, the value plane1 might represent a different plane in each problem in

zenotravel, which means that learning the duration/cost for different board or

refuel actions over plane1 would depend on every particular problem, not on380

the domain. This is why we restrict durations and costs to operators.

X3 represents if p is a condition for o. The possible values are no cond (p

is not learned as a condition), at start, overall or at end, meaning that p is an-

notated as an at start, invariant or at end condition, respectively. X4.1 (X4.2)

represent if p (¬p) is learned as a positive (negative) effect. The possible values385

are no eff (if it is not an effect), at start or at end. Note that ¬p could happen
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at start and p at end, which is a typical way to model resource usage in tempo-

ral planning. Also note that we allow p to appear both as a condition and as an

effect in the same operator, but, for simplicity, we restrict each condition/effect

to appear at most once in every operator. For instance, although in PDDL2.1390

p could theoretically appear both as at start and at end conditions in the same

operator, in practical domains of IPC this does not happen. In other words,

a temporally simple subset of potential PDDL2.1, where deep levels of concur-

rency [25] are not exploited, is used in the planning competitions. If the same

condition/effect p had to appear more than once in the same operator, we could395

simply extend our formulation to create new versions {p1, p2 . . . pn}, of p and

make all pi have the same value.

X5 (X6) represent the start (end) time of oπ. X7.1 and X7.2 define the inter-

val [req start(pπ, oπ)..req end(pπ, oπ)] throughout pπ must hold for oπ (provided

the mapped cond(p, o) 6=no cond). This interval allows us to model the three400

types of conditions of X3. X8.1 models the time when pπ happens in oπ, pro-

vided eff(p, o) 6=no eff. X8.2 is analogous, but for ¬pπ. X9 represents a causal

link relationship like in POCL planning, representing that action o′π supports

pπ, which is required by oπ. If cond(p, o)=no cond, meaning that p is not a con-

dition of o (and, consequently, pπ is not a condition of oπ), then sup(pπ, oπ) = ∅,405

i.e., the empty supporter. We do not include the variable sup(¬pπ, oπ) because

we only deal with positive conditions and, therefore, ¬pπ is never required as a

condition.

Additionally, we create two dummy actions (and their respective dummy

operators) per problem ρ ∈ {ρ1 . . . ρn}. First, initρ represents I (dur(initρ) =410

cost(initρ) = start(initρ) = 0). initρ has no cond, req start, req end and sup vari-

ables because it has no conditions. initρ has as many eff(pi, initρ)=at end as pi ∈

I, and analogously for the false variables ¬pj ∈ I, as I is a full state. Second,

goalρ represents G (dur(goalρ) = cost(goalρ) = 0 and start(goalρ)=makespan(π)).

goalρ has as many cond(pi, goalρ)=at start as positive conditions pi ∈ G. goalρ415

has no eff and time variables because it has no effects.

Including observations of intermediate states is straightforward. We simply
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define a dummy action+operator obs(p, t), analogous to goal, where p is the

observed predicate at time t (cond(p, obs(p, t))=at start, sup(p, obs(p, t)) 6= ∅,

and no eff+time variables at all).420

4.2.2. The constraints

We formulate all the necessary constraints that allow us to learn the con-

ditions, effects and costs. The fact of modeling constraints in terms of POCL

planning, explicitly representing the causal links and threat resolution, allows

us to better capture the insights of the observed plans and, consequently, of425

the action model. Figure 4 shows the two blocks of constraints. Clearly, the

operator variables impose constraints that must be consistent with the actions

and vice versa. C1..C12 model the planning constraints and C13 the mutex con-

straints if µ(δ) is not empty in Ln. In comparison with the formulation in [26],

all constraints are now redefined to represent the operator-action duality, and430

C12..C13 are completely new.

C1..C4 represent the constraints for cond. C1 guarantees that if p is not

learned as a condition in o, it has no support in its instantiated actions in

the plan, and vice versa (note that this is an if and only if constraint). C2..C4

enforce the at start, invariant and at end conditions in terms of the X7 variables.435

C5..C7 represent the constraints for eff. In C5, if p is not learned as an effect in

o then no instantiated actions from o can be supporters of the mapped pπ. C6.1

(C6.2) enforce the at start positive (negative) effects in terms of the X8 variables;

analogously, C7.1 (C7.2) for at end positive (negative) effects. C8 prevents two

operators (possibly equal) from having contradictory effects at the same time.440

C9 enforces that if the same operator o requires and deletes p, the effect cannot

happen before the condition. Note the “≥” inequality: if one condition and

one effect of the same operator appear at the same time, PDDL2.1 considers

the condition is checked instantly before the effect. C10 models the causal link

〈o′π, pπ, oπ〉, which means that pπ must happen before it is required; intuitively,445

pπ must be supported by o′π before being used by oπ. Note the “<” constraint

instead of “≤”. PDDL2.1 assumes an ε > 0, where ε is a small tolerance that
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Id. Constraint

C1 iff (cond(p, o)=no cond) then sup(pπ, oπ) = ∅

C2 if (cond(p, o)=at start) then req start(pπ, oπ) = req end(pπ, oπ) = start(oπ)

C3 if (cond(p, o)=overall) then (req start(pπ, oπ) = start(oπ)) and (req end(pπ, oπ) =

end(oπ))

C4 if (cond(p, o)=at end) then req start(pπ, oπ) = req end(pπ, oπ) = end(oπ)

C5 if (eff(p, o)=no eff ) then forall o′π that requires pπ: sup(pπ, o
′
π) 6= oπ

C6.1 if (eff(p, o)=at start) then time(pπ, oπ) = start(oπ)

C6.2 if (eff(¬p, o)=at start) then time(¬pπ, oπ) = start(oπ)

C7.1 if (eff(p, o)=at end) then time(pπ, oπ) = end(oπ)

C7.2 if (eff(¬p, o)=at end) then time(¬pπ, oπ) = end(oπ)

C8 if (eff(p, o) 6=no eff ) and (eff(¬p, o′) 6=no eff ) then time(pπ, oπ) 6= time(¬pπ, o′π)

C9 if (cond(p, o) 6=no cond) and (eff(¬p, o) 6=no eff ) then time(¬pπ, oπ) ≥ req end(pπ, oπ)

C10 if (sup(pπ, oπ) = o′π) then time(pπ, o
′
π) < req start(pπ, oπ)

C11 if (sup(pπ, oπ) = o′π) and (eff(¬p, o¬p) 6=no eff ) and (oπ 6= o¬pπ ) then

(time(¬pπ, o¬pπ ) < time(pπ, o
′
π)) or (time(¬pπ, o¬pπ ) > req end(pπ, oπ))

C12
∑
occurrences(oπ) ∗ cost(o) = Kπ

C13 ∀ 〈pi, pj〉 ∈ µ(δ) to be used in o:

C13.1 if (cond(pi, o) 6=no cond) and (cond(pj , o) 6=no cond) then cond(pi, o) 6= cond(pj , o)

C13.2 if (eff(pi, o) 6=no eff ) and (eff(pj , o) 6=no eff ) then eff(pi, o) 6= eff(pj , o)

C13.3 if (eff(pi, o) 6=no eff ) then eff(¬pj , o) 6=no eff

C13.4 if (eff(pj , o) 6=no eff ) then eff(¬pi, o) 6=no eff

Figure 4: Formulation of planning and mutex constraints. For simplicity, the value of irrelevant

variables is not bounded here. For instance, if cond(p, o)=no cond, both req start(pπ , oπ) and

req end(pπ , oπ) become irrelevant.
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avoids intersection between the time when effects are supported and when they

are required. When time is modeled in Z+, ε = 1 and “≤” becomes “<”. Given

a causal link 〈o′π, pπ, oπ〉, C11 avoids the possible threat of action o¬pπ with its450

effect ¬pπ; intuitively, o¬pπ could break such a causal link. The two ways to solve

a threat in POCL, which impose a possible ordering of o¬pπ , are modeled in C11:

promotion, where o¬pπ happens before pπ is supported, or demotion, where o¬pπ

happens after pπ is required. C12 encodes the linear constraint for the cost Kπ
of plan π, where occurrences(oπ) is the number of instances of oπ in π. Finally,455

C13 represents the mutex constraints. If two mutex predicates are learned as

conditions (effects) in an operator, they cannot happen at the same time, which

is enforced by C13.1 (C13.2). C13.3 guarantees that if pi is learned as an effect in

o, ¬pj must also be an effect, whereas C13.4 guarantees the opposite constraint.

These two last constraints are essential to learn negative effects4. In absence of460

them, and without negative conditions nor intermediate state observability, the

learning task will never learn negative effects (e.g., in zenotravel a plane could

be learned to be in two cities simultaneously). It is important to note that,

a priori, we cannot foresee the temporal annotation (X8 variable) for mutex

predicates, as they happen indistinctly at the same or different times depending465

on the domain. For instance, if we consider the mutex 〈(at ?x - person ?y1

- city), (in ?x - person ?y2 - aircraft)〉 in board, the first predicate is

retracted at start and the second one is asserted at end. However, if we consider

the mutex 〈(fuel-level ?a - aircraft ?y1 - flevel), (fuel-level ?a -

aircraft ?y2 - flevel)〉 in refuel and zoom, the predicates are asserted and470

retracted at end, but they could perfectly be annotated as at start and at end,

respectively. This different way of shaping the semantics for mutex, even within

the same domain, reveals the difficulty of the modeling task even for an expert

4State-of-the-art learning approaches do not reason on mutex and they learn negative

effects by requiring intermediate states and/or a full goal state. We avoid this requirement

by performing an automated reasoning on mutex that allows us to successfully infer negative

effects.
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engineer.

4.2.3. A working example475

Let us consider the operator board of Figure 1, with α(board)={(at ?p -

person ?c - city), (at ?a - aircraft ?c - city), (in ?p - person ?a

- aircraft)}. Let us also consider the action (board person2 plane2 city1)

of the plan in Figure 2. Following the definition of variables of Figure 3, the

resulting variables are shown in Figure 5. The constraints for this operator and480

action are created following Figure 4. Figure 6 shows only the results for C1

and C2 constraints, but the remaining constraints are created analogously.

4.2.4. Formal properties

The formulation presents interesting properties: soundness and completeness

(inherited from POCL planning), and polynomial size.485

Lemma 1. Soundness. The formulation is sound.

Proof sketch. By soundness of the formulation we refer to the property that

it allows us to find a PDDL2.1 sound plan that satisfies all the given constraints

of the model. A plan π is sound w.r.t. a model of actions if all conditions

of any action, including the dummy actions, are satisfied at their temporal490

annotation and no contradictions appear. The formulation provides the same

twofold sound branching scheme defined by POCL planning. First, conditions

are satisfied thanks to C10, which guarantees that all conditions are supported

before being used, and no threats break those causal links thanks to the ordering

imposed by C11. Second, no contradictions appear thanks to C8, which avoids495

contradictory effects, and C13, which guarantee that no mutexes happen in the

plan. Hence, π is sound and, consequently, the formulation is also sound. �

Lemma 2. Completeness. Any possible solution O(Ln) is computable by solving

the given formulation.

Proof sketch. The formulation creates a CSP that encodes all constraints for500

Ln and also checks the POCL plan validity conditions (as shown in Lemma 1).

Let us suppose, by contradiction, that a possible solution O(Ln)′ is not found.
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dur(board)

cost(board)

cond((at ?p - person ?c - city), board)

cond((at ?a - aircraft ?c - city), board)

cond((in ?p - person ?a - aircraft), board)

eff((at ?p - person ?c - city), board)

eff((at ?a - aircraft ?c - city), board)

eff((in ?p - person ?a - aircraft), board)

eff(not-(at ?p - person ?c - city), board)

eff(not-(at ?a - aircraft ?c - city), board)

eff(not-(in ?p - person ?a - aircraft), board)

start((board person2 plane2 city1))

end((board person2 plane2 city1))

req start((at person2 city1), (board person2 plane2 city1))

req start((at plane2 city1), (board person2 plane2 city1))

req start((in person2 plane2), (board person2 plane2 city1))

req end((at person2 city1), (board person2 plane2 city1))

req end((at plane2 city1), (board person2 plane2 city1))

req end((in person2 plane2), (board person2 plane2 city1))

time((at person2 city1), (board person2 plane2 city1))

time((at plane2 city1), (board person2 plane2 city1))

time((in person2 plane2), (board person2 plane2 city1))

time(not-(at person2 city1), (board person2 plane2 city1))

time(not-(at plane2 city1), (board person2 plane2 city1))

time(not-(in person2 plane2), (board person2 plane2 city1))

sup((at person2 city1), (board person2 plane2 city1))

sup((at plane2 city1), (board person2 plane2 city1))

sup((in person2 plane2), (board person2 plane2 city1))

Figure 5: A simple example of CS variables for board and (board person2 plane2 city1).
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iff (cond((at ?p - person ?c - city), board)=no cond) then

sup((at person2 city1), (board person2 plane2 city1)) = ∅

iff (cond((at ?a - aircraft ?c - city), board)=no cond) then

sup((at plane2 city1), (board person2 plane2 city1)) = ∅

iff (cond((in ?p - person ?a - aircraft), board)=no cond) then

sup((in person2 plane2), (board person2 plane2 city1)) = ∅

if (cond((at ?p - person ?c - city), board)=at start) then

req start((at person2 city1), (board person2 plane2 city1)) =

req end((at person2 city1), (board person2 plane2 city1)) =

start((board person2 plane2 city1))

if (cond((at ?a - aircraft ?c - city), board)=at start) then

req start((at plane2 city1), (board person2 plane2 city1)) =

req end((at plane2 city1), (board person2 plane2 city1)) =

start((board person2 plane2 city1))

if (cond((in ?p - person ?a - aircraft), board)=at start) then

req start((in person2 plane2), (board person2 plane2 city1)) =

req end((in person2 plane2), (board person2 plane2 city1)) =

start((board person2 plane2 city1))

Figure 6: A simple example of CS constraints for board and (board person2 plane2 city1).

For simplicity, only C1 and C2 constraints of Figure 4 are shown.
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Since we perform a complete exploration of consistent values for all variables in

the CSP, that is only possible if O(Ln)′ represents an evaluation of values to

variables that is inconsistent because it violates any of the C1..C13 constraints.505

Violation of any constraint means that O(Ln)′ cannot be a solution for Ln.

Consequently, if a solution exists it will be eventually found, thus guaranteeing

completeness. �

Lemma 3. The number of variables and constraints of the formulation is poly-

nomial in the size of the alphabets, and number of instantiated predicates and510

actions in the plans.

Proof sketch. Given a learning task Ln, the generation of variables and con-

straints in the formulation is a finite process because the number of operators,

predicates and actions in the plans are finite. Let Uα be the upper bound on

the size of the alphabets, and Uπ the upper bound on the number of actions in515

each of the n input plans. The number of variables is bounded by O(Uα·n·Uπ)

in X8; intuitively, X8 represents the happening times for the potential posi-

tive+negative effects (2*Uα) in the actions (Uπ) on any of the n plans. On

the other hand, the number of constraints is bounded by O(Uα·n·U
3
π) in C11;

intuitively, C11 solves the possible threats that might appear for a potential520

condition (Uα) and involve any combination of three actions (oπ, o
′
π, o

¬p
π , i.e.,

U3
π) on any of the n plans. Therefore, the formulation size is polynomial. �

4.3. Solving the Formulation

4.3.1. Use of a CS-based solver

CS, CSP and SATisfiability are highly related frameworks [43]. Constraint525

formulations can be mapped into SAT ones and vice versa. However, non-

boolean variables like ours make the SAT encodings more complex, e.g., we

need specific clauses to ensure that a SAT variable is given one and only one

value [43]. Despite modern SAT solvers are very efficient, we are mainly inter-

ested in a CS formulation to represent Ln that easily encodes the constraints530

of multiple plans, so we opt for a CS-based solver. Concretely, we have used

Choco (www.choco-solver.org), an open-source Java library that provides an
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object-oriented API for solving CSPs.

For solving the formulation in Choco, we deal with a pure satisfaction prob-

lem. Although a metric allows the solver to prioritize over the space of solutions,535

we have not found a conclusive metric to decide the best learning. We have in-

vestigated different metrics, e.g., maximizing the use of conditions and/or causal

links, minimizing the number of unused side effects, etc., but one learned model

(i.e., solution) is not better because it has more or less conditions or causal

links, specially in presence of static information. Intuitively, a metric cannot540

substitute the unknown intention of the domain expert. Additionally, the use

of a metric has not a definitive impact in reducing the variance of the learned

models, as this depends on the solver and machine performance.

4.3.2. A Choco example

Using Choco is simple. First, we need to create a model and declare its545

variables. This is shown in Figure 7, with only the X1-X6 variables, for the

example of Figure 5. The method intVar requires the name of the variable

and the min/max value of its domain. We restrict the values of dur and cost

to large values, i.e., MAX DURATION =MAX COST=1000. The cond and eff

variables are restricted to 3 (no cond=0, at start=1, at end=2, overall=3 ) and550

2 (no eff=0, at start=1, at end=2), respectively. The remaining variables are

declared analogously.

Next, we need to build the constraints on such variables, as shown in Fig-

ure 8. Choco provides many arithmetic and logic expressions to be posted in

the model. For simplicity, in the Figure we only show the constraints for the555

X6 variable and C1, as presented in Figure 6, but the others are similar.

Finally, we need to launch the resolution process by executing m.getSolver().solve(),

which computes a feasible solution. Figure 9 shows part of a solution, i.e., a

learned model for the operators board, refuel and zoom. In comparison with

the original operators, considered as the reference or ground truth model, given560

in Figure 1, we can see that learning the exact duration and cost is difficult, as

some learned values are incorrect. On the other hand, most conditions/effects
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Model m = new Model();

m.intVar(”dur(board)”, 0, MAX DURATION );

m.intVar(”cost(board)”, 0, MAX COST );

m.intVar(”cond((at ?p - person ?c - city), board)”, 0, 3);

m.intVar(”cond((at ?a - aircraft ?c - city), board)”, 0, 3);

m.intVar(”cond((in ?p - person ?a - aircraft), board)”, 0, 3);

m.intVar(”eff((at ?p - person ?c - city), board)”, 0, 2);

m.intVar(”eff((at ?a - aircraft ?c - city), board)”, 0, 2);

m.intVar(”eff((in ?p - person ?a - aircraft), board)”, 0, 2);

m.intVar(”eff(not-(at ?p - person ?c - city), board)”, 0, 2);

m.intVar(”eff(not-(at ?p - person ?c - city), board)”, 0, 2);

m.intVar(”eff(not-(at ?p - person ?c - city), board)”, 0, 2);

m.intVar(”start((board person2 plane2 city1))”, 0, makespan);

m.intVar(”end((board person2 plane2 city1))”, 0, makespan);

Figure 7: A simple example in Choco for X1-X6 variables of Figure 5.

m.arithm(”end((board person2 plane2 city1))”, ”=”,

”start((board person2 plane2 city1))”, ”+”, ”dur(board)”);

m.ifOnlyIf(m.arithm(”cond((at ?p - person ?c - city), board)”, ”=”, 0),

m.arithm(”sup((at person2 city1), (board person2 plane2 city1))”, ”=”, 0));

m.ifOnlyIf(m.arithm(”cond((at ?a - aircraft ?c - city), board)”, ”=”, 0),

m.arithm(”sup((at plane2 city1), (board person2 plane2 city1))”, ”=”, 0));

m.ifOnlyIf(m.arithm(”cond((in ?p - person ?a - aircraft), board)”, ”=”, 0),

m.arithm(”sup((in person2 plane2), (board person2 plane2 city1))”, ”=”, 0));

Figure 8: A simple example in Choco for the constraints of Figure 6.
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are correctly learned (although the temporal annotation of some of them is in-

correct), but some effects are unnecessarily learned. We will discuss this in the

next Section.565

5. Experimental Evaluation

We evaluate the quality of our approach from a syntactic+semantic perspec-

tive, as typically done in literature. On the one hand, we assess the learning

of the PDDL2.1 temporal action model in itself. On the other hand, we re-

strict the action model to compare our effectiveness vs. ARMS and FAMA, two570

benchmarks for learning classical action models.

We have selected 14 IPC domains5, which have a simple-time version with

features we can parse, and solved random problems by using LPG [44]. Using

a wide selection of domains helps us to obtain more general results for different

application settings. It is important to note that we do not require optimal575

plans, as the quality of the plans has no impact in the learning process like in

other approaches (e.g. LOCM and NLOCM). The use of a CS approach allows us

to learn common structures based on the constraints imposed by the observed

plans, no matter their quality.

We run a two-fold cross-validation evaluation, where the input collection of580

plans is partitioned into two sets: up to 10 plans for training and 20 plans for

testing. We create three learning scenarios L1, L5 and L10 with a collection of

1, 5 and 10 different plans, respectively. We repeat each scenario 20 times, thus

creating 20 learning tasks with 1 plan (L1), 20 tasks with 5 plans (L5) and so on.

Note that each learning task uses a different collection of plans, e.g. each L1-task585

uses one different plan as input and it is tested on a different collection of plans.

For simplicity, static information is removed from the learning tasks and mutex

information is incomplete and only given when it is intuitive from the domain,

typically when two objects cannot be at different states simultaneously. The

5More information in https://www.icaps-conference.org/competitions.
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(:durative-action board

:parameters (?p - person ?a - aircraft ?c - city)

:duration (= ?duration 20) ;correct

:condition (and (at start (at ?p ?c)) ;correct

(at start (at ?a ?c))) ;originally it’s over all

:effect (and (at end (not (at ?p ?c))) ;originally it’s at start

(at end (in ?p ?a)) ;correct

(at end (increase (cost) 1)))) ;incorrect

(:durative-action refuel

:parameters (?a - aircraft ?c - city ?l1 ?l2 - flevel)

:duration (= ?duration 70) ;incorrect

:condition (and (at start (at ?a ?c)) ;originally it’s over all

(at start (fuel-level ?a ?l1)) ;correct

(at start (next ?l1 ?l2))) ;correct

:effect (and (at end (next ?l1 ?l2)) ;unnecessary

(at end (fuel-level ?a ?l2)) ;correct

(at end (not (fuel-level ?a ?l1))) ;correct

(at end (increase (cost) 5)))) ;correct

(:durative-action zoom

:parameters (?a - aircraft ?c1 ?c2 - city ?l1 ?l2 ?l3 - flevel)

:duration (= ?duration 95) ;incorrect

:condition (and (at start (at ?a ?c1)) ;correct

(at start (next ?l2 ?l1)) ;correct

(at start (fuel-level ?a ?l1)) ;correct

(at start (next ?l3 ?l2))) ;correct

:effect (and (at end (at ?a ?c2)) ;correct

(at end (fuel-level ?a ?l3)) ;correct

(at end (not (at ?a ?c1))) ;originally it’s at start

(at end (not (fuel-level ?a ?l1))) ;correct

(at end (not (fuel-level ?a ?l2))) ;unnecessary

(at end (increase (cost) 10)))) ;correct

Figure 9: A model learned by Choco for the three operators of Figure 1 of the zenotravel

domain.
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L1 L5 L10

|O| |c+ e| |α(O)| |π| |I| |G| |X | |C| |X | |C| |X | |C|

depots 5 37 36 8 30 2 380 7693 2843 175363 4051 166768

driverlog 6 26 24 8 33 4 270 8462 1151 41533 2225 83748

elevator 4 13 10 8 20 2 167 4310 769 23207 1683 51431

ferry 3 14 11 11 16 6 274 38789 1253 209181 2608 466196

floortile 7 37 32 9 39 4 337 8183 1021 20546 2001 41728

gripper 3 14 10 8 13 3 192 9284 818 45895 1485 77715

hanoi 1 7 12 4 36 2 329 13783 1741 92842 3243 161639

npuzzle 1 6 4 3 40 12 153 1191 681 5214 1309 9483

openstacks 3 17 17 16 50 6 600 36542 2727 158670 4332 234651

pathways 5 19 16 7 65 1 227 3241 1051 17903 2135 36478

pegsol 1 9 6 4 118 31 367 3075 1780 15732 3615 33532

satellite 5 20 18 11 19 4 305 25911 1371 110831 2680 200201

visitall 1 4 4 14 115 12 465 7466 2248 37020 4415 71425

zenotravel 5 24 18 12 27 5 306 9511 1410 47243 2655 93759

Table 2: Size of the PDDL2.1 domains (with no static predicates), plans and average number

of variables and constraints for the L1, L5 and L10 learning scenarios.

20*3=60 learning tasks are solved in satisfaction mode and we always select the590

first solution, so we obtain 20 models per learning scenario to extract average

results. The solving time was limited to 300s on an Intel i5-6400@2.70GHz with

8GB of RAM.

Table 2 summarizes the size of the domains w.r.t. the number of operators

(|O|), number of conditions+effects to learn (|c + e|) and alphabet size of all595

the operators (|α(O)|), where the number of potential candidates is three times

this value. We also show the average number of actions in the input plans (|π|),

the average size of the initial full states (|I|) and partial goal states (|G|); note

that |I| > |G| because I represents a full state and G a partial one. Finally, we

show the average number of variables (|X |) and constraints (|C|) per learning600

scenario to present the size and scalability of our formulation.
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5.1. Quality Evaluation

5.1.1. Syntactic evaluation (precision and recall)

The rationale for the syntactic evaluation is to calculate how similar is the

learned model O(Ln) to the reference model O from a very strict point of605

view: both O(Ln) and O should be equal, condition by condition and effect

by effect. Let TP, FP, TN, FN be true positive, false positive, true negative,

and false negative, respectively, in O(Ln) calculated over the conditions+effects

in O. Precision is the fraction of relevant instances among the learned ones:

precision=TP/(TP+FP), which gives us an idea on the soundness of O(Ln).610

Recall is the fraction of the total amount of relevant instances that are learned:

recall=TP/(TP+FN), which gives us a notion of the completeness of O(Ln). In

perfect learning, precision=recall=1.

Table 3 depicts the average precision and recall scores of the 20 tasks in the

three learning scenarios. We show two experiments per domain, organized in615

two rows. In the first row, we analyze the simplest case where the duration of

the operators is given in the input plans, as typically in PDDL2.1 plans (see

Figure 2). In the second row, we analyze a more realist case where the dura-

tions are unknown and observed with ±10% of noise. Dealing with completely

unspecified durations is uncommon, as we always have some hint or intuition on620

them. However, we have tested higher values of noise up to fully unknown dura-

tions and the learned models are almost identical. We do not show those results

as the solving time increases in big domains and some learning tasks cannot be

solved within the 300s deadline. In other words, higher values of noise do not

have a significant impact w.r.t. model quality but they can significantly affect625

the solving times.

Additionally, we show the results of Table 3 in an x/y form, where x is cal-

culated w.r.t. TP conditions/effects that appear and are temporally annotated

identically in both O(Ln) and O, whereas y is calculated in a more relaxed (and

classical) way, i.e., w.r.t. TP conditions/effects that appear correctly in both630

O(Ln) and O, no matter if their temporal annotation matches exactly; e.g., an
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at start effect in the reference model only counts as one TP in x if it is learned

as an at start effect, but it counts as one TP in y no matter if it is learned as

an at start or at end effect. The y values are very interesting, as they indirectly

reflect (and simulate) the learning of classical action models, with only one type635

of temporal annotation for (pre)conditions and effects. Obviously, x ≤ y. Fi-

nally, we show the ratio of costs that are correctly learned, which is the same

no matter whether the duration is known or observed with noise.

We can extract several conclusions from Table 3:

� The average precision for the conditions is over 0.6 and for the effects 0.7.640

The average recall for the condition is around 0.7 and for the effects 0.75.

Although we do not show the variance of the results in the Table, they

are also very good: around 0.02 in most domains.

� Using noisy durations entails very little difference in the quality of learn-

ing, and this is a general implication of our experiments. This means that645

our formulation is robust to deal with that type of uncertainty. As com-

mented above, higher values of noise and even fully unknown durations

have not shown significant differences in the models learned. It is impor-

tant to note that learning the exact durations is almost impossible (even

for a human expert) because they can always be learned as shorter values650

than the real ones, which is also an important practical implication.

� The intuition that learning just which (y values) is easier than learning

also when (x values) is true, no matter the learning scenario. This is

more noticeable in the conditions than in the effects, because there are

three types of conditions but just two types of effects. In the precision655

and recall, the difference is around 0.2 for the conditions and less than 0.1

for the effects. The reason for this is that a pure syntax-based measure

returns misleading results; e.g., one condition can be learned as at start

when it is over all in the reference model, or vice versa.

� Using multiple plans for learning (L5 and L10) returns better results on660
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Table 3: Precision, recall and cost ratio scores for the L1, L5 and L10 learning scenarios.
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average than L1, which represents an interesting improvement w.r.t. the

work in [26]. However, there is not a significant improvement in L10 vs.

L5, which means that our approach does not require large datasets of input

plans. A practical implication here is that we need a sufficient number of

plans for learning a model, but when that number is exceeded no further665

improvements in the learned model are achieved. Actually, using many

input plans might introduce slight dispersion in some domains like driver-

log, hanoi and openstacks, particularly in the recall. The reason for this

is that the resulting CSP has several solutions and in these domains the

solver returns a solution more rapidly (the problem is more constrained in670

L5 and L10 than in L1) that does not always represent the most complete

model. Consequently, in some specific domains, the precision and recall

can show worse results when dealing with more input plans. This is an

open issue yet, as we have not found a proper way (or metric) that suc-

cessfully solves this drawback in these particular domains. On the other675

hand, using large datasets of plans shows beneficial for learning the costs:

clearly, the cost ratio always improves when using more plans. Neverthe-

less, it is important to note that there are domains where the costs cannot

be learned precisely. If some operators always appear in pairs (e.g., board

and debark in zenotravel, as no person remains in an aircraft forever), this680

leads to an inconclusive C12 constraint: we can learn the cost of the two

operators as a pair, but not individually. The practical consequence here

is that this remains unsolvable no matter the size of the dataset.

� Learning the perfect model is infrequent but still possible for small do-

mains (npuzzle, pegsol and visitall), which shows the power of a CS ap-685

proach. In the domains where the perfect model is not learned, we could

try to merge several models. For instance, is it possible, and sensible,

to merge (part of) the 20 solutions of every learning scenario in just one

solution? The unification of models is appealing but it entails many dif-

ficulties when the models show contradictions, e.g. the same condition690
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is learned as at start in one model and overall in another, or the same

effect is learned as at start and at end in different models. Using the most

restrictive model seems a reasonable idea but it may not lead to a better

model and requires deeper investigation.

5.1.2. Semantic evaluation695

There is not a unique reference model in temporal planning, so strict similar-

ity measures can be unfair. Actually, the learned model might be a reformulation

of the reference model if some conditions/effects are interchangeable or unnec-

essarily learned but still correct. In other words, both models are syntactically

different but can be semantically equivalent. By equivalent we mean that the700

learned model is valid for an unseen plan because it reproduces, with no contra-

dictions or inconsistencies, the plan observations. Therefore, the rationale for

the semantic evaluation is to calculate if the model O(Ln) is still valid for the

plans calculated by the reference model O; i.e., perhaps the two models look

different but they capture the same physics of the problem.705

Formally, let us assume a new problem ρ and its corresponding valid plan

π(ρ) created from a reference model O. If we now instantiate actions in π(ρ)

according to the operators in O(Ln) and all the constraints imposed by π(ρ)

are satisfied, then O(Ln) is semantically equivalent to O, and we count this as

a hit in TP. Thus, we define the fraction of the instances in a test dataset that710

are equivalent as ratio=TP/|dataset|. If ratio=1 we have learned a model that

satisfies all plans in the dataset.

We have defined 20 learning tasks per learning scenario, which means learn-

ing 20 models. Each model is semantically evaluated vs. a dataset of 20 new

testing plans, i.e., 20*20=400 evaluations per scenario. Table 4 depicts the715

average ratios, which are shown as x/y values: now x is calculated when the

duration of operators is fully known, and y when durations are observed with

±10% of noise. The ratios are very good, specially in L5 and L10, where the

perfect ratio is found in over half of the domains. This shows again the advan-

tages of using multiple plans for learning vs. using only one plan like in [26].720
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L1 L5 L10

depots 0.55/0.42 0.87/0.92 0.77/0.86

driverlog 0.65/0.72 1/0.97 1/1

elevator 1/1 1/1 1/1

ferry 1/1 1/1 0.96/0.96

floortile 0.17/0.25 0.24/0.14 0.42/0.20

gripper 0.83/0.83 1/1 1/1

hanoi 0.27/0.27 0.78/0.78 0.90/0.90

npuzzle 0.90/0.90 1/1 1/1

openstacks 1/0.70 1/1 1/0.98

pathways 0.63/0.63 0.88/0.88 0.99/0.99

pegsol 1/1 1/1 1/1

satellite 1/1 1/1 1/1

visitall 1/1 1/1 1/1

zenotravel 0.91/0.64 0.81/0.79 0.96/0.96

Average 0.78/0.74 0.90/0.89 0.93/0.91

Table 4: Average ratio for the semantic evaluation in L1, L5 and L10 of the learned model

vs. the test dataset.

Although not show in the Table, the variance of the results is also remarkable:

less than 0.1 in most domains and never more than 0.2. Again, there is not a

significant difference when using noisy or even unknown durations. The main

conclusion is that the quality of our learned models is very good from a semantic

perspective. The practical implication for this is that the physics of the problem725

is, on average, successfully learned.

5.2. Comparison to ARMS and FAMA

The rationale for this section is that, to our knowledge, there is no previous

approach in planning capable of learning temporal action models to compare

with. However, learning classical action models, without durations or costs, has730

been very successful in ARMS and FAMA. This makes reasonable to analyze the

results of a complete comparison.
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In this section, we compare our CS approach to ARMS and FAMA to help its

positioning w.r.t. these two successful approaches. We are specially interested

in assessing whether the precision and recall values are comparable to those735

achieved by two benchmarks for learning in classical planning. To simulate

classical models, all durations (X1) and costs (X2) are equal and we restrict

the domain of conditions (X3) and effects (X4) to at start and at end, respec-

tively. This shows how our formulation subsumes (and generalizes) the learning

of classical models. ARMS and FAMA show important gain when observing in-740

termediate states. Thus, they define an observability degree that measures the

probability of observing a predicate p in a state at time t. We include this in

our formulation by using dummy obs(p, t).

For our comparison, we use the results of ARMS and FAMA as provided

in [22] and for the eight domains with a simple-time version that we can parse,745

i.e., driverlog, ferry, floortile, gripper, npuzzle, satellite, visitall and zenotravel.

Here, we learn from 10 sequential plans (L10), with 10 actions each, per domain,

where static information is not removed from the domain to make the compar-

ison completely fair. Figures 10 and 11 depict the average results for precision

and recall, respectively. For our CS approach, we show the results for both750

including (and not) mutex information, i.e., CS-mutex and CS-no mutex, respec-

tively. Mutex reasoning is only relevant for learning negative effects in absence

of intermediate observations, as shown in the recall with 0% of observability. In

a scenario of null observability such reasoning shows very powerful. Apart from

this, there is not a significant difference between CS-mutex and CS-no mutex for755

precision and recall as negative effects can be learned from the observations.

Actually, the results are equal after 60% of observability.

Our results are very competitive: FAMA is slightly better for precision but

not for recall, and our precision/recall is notably higher than in ARMS. Addition-

ally, we support more features such as temporal action models, noisy durations760

and cost learning. The main practical implication is that our formulation for

learning temporal models is very general and flexible. It can be easily adapted

for classical models, where it provides very steady results even for minimal ob-
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Figure 10: Average precision for 0-100% observability.

servability degrees, and remain highly competitive.

6. Conclusions765

Learning action models from multiple plans has proved successful for classical

planning, but there is an important void for supporting the temporal annota-

tions of durative actions and their costs. Since learning temporal models seems

the natural evolution of learning classical models, this work can be interpreted

as a first step to build both the academic and engineering foundations for learn-770

ing in temporal planning settings. From an academic point of view, it pushes

forward the research on learning more expressive action models while bridging

the gap with other approaches for constraint acquisition. From an engineering

point of view, it provides a flexible CS formulation that can be easily adapted

to identify complex structures in industrial applications.775

We have proposed a solver-independent CS formulation, which automatically

compiles a learning task, with several advantages:

� It is designed for PDDL2.1 but accommodates other levels of expressive-

ness, higher (e.g., Allen’s relations) or lower (e.g., classical models) ones
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Figure 11: Average recall for 0-100% observability.

by modifying the constraints. This is an interesting result as it fosters a780

general approach for learning in different planning contexts.

� We can include additional input knowledge such as mutex information,

which reduces the necessity of observations and helps to learn more com-

plete (recall) models. The main interpretation of this is that, if inter-

mediate state observability is impossible, mutex reasoning is essential for785

learning negative effects.

� The formulation is general enough to learn from a flexible number of plans,

no matter their quality: from a single plan (L1, aka one-shot learning) to a

collection of n plans (Ln), all of which are completely satisfied. This gener-

ality is a clear advantage and shows very useful in real-world applications,790

where the plans can be limited and/or expensive to obtain, particularly

if they require repetitive processes. From a solving time perspective, our

formulation includes a little overload in comparison to [26] in L1 because

of the operator-action duality representation, but this pays off when more

input plans are available, which leads to a practical improvement in the795

precision/recall. Our experiments and findings reveal that we do not need

many input plans nor they need to be particularly long. Actually, dealing
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with many plans in all domains is not always a good idea, as they lead to

a higher dispersion when learning in some specific domains. As a practical

result, 5-10 input plans with no more than 10 actions each are enough to800

learn good quality models and costs, though learning the exact duration,

as given in the reference model, is unlikely. After all, the duration can

always be shorter and have more time for no-operations.

� Our formulation can be extended with a metric to express user’s prefer-

ences, thus moving to a constraint optimization problem. Although this805

is plausible, our investigation reveals that such a metric does not have a

significant impact in the quality of learning. This is an important research

finding, because the intention of the domain expert cannot be always de-

fined as a metric. A possible option that we have studied is to find several

models per learning task and return the most repeated one, or try to unify810

several models into the most restrictive one. This opens a future line of

research for unification and model merging that requires a more profound

analysis.

� Although we learn from empty operators and complete plans, the formula-

tion is also appropriate to deal with partial action models and incomplete815

fragments of plans. In other words, restricting some variables leads us to a

unified formulation that bridges the gap between learning and validation.

This still requires further investigation.

� Our CS formulation can be solved by Satisfiability Modulo Theories, which

is part of our future work.820

For the future, we also want to learn meta-models in an incremental way, by

iteratively learning from an increasing number of input plans. From an indus-

trial perspective, this can indirectly lead to the reformulation of existing models

to validate, simplify and unify them. On the one hand, the human domain def-

inition is not always coherent w.r.t. the temporal annotation (e.g. an at start825

condition that should be over all, as it happens in driverlog and zenotravel IPC

40



domains). Analogously, some at start effects should be at end, and vice versa,

as it happens in satellite and zenotravel domains. On the other hand, some

(down-level) actions can be generalized into (top-level) macro-actions, which

makes the action model more compact and efficient; this is specially interesting830

in Hierarchical Task Network (HTN) planning.
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