
Context-aware Plan Repair in

Environments shared by Multiple Agents

by

Mohannad Babli

Departamento de Sistemas Informáticos y Computación

Universitat Politècnica de València

A thesis submitted for the degree of

Título de Doctor por la Universitat Politècnica de València

Supervisors: Prof. Eva Onaindía de la Rivaherrera

Prof. Óscar Sapena Vercher

July 2023





It is not the most intellectual of

the species that survives; it is not
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species that survives is the one that

is best able to adapt and adjust to

the changing environment in which

it finds itself.
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Abstract

E
XECUTION MONITORING is crucial for the success of an au-

tonomous agent executing a plan in a dynamic environment as

it influences its ability to react to changes. While executing

its plan in a dynamic world, it may suffer a failure and, in its endeavour to fix

the problem, it may unknowingly disrupt other agents operating in the same

environment. Additionally, being rational requires the agent to be context-

aware, gather information and extend what is known from what is perceived

to compensate for partial or incorrect prior knowledge and achieve the best

possible outcome in various novel situations.

The work carried out in this PhD thesis allows the autonomous agents executing

a plan in a dynamic environment to adapt to unexpected events and unfamiliar

circumstances, utilise their perception of context and provide context-aware

deliberative responses for seizing an opportunity or repairing a failure with-

out disrupting other agents. This work is focused on developing a domain-

independent architecture capable of handling the requirements of such au-

tonomous behaviour. The architecture pillars are the intelligent system for

execution simulation in a dynamic environment, the context-aware knowledge

acquisition for planning applications and the plan commitment repair.
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The intelligent system for execution simulation in a dynamic environment

allows the agent to transform the plan into a timeline, periodically update its

internal state with real-world information and create timed events. Events

are processed in the context of the plan; if a failure occurs, the simulator

reformulates the planning problem, reinvokes a planner and resumes the

execution. The simulator is a console application and has a GUI designed

specifically for smart tourism.

The context-aware knowledge acquisition module utilises semantic operations

to dynamically augment the predefined list of object types of the planning task

with relevant new object types. This allows the agent to be context-aware of

the environment and the task and reason with incomplete knowledge, boosting

the system’s autonomy and context-awareness.

The novel plan commitment repair strategy among multiple agents sharing the

same execution environment allows the agent to repair its plan responsibly

when a failure is detected. The agent utilises a new metric, plan commitment,

as a heuristic to guide the search for the most committed repair plan to the

original plan from the perspective of commitments made to other agents whilst

achieving the original goals. Consequently, the community of agents will suffer

fewer failures due to the sudden changes or will have less lost time if the failure

is inevitable.

All these developed modules were investigated and evaluated in several appli-

cations, such as a tourist assistant, a kitchen appliance repair agency and a

living home assistant.
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Resumen

L
A MONITORIZACIÓN de la ejecución de un plan es crucial

para un agente autónomo que realiza su labor en un entorno

dinámico, pues influye en su capacidad de reaccionar ante los

cambios. Mientras ejecuta su plan puede sufrir un fallo y, en su esfuerzo por

solucionarlo, puede interferir sin saberlo con otros agentes que operan en su

mismo entorno. Por otra parte, para actuar racionalmente es necesario que el

agente sea consciente del contexto y pueda recopilar y ampliar su información

a partir de lo que percibe para poder compensar su conocimiento previo parcial

o incorrecto del problema y lograr el mejor resultado posible ante las nuevas

situaciones que aparecen.

El trabajo realizado en esta tesis permite a los agentes autónomos ejecu-

tar sus planes en un entorno dinámico y adaptarse a eventos inesperados

y circunstancias desconocidas. Pueden utilizar su percepción del contexto

para proporcionar respuestas deliberativas conscientes y ser capaces así de

aprovechar las oportunidades que surgen o reparar los fallos sin perturbar

a otros agentes. Este trabajo se centra en el desarrollo de una arquitectura

independiente del dominio capaz de manejar las necesidades de agentes con

este tipo de comportamiento autónomo. Los tres pilares de la arquitectura

propuesta los forman el sistema inteligente para la simulación de la ejecución
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en entornos dinámicos, la adquisición de conocimiento consciente del contexto

para ampliar la base de datos del agente y la reparación de planes ante fallos u

oportunidades tratando de interferir lo mínimo con los planes de otros agentes.

El sistema inteligente de simulación de la ejecución permite al agente repre-

sentar el plan en una línea de tiempo, actualizar periódicamente su estado

interno con información del mundo real y disparar nuevos eventos en momentos

concretos. Los eventos se procesan en el contexto del plan; si se detecta un

error, el simulador reformula el problema de planificación, invoca de nuevo al

planificador y reanuda la ejecución. El simulador es una aplicación de consola

y ofrece una interfaz gráfica diseñada específicamente para una aplicación

inteligente de turismo.

El módulo de adquisición de conocimiento sensible al contexto utiliza opera-

ciones semánticas para aumentar dinámicamente la lista predefinida de tipos

de objetos de la tarea de planificación con nuevos tipos relevantes. Esto per-

mite que el agente sea consciente de su entorno, enriquezca el modelo de su

tarea y pueda razonar a partir de un conocimiento incompleto. Con todo esto

se consigue potenciar la autonomía del sistema y la conciencia del contexto.

La novedosa estrategia de reparación de planes le permite a un agente reparar

su plan al detectar un fallo de manera responsable con el resto de agentes que

comparten su mismo entorno de ejecución. El agente utiliza una nueva métrica,

el compromiso del plan, como función heurística para guiar la búsqueda hacia

un plan solución comprometido con el plan original, en el sentido de que se

trata de respetar los compromisos adquiridos con otros agentes al mismo

tiempo que se alcanzan los objetivos originales. En consecuencia, la comunidad

de agentes sufrirá menos fallos por cambios bruscos en el entorno o requerirá

menos tiempo para ejecutar las acciones correctoras si el fallo es inevitable.
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Estos tres módulos han sido desarrollados y evaluados en varias aplicaciones

como un asistente turístico, una agencia de reparación de electrodomésticos y

un asistente del hogar.
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Resum

E
L MONITORATGE de l’execució d’un pla és crucial per a un

agent autònom que realitza la seua labor en un entorn dinàmic,

perquè influeix en la seua capacitat de reaccionar davant els

canvis. Mentre executa el seu pla pot patir una fallada i, en el seu esforç per

solucionar-lo, pot interferir sense saber-ho amb altres agents que operen en el

seu mateix entorn. D’altra banda, per a actuar racionalment és necessari que

l’agent siga conscient del context i puga recopilar i ampliar la seua informació

a partir del que percep per a poder compensar el seu coneixement previ parcial

o incorrecte del problema i aconseguir el millor resultat possible davant les

noves situacions que apareixen.

El treball realitzat en aquesta tesi permet als agents autònoms executar els

seus plans en un entorn dinàmic i adaptar-se a esdeveniments inesperats i

circumstàncies desconegudes. Poden utilitzar la seua percepció del context per

a proporcionar respostes deliberatives conscients i ser capaces així d’aprofitar

les oportunitats que sorgeixen o reparar les fallades sense pertorbar a altres

agents. Aquest treball se centra en el desenvolupament d’una arquitectura

independent del domini capaç de manejar les necessitats d’agents amb aquesta

mena de comportament autònom. Els tres pilars de l’arquitectura proposada

els formen el sistema intel·ligent per a la simulació de l’execució en entorns
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dinàmics, l’adquisició de coneixement conscient del context per a ampliar la

base de dades de l’agent i la reparació de plans davant fallades o oportunitats

tractant d’interferir el mínim amb els plans d’altres agents.

El sistema intel·ligent de simulació de l’execució permet a l’agent representar

el pla en una línia de temps, actualitzar periòdicament el seu estat intern amb

informació del món real i disparar nous esdeveniments en moments concrets.

Els esdeveniments es processen en el context del pla; si es detecta un error, el

simulador reformula el problema de planificació, invoca de nou al planificador

i reprén l’execució. El simulador és una aplicació de consola i ofereix una

interfície gràfica dissenyada específicament per a una aplicació intel·ligent de

turisme.

El mòdul d’adquisició de coneixement sensible al context utilitza operacions

semàntiques per a augmentar dinàmicament la llista predefinida de tipus

d’objectes de la tasca de planificació amb nous tipus rellevants. Això permet

que l’agent siga conscient del seu entorn, enriquisca el model de la seua tasca

i puga raonar a partir d’un coneixement incomplet. Amb tot això s’aconsegueix

potenciar l’autonomia del sistema i la consciència del context.

La nova estratègia de reparació de plans li permet a un agent reparar el seu

pla en detectar una fallada de manera responsable amb la resta d’agents

que comparteixen el seu mateix entorn d’execució. L’agent utilitza una nova

mètrica, el compromís del pla, com a funció heurística per a guiar la cerca

cap a un pla solució compromés amb el pla original, en el sentit que es tracta

de respectar els compromisos adquirits amb altres agents al mateix temps

que s’aconsegueixen els objectius originals. En conseqüència, la comunitat

d’agents patirà menys fallades per canvis bruscos en l’entorn o requerirà menys

temps per a executar les accions correctores si la fallada és inevitable.
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Aquests tres mòduls han sigut desenvolupats i avaluats en diverses aplicacions

com un assistent turístic, una agència de reparació d’electrodomèstics i un

assistent de la llar.
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Introduction

W
HEN diving into this PhD thesis, one will find a work that joins

two fields in the realm of Artificial Intelligence (AI), the field

of Automated Planning (AP) and the field of Knowledge Rep-

resentation (KR). From planning to action execution, we have been exploring

different approaches to boost the autonomy of intelligent agents, enabling them

to react intelligently to the change in dynamic execution environments and

accomplish their objectives without assistance. Moving cautiously to a world

where intelligent agents constantly surround people in all daily life aspects,

agents are expected to handle complex tasks, respond to change, and take

the initiative according to their goals, exhibiting a higher level of autonomy.

This PhD thesis presents a domain-independent approach and an integrated

framework for an intelligent agent executing a plan while being context-aware

of the change in the dynamic execution environment to seize an opportunity



1.1 Motivation

or repair a plan execution failure. This chapter is included for the readers to

understand this PhD thesis’s aim fully.

1.1 Motivation

Since AI was born in 1956, it has held great enthusiasm by embracing the idea

of replicating human faculties such as autonomy. In Autonomous Agent, the

word Agent comes from the Latin agere, which means to act; on the other hand,

the word Autonomous etymologically comes from the Greek word autonomous

where auto means self and nomos means rules. Therefore, an autonomous

agent is an agent that relies on its own percepts while executing a task to

achieve a goal, does not restrict itself to the prior knowledge of its designers,

and has the degree of freedom to regulate its behaviour to the best outcome

under specific circumstances.

The original motives behind this work are three aspects:

• To date, autonomous agents still lack autonomy.

• The potential benefits of semantic knowledge, plan execution, monitoring,

and failure repairing to autonomous agents.

• The autonomous robot, shown in the episode “The Quality of Life” in

the science fiction Star Trek: The Next Generation series (1992), faces

a brand new situation and deliberately interferes with the plan it is

supposed to execute to handle the change in the dynamic environment.

3
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1.2 Aims and Objectives

The interest in this PhD thesis is developing a domain-independent approach

and methods to boost the autonomy aspect of an agent that generates a plan

to satisfy a goal state, executes that plan in a dynamic environment, and then

faces unexpected events.

1.2.1 Aims

The author’s contributions allow autonomous agents to deal with the dynamic

environment change, not depending solely on the prior knowledge of designers

but instead relying on own percepts to provide context-aware deliberative

responses for seizing an opportunity or repairing a failure. Specifically, this

PhD thesis has two aims:

1. Seize an opportunity that may arise during the execution of the plan.

2. Repair a failure that occurs during the execution of the plan.

1.2.2 Objectives

To achieve the aims mentioned above, we identified five objectives:

1. To design a domain-independent monitoring and execution system (Babli,

Ibáñez-Ruiz, et al. 2016) as the backbone of the whole framework.

2. To develop the techniques and the mechanisms that allow autonomous

agents to deal with new data and formulate new goals to seize an oppor-

tunity or fix a plan execution failure. (Babli, Onaindia, and Marzal 2018;

Babli, Marzal, et al. 2018)

4



1.3 Thesis Outline

3. To enhance the accuracy of autonomous agents when dealing with new

information by filtering incompatible information that is unmanageable

by the agents’ capabilities (Babli and Onaindia 2019).

4. To design a deliberation architecture (Babli, Rincon, et al. 2021) to in-

crease autonomous agents’ autonomy and context awareness when gen-

erating goals and to fix plan execution failures.

5. To design and implement a repairing property that ensures a responsible

repairing policy of execution failures among agents. The approach aims

at reducing the revisions of plans among agents and the lost time due to

failures (Babli, Sapena, et al. 2023).

1.3 Thesis Outline

Previous sections have briefly summarised the motivation behind this PhD

thesis, the aim and the objectives. In this section, we present the outline of this

PhD thesis, which is organised as follows:

1. Chapter 2 contains a state-of-the-art for automated planning, plan exe-

cution and monitoring, survival of the agent (failures and opportunities)

and knowledge representation.

2. Chapter 3 provides the formalisation of the problem, a preface describing

the problems addressed in this PhD thesis, an abstract description of the

method to achieve the aims of this PhD thesis, a schematic sketch of the

proposed framework modules, and a brief description of each module.

3. Chapter 4 presents the intelligent system for execution simulation in a

dynamic environment.
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4. Chapter 5 presents how planning knowledge is extended using ontolo-

gies and presents a context-aware knowledge acquisition mechanism for

planning applications using ontologies to seize opportunities.

5. Chapter 6 presents the plan commitment repair approach.

6. Chapter 7 presents the concluding remarks of this PhD thesis and the

future research lines.

7. Appendix A presents the case study of using the intelligent system for

execution simulation in a tourism assistant application.

8. Appendix B presents the case study of using the context-aware knowledge

acquisition approach in two applications: a repairing agency application

and a tourist assistant application.

9. Appendix C presents the case study of a complete application as a de-

liberative context-aware ambient intelligence system for assisted living

homes.

1.4 Related Research Activities

The results of this PhD thesis work have given rise to a series of publications

referenced throughout this thesis’s chapters. This section lists the research

activities performed during the development of this PhD thesis, namely, the

related scientific publications and research projects.

6



1.4 Related Research Activities

1.4.1 Publications in Journals

• Babli, M., Ó. Sapena, and E. Onaindia (2023). Plan commitment: Re-

planning versus plan repair. In: Engineering Applications of Artificial

Intelligence. 123, p. 106275. Impact Factor (2022): 8.0, ranks 5/90

(Q1), 1st decile, in the category “ENGINEERING, MULTIDISCI-

PLINARY”.

• Babli, M., J. A. Rincon, E. Onaindia, C. Carrascosa, and V. Julian (2021).

Deliberative Context-Aware Ambient Intelligence System for Assisted Liv-

ing Homes. Human-centric Computing and Information Sciences (HCIS).

Article number: 11:19. Impact Factor (2021): 5.900, ranks 27/164

(Q1) in the category “COMPUTER SCIENCES, INFORMATION SYS-

TEMS”.

1.4.2 Publications in Conferences

• Babli, M. and E. Onaindia (2019). “A context-aware knowledge acquisition

for planning applications using ontologies”. In: Proceedings of the 33rd

International Business Information Management Association Conference,

IBIMA 2019: Education Excellence and Innovation Management through

Vision 2020, pp. 3602–3614. Granada, Spain. CORE B.

• Babli, M., Marzal, E. and E. Onaindia (2019). “On the use of ontologies to

extend knowledge in online planning”. In: Proceedings of the Workshop

on Knowledge Engineering for Planning and Scheduling (KEPS), ICAPS

(2018). pp. 54-61. Delft, The Netherlands.

• Babli, M., Onaindia, E. and E. Marzal (2018). “Extending planning knowl-

edge using ontologies for goal opportunities”. In: Proceedings of the 31 st

International Business Information Management Association Conference,
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IBIMA 2018: Education Excellence and Innovation Management through

Vision 2020, pp. 3199–3208. Milan, Italy. CORE B.

• Marzal E, Babli M, Onaindia E, and Sebastia L. (2017). “Handling

PDDL3.0 State Trajectory Constraints with Temporal Landmarks”. In:

Proceedings of the Workshop on Constraint Satisfaction for Planning and

Scheduling (COPLAS). ICAPS’17. pp. 54-61. Delft, The Netherlands.

CORE B.

• Babli, M., Ibáñez-Ruiz, J., Sebastia, L. Tejero, A. G. and Onaindia, E. (2016).

“An Intelligent System for Smart Tourism Simulation in a Dynamic Envi-

ronment”. In: Proceedings of the 2nd Workshop on Artificial Intelligence

and Internet of Things co-located with the 22nd European Conference on

Artificial Intelligence (ECAI 2016), The Hague, Netherlands, August 30,

2016. Ed. by Spyropoulos, C. D., Pierris, G. and Tzortzis, G. Vol. 1724.

CEUR Workshop Proceedings. CEUR-WS.org, pp. 15–22. CORE C.

1.4.3 Research Project

“GLASS: Goal management for Long-term Autonomy in Smart citieS” under

grants (MINECO TIN2014-55637-C2-2-R-AR) and (TIN2017-88476-C2-1-R)

(Main Researcher: Eva Onaindia). The long-term goal of fully autonomous

systems is a highly ambitious objective for many fields, including artificial

intelligence or robotics. The project’s main objective is to analyse the problem

of goal management for long-term autonomous systems, design appropriate

algorithms for addressing the different components of goal management, and

develop software tools that help the application of this technology to smart

cities tasks.
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2
State of the Art

H
OMO SAPIENS - man the wise - is what we call ourselves

because we value our intelligence. AI is the ability of ma-

chines to use methods based on the intelligent behaviour

typically evident in humans and other animals to solve complex problems.

Defining intelligence as the ability to deal with new situations, solve problems,

answer questions, and design plans (Coppin 2004). In this chapter, we present

the background more closely related to the research lines of this PhD thesis.

2.1 Autonomy

According to (Russell et al. 2020), AI is concerned with understanding and

building intelligent entities —machines that can compute how to act effectively

and safely in a wide variety of novel situations. An agent is an entity that

can perceive the environment through sensors and act through actuators.

9



Chapter 2. State of the Art

On the other hand, a rational agent acts to achieve the best outcome or the

best-expected outcome in the case of uncertainty. A rational agent should be

autonomous —it should learn what it can to compensate for partial or incorrect

prior knowledge.

Whether in open or closed, well-structured environments, autonomously per-

forming tasks require deliberation capabilities to adapt to changing circum-

stances. The work of (Ingrand et al. 2017) conceptually distinguishes six

functions required for successful deliberation: Planning, Acting, Perceiving,

Monitoring, Learning, and Reasoning.

Autonomous behaviour is divided into three approaches (Karpas et al. 2020):

1. The programming-based approach, where there is a human program-

mer manually specifying the agent’s desired behaviour for each possible

scenario.

2. The model-based approach, where the agent uses a world model for rea-

soning about possible courses of action and their effects on the state of the

world. Automated planning is the model-based approach to autonomous

behaviour.

3. The learning-based approach, where the agent learns the correct be-

haviour from experience.

This PhD thesis focuses on the planning-based agent architecture (depicted in

Figure 2.1), where decision-making is split between execution and planning.

More specifically, this PhD thesis is concerned with two aspects that enhance

the agent’s autonomy. The first is our offline processing of the model. The

second is the online execution involving acting, perceiving, monitoring, re-

planning, or repairing. However, to fully understand our methods, we must

10



2.2 Automated Planning

Figure 2.1: A planning-based agent architecture.

first introduce the fundamental concepts of automated planning, execution,

monitoring, failures, opportunities, KR and ontologies.

2.2 Automated Planning

Planning a course of action is a crucial requirement for an autonomous agent

to automatically synthesise plans of basic actions to achieve a high-level goal.

This section contains the state-of-the-art of automated planning, where the key

concepts, formalisations, languages and state-of-the-art planners are presented.

2.2.1 Planning Models and Modelling Languages

Unlike simple problem-solving agents that use atomic representations of the

state of the world, a planning-based agent uses a structured representation

of the world that is visible to the problem-solving algorithm. Most automated

planning algorithms are domain-independent, meaning the same planning

algorithm can solve planning problems from different domains. The input to

the planner is a description of a planning problem to be solved, and the planner

can work in any planning domain that satisfies some simplifying assumptions.

Planning models vary depending on the type of environment, the presence of

uncertainty, the types of goals, the type of actions, and whether the synthesis
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of plans is done offline or online. A brief description of the different model

properties follows.

1. Fully observable vs partially observable environment. In fully observable

environments, the agent planning algorithm has access to the complete

state of the environment at all times, while partial observability may be

due to noisy and inaccurate sensors or because parts of the state are

simply missing or unknown.

2. Deterministic vs non-deterministic environment. The environment is de-

terministic if the current state can determine the next state and the action

being executed. Usually, fully observable environments are deterministic

and partial observability leads to non-determinism. However, it is also

possible that the effects of actions are deterministic, but the environment

is not if the execution environment is dynamic or partially observable.

3. Static vs dynamic environment. If the environment can change while an

agent is deliberating, then we say that the environment is dynamic for

that agent; otherwise, it is static.

4. Sequential vs durative actions. Sequential planning does not allow two

actions to be executed simultaneously. Temporal planning uses durative

actions that span over time and allow concurrency and parallelism.

5. Discrete vs continuous numeric actions’ effects. Discretised effects mean

the change occurs on the endpoints of the period over which an action

takes place. In contrast, continuous numeric action effects involve dealing

with the continuous change of time-dependent numeric variables.
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6. Hard vs soft goals. An agent may have hard goals, which are unavoidable

and must be met for a plan to be valid, or soft goals, which are desirable

but have no bearing on the plan’s success.

7. Offline vs online planning. Offline planning is used for static, known

environments with available models. In contrast, online planning uses

execution monitoring and replanning or repairing to recover from failures

due to non-deterministic actions, unexpected events in the dynamic execu-

tion environment, or incorrect models. Online planning may return action

at each iteration or be viewed as offline planning then online execution.

Different formalisms can be used for describing planning problems. Classical

planning is the simplest type of planning model. The different formalisms

compactly describe a transition system consisting of a set of possible states of

the world, a set of possible transitions between these states, an initial state,

and a set of goal states. A plan is a sequence of transitions that leads from the

initial state to some goal state. Different formalisms differ in how exactly they

represent this transition system.

The basic language for modelling planning problems is the input language to

the Stanford Research Institute Problem Solver (STRIPS) (Fikes and Nilsson

1971). STRIPS declares actions using preconditions and effects. In STRIPS,

a set of Boolean propositions describes the possible states, where a state is

represented by the set of all propositions that hold in that state. Transitions

are achieved by actions, where each action has preconditions, add effects,

and delete effects. An action can be applied in a state if its preconditions

are contained in the current state, leading to a state equal to the current

state minus the delete effects plus the add effects. Finally, the goal states are

represented by a set of facts, where a state satisfies the goal if and only if the

goal facts are contained in that state.
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Inspired by STRIPS, the PDDL (McDermott et al. 1998) was created to facil-

itate comparing the performance of different planners in the context of the

International Planning Competition (IPC). PDDL provides more flexibility and

expressiveness for modelling planning problems.

In this PhD thesis, we follow a temporal planning model, which can be solved

with methods similar to classical planning where actions are durative and de-

terministic, and the planning tasks is represented in PDDL. On the other hand,

we allow the execution environment to be dynamic and partially observable,

and we deal primarily with hard goals. The following section explains the PDDL

representation and versions.

2.2.2 The PDDL Representation and Versions

PDDL divides the definition of a planning problem into two parts: the domain

and the problem. The planning domain characterises the behaviour of the

planning task and is a fixed description of what the planner can do to achieve a

set of goal conditions starting from an initial state. In contrast, the planning

problem varies depending on the particular problem to be solved. Basic PDDL

can handle classical planning domains, and extensions can handle non-classical

domains that are continuous, partially observable, concurrent, and multi-agent.

The PDDL Versions

As planning has evolved, so has PDDL since its birth in 1998. Different versions

of PDDL allow different levels of expressivity. Here follows a brief summary of

each version:

1. PDDL version 1.2 (McDermott et al. 1998), used in 1st and 2nd IPC, is the

basic syntax supported by planners and is primarily driven by concepts
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set out for STRIPS. The language also supports some of the features of

the Action Description Language (ADL) (Pednault 1989) in addition to

conditional effects.

2. PDDL version 2.1 (Fox and Long 2003) was released in 2002 as the

language of the 3rd IPC to deal with the challenges related to features

of both temporal and numeric considerations. Such as durative actions,

numeric fluents and plan metrics to optimise the plan where goals alone

are not enough to generate the desired high-quality behaviour.

3. PDDL version 2.2 (Edelkamp et al. 2004) was released in 2004 as the

language of the 4th IPC. PDDL 2.2 introduced two new concepts, derived

predicates for creating simple reusable predicates and timed initial liter-

als (TILs) to model expected exogenous events that occur at a specified

moment of time, deadlines, or time windows.

4. PDDL version 3.0 (Gerevini and Long 2005) was released in 2006 and used

in the 5th IPC. PDDL 3.0 introduced soft and state-trajectory constraints

to AI planning. A soft constraint or a soft goal is a preference that we

would like to satisfy, and if it is not possible, the plan is still valid, but

it incurs a penalty. Preferences help differentiate the relative quality of

different plans. On the other hand, state-trajectory constraints assert

conditions that must be met by the entire sequence of states visited during

the execution of a plan.

5. PDDL version 3.1 (Kovacs 2011) was proposed in 2008 and used in the

6th and 7th IPC in 2008 and 2011, respectively. PDDL 3.1 introduced

object fluents where functions range could also be an object type.

In addition, there are other variations of PDDL, such as: PPDDL to model

probabilistic environments, MAPL and MA-PDDL for Multi-Agent Planning
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and PDDL+ (Fox and Long 2002), to model processes that run over time and

continuously affect numeric values, and events that are an instantaneous

version of processes expressing uncontrollable change in the world.

There are several widely known planning tasks in the planning community,

such as the domains that simulate tourists visiting points of interest, package

delivery logistics, satellite observations, or rovers navigating a planet’s surface.

In the following two subsections, we will show an example from the Driverlog

domain to demonstrate the modelling process in PDDL 2.2. The Driverlog

domain has drivers that can walk between locations and trucks that can drive

between locations. The trucks can be loaded or unloaded with packages, and

the goal is to transport packages between locations.

The PDDL Domain

The planning domain describes the knowledge common to all problems that

the domain can solve. The PDDL domain:

1. Is defined by a name. E.g., (define (domain driverlog)...).

2. Has a finite set of requirements, E.g., (:requirements :typing

:durative-actions :fluents :timed-initial-literals).

3. Has a finite set of types defined in a reasonable hierarchy, as shown in

Figure 2.2, to describe the type of objects the problem may have.

4. Has a finite set of Boolean variables (predicates), as shown in Figure 2.3,

which describes the properties or relationships associated with a type.

5. Has a finite set of definitions of function variables, as shown in Figure

2.4, mapping to a numerical rational value.
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( :types

location locatable − object

agent vehicle deliverable − locatable

driver − agent

truck − vehicle

package − deliverable )

Figure 2.2: Hierarchy of types of the Driverlog domain. Types situated on the left are

subtypes of the types on the right.

( :predicates

( at ?x − locatable ?y − location )

( in ?x − deliverable ?y − vehicle )

( driving ?x − agent ?y − vehicle )

(empty ?x − vehicle ) )

Figure 2.3: Predicates of the Driverlog domain.

( :functions

( duration-driving ?x − location ?y − location )

(duration-walking ?x − location ?y − location )

(duration-load-unload ?x − deliverable )

(duration-board-disembark) )

Figure 2.4: Function variables of the Driverlog domain.

6. Has a finite set of operators (action schemas) representing operations

that can be performed, e.g., drive-vehicle shown in Figure 2.5.
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The operator consists of the operator name, a list of all the parameters

used in the operator, a set of condition that needs to hold at start, at end

or overall of the action, and a set of effects that takes place at start or

at end of the action. Instantiating operators with the problem objects

generates the set of actions.

( :durative−action drive-vehicle

:parameters (?a − agent ?t − vehicle ?l1 ?l2 − location )

:duration (= ?duration ( duration-driving ?l1 ?l2 ) )

:condition (and

(at start ( at ?t ?l1 ) )

(at start ( driving ?a ?t ) )

(over all ( driving ?a ?t ) )

(at end ( driving ?a ?t ) ) )

:effect (and

(at start (not ( at ?t ?l1 ) ) )

(at end ( at ?t ?l2 ) ) ) )

Figure 2.5: Durative operator drive-vehicle of the Driverlog domain.

The PDDL Problem

The planning problem represents a particular problem instance to be solved.

The PDDL problem contains; a set of objects which are instances of the defined

types in the domain; the initial state characterised by the known values of both

the finite set of propositional state-facts and the finite set of numeric state

variables; and a set of goals as instantiated predicates conditions that need to

be satisfied by the plan. In addition, the PDDL problem may contain a metric

to be optimised. PDDL uses the closed-world assumption, which means that
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fluents (aspects of the world that change over time) that are not known to be

true are considered false. Figure 2.6 shows an example of a problem encoded

in PDDL2.2 of the Driverlog domain.

(define (problem dlog-1)

(:domain driverlog )

( :objects

driver0 − driver

truck0 − truck

package0 − package

s0 s1 − location )

( : init (empty truck0) ( at driver0 s0) ( at package0 s0)

(= (duration-walking s0 s1) 800) ( at 5 ( at truck0 s0 ) )

(= (duration-walking s1 s0) 800)

(= (duration-driving s0 s1) 200)

(= (duration-driving s1 s0) 200)

(= (duration-load-unload package0) 20)

(= (duration-board-disembark) 10))

( :goal (and ( at package0 s1 ) ) )

( :metric minimize (total−time ) ) )

Figure 2.6: Example of a problem encoded in PDDL2.2 of the Driverlog domain.

2.2.3 Planning Systems

After explaining the models and modelling languages typically used for plan-

ning, we move to the planning algorithms. Planning systems are classified

according to the direction of the heuristic-based search algorithm they run

while exploring the search space to provide plans. Planners can perform a for-
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ward search starting from the initial state towards the goal state (progression

search), a backward search starting from the goal state towards the initial state

(regression search), or a bidirectional search where forward and backward

search are interleaved to find a solution.

There are several planning systems, many of which have participated in differ-

ent IPCs. The Heuristic Search Planner (HSP) (Bonet et al. 2001) is one of the

first state-based systems which uses domain-independent heuristic search. The

heuristic function for solving a problem is obtained by relaxing the problem by

ignoring all delete effects. A relaxed plan is solved when every goal proposition

has been added by some action.

Like the HSP system, Hoffman presented Fast-Forward (FF) (Hoffmann and

Nebel 2001), which relies on a forward state space search, using a heuristic that

estimates goal distances by ignoring delete lists. FF identifies the potentially

most promising successors and introduces the added goal deletion heuristic to

inform the search about goal orderings.

LPG (Gerevini, Saetti, et al. 2003) is a domain-independent planner for temporal

planning in domains specified with PDDL2.1 that was awarded for outstanding

performance of the first order at the 3rd IPC. LPG supports durative actions

and numerical quantities and is based on a stochastic local search method and

on a graph-based representation called temporal action graphs, where action

nodes are marked to estimate the earliest time when the corresponding action

terminates. In contrast, fact nodes are marked to estimate the earliest time

when the corresponding fact becomes true.

LPG-td (Gerevini, Saetti, et al. 2006) is a prize winner in the temporal track of

the 4th IPC in domains involving "Timed Initial Literals" and in plan quality

(satisficing planning track). LPG-td is a new version of LPG that extends and

improves its previous version to handle PDDL2.2 TILs and derived predicates.
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A temporally-disjunctive action graph represents the causal structure of the

plan (TDA-graph). Action ordering and scheduling constraints are managed

by efficient constraint-based reasoning, and the plan search is based on a

stochastic local search procedure.

Fast Downward (FD) (Helmert 2006) is a classical progression planner based

on the heuristic search that has proven remarkably successful and won the

classical track of the 4th IPC. FD can deal with general deterministic planning

problems encoded in the propositional fragment of PDDL2.2. It uses hierarchi-

cal decompositions of planning tasks for computing its causal graph heuristic

function. The heuristic evaluator proceeds starting from top-level goals, and

the algorithm recurses further and further down the causal graph until all

remaining subproblems are basic graph search tasks.

Due to its performance, FD has inspired several other planners, such as LAMA

(Richter et al. 2010), which showed the best performance among all planners in

the sequential satisficing track of the 6th IPC. LAMA uses a temporal landmarks

heuristic of propositions that must be true in every solution of a planning task.

Partial-Order Planning (POP) is another paradigm in planning based on the least

commitment principle (Weld 1994) to represent plans as a partially ordered

sequence that enables deferring decisions about the order of the actions and

the value of the variables as long as possible during the search, instead of

committing prematurely to a complete totally ordered sequence of actions.

Originally POP started as regression and moved to progression, which allowed

combining partial-order reasoning with an explicit representation of states and

using state-based heuristic functions. Examples of temporal POP planners are

OPTIC (Benton et al. 2012), SGPlan (Chen, Wah, et al. 2006), and FLAP (Sapena,

Onaindia, and Torreño 2015).
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Optimising Preferences and Time-Dependent Costs (OPTIC) (Benton et al. 2012)

is a temporal planner for problems where preferences or time-dependent goal-

collection costs determine the plan cost. OPTIC stands out for the high speed of

building successor states and the domain-independent heuristics it employs

in many planning domains. At each state, OPTIC records what actions achieve,

delete and depend on each fact, to apply time constraints only if necessary to

ensure that preconditions are met. Additionally, to reduce search overhead,

parameters are bound, and some ordering constraints are committed eagerly.

Hierarchical planning involves decomposing a task into more minor tasks or

activities at every lower level; hence the computational cost of finding the best

arrangement is less (Tate 1976). Instead of finding a path to a goal state, a

Hierarchical Task Network (HTN) planner produces a sequence of actions that

perform some activity or task. The Planning operators (actions) and methods

prescribe how to break down a task into its subtasks, and a partially-ordered set

of tasks to be accomplished exists instead of a goal formula. During planning,

tasks are recursively decomposed into subtasks until primitive tasks can be

performed directly using planning operators. The SHOP2 planner (Nau et al.

2003), developed at the University of Maryland and further enhanced into

SHOP3 (Goldman and Kuter 2019), is considered one of the most mature and

comprehensive HTN implementations.

In this PhD thesis, we use LPG-td and OPTIC. They are chosen because they can

both handle PDDL2.2 and OPTIC can handle PDDL3.0.

Through the organisation of meetings, including the annual International Con-

ference on Automated Planning and Scheduling (ICAPS) conference, since

its creation in 1998, the IPC has strived to advance automated planning and

scheduling, assess state of the art in the field, and coordinate new challenging

benchmarks. As part of the evaluation of planning approaches, the validity of
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the plans is checked using VAL: The Plan Validator from the IPC (Howey et al.

2004b). VAL is an automatic validation tool For PDDL, including PDDL3 and

PDDL+, for parsing and type-checking domains, problems, and plans before

confirming that plans are valid. Furthermore, the plans are evaluated accord-

ing to three metrics: coverage, quality, and time spent on generation. Coverage

refers to the number of problems solved per domain. Plan quality refers to the

length of the plan or the sum of the costs of all actions.

Planning deals with the task of generating plans to be later executed. The

execution system applies the plan and also monitors the new states. The

following section will discuss plan execution and its vital role in successfully

applying planning systems in real-world environments.

2.3 Plan Execution Monitoring

While state-of-the-art planners are very effective, they focus mostly on closed

environments. Several thorny issues arise when implemented in real-world

open environments. Particularly, the environment’s partial observability, non-

determinism and unexpected changes can affect the system’s success. Three

trivial approaches for making closed-world planners adapt to the dynamic

environment (Talamadupula, Benton, et al. 2010) are; assuming that the world

is closed, attempting to close the world by obtaining all the missing knowledge

before planning or incorporating all contingencies before planning. The first

will result in frequent replanning, the second requires sensing sweeps and is

infeasible, and the third requires the designers to anticipate and design every

possible contingency.

The execution of a plan allows its actions to be carried out. It plays a crucial

role in the effectiveness of planning systems since it determines whether the
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execution is going smoothly and how to respond if it is not. Discrepancies

indicate anomalies or differences between what the agent expects and what it

experiences. Agents apply discrepancy detection during execution monitoring

as a first step for adapting successfully to dynamic environments. Discrepancy

detection during plan execution is a crucial mechanism by which an agent

knows something unexpected has occurred.

In the literature, execution monitoring and discrepancy detection often go

hand in hand with failure detection, replanning, goal generation and sometimes

opportunities. First, we will describe the main approaches to monitoring.

Russel et al. (2020) describe three approaches for monitoring during plan

execution (Russell et al. 2020):

1. Action monitoring, where the agent lazily verifies that all action conditions

hold only immediately before the action is executed.

2. Plan monitoring, where the agent verifies before executing an action that

the remaining plan will succeed.

3. Goal monitoring, where the agent checks if it could achieve a better set

of goals before executing an action.

The survey (Vattam et al. 2013) describes five approaches for monitoring:

1. Plan monitoring: the agent monitors the execution of the plan by assessing

whether its remaining actions’ preconditions have been met in the current

state or achieved as a result of a previously planned action.

2. Periodic monitoring: the agent may monitor the entire environment rather

than focus exclusively on the current plan and execution.
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3. Expectation monitoring: the agent utilises past experiences to build

models or expectations that can be used to monitor certain aspects of the

environment.

4. Domain-specific monitoring: the agent implements domain-specific mon-

itoring strategies, which periodically test the values of specified state

variables during the execution of a plan when it is difficult to predict

future states.

5. Object-based monitoring: Object-based monitoring systems specify which

types of new objects should be considered as discrepancies.

2.4 Survival of the Agent, Failures and Opportunities

Table 2.1 lists several works from the literature and specifies their classification

from a monitoring perspective and the purpose of each work. Follows an

overview of these approaches and how they build on discrepancy detection

to either avoid, detect or predict a failure, repair or replan after a failure,

generate a goal or seize an opportunity.

Based on hard-coded expectations for the agent, Rao and Georgeff (1995)

describe an air traffic management system in which discrepancy detection is

performed as periodic domain-specific monitoring by sampling the environment

to reassess its current course of action. The actions selection function is re-

applied after observed events (similar to replanning) to adjust the goals in

response to real-time changes (Rao et al. 1995).

The agent in (Norman et al. 1995) performs periodic domain-specific monitoring

by observing the environment variables that may cause an alternative goal to be

generated and periodically evaluates a function that, if it exceeds a threshold,
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Table 2.1: Approaches to Monitoring

Papers Monitoring Approach Purpose

(Rao et al. 1995) Periodic Replanning

(Norman et al. 1995) Periodic Goal generation

(Cox 2007) Domain-specific Goal generation

(Dannenhauer and Muñoz-

Avila 2013), (Dannenhauer

and Muñoz-Avila 2015)

Domain-specific Goal generation

(Ayan et al. 2007) Plan monitoring Replanning

(Klenk et al. 2013), (Wilson

et al. 2013), (Powell et al.

2011)

Plan monitoring Goal generation

(Fox, Gerevini, et al. 2006) Plan monitoring Plan repair

(Hanheide et al. 2010),

(Hawes et al. 2011)

Object based Goal generation

(Coddington et al. 2005) Object based Goal generation

(Talamadupula, Benton, et

al. 2010)

Object based Opportunistic

(Cashmore et al. 2018) Object based Opportunistic

(Reiterer et al. 2017) Object based Opportunistic

(Borrajo et al. 2021) Plan monitoring Opportunistic

the generated goal gets activated. So it avoids reaching a state that suffers a

failure to operate continuously and independently.

The initial introspective cognitive agent INTRO (Cox 2007) for story under-

standing uses domain-specific expectation monitoring to determine its own

goals by interpreting and explaining unusual events. If something anomalous is
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detected, the system will explain it and integrate it into the current understand-

ing of the story. INTRO generates two types of goals: reducing dissonance

between what is expected and what is observed and reducing the likelihood of

repeating the reasoning failure.

In (Dannenhauer and Muñoz-Avila 2013), the authors presented LUiGi, an

agent that generates goals in the Starcraft strategy game in order to operate

continuously and independently. Using domain-specific expectation monitor-

ing, the failure is detected when inferred facts are not consistent with the

expectations of current actions. The agent is instructed to pursue a goal based

on explaining the inconsistency and rules that specify which goals should be

pursued under what circumstances. The approach was further enhanced in

LUiGi-H (Dannenhauer and Muñoz-Avila 2015); it became (1) hierarchical to

reason with expectations, discrepancies and explanations at varying levels of

abstraction and (2) case-based by referring to a predefined library of plans

annotated with expectations.

In the context of simulated noncombatant evacuation operations for dynamic

environments, the hierarchical ordered task replanning system HotRide (Ayan

et al. 2007) employs plan monitoring, specifically, action monitoring. When an

action fails, a dependency graph identifies which task decompositions are no

longer valid and must be replanned.

ARTUE (Klenk et al. 2013), M-ARTUE (Wilson et al. 2013) and T-ARTUE (Powell

et al. 2011) are three systems that generate alternative goals to avoid failures

for strategy simulation relying on plan monitoring. In particular, they mon-

itor immediate expectations to identify discrepancies using a set difference

operation between the expected and observed states. ARTUE uses manually

constructed rule-based goal creation. M-ARTUE utilises domain-independent
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heuristic goal creation. T-ARTUE learns goal creation interactively from hu-

mans through queries, criticism and case-based.

The study by (Fox, Gerevini, et al. 2006) employs plan monitoring to identify

discrepancies between the expected value of the state and its observed value

arising from uncontrollable characteristics of the domain. The work involves

repairing a plan after a failure while preserving the original plan to produce a

stable repaired plan.

Dora the explorer (Hanheide et al. 2010; Hawes et al. 2011) is a framework

for goal generation and management. To detect discrepancies, Dora deploys

object-based domain-specific monitoring techniques to detect faults or gaps in

the system knowledge base where the discovery of new objects may interrupt

the execution of the plan and create new goals. A number of active processes in

Dora keep track of the system’s state (both the external world and the internal

representations). The system has encoded motivators for generating goals

relating to exploring newly detected rooms and determining their functions.

The Madbot (Coddington et al. 2005) is a motivated and goal-directed robot

that uses object-based domain-specific monitoring that permits new goals to

be formed at any time. If a new goal is generated, it is passed to the planner,

and the planner subsequently replans, taking into account both the remaining

current plan and the new goal.

As demonstrated in the studies in this section, arguably the most important

part of the planning systems is the execution monitoring component which

detects anomalies and then triggers replanning. Replanning is widely used

to recover from a failure or respond to dynamic environment changes in real

time after generating a goal, thus allowing the agent to function continuously

and independently. Responding to opportunities, on the other hand, requires a
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different approach. The following studies are noteworthy since they emphasise

the importance of seizing opportunities.

The opportunistic planning approach in (Talamadupula, Benton, et al. 2010)

for urban search and rescue operations generates plans to locate objects

(the victims) that are unknown before execution. The discovery of objects

triggers goal generation and replanning. The system uses object-based domain-

independent monitoring as new objects and facts may be brought to light

through either external sources like the mission commander or action execution.

The system incorporates knowledge about how new objects may be detected

and uses the notion of open-world quantified goals to specify rewards for open

sets of objects.

Using opportunistic planning, the authors in (Cashmore et al. 2018) employ

object-based domain-independent monitoring to monitor instances of objects

of a particular type that may exist at random locations and offer high re-

wards if certain operations are performed. The authors’ approach is domain-

independent and includes an example application about executing a plan by an

autonomous underwater vehicle (AUV). The vehicle may experience an unex-

pected event during a mission, such as detecting partially submerged anchor

chains or other structures; therefore, it can perform unplanned inspections or

chain-following activities to enhance the utility of the operation. Opportunity

goals do not require the planner to incorporate probabilities. They may be

described as dynamically occurring soft goals that can be managed without

modelling or anticipating them. An opportunistic goal is generated when a

new object is found, and replanning is performed. By adopting conservative

planning methods, the authors exploit classical planning techniques while

simultaneously considering the unseen stochastic nature of the execution envi-

ronment so that well-researched methods in temporal-metric planning may be

utilised.
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The work of (Reiterer et al. 2017) illustrates another opportunistic planning

approach with robot safety recovery. Despite the domain independence of

object-based monitoring, the opportunistic approach may require tailoring for

different domains. The authors use opportunity templates (OT) to originate

from PDDL actions and add a plan fragment consisting of parametrised actions

that can have parameters matching the parameters of the OT and are therefore

assigned values during the decision process. As part of a safe fallback plan,

pessimistic assumptions are used for all safety-related variables to ensure

that only safe actions are included in the plan. In execution, the main plan

is checked against the available OTs according to a series of semantic steps

tailored to this domain (other OTs may require considering different semantics).

The semantic steps encompass checking that the opportunity conditions hold in

the current state, checking whether effects break any conditions for the actions

of the main plan, estimating the recovery period, the recovery policy with time

and resources, and evaluating the utility against a cost function). Failure of

any semantic step causes the opportunity candidate to be dropped. Recovery

from failed opportunities involves enriching each candidate with a recovery

policy that maps each opportunity state to a recovery plan that leads to the

main plan; however, no evaluation or validation has been shown.

Planners focus on the given initial state; hence, they do not consider alternative

scenarios. However, during the execution in real-world dynamic environments,

finding an object that was not present during planning can make executing the

existing plan non-rational. Such as when a series of actions of the existing plan

is to obtain a key, and a spare key is found during execution. A more recent and

different take on opportunities is presented in (Borrajo et al. 2021) for comput-

ing opportunities to augment plans for novel replanning during execution. The

authors differentiate replanning from opportunities (replanning-O) from typical

replanning from failures (replanning-F). A plan-based opportunity o is a static
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condition of action a not in the plan that achieves an effect that is also achieved

by some other action a0 in the plan. So, if o is true, the planner could use a

instead of a0 in the plan. The authors utilise plan monitoring (goals-regression

expectations), and even more importantly, they propagate opportunities back

through the plan. Monitoring such opportunity facts does not result in a goal,

nor is there is any failure in the plan, but rather, if the opportunity is captured

and a new plan is generated, it will result in more intelligent behaviour than

that of the old plan in light of the new environment change.

We have reviewed the related state-of-art in planning and execution monitoring

and how it enables the agent to handle failures, generate goals and seize

opportunities. In the next section, we move to KR and its role in autonomous

agents.

2.5 Knowledge Representation

In light of the adaptive nature of human intelligence and as envisioned in

(Berners-Lee et al. 2001), researchers from both industry and academia in-

vestigate the development of autonomous agents that can work in harmony,

coordinate searches and results retrieval and significantly reduce users’ efforts.

Focusing on developing systems that incorporate knowledge to reason based

on that knowledge, solve problems and mimic human behaviour. An explicit

and symbolic representation of domain knowledge characterises most such

systems, including those reviewed in the previous sections. Such symbolic

representation of knowledge has the advantage of being decoupled from the

procedural aspects of its application, and it can, therefore, be reused across

multiple agents. A fundamental rationale and role for such representation

are that it is a surrogate for the things that exist in the world and is used for

reasoning (Davis et al. 1993).
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In its narrow view definition, KR is an area of AI that is concerned explicitly with

representing information about the world in a format that agents can use to

solve complex tasks. However, any AI system may be called a knowledge-based

system when it has the following: (1) declarative knowledge; a knowledge base

that might include facts, rules, representation formalisms, and different types

of knowledge, and (2) procedural knowledge; an inference algorithm that might

be a deduction, non-monotonic or probabilistic reasoning, abduction, or even

planning.

2.5.1 Knowledge Representation Forms

The KR forms are divided into four categories (Patel et al. 2018): network-based

representation (semantic network), structure-based representation (frame-

based), production rule representation, and logical representation.

In network-based representation, knowledge is structured into semantic groups

to provide a natural means of mapping knowledge between natural language

and these networks. Capturing the semantics graphically as a directed or undi-

rected graph consisting of vertices representing concepts (with no distinction

between individuals and classes) and edges representing semantic relations

between concepts (Deliyanni et al. 1979).

Derived from semantic networks, the frame-based representation was coined

by Marvin Minsky in 1975 to represent stereotypical situations. However,

the emphasis does not lie on vertices but on instances or classes and slots

(properties) and their fillers (values) as opposed to links and connections, in

addition to inheritance through which values in frames are transferred from

classes to instances (Minsky 2019).
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Emil Post invented production systems that process strings using rules to create

new strings (Mol 2006). Production rule-based representation represents

knowledge in terms of multiple rules (productions) that specify what should

be concluded in different situations. Productions consist of two parts: a

precondition (or "IF" statement) to be matched and an action (or "THEN"). This

type of representation provides modularity and explainability and is similar to

human cognition.

In a logical representation, logic is used to formalise the facts representing

the world, establish unambiguous semantics, and for computational purposes.

Under the logic-based representation category, there are several types of logic,

such as predicate logic, Description Logic (DL), and proposition logic. As its

name suggests, DL is aimed to describe the important notions of a domain

using concept descriptions (expressions built from atomic concepts, unary

predicates, and atomic roles), and to overcome the deficiency encountered

in frames and semantic networks as they lack formal logic-based semantics

(Baader et al. 2008).

The semantic web, in essence, refers to the field of research that focuses on

creating and maintaining the semantic web (as an artefact), as well as all the

tools and methodologies necessary to accomplish these tasks and for appli-

cation (Hitzler 2021). The semantic web artefact perspective can be traced

back to 2001 and is envisioned as an enhancement of the current web, where

information is given well-defined meaning so that it can be shared and reused

across computer systems, enabling people and computers to cooperate better

(Berners-Lee et al. 2001). Natural languages are not suitable for creating mo-

dels that can be understood by computers and software agents, since they are

too ambiguous; therefore, formal machine-interpretable metadata languages

are used to store and retrieve resources in the semantic web (Maedche et al.

2001). Several languages were created to encode the metadata, all based on
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the World Wide Web Consortium (W3C) specifications, such as the Resource

Description Framework (RDF) (Klyne 2004) that was adopted as a W3C rec-

ommendation in 1999 and Web Ontology Language (OWL) (Horrocks et al.

2003).

2.5.2 Ontologies

For most of the 2000s, work in the field had the notion of ontology at its

centre, acting as the backbone of the semantic web; reusable ontologies serve

as a foundation to integrate, share, and discover knowledge (Hitzler 2021).

Perhaps the most quoted definition in the literature and the ontology community

is Thomas Gruber’s definition; "An ontology is an explicit specification of a

conceptualisation" (Gruber 1995).

Table 2.2 summarises the history of ontologies as described in (Gómez-Pérez

et al. 2004), coinciding with the recent review study (Machado et al. 2020),

starting as philosophies of ancient Greek and reaching today’s term in the

context of information systems, which is focused on concrete problems of

modelling domains of knowledge in computational artefacts (Poli et al. 2010).

Agents need knowledge about the world to reach sound decisions and act

intelligently. In order to establish an agreement on the meaning of terms, an

ontology language is employed to conceptualise the domain while separating

knowledge from the procedure. This facilitates the collection and sharing

of knowledge by multiple agents. The terminology may vary depending on

the ontology language; generally, an ontology consists of classes to represent

concepts, individuals who are particular instance entities belonging to specific

concepts, and properties to describe the possible relations between individuals

and axioms to state what is true in an ontology.
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Table 2.2: Points in the History of Ontology

Time Description

Ancient Greek Philosophies of Being and the differentiating between the

essence and the existence.

Middle ages Universals and symbolic paradigm (William of Ockam).

Modern age Copernican turn, the essence is determined not only by the

thing itself but also by the contribution of whoever perceives

and understands them. Emmanuel Kant (1724-1804)

Present An important research in computer science as the systematic,

formal, axiomatic ontological engineering, where an ontology

consists of a generalisation/specialisation hierarchy of concepts

and relationships meant to describe facts about the real world

(Cocchiarella 2007; Guarino et al. 2009)

2.5.3 Ontologies and Autonomous Agents

Several rich review articles discuss in-depth literature about knowledge and

ontologies for intelligent agents, such as (Thosar et al. 2018; Paulius et al. 2018;

Alarcos et al. 2019). This subsection overviews relevant research on ontologies

for autonomous agent applications and how ontologies support autonomy.

In the work of (Bouguerra et al. 2007), semantic domain knowledge is applied to

interleave planning and execution to validate the effects of actions (information

gathering, planning, and execution). Expectations of the current location

are derived where unpredictable and complex situations are handled during

run-time. Based on DL, a language with ontology-like syntax is used to define

concepts, relations and assertions, specify constraints on relations and concepts

and express assertions about individual objects.
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Using the SemantiCore framework (Blois et al. 2007), developers can build

semantic applications without having to deal with all the implementation details

involved. SemantiCore uses an OWL ontological representation that maps all

the elements an agent has, including concepts and instances, providing rich

knowledge that can be used to reason about itself and other agents in the

domain.

In LUiGi (Dannenhauer and Muñoz-Avila 2013), an agent with ontological

representations using OWL formalism maintains an ontology of both low-level

facts about the environment as well as high-level concepts that can be derived

from the low-level facts. Using the ontology, Starcraft maps’ regions can be

classified as controlled, contested, or unknown. At any given moment, the

ontology represents the state of the game, and the objective is to defeat the

opponent using pre-designed strategies. The ontology is used to derive rich

expectations during execution monitoring and to generate explanations of

anomalies.

KnowRob 2.0 (Beetz et al. 2018) is an advanced KR system for robots designed

to make decisions about parameterising motions to achieve manipulation duties.

A unique feature of this framework is that its data structures, representations,

and parameters are driven by the associated axiomatisations of the ontology

encoded in OWL, allowing the robot control system to use the ontology as a

symbolic knowledge base. KnowRob ontology defines robots, objects, tasks,

situational context and environment and is critical to grounding its concepts

in perception, reasoning, and control. The robotic agent can infer knowledge

about entities, like dirty dishes belonging in the dishwasher and perishables in

the refrigerator.

An OWL ontology is adopted as the basis for declarative KR of an intelligent

system, named the skill server (Haage et al. 2011), capable of supporting
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automatic and semi-automatic reconfiguration of manufacturing processes.

The KR of the ontology is centred around the concepts of devices and skills as a

static part, whereas tasks can be seen as combinations of skills and reasoning

is used about skills matching particular tasks.

The Perception and Manipulation Knowledge (PMK) ontological-based rea-

soning framework (Diab, Akbari, et al. 2019) acts as a knowledge base to

enhance task and motion planning (TAMP) in autonomous robots. It reasons

for perception, object features, the situation, and planning. The ontology was

implemented using OWL. For perception, a sensing class represents knowl-

edge of sensors, measurement processes, and their relation with the robot. For

planning KR, symbolic tasks are defined in level-three (Tasks), composed of

level-two simpler actions (Sub-Tasks), and level-one includes primitive actions,

preconditions, conditions, and atomic functions.

The work of (Bruno et al. 2019) seeks to support active and healthy ageing

and reduce caregiver burden by developing culturally sensitive and competent

elder care robots. Knowledge is primarily represented by ontologies using OWL

2 formalism (Group et al. 2009) to enhance robot task planning and execution

and human-robot interaction. In the cultural knowledge base ontology, the

TBox consists of classes and properties (data properties relating instances of

a class to literal data and object properties relating instances of a class to

other instances). In contrast, instances of classes and properties are stored

in the ABox. The relationship between the TBox and the ABox of the ontology

consists of culture-generic knowledge (TBox - I) for all cultures of the world,

national culture-specific settings (CS-ABox - II), Person-specific settings (PS-

ABox - III), and an assessment and adaptation algorithm for the discovery of

person-specific settings.
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2.5.4 Ontologies and Planning

Knowledge enhances planning and robot capabilities, giving more autonomy to

the robots in solving challenging problems. The work of (Bermejo-Alonso 2018)

presents a review of existing tasks and planning vocabularies, taxonomies and

ontologies as a necessary first step in an ontology engineering process that

addresses the autonomous system planning needs. Typically ontologies are

used with automated planning, primarily not to perform planning as scaleable

and efficient AI planners do per se but rather to enrich, facilitate some planning

decisions and extend the planning and execution experience. Most notably,

utilising ontologies with planning shines in formalising the knowledge of a

specific domain, such as in (Teixeira et al. 2021), detecting discrepancies

and filling knowledge gaps, such as in Dora the explorer (Hanheide et al.

2010; Hawes et al. 2011), failure explanation and recovery such as in LUiGi

(Dannenhauer and Muñoz-Avila 2013; Diab, Pomarlan, et al. 2019), and finding

missing connections (conditions) of actions in restricted-size problems (Beßler

et al. 2018). This subsection presents several notable works from the literature

on using knowledge with planning.

For assembly manipulation tasks, the authors of the work (Diab, Pomarlan,

et al. 2019) describe their ontological formulation that provides a common

understanding for the robot to interpret the causes of the failures in automated

planning and execution. By querying their proposed ontology, the agent can

analyse the cause by interpreting the failure and deciding on the following

action or generating intermediary goals. Their technique for static analysis

works if the tasks are appropriately characterised in detail, each task concept

must have sufficient axioms to define it, as well as object concepts restricting

what may participate in a task. The reasoning process can only be done

within some models of the world. The reasoner would be required to find a
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model for an example event to find which failure symptom is possible for each

task. Queries would be run for every pair of named task and failure symptom

concepts in an ontology, as failure recovery is essential for automated planning

and execution.

Dialogue trees are time-consuming to build when dealing with complex health

issues. In addition to domain knowledge, this requires expertise in dialogue

modelling and AI planning, which is not frequent among dialogue authors,

limiting the adoption of such a powerful approach. Hence, AI planning can

benefit from formalising the knowledge of a specific domain using ontologies

to build an efficient policy (a plan). The work of (Teixeira et al. 2021) proposes

an early-stage approach for domains with limited complexity to automate the

generation of a dialogue manager capable of handling goal-oriented dialogues

for the health domain. Their system integrates a conversational ontology

(Convology) and AI planning. Where their dialogue manager uses questions

and obtains answers from the patients filling values in the ontology, a translation

is done to a PDDL domain and a problem so that a state-of-the-art (domain-

independent) planner can compile it.

A logic-based planner for assembly tasks is combined with geometric reasoning

capabilities to enable robots to perform their tasks under spatial constraints

in cluttered environments (Beßler et al. 2018). The geometric reasoner is

integrated into logic-based reasoning by using decision procedures associated

with symbols in several ontologies (assembly, action, and planning ontologies).

In the planning process, individuals in the knowledge base are compared to

their terminological model, inconsistencies are found, and action items are

developed to resolve them according to OWL entailment rules; this means iden-

tifying what information is missing or false about an individual. For example, if

the asserted type of an entity is a car, the planner will create action items to

add wheels if such an entity does not have them. Knowledge-based reasoning
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determines whether an individual fulfils the criteria for membership in the

classes to which it belongs, identifies individuals based on their relationships

with others, and identifies a set of individuals linked by specific properties. RDF

triple stores are queried to determine whether appropriate triple assertions

have been made or can be inferred. The system is domain-independent and

specifically targets assembly problems. An evaluation was performed in a toy

plane assembly targeted at 4-year-old children with 21 parts; however, no

performance metrics were presented, and scalability was not discussed for

complex assembly tasks or problem domains besides assembly.

LUiGi-H (Dannenhauer and Muñoz-Avila 2015) is a goal-driven autonomy agent

that uses an approach that is (1) hierarchical and ontological to reason with

expectations, discrepancies and explanations at varying levels of abstraction

and (2) case-based by referring to a predefined library of plans annotated with

expectations. One of the main benefits of their ontology usage is that it uses

facts to represent atoms, which can be initial or inferred facts. In addition, it

allows the representation of high-level concepts. Therefore expectations can

also be primitive or compound expectations (that are inferred). Explanations

are directly linked to an expectation. For primitive expectations, the explana-

tion is simply the negation of the expectation when that expectation is not met.

For compound expectations (e.g. expectations that are the consequences of

rules or facts that are inferred from description logic axioms), the explanation

is the trace of the facts that lead up to the relevant rules and axioms that

cause the inconsistency. Using an ontology, semantic annotations via inferred

facts enable LUiGi-H to reason at different levels of abstraction, providing

explainability and flexibility to do local repairs.
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2.6 Additional Prevalent Challenges in

State-of-the-Art and the Thesis’ Responsive

Strategies

In this chapter, the author reviewed a range of related works, identifying

their strengths and research gaps. Each problem is then addressed in the

following chapters, tying the identified limitations in current methods directly

to the specific objectives of this thesis. The ensuing subsections present an

illuminating discussion, describing additional prevalent challenges inherent to

state-of-the-art approaches. Simultaneously, an overarching perspective of the

author’s research efforts to mitigate these challenges is presented.

2.6.1 Additional Prevalent Challenges from the State-of-the-Art

1. Interfacing Ontology and Planning is a challenging task. As (Bouguerra

et al. 2007) and (Bermejo-Alonso 2018) demonstrated, ontologies can

provide rich representations of the world. However, interfacing this

with planning algorithms to make actionable decisions is challenging,

especially in dynamic, unpredictable situations or high abstraction.

2. Adapting to Complex Situations: A related challenge is adaptability to

diverse contexts. As demonstrated by LUiGi’s ontology (Dannenhauer

and Muñoz-Avila 2013), it can perform well in the specific environment

it was designed for. Still, its performance in different, more complex, or

dynamic environments is challenging and yet to be tested.

3. Contextual Reasoning and Adaptability: Building adaptable systems that

can reason about different kinds of processes is a challenge, as noted in

the skill server model proposed by (Haage et al. 2011). The model works
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well for manufacturing processes, but its adaptability to diverse contexts

or different processes is challenging.

4. Cultural Sensitivity in Interaction: Another challenge in the field is incor-

porating cultural nuances into autonomous systems. As noted by (Bruno

et al. 2019), building culturally sensitive and competent elder care robots

is challenging because of the complexity and subtlety of culture and

behavior.

5. Scalability and Efficiency of Reasoning and Planning: Lastly, the works

of (Diab, Pomarlan, et al. 2019), and (Beßler et al. 2018) illustrate the

challenge of scalability and efficiency. As the complexity of tasks or the

size of the problem domain increases, the efficiency of the ontological

and planning systems might decrease, and their ability to scale effectively

is not fully explored.

2.6.2 The Author’s Approach to the Challenges

This subsection briefly outlines the overarching strategies for the identified

additional prevalent challenges. The original contributions of this work are

designed to navigate the obstacles facing the field with a strong focus on

building a context-aware deliberative framework and enhancing the autonomy

of intelligent agents to seize opportunities or repair failures. The strategies

proposed range from innovating the interfacing between ontology and plan-

ning, to improving adaptability to complex situations, strengthening contextual

adaptability, acknowledging the importance of cultural sensitivity in interaction,

and recognising scalability and efficiency.

1. Interfacing Ontology and Planning: Inspired by the goal to boost the

autonomy of intelligent agents, the thesis introduces a context-aware
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deliberative framework in Chapter 3, detailed in Chapters 4, 5 and 6.

This framework, exemplified in the tourist assistant system in Appendix

A, unites ontology and planning in Appendix B, facilitating a seamless

integration of ontological knowledge into planning strategies. Incorpo-

rating two distinct distance calculations adds another layer of dynamism,

enabling the integration of new objects into the planning process. Addi-

tionally, new object integration using ontologies from Appendix C further

exploits ontologies for planning applications.

2. Adapting to Complex Situations: The thesis presents a multi-pronged

domain-independent approach to enhancing the adaptability of autonomous

agents. The system is equipped to handle complex scenarios with method-

ologies like the plan commitment property, neighborhood constraint

method, and testing in various dynamic environments (Chapters 3 to

6). Appendices B and C illustrate this adaptability through the recogni-

tion and incorporation of new objects and adjustments to users’ emotional

states.

3. Contextual Reasoning and Adaptability: The context-aware deliberative

framework (Chapter 3 and subsequent chapters) empowers the system to

dynamically recognise and incorporate new object types and new objects,

allowing the generation of new goals or repair the failures to reach the

existing goals through the use of new objects possibly of a new type. This

adaptability is showcased in the Appendices, where the system modifies

its responses based on the changing contexts, whether new physical

objects, user goals, or emotional states.

4. Cultural Sensitivity in Interaction: While not a focus of the research,

the built-in adaptability and context-awareness of the system suggest

potential for cultural sensitivity in interaction. The emotion recognition
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capability introduced in Appendix C allows for consideration of cultural

nuances, as cultural norms can heavily influence emotional responses.

5. Scalability and Efficiency: The thesis focuses on the domain-independent

design of the simulator, ontological alignment, ontological distances, and

commitment repair mechanism. However, it is essential to note that this

work’s primary goal is not explicitly demonstrating the system’s scalability.

The system has been designed with an orientation towards efficiency and

has shown promising performance in the tested problems. While full-

scale testing and verification yet remain an avenue for future studies, the

inherent design principles suggest the potential for scalability.

In conclusion, this thesis endeavours to leverage various deliberative function-

alities of autonomous agents. It does so by bridging the gap between ontology

and planning, thereby facilitating the development of an adaptable, context-

aware autonomous system capable of efficiently operating within dynamic

environments with a higher degree of autonomy than its predecessors. This

system seizes opportunities and autonomously repairs failures, thus striving to

advance the field of autonomous systems.

Now that the author has presented the state-of-the-art related to the research

lines of this PhD thesis, the next part of this PhD thesis is concerned with the

authors’ contributions.
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System Architecture

C
ONSIDERING the three contributions of this PhD thesis:

designing a domain-independent monitoring and execution

simulation system, designing a context-aware knowledge

acquisition method to allow the agent to seize an opportunity or fix a failure,

and designing a plan repairing method that provides a responsible repair policy

among agents. It is only fitting that the focus of this chapter is fourfold:

1. Presenting the formalisation of the problem addressed in this PhD the-

sis by explaining our modelling of the: planning problem, the dynamic

planning problem and the OWL ontology formalisms in Section 3.1.

2. Providing a preface describing the problem addressed in this PhD thesis

in Section 3.2.

3. Providing an abstract description of the method to achieve the aims of

this PhD thesis in Section 3.3.



3.1 Problem Formalisation

4. Providing a sketch and an overview of the framework scheme modules in

Section 3.4, followed by a brief description of its elements. On the other

hand, the modules are explained in detail in Chapters 4, 5 and 6.

3.1 Problem Formalisation

It is conspicuous that the richness of the ontological representations and the

planning representations are different since the requirements of each field are

different. Ontologies have high expressivity to allow more detailed domain

descriptions. On the other hand, planning requires limitations on expressivity

to provide efficient planning. Forcing representational constraints to make

these fields more compatible will not work. Ontologists will not be willing to

give up the current richness of ontologies, and planners will not be willing

to settle for less efficient planning systems. Perhaps this conflict of interest

can be resolved most effectively, as suggested by (McNeill et al. 2005), by

allowing different representations to exist simultaneously. Utilising the rich

(OWL) representation and the efficient (PDDL) representation simultaneously

offers two main advantages:

• Allowing the agent to utilise efficient planning techniques grants greater

flexibility and autonomy for seizing an opportunity or recovering from

failed execution.

• Allowing the agent to use the additional detailed description of the knowl-

edge domain provided by ontologies for more context awareness.

In the following subsection, the author explains the formalisms of the planning

and knowledge representations used in the contributions.
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3.1.1 Planning Formalisation

Our approach primarily builds upon elements that make up PDDL 2.2 specifica-

tions (Edelkamp et al. 2004). Specifically, for a planning task, we will use the

following components of a domain:

1. A finite set of types is defined in a reasonable hierarchy T = {t1, t2, . . . },

such that every object of a planning problem belongs to a single type, and

this type is a leaf node of a type hierarchy.

2. A finite set of variables V = {v1, v2, . . . } that are propositional (boolean)

or numeric representing properties associated with a type or a rela-

tionship established among types in T . Each v ∈ V is defined as v =

(name(v) arg(v)); where the first element, name(v), is the variable name

and the second element, arg(v), is the set of typed arguments.

3. A finite set of operators OP = {op1, op2, . . . } (actions schemas) that are

ungrounded PDDL durative actions. An operator op ∈ OP is defined as

op = (head(op), dur(op), cond(op), eff(op)), where:

• head(op) = (name(op) par(op)) is the operator head defined by its

name and the corresponding typed parameters list of types in T .

• dur(opi) is the duration of the operator, represented by a numeric

variable.

• cond(opi) = cond(opi)⊢ ∪ cond(opi)↔ ∪ cond(opi)⊣ is the set of condi-

tions of the operator opi that are required at different time instances

through its duration, where ⊢,↔ ,⊣ denote at start, over all and at

end, respectively.
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• eff(opi) = eff(opi)⊢ ∪ eff(opi)⊣, is the set of effects of the operator

opi that occur at start and at end.

On the other hand, the following components are used for the problem:

1. A finite set of objects O, each belonging to one of the types defined in T

for the particular problem instance.

2. A finite set of state variables constituting the initial state I. State vari-

ables, also called fluents, are variables from V whose arguments are

instantiated with objects from O and bound to a value, either boolean or

numerical.

3. A finite set of TILs: state variables denoting time-stamped changes to the

world as the information that is known to happen at a future time.

4. A finite set of hard goals G; each g ∈ G is a fluent that the planner must

achieve.

Hence for our purposes, a planning task is defined as ϕ = (Dom,Prob). A

domain is a tuple Dom = (T, V,OP), and problem is a quadruple Prob =

(O, I,TILs, G). The problem may vary depending on the particular instance to

solve. The domain encapsulates the behaviour dynamics as a fixed description

of what the planner can do to achieve G, starting from what is known: I and

TILs. The finite set of actions A = {a1, a2, . . .} are grounded from the operators

OP using objects in O, modelling all possible actions.

Upon receiving the domain and the problem, a planner generates a temporal

plan π as a collection of actions to satisfy G, where each action has a start

time and a duration. During the execution of the plan, discrepancies between

the expected state and the actual state of the environment may be detected,

49



Chapter 3. System Architecture

possibly making the execution of the rest of the plan impossible. At this point,

we define a dynamic planning problem as a tuple (G, π,O′, I ′,TILs ′), where:

• π is the original plan, designed to achieve goals G according to the initial

beliefs (I and TILs).

• (I ′,TILs ′) describe the new observed situation when a failure occurs.

• O is distinguished from O′ as new objects may be detected during the

execution of π.

We prohibit using conditional effects, derived predicates and numeric effects

that are continuous, non-linear, or depend on actions’ durations.

3.1.2 Knowledge Formalisation

Based on DL, OWL represents knowledge domains using ontologies. Our con-

tributions build upon some elements that make up an OWL ontology (Horrocks

et al. 2003). Specifically, for an ontology, we will use the following components:

1. A finite set of OWL classes (concepts) Ω = {ω1, ω2, . . . }, which are con-

structs or templates representing the entities of the knowledge domain

of the ontology. The classes are arranged in a taxonomy to make the

knowledge hierarchically structured.

2. A finite set of individuals (instances) Λ = {λ1, λ2, . . . }, representing mem-

bers of different classes.

3. A finite set of OWL object properties Ψ = {ψ1, ψ2 . . . }, defining the rela-

tionships that may exist between classes to specify how the individuals of

these classes can link.
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4. A finite set of OWL annotation properties Ξ = {ξ1, ξ2, . . . }, representing

the annotations that can be used to add information (metadata) to classes,

such as rdfs:label [type: xsd:string] annotations.

Hence for our purposes, we define an ontology as η = (Ω,Λ,Ψ,Ξ). In addition,

we make use of the following symbol ::, which refers to a subconcept (subclass).

For instance, ωi :: ωj means ωj is a subconcept of ωi within the same ontology.

3.2 Problem Description

“The human organism cannot survive as a bundle of neural reflexes,

or even of stimulus-response learning pathways. In order to perform

within the infinitely complex ecosystem to which it became adapted,

it needed to establish autonomy from the genetically determined

instructions that had shaped its behaviour through the long aeons of

its evolution. The system that has evolved to provide this autonomy

is the self. The function of the self is to mediate between the genetic

instructions that manifest themselves as "instinctual drives" and the

cultural instructions that appear as norms and rules. The self must

prioritise between these various behavioural instructions and select

among them the ones it wants to endorse.” (Csikszentmihalyi 1988,

p. 17)

Human beings are endowed with the ability to adapt and cope with a plethora

of challenges encountered in daily life. Even when unexpected events and

change occurs, we can handle them intuitively and solve problems effectively.

When faced with a challenge, we look around, think outside the box, and

utilise all available means to find solutions. Moreover, we are civilised; we

treat each other with sympathy and respect as we embark on life’s journey
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towards reaching our goals. Similarly, we strive to increase our skills and

capabilities to capitalise on opportunities when they arise and achieve more. In

contrast, developing an intelligent agent who can adapt to unexpected events

and unfamiliar circumstances in a dynamic environment remains challenging.

An autonomous agent should strive to seize opportunities and handle failures

without harming other agents (as the author strive to achieve in this PhD

thesis).

AI has been ambitiously described in relation to human intelligence as machines

capable of reasoning like a human or acting intelligently (Russell et al. 2020;

Coppin 2004). Following that vision, the effort in this PhD thesis can be viewed

as ambitious yet practical steps in that direction. As mentioned previously, we

want to endow autonomous agents executing a plan in a dynamic environment

with the ability to adapt and utilise their own perception of context, enabling

them to provide context-aware deliberative responses for seizing an opportunity

or repairing a failure without disrupting other agents that are working in the

same execution environment. In order to achieve our aims, we had to highlight

and tackle the following barriers:

1. The lack of a monitoring system that takes a general domain description,

simulates the execution of the plan in a dynamic environment, monitors

the execution of the plan and the execution environment in a lively fashion,

handles unexpected live events, and in addition, monitors the goals.

2. The restricted sense of autonomy and context-awareness in autonomous

agents, only anticipating opportunities or repairing failures pertaining

to existing objects or new objects of existing types in the agent model

and ignoring new objects of new types that could lead to a loss of an

opportunity or failing to repair an execution failure.
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3. The lack of an approach that takes it on its responsibility to responsibly

repair the agent’s plan’s failures by generating a plan that commits to

the original plan, as much as possible, to not disrupt others within a

community of agents.

3.3 Method Description

The abstract diagram in Figure 3.1 outlines this PhD thesis’s primary objectives

to reach our aims as a context-aware deliberative framework to seize an

opportunity or repair a failure. The diagram consists of three modules: the

simulator module, the context-aware knowledge acquisition module and the

committed plan repair module.

Figure 3.1: Context-aware Deliberation to Seize an Opportunity or Repair a Failure.

A brief description pertaining to each of the mentioned modules follows. Sys-

tems that provide a personalised plan (activities) to achieve specific goals

are becoming more common thanks to IoT (Internet of Things) and open data

platforms (Santiago et al. 2012; Mínguez et al. 2010; Sebastia et al. 2009;

Vansteenwegen et al. 2011; Refanidis et al. 2014). It is common to add, remove,

or rearrange activities; however, most of these systems use static information

while the activities are being performed. Agents executing their plans in a

dynamic environment are impacted by this shortcoming. Adapting and personal-

ising activities in real-time is imperative (Neuhofer et al. 2015), even if they are

pre-planned ahead of time. One essential prerequisite for intelligent technology
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is real-time synchronisation, which implies that information is not limited to an

a-priori collection but can be collected and updated in real time. In order to

create a flexible and agile plan that responds to the changing environment, it

is necessary to monitor the plan and ensure that activities are taking place as

planned, as well as to find a new plan if required. Although several monitoring

and simulation frameworks can be customised for particular scenarios, they

cannot take a general domain description and simulate its behaviour in highly

dynamic environments. To overcome the previous limitations, we created the

simulator (module 1 in Figure 3.1), which will be the backbone of the whole

framework.

Whether to repair a failure or seize an opportunity, context and context aware-

ness are crucial for any intelligent agent that operates in a dynamic envi-

ronment. Currently, approaches for goal-directed behaviour (Cox 2007; Dan-

nenhauer and Muñoz-Avila 2013; Klenk et al. 2013), online planning (Sapena

and Onaindia 2002; Sapena and Onaindia 2008) and opportunistic planning

(Cashmore et al. 2018) are used to address unanticipated changes related to

objects or object types already covered in the planning task that is being solved.

A genuinely autonomous intelligent agent must depend on its own percept

without being programmed to handle every possible scenario (Russell et al.

2020) that could stem from encountering new objects unknown to the agent or

object types unfamiliar to the agent. In addition to solving this problem, we

must address an additional issue: the agent must reliably distinguish relevant

and manageable new objects from irrelevant or unmanageable ones. Whether

to repair a failure or seize an opportunity, we provide the agent with context-

aware knowledge acquisition capability (module 2 in Figure 3.1). Therefore,

allowing the agent to extend its planning knowledge with new information

when encountering unforeseen circumstances if and only if the information

relates to the execution environment and is solvable by the agent’s capabilities
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(action schemas). Therefore, being context-aware of the dynamic execution

environment and the agent’s task. In that regard, to maintain privacy, we

assume that semi-cooperative agents would only share information related to

types, relationships, and heads of operators that can be applied to these types,

with no private details such as goals, states, or conditions effects of the action

schemas.

In an ideal world, each agent is in charge of synthesising and executing its

plan and performing replanning to handle changes in the state of the world.

However, in the real world, there are many such agents, each with its own

set of goals, but they are all linked by a common execution environment.

While executing their plans in a dynamic environment, autonomous agents may

encounter discrepancies between the expected and actual context and thus

must replace their obsolete plans with new ones. While doing so and attempting

to reach its original goals, an agent may unknowingly disrupt other agents.

Therefore, the literature effort for dealing with multiple agents operating in the

same execution environment is multi-facet. It includes agents’ communication

(Chopra et al. 2013), agents’ privacy (Maliah et al. 2017), agents’ negotiation

and level of cooperation (such as altruistic and cooperative agents, lying and

deceptive agents or self-interested agents) (Kraus 1997; Zlotkin et al. 1989;

Shim et al. 2012), agents’ various types of algorithms used for planning (such

as central or distributed) (Nwana et al. 1997) and the metric to be optimised

when replanning (such as the plan’s makespan or execution safety with minimal

perturbation) (Fox, Gerevini, et al. 2006; Kambhampati 1990). In this regard,

we are concerned with ensuring a robust execution of an agent’s plan in

a community of agents so that it can be adapted to unforeseen situations

arising from discrepancies between what an executing agent expects and

what it observes. More importantly, ensuring that the new adapted plan does

not propagate negative consequences to other agents operating in the same
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execution environment when a failure occurs. Our approach is independent

of the way agents communicate and share information. To maintain privacy

between agents and regulate their communications, we will assume that each

agent has a set of private goals and an external entity tracks and keeps the

relevant information of the environment in a repository where the agents can

consult this information. The rest of the information is private unless an agent

decides to share it with another agent as facts expected to occur in the future;

we will model such facts as TILs.

3.4 Framework Overview

The proposed framework integrates the use of various deliberative functions,

namely: planning, execution, monitoring, failure detection, knowledge augmen-

tation, goal generation (formulation), replanning and plan repairing. Figure 3.2

shows the three main components of our context-aware deliberative framework.

The framework takes a planning task (domain and problem) as input. The

planner is external to the system and is either used to synthesise the original

plan of actions or perform replanning. The framework is divided into an offline

and an online part. The offline part has one module: the context-aware knowl-

edge acquisition module. On the other hand, The online part consists of two

modules; The simulator and the committed plan repair module. Here follows a

description of each module of the architecture.

• Module 1 Simulator. The simulator is responsible for the following delib-

erative functions; perception, acting and monitoring and triggering goal

generation, replanning or plan repairing.

– Perception: provides our system with the critical capability of ob-

serving by sensing the IoT objects’ values characterising the en-
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Figure 3.2: Context-aware Deliberative Framework Schema.

vironment’s actual state. If an opportunity is spotted or a failure

occurs, perception provides reactivity. During the plan’s execution

(Acting and Monitoring), the agent may encounter new objects of

the relevant types not predefined in the model, integrates them into

the planning problem, and uses them to repair failures or seize an

opportunity.

– Acting and Monitoring: is responsible for executing the plan, moni-

toring actions, and detecting failures that may occur.

• Module 2 Context-aware Knowledge Acquisition. This offline cognitive

knowledge augmentation module is initialised with a planning task. It
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creates an ontological representation of the planning domain and dynam-

ically augments the predefined list of object types of the planning task

with relevant new object types. This allows the agent to be context-aware

of the environment and the task being performed and reason with in-

complete knowledge. Consequently, boosting the system’s autonomy and

context awareness as the agent will be attentive (during execution simu-

lation) to seize opportunities (goal generation) or fix failures (replanning

using an external planner or plan repairing).

• Module 3 Plan Repairing. This module provides a novel plan repair

strategy among multiple agents sharing the same execution environment.

It is responsible for repairing an agent’s plan when a failure is detected

concerning the new observed state and the original plan of the agent.

This module utilises a new metric, plan commitment, as a heuristic to

guide the search for the most committed repair plan to the original plan

from the perspective of commitments made to other agents (the resources

used in the original plan) whilst achieving the original goals. An agent

that uses plan commitment to repair its plan will have no adverse effects

on other agents. Consequently, the community of agents will suffer fewer

failures due to the sudden changes (reduced revisions) or will have less

lost time if the failure is inevitable.

Section 3.4 introduced a brief description of the framework modules constitut-

ing the contributions of this PhD thesis. Whereas Chapters 4, 5, and 6 provide

a complete and detailed description of each module.
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3.5 Chapter Summary

This section aims to summarise and highlight the main points that were pre-

sented in this chapter:

• Describing the usefulness of allowing two different representations to

exist simultaneously to capitalise on the OWL ontological representation’s

richness and the PDDL representation’s efficiency.

• Presenting the various components of the planning and the knowledge

formalisations and the terminology used in the rest of this PhD thesis.

• Presenting the problem description with autonomous agents and human

beings analogy of the efforts in this PhD thesis to handle unexpected

events, whether to seize an opportunity or repair a failure with no adverse

effects on other agents. In addition, describing the barriers tackled to

bridge the gap between the two sides of the analogy.

• Presenting the abstract diagram and description of the method justi-

fying the development of a three-modelled context-aware deliberative

framework to seize an opportunity or repair a failure.

• Presenting the framework overview and the schema of the context-aware

deliberative framework consisting of three main modules: the simulator,

context-aware knowledge acquisition and the plan repairing module. In

addition, a brief description of each module is presented.

The following chapter provides a complete and detailed description of the

simulator module.
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4
An Intelligent System for Execution

Simulation in a Dynamic Environment

E
XECUTION MONITORING is crucial for the success of an au-

tonomous agent that is executing a plan in a dynamic environ-

ment as it influences its ability to react to changes quickly. Due

attention must be paid to changes; otherwise, the agent might suffer a plan

execution failure or lose opportunities. Changes result from noisy observation,

partial observability, non-determinism, dynamic environment or other agents

operating in the same environment. Motivated by the previously mentioned

reasons, the author’s first contribution is an intelligent system for execution

monitoring simulation in a dynamic environment (Babli, Ibáñez-Ruiz, et al.

2016).

In a nutshell, the key component of this intelligent system is the simulator in

charge of the plan monitoring and execution. The simulator periodically up-



4.1 Background

dates its internal state with information from open data platforms and maintains

a snapshot of the real-world scenario through live events that communicate

sensible environmental changes. It builds a new planning problem when an

unexpected change affects the execution and calls a planner to generate a

new plan (replanning). It also constitutes the basic building block used in the

author’s contributions whenever a simulation of execution is needed.

Just like PDDL provides a straightforward way to model any application domain,

the simulator is domain-independent and is developed as a console application

to serve any application domain. Initially designed for smart tourism simulation

in a dynamic environment, the simulator system is a console application that

features a graphical user interface (GUI) tailored to smart cities’ tourism

environments. The simulator can easily be linked to other GUIs if needed.

The development of different specialised GUIs is left to the users, depending

on the requirements of their application domain. A complete smart tourism

application domain example is presented in a case study in Appendix A.

4.1 Background

The development of products and services is facilitated by the exponential

growth of the Internet of Things (IoT), and the proliferation of open data plat-

forms cities and governments provide to leverage urban data and address

societal challenges (Rathore et al. 2016; Vermesan et al. 2013). By partnering

with smart technology embedded in every organisation and entity, organisa-

tions can increase their competitiveness by addressing the users’ needs and

enhancing their experiences (Gretzel et al. 2015). Through the personalisation

of services before, during, and after the service and the use of information

aggregation, ubiquitous mobile connectivity, and real-time synchronisation

(Buhalis et al. 2015).
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Dynamic adaptation and personalisation of activities are required in real-time

to enhance the user experience, even when actions are pre-planned in advance.

The ability to collect and update information in real-time is essential for smart

technology to operate effectively; this means that data cannot only be collected

a priori but must be collected and updated in real-time (Neuhofer et al. 2015).

PDDL provides a straightforward way to express the “physics” of the domain

and the particular problem that instantiates it. In PDDL, the activities can be

identified to be executed similarly to rules, with their preconditions, effects

and other interesting features like duration, cost and reward. Then, planning

generates a plan as an agenda of activities or actions (McDermott et al. 1998).

According to the literature, AI is used to ensure the development of smart

cities for different application areas; such as urban traffic management and

public transport operations, public safety and cybersecurity, education, human

resource management, healthcare, tourism, smart homes, agriculture and

many other public services (Rjab et al. 2019). As an example of a smart city

application, the smart tourism domain provides many applications for planning

travel, routes, trips and activities or catering to users’ needs by providing

customised itineraries (agenda) with suggested activities for the user (Santiago

et al. 2012; Mínguez et al. 2010; Sebastia et al. 2009; Vansteenwegen et al.

2011; Refanidis et al. 2014). Further, The Global Positioning System (GPS)

technology allows a Recommender System (RS) to locate the future user’s

location and suggest the most interesting places to visit based on their location.

Such applications often feature a simple dynamic interaction between the

user and the agenda. The user can add or remove activities or change their

order as part of this dynamic interaction. The majority of these applications,

however, work with fixed information throughout the execution of the activities.

The problem is that they do not react readily to changes in the execution

environment, such as a museum closing, a fully booked restaurant or a diverted
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bus. In turn, this significantly impacts how users view their experiences and

are profoundly affected by such a static method.

In any given application domain, to develop an agile and adaptable plan that

keeps pace with the dynamic environment, the agent must trace the execution

of the plan and verify that activities occur as expected while the plan is being

executed. This entails monitoring the plan and finding a new plan if a particular

activity cannot be achieved. Therefore, we propose an intelligent system that

monitors and simulates the plan execution in real-time to account for the

dynamic nature of the execution environment.

4.2 Design Decisions

This section aims to explain two design decisions the author has followed in

this PhD thesis for the simulation system presented in this chapter and also for

repairing failures in Chapter 6.

4.2.1 Bespoke vs Off-the-shelf

“Not only are there no silver bullets now in view, the very nature of

software makes it unlikely that there will be any” (Brooks 1987).

This quote fits well with monitoring and simulation systems, as various models,

infrastructures and applications’ requirements call for different simulation

systems. Multiple simulation frameworks for different programming languages

support discrete event-based simulations, depending on the programming

language. The work of (Lees et al. 2009) identifies and compares a variety of

simulation systems such as LEE, JAMES II, SeSAm, RePast and SWARM, in addition
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there exist many other simulation and validation systems such as DESMO-J1,

SimPy2, SUMO (López et al. 2018) and VAL (Howey et al. 2004a). The author does

not claim that the proposed simulation system is better than other simulation

frameworks in terms of performance; however, it is tailored specifically for this

PhD thesis’s needs. The tools mentioned earlier are valuable, provide utility

and can be programmed to simulate particular scenarios. However, they are

either too holistic or far too micro, do not consider the dynamic changes of

the world and cannot react lively to them. In addition, many of these tools

are domain-specific and have targeted application contexts such as artificial

life (using neural networks), reactivity, cognitive agents or traffic and urban

mobility. Consequently, these off-the-shelf systems cannot meet the specific

needs of this PhD thesis. The requirements of this PhD thesis in terms of a

simulation framework are:

• Simulate the behaviour of a general domain description in highly dynamic

environments.

• Accept a general PDDL domain+problem description as an input descrip-

tion of the planning task.

• Receive live events during the execution in real-time.

• To execute and adapt the plan in light of new information about the

dynamic execution environment.

• Monitor the achievement of PDDL hard and soft goals (preferences) in

the plan’s execution and ensure that they are pursued in the new plan

should a failure occur.

1More info at http://desmoj.sourceforge.net/home.html
2More info at http://simpy.readthedocs.io/en/latest/
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• Ease of integration with the rest of our planned deliberative infrastructure

modules to repair a failure or seize an opportunity.

The proposed system acts as an intelligent system for smart cities’ applications

simulation in a dynamic environment and is tailored to overcome the previous

limitations. In particular:

• The simulator is domain-independent. It accepts a PDDL planning pro-

blem description to allow the users to simulate a wide range of scenarios

with different goals (either given or possibly obtained dynamically from a

RS, a cognitive system or a deep-learning system), activities, precondi-

tions and effects. A planner is invoked to get a plan.

• The plan is analysed, and then its execution is simulated just like it

is executed in a real environment, simulating dynamic changes in the

environment in real time. Based on the changes, the simulator checks if

the real world matches the expected world.

• Suppose a failure in the plan is detected. In that case, the simulator

reformulates the PDDL planning problem and reinvokes a planner to

generate a new plan that satisfies the pending hard goals and as many of

the soft goals, giving higher priority to those initially included (pursued)

in the original plan.

This intelligent system was conducted as part of the Goal-management for

Long-term Autonomy in Smart citieS (GLASS) project3.

3More info at http://www.plg.inf.uc3m.es/~glass
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4.2.2 Single-agent vs Multi-agent Re/Planning and Execution

Ideally, a given planning agent would be responsible for synthesising and

executing plans and replanning to account for changes to the world state

that the agent cannot foresee. However, there are many such agents in the

real world, each with different objectives, yet all tied together by a common

execution environment they share.

Planned actions by one agent affect the world’s state and the conditions under

which other agents must plan and act, resulting in complex dependencies.

Full multi-agent planning can resolve the issues arising from changing plans

due to failures in such cases, but it is far from a scalable solution for real-

world domains (Talamadupula, Smith, et al. 2013). Instead, this multi-agent

space filled with dependencies can be projected down into a single-agent

space. Talamadupula et al. (2013) proposed to bring single-agent planning

and multi-agent systems together in a unified theory. In this PhD thesis, we

follow the central argument presented in (Talamadupula, Smith, et al. 2013),

as a design decision, that the single-agent planning community needs to heed

the changes to the world state by generating a new (single-agent) plan that

remains consistent with the larger community of agents sharing the world.

This technique generally interleaves planning with plan execution and execution

monitoring and applies single-agent re/planning to multiple agents and is

followed by several intra-agent works in the literature, such as the works

of (Mohalik et al. 2018; Cooksey et al. 2017). Therefore, in this PhD thesis,

simulating execution and repairing failures are viewed from a single-agent

perspective. On the one hand, in this chapter, we assume each agent has its

own simulator responsible for reading the world from repositories or live events

and executing its own plan. On the other hand, each agent is accountable for
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responsibly repairing its failures without disrupting other agents, as explained

in Chapter 6.

Furthermore, the methods used in this PhD thesis are independent of how

agents communicate and share information, i.e., the agent’s communications

are out of this PhD thesis scope. The agents can read data from repositories

and can receive live events in the form of TILs. Therefore for this chapter, as

mentioned previously, an agent’s simulator periodically updates its internal

state with information from open data platforms and maintains a snapshot

of the real-world scenario in our implementation through live events that

communicate sensible environmental changes. Similarly, in a community of

agents (Chapter 6), if an agent wishes to share information with another agent,

it is assumed to be received as a live event in the form of TILs.

4.3 System Architecture

Figure 4.1 shows the GLASS architecture, consisting of a two-process loop: a

planning module and a simulation+monitoring module that share information.

The input information of our system is retrieved from different data sources:

1. The idea was to apply different strategies for obtaining the set of goals (i.e.

user recommendations based on previous plans executions by other users)

for each user using different utility RSs. First, a user profile containing

the explicit interests of the user, the goals and preferences (such as places

they want to visit and the temporal constraints) is retrieved.

2. Second, a different set of databases is used to identify and categorise the

points of interest objects (such as attractions, museums and restaurants),

their timetables, and geographical sources to find routes, distances, and
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Figure 4.1: GLASS Architecture

times between points. We use Google Places4 and Directions5 APIs for

this, although other open databases — like OpenStreetMap6 — can also

be used. The list of objects could also be supplied explicitly if no database

is available.

3. Third, a snapshot of the environment or real-world scenario exists where

the plan is executed. Due to the dynamic nature of this world and the

possibility of changes frequently occurring (e.g., the opening hours of a

museum changed, a restaurant was fully booked, or the dining duration

was longer than expected), we get the new information as it happens as

live events.

This work focuses on the online execution of the generated plan in a dynamic

environment, whereas implementation details of how the system obtains the

4More info at https://developers.google.com/places/web-service
5More info at https://developers.google.com/maps/documentation/directions
6More info at http://wiki.openstreetmap.org/wiki/API
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input set of goals from a RS utilising user profiles are abstracted out from

this work due to the domain-independent nature of the system. An example

of domain-dependent application use of users’ profiles and RS in e-Tourism

to provide a list of goals tailored to different tourists travelling styles can be

found in the work of (Ibáñez-Ruiz et al. 2016).

On the one hand, the planning module takes the user profile and the scenario

information to create a planning problem in PDDL format and invoke a planner.

We need to model the users’ preferences, constraints and actions. As a result,

the user gets a personalised plan of the actions that must be taken.

On the other hand, in GLASS, rather than having a real-life group of users

equipped with sensors to determine their current positions, pending and already

accomplished goals, we simulate the execution as a proof of concept. This

simulation process (detailed in Section 4.5) takes the plan and creates a timeline

structure to run a timed events based execution. The system simulates and

monitors the changes in the world state resulting from the changes in the plan,

that is, responses to actions effects and, possibly, changes resulting from live

events. The simulation process and output can be shown either as console

line text commands or in the tourism domain; we have developed a specially

designed Graphical User Interface that shows what is happening at any time.

During the simulation process, there may be a discrepancy between the ex-

pected and the actual state, as some live events prevent the remaining actions

in the plan from being executed. In this case, a (re)planning module is required.

A new PDDL problem specification will be reformulated to adapt the plan to

the newly emerging scenario so that the planning module can be recycled for

replanning, thus closing the loop.

The rest of this chapter is organised as follows. Section 4.4 presents the

planning description, highlights the main components of a planning problem
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and presents hard goals and preferences. Section 4.5 examines the simulation

behaviour in more detail, emphasising the reformulation of a planning problem.

4.4 Planning Module

In order for the system to provide a personalised itinerary (plan) to a given

user, the user’s preferences should be reflected in the resulting plan based

on the user’s profile (demographic classification, previous visits, and current

preferences). In addition, the system must consider the availability of objects

and the time needed to finish performing each activity. Therefore, to solve

this problem, a planning system is necessary that supports durative actions

(to represent the duration of actions), temporal constraints (to express the

availability of objects as time windows), goals to express obligatory goals and

soft goals (if any) to express the user’s preferences. A RS returns the list of

potential goals for the user that is considered as input to the system. Among

the few automated planners capable of handling temporal planning problems

with preferences, we opted for OPTIC (Benton et al. 2012) because it handles

version 3.0 of PDDL (Gerevini, Haslum, et al. 2009), including soft goals. The

information required by OPTIC to build the plan is compiled into a planning

problem encoded in PDDL3.0 language.

A planning problem’s initial state refers to the world at the time the plan

starts being executed. The initial state must reflect the initial location of the

objects, the availability of objects and the durations costs. Some information is

expressed with fluents, while other information is represented by TILs.
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Goals and Preferences

The simulator is prepared to deal with two types of goals:

• Hard goals represent the completion of mandatory activities specified by

the user.

• Soft goals or preferences represent the completion of desirable activities

that please the user and increase the plan’s utility if achieved, but they

are non-mandatory for the execution to be successful.

As preference definitions are expressed in PDDL3.0, we need to define how

satisfaction or violation of each preference in a given plan will affect the

plan’s quality (penalties). When selecting the best plan, OPTIC will consider

the penalties for the violations of preferences (costs) and choose the plan that

satisfies most of the preferences and thus minimises the penalties for violations.

In other words, the objective is to find a plan that achieves all the hard goals

while minimising the plan metric to maximise preferences satisfaction; when a

preference is not fulfilled, a penalty is added to the metric.

Specifically, we allow defining two types of penalties. The first penalty is the

penalty for violated preferences; it helps OPTIC prioritise selecting activities and

thus achieve the preferences that have a higher priority for the user. For a plan

π, the penalty is calculated as the ratio between the priority of the preferences

not included in π and the priority of the whole set of preferences recommended

to the user RA:

Pviolated =

∑︁
a∈RA−π Pr

a∑︁
a∈RA Pr

a
(4.1)

For example, if the priority for preference v3 is x, and the sum of the priorities

of all the preferences is y, the penalty for not satisfying preference v3 would be
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expressed in PDDL as: ( / (* X (is-violated v3)) y). The priority of the

activities (Pra) is calculated by a hybrid RS, which returns a value between

0 and 300 according to the estimated degree of interest of the user in the

preference. The RS also uses the value of Pra to return a time interval that

encompasses the minimum and maximum recommendable activity duration

following a normal distribution N
(︁
µa, σ

2
a

)︁
, where µa represents the average

activity duration for a typical user (Ibáñez-Ruiz et al. 2016). Thus, the higher

the value of Pra, the longer the activity duration.

The second penalty (optional): penalty for non-achiever activities is to minimise

time spent on activities that do not achieve goals (such as moving between

locations) and encourage activities close to each other to be performed in

succession. This penalty is calculated as the ratio between the duration of all

non-achiever actions of π (πm) and the plan’s total makespan:

Pnon-achiever =

∑︁
a∈πm

dur(a)

dur(π)
(4.2)

For example, the function (total_moving_time user) accumulates the time

spent in movement actions, so this penalty would be defined in PDDL as:

( / (total_moving_time user) dur(π)). The plan metric to be minimised by

OPTIC is expressed as the sum of both penalties: Ptotal = Pviolated+Pnon-achiever.

4.5 Simulator

In essence, the simulator is meant to execute the plan and monitor that every-

thing works as expected. The first step is to create the structure that will be

used to perform the simulation. We use a timed event simulation throughout a

structure we call the timeline, where certain events are triggered at particular

time instances, possibly provoking world state changes. The simulator checks

the fluent conditions during the plan monitoring. The simulator prints the
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output of the plan simulation steps to a console window, and for the tourism

domain, it visualises the plan trace using a specially designed GUI. Should

a failure occur during plan simulation preventing a specific plan action from

being executed, the simulator activates a replanning mechanism that involves

reformulating the planning scenario in light of the new observed state. Next,

we describe these tasks in more detail.

4.5.1 Timed Event Simulation: the Timeline

“Simplicity is the ultimate sophistication.” (Leonardo da Vinci 1452)

A timeline is a simple structure containing a collection of unique timed events

in chronological order representing a sequence of world states that need to be

monitored. As depicted in Figure 4.1, a simulator timeline is generated based

on the plan’s actions, problem information and live events.

A timed event is an event that happens at a particular time instance τ and

contains the following information:

1. cond(ai) = cond(ai)⊢ ∪ cond(ai)↔ ∪ cond(ai)⊣: the start, over all, or end

conditions (of one or many actions) to be checked at τ .

2. eff(ai) = eff(ai)⊢ ∪ eff(ai)⊣: the start or end effects (of one or many

actions) to be applied at τ .

3. TILs represent exogenous events defined as part of the problem informa-

tion, so they are known upfront and expected to occur at time τ .

4. Live events dynamically occur during the execution/monitoring process,

so they are unknown a priori.
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This way, a timeline encapsulates the information about the plan, TILs and live

events and the corresponding world states, irrespective of whether the plan

is composed of sequential, parallel or concurrent actions. Given a plan with

two actions (move and visit), of duration 20 and 60, respectively, and a live

event that indicates the museum is closed (not open) at time instance τ = 90,

the resulting timeline is shown in Figure 4.2.

0.00 move person1 hotel museum [20.00]

20.01 visit person1 museum [60.00]

90.00 live event (not (open museum1))

Figure 4.2: An Example of a Timeline with Five Timed Events. Note the Closed Interval

for the at start/end Conditions and Effects, and the Open Interval for the over all

Conditions

For the development of the simulator, the author used Java and PDDL4J7, an

open-source library that facilitates the development of JAVA tools for automated

planning based on the PDDL language. The time scale of the timeline will

depend on the granularity of the plan and the periodic steps we want to use

for monitoring the timed events. In our implementation, live events can be

manually supplied in a live fashion, or they can be retrieved dynamically from

a database that keeps real-time information about the state of the world.

7More info at https://github.com/pellierd/pddl4j
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4.5.2 Plan Execution Simulation

The simulation requires the users to specify how small the execution step

will be to simulate the plan execution, thus determining the update frequency

of the simulator’s internal state with respect to its real-world counterpart.

The simulator users may choose a larger step size or set the step size to the

granularity of the planner. The smaller the size of an execution step, the

more frequently external databases are accessed (Google APIs) to obtain new

information and update the real-world state. Domains that exhibit frequent

changes can be simulated with more reliable behaviour using a small execution

step. Additionally, each timed event updates the simulation state, checking the

conditions of the actions and applying the events’ effects. Furthermore, the

simulator receives live events from the real world during execution, modifying

or creating new timed events in the timeline.

The simulation of the plan execution starts at τ = 0, with an initial state equal

to the real-world state, and the simulator advances through the timeline in

every execution cycle τ = τ + stepsize (see Figure 4.2). This process can be

printed out to a console window (for domain independence purposes and other

application domains) or visually shown in a specially designed GUI (described

in Figure 4.5.5) for the smart tourism domain.

The simulator checks that the current state matches the expected state by

checking that conditions are satisfied and then updates the current state

accordingly. More specifically, every execution cycle involves two main steps:

1. Processing the live events for changes and updating the corresponding

timed events

2. For every unprocessed timed event within the current step:
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(a) Updating the current state with the TILs and effects of the live events

(b) Verifying that the timed event’s conditions are satisfied in the ob-

served state.

(c) Updating the current state with the effects of the actions.

The simulator detects a failure when a condition in a timed event is violated

during execution (Step 2b shown above) difference between an expectation

and the actual state that resulted in a situation where the plan can no longer

be executable. In such a case, the interface (command line or GUI) informs

the user about the failure cause: the failed action and the violated condition.

For instance, in the example of Figure 4.2, supposing there is a live event at

τ = 60 that indicates the museum will no longer be open from 60 onwards.

In this case, the over all condition ]20.01,80.01[ (open museum) is violated,

which means the visit action cannot be successfully executed. Once a failure

is detected, the replanning module is invoked, as described in the following

section.

4.5.3 Reformulating the Planning Problem

Once a failure is detected, the system performs the reformulation procedure

steps shown in Figure 4.3:

Step 1: Creating the new initial state. The new initial state will comprise

the information known by the simulator when creating the new problem (the

current observed simulation state) and the information about future TILs

(known information about forthcoming events). Therefore, the occurrence time

of future TILs must also be updated.
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Figure 4.3: Reformulation Steps

Step 1.1: Updating fluents. This step refers to the update of the current state.

After the failure, the fluents values are retrieved from the current observed

state. However, this might not be accurate depending on how the actions of

the domain were modelled, especially when a failure has resulted from a live

event which violated an over all or at end condition. E.g., at the start of a walk

action, a person is no longer at location1 and at the end of a walk action, a

person is at location2. If a failure occurs due to an over all or at end condition

of this action, the state will contain no fluent of the user’s location. To tackle

this problem, when a failure occurs due to an over all or an at end condition

violation, the simulator will calculate the new initial state by rolling back the at

start effects of the failing action (if any).
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Step 1.2: Updating the time of TILs. When the new problem is reformulated,

we invoke OPTIC, which resets the execution time and generates a plan starting

from τ = 0. Consequently, we need to update the occurrence time of the TILs

to the result of its original time minus the failure time. Let us assume that a

failure occurred at τ = 100 and that we have the TIL planned at time τ = 235;

therefore, in the new initial state formulation, its time will be (235− 100 = 135).

Step 2: Updating preferences. When a failure occurs, the simulator distin-

guishes two cases for preferences or soft goals:

1. Goals already achieved by the successfully executed actions that preceded

the failure. The reformulated problem will exclude all of these preference

goals and their penalties.

2. Goals that have not yet been met, in turn, are divided into two sets:

(a) Goals that OPTIC did not include in the original plan. The penalties

for these goals are retained as initially defined in the problem file.

(b) Goals included in the original plan and not yet satisfied due to the

failure. The problem reformulation procedure increases the penalties

of these goals to potentially enforce these goals in the new plan by

assigning a relatively higher priority to these pending goals (twice

as much as the maximum penalty among all goals).

Finally, three points are worth mentioning in this step. First, by executing the

plan offline without any live events, the simulator learns the soft goals that the

planner chose to pursue in the original plan. Second, the hard goals in the new

reformulated problem file are kept intact. Third, the problem reformulation

procedure applies a preference stability strategy that prioritises goals already

included in the original plan over those that were not, which can be found
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as favourable and pleasing to users in various application domains. Other

strategies, such as maintaining the plan stability metric concerning the original

plan actions, can also be adopted (Fox, Gerevini, et al. 2006).

Step 3: Generating the new PDDL files. The final step of the reformulation

process is generating the new PDDL files. The Domain file remains unchanged,

except if a certain action needs to be added to the new plan; in such case, a

dummy effect that triggers the corresponding action is added. Otherwise, only

the problem file is created, taking into account the modifications discussed in

steps 1 and 2.

4.5.4 Monitoring Preferences and State Trajectory Constraints

In addition to the features mentioned earlier, the simulator supports (as a side

feature) monitoring the achievement/violation of the PDDL 3.0 preferences and

state trajectory constraints modal operators handled by planners like OPTIC and

TempLM (Marzal et al. 2017). The modal operators supported in the simulator

are: at end, always, sometime, within, at most once, sometime, after, sometime

before, always within, hold during and hold after.

In every execution cycle (defined in Section 4.5.2), the simulator checks all the

preferences and state trajectory constraints except for within, always within

and hold after because these can happen outside timed events and may require

a complete (or interrupted) plan execution; therefore, they are processed after

processing all the timeline timed events.

The simulator returns five sets of preferences: preferences followed by the

planner in the original plan, preferences discarded by the planner in the original

plan, preferences satisfied in the plan execution, preferences violated in the

plan execution and preferences pending due to a failure.
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There follows an example of the console output of the simulator. It shows the

simulation steps and then prints statistics about goals and state trajectory

constraints. More information about how we present and handle PDDL 3.0

preferences and state trajectory constraints modal operators is explained in

our work (Marzal et al. 2017).

Welcome to the Simulator Console Interface !

Building TimeLine Started . . .

TILs ( i f any) were Added to the TimeLine . . .

Actions Conditions and Effects were Added to the TimeLine . . .

Building TimeLine Finished Successfully . . .

*****************************************************************

Information before Execution

*****************************************************************

Constraints Included by the Planner in the Plan :

Hard Goals : [g1 ,g2 ]

Preferences : [v1 ,v2 ,v3 ,v6 ,v7 ]

Constraints Discarded by the Planner in the Plan :

Preferences : [v4 ,v5 ,v8 ]

Simulation Started . . . . . . . . . . . . . . . . . .

In i t i a l World State at Time=0.0 = {. . . } .

Simulation World State at Time=Time+step size= {. . . } .

. . .

Last Simulation World State at Time=n = {. . . } .

Simulation Finished Successfully . . . . . . . . . . . . . . . . . .

*****************************************************************

Information After Execution

*****************************************************************

* Satisfied Hard Goals : [g1 ,g2 ]

* Satisfied Constraints

Preference : v1 Satisfied at time= . . .

Preference : v2 Satisfied at time= . . .

Preference : v3 Satisfied at time= . . .

Preference : v6 Satisfied at time= . . .
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Preference : v7 Satisfied at time= . . .

*Violated Constraints :

Preference : [v4 ,v5 ,v8]

4.5.5 Graphical User Interface

Figure 4.4: The Simulator Graphical User Interface

Figure 4.4 shows the six parts of the GUI of the simulator used to provide

information about the internal state of the simulator during the whole plan

execution simulation. The GUI provides buttons for controlling the next step

of the simulation. This GUI is domain-independent and can be used in any

application domain except for the map part (Figure 4.4-part 6), specifically

designed to offer a smart-city tourism orientation. There are six parts to the

GUI, each of which is marked with a number and surrounded by a frame:
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1. Figure 4.4-part 1 shows the current simulation time.

2. Figure 4.4-part 2 displays the planning problem objects along with their

types. This static information will not change over the simulation process.

3. Figure 4.4-part 3 contains the PDDL description of the current state,

which can change after an action starts or ends, when a live event arrives

or when a user introduces a manual change (TILs). The fluents of the

current state can be separately consulted in two different tabs (boolean

and numeric).

4. Figure 4.4-part 4 shows the problem goals.

5. Figure 4.4-part 5 shows the list of plan actions, their start time, the

objects involved in the action execution, and the duration of the action.

In addition, the actions are shown with a representative colour: actions

currently in execution are highlighted in yellow, past or already executed

actions in red, and future actions in white.

6. Figure 4.4-part 6 shows the Representative map with icons of the relevant

places involved in the plan (places to visit, restaurants and hotels). These

location icons change their colour when the corresponding action is

executed. The map also displays distances between locations.

7. Figure 4.4-part 7 contains the simulation control buttons. In the middle

of the top ribbon, the interface displays four buttons to run the simulator

step by step (the user defines the step size), continue the simulation, stop

the simulation and reset the simulation.
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4.6 Conclusion

In this chapter, the author has presented a domain-independent intelligent sys-

tem that simulates the execution of a temporal plan in a dynamic environment.

In a nutshell, this intelligent system reads a PDDL domain and problem files

as input. It calls a planner to generate a plan and simulates the execution

in real-time. The simulation is done by transforming the plan into a timeline

consisting of timed events (conditions to be checked and effects to be inserted).

The simulator periodically updates its internal state with real-world information,

receives sensible environmental changes through live events and creates their

corresponding timed events in the timeline. It monitors the execution of the

plan. Events are processed in the context of the plan; if a failure occurs due

to live events, the simulator reformulates the planning problem. This involves

creating the new initial state and updating the time of timed events and the

goals. The simulator re-invokes a planner to generate a new plan and resumes

the simulation. The simulator is a console application and has a GUI designed

specifically for the context of smart tourism. A case study in Appendix A

presents a smart tourism application domain and GUI to evaluate the system.

The system presented in this chapter can deal with unexpected situations to

a limited extent in the sense that unexpected change is due to the objects

and object types already known to the agent in the PDDL domain model. On

the other hand, this system can be used side-by-side with the Context-aware

Knowledge Acquisition module (the author’s second contribution) to adapt to

unexpected situations and seize opportunities from objects and object types

that are entirely unknown to the agent. This is explained in detail in Chapter 5

and demonstrated in three application domain examples (tourism, repairing

agency, and assisted living homes, in Appendices B and C).
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The system uses an external planner to generate the original plan and fix

failures. The system can be used side-by-side with the Plan Commitment Repair

module (the author’s third contribution) to ensure a responsible repair policy

among multiple agents sharing the same execution environment and minimise

the number of failures and the lost time in the community of agents (explained

in detail in Chapter 6).

The next step in this PhD thesis is to provide context awareness to autonomous

agents. The following chapter presents the knowledge extension through on-

tologies and provides a context-aware knowledge acquisition module integrated

with the intelligent simulator system.
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5
Context-aware Knowledge Acquisition

for Planning Applications

F
ROM the selfish-gene point of view (Dawkins et al. 2017), a

metaphor for our behaviour or that of any particular animal

species is that we are survival machines-robot vehicles blindly

programmed to preserve the selfish molecules known as genes. We may face

something that gets in the way or that can be exploited to our benefit to

make the best use of the environment. To a certain extent, this metaphor

resembles the rational agent that might face unpredicted change in the dynamic

environment and must do its best to adapt.

Whilst online planning has demonstrated its usefulness in handling plan failures,

unanticipated events that may bring about an opportunity for the task executed

by the agent still presents a rich research area to be studied. An agent that

relies on the prior knowledge of its designer rather than on its own percepts
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is an agent that lacks autonomy. Being rational requires the agent to gather

information and extend what is already known from what is perceived to

compensate for partial or incorrect prior knowledge and achieve the best

possible outcome. The agent’s initial configuration could reflect some previous

knowledge of the environment. Still, the agent should be able to modify and

augment this knowledge without being programmed to handle every possible

scenario that could stem from encountering objects unknown to the agent or

object types unfamiliar to the agent.

In solving this problem, the author had to address two issues: to extend

the agent planning knowledge when encountering unforeseen circumstances

related to the execution environment. Then, focus on allowing the agent to

distinguish related and manageable objects reliably from unmanageable objects.

Therefore, allowing the agent to extend its planning knowledge if and only if

they are:

• Relevant to the agent (types).

• Manageable by its capabilities (action schemas).

Consequently, the agent becomes:

1. Aware of the dynamic execution environment.

2. Aware of the task it performs.

Consequently, the anticipation of opportunities or recovery from failures is

facilitated. This chapter presents the previously mentioned efforts as a single

module of context-aware knowledge acquisition for planning applications using

ontologies.
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It must be noted that the author’s approach does not use ontologies to perform

planning itself, as the complexity, the performance and the domain dependence

become issues, as indicated in the work of (Gréa 2020). As a result of the

differences in requirements for each field, the richness of ontological represen-

tations and planning representations is evident. A high level of expressivity

is important in ontologies to enable more detailed domain descriptions, while

a limited level of expressivity is required for effective planning in planning

systems. These fields cannot be made more compatible by imposing representa-

tional constraints. Ontologists will not tolerate a reduction in ontology richness,

and planners will not accept less efficient planning systems. Following the

suggestion of (McNeill et al. 2005), the author permits different representa-

tions to exist simultaneously to resolve this conflict of interest. When PDDL

and OWL are used simultaneously, the agent can use planning techniques for

efficient planning and ontologies for context awareness by taking advantage

of the additional detailed description of the knowledge domain provided by

ontologies.

The rest of the chapter is organised as follows. First, we lead with a brief intro-

duction, followed by three background examples from the author’s publications

that illustrate the benefits of using context-aware knowledge acquisition for

planning applications. Then, a general overview of the approach schema is

introduced, as well as a brief description of each component. The details of the

ontological operations used in the approach’s components are then described.

Subsequently, we discuss some implications and future research suggestions,

and finally, we conclude.
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5.1 Introduction

Thanks to significant developments in automated planning technology, various

new applications have been created, such as tourism (Babli, Ibáñez-Ruiz, et

al. 2016), ambient assisted living (Babli, Rincon, et al. 2021), travel plan

generation (Knoblock et al. 2001), space technology (Guzman et al. 2015;

Muscettola et al. 1998), and underwater-installation maintenance (Cashmore

et al. 2018). The planning community is keen on designing concise models for

an automated agent acting in the real world. Various tools and approaches

have been developed that automate the building of domain models, such as

(Motta et al. 2004; Vaquero et al. 2013). Nevertheless, designing a planning

model that allows an autonomous agent to respond intelligently to unexpected

events in a real execution environment proves difficult for a variety of reasons,

such as:

• The model design of the execution environment must be comprehensive

enough to reflect the execution environment truthfully, yet conversely,

concise enough for AP search technologies to compute solutions effi-

ciently.

• Counting for every possible scenario in a non-deterministic execution en-

vironment inside the agent’s model can be unreasonable, time-consuming

and sometimes unfeasible. The result is a partially developed and incom-

plete model.

The agent is thus deprived of autonomy and is forced to rely on the knowledge

of its designers rather than its own percepts (Russell et al. 2020), hence over-

looking opportunities that any human executor would have seized or suffering

failures that any human executor would have avoided.

88



5.1 Introduction

Agents monitor the execution of the plan in the environment and are capa-

ble of formulating alternative goals on the fly. We briefly revisit some of the

approaches explained in Section 2.4. In (Rao et al. 1995), an observed event

triggers goals’ adjustment in real-time, and the actions selection function is

reapplied. (Norman et al. 1995) generates alternative goals when a function

exceeds a threshold to avoid reaching a state where a failure occurs and a

continuous operation is impossible. INTRO (Cox 2007) generates two kinds

of goals that reduce the dissonance between expectations and observations

and reduce the likelihood of repeating the same reasoning failure. LUiGi (Dan-

nenhauer and Muñoz-Avila 2013) and LUiGi-H (Dannenhauer and Muñoz-Avila

2015) generate goals using domain-specific monitoring and case-based reason-

ing, respectively. ARTUE (Klenk et al. 2013), M-ARTUE (Wilson et al. 2013) and

T-ARTUE (Powell et al. 2011) generate alternative goals to avoid failures, using

manually constructed rule-based goal creation, domain-independent heuristics

and goal learning interactively from humans, respectively. Dora the explorer

(Hanheide et al. 2010; Hawes et al. 2011) has domain-dependent encoded

motivators for generating goals relating to exploring newly detected rooms.

Also, in the opportunistic planning approach (Talamadupula, Benton, et al.

2010), discovering new victims triggers goal generation and replanning.

A limitation of the previously mentioned approaches is that goals are mostly

formulated based on objects in the agent model or objects of predefined types,

such as in the approach of opportunistic planning (Cashmore et al. 2018;

Cashmore et al. 2016). Cashmore et al. explain how unexpected events during

an AUV’s plan execution in autonomous underwater missions might offer

opportunities for the vehicle to increase the overall utility of its operations. For

example, a partially submerged section of an anchor chain, or other structure

from the predefined types of structures, could be spotted during the execution

of a mission. This event provides an opportunity to perform an unplanned
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inspection. In their model, they define an opportunity as a tuple < ti, go, u >

where ti ∈ T is one of the PDDL types in the domain, go is a goal with at least

one free argument argi of type ti, and u is a utility value. The goal go[argi] is

called an opportunistic goal. Therefore, opportunities are soft goals associated

with a particular object type ti in the domain. The idea is that instances of

a predefined type ti can be discovered and added to the world during plan

execution. Then, they create new soft goals by instantiating the free argument

argi in the opportunistic goal, go. Nevertheless, the new objects must be of the

agent’s predefined model types, leading the agent to still suffer from limited

context awareness. Agents only anticipate opportunities or failures related to

existing objects or new objects of types already existing in the agent model.

When unexpected events bring about new objects of unknown types, they will

mostly pass unnoticed. The monitoring processes of the agent will not detect

these unexpected events, nor will they reason about them. However, such

events may benefit the agent to either seize an opportunity and increase the

plan’s utility or repair an execution failure if the agent has the capacity to deal

with such new objects.

Our contribution in this chapter is a domain-independent approach that draws

upon the richness and expressivity of standard ontology representations, se-

mantic measures and ontology alignment for detecting and accommodating the

newly acquired objects into the planning task specification. These new objects

may subsequently trigger the formulation of a goal that induces a better-valued

plan or can be used to repair failures. More specifically, our approach bolsters

the agent autonomy, providing higher context awareness and advances state of

the art by:

1. Extending the knowledge of a planning task with objects extracted from a

collection of ontologies that describe features of interest for the specific

domain and are relevant to the execution environment. Consequently,
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higher environmental awareness (Babli, Onaindia, and Marzal 2018; Babli,

Marzal, et al. 2018).

2. Enhancing the knowledge extension and tailoring it for planning dynamics

to filter out objects unmanageable by the agent. Consequently, providing

the agent with task awareness in addition to environmental awareness

(Babli and Onaindia 2019).

5.2 Background

This section presents three examples from the author’s publications illustrating

the approach’s benefits.

Consider a repair agency scenario in which a robot in a warehouse has a

one-day maintenance task for several large kitchen appliances received by

the agency. The warehouse has three areas; a transit area for items that

require maintenance, an inspection area where maintenance is performed, and

a storage area for things that have already been maintained. The scenario

is formulated as a planning task including a specified set of categories of

large kitchen appliances, the operations that the agent can perform and their

durations (movement between the warehouse areas, a maintenance operation

specialised for large kitchen appliances, loading, and unloading). The planner

solves this task and returns a plan, which includes a total repairing of three

items: two items of type dishwasher and one item of type refrigerator. During

the plan execution, the repair agency receives a new item, bosch_ID3400, in

the transit area from a different delivery agent operating in the same city. The

new item type is requested from that agent and is found to be a kitchen_range,

not formerly considered in the planning task of the repair agency. This new

object may represent an opportunity if the goal of repairing it can be aligned
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within the modelling of the planning task of the agency and triggers a plan

compliant with the current goals resulting in achieving an extra unplanned

additional goal, providing better utility. However, suppose the repair agency

receives a new object, iphone_ID7500, of type mobile_phone during execution.

Unlike the bosch_ID3400 case, the autonomous agent is not equipped to repair

iphone_ID7500. Therefore, the agent should deem the new object irrelevant as

it is beyond its operational capabilities and must not erroneously integrate it

into its model (the case of iphone_ID7500 ) or generate a goal to repair it. To a

human operator, this distinction is simple; however, for an autonomous agent,

it is not trivial and requires the agent to be context-aware of the task it can

perform. This scenario is detailed in Appendix B.

Consider a tourism scenario where a tourist wishes to make a one-day tour

to visit several points of interest (POIs) in a city. The scenario is formulated

as a planning task including a specified set of POIs of different categories

(predefined types), the opening and closing times of these POIs, the walking

time between locations and a recommended list of potentially visitable POIs

for the tourist (goals). The planner solves this task by producing a plan which

includes a total of four visits: two visits to POIs of type religious site, one visit

to a POI of type emblematic architectural building and one visit to a POI of type

aquarium. While the plan is being executed, the tourist receives a cellphone

notification about opening a nearby exhibition of Picasso’s paintings. This

external information includes a new object type, art exhibition, not formerly

considered in the planning task. The new objects may present an opportunity

to the tourist if the goal of visiting Picasso’s exhibition can be aligned with the

modelling of the planning task and triggers a plan compliant with the current

goals resulting in a better tourism experience for the tourist. This scenario is

also detailed in Appendix B.
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Consider an example scenario where a robot in a facility such as an assisted liv-

ing house is tasked with providing target group members with objects to satisfy

their needs. The facility has several target group members and several rooms

and corridors with different objects that can fulfil the members’ needs. The

scenario is formulated as a planning task including a specified set of categories

of objects, the robot’s operations, and their durations (carrying, moving and

giving). The planner solves this task and returns a plan to comfort a member

by providing a specific object. Given the dynamic nature of the environment,

some existing objects might be unavailable during execution (being unexpect-

edly used by other members, broken, or malfunctioning), leading to execution

failures. Additionally, new types not previously introduced in the model may

also be encountered (added by staff or caretakers) during the plan’s execution

and could be used to resolve execution failures. This scenario is detailed as a

complete application in Appendix C.

5.3 Overview of the Approach

We first briefly revisit the plan monitoring and execution simulator our ap-

proach relies on (Babli, Ibáñez-Ruiz, et al. 2016) detailed in Chapter 4. The

simulation system takes ϕ = (Dom,Prob) and π as input and encodes them into

a timeline as a collection of chronologically ordered timed events encapsulating

the changes expected in the subsequent states. During the plan execution

simulation process, more specifically, in every execution cycle (Section 4.5.2),

the simulator system:

• Receives live events and adds them to the timeline; live events convey

information about the execution environment, and exogenous events

convey external information from other agents operating in the same

environment, dynamically modifying the real-world states.
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• Executing the timed events, checking that conditions of the plan actions

are satisfied and the effects happen when they should, thus validating

and updating the states of the world (timeline).

The system can generate the expected states trivially by running the simulation

offline without reading live events with the simulation step size equal to the

plan’s makespan. Dynamically simulating plan monitoring involves observing

the state that results from executing the plan actions in the environment

and checking whether the observed state matches the expected state. This

operation creates a discrepancy set as the difference between the two sets,

which will comprise fluents of the form (name(v) o
arity(v)
i=1 ), where v is a variable

that belongs to the finite set of variables V of the domain Dom, name(v) is the

variable name (label) and oarity(v)i=1 are the objects which v was instantiated with.

Two cases can be distinguished:

• ∀oi ∈ o
arity(v)
i=1 : oi ∈ O. All the fluent objects are known to the agent

(belong to the predefined finite set of objects of the planning problem

Prob).

• ∃oi ∈ oarity(v)i=1 : oi /∈ O. There exists an object in the fluent that is unknown

to the agent (does not belong to the predefined finite set of objects of the

planning problem Prob).

The first case is typical, and its discrepancies may lead to failures handled

using our simulation system. This chapter focuses on the second case, where a

new object exists. The system can retrieve the type of the new object either

from:

• Other remote ontologies (Babli, Onaindia, and Marzal 2018) which is

helpful for application domains whose objects are proper nouns. E.g., the
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Eiffel Tower in a tourism application domain and the Mondeca Tourism

Ontology that includes essential concepts of the tourism domain; loca-

tions, accommodations and concepts that describe leisure activities and

geographic data.

• The source agent of the new object, as in (Babli and Onaindia 2019), when

object names are not proper nouns.

• Using other advanced techniques such as image recognition in deep

learning (Babli, Rincon, et al. 2021).

The author designed the approach sketched in Figure 5.1.

Figure 5.1: Context-aware Knowledge Acquisition using Ontologies

When a new object is received, two cases can be distinguished:
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• t ∈ T , the type of the new object is literally one of the existing types.

• t /∈ T , the new object type is not one of the predefined types of the

planning task.

When t ∈ T , the object is integrated into the planning task with its correspond-

ing variables, which may trigger an opportunity goal and a new plan.

On the other hand, when t /∈ T , the agent utilises the author’s proposed

approach, context-aware knowledge acquisition for planning applications using

ontologies to:

1. Decide whether t is relevant to the agent’s execution environment model.

The agent performs a preliminary identification of similar ontologies

before positioning the new type t. This corresponds to the orange box in

Figure 5.1.

2. Decide whether t is manageable using the agent’s variables and opera-

tors OP (its actions schemas). The agent thoroughly identifies similar

ontologies before positioning the new type t. This corresponds to the

green box in Figure 5.1.

The new type of the new object is integrated if and only if it is relevant to the

agent’s execution environment and is manageable by the agent’s capabilities.

Otherwise, the agent should deem the object unmanageable (according to the

operators and the variables in the agent’s model) and thus ignores that object.

This process is helpful whether online during execution for positioning a single

new type of a single new object or offline for generating an augmented set of

types that are relevant and manageable by the agent to keep an eye on for

monitoring when execution starts.
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When the new object is integrated, it may subsequently trigger the generation

of an opportunity goal, as in the author’s work (Babli, Onaindia, and Marzal

2018; Babli and Onaindia 2019) explained in B. On the other hand, it may be

used to repair an execution failure when replanning or repairing is invoked, as

in (Babli, Rincon, et al. 2021) explained in Appendix C.

5.4 Context-aware Knowledge Acquisition for

Planning Applications using Ontologies

The approach’s four main phases are depicted in Figure 5.1, each of which is

described below.

Phase 1: Preliminary identification of similar ontologies.

This phase provides the agent context awareness of the execution environment

and allows it to integrate new objects relevant to the agent. Phase 1 corre-

sponds to the orange box in Figure 5.1 and consists of four stages, as shown in

Figure 5.2.

First, the agent creates a preliminary OWL ontological representation of only

the types T of the agent’s planning task ϕ, the resulting ontology is called ηϕ.

Second, the agent either retrieves a set of remote ontologies describing the

application domain (used for applications where objects are proper nouns, such

as tourism), or retrieves a set of partial remote planning tasks ∆ with PDDL

representation, precisely the types T of several semi-cooperative agents from

online repositories, and creates their OWL ontological representation R∆ of

only the types. Third, the agent augments the classes representing the PDDL

types with OWL annotations to counter the natural complication of lexical

alterations. Subsequently, in the fourth stage, the agent applies a preliminary

quick similarity measure, a vector space model distance (VSM) to R∆, and
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Figure 5.2: Preliminary Identification of Similar Ontologies

obtains the set R′, which contains the potentially most similar ontologies to ηϕ

according to classes (that represent PDDL types).

Phase 2: Thorough identification of similar ontologies.

This phase provides the agent context awareness of the task the agent performs

and allows it to integrate new objects that are manageable to the agent’s

capabilities (variables and operators). Phase 2 corresponds to the green box in

Figure 5.1 and consists of four stages, as shown in Figure 5.3.

In the author’s publications, this is used both online and offline. It is used

online before positioning the new type in the agent model if the type of the

new object is retrieved from a remote ontology or from the source agent which

delivered the new object, as in the works (Babli and Onaindia 2019; Babli,

Marzal, et al. 2018; Babli, Onaindia, and Marzal 2018). On the other hand, it is
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Figure 5.3: Thorough identification of similar ontologies

also used offline if the agent needs to be trained to recognise the new types of

objects by generating an augmented set of types offline (candidate types) that

are potentially useful for the agent later on during execution in case of failure,

as in the work of (Babli, Rincon, et al. 2021).

For online usage, the information of a new object o /∈ O is received in the form

of (name(v) o1 . . . o . . . on). First, the agent can identify the class/type of the

new object o from other remote ontologies or the source agent which delivered

o and finds t /∈ Tϕ. As illustrated in Figure 5.3, among R′, the agent filters out

ontologies that do not contain t to get R′
t. Then, the agent extends ηϕ and R′

t

to represent not only types T but also variables V and the heads part of actions

schemas OP . By doing so, we have represented the relationships (variables)

established among the agent’s types and capabilities regarding the operations

99



Chapter 5. Context-aware Knowledge Acquisition for Planning Applications

it can perform with these types (operators’ heads). It is safe to assume that

semi-cooperative agents would share information only related to types T ,

relationships (representing variables) associated with types V and heads part

of operations OP applied to types, with no private details such as objects,

state variables (fluents), how the operations are performed (conditions and

effects), goals or states. The agent augments the classes representing the PDDL

variables and the classes representing heads part of actions schemas OP in

ηϕ and R′
t with OWL annotations to counter the natural complication of lexical

alterations. Subsequently, the agent applies a tailored semantic similarity

(TSM) measure between ηϕ and ontologies in R′
t (to consider the planning

dynamics of V,OP and obtain Nϕ). An ontology in Nϕ with a high similarity

value means that the remote agent is equipped with similar capabilities. If the

similarity value is higher than a specified threshold, then the new type t is not

only relevant but also manageable by the actions’ schemas. In contrast, a low

similarity value means the agent cannot manage the new class t.

On the other hand, when we do not know the type of the new object, we prepare

the agent to be capable of recognising the objects’ types that are relevant and

manageable. Generating the augmented set of candidate types potentially

useful for the agent is done as follows. For each type (class) ti in the predefined

set of object types T of the agent’s planning task ϕ, the agent applies the stages

mentioned in the previously mentioned paragraph, starting by filtering out the

remote ontologies that do not contain ti, and ending with multiple set of remote

ontologies {Nϕ
t1 . . . N

ϕ
ti . . . N

ϕ
tn}. These ontologies represent the ontologies of

the remote agents equipped with similar capabilities to the agent with the

planning task ϕ and contain ti and other classes similar to ti (ti siblings). By

choosing the most similar ontology from each set, the agent aggregates a

specified number of types classes from these ontologies and generates the list

of augmented set of types, on which the agent will be trained (offline and only
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once) to recognise. Type training (learning), where the agent is trained on

the augmented set of types, is abstracted from this chapter and explained in

Appendix C, where the agent recognises objects of the relevant types through

an objects classifier model.

Phase 3: Positioning a new type and integrating a new object.

The agent attempts to position the new class ω representing the new type t of

the new object o in ηϕ, as shown in Figure 5.4.

Among Nϕ, which are the remote ontologies that represent the most similar

agents in terms of the relevance of types and operations and contain the class

ω, the agent applies a semantic variance filter to select the ontology with the

highest semantic insight, which is referred to as ηω then it attempts to perform

a semantic alignment with a neighbourhood constraint between ηϕ and ηω.

Figure 5.4: Positioning a new type and integrating a new object

If the alignment is successful, ω is positioned in the hierarchy of classes in ηϕ,

and t is added to T as arguments for relating V and as parameters in relating
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heads of OP . In addition, o is added to O, and the required planning state

variables that involve o and their associated values are identified and added to

I.

Phase 4: Goal formulation and opportunity identification. Suppose the

type t of the new object o that is represented by the class ω appeared to be a

class or a sibling of a class (in ηϕ) that is involved in a goal g ∈ G. In that case,

the agent formulates x candidate new goals that involve the newly received

object o, where x depends on the possible permutations of objects in the goal

variable; x = 1 if the goal has only o as a parameter. Once the x candidates

are formulated, the system generates Φ′ = ϕ′1, . . . , ϕ
′
x (modified versions of ϕ),

where the added information includes o, t, the information of o, the discrepancy

variables, G′ = g′i ∪ G, and the new current state. The agent invokes a planner

to solve each ϕ′i ∈ Φ′ to know which g′i can be considered an opportunity to ϕ in

the context of π. g′i is considered an opportunity goal for ϕ when the planner

is able to generate a plan π′
i to solve ϕ′i that includes the new goal plus the

original set of goals.

The following sections detail the ontology-based operations used in our ap-

proach. Namely, the OWL ontological representation, augmenting classes using

ConceptNet, the VSM distance used in the preliminary identification of similar

ontologies, the TSM distance used in the thorough identification of similar

ontologies, the SV filter used to select the ontology with the highest semantic

insight and the alignment with neighbourhood constraints.
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5.5 Ontology-based operations

The author used Java and The OWL API to implement the ontology-based

operations. The OWL API1 is an open-source efficient Java API for creating,

parsing, manipulating and serialising OWL Ontologies. For clarity and concise-

ness, the ontology-based operations are detailed in this chapter. In contrast,

Appendices B and C demonstrate the ontology-based operations and the use

of context-aware knowledge acquisition in several application domains, using

snapshots from the GUI of Protégé (Musen 2015) to show visual explanations

of the ontological representation.

5.5.1 Preliminary OWL Ontological Representation

This subsection corresponds to the first stage in Figure 5.2. Given a plan-

ning task of the agent ϕ = (Dom,Prob), where the domain is a tuple Dom =

(T, V,OP), and the problem is a quadruple Prob = (O, I,TILs, G). The prelimi-

nary OWL Ontological Representation ηϕ consists of a finite set of OWL classes

(concepts) Ω used to represent T . PDDL offers the ability to express a type

structure for the objects in a domain which allows typing the parameters that

appear in variables and operators. Furthermore, PDDL allows the types to be

expressed as forming a particular hierarchy. Similarly, when the agent creates

the OWL classes representing T , for each type t in T of ϕ, an OWL class ω is

created in ηϕ, abiding by the exact hierarchy defined in ϕ. The set of classes

representing the PDDL types is referred to as ΩT .

As previously mentioned, for application domains whose objects are proper

nouns, e.g., Eiffel Tower and smart tourism (Babli, Onaindia, and Marzal

2018), it is useful to represent the set of objects O of the problem instance as

1More info at https://github.com/owlcs/owlapi/wiki

103

https://github.com/owlcs/owlapi/wiki


Chapter 5. Context-aware Knowledge Acquisition for Planning Applications

individuals Λ of their corresponding classes, so the classes of individuals (the

types of the objects) can be identified using remote ontologies. For example,

assuming that the definition of a particular tourism problem instance includes

a declaration of a set of objects O. For each o ∈ O of type t ∈ T , an OWL

individual λ of the class ω is created in ηϕ.

5.5.2 Augmentation of Classes using ConceptNet

We need to counter the natural complication of lexical alterations and that dif-

ferent people can model the same domain using different terms and languages.

The agent augments the classes of the ontologies with the relations and con-

cepts brought from ConceptNet (modelled as OWL annotation labels) as a

standard means to describe concepts. Therefore, ηϕ will also contain a set of

OWL annotations Ξ used to describe Ω, where a class ω ∈ Ω can have one or

many annotation labels. ConceptNet is a freely-available semantic network

designed to help computers understand the meanings of words that people use.

ConceptNet is a knowledge graph that utilises a closed set of 36 selected rela-

tions, such as isA, usedFor and hasProperty, to represent relationships between

concepts independently of the language or the source of the terms it connects

(Speer et al. 2017). As a result, even if the names of the classes are different,

classes that refer to the same concept will have annotations in common and

will be found similar when measuring semantic distances or when performing

the alignment. An example of the facts that can be obtained about a concept

from ConceptNet’s browsable interface2 is shown in Figure 5.5.

In our implementation, the agent accesses ConceptNet using its API3, which

allows the agent to query the knowledge about any concept. Figure 5.6 demon-

2More info at conceptnet.io
3More info at https://github.com/commonsense/conceptnet5/wiki/API

104

conceptnet.io
https://github.com/commonsense/conceptnet5/wiki/API


5.5 Ontology-based operations

Figure 5.5: ConceptNet’s browsable interface facts about “television”

strates an example of a class television in OWL/XML format, created via The

OWL API, which is a subclass of a class major_appliance, with a sample of label

annotations (brought from ConceptNet) that a television: isa an appliance,

synonym is TV, atlocation a house, capableof show images, relatedto television

program and isused for watching a show.

<!-- http://www.semanticweb.org/repair#television -->

<owl:Class rdf:about="http://www.semanticweb.org/repair#television">

<rdfs:subClassOf rdf:resource="http://www.semanticweb.org/repair#

major_appliance"/>

<rdfs:label>television isa an_appliance</rdfs:label>

<rdfs:label>television atlocation a_house</rdfs:label>

<rdfs:label>television capableof show_images</rdfs:label>

<rdfs:label>television synonym tv</rdfs:label>

</owl:Class>

Figure 5.6: OWL/XML format representation of a class television
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5.5.3 Vector Space Model Similarity Measure

In ontology engineering, knowing quickly if two ontologies are similar is helpful

before deciding to match them. For measuring the distance between ontologies,

we decided to look at the ontologies as a bag of terms; consequently, ontology

distance measures based on the Vector Space Model (VSM) are applicable.

For this purpose, we used a Vector Space Model similarity measure using

cosine index with TF (weighted frequency term) to preliminary filter ontologies

unrelated to ηϕ among R∆ (thus irrelevant classes) and obtain R′ as the set of

ontologies that may seem most similar to ηϕ according to classes.

Measuring similarity in the VSM using cosine index with TF has proven to

obtain good results. It computes much faster than other distance measures

but is not robust to lexical alterations (David et al. 2008). However, lexical

alterations do not impact our approach thanks to augmenting the classes with

OWL annotations coming from ConceptNet as a standard means to describe

concepts. Therefore, the lexical information in each ontology class comes from

the local name of the term and the annotations imported from ConceptNet

relations and classes. To compute the distance, the author used OntoSim4, an

independent open-source Java API that allows computing similarities between

ontologies, can be used with The OWL API and provides a variety of distance

measures. At this point, the ontologies R’ (shown in the last stage in Figure

5.2) with the highest types’ similarity with respect to ηϕ are obtained.

4More info at https://gitlab.inria.fr/moex/ontosim

106

https://gitlab.inria.fr/moex/ontosim


5.5 Ontology-based operations

5.5.4 Extended OWL representation

This stage aims to extend the ontological representation to account for the

planning dynamics by representing the variables V and the head parts of the

operators OP .

Similarly to Section 5.5.1, when the agent created the ontological represen-

tation of types T , for each v ∈ V and for each op ∈ OP a class is created in

ηϕ resulting in ΩV and ΩOP . As V have typed arguments args and OP heads

have typed parameters pars, the representation utilises OWL object properties

hasParameter1...n in Ψ to specify args and pars of V and OP , respectively. By

specifying the OWL domain and range of the object property hasParameteri

for the particular class, in addition to using the qualified cardinality “exactly”

restriction to describe a class based on class members’ relationships within an

ontology.

Besides the axioms that the class be is a subclass of the class variable and the la-

bel annotations, Figure 5.7 shows the OWL/XML format representation created

by The OWL API for specifying arg1 and arg2 of the class representing the vari-

able (be ?locatable - (either dishwasher refrigerator robot televi-

sion) ?loc - location) utilising the qualified cardinality restriction on the

object properties hasParameter1...n.

5.5.5 A Tailored Semantic Similarity Measure for planning

dynamics

The tailored Semantic Similarity Measure (TSM) is shown in Algorithm 1.

TSM is designed to exploit the information from the classes names and the

annotations imported from ConceptNet that are attached to these classes.

Utilising a hybrid string similarity measure SoftTFIDF (Cohen et al. 2003) to
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<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="http://www.semanticweb.org/repair#

hasParameter1"/>

<owl:qualifiedCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#

nonNegativeInteger">1</owl:qualifiedCardinality>

<owl:onClass>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<rdf:Description rdf:about="http://www.semanticweb.org/repair#

dishwasher"/>

<rdf:Description rdf:about="http://www.semanticweb.org/repair#

refrigerator"/>

<rdf:Description rdf:about="http://www.semanticweb.org/repair#

robot"/>

<rdf:Description rdf:about="http://www.semanticweb.org/repair#

television"/>

</owl:unionOf>

</owl:Class>

</owl:onClass>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="http://www.semanticweb.org/repair#

hasParameter2"/>

<owl:qualifiedCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#

nonNegativeInteger">1</owl:qualifiedCardinality>

<owl:onClass rdf:resource="http://www.semanticweb.org/repair#location"/>

</owl:Restriction>

</rdfs:subClassOf>

Figure 5.7: OWL/XML representation of (be ?locatable - (either dishwasher

refrigerator robot television) ?loc - location)
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Algorithm 1 Tailored similarities for T , V , or OP

1: procedure TSM(c1, c2)

2: if InflictedForm(c1,c2) ∨ Synonyms(c1,c2) then

3: SimValue = 1

4: else if SoftTFIDFdistance(c1,c2,synonym)> 0.7 then

5: SimValue = SoftTFIDFdistance(c1,c2,synonym)

6: else

7: Relations={synonym,isA,usedFor,atLocation,capableOf,relatedTo,antonym,hasA,

8: derivedFrom,hasContext,uri}

9: SimValue = AverageOfNonNullValues(c1,c2,Relations))

10: return SimV alue

measure similarities between classes to support a higher degree of syntactic

variation between the terms. SoftTFIDF combines TF-IDF, a token-based

similarity widely used in information retrieval (Raghavan et al. 1986), with the

Jaro-Winkler edit-based (Winkler 1990) with a threshold of 0.9 for two tokens to

be considered similar as used in (Gracia et al. 2013) to promote high precision,

and with a threshold of 0.6 for the SoftTFIDF above which two classes are

considered similar. There follows an explanation of how the algorithm works

on two classes:

• If inflected form or an exact synonym, then SimValue=1, as shown in

lines 1, 2 of Algorithm 1.

• Else if the SoftTFIDF distance according to the synonym annotations is

greater than 0.7, then SimValue=SoftTFIDF distance, as shown in lines

3, 4 of Algorithm 1.

• Else SimValue= the average non-null values of the SoftTFIDF distance

for the Relations, as shown in lines 5, 10 of Algorithm 1.
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Algorithm 1 is applied to obtain three similarity matrices for types, variables,

and heads of operators. Since variables have arguments and heads of operators

have parameters, the values of their matrices must be calibrated to consider the

semantics of the concepts representing the arguments/parameters. Algorithm

2 shows how the similarity values are calibrated.

Algorithm 2 Calibrate Variables or Op heads matrices

1: procedure calibrate(op, op′)

2: total← 0

3: counter1← 0

4: counter2← 0

5: for each c ∈ params(op) do

6: counter1 + +

7: maxV alue← 0

8: for each c′ ∈ params(op′) do

9: counter2 + +

10: if TSM(c, c′) > maxV alue then

11: maxV alue← TSM(c, c′)

12: total + = maxValue

13: if counter1 > counter2 then

14: total = total/counter1

15: else

16: total = total/counter2

17: SimV alue = 0.75 ∗ total + 0.25 ∗ oldSimV alue

18: return SimV alue

Subsequently, the values are aggregated when we get the calibrated similarity

matrices to obtain a final similarity value between two ontologies. A high value

means that the newly received object o of the new type t is manageable, and
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an alignment can be done using the ontology with the high similarity value;

otherwise, o is considered unmanageable.

5.6 Selecting the Ontology with the Highest Semantic

Insight

In this stage, the agent decides which ontology (ηω) amongst the ontologies

of Nϕ (which all cover a certain domain of knowledge and model the same

concepts) is the best for the specific task ϕ to perform the alignment. For this

purpose, the author decided to use the semantic variance (SV filter in Figure

5.4) introduced in (Sánchez et al. 2015). SV is an intuitive and inherently

semantic measure to evaluate the accuracy of ontologies. Unlike ad hoc

methods, SV is a mathematically coherent extension of the standard numerical

variance to measure the semantic dispersion of the taxonomic structure of

ontologies. Here follows the SV formal definition introduced in (Sánchez et al.

2015). Given an ontology n, which models in a taxonomic way a set of concepts

C in n, the SV of n is computed as the average of the squared semantic distance

between each concept ci ∈ C and the taxonomic root node of n. If we denote by

|C| the cardinality of C excluding root, the mathematical expression of SV of n

is shown in Equation 5.1:

SV =

∑︁
ci∈C

d(ci, root)

|C|
(5.1)

Where d(ci cj) is the semantic distance between two concepts ci and cj calculated

as a function of the number of their non-common taxonomic ancestors divided

(for normalisation) by their total number of ancestors. Equation 5.2 shows the

semantic distance d(ci cj):

d(ci, cj) = log2(1 +
|A(ci) ∪ A(cj)| − |A(ci) ∩ A(cj)|

|A(ci) ∪ A(cj)|
) (5.2)
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A(ci) is the set of taxonomic ancestors of concept ci in n, including itself. The

semantic distance measure d(ci cj) aggregates features in a logarithmic way,

which better correlates with the non-linear nature of semantic evidence. More

importantly, variance does not depend on the cardinality of the ontology. We

calculate the SV for each ontology in Nϕ, and select ηω, the one with the highest

SV. The goal of the stage can be loosely described as distinguishing the most

hierarchical ontology and avoiding non-specialised ontologies where different

categories of concepts (types) are flat as siblings.

Figure 5.8: Two ontological representations that model the same knowledge domain

Figure 5.8 shows two ontological representations that model the same knowl-

edge domain. Each has the same concepts; However, the semantic variance

of the ontology on the left side of the figure is equal to 0.253, whereas it is

equal to 0.289 for the ontology on the right side of the figure as it has a deeper

hierarchy and it better describes that particular domain of knowledge.
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5.6.1 Alignment with neighbourhood constraint

The agent performs an alignment to determine where to position the concept

ω representing the new type t within the hierarchy of concepts in ηϕ. The

alignment is performed between:

• On the one hand, ΩT in ηϕ, that is the taxonomic branch representing the

PDDL types in the ontology.

• And on the other hand, the particular part of the taxonomic branch that

includes ω in ηω (the ontology with the highest semantic insight, that

contains ω, and that is most similar to ηϕ according to the TSM). This

taxonomic branch includes the parent concept parent(ω), and the sibling

concepts siblings(ω).

For the alignment, we used the similarity matrices (produced by TSM in Section

5.5.5) with a neighbourhood constraint. Domain-independent constraints con-

vey general knowledge about the interaction between related nodes. Perhaps

the most used constraint is the neighbourhood constraint, as suggested by

(Doan et al. 2003), where “two nodes match if nodes in their neighbourhood

also match”. Therefore:

• If parent(ω) in ηω matches x in ηϕ, then the agent establishes x :: ω in ηϕ.

• On the other hand, if no match was achieved with the parent, the neigh-

bourhood constraint procedure matches ΩT in ηϕ with siblings(ω) in ηω, if

the percentage of matching siblings exceeds a specified threshold, and

these matched concepts are found to be under a common parent in ηϕ,

then we list ω as a subconcept of that superconcept in ηϕ.
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5.7 Discussion and Future Work

Extending planning knowledge provides context awareness to the agent. Con-

text awareness of the execution environment in terms of relevant types and

context awareness of the agent’s capabilities and the task it performs regarding

variables and operators.

Recognising unexpected events that bring in new information (new objects)

leads to new ways of achieving the existing goals (in case of failure) or new

opportunistic goals (increased utility). The work outcomes leave many open

lines of research and future developments. There follow some implications and

future research suggestions.

The ontological representation can be easily extended to fully represent opera-

tors’ conditions and effects and the execution state. This means the agent can

already represent ground actions as individual instances of their corresponding

operators’ classes, paving the way for the agent to learn new variables and

operators. Learning new variables and operators and importing them into

the agent model is very ambitious. Theoretically, it allows the agent to learn

new capabilities and perform further new operations. However, practically,

agents are often limited by their physical capabilities, their actuators or grip-

pers. Therefore, concerning importing operators, it would be interesting to

further extend this research to agents with cognitive tasks, such as speech,

conversation or tasks involving natural language processing. In such cases, for

example, an agent that is originally modelled to form noun phrases will be able

to compose propositional, adjective, verb, or gerund phrases.

Similarly, it would be interesting to represent the HTN formalisation. Since

HTN high-level tasks are decomposed into more straightforward tasks and pri-

mary actions, an agent that benefits from ontological and HTN representations
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could extend its model with new high-level tasks if it has the primary actions of

that high-level task. Consequently, allowing the agent to import new strategies

that were not originally modelled in the agent model, yet the agent would be

able to perform.

Our approach has good performance because 1) the semantic distances and

operations we use compute largely fast, and 2) that we are not using ontologies

to perform planning itself but rather to extend the planning knowledge. The

complexity and performance become an issue when using ontologies to perform

planning, as indicated in (Gréa 2020). Another possibility is to research using

Semantic Web Rule Language (SWRL) to perform planning, or to explore

semantic similarity for planning heuristics by computing an overall semantic

similarity score between terms that can be used by planning algorithms to

guide the searching process if a way is found to achieve good performance.

In the author’s work, deciding whether the newly generated goal forms an

opportunity is delegated to the planner. This can be considered a rich research

problem that requires further research. Some current planners remove from

the search space those actions whose conditions are fluents that do not hold in

the initial state (Richter and Westphal 2010). Other works, such as (Borrajo

et al. 2021), consider that these facts could become true during execution

and may allow for reaching the same goals pursued in the original plan more

intelligently. Similarly, Goal-Driven Autonomy (GDA) approaches, and goal

refinement models of goal reasoning (Aha 2018) can reason about soft goals

that were not included in the original plan and become achievable during

execution due to the dynamic nature of the environment. However, more

research is required for the reachability heuristics when a new object of a new

type is integrated into the planning task with its related fluents and a new goal

that involves the newly integrated object is generated.
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5.8 Conclusion

Context and context awareness are crucial for any intelligent agent that op-

erates in a dynamic environment. In this chapter, the author has presented a

domain-independent approach that may be used as a part of a context-aware

model in a deliberative context-aware ambient intelligence system, as will

be shown in Appendix C. Our approach bolsters an autonomous agent with

the capability of extending its planning task to accommodate, on the fly, only

relevant and manageable new information that may trigger the formulation of

new goal opportunities as shown in Appendix B or may be used in plan repair if

a failure occurs Appendix C.

At this stage of this PhD thesis, the agent can simulate and monitor the plan

execution and acquire and extend its knowledge in a context-aware manner.

The next step in this PhD thesis is to endow the agent with the ability to perform

plan repair intelligently to ensure a responsible repairing policy among agents

instead of delegating that task to a replanning as typically done.
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Plan Commitment Repair

P
LAN COMMITMENT (Babli, Sapena, et al. 2023), the third

and final contribution of this PhD thesis, stands out as the

result of detailed and dedicated research, aimed to offer

valuable insights and provoke further thought. While executing its plan in a

dynamic environment where multiple agents are operating, an autonomous

agent may suffer a failure due to discrepancies between the expected and

actual context and thus must replace its obsolete plan. In its endeavour to fix

the failure and reach its original goals, the agent may unknowingly disrupt

other agents executing their plans in the same environment. We present a

property for plan repair called plan commitment to ensure a responsible repair

policy among agents that aims to minimise the negative impact on others. We

present arguments to support the claim that plan commitment is a valuable

property when an agent may have made bookings and commitments to others.

We then propose C-TFLAP, an implementation of a plan repair heuristic that
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allows adapting a failed plan to the new context while committing as much

as possible to the original plan. We demonstrate empirically that: (1) our

plan repair achieves more committed plans than plan-stability repair when

an agent has made bookings and commitments to others, and (2) compared

to typical replanning and plan-stability repair, it can reduce the revisions

among agents when failures are avoidable and can decrease the time-loss

otherwise. In addition, to demonstrate extensibility, we integrate context-

aware knowledge extension with committed repairing to increase the agent’s

chances of repairing.

A Brief Evolutionary Perspective on Commitment

Since AI was born in 1956, it has held great enthusiasm by embracing the idea

of replicating human faculties. This unnumbered section pre-motivates the

reader on the roots of commitment drawing upon evolution, adaptation and

the capacity for commitment. Here follow some of the most influential quotes

about the essence of adaptation and commitment.

“It is not the most intellectual of the species that survives; it is not

the strongest that survives; but the species that survives is the one

that is best able to adapt and adjust to the changing environment in

which it finds itself.” – Leon C. Megginson (Megginson 1963)

“In the struggle for survival, the fittest win out at the expense of

their rivals because they succeed in adapting themselves best to

their environment.” – Ritchie R. Ward (Ward 1972)

“In a multiperson situation, one man’s goals may be another man’s

constraints” – Herb Simon (Simon 1964)
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In a TED talk (De Waal 2017) at an official TED conference, Frans de Waal,

a distinguished professor, evolutionary biologist and primatologist known for

his work on the behaviour, empathy, cooperation and social intelligence of

primates (De Waal and Waal 2007), reveals that the terms alpha male and alpha

female which mean the highest ranking members goes back to the ’40s and

’50s research on wolves, recently became very popular and are heavily used

in mischaracterisation in a way that does not relate to what an alpha male or

female actually is – a bully – whereas, in fact, the most critical obligation in

alpha members is that they behave responsibly, show empathy and help others.

Regarding our evolutionary origins, social relations, and society’s organisation,

Fehr Ernst and Urs Fischbacher in (Fehr et al. 2003) argue that altruism

and selfishness are among the most fundamental questions, and experimental

evidence indicates that human altruism is an extremely powerful force.

In (Nesse 2007), the author explains that commitment has roots in regular

natural selection at the individual level by selection forces that arise from

the actions of other individuals, emerging automatically from the dynamics

of social groups. In contrast to individuals whose behaviour is predictably

self-interested, those who are capable of making and keeping commitments to

do things that are not in their direct interests gain advantages through social

influence.

The social fabric is woven from promises and threats (commitments) that are

not always immediately advantageous to the parties involved. Furthermore,

game theorists have shown that players who use commitment strategies achieve

greater success than those who rationally calculate every move for immediate

reward (Nesse 2001).
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6.1 Introduction

Automated planning is the model-based approach for autonomous control

devoted to studying the reasoning side of acting (Russell et al. 2010). Planning

is a crucial deliberative capability for autonomous agents to synthesise plans of

action that achieve their goals in a variety of contexts like e-learning (Garrido

et al. 2008), space applications (Chien et al. 2014), robotics (Karpas et al. 2020)

and assisted living homes (Babli, Rincon, et al. 2021).

The successful application of automated planning requires looking into the

side of acting, that is, examining the results of executing a plan in the real

world (Ghallab et al. 2014). Broadly speaking, there are two general ways

of addressing planning and execution. The first one is to use models for

planning under uncertainty that capture the partial observability and inherent

uncertainty of the environment so that the calculated plans account, to some

extent, for potential incidents and exogenous events that can occur during

execution (Castellini et al. 2021; Spaan et al. 2015; Ong et al. 2010). The second

way lies in using classical planning models that assume a static environment

only changing when some action is taken, a full observability and determinism

of the actions (Goldman, Kuter, and Freedman 2020; Rodríguez et al. 2011;

Bajo et al. 2008; Koenig et al. 2005; Vendrell et al. 2001). Under this paradigm,

the effects of unexpected situations during the plan execution are tackled at

execution time. The first scheme uses more expressive but also more expensive

planning models that can only partially account for the uncertainty in the world,

whilst the second scheme relies on efficient replanning or plan repair methods.

In this work, we adopt the second scheme and develop a novel plan repair

strategy among multiple agents sharing the same execution environment.

A planning agent is an entity with the capacity for reasoning and acting. Ideally,

a given planning agent would be responsible for synthesising and executing
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plans and replanning to account for changes to the world state that the agent

cannot foresee. However, there are many such agents in the real world, each

with different objectives, yet all tied together by a common execution environ-

ment they share. We follow the central argument presented in (Talamadupula,

Smith, et al. 2013) that the single-agent planning community needs to heed

the changes to the world state by generating a new (single-agent) plan that

remains consistent with the larger community of agents sharing the world.

We aim to ensure the robust execution of an agent’s plan in a community of

agents so that it can be adapted to unforeseen situations arising from discrep-

ancies between what an executing agent expects and what it observes. More

importantly, ensure that the new adapted plan does not propagate negative

consequences to other agents operating in the same environment.

Replanning consists of generating a new plan from scratch without considering

the original plan by calling a planner with the new encountered world situation.

Replanning is a popular method concerned with allowing an agent that suffered

a failure to generate a new plan to reach its goals quickly. However, it derives

a new solution without considering the existing plan. By contrast, plan repair

fixes the existing plan, tries to retain its parts and structure and adapts it to the

new context whilst causing minimal perturbations. In theory, in the worst case,

modifying an existing plan is not more efficient than a complete replanning

(from the current state) (Nebel et al. 1995). However, in practice, much prior

research effort (Bechon et al. 2020; Chen, Xu, et al. 2020; Krogt et al. 2005;

Gerevini and Serina 2000) indicates that plan repair can be more effective than

replanning when the plan duration (the makespan of the plan) is not the main

criterion to optimise.

Since the plan-stability concept was defined in 2006, plan repair has proved

that it could provide new plans with equivalent computation speed and with
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fewer revisions than replanning in the face of disruptions (Goldman, Kuter,

and Freedman 2020; Fox, Gerevini, et al. 2006). Albeit there is a wealth

of research on plan repair, there is arguably less work on repair strategies

that aim to minimise the negative impact among multiple agents sharing

the same execution environment, where there is a degree of privacy, reduced

communication, or when an agent has bookings and commitments to others that

may be costly to undo; for brevity, we will call such a setting the conservative

shared setting.

Herein, we identify a new metric, plan commitment, which we claim is impor-

tant in a community of agents operating in a conservative shared setting. In

this situation, if an agent is solely focused on achieving its goals within the

minimum time, it may propagate negative consequences to other agents and

disrupt the community. Therefore, the repaired plan should be as close as pos-

sible to the original plan from the perspective of commitments made to other

agents whilst achieving the original goals. When we refer to commitments

in the context of a repaired plan, we are specifically referring to reusing the

resources that were used in the original plan. The results of this work show

that in comparison to replanning and plan-stability repair, an agent that is using

plan commitment to repair its plan failures can reduce the adverse effects on

other agents, i.e., can cause fewer failures to other agents in a community of

agents and can reduce their time-loss if the failures are inevitable.

Our approach builds on the temporal forward partial-order TFLAP planner

(Sapena, Marzal, et al. 2018) but exploits the new plan commitment quality

as a search strategy by seeding the search with the existing plan and using

the new heuristic to guide the search for the most committed repair plan. Our

contributions are the plan commitment property, the corresponding heuristic

that guides the planner’s search to achieve the most committed plan repair, and

the resulting planner, which we call C-TFLAP, that repairs failures while trying
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to minimise the negative impact on others by generating the most committed

plan when a failure occurs.

This Chapter is structured as follows. The next section reviews handling plan

execution failures in the literature. The plan commitment property is defined

in Section 6.3, and in Section 6.4, we show the implementation details of

C-TFLAP. Next, we present an experimental evaluation and discuss the results in

Section 6.5. Finally, Sections 6.6 and 6.7 finish the chapter by showing future

extensions and drawing some conclusions.

6.2 Related Work

The integration of planning and acting is a critical issue in designing deliber-

ation systems, thus resulting in a range of design options for them. The first

view relies entirely on planning. The second view depends mostly on execution

without much efficient help from planning, whereas the third view is balanced

between planning and acting (Ingrand et al. 2017).

For our purposes, this section examines some approaches in two categories.

The first category uses predictive models while planning (before execution).

The second category deals with failures without predictive models during

execution (online interleaved with execution).

For the first category, planners need to integrate predictive models with mission

specifications and provide a plan or policy as output, transforming perceived

states (or beliefs) into lower-level orders, guaranteeing the mission’s success

and potentially meeting some optimality. Partially Observable Markov Decision

Process (POMDP), contingent planning and conformant planning are ways to

plan under uncertainty. In POMDP, agents use observations to form a belief

of the current state, expressed as a probability distribution over the states,
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to find a policy prescribing which action is optimal for each belief state (Bai

et al. 2014). Contingent planning generates conditional plans given uncertainty

about initial state and action effects, where the right branch will be selected

during the execution through sensing (Hoffmann and Brafman 2005). The con-

formant planning problem can be formulated as a path-finding problem in the

belief space where a sequence of actions maps a given initial belief state into a

target belief (Palacios et al. 2009). Other approaches use a tri-valued logic to

account for the unknown items of the world and follow an online anytime plan-

ning algorithm that allows combining planning and execution simultaneously

(Sapena and Onaindia 2008). Generally, the low predictability of most real-

world environments, the immense difficulty in specifying necessary predictive

models, and the computational complexity of planning under uncertainty still

constrain the effectiveness of such approaches.

The second category of systems resulted from addressing the previous concerns

by decomposing the deliberation burden into planning and acting phases,

using restrictive assumptions in either phase and shifting the focus towards

acting. This second category includes various approaches such as replanning,

explanation-based plan repair and adaptation, replanning within limited time

windows, refinement and unrefinement and iterative repair. In addition, several

related works that tackle execution failures for multiple agents are reviewed

for the second category. Subsequently, the remainder of this subsection delves

into a comprehensive examination of several techniques and methods that fall

within the scope of the second category.

Re-invoking a planner (replanning) is straightforward. However, it disregards

the resources used in the existing plan and is only eager to generate a new plan

to reach the original goals. On the other hand, plan repair involves adapting

the existing plan to the actual execution context and making it executable again

with minimal perturbation. Plan stability repair has been empirically shown to
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produce more stable plans than replanning (Fox, Gerevini, et al. 2006). CHEF

(Hammond 1990) and GERRY (Zweben et al. 1993) are two early approaches

to plan repair. In CHEF, plan failures are described as causal explanations

of why they occurred and are used to access abstract replanning strategies,

which are then turned into changes to the faulty plans. GERRY starts with a

complete but flawed schedule and then uses a scheduling and rescheduling

constraint-based iterative repair to improve solutions. The plan adaptation

approach (Gerevini and Serina 2000) combines modifying the existing plan by

replanning within limited temporal windows and using a local search for action

graphs. The refinement and unrefinement approach (Krogt et al. 2005) repairs

plans by removing the obstructing actions, adding new actions to achieve the

goals, and adapting planning heuristics to remove constraints.

The Hierarchical Task Network (HTN) RepairSHOP (Warfield et al. 2007) and

the PANDA hybrid planner (Bidot et al. 2008) consider failed traces during

plan adaptation, replay the reasoning that led to the initial decision and select

a different path. The forwarding dock state approach (Chen, Xu, et al. 2020)

collects the state information about the agent being monitored at different

time intervals, including the current state, the near future state, and upcoming

actions and tries to find a path from the regressed state to the current state

through a breadth-first search. Regression in planning, which dates back to

PLANEX (Fikes, Hart, et al. 1972), is a process of finding a path that applies

actions backwards from the goals to the current or initial state. A regressed

state is a partial expected state which contains the minimal set of conditions

that must hold in the world at a specific time instance for the rest of the plan to

be executable during execution and for the goals to be satisfied. SHOPFIXER

(Goldman, Kuter, and Freedman 2020) uses a graph of causal links and task

decompositions to identify a minimal subset of the plan that must be fixed.
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The robust plan execution with unexpected observations approach employs a

runtime action selection policy that dynamically selects causally-valid actions

that are likely to reach the goal (Lima et al. 2020). This effectively moves the

causal reasoning online instead of limiting the executor to blindly following

the plan’s causal structure. Although there are some similarities in purpose,

our work addresses a different problem than the robust plan execution with

unexpected observations approach. Their approach focuses on minimising the

number of failures experienced by a single agent and reducing its need for

replanning. In contrast, our work involves a community of agents where each

agent must adjust its plan in the event of failure without causing disruptions

for the entire community. Our objective is to minimise the need for plan

revisions that impact the community as a whole. Another difference is that

their approach provides solutions for a single planning problem with multiple

robots possibly having concurrent actions. In contrast, in our case, different

agents have different planning problems with different private goals but use

some shared resources of the environment. In our work, agents operate in the

same execution environment and use some shared resources. No collaboration

or organisation between agents is needed. Agents devise and execute their

plans to achieve their private goals. An agent communicates information about

shared resources after it generates its plan, and no further communication is

made to assume reduced communication settings. Our approach is independent

of how agents communicate (agents can communicate with each other directly,

through a mediator or in any other way). If an agent’s plan fails (because of a

change in the environment or incompatible information received from another

agent), it repairs its plan (as a single agent), aiming to minimise the impact on

other agents.

It is worth mentioning that there are other approaches, such as the situational

evaluation and awareness (SEA) framework (Carreno et al. 2021), which in-

126



6.2 Related Work

tegrate both replanning and plan repair as valid options depending on the

characteristics of the failure.

There have been several approaches to solving execution failures for multiple

agents, such as centralised or distributed multi-agent planning (MAP) and

intra-agent planning. The hybrid planning distributed approach (Bechon et al.

2020) uses refinement and unrefinement. It repairs the plan by iteratively

removing actions to amend the global plan of multi-robot missions involving

heterogenous robots cooperating autonomously to achieve a common task. The

repair approach in (Komenda et al. 2014) either attempts to preserve a suffix

of the existing plan and prefixes it with a newly computed plan or preserves

the plan’s remainder and closes the gap between the state resulting from the

failed plan execution and the original goal state. Their decentralised algorithms

produce a synchronous multi-agent plan or plan repair that is decomposed

among agents, assuming some transparency or collaboration.

In the architecture for iterative plan repair in hierarchical multi-agent systems

(HIPR) (Mohalik et al. 2018), the authors base their work on two ideas that

agents are organised hierarchically based on attributes like location/adminis-

tration and that few agents are affected by the failure. The agents are assumed

to be collaborating to solve a task by decomposing global plans into local plans

for individual agents. There are operational agents at the leaf level to pro-

vide operational capabilities in their work. The agents at higher levels, called

managing agents, are responsible for deciding the operational agents’ actions

and coordination among them. This requires additional communication for

coordination signalling between agents and extra computations to determine

dependencies between agents, the contingency-free plan segments, and the

agents affected by a hazard.
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The partial satisfaction planning (PSP) intra-agent repair approach (Tala-

madupula, Smith, et al. 2013; Cushing et al. 2005) describes three replanning

paradigms distinguished by the constraints they try to satisfy during the re-

planning process. These paradigms are replanning as restart, replanning to

reduce computation and replanning for multi-agent scenarios. The authors in

that approach refer to these constraints also as commitments. However, in

their approach, the agent must publish its plan before putting it to execution,

communicating it to other agents, who in turn must inform that agent of the

constraints they wish to book. Hence, it knows in advance what constraints

it must try to maintain if a failure occurs during execution. Consequently, all

these constraints, possibly for multiple agents, must be coded and maintained

as a list of new soft goals and will be added to the new problem after the failure.

The closest approach from the literature to our work is plan-stability repair (Fox,

Gerevini, et al. 2006), which defines a plan measure called the plan-stability

distance to keep the repaired plan as close as possible to the original plan in

terms of actions. In contrast, our approach attempts to maintain the repaired

plan close to the original plan in terms of resources booked in the original plan.

6.3 Plan Commitment

This section defines a novel distance named plan commitment, explains how

it differs from action-based measures and provides arguments and examples

to support its significance for a community of agents in a conservative shared

setting.

Two of the most influential plan measures from the literature were designed to

maintain plan stability and foster plan diversity:
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• Plan stability distance d(π′, π) (Fox, Gerevini, et al. 2006) between two

plans π′ and π is defined as the number of actions that appear in a plan π′

and not in a plan π, plus the number of actions that appear in π and not

in π′. The lower the plan stability distance value is, the more stable and

closer it is to the reference plan π. A plan π′ achieves better plan stability

than a plan π′′ if d(π′, π) < d(π′′, π). One of the plan stability arguments

is that it is intended to maintain stability between agents, making their

interaction potentially predictable and easier. However, that informal

argument was not tested empirically in a community of agents.

• Action distance ad(π′, π) (Nguyen, Do, et al. 2012; Srivastava et al. 2007)

between two plans π′ and π, is defined as the ratio of the number of

non-shared actions between the new plan π′ and the old plan π to the

total number of actions appearing in one of them.

These distances are sensitive to changes in the level of actions and are therefore

valuable plan measures. However, we show later in this study that plans that

are equally distant from the original plan (actions wise according to these

measures) may not lead to the same disturbance levels. Despite the plans being

equally distant from the original plan, some of them cause fewer disturbances

among agents, leading to fewer failures (revisions) and less wasted time in the

community of agents.

We propose a new plan metric we call “plan commitment” distance c(π′, π),

which measures the distance of a new plan π′ to an original (old) plan π in

terms of objects. The lower the plan commitment distance, the closer the new

plan is to the original. A plan π′ achieves better plan commitment than a plan

π′′ if c(π′, π) < c(π′′, π). In essence, the plan commitment distance measure is

similar to plan stability and action distance measures; however, it differs from

the previously mentioned distances measures in two aspects:
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• Object-sensitive: plan commitment distance works on the level of objects

rather than actions.

• Type-sensitive: plan commitment distance takes into consideration the

types of objects that are used in repairing.

6.3.1 Plan Commitment as a Distance

After an execution failure occurs, we do not have a complete repair plan upfront,

and we will generate a new repair plan. To get a new plan π′ that resembles the

original one, π, we use our proposed distance metric based on the commitment-

distance concept. First of all, we define two operators (intersection and union)

that will allow us to compare how similar two actions are with respect to this

metric:

Definition 6.3.1 (Intersection between two actions). We define the intersec-

tion operator ∩̃ between two actions a′ and a as a measure of their common

characteristics. These characteristics include the objects in the action pa-

rameters, the parameter types and the operator names. The algorithm for

calculating a′ ∩̃ a can be seen in Algorithm 3.

Definition 6.3.2 (Union between two actions). We define the union operator

∪̃ between two actions a′ and a as a measure of the total number of distinct

characteristics that can be found in these actions. These characteristics include

the objects in the action parameters and the operator names. This union

function also prevents the distance from being negative when an object appears

multiple times as a parameter in an action, as is the case in some domains. The

calculation of a′ ∪̃ a is shown in Algorithm 4.

Our goal now is to be able to assess the appropriateness of an action a′, in

comparison to the original plan π, before proceeding to add it to the repaired
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Algorithm 3 Intersection operator between two actions

Input: the new action a′ and the original action a

Output: the intersection value

1: procedure a′ ∩̃ a ▷ The intersection of action a′ and a

2: intersectedObjects← 0

3: for each o ∈ params(a) do ▷ Parameters of action a

4: counter ← 0

5: for each o′ ∈ params(a′) do ▷ Parameters of action a′

6: if o = o′ then ▷ Identical objects

7: counter ← 1

8: else if type(o) = type(o′) then ▷ Identical types

9: counter ← max(counter, 0.5)

10: intersectedObjects + = counter ▷ o and its closest object in a′

11: if op(a′) = op(a) then ▷ Instances of the same operator

12: intersectedObjects + = 1

13: return intersectedObjects ▷ Returns the value of the intersection
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Algorithm 4 Union operator between two actions

Input: the new action a′ and the original action a

Output: the union value

1: procedure a′ ∪̃ a ▷ The union of action a′ and a

2: h← ϕ ▷ Define a list that allows duplicates

3: for each o′ ∈ params(a′) do ▷ Parameters of the new action

4: h.append(o′) ▷ Add the object name

5: for each o ∈ params(a) do ▷ Parameters of the original action

6: if o /∈ h then ▷ If name of object o does not exist

7: h.append(o) ▷ Add the object name

8: h.append(op(a′)) ▷ Add the operator of action a′

9: if op(a) /∈ h then ▷ If operator of a is different

10: h.append(op(a)) ▷ Add it to the list

11: return |h| ▷ Returns the length of the list
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plan π′. For this, we define a commitment distance function between an

action a′ and the original plan π. This function takes into account the actions’

parameters (objects) and their types and their operators’ names to favour

repair actions that use the same objects over those that use different objects of

the same type and those that use different objects of different types.

Definition 6.3.3 (Commitment distance between an action and a plan). We

define the commitment distance between an action a′ and a plan π, δ(a′, π), as

the distance that separates a′ from the closest action of π, as Equation 6.3.1

shows. shows. δ(a′, π), has a value between 0 and 1. Lower values indicate

greater similarity.

δ(a′, π) = min
ai∈π

[︃
1− a′ ∩̃ ai

a′ ∪̃ ai

]︃
(6.1)

We consider the commitment distance δ(a′, π) to be the key distance in our

work as it will be used during heuristic evaluation to find good quality repair

plans. Finally, we proceed to the definition of the commitment of a new plan π′

(assuming it is either given, generated by plan repair or by replanning) to the

original plan π.

Definition 6.3.4 (Commitment distance between two plans). The commitment

distance of a plan π′ to a plan π, c(π′, π), is the sum of commitment distances

between the actions of π′ and π, divided by the number of actions of π′ (see

Equation 6.2).

c(π′, π) =

∑︁
a′
i∈π′

δ(a′i, π)

|π′|
(6.2)

In general, plans that utilise the original plan’s objects will have the best

commitment value (closest to zero). Plans that do not utilise the original

objects but utilise different objects of the same type will have a slightly worse
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commitment value. Plans with different objects of different types will have a

worse commitment value.

6.3.2 The Value of Plan Commitment

We present two informal arguments to demonstrate the significance of the plan

commitment metric in autonomous systems. The first argument focuses on the

impact of plan commitment on human interaction. The second argument, which

we test empirically, focuses on the impact of plan commitment on interactions

among agents.

• Significance for human interaction: users are confused by changes to

plans in response to upsets. This is subjective to each user; however,

trivially, change interferes with autonomy, can confuse users and make

them feel they have lost control. The significance of plan commitment in

human interaction is related to the negative effects of plan changes on

user satisfaction and trust. Such changes can cause confusion and a loss

of autonomy, leading to dissatisfaction and mistrust in the autonomous

system. By addressing user confusion and preserving autonomy through

plan commitment, the design and implementation of autonomous systems

can better serve and meet user needs.

• Significance for other agents: in a reduced communication environment,

an agent may communicate information to other agents only at the begin-

ning when it generates its plan; these agents, in turn, use that information

when generating their own plans to reach their goals. An agent repairing

its plan using plan commitment can cause fewer disruptions to other

agents. Plan commitment makes the agents more predictable and aims

for smooth interactions among agents. Our approach favours repairing

plans using the same objects where possible or using different objects
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of the same types if the same objects are no longer available; otherwise,

different objects of different types just to satisfy the goal. We test this

informal argument empirically and show that it can reduce the number of

revisions among agents and can reduce the time-loss caused by inevitable

failures, as the results describe in Section 6.5.

Sub-optimal metrics or heuristics in planning usually do not have properties

that can be formally proved; they can work better or worse depending on

each specific case. For this reason, like many other metrics in planning,

such as stability (Fox, Gerevini, et al. 2006), diversity (Nguyen, Do, et al.

2012), dependency satisfaction (Talamadupula, Smith, et al. 2013), and causal

similarity (Joslin et al. 1994), we have opted for an experimental evaluation,

from which we can extract statistics and behaviour trends of our approach in

comparison with other existing ones.

To prevent bias, 60 trials were performed by randomising 20 problems for

two agents in three benchmark domains in a conservative shared setting. The

domains are a multi-agent logistics system, a multi-rover system and a multi-

robot navigation system. The problems are generated by modifying the initial

state, the goals, the planner’s starting seeds and the failures. The modifications

were generated randomly. To ensure that we were not artificially enhancing

the commitments by relying on how a planner explores its search space, the

original plans were calculated by a different planner. In our experiments,

the original plans were generated by OPTIC, replanning was done via LPG-TD,

stability repair was done via LPG-ADAPT and commitment repair was done via

C-TFLAP.

We consider a motivating example domain for logistics of a package-delivery

problem with drivers, trucks and packages that must be delivered to locations.

The actions of the domain allow drivers to walk between locations, load pack-
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ages to vehicles, board, drive, disembark from vehicles and unload packages.

First, we present a simple single-agent base scenario to demonstrate the calcu-

lations of the commitment distance. More importantly, to show that two plans

can be equally distanced from the original plan according to the plan-stability

distance and the action distance (explained previously in this section) yet the

commitment distance can distinguish them according to the resources used in

each plan.

Fig. 6.1 shows an original plan π0 for a single-agent simple logistics planning

task in which package0 must be delivered to location2, and two candidate

plans π′
0 and π′′

0 to fix a failure due to truck0 becoming unavailable.

Table 6.1 shows how the commitment distance c(π′
0, π0) = (δ(a′1, π) + δ(a′2, π) +

δ(a′3, π) + δ(a′4, π) + δ(a′5, π))/5 = 0.270 is calculated.

a1 a2 a3 a4 a5

a′
1 1− 4.5/6 1− 2.5/7 1− 3/8 1− 2/8 1− 3/8 δ(a′

1, π) = 0.25

a′
2 1− 2.5/7 1− 3.5/5 1− 3/7 1− 2/7 1− 2/8 δ(a′

2, π) = 0.30

a′
3 1− 2.5/8 1− 2.5/7 1− 4.5/6 1− 2.5/7 1− 2.5/8 δ(a′

3, π) = 0.25

a′
4 1− 2/8 1− 2/7 1− 3/7 1− 3.5/5 1− 2.5/7 δ(a′

4, π) = 0.30

a′
5 1− 3/8 1− 2/8 1− 3/8 1− 2.5/7 1− 4.5/6 δ(a′

5, π) = 0.25

c(π′
0, π0) = 0.270

Table 6.1: Calculating the commitment distance of π′
0 to π0

In action-sensitive distances such as the plan stability and the action distances,

when one object changes in an action, the whole action is considered differ-

ent. Consequently, once one object changes, action-sensitive distances cannot

further distinguish the quality of the plans, no matter whether the change

is small or large. Plan commitment distinguishes cases that the plan sta-

bility and action distances cannot distinguish. According to the makespan
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a1 : 0.000 : (load package0 driver0 truck0 location0)[17.000]

a2 : 17.001 : (board driver0 truck0 location0)[10.000]

a3 : 27.002 : (drive driver0 truck0 location0 location2)[300.000]

a4 : 327.003 : (disembark driver0 truck0 location2)[10.000]

a5 : 337.004 : (unload package0 driver0 truck0 location2)[17.000]

(a) An original plan π0.

a′1 : 0.000 : (load package0 driver0 truck2 location0)[17.000]

a′2 : 17.001 : (board driver0 truck2 location0)[10.000]

a′3 : 27.002 : (drive driver0 truck2 location0 location2)[300.000]

a′4 : 327.003 : (disembark driver0 truck2 location2)[10.000]

a′5 : 337.004 : (unload package0 driver0 truck2 location2)[17.000]

(b) Candidate plan π′
0.

a′′1 : 0.000 : (load package0 driver2 truck2 location0)[17.000]

a′′2 : 17.001 : (board driver2 truck2 location0)[10.000]

a′′3 : 27.002 : (drive driver2 truck2 location0 location2)[300.000]

a′′4 : 327.003 : (disembark driver2 truck2 location2)[10.000]

a′′5 : 337.004 : (unload package0 driver2 truck2 location2)[17.000]

(c) Candidate plan π′′
0 .

Figure 6.1: The temporal plans π0,π′
0,π′′

0 in a simple single-agent logistics planning

task. The number preceding the name of each action is its start time, and the number

at the end (in square brackets) is its duration.
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metric, the stability and action distances measures π′
0 and π′′

0 are equally

good and equally distanced from π0. Both makespans are equal to 354.

Stability distances are d(π′
0, π0) = d(π′′

0 , π0) = 10 and action distances are

ad(π′
0, π0) = ad(π′′

0 , π0) = 1. On the other hand, according to plan commitment

c(π′
0, π0) = 0.270, c(π′′

0 , π0) = 0.457, as π′′
0 has two objects different than π0 in

several actions (truck2 and driver2), whereas π′
0 has only one object different

(truck2).

Such plan distances (including ours) are to make the interaction between the

agents potentially predictable and more manageable and promote minimum

perturbation. Therefore, they must be looked at in a community of agents’

context and not solely in one agent. Our approach is independent of the

way agents communicate and share information. However, for the purpose

of explaining the example, we will assume that an external entity tracks the

movements of the packages, keeping a repository where the agents can consult

this information. The rest of the information is private unless an agent decides

to share it with another agent. Initially, each agent has private goals and builds

a private plan to achieve them. If they do not have enough information to

generate the plan, they wait until this information is available in the repository

or received from other agents. If this information represents facts expected to

occur in the future, they will be modelled as Timed Initial Literals (TILs). There

follows a representative yet a straightforward example of the importance of

plan commitment in preventing an agent, repairing its plan, from disrupting

another agent in a more elaborate logistics problem.

Fig. 6.2 shows a community of two agents and their plans for the logistics task.

In Fig. 6.2a, we have two agents (agentA, agentB), two cities (city0,city1),

two villages (village0, village1), a fleet of vehicles that can be shared be-

tween agents, and contains two types: vans (vehicle0) and trucks (vehicle1,
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(a) Logistics problem illustration.

a1 : 0.000 : (load package0 driver0 vehicle0 city0)[17.000]

a2 : 17.001 : (board driver0 vehicle0 city0)[10.000]

a3 : 27.002 : (drive-van driver0 vehicle0 city0 city1)[300.000]

a4 : 327.003 : (disembark driver0 vehicle0 city1)[10.000]

a5 : 337.004 : (unload package0 driver0 vehicle0 city1)[17.000]

(b) agentA original plan πa.

a1 : 0.000 : (load package1 driver1 vehicle2 city1)[17.000]

a2 : 17.001 : (board driver1 vehicle2 city1)[10.000]

a3 : 27.002 : (drive-truck driver1 vehicle2 city1 city0)[300.000]

a4 : 327.003 : (disembark driver1 vehicle2 city0)[10.000]

a5 : 337.004 : (unload package1 driver1 vehicle2 city0)[17.000]

a6 : 500.001 : (load package0 driver2 vehicle0 city1)[17.000]

a7 : 517.002 : (board driver2 vehicle0 city1)[10.000]

a8 : 527.003 : (drive-van driver2 vehicle0 city1 village1)[60.000]

a9 : 587.004 : (disembark driver2 vehicle0 village1)[10.000]

a10 : 597.005 : (unload package0 driver2 vehicle0 village1)[17.000]

(c) agentB original plan πb.

Figure 6.2: A community of two agents and their plans for the logistics task.
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vehicle2). driver0 belongs to agentA, and driver1, driver2 both belong to

agentB. An essential restriction in this domain that may cause a disturbance be-

tween agents is that a van can traverse any road (cities and villages), whereas

a truck can only traverse between cities; Fig. 6.2a shows this restriction as

bold and dotted connections, respectively.

agentA has a private goal (at package0 city1). agentA constructs a private

plan πa (shown in Fig. 6.2b) and shares a piece of public information that the

end location of vehicle0 at time instance 500 is city1. agentB knows that, at

time instance 500, package0 will be at city1, vehicle0 will be empty and at

city1. These facts are represented through Timed Initial Literals (TILs).

In addition, agentB has two private goals (at package1 city0) and (at pack-

age0 village1). Therefore, agentB constructs its private plan πb (shown in

Fig. 6.2c), making use of vehicle2 to deliver package1 to city0 and using ve-

hicle0 (the vehicle of type van agentA used) to deliver package0 to village1.

As seen in these settings, agentA constructed its plan to reach its own private

goals and communicated the shared information (in this case about vehicle0)

after planning. No further communication is made to assume reduced commu-

nication settings, as explained in Section 6.1. agentB used that information to

build its plan to reach its own private goals.

We are interested in showing two scenarios as examples of the advantages of

plan commitment in comparison with replanning and plan-stability repair:

1. The first scenario shows that plan commitment can reduce the number of

failures (revisions) among agents.

2. The second scenario shows that plan commitment can decrease the time-

loss resulting from inevitable failures.
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Scenario 1: agentA suffers a failure due to the discrepancies of driver0 is no

longer being available, vehicle0 being at a close location village0 instead

of city0, and a new driver, driver3 is available at city0. Whether agentA

performs replanning or plan-stability repair (same result in this case), it will

generate π′′
a , which uses vehicle1 (shown in Fig. 6.3b) to achieve the original

goal. Consequently, agentA will cause a failure to agentB at time instance

500.001 as it can no longer execute the a6 of πb resulting in the situation shown

in Fig. 6.4b. agentB will perform replanning or repairing, which will cause it

to suffer a time-loss of 368 time units, in addition to a negligible processing

time for invoking repairing or replanning (or even worse as a 708 time units

if driver1 is no longer available and driver2 is used). This 368 lost time is

due to the fact that agentB was unable to use the truck (vehicle1) on the

road between city1 and village0, and had to retrieve the van when it was

discovered to be in the wrong location at time instance 500.001. On the other

hand, if agentA had chosen to repair its plan respecting plan commitment using

π′
a, which utilises the van vehicle0 (shown in Fig. 6.3a) agentB would have

found everything as expected as shown in Fig. 6.4a, and would have succeeded

in executing πb. The plan commitment c(π′
a, πa) = 0.40 whereas c(π′′

a , πa) = 0.57,

the commitment repaired plan π′
a is more committed. Although plan-stability

repair (through LPG-ADAPT) has not generated a plan like π′
a, let us assume

that it did; still, it is going to favour plan π′′
a since d(π′

a, πa) = 9 + 5 = 14 and

d(π′′
a , πa) = 5 + 5 = 10 and agentB will suffer a failure.

Scenario 2: agentA suffers a failure due to the discrepancies driver0 and

vehicle0 are no longer available, a new van vehicle3 is at a close location

village0, and a new driver, driver3, is available at city0. Similarly, whether

agentA performs replanning or plan-stability repair (same result), it will gener-

ate π′′
a , which uses vehicle1 (shown in Fig. 6.3b) to achieve the original goal.

Consequently, agentA will cause a failure to agentB at time instance 500.001
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a′1 : 0.002 : (walk driver3 city0 village0)[50.000]

a′2 : 50.010 : (board driver3 vehicle0 village0)[10.000]

a′3 : 60.020 : (drive-van driver3 vehicle0 village0 city0)[18.000]

a′4 : 78.030 : (disembark driver3 vehicle0 city0)[10.000]

a′5 : 88.040 : (load package0 driver3 vehicle0 city0)[17.000]

a′6 : 105.050 : (board driver3 vehicle0 city0)[10.000]

a′7 : 115.060 : (drive-van driver3 vehicle0 city0city1)[300.000]

a′8 : 415.070 : (disembark driver3 vehicle0 city1)[10.000]

a′9 : 425.080 : (unload package0 driver3 vehicle0 city1)[17.000]

(a) π′
a result of commitment plan repair for agentA.

a′′1 : 0.003 : (load package0 driver3 vehicle1 city0)[17.000]

a′′2 : 17.005 : (board driver3 vehicle1 city0)[10.0000]

a′′3 : 27.008 : (drive-truck driver3 vehicle1 city0 city1)[300.000]

a′′4 : 327.010 : (disembark driver3 vehicle1 city1)[10.000]

a′′5 : 337.013 : (unload package0 driver3 vehicle1 city1)[17.000]

(b) π′′
a result of replanning or plan-stability repair for agentA.

Figure 6.3: The candidate plans π′
a and π′′

a .
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(a) agentA used π′
a of scenario1 (b) agentA used π′′

a of scenario1

(c) agentA used π′
a of scenario2 (d) agentA used π′′

a of scenario2

Figure 6.4: Snapshots of agentB state at time instance 500
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as it can no longer execute the a6 of πb resulting in the situation shown in Fig.

6.4d. agentB will perform replanning or repairing, which will cause it to suffer

a time-loss of 368 time units, in addition to a negligible processing time for

invoking repairing or replanning. On the other hand, if agentA had chosen to

repair its plan respecting plan commitment using π′
a (shown in Fig. 6.5), the

resulting situation for agentB is demonstrated in Fig. 6.4c.

a′1 : 0.002 : (walk driver3 city0 village0)[50.000]

a′2 : 50.010 : (board driver3 vehicle3 village0)[10.000]

a′3 : 60.020 : (drive-van driver3 vehicle3 village0 city0)[18.000]

a′4 : 78.030 : (disembark driver3 vehicle3 city0)[10.000]

a′5 : 88.040 : (load package0 driver3 vehicle3 city0)[17.000]

a′6 : 105.050 : (board driver3 vehicle3 city0)[10.000]

a′7 : 115.060 : (drive-van driver3 vehicle3 city0city1)[300.000]

a′8 : 415.070 : (disembark driver3 vehicle3 city1)[10.000]

a′9 : 425.080 : (unload package0 driver3 vehicle3 city1)[17.000]

Figure 6.5: The commitment repair plan π′
a.

In that case, agentB would suffer a failure; however, its time-loss would have

been only the negligible processing time for invoking repairing or replanning,

as it can utilise vehicle3 on the road to village1 and vehicle3 is already at

city1 (if agentA has used π′
a for repairing its failure). The plan commitments

c(π′
a, πa) = 0.55, c(π′′

a , πa) = 0.57, thus π′
a is more committed.

6.4 Plan Repair through Plan Commitment

General temporal planners are called “general” because they are able to handle

a wide range of planning problems that involve temporal constraints, rather

than being specialised for a particular domain or application. General temporal

planners aim to find good quality plans, where the quality is considered in
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most cases as the plan makespan, i.e., plan duration. However, it is possible to

define a cost function, called metric function, to be optimised in many of them.

Unfortunately, it is not possible to define a metric using information not defined

in the PDDL input files (domain and problem). In our case, we want the cost

function to be the plan commitment function, which depends on the objects

of the actions of the original plan π. Therefore, we need to introduce certain

modifications to an existing planner to use the plan commitment to measure

plan quality. We have chosen TFLAP (Sapena, Marzal, et al. 2018), a temporal

forward-chaining partial-order planner, for the following reasons:

• It has a good performance. It took third place in the temporal track of the

last planning competition (IPC’20181). Two planners, TemPorAl (Cenamor

et al. 2018) and CP4TP (Furelos-Blanco et al. 2018), exhibited slightly

better performance, but they followed a portfolio approach. This means

that they integrate different temporary planners within, making it difficult

to introduce modifications (each change would have to be implemented

for all inner planners).

• The source code of TFLAP is publicly available 2.

• TFLAP implements a standard A* search, so it is only necessary to make

changes in the calculation of the evaluation function, that is, the cost of

the path and the heuristic function.

• TFLAP supports planning in temporal settings.

We will call C-TFLAP, the planner resulting after the changes made in TFLAP. In

the following subsections, we will describe the working scheme of C-TFLAP and

the new heuristic function.

1https://ipc2018.bitbucket.io
2https://bitbucket.org/osapena/tflap
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6.4.1 Working Scheme of C-TFLAP

Fig. 6.6 shows C-TFLAP’s working scheme. The main modules of TFLAP are kept

practically intact:

Figure 6.6: Working scheme of C-TFLAP.

• Initially, the domain and problem files of the planning task are sent to

the parser module. Then, the information is preprocessed, grounded and

translated to the SAS+ formalism (Bäckström et al. 1995), which is a

formalism that is used in automated planning and scheduling systems to

represent planning problems using multi-valued state variables instead

of propositional facts.
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• Then, TFLAP uses A* search guided by an evaluation function, with search

nodes represented by partial-order plans. The search tree starts with a

plan containing one fictitious dummy action representing the initial state.

This fictitious action has no conditions and its effects correspond to the

fluents of the initial state. The planner applies the following six steps at

each iteration of the search process until a solution plan is found:

1. The evaluation function selects the best node, called the base plan,

from the set of open nodes. Open nodes refer to a set of nodes

representing potential plans or actions that have not yet been fully

evaluated or expanded.

2. It generates all possible successors of the base plan. A successor

plan adds a new action to the base plan by supporting its conditions

and solving all threats. Threats arise if there is a resource conflict

which occurs when two actions that can potentially be executed in

parallel have inconsistent effects (an effect of one negates an effect

of the other), interference (one deletes a precondition of the other),

or competing needs (they have inconsistent preconditions).

3. Actions in each successor node are scheduled, determining their

start and end times.

4. The node’s schedule is used to compute the frontier state, i.e. the

state resulting from executing the plan comprised in the node.

5. Successor nodes are evaluated using state-based heuristics com-

puted on their frontier states.

6. Finally, the successor plans are added to the set of open nodes.
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The first modification to make in TFLAP is to add the original plan π as a planner

input. We have developed a parser for this task. Then we proceed to compute

the commitment distance of all the possible actions in the planning task to the

original plan. For the commitment distance of a single action a′ to a plan π,

δ(a′, π) see Def. 6.3.3, Eq. 6.3.1. In the next section, we describe in detail how

the commitment distance is used during the heuristic evaluation of the nodes

to find good-quality repair plans.

6.4.2 Heuristic Evaluation Directed by the Commitment

Distance

As we mentioned before, once we generate a new search node, the planner

calculates its frontier state, i.e. the state resulting from executing the plan

comprised in that node. Formally, we define the frontier state of a plan π′,

S(π′), as a set of fluents (variable, value) that hold after the execution of π′.

The heuristic evaluation of a plan π′, hcd(π′), is an estimate of the commitment

distances of the actions required to reach the goal G from S(π′). For this, we

follow two steps:

1. A relaxed planning graph (C-RPG) is calculated. This graph is based on a

Graphplan-like expansion where delete effects are ignored.

2. A relaxed plan is drawn by traversing the C-RPG backwards, i.e. starting

from the goals. We compute hcd(π
′) as the sum of the commitment

distances of the relaxed plan actions.

This heuristic function is calculated similarly to that proposed in (Hoffmann

2003), but modified to get estimates based on commitment distances.
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RPG based on Commitment Distances (C-RPG)

C-RPG is a graph where levels organise fluents and actions. The first level (level

0) is composed of the fluents held in the frontier state S(π′) of the evaluated

node. The following level is action level 0, where the actions applicable in that

state, i.e. whose preconditions are true in S(π′), will be located. An action

will be placed at a certain level if the conditions required for it to happen are

present at that level or any level before it. When an action is placed at a certain

level, its outcome will be recorded at a level determined by its commitment

distance from the current level.

The graph expansion continues until all the task goals are achieved. The

algorithm can be observed in Algorithm 5.

Extraction of the Relaxed Plan

Once the C-RPG is built, a relaxed plan is computed by traversing the graph

backwards. Algorithm 6 shows how the actions of the relaxed plan are chosen.

The heuristic value of plan π′, hcd(π′), is then calculated as the sum of the

commitment distances of these actions.

6.4.3 Two Queues based Search

The search in C-TFLAP uses two priority queues:

• pqCD: this queue sorts the search nodes according to the evaluation func-

tion fcd(π) = gcd(π) + hcd(π), where gcd(π) is the sum of the commitment

distances of the actions in π, and hcd(π) is the heuristic value of π (de-

scribed in Section 6.4.2). This function guides the search effectively

towards solutions with small commitment distances. However, these

solutions are sometimes too long because they include many redundant
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Algorithm 5 C-RPG expansion algorithm for a plan π′, being π the original

plan to repair.

Input: the plan to evaluate π′, and the dynamic planning problem

(G, π,O′, I ′,TILs ′)

Output: the fluent and action levels

1: procedure C-RPG

2: ▷ Initialising first fluent level with the frontier state

3: fl← S(π′) ▷ Fluents scheduled to be inserted

4: level(f)←

⎧⎨⎩ 0 , if f = (variable, value) ∈ S(π′)

∞ , otherwise

5: level(a)←∞,∀a ∈ O′ ▷ Initially all actions are unreached

6: ▷ New expansion stage while there are unachieved goals

7: while ∃g ∈ G/level(g) =∞ do

8: if fl = ∅ then

9: fail ▷ Goals are not reachable

10: ▷ Get the scheduled fluent with smallest level value

11: f ← argmin(level(fi)),∀fi ∈ fl

12: fl← fl − {f} ▷ Remove it not to be added again

13: ▷ Unreached actions with f as precondition

14: for each a ∈ O′/level(a) =∞∧ f ∈ prec(a) do

15: ▷ Check if all action preconditions are met

16: if level(fi) <= level(f),∀fi ∈ prec(a) then

17: level(a)← level(f) ▷ Action level updated

18: e_level← level(a) + δ(a, π) ▷ Level for the action effects

19: for each fj ∈ eff(a)/level(fj) > e_level do

20: ▷ Schedule the action effects

21: fl← fl ∪ {fj}

22: level(fj)← e_level
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Algorithm 6 Calculation of a relaxed plan to estimate the commitment distance

to reach the goals from S(π′).

Input: the plan to evaluate, π′, the dynamic planning problem

(G, π,O′, I ′,TILs ′) and the fluent and action levels

Output: commitment distance estimate

1: procedure evaluate

2: hcd ← 0 ▷ Heuristic value initialisation

3: ▷ Queue the problem goals that do not hold in S(π′)

4: cond← {g ∈ G / level(g) > 0}

5: while cond ̸= ∅ do

6: ▷ Extract the fluent with the highest level value

7: f ← argmax(level(fi)),∀fi ∈ open_cond

8: cond← open_cond− {f}

9: if level(f) =∞ then

10: return∞ ▷ Unreachable goals

11: ▷ Lower cost action that produces f

12: a← argmin(level(ai) + δ(ai, π)),

∀ai ∈ O′/f ∈ eff(ai)

13: ▷ Add the action commit. dist. to the heuristic value

14: hcd ← hcd + δ(a, π)

15: ▷ Queue the action preconditions

16: cond← cond
⋃︁
{fi ∈ prec(a)/level(fi) > 0}

return hcd
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actions that, due to their considerable similarity with the original plan’s

actions, help reduce the average commitment distance. For this reason,

we use a second queue.

• pqFF: this queue sorts the nodes according to the evaluation function

used in the FF planner (Hoffmann 2003): fff (π) = gff (π)+hff (π), where

gff (π) is the number of actions in π and hff (π) is the length of a relaxed

plan extracted from a traditional relaxed planning graph. This function

leads the planner to short solution plans.

C-TFLAP uses pqCD and pqFF alternatively. Initially, both queues contain only

the empty initial plan, and the active queue is pqCD. Then, the planner repeats

the following steps until a solution is found:

1. The plan π with the lower value according to its corresponding evaluation

function is extracted from the active priority queue.

2. All successor plans of π are computed, evaluated and inserted in both

queues.

3. The other queue now becomes the active priority queue.

Combining these queues provides a good compromise between the commitment

distance and the plan length. We have chosen this method as it is a common

approach in planning used in the state-of-the-art planner LAMA (Richter et

al. 2010) and Fast Downward (Helmert 2006). Two heuristics are used with

separate queues, thus exploiting the strengths of the utilised heuristics in

an orthogonal way. We could try other methods to improve our planner’s

performance in future work.
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6.5 Experimental Evaluation and Discussion

First, we describe the setup of the experiments, then provide a brief description

of the test domains, and finally show the experiments, followed by a discussion

of the results.

6.5.1 Setup of Experiments

To validate the proposed approach for commitment plan repair, we selected

three application domains: a multi-agent logistics system, a multi-rover system

and a multi-robot navigation system. The domains were modelled in the PDDL

2.2 and are tailored carefully to exhibit the interactions between agents and

the possible perturbation one agent can cause to others. For each domain,

20 trials were generated randomly for two agents in a conservative shared

setting. In these 60 trials, the initial locations, the goals, the planner’s starting

seeds (for LPG-TD and LPG-ADAPT), and the failures were generated randomly.

The tests were based on a pre-calculated plan given by the planner OPTIC.

Then replanning, plan-stability repair and commitment plan repair are done

using LPG-TD, LPG-ADAPT and C-TFLAP, respectively. This ensures that we are

not artificially enhancing the results by relying on how a planner explores

its search space. Plan execution was performed using the simulation system

introduced by (Babli, Ibáñez-Ruiz, et al. 2016). All the tests were run on an

Intel(R) Core(TM) i7-6700HQ @2.60GHz CPU and 16.0 GB RAM.
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6.5.2 Brief Description of the Test Domains

Logistics

A community of two agents for the logistics planning task was explained in

Section 6.3.2, where each agent has a goal to deliver a package to a specified

location. The logistics planning task has drivers, cities, villages, and vans that

can traverse any road, and trucks only travel between cities.

A multi-rover system

We designed a community of two agents (agentA and agentB) for the test

problems from multi-rover systems in IPC. There are two rovers in the system.

Each can independently traverse the surface of Mars from one waypoint to

another visible waypoint, take pictures in different modes such as colour, high

and low resolution, collect soil and rock samples and transmit all the exploration

data back to the lander. The domain is tailored to exhibit interactions between

rovers that may cause perturbation. More specifically, the cameras and the

samplers are not built-in rovers but tools that can be equipped, used and stored

inside safeboxes at waypoints. The negative interactions occur when the first

agent, agentA, generates a plan and publishes the end location of the tools,

such as the camera. The second agent, agentB, generates its plan depending

on that information. During the execution, agentA suffers a failure and fixes

its plan. Our interest is whether or not the failure of the first agent will also

be propagated to agentB. The left side of Figure 6.7 shows an abstraction of a

multi-robot rover system.
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A multi-robot navigation system with locked doors

We designed a community of two agents (agentA and agentB) for the test

problems from a multi-robot navigation system inspired by multi-robot planning

with conflicts and synergies (Jiang et al. 2019). There are two robots in the

system; each can independently move between locations (rooms and corridors)

to navigate from their initial locations to their goal positions. Resource sharing

collaborations among robots can be easily observed as the agents share the

same environment and constrained resources, such as locked doors that need

unlocking with the possibility of action synergy (e.g., multiple robots going

through a door after a single expensive door-opening action). The domain is

tailored to exhibit interactions between robots that may cause perturbation.

More specifically, we added batteries and keys that the robots could equip to

move and unlock doors, respectively. The negative interactions occur when

the first agent, agentA, generates a plan and publishes the doors it will unlock,

then other agents (in our case agentB) build their plans accordingly. During

the execution, agentA suffers a failure and fixes its plan and our interest is

whether or not agentB will suffer a failure. The right side of Figure 6.7 shows

an abstraction of a multi-robot navigation system with locked doors.

6.5.3 The Experiments

Fig. 6.8 shows the average makespan of the new plans when the agents used

replanning (LPG-TD), plan-stability repair (LPG-ADAPT), and commitment plan

repair (C-TFLAP), for the selected test domains, compared to the original plans.

In Fig. 6.8a, there are three clusters of columns. The first cluster of columns

depicts the average makespan of plans for agentA in the logistics domain. In

contrast, the second and the third clusters are for the rovers and the navigation

domains, respectively. Within each cluster, there are four columns. The first
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(a) Multi-robot rover system. (b) Multi-robot navigation.

Figure 6.7: Abstraction of the domains environments.

bricks-style column represents agentA original plans’ average makespan. The

second, third and fourth columns represent the average makespan when agentA

uses replanning, plan stability repair and commitment repair, respectively. On

the other hand, Fig. 6.8b depicts the average makespan of agentB’s plans

corresponding to how agentA fixed its plans in Fig. 6.8a. For example, the

second column in Fig. 6.8b represents the average makespan of agentB’s plans

in the logistics domain when it used replanning to fix its plan after agentA fixed

its own plan using replanning.

Tables 6.2, 6.3 and 6.4 compare whether or not the new plans generated by

agentA (when it performed replanning using LPG-TD, plan-stability repair using

LPG-ADAPT and commitment repair using C-TFLAP) caused the second agent,
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(a) agentA.

(b) agentB.

Figure 6.8: The test domains’ average makespan of the three approaches.

agentB, to suffer failures. In addition to time lost by the agents due to failures

and new plans for the logistics, rovers and navigation domains, respectively.

We also compare the saved time when considering the plans of both agents.
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The totals and the averages for the number of failures, the agents’ time-loss

and the overall saved time for the experiments are calculated and shown in the

last two rows of each table.

For brevity, to express time-loss and saved time, we define the following

notation:

• πag is the original plan of an agent ag.

• πm
ag is the new plan of agent ag using method m ∈ {r, d, c}, where r stands

for replanning, d for plan-stability repair, and c for commitment plan

repair. The agents use the same method within an experiment, e.g.,

when using replanning, if we have two agents, then both agents will use

replanning to fix failures.

• Fagj |πm
agi is the number of failures suffered by an agent agj due to πm

agi .

• LTm
ag = makespan(πm

ag) −makespan(πag) is the time-loss of an agent ag

when using a particular method m. A negative time-loss implies saved

time.

• STm2
m1 =

∑︂
ag

makespan(πm2
ag ) −

∑︂
ag

makespan(πm1
ag ) is the saved time for

all agents, defined as the makespan difference in the new plans of the

agents when using method m2 compared to method m1. A negative saved

time implies a time-loss.

6.5.4 Discussion

First, it is worth mentioning that C-TFLAP average runtime for the experiments

was 0.5 seconds. The running times are not compared since the three ap-

proaches can solve problems in a matter of seconds. The planning time is not a
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LOGISTICS Replanning Plan-Stability Commitment

No Fb|πr
a LT r

a LT r
b Fb|πd

a LT d
a LT d

b ST r
d Fb|πc

a LT c
a LT c

b ST r
c ST d

c

0 1 0.00 450.00 1 0 530 -80.00 0 170 0 280.00 360

1 1 70.00 780.00 1 70 1663 -883.00 0 170 0 680.00 1563

2 1 0.00 470.00 1 0 530 -60.00 1 0 460 10.00 70

3 1 -137.00 0.00 0 240 0 -377.00 0 240 0 -377.00 0

4 1 0.00 780.00 1 0 780 0.00 0 300 0 480.00 480

5 1 240.00 630.00 1 240 1513 -883.00 0 240 0 630.00 1513

6 0 0.00 0.00 0 0 0 0.00 0 0 0 0.00 0

7 1 240.00 780.00 1 240 1790 -1010.00 1 290 790 -60.00 950

8 1 0.00 780.00 1 0 780 0.00 0 300 0 480.00 480

9 0 0.00 0.00 0 0 0 0.00 0 0 0 0.00 0

10 0 0.00 0.00 0 0 0 0.00 0 0 0 0.00 0

11 1 70.00 780.00 1 70 1663 -883.00 0 170 0 680.00 1563

12 1 0.00 577.00 1 0 577 0.00 0 170 0 407.00 407

13 1 240.00 630.00 1 240 1513 -883.00 0 240 0 630.00 1513

14 1 0.00 0.00 1 0 0 0.00 1 0 0 0.00 0

15 1 120.00 630.00 1 120 1500 -870.00 1 290 640 -180.00 690

16 1 20.00 -7.00 1 20 80 -87.00 1 20 0 -7.00 80

17 1 0.00 455.00 1 0 1150 -695.00 1 88 0 367.00 1062

18 1 0.00 577.00 1 0 577 0.00 0 170 0 407.00 407

19 1 -170.00 0.00 1 -170 270 -270.00 1 -170 0 0.00 270

TOTAL: 17 693 8312 16 1070 14916 -6981.00 7 2688 1890 4427 11408

AVERAGE: 0.85 34.65 415.6 0.8 53.5 745.8 -349.05 0.35 134.4 94.5 221.35 570.4

Table 6.2: Comparison of the failures, time-loss and saved time in the logistics domain.
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ROVERS Replanning Plan-Stability Commitment

No Fb|πr
a LT r

a LT r
b Fb|πd

a LT d
a LT d

b ST r
d Fb|πc

a LT c
a LT c

b ST r
c ST d

c

0 1 0 0 1 0 0 0 1 0 0 0 0

1 1 10 0 1 10 0 0 1 10 0 0 0

2 1 0 50 1 0 50 0 1 15 0 35 35

3 0 0 0 0 0 0 0 0 0 0 0 0

4 0 20 30 0 20 30 0 0 20 0 30 30

5 0 0 30 0 0 30 0 0 0 30 0 0

6 1 0 50 1 0 50 0 1 0 0 50 50

7 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 20 0 -20 -20

9 0 0 0 0 0 0 0 0 0 0 0 0

10 1 0 30 1 0 30 0 1 0 0 30 30

11 1 0 30 1 0 30 0 1 0 0 30 30

12 0 0 0 0 0 0 0 0 0 0 0 0

13 1 0 30 1 0 30 0 1 0 0 30 30

14 1 0 0 1 0 0 0 1 15 0 -15 -15

15 1 10 1 1 10 1 0 1 10 1 0 0

16 0 0 0 0 0 0 0 0 0 0 0 0

17 1 0 0 1 0 30 -30 1 0 0 0 30

18 1 0 0 1 0 0 0 1 0 0 0 0

19 1 0 30 1 0 30 0 1 30 0 0 0

TOTAL: 12 40 281 12 40 311 -30 12 120 31 170 200

AVERAGE: 0.6 2 14.05 0.6 2 15.55 -1.5 0.6 6 1.55 8.5 10

Table 6.3: Comparison of the failures, time-loss and saved time in the rovers domain.
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NAVIGATION Replanning Plan-Stability Commitment

No Fb|πr
a LT r

a LT r
b Fb|πd

a LT d
a LT d

b ST r
d Fb|πc

a LT c
a LT c

b ST r
c ST d

c

0 1 -100 615 1 -100 615 0 0 0 0 515 515

1 1 100 615 1 100 615 0 0 100 0 615 615

2 2 0 -100 2 0 -100 0 0 100 0 -200 -200

3 0 0 0 0 0 0 0 0 0 0 0 0

4 2 0 -100 2 0 -100 0 0 100 0 -200 -200

5 1 0 615 1 0 615 0 0 100 0 515 515

6 0 0 0 0 0 0 0 0 0 0 0 0

7 1 100 615 1 100 615 0 0 100 0 615 615

8 0 -100 0 0 -100 0 0 0 -100 0 0 0

9 1 0 615 1 0 615 0 0 100 0 515 515

10 0 100 0 0 100 0 0 0 100 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0

12 1 0 615 1 0 615 0 0 100 0 515 515

13 1 0 615 1 0 615 0 0 100 0 515 515

14 1 100 615 1 100 615 0 0 100 0 615 615

15 1 100 615 1 100 615 0 0 100 0 615 615

16 1 100 615 1 100 615 0 0 100 0 615 615

17 0 0 0 0 0 0 0 0 100 0 -100 -100

18 0 0 0 0 0 0 0 0 0 0 0 0

19 1 0 715 1 0 715 0 0 100 0 615 615

TOTAL: 15 400 6665 15 400 6665 0 0 1300 0 5765 5765

AVERAGE: 0.75 20 333.25 0.75 20 333.25 0 0 65 0 288.25 288.25

Table 6.4: Comparison of the failures, time-loss and saved time in the navigation

domain.
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determining factor in choosing a concrete approach, and for our purposes, we

will focus on the disruptions among agents.

We compared the stability and commitment of plans generated by the first

agent, agentA, when using LPG-ADAPT for plan-stability repair and C-TFLAP for

commitment repair, across different test domains in our experiments. As

expected, mostly the use of one metric leads to plans that are better according

to such metric. The commitment repair has achieved more committed plans

than plan-stability repair, as the average commitment distances for commitment

repair were 0.362, 0.108 and 0.275 compared to 0.450, 0.132 and 0.405, in the

logistics, rovers, and navigation domains, respectively.

For the logistics test domain, commitment repair has avoided causing a failure

to agentB in 65% of the experiments, compared to 15% and 20% in replanning

and plan-stability repair, respectively. agentB average time-loss when agentA

used commitment repair equals 23% of the average time-loss when it used

replanning and 13% of the average time-loss when it used plan-stability repair.

For the rovers test domain, even though each of the three approaches has

avoided causing failures in agentB in 40% of the experiments, this does not

mean that they are equally good. Since agentB average time-loss when agentA

used commitment repair equals 11% of the average time-loss when it used

replanning and 10% of the average time-loss when it used plan-stability repair.

In addition, using commitment repair did not result in time-loss for agentB in

11 out of 12 times when agentB failures were inevitable, in comparison with 5

out of 12 when it used replanning, and 4 out of 12 when it used plan-stability

repair.

For the navigation test domain, commitment repair has avoided causing a

failure to agentB in 100% (all) of the experiments compared to 35% in replan-

ning and plan-stability repair. agentB average time-loss when agentA used
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commitment repair equals 0% of the average time-loss when it used replanning

or plan-stability, as the average time-loss when agentA used commitment re-

pair equals 0.00, compared to 333.25 when agentA used either replanning or

plan-stability repair.

We also find it interesting to compare the saved time when considering implica-

tions for all agents. When we compared the saved time when the agents used

commitment repair against the results of when they used plan-stability repair,

we found that:

• For the logistics domain, commitment repair has saved time in 15 experi-

ments and neither saved nor wasted time in 5 experiments, with 570.4

average saved time.

• For the rovers domain, commitment repair has saved time in 7 experi-

ments, wasted time in 2 experiments and neither saved nor wasted in 11

experiments, with 10 average saved time.

• For the navigation domain, commitment repair has saved time in 11

experiments, wasted time in 3 experiments and neither saved nor wasted

in 6 experiments, with 288.25 average saved time.

When we compared the saved time when the agents used plan-stability against

the results of when they used replanning, we found that:

• For the logistics domain, plan-stability repair has wasted time in 12

experiments and neither saved nor wasted time in 8 experiments, with

349 average wasted time.

• For the rovers domain, plan-stability repair has wasted time in 1 exper-

iment and neither saved nor wasted time in 19 experiments, with 1.5

average wasted time.
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• For the navigation domain, plan-stability repair has neither saved nor

wasted time in 20 experiments.

When we compared the saved time when the agents used commitment repair

against the results of when they used replanning, we found that:

• For the logistics domain, commitment repair has saved time in 11 experi-

ments, wasted time in 4 experiments and neither saved nor wasted time

in 5 experiments, with 221 average saved time.

• For the rovers domain, commitment repair has saved time in 6 experi-

ments, wasted time in 2 experiments and neither saved nor wasted time

in 12 experiments, with 8.5 average saved time.

• For the navigation domain, commitment repair has saved time in 11

experiments, wasted time in 3 experiments and neither saved nor wasted

time in 6 experiments, with 288 average saved time.

The results described above support our claim of the significance of plan

commitment for other agents. It reduced the number of failures and the time-

loss when failures were avoidable and decreased the time-loss when failures

were inevitable. In addition, we found that commitment repair has achieved

better saved time than plan-stability repair when considering implications for

all agents and when contrasting each approach against replanning.

It is worth noting that there are situations when both commitment repair

and plan-stability repair have wasted time compared to replanning, such as

experiments 3 and 15 in the logistics domain. This is natural and was expected

as the time waste occurs when there is no dependency between the agents; as

the first agent suffers a failure, the second agent’s plan is unaffected. When the

first agent uses replanning to fix its failure, it generates the shortest makespan
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plan. In contrast, it generates longer plans when it uses commitment repair

and plan-stability repair, leading to a loss of time.

According to Fig. 6.8, when comparing the average makespan of the agents’

new plans when they used replanning, plan-stability and commitment repair

in the three test domains, we found that plan commitment generated longer

average makespan plans for agentA and that it generated shorter average

makespan plans for agentB. In addition, based on our experiments, it may be

observed that: 1) in a few cases when LPG-ADAPT seeks to generate a more stable

plan, it adds many instances of the original plan’s actions, which increases the

stability but results in longer makespans and causes a time-loss for the agent

compared to replanning which only seeks the shortest makespan plan. 2) Plan

stability focuses on generating a higher stability plan (within the agent itself of

its new plan compared to its original plan). However, plan stability does not

correlate with makespan, i.e., higher stability plans may have longer or shorter

makespans than lower stability plans. More importantly, a higher stability plan

for an agent does not necessarily mean it will cause less disturbance to other

agents.

Fig. 6.9 compares the agents’ average time-loss when using replanning, plan

stability, and commitment repair in the three test domains to highlight further

the additional costs (increased time-loss) incurred by the agent that suffered

the failure (agentA) and the resulting decreased time-loss experienced by other

agents (agentB). For brevity, there follows a detailed comparison of the values

for the Logistics domain (Fig. 6.9a), whereas the values’ comparison for the

other domains in Fig. 6.9b and Fig. 6.9c are shown in Table 6.5.

In Fig. 6.9a, the comparison between the commitment column (the top column)

and the plan-stability column (the middle column) demonstrates that for the

Logistics domain, agentA’s average time-loss using commitment plan repair
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(a) Logistics.

(b) Rovers.

(c) Navigation.

Figure 6.9: Agents’ average time-loss using the three approaches in the test domains.
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(134.4) exceeds its value when it used plan stability (53.5) by approximately

1.512 times. Correspondingly, the resulting agentB’s average time-loss using

commitment plan repair (94.5) is approximately 6.89 times less than its value

when it used plan stability (745.8). Similarly, the comparison between the

commitment column (the top column) and the replanning column (the bottom

column) demonstrates that for the Logistics domain, agentA’s average time-loss

using commitment plan repair (134.4) exceeds its value when it used replanning

(34.65) by approximately 2.875 times. Correspondingly, the resulting agentB’s

average time-loss using commitment plan repair (94.5) is approximately 3.397

times less than its value when it used replanning (415.6).

Change in Average Time-Loss

Logistics ROVERS NAVIGATION

AV G. LT r
c AV G. LT d

c AV G. LT r
c AV G. LT d

c AV G. LT r
c AV G. LT d

c

agentA 2.88 times more 1.51 times more 2.00 times more 22.00 times more 2.25 times more 2.25 times more

agentB 3.4 times less 6.89 times less 8.06 times less 9.03 times less -333.25 -333.25

Table 6.5: The change in each agent’s average time-loss in the three application

domains. Where AV G. LT r
c is the average time-loss when an agent used commitment

repair compared to replanning, and AV G. LT d
c is the average time-loss when an agent

used commitment repair compared to plan stability.

As can be observed in Table 6.5, the plan commitment metric has generated

longer plans for the agent that suffered the failure (increased time-loss) and

that it generated shorter plans for other agents (decreased time-loss) compared

to replanning and plan stability repair. In addition, plan stability and replanning

tend to optimise the agent’s plan without considering the negative effects they

will cause on other agents. Commitment repair, on the contrary, generates

longer plans but significantly minimises the damage it causes to other agents.

In light of this finding and the positive results obtained when comparing the

overall saved time for all agents, the results suggest that commitment repair by
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an agent can have a significant positive impact on other agents (indicated by

the reduced time-loss of the second agent, the reduced number of propagated

failures and the total saved time) if that agent is willing to endure some loss

of utility (indicated by the increased makespan for the agent that originally

suffered a failure).

This study acknowledges that the plan commitment metric is a more sensitive

metric than the plan stability metric for plan repairing among multiple agents

sharing the same execution environment in a conservative shared setting. Once

one object changes inside an action, the plan stability metric (or other action-

based metrics) cannot further distinguish the quality of the plans, no matter

whether the change is small or large. Therefore, they cannot distinguish plans

that disrupt other agents from those that do not, unlike the plan commitment

metric, which accounts for and is sensitive to every change.

On the one hand, the plan commitment metric produces better results than

other metrics whenever the agents use shared resources for generating their

plans, one agent suffers a failure, multiple possible plans exist to fix the

failure and reach the agent’s goals, and some of these plans utilise the shared

resources in a way that do not disrupt other agents while other plans do not. In

agents that use the plan commitment metric, plans that utilise the same shared

resources of the original plan are prioritised over plans that utilise alternative

equivalents or resources of different types.

• Plans that utilise the same shared resources that were used in the original

plan lead to meeting other agents’ expectations, avoiding causing them

failures and preventing time-loss.
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• Plans that utilise alternative equivalent resources also meet other agents’

expectations, despite causing them failures but preventing time-loss since

the resource is equivalent and can be used as an alternative.

• Finally, plans that utilise resources of different types discard other agents’

expectations; thus, they cause failures and time-loss to other agents.

Action-based metric distances do not distinguish the previously mentioned

types of plans; thus, they are indifferent about selecting plans that disturb

other agents.

On the other hand, if there is only one way for the agent to fix the failure and

achieve its original goals, then an agent that uses plan commitment would have

an equal performance as an agent that uses any other metric. Furthermore, in

situations where there is no agent dependency (no shared resources) and mul-

tiple ways to fix a failure, the additional plan length resulting from generating

a more stable or committed plan by the agent that suffered the failure does not

lead to saving the other agents’ time. In contrast, optimising other metrics of

value to the agent, such as makespan, is more beneficial for the community of

independent agents.

In the experiments, some failures were inevitable in both the logistics and

rovers domains. In contrast, all the failures were avoidable in the navigation

domain. The different nature of the test domains and the variety of the experi-

ments made it interesting to examine the agents’ behaviour when using the

three approaches (replanning, plan-stability repair or commitment plan repair).
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6.6 Extensibility and Future Work

Extensibility

C-TFLAP can be modified by manipulating the heuristic function; therefore, it

can be easily extended to include new functionalities. There follows a brief

description of how we extend its usage with a cognitive semantic layer to

increase the agents’ chances of a successful repair.

Automated planning knowledge extension is a cognitive semantic approach

that involves adding new object types to the predefined list of object types for

a planning task in a dynamic way (Babli and Onaindia 2019). This approach

is used to make the system more context-aware and better able to reason

with incomplete knowledge, which can improve its autonomy and chances of

successful repairing.

Using the approach presented in (Babli and Onaindia 2019), we utilised the

context-aware knowledge acquisition that was designed initially to formulate

new goals. The ontological details are abstracted out in this study, and a

detailed description can be found in (Babli and Onaindia 2019). For illustration,

the output for the logistics application domain presented in this study is shown

in Fig. 6.10.

When using automated planning knowledge extension, the domain is aug-

mented with new types, and therefore it must be passed to C-TFLAP. In addition,

an important requirement for this extension to work is to have the domain

types modelled in a reasonable hierarchy in which the types that must be used

differently (such as van and truck in the logistics domain explained in Section

6.3.2) must not be modelled as siblings under the same parent. It is worth

mentioning that typing in PDDL is domain-independent as PDDL offers the
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Figure 6.10: OWL Representation of the hierarchy of the predefined set of object types

and the augmented hierarchy of types.

ability to express a type structure for the objects in a domain which allows

typing of the parameters that appear in variables and operators. Furthermore,

PDDL allows the types to be expressed as forming a particular hierarchy.

Fig. 6.10 demonstrates how van and truck are not sibling types, and they

are modelled under different parent types, big_car and bigger_type_of_car,

respectively. When this module is used, The condition of Line 8 in Algorithm 3

becomes:

else ifelse ifelse if type(o) = type(o′) ororor parentType(o) =

parentType(o′) thenthenthen counter ← max(counter, 0.5)

Therefore, for the logistics problem shown in Section 6.3.2, the algorithm would

favour plans that use the same object used in the original plan (the same van,

vehicle0 as in Scenario 1), otherwise a different object from the same type (a

different van, vehicle3 as in Scenario 2) or a different object from a different

type that is compatible with the original object type (vehicle4 of a new type
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sprinter that is compatible with the type van as the extended scenario shown

below), otherwise, a different object from a non-compatible type (vehicle1 of

a type truck) just to satisfy the goal.

Scenario (extended): agentA that was shown in Fig. 6.2a, suffers a failure

due to the discrepancies driver0 and vehicle0 are no longer available, a

new driver driver3 is available at city0 and vehicle4 is at a close location

village0, which is a new object of a new type sprinter unknown to the agent.

Whether agentA performs replanning or plan-stability repair, it will discard

vehicle4. Similarly to scenarios 1 and 2, it will generate the plan π′′
a which

uses vehicle1 of type truck (shown in Fig. 6.3b) and thus, agentB will suffer

a failure. On the other hand, if agentA and agentB utilise automated planning

knowledge extension agentA would have realised that the type sprinter is

equivalent to van. Then, agentA would have performed commitment plan repair

which considers objects types, generating the plan π′
a shown in Fig. 6.11, which

utilises vehicle4.

a′1 : 0.002 : (walk driver3 city0 village0)[50.000]

a′2 : 50.010 : (board driver3 vehicle4 village0)[10.000]

a′3 : 60.020 : (drive-van driver3 vehicle4 village0 city0)[18.000]

a′4 : 78.030 : (disembark driver3 vehicle4 city0)[10.000]

a′5 : 88.040 : (load package0 driver3 vehicle4 city0)[17.000]

a′6 : 105.050 : (board driver3 vehicle4 city0)[10.000]

a′7 : 115.060 : (drive-van driver3 vehicle4 city0city1)[300.000]

a′8 : 415.070 : (disembark driver3 vehicle4 city1)[10.000]

a′9 : 425.080 : (unload package0 driver3 vehicle4 city1)[17.000]

Figure 6.11: The commitment repair plan π′
a.

In that case, agentB would have suffered a failure and fixed it (with negligible

processing time for invoking repairing or replanning) using vehicle4, thus

avoiding time-loss of 368 time units. The plan commitments c(π′
a, πa) = 0.55,
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c(π′′
a , πa) = 0.57, thus π′

a is more committed. The authors did not use this

extension in the evaluation against replanning and stability repair to avoid bias,

as those methods cannot handle new objects of different but equivalent types.

Future Work

Multiple sound mathematical formulations may exist to define a plan metric

distance; while all are mathematically correct, their applicability may vary

depending on the specific context of the problem at hand. The plan commitment

metric is designed to focus on the resources used within an action. In the vast

majority of cases, two actions of the same operator that use the same resources

are opposite actions. For example, drive from city A to city B and drive from city

B to city A, or stack block A on block B and stack block B on block A. Although

the plan commitment metric values both actions in the same way, the planner

will select only those that lead to the objective. Additionally, in the future, if we

want to compare plans of different agents, who probably use different models,

our approximation will be more general and robust than an approximation that

focuses on the ordering of objects within actions. This work outcome leaves

many open lines of research and future development. There follow some of the

implications and suggested future work.

It would be interesting to test with different types of agents (self-interested

and collaborative) in the same community for future work. Currently, there

is no limit on time/cost for the newly generated plan, and it may be interest-

ing to specify or discover a threshold according to a library of plans. The

current implementation is domain-independent, which may be considered an

advantage. All objects are treated as equally important; however, for enhanced

performance in specific applications, the plan commitment equation (shown

in Section 6.3) can be easily modified to give some objects more weight. E.g.,
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the objects that matter to other agents, instead of trying to commit to all

the objects used in the original plan, possibly resulting in longer plans that

discourage self-interested agents and may be considered a limitation in some

cases. On the other hand, autonomously identifying the objects that matter

more for each community of agents would require further investigation and

research. C-TFLAP can continue to search for solutions with better commitment

value after finding the first solution (as with LPG-ADAPT). Studying the utility

of stability and commitment for an agent to autonomously decide when better

stability or better commitment plan is worth the computation and the additional

plan length after finding the first solution can be interesting. Furthermore, it

may also be interesting to use the plan commitment in single-agent settings

inversely, use the least committed plans for plan diversity purposes, and explore

different solutions with states not explored in the original plan.

The notion of “responsibly repairing” a plan refers to the process of making

changes or adjustments to a plan in a way that minimises the negative impact

on other agents or systems. In other words, an agent that repairs its plan

responsibly is one that takes into consideration the potential consequences

of its actions on other agents and aims to minimise any disruption or adverse

effects. This could involve, for example, consulting with other agents or

systems to openly book commitments in advance such as intra-agent repair

approach (Talamadupula, Smith, et al. 2013), or using a specific metric or

algorithm to determine the repair to make as a single agent (no booking or

coordination needed) such as the metric presented in our work. Coining the

notion of “responsibly repairing“ as a formal definition would require further

investigation and would be an important area for future research. Additionally,

a formal definition would benefit from establishing clear criteria of what is

considered responsible in different scenarios and settings.

174



6.7 Conclusion

6.7 Conclusion

Plan repair is crucial for any intelligent agent that operates in a dynamic

environment. In action-sensitive distances such as the plan stability and the

action distances, when one object changes in an action, the whole action is

considered different. Consequently, once one object changes, action-sensitive

distances cannot further distinguish the quality of the plans, no matter whether

the change is small or large. This study presents a property called plan

commitment to ensure a responsible repairing policy among agents that aims

to minimise the negative impact on others and presents the arguments to

support the claim that plan commitment is a valuable property when an agent

may have made bookings to others. An implementation is presented based on

TFLAP resulting in C-TFLAP planner. The empirical evaluation results support

our claim as commitment repair can reduce the number of failures and the

time-loss among agents. The results demonstrate that the suggested approach

outperforms typical replanning and plan-stability repair for the mentioned

purposes. The approach is domain-independent and agile and can be easily

modified and extended.

Determining an appropriate threshold for the delay caused by a repair method

in a particular agent, beyond which it would negatively impact the overall

system performance (other agents), is a complex task that requires further

research and investigation. In traditional multi-agent systems where agents

coordinate and communicate their plans and goals openly, the threshold is

determined by simple trade-offs such as the extra time spent by an agent versus

the resulting time loss for other agents or the overall system’s performance

(total saved time in the community of agents). However, determining the thresh-

old is more challenging in a community of agents with reduced communication

and privacy. As we mentioned previously, the advantages of our method are
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that no coordination is required among agents, no communication is required

after an agent generates its plan, and goals and plans are private and not

shared among agents. In future work, we will continue our investigation for

single-agent planning and repairing in a community of agents with reduced

communication and privacy settings by estimating the threshold through his-

torical data (case-based) or simulating the existence of another agent in the

execution environment. By doing so, we can determine the expected impact of

a delay on the overall system’s performance and estimate the threshold of a

disruption occurring in the worst case or on average.
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Conclusions and Future Work

T
HIS chapter presents the general conclusions of this PhD thesis.

The content of this chapter is organised as follows. The first

section describes the characteristics and the necessity of

autonomy techniques to deal with the dynamic environment change efficiently.

The second section briefly describes the proposed approach and lists the most

relevant contributions and results. The third and last section provides several

lines of future work derived directly from this thesis work.

7.1 Introduction

Autonomy is more of a necessity than convenience in AI, robotics and multi-

agent systems and is indeed a matter of power (Castelfranchi et al. 2003).

This power allows the agent to utilise its available resources, knowledge and

skills to maintain an adaptive behaviour while pursuing its goals through an
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architecture that makes it able. Lack of power produces dependence; therefore,

autonomy and lack of autonomy are due to the agent’s architecture since it

defines what resources an agent can use and provides its various capabilities.

The problem is how to engineer and design a good, trustworthy architecture

that strives to boost agents’ autonomy and allow a responsible interaction

between agents. Planning, acting, perceiving, monitoring, learning, reasoning

with dynamic environments, and reasoning with time and human interaction are

the deliberative functions which constitute the driving forces of autonomous

behaviour and are the pillars that one aims for in an autonomous agent’s

architecture. In this PhD thesis, we target execution monitoring, context-aware

knowledge acquisition and plan repairing.

Execution monitoring is crucial for the success of an autonomous agent that is

executing a plan in a dynamic environment as it influences its ability to react

to changes quickly. Due attention must be paid to changes; otherwise, the

agent might suffer a plan execution failure or lose opportunities. Changes

result from noisy observation, partial observability, non-determinism, dynamic

environment or other agents operating in the same environment.

Partial or incomplete knowledge leads to unanticipated events that may bring

about an opportunity for the task executed by the agent. Accounting for all

possibilities in the agent’s model results in a lack of autonomy and is sometimes

unfeasible. An agent that relies on the prior knowledge of its designer rather

than on its own percepts is an agent that lacks autonomy. Instead, being

rational requires the agent to be context-aware, gather information and extend

what is already known from what is perceived to compensate for partial or

incorrect prior knowledge and achieve the best possible outcome in various

novel situations.
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While executing its plan in a dynamic environment where multiple agents are

operating, an autonomous agent may suffer a failure due to discrepancies

between the expected and actual context and thus must replace its obsolete

plan. In its endeavour to fix the failure and reach its original goals, the

agent may unknowingly disrupt other agents executing their plans in the same

environment.

7.2 Conclusions

Human beings are endowed with the ability to adapt and cope with a plethora

of challenges encountered in daily life. Even when unexpected events and

change occurs, we can handle them intuitively and solve problems effectively.

When faced with a challenge, we look around, think outside the box, and

utilise all available means to find solutions. We strive to increase our skills and

capabilities to capitalise on opportunities when they arise and achieve more.

Moreover, we are civilised; we treat each other with sympathy and respect as

we embark on life’s journey towards reaching our goals.

Similarly, the work carried out in this PhD thesis was initiated to endow the

autonomous agents executing a plan in a dynamic environment with the ability

to adapt to unexpected events and unfamiliar circumstances and utilise their

own perception of context, enabling them to provide context-aware deliberative

responses for seizing an opportunity or repairing a failure without disrupting

other agents that are working in the same execution environment. This work

focused on developing a domain-independent architecture capable of handling

the requirements of such autonomous behaviour, namely, execution in a dy-

namic environment, context-aware knowledge acquisition and responsible plan

repairing.
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7.2.1 Brief Summary of the Proposed Approach

The proposed solution starts from an architecture (detailed in Chapter 3)

based on integrating three fundamental modules. The first module is the

intelligent system for execution simulation in a dynamic environment (Chapter

4). The second module is the context-aware knowledge acquisition for planning

applications module (Chapter 5). The third module is the plan commitment

repair module (Chapter 6). In this architecture, an agent can simulate the

execution of its plan in a dynamic environment, integrate new objects, whether

of existing or brand new types not previously considered in the agent module

and use them when an execution failure occurs or to seize an opportunity. The

novel plan repair strategy that uses plan commitment allows the agent to repair

its plan without adverse effects on other agents. The architecture modules

were investigated and evaluated in several applications in the appendices of

this PhD thesis, a tourist assistant (Appendix A), a repairing agency application

(Appendix B) and an assisted living home (Appendix C).

The three main contributions of this work are related to the developed archi-

tecture modules from which the following results have been drawn:

1. The agent uses the intelligent simulation system, which reads a PDDL

domain and problem files as input. It calls a planner to generate a plan

and simulates the execution in real-time. The simulation is done by trans-

forming the plan into a timeline. The simulator periodically updates its

internal state with real-world information, receives sensible environmen-

tal changes through live events and creates their corresponding timed

events in the timeline. It monitors the execution of the plan. Events are

processed in the context of the plan; if a failure occurs due to live events,

the simulator reformulates the planning problem. This involves creating

the new initial state and updating the time of timed events and the goals.
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The simulator re-invokes a planner to generate a new plan and resumes

the simulation. The simulator is a console application and has a GUI

designed specifically for the context of smart tourism.

2. The agent uses a domain-independent approach that may be used as a

part of a context-aware model in a deliberative context-aware ambient in-

telligence system. It bolsters an agent with the capability of autonomously

extending its planning task to accommodate on the fly, only relevant (ac-

cording to the agent’s objects’ types) and manageable new information

(according to the agent’s actions’ schemas) that may trigger the formula-

tion of new goal opportunities or may be used when a failure occurs.

3. The agent utilises a property called plan commitment that is very valuable

when it may have made bookings to others as it ensures a responsible

repairing policy among agents. An implementation is presented based

on TFLAP resulting in C-TFLAP planner. The empirical evaluation results

support our claim as commitment repair can reduce the number of fail-

ures and the lost time among agents. The results demonstrate that the

suggested approach outperforms typical replanning and plan-stability

repair for the mentioned purposes. The approach is domain-independent

and agile and can be easily modified and extended.

7.2.2 Brief Summary of the Thesis Contributions

In this PhD thesis, we joined two fields in the realm of AI, the field of AP and

the field of KR. The aims of this thesis have been directed towards allowing

autonomous agents to deal with the dynamic environment change, not depend-

ing solely on the prior knowledge of designers but instead relying on their

own percepts to provide context-aware deliberative responses for seizing an

opportunity or repairing a failure that occurs during the execution of the plan.
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In our opinion, the aims of this thesis and the five objectives to achieve the aims

of the thesis (discussed in Section 1.2.2 of Chapter 1) have been favourably

fulfilled. Follows a brief summary of the most general contributions of the

thesis:

• Design and development of a domain-independent intelligent system

for execution monitoring simulation in a dynamic environment. The

system is responsible for the following deliberative functions; perception,

acting and monitoring and triggering goal generation, replanning or plan

repairing.

– Perception: by sensing the IoT objects’ values characterising the

environment’s actual state. If an opportunity is spotted or a failure

occurs, perception provides reactivity. During the plan’s execution,

the agent may encounter new objects of existing types, integrates

them into the planning problem, and uses them to repair failures or

seize an opportunity.

– Acting and Monitoring: by executing the plan, monitoring actions,

and detecting failures that may occur

• Design and development of a domain-independent context-aware knowl-

edge acquisition method. The agent creates an ontological representation

of the planning domain and dynamically augments the predefined list of

object types of the planning task with relevant new object types. This

allows the agent to be context-aware of the environment and the task

being performed and reason with incomplete knowledge. Consequently,

boosting the system’s autonomy and context awareness as the agent will

be attentive (during execution simulation) to seize opportunities (for goal
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generation) or fix failures (replanning using an external planner or plan

repairing).

• Design and development of the novel plan commitment repair strategy

among multiple agents sharing the same execution environment for re-

pairing an agent’s plan when a failure is detected concerning the new

observed state and the original plan of the agent. The agent utilises a

new metric, plan commitment, as a heuristic to guide the search for the

most committed repair plan to the original plan from the perspective of

commitments made to other agents (the resources used in the original

plan) whilst achieving the original goals. Consequently, the community

of agents will suffer fewer failures due to the sudden changes (reduced

revisions) or will have less lost time if the failure is inevitable.

7.3 Future Lines of Research

This section introduces some extensions that could be made based on this

PhD thesis work. Despite the bolstered autonomy offered by the contributions

that have been developed, they are but humble steps on the long road ahead

to autonomy. Numerous extensions can significantly improve the autonomy

provided by the system’s architecture and the features it supports.

Concerning the intelligent system for execution simulation in a dynamic en-

vironment contribution, our simulation system can receive live information

from the dynamic execution environment, monitor the execution of the plan,

detect discrepancies and reformulate the planning problem upon failures to

invoke replanning or plan repairing. A possible extension that could produce

very important improvement in the autonomous behaviour of the agent is to

investigate and derive techniques that decide what information is relevant to
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the agent and how relevance is decided to allow filtering information received

from open-data platforms and other agents.

Currently, the dynamic change in the simulation system is received through live

events during the execution; another possible extension is to allow simulating

with uncertainty in action effects during execution.

The simulation system currently accepts a general PDDL domain+problem des-

cription as an input description of the planning task; a third possible extension

is the HTN description to be compatible with HTN planning. Especially since

HTN planning allows informed compound high-level expectations (Dannen-

hauer 2016), which goes very well with the use of ontologies, further research

is required for autonomously devising the rules of high-level expectations

for domain-independent problems instead of hard coding them according to

experts in each domain.

On the other hand, concerning the context-aware knowledge acquisition for

planning applications contribution, one key point of using knowledge sources

(such as ConceptNet Open Mind Common Sense, OpenCyc, Verbosity players,

LinkedDBTour and Open Multilingual WordNet) is the quality of the content

within these knowledge sources. When human-out-of-the-loop autonomy perfor-

mance is what we seek, autonomous systems can propagate biases learned from

human data inside knowledge sources and reinforce misinformation, inaccurate

classifications or any systematic discrimination found in society. Therefore

besides filtering the new knowledge based on relevance according to the types

in the agent’s model and the compatibility with the agent’s capabilities (as

we achieved in our second contribution in Chapter 5), it may be interesting to

extend the scope of work to investigate new techniques to filter new knowledge

based on quality and credibility.
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In the context-aware knowledge acquisition for planning applications module,

after formulating a new goal on the fly that concerns a new object of a new type

not previously considered in the agent’s model, we delegate the task of finding

whether this new goal constitutes an opportunity for the agent to an external

planner. Another possibility is to investigate and develop heuristics (planning-

based, regression-based or ontology-based) that could tell if a newly generated

goal that involves a new object of a new type is actually an opportunity for the

agent rather than delegating this task to the planner. Deriving regression-based

heuristics to estimate opportunities is possible for pending goals (involving

existing objects) that become suddenly possible during execution; however,

heuristics to estimate opportunities that involve new objects of new types

are yet to be investigated. Another idea is to investigate performing local

task repairing through ontologies within a planning-based system and try to

overcome the performance issues inherited in that problem.

As mentioned in Chapter 5, it would be interesting to ontologically represent

the HTN formalisation. Since HTN high-level tasks are decomposed into more

straightforward tasks and primary actions, an agent that benefits from ontolog-

ical and HTN representations could extend its model with new high-level tasks

if it has the primary actions of that high-level task. Consequently, allowing the

agent to import new strategies that were not originally modelled in the agent

model, yet the agent would be able to perform. Further research is required

to enable agents to continuously acquire new behaviour, as in the work of

(Vachtsevanou et al. 2020).

In this PhD thesis, we have taken the initiative to empower agents exhibiting a

higher level of autonomy. One essential extension that must be further investi-

gated is responsible AI allowing humans to enforce several levels of autonomy

for accountability and responsibility, as suggested in the work of (Methnani

et al. 2021). Although these are baby steps toward high-level autonomy, multi-
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ple scholars have raised concerns over an ongoing accountability gap. Further

investigation is required to avoid incidents and to maintain the public’s trust in

the technology.

Concerning the deliberative context-aware ambient intelligence system for

assisted living Homes (detailed in Appendix C). Striving for autonomy can divert

attention away from the goal of developing human-centric AI, where human

agency is supported and never undermined. Future work must conduct live

laboratory demonstrations with senior citizens attended by health professionals

and further analyse the demonstration data to adjust the performance, avoid

unforeseen inconvenient situations, enhance explainability, and for safe human-

robot interactions.

Concerning responsible plan commitment repair, it is interesting to study

the utility of metrics, such as stability and commitment, for an agent to au-

tonomously decide when better stability or better commitment plan is worth

the computation and the additional plan length after finding the first solution.

It may also be interesting to use the plan commitment in single-agent settings

inversely; the least committed plans may be used for plan diversity purposes.

In addition, a parallel alternative possibility is investigating behaviour trees for

plan repair, one problem worth further investigation is finding a heuristic for

intelligently pruning branches.

187



Part IV

Appendices



Appendices

189



A
P

P
E

N
D

I
X

A
Case Study: Tourist Assistant

C
ONSIDERING the first contribution of this PhD thesis, pre-

sented in Chapter 4, this appendix aims to demonstrate the

intelligent simulation system’s behaviour and validity in a

complete smart tourism application domain context. In addition, to provide an

example of a tourist making a one-day tour of Valencia city, the jewel of the

Mediterranean on Spain’s southeastern coast. This chapter uses the system as

a smart tourism application that plans a tourist agenda and keeps track of the

plan execution. A RS returns the list of places that best fit the individual taste

of the tourist. For tourism, we use a method similar to the e-tourism approach

introduced in the work of (Ibáñez-Ruiz et al. 2016) to retrieve the list of goals

tailored to different tourists’ travelling styles. The planner creates a person-

alised agenda with indications of times and durations of visits. The simulator

monitors the execution, periodically updates its internal state with information

from open data platforms, and maintains a snapshot of the real-world scenario
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through live events that communicate sensible environmental changes. The

simulator builds a new planning problem when an unexpected change affects

the plan execution. The planner arranges the tourist agenda by calculating a

new plan to be executed again by the simulator.

A.1 Planning Module

A.1.1 Initial State

The initial state of a planning problem describes the state of the world when

the plan starts its execution. Such as reflecting the opening hours of the

places to visit, the distances between them, and the user’s initial location. The

representation depends on the nature of the information. The information

whose value is true or known from the beginning of the execution is expressed

as fluent state variables, either boolean or numerical. Whereas TILs are used

to denote time-stamped changes to the world as the information that is known

to happen at a future time.

The variable (be ?per ?loc) is used to represent the location of the tourist,

e.g., the fluent (be tourist caro_hotel). The pair of TILs (at 0 (active

tourist)) and (at τ (not (active tourist))) determine the available time

of the user for the tour as the difference between the time when the tour starts

and finishes. The time indicated in the TILs is relative to the starting time of

the plan; that is, (at 540 (not (active tourist))) refers to 7pm if the plan

starts at 10am. Another pair of TILs is used to define the time window in which

the tourist prefers to have lunch. For example, if the preference is between

2pm and 4pm, the TILs are (at 240 (time_for_eat tourist)) and (at 360

(not (time_for_eat tourist))).
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The duration of a particular visit to a monument ?mon for a tourist ?per is

defined through the variable (visit_time ?mon ?per), e.g., the fluent (=

(visit_time Lonja tourist) 80).

The list of available restaurants is given through the variable (free_table

?r), e.g., the fluent (free_table ricard_camarena). For each restaurant, the

author defines the time slot it serves meals, which may depend on the type of

restaurant, the kitchen closing time or other factors. Both places to visit and

restaurants have an opening hour and a closing hour that are specified by TILs:

(at τ (open ?loc)) and (at τ (not (open ?loc))), to indicate when the

place/restaurant is no longer available. For example, (at 0 (open Lonja)),

(at 540 (not (open Lonja))).

The distance between two locations (?from) and (?to) is defined by the vari-

able (moving_time ?from ?to), which returns the time in minutes needed to

travel between (?from) and (?to) by using the travel mode preferred by the

user. The time to move between two places is represented through the vari-

able (moving_time ?from ?to), e.g., fluent (= (moving_time caro_hotel

Lonja) 9), where the value nine is taken from Google Maps.

A.1.2 Goals and Preferences

The simulator deals with two types of goals: Hard goals and Soft goals (pref-

erences). The hard goals are obligatory goals, such as the final destination

at which the tourist wants to finish up the tour (be tourist caro_hotel)

and that at the end of the tour, the tourist must have eaten at any restaurant

(eaten tourist). On the other hand, the preferences are visiting attractions,

such as visiting the 15th-century Gothic masterpiece (Lonja), (preference v3

(visited tourist Lonja)).
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The objective is to find a plan that achieves all the hard goals while minimising

the plan metric to maximise preference satisfaction. A penalty is added to

the metric when a preference is not fulfilled. Specifically, the authors define

penalties for non-visited Points Of Interest (POIs) and travelling times. Non-

visited places are penalised for assisting OPTIC in selecting activities (tourist

visits) that have a higher priority for the user. For example, if the priority for

visiting Lonja is 290, and the sum of the priorities of all the visits is 2530,

the penalty for not visiting Lonja would be expressed in PDDL as: ( / (*

290 (is-violated v3)) 2530) as explained in Eq. 4.1. On the other hand

for penalising travelling time, the function (total_moving_time tourist)

accumulates the time spent in movement actions, so if the plan’s total makespan

is 540, this penalty would be defined in PDDL as: ( / (total_moving_time

tourist) 540), as explained in Eq. 4.2.

A.1.3 Actions

The author defines three operators in the tourism domain: move, eat and visit.

Figure A.1 illustrates the move operator from one location to another.

Follows a description of the move operator:

• Parameters: the tourist ?per, the initial location ?from and the destination

?to.

• The duration of the operator is set to the estimated/actual time to go from

?from to ?to, which is stored in the database.

• The preconditions for this operator to be applicable are:

– cond(move)⊢: the tourist must be at location ?from.
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( :durative−action move

:parameters (?per − person ?from − location ?to − location )

:duration (= ?duration (moving_time ?to ?from) )

:condition (and (at start (be ?per ?from))

(over all ( active ?per ) ) )

:effect (and (at start (not (be ?per ?from ) ) )

(at start (walking ?per ) )

(at end (be ?per ?to ) )

(at end (not (walking ?per ) ) )

(at end (increase ( total_moving_time ?per)

(moving_time ?from ?to ) ) ) ) )

Figure A.1: Operator move of the Tourism Domain

– cond(move)↔: the time window for the available time of the tourist

is active during the whole execution of the action instantiated from

this operator.

• The effects assert that:

– eff(move)⊢: the tourist is no longer at the initial location.

– eff(move)⊣: the tourist is at the new location.

– eff(move)⊣ the time spent in move actions is modified according to

the movement duration.

– The fluent (walking ?per) is asserted at the start and deleted at

the end to indicate the tourist’s position in case of failure.
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In this particular example, we only consider walking; however, other transport

modes according to the tourist’s preferences can be included; e.g., cycling,

driving, and public transport.

( :durative−action v i s i t

:parameters (?per − person ?mon − monument)

:duration (= ?duration ( visit_time ?mon ?per ) )

:condition

(and (at start (be ?per ?mon) )

(over all (be ?per ?mon) )

(over all ( active ?per ) )

(over all (open ?mon) )

:effect (and (at end ( visited ?per ?mon) ) ) )

Figure A.2: Operator visit of the Tourism Domain

The operator visit for visiting a monument is defined in Figure A.2. The param-

eters are the monument to visit ?mon and the tourist ?per. The duration of the

operator is defined by the variable (visit_time ?mon ?per). The conditions

for this operator to be applicable are: (1) the tourist is at the monument during

the whole execution of the action instantiated from this operator; (2) the monu-

ment is open during the whole execution of the action instantiated from this

operator and (3) the time window for the available time of the tourist is active.

The effect is that the monument is visited.

The Operator eat represents the eating activity and is defined in Figure A.3.

The parameters in the eat operator are the tourist and the restaurant. The

duration of the action is defined by the variable (time_for_eat ?pers) and

specified by the user. The following conditions must hold to apply this action:

(1) the tourist is at the restaurant during the whole execution of the action;
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( :durative−action eat

:parameters (?per − person ?loc − restaurant )

:duration (= ?duration ( eat_time ?per ?loc ) )

:condition (and ( at start ( free_table ?loc ) )

(at start (be ?per ?loc ) )

(over all (be ?per ?loc ) )

(over all ( active ?per ) )

(over all (open ?loc ) )

(over all ( time_for_eat ?per ) ) )

:effect (and (at end (eaten ?per ) ) ) )

Figure A.3: Operator eat of the Tourism Domain

(2) the restaurant is open during the whole execution of the action; (3) the

restaurant has a free table and (4) both the time window for the time to have

lunch defined by the user and the available time are active. The effects of the

operator assert that the tourist has had lunch.

Finally, some implementation design decisions are worth mentioning. Such

as the decision to assert the fluent (walking ?per) as a start effect of the

move operator. This is not necessary for the rest of the tourism domain model

operators (such as visiting a POI or eating in a restaurant) as they do not

manipulate the location of this tourist. In addition, an alternative design choice

would have been to insert (walking ?per ?loc1 ?loc2); this would help a

human operator that is debugging the execution to know the location of the

tourist. However, it will not be beneficial to the simulator itself, as the simulator

can know the tourist’s location after the failure by rolling back the start effects

of the failed action (as explained in Step 1.1: Updating fluents in Section 4.5.3).

Other alternative approaches can be used, such as sensing actions.
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A.2 Valencia Tour

This section aims to demonstrate the behaviour of the simulation system with a

representative example of a tourist making a one-day tour of Valencia city.

Table A.1: Recommended Places, Initial and Adapted penalties, RV, RV’ and RV”.

Initialised before execution Adapted during execution

Places RV RV’ RV”

Cathedral 280 280 280

Central market 270 600 600

Lonja 290 600 600

Serrano towers 250 — —

City of arts and sciences 280 280 280

Oceanografic 300 300 300

Bioparc 210 210 210

Quart towers 200 — —

Viveros garden 250 — —

Town hall 200 600 600

Initialised by a set of tourist profiles and restaurants, the system retrieves a

set of recommended places (Table A.1, column 1). Utilising tourist profiles, an

RS identifies recommended activities. Places on this list are accompanied by a

recommendation value RV (Table A.1, column 2) based on the tourists’ level of

interest. Based on these values, the planning module generates a plan that suits

the tourist’s tastes. On the other hand, RV’ and RV” are the adapted penalties

after execution failures. As will be seen in the following example, when the

simulator reformulates the planning problem upon failures, it increases the

penalties for the pending preferences by assigning a relatively higher priority

to these pending goals (twice as much as the maximum penalty among all
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goals). This encourages the planner to prioritise goals already included in

the original plan over those that were not (As explained in Step 2: Updating

preferences of Section 4.5.3).

Figure A.4 shows a snapshot of the tour (plan) calculated by OPTIC for the

tourist. In the snapshot, the red location icons indicate the visits included in

the plan. The tour begins at the hotel in which the tourist is staying (green

location icon) and consists of six visits to monuments (red icons) and one meal

at a restaurant (orange icon).

Figure A.4: The Three Simulated Plans. Icons in PLAN1: (0) Caro hotel, (1) Viveros

Garden, (2) Serrano towers, (3) Quart towers, (4) El Celler del Tossal (RESTAURANT),

(5) Lonja, (6) Central market, (7) Town hall. Icons in PLAN2: 1,2,3 are the same as

PLAN1, (4) Pederniz (RESTAURANT), (5) Town hall, (6) Lonja. Icons in PLAN3: 1,2,3

and 4 are the same as PLAN2, (5) Lonja, (6) Central market

The simulator starts the plan execution simulation of PLAN1 (shown in Fig.

A.5) with the above information. Let us assume that at the time 1:55 pm, a live

event is received (at 235 (not (free_table el_celler_del_tossal))), in-

dicating that the restaurant chosen by OPTIC el celler del tossal becomes

unexpectedly full and has no available table. When the live event arrives, the
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a1 : 0.001 : (move tourist caro_hotel viveros_garden)[11.000]

a2 : 11.002 : (visit tourist viveros_garden)[75.000]

a3 : 86.002 : (move tourist viveros_garden serrano_towers)[11.000]

a4 : 97.003 : (visit tourist serrano_towers)[80.000]

a5 : 177.003 : (move tourist serrano_towers quart_towers)[11.000]

a6 : 188.004 : (visit tourist quart_towers)[30.000]

a7 : 236.000 : (move tourist quart_towers el_celler_del_tossal)[4.000]

a8 : 240.001 : (eat tourist el_celler_del_tossal)[90.000]

a9 : 330.001 : (move tourist el_celler_del_tossal lonja)[4.000]

a10 : 334.002 : (visit tourist lonja)[80.000]

a11 : 414.002 : (move tourist lonja central_market)[1.000]

a12 : 415.003 : (visit tourist central_market)[70.000]

a13 : 485.003 : (move tourist central_market town_hall)[6.000]

a14 : 491.004 : (visit tourist town_hall)[35.000]

a15 : 526.004 : (move tourist town_hall caro_hotel)[13.000]

Figure A.5: The temporal plan: PLAN1

tourist has already visited the first three monuments (1. Viveros garden; 2.

Serrano towers; 3. Quart towers). At time instance 240.001 the simulator

detects a failure because the action (eat tourist el_celler_del_tossal) is

not executable. Therefore, the simulator reformulates a new planning problem

as follows:

1. Initial state:

• The current location of the tourist is the point at which the previous

plan failed, i.e., the restaurant el celler del tossal.

• Since the new simulation time is reset to zero, the simulator updates

the time of the TILs in the current state. Namely, the opening and

closing time of places, the time slot for having lunch and the TIL
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(at τ (not (active tourist))), where τ is set to the new time

the tourist must get back to the hotel from time zero.

• Additionally, the fluent (total_moving_time tourist) is updated

with the total time the tourist has spent in moving around the city.

2. Goals: Places already visited (the first three monuments) are removed

from the list of goals. The new set of goals includes two lists: (a) The

pending goals of the failed plan; that is, (4. have lunch) and three

remaining monuments that have not yet been visited by the tourist (5.

Lonja, 6. Central market, 7. Town Hall). (b) The original problem’s goals

that were not included in the plan.

Regarding penalties of the goals, the list of goals in (b) is included in the

new planning problem with their original recommended values (see the

non-bold values RV’ in the 2nd column of Table A.1). For the pending goals

of (a) in the previous Goals list, the penalty for these goals is increased

(the bold values RV’ in the third and fourth columns of Table A.1 for the

three pending monuments) according to the stability concept explained

in Section 4.5.3.

Figure A.4 (middle part in green colour) shows a demonstrative of a new

plan obtained due to the simulator invoking OPTIC and obtaining the new plan,

PLAN2 (shown in Figure A.6).

A few things must be noted in this new plan, PLAN2:

1. OPTIC suggests a new restaurant (orange icon, labelled with number 4)

relatively far away from the previous restaurant. The reason is that

we have only included in the planning problem the 10-top restaurants

in Valencia suggested by Trip Advisor, and the closest one to the prior

restaurant is the one shown in the second map.
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a8 : 240.002 : (move tourist el_celler_del_tossal el_pedernil)[22.000]

a9 : 262.003 : (eat tourist el_pedernil)[90.000]

a10 : 352.004 : (move tourist el_pedernil town_hall)[16.000]

a11 : 368.005 : (visit tourist town_hall)[35.000]

a12 : 403.006 : (move tourist town_hall lonja)[6.000]

a13 : 409.007 : (visit tourist lonja)[80.000]

a14 : 489.008 : (move tourist lonja caro_hotel)[9.000]

Figure A.6: The temporal plan: PLAN2

2. The places included in the new plan and the paths between them are

marked with green. The new plan maintains the visit to Town Hall (now

represented by the green icon numbered 5) and the visit to Lonja (now

represented by the green icon with the number 6). However, this new

plan has discarded the Central Market visit, likely due to the long distance

to the new restaurant.

The simulation continues. During the tourist visit to the Town Hall, it is

announced that it will close 140 minutes earlier than the currently scheduled

closing time; a live event (at 380 (not (open town_hall))) is received. A

new failure is detected in the middle of the execution of (visit tourist

town_hall) due to a violation of an overall condition. The simulator reverts to

the previous state (rolling back the last visit action) but preserves the simulation

time during the process. Then, in the new reformulated problem, the tourist

is located at the Town Hall, has not visited the Town Hall, and the live event

causes the fluent (open town_hall) to be removed from the initial state. The

goal (visited tourist town_hall) will be included in the new problem to

attempt to maintain preferences stability. However, since the Town Hall is no

longer open for visits, it will not be included in the new plan generated by

OPTIC. The penalties of the goals for this third problem are shown in column 3

of Table A.1.
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The third plan, PLAN3, is highlighted in light blue colour on the right side of

Figure A.4). This new plan suggests visiting (5. Lonja) and then (6. Central

market) (that was eliminated from the second plan), and finally, the tour ends

with the tourist returning to the hotel (as shown in Figure A.7).

a11 : 368.006 : (move tourist town_hall lonja)[6.000]

a12 : 374.007 : (visit tourist lonja)[80.000]

a13 : 454.008 : (move tourist lonja central_market)[1.000]

a14 : 455.009 : (visit tourist central_market)[70.000]

a15 : 525.010 : (move tourist central_market caro_hotel)[9.000]

Figure A.7: The temporal plan: PLAN3

A.3 Conclusion

In this chapter, the author has demonstrated how the intelligent system for

execution simulation in a dynamic environment (introduced in Chapter 4) is

used as a tourist assistant for the e-tourism application domain.

It offers a personalised plan of POIs visits suited to the tourist’s interest. It

also handles the soft preferences regarding the POIs the tourist wishes to visit.

More importantly, this intelligent system gives the advantage of providing the

tourist with an enhanced tourism experience in a way not typically introduced

by trip generators. Specifically, not only for generating the trip itself but also

online during the trip; after generating a plan tailored to the tourist visiting

preferences, the plan execution is monitored in real-time, thus dynamically

reacting to failures due to the changes in the environment, such as when a

restaurant or a POI gets closed or fully booked. The system generates a new

plan for the tourist taking into consideration the following:
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• The tourist’s hard goals (activities) that have already been performed

from the original plan and the remaining hard goals.

• The tourist’s soft goals in the new plan when a failure occurs, the system

gives more weight to the pending visits included in the original plan to

meet the tourist’s expectations as much as possible and allow some sense

of stability and control.

• The tourist’s constraint restrictions, such as the remaining time for the

tourist’s one-day tour and lunchtime.

The recommendation values of the POIs used as preferences’ penalties to be sat-

isfied by the planner are supplied using a recommendation system according to

the tourists’ profiles, similarly to the approach used in the work of (Ibáñez-Ruiz

et al. 2016). On the other hand, for other domains, the preferences penalties

can be read from a data source or supplied explicitly in the PDDL problem file,

which the simulator reads as input. In other words, there is no need to use a

recommendation system in other application domains. Although a specialised

GUI was developed for the tourism application domain, the system is domain-

independent. The output is shown in a console window (as demonstrated in

Section 4.5.4) and can be written into a file for logging.

A point worth mentioning is that the simulator can scale for execution in

large cities with many POIs. POIs are modelled in the PDDL domain model as

instance objects of locations, and the distances between locations are modelled

as numeric fluents. Therefore, a high number of POIs or restaurants defined in

the problem instance does not increase the complexity of finding a solution to

the planning problem; on the contrary, it makes it easier for the planner to find

solutions and alternative solutions when a failure occurs.
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Case Study: Context-aware Knowledge

Acquisition for Planning Applications

B
ASED on the second contribution of this PhD thesis, pre-

sented in Chapter 5, this appendix aims to demonstrate

the behaviour and the validity of the context-aware knowl-

edge acquisition approach for planning applications in two different application

domains, namely, a repairing agency application and a smart tourist assistant

application. We demonstrate in a step-by-step fashion how an autonomous

agent draws upon the richness and expressivity of a standard ontology represen-

tation, semantic measures and ontology alignment to be able to accommodate

newly acquired objects of new types into the planning task specification. Con-

sequently, the anticipation of opportunities is facilitated as these new objects

may subsequently trigger the formulation of a goal that induces a better-valued



B.1 A Repairing Agency Application

plan, as shown in this appendix or can be used to repair failures, as shown in

Appendix C.

B.1 A Repairing Agency Application

Consider a repair agency scenario in which a robot, av, in a warehouse has a

one-day maintenance task for several large kitchen appliances received by the

agency.

B.1.1 The Planning Task

The robot av can work on one appliance at a time. The warehouse has three

areas; transit area for items that require maintenance, inspect area where

maintenance is performed, and storage area for items that have already

been maintained. Initially, the system has a set of major kitchen appliances

categories; television, refrigerator and dishwasher.

The operations that av can perform are move, repair, load, and unload. move

is an operator that allows av to move between the warehouse areas. load is

an operator that allows the robot to carry an object at an area, and similarly,

unload allows the robot to unload the object at an area. repair is an operator

that allows av to perform a maintenance operation on a major kitchen appliance

at the inspect area.

The information of the initial state includes:

• av’s start location (be av area_storage), status as (empty av) and

operational hours between 10:00 and 22:00 controlled by the TILs (at 0

(active av)) and (at 720 (not (active av))).
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• The fluents representing the the durations of movement between the

warehouse areas (= (moving_time area_storage area_inspect) 5),

(= (moving_time area_storage area_transit) 5), (= (moving_time

area_inspect area_transit) 5), (= (moving_time area_inspect area_-

storage) 5) ,(= (moving_time area_transit area_storage) 5), (=

(moving_time area_transit area_inspect) 5) maintenance time (=

(repair_time) 80), loading time and unloading time (= (load_unload_-

time) 1).

• The appliances’ initial locations at the inspection area; (be washer_ID02

area_transit), (be washer_ID101 area_transit), and (be refrigerator_-

ID03 area_transit).

• The appliances that require repairing; (require_repair washer_ID02),

(require_repair washer_ID101) and (require_repair refrigerator_-

ID03).

Where washer_ID02 and washer_ID101 are two objects of the PDDL type

dishwasher, and refrigerator_ID03 is an object of the PDDL type refrigerator.

The goals are to repair and deliver any appliance that requires repairing and

deliver it to the storage area. Since we do not deal with conditional effects

or derived predicates, we added a dummy operator with a zero duration that

asserts that an appliance is delivered if it is repaired and it is in the storage

area.

The scenario is formulated as a planning task ϕ, and a planner is invoked to

solve this task. The plan to solve ϕ (π1 shown in Figure B.1) is calculated

by the planner OPTIC and consists of 27 actions; the robot av moves from its

start location (area_storage) to (area_transit), loads an item, moves to

(area_inspect), unloads the item to be repaired, repairs the item, loads the
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item, moves to (area_storage), unloads the item, and the item is delivered;

the previous rotation (8+1 dummy) applies for each of the three appliances

that require repairing.

a1 : 0.0003 : (move av area_storage area_transit)[5.0000]

a2 : 5.0005 : (load av washer_id02 area_transit)[1.0000]

a3 : 6.0008 : (move av area_transit area_inspect)[5.0000]

a4 : 11.0010 : (unload av washer_id02 area_inspect)[1.0000]

a5 : 12.0013 : (repair av washer_id02 area_inspect)[80.0000]

a6 : 91.0015 : (load av washer_id02 area_inspect)[1.0000]

a7 : 92.0017 : (move av area_inspect area_storage)[5.0000]

a8 : 97.0020 : (unload av washer_id02 area_storage)[1.0000]

a9 : 98.0023 : (dummy washer_id02 area_storage)[0.0000]

a10 : 98.0025 : (move av area_storage area_transit)[5.0000]

a11 : 103.0027 : (load av washer_id101 area_transit)[1.0000]

a12 : 104.0030 : (move av area_transit area_inspect)[5.0000]

a13 : 109.0033 : (unload av washer_id101 area_inspect)[1.0000]

a14 : 110.0035 : (repair av washer_id101 area_inspect)[80.0000]

a15 : 189.0038 : (load av washer_id101 area_inspect)[1.0000]

a16 : 190.0040 : (move av area_inspect area_storage)[5.0000]

a17 : 195.0043 : (unload av washer_id101 area_storage)[1.0000]

a18 : 196.0045 : (dummy washer_id101 area_storage)[0.0000]

a19 : 196.0047 : (move av area_storage area_transit)[5.0000]

a20 : 201.0050 : (load av refrigerator_id03 area_transit)[1.0000]

a21 : 202.0052 : (move av area_transit area_inspect)[5.0000]

a22 : 207.0055 : (unload av refrigerator_id03 area_inspect)[1.0000]

a23 : 208.0058 : (repair av refrigerator_id03 area_inspect)[80.0000]

a24 : 287.0060 : (load av refrigerator_id03 area_inspect)[1.0000]

a25 : 288.0063 : (move av area_inspect area_storage)[5.0000]

a26 : 293.0065 : (unload av refrigerator_id03 area_storage)[1.0000]

a27 : 294.0068 : (dummy refrigerator_id03 area_storage)[0.0000]

Figure B.1: The temporal plan: π1
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In addition, the repair agency may unexpectedly receive new objects that

require maintenance from other agents during π1’s execution. The agent must

decide whether to accept or ignore such objects.

B.1.2 Execution Simulation and Context-aware Knowledge

Acquisition

The simulation system presented in Chapter 4 is utilised to simulate the execu-

tion of π1. The simulator starts the execution simulation. After repairing and

delivering the appliance washer_ID02 (after a9 in π1 shown in Figure B.1), new

information is received from a different delivery agent (be iphone_ID7500

area_transit) that includes the new object iphone_ID7500 /∈ O. The system

requests the type of the new object from the agent that delivered it and finds

t=mobile_phone /∈ T .

The system creates the preliminary ontological representation ηϕ (explained in

Section 5.5.1) that represents the types of ϕ as shown in Figure B.2.

(:types

agent - object

robot - agent

location - object

inspection - location

storage - location

transit - location

major_appliance - object

dishwasher - major_appliance

refrigerator - major_appliance

television - major_appliance)

Figure B.2: PDDL types T in ϕ and the corresponding OWL representation ΩT in ηϕ
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The left part of Figure B.2 shows the types T of the agent’s planning task ϕ,

and the right part shows the corresponding ΩT in ηϕ. For instance, the type

dishwasher is represented as major_appliance :: dishwasher to denote that the

class dishwasher is a subclass of the class major_appliance. It can be observed

that the planning task types are arranged in a reasonable hierarchy and that

their OWL representation follows this hierarchy truthfully.

Second, the system retrieves the types part of several semi-cooperative agents

planning tasks from online repositories ∆ = {A,B,C} (shown in Figures B.3,

B.4, and B.5, respectively) from online repositories.

(:types

agent item location - object

robot - agent

dishwasher fridge kitchen_range mobile_phone tv - item

inspection storage transit - location)

Figure B.3: TϕA of a remote planning task ϕA

(:types

agent item location - object

robot - agent

freezer fridge kitchen_range range_hood tv - item

inspection storage transit - location)

Figure B.4: TϕB of a remote planning task ϕB

(:types

person accommodation attraction restaurant - object

hotel - accommodation

aquarium zoo tower architectural_building park cathedral - attraction)

Figure B.5: TϕC of a remote planning task ϕC
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The system creates their preliminary ontological representation R∆ respecting

their corresponding hierarchies of types, as shown in Figure B.6.

Figure B.6: R∆ preliminary representation

The agent’s own ontological representation ηϕ and the remote ontological rep-

resentations of the remote planning tasks R∆ are augmented using ConceptNet

(as explained in Section 5.5.2) as a standard means to describe concepts, so

the lexical information in each class of the ontology comes not only from the

local name of the term but also from annotations imported from ConceptNet

relations and classes. A small portion of the annotations attached to the class

television in ηϕ is shown in Figure B.7.

Figure B.7: A sample of the annotations describing an OWL class within an ontology
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VSM distance (described in Section 5.5.3) is calculated between ηϕ and each

ontology in R∆; the distances are 0.79, 0.78, and 0.38, respectively. The system

tries to find t = mobile_phone in R∆ and creates R′
t = {A}, the only remote

ontology with the type t and high similarity value (0.79) to ηϕ. If A were to be

recognised as ηω and used for the alignment, like in (Babli, Marzal, et al. 2018),

the result would be erroneously integrating iphone_ID7500 and generating a

goal the agent cannot manage with its operators. Instead, in our approach,

we extend the representation of ηϕ and R′
t = {A}, as explained in Section

5.5.4, to account for the planning dynamics by representing the variables V

and the head parts of the operators OP . Consequently, allowing the agent to

distinguish new objects manageable by the agent’s capabilities (variables and

operators).

The top part of Figure B.8 shows V of ϕ.

The bottom part shows the corresponding ontological representation of ΩV and

the description for v = (be ?locatable - (either dishwasher refrigerator

robot television) ?loc - location), with JhasParameter1...2
to specify arg1 =

dishwasher∨refrigerator∨robot∨ television and arg2 = location, and a sample

of the annotation labels attached to the class be, brought from ConceptNet.

Similarly, the top part of Fig B.9 shows the head parts of OP of ϕ.

The bottom part of the figure shows the corresponding ontological representa-

tion of ΩOP and the description for the head of op = (repair ?robot - robot

?item - (either television refrigerator dishwasher), with OWL object

properties JhasParameter1...3
to specify arg1 = robot, arg2 = dishwasher∨refrigerator∨

robot ∨ television and arg3 = inspection, in addition to a sample of the annota-

tion labels attached to the class repair, brought from ConceptNet.
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(:predicates

(be ?locatable - (either dishwasher refrigerator robot television)

?loc - location)

(active ?robot - robot)

(moving ?robot - robot ?area1 - location ?area2 - location)

(repaired ?item - (either dishwasher refrigerator television))

(require_repair ?item - (either dishwasher refrigerator television))

(loaded ?item - (either dishwasher refrigerator television) ?robot - robot)

(empty ?robot - robot))

Figure B.8: PDDL variables V in ϕ and their OWL representation ΩV in ηϕ

On the other hand, Figure B.10 shows the variables of the remote planning

ontology VA and the corresponding ontological representation in A, in addition

to the annotations sample from ConceptNet.

One can notice in Figure B.10 that the remote agent has specialised variables

(motherboard ?mobile - mobile_phone), (keyboard ?mobile - mobile_phone)

and (battery ?mobile - mobile_phone) associated with the type mobile_-

phone.
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(:action schemas heads

(move ?robot - robot ?location1 - location ?location2 - location)

(load ?robot - robot ?item - (either television refrigerator dishwasher)

?location - location)

(repair ?robot - robot ?item - (either television refrigerator dishwasher)

?inspection_area - inspection)

(unload ?robot - robot ?item - (either television refrigerator dishwasher)

?location - location)

Figure B.9: PDDL Operators heads OP in ϕ and their OWL representation ΩOP in ηϕ

Figure B.11 shows the head parts OPA and their corresponding ontological

representation in A, in addition to the annotations sample from ConceptNet.

Besides the operator repair1. One can notice in Figure B.11 that the remote

agent has a specialised operator, which head is (repair2 ?robot - robot

?item - mobile_phone ?inspection_area - inspection) for repairing mo-

bile phones.

The agent applies the TSM distance (explained in Section 5.5.5), the distance is

found to be equal to 0.39, and the agent deems iphone_ID7500 unmanageable.

The simulation of π1 continues. After av has repaired and delivered the appli-

ance washer_ID101 (after a18 in π1 shown in Figure B.1), a new information
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(:predicates

(be ?locatable - (either dishwasher fridge robot kitchen_range tv

mobile_phone) ?loc - location)

(active ?robot - robot)

(moving ?robot - robot ?area1 - location ?area2 - location)

(repaired ?item - (either dishwasher fridge kitchen_range tv mobile_phone))

(require_repair ?item - (either dishwasher fridge kitchen_range tv

mobile_phone))

(loaded ?item - (either dishwasher fridge kitchen_range tv

mobile_phone) ?robot - robot)

(empty ?robot - robot) (motherboard ?mobile - mobile_phone)

(keyboard ?mobile - mobile_phone) (battery ?mobile - mobile_phone))

Figure B.10: V in ϕA and their OWL representation

is received (be bosch bosch_ID3400 area_transit, that includes the new

object bosch_ID3400 /∈ O of type t=kitchen_range /∈ T .

The system creates R′
t = {A,B}, and the TSM distances with respect to ηϕ are

respectively: 0.39, 0.64. Subsequently, B is used as ηω to position kitchen_-

range in ηϕ by applying alignment with neighbourhood constraint (explained

in Section 5.6.1). If there were multiple ontologies with high TSM similarity
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(:action schemas heads

(move ?robot - robot ?location1 - location ?location2 - location)

(load ?robot - robot ?item - (either dishwasher fridge kitchen_range tv

mobile_phone) ?location - location)

(repair1 ?robot - robot ?item - (either dishwasher fridge kitchen_range tv)

?inspection_area - inspection)

(repair2 ?robot - robot ?item - mobile_phone ?inspection_area - inspection)

(unload ?robot - robot ?item - (either dishwasher fridge kitchen_range tv

mobile_phone) ?location - location))

Figure B.11: OP in ϕA and their OWL representation

(which is not the case for this example), the agent would apply the semantic

variance to select the most specialised ontology (explained in Section 5.6).

When applying the alignment, the system finds that the matching percentage

is 66% according to siblings (siblings(kitchen_range) shown in Figure B.7), and

therefore positions kitchen_range in ηϕ as major_appliance :: kitchen_range. A

new entry kitchen_range - major_appliance is added to T , and as args and

pars for relating V and OP , respectively, then bosch_ID3400 is added to O.
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The information required for integrating bosch_ID3400 in ϕ is automatically

identified, requested, and added to I.

Since kitchen_range is a sibling of a type involved in a goal g ∈ G, thus,

the system formulates new g′1=(repaired bosch_ID3400), g′2=(delivered

bosch_ID3400) and G′ = g′1 ∪ g′2 ∪ G. Finally, the system updates the cur-

rent state when the new information was received, and the planner is called to

generate a new plan (π2 shown in Figure B.12), allowing the robot to repair

and deliver the original set of items plus the new item.

a19 : 196.0047 : (move av area_storage area_transit)[5.0000]

a20 : 201.0050 : (load av refrigerator_id03 area_transit)[1.0000]

a21 : 202.0052 : (move av area_transit area_inspect)[5.0000]

a22 : 207.0055 : (unload av refrigerator_id03 area_inspect)[1.0000]

a23 : 208.0058 : (repair av refrigerator_id03 area_inspect)[80.0000]

a24 : 287.0060 : (load av refrigerator_id03 area_inspect)[1.0000]

a25 : 288.0063 : (move av area_inspect area_storage)[5.0000]

a26 : 293.0065 : (unload av refrigerator_id03 area_storage)[1.0000]

a27 : 196.0045 : (dummy refrigerator_id03 area_storage)[0.0000]

a28 : 196.0047 : (move av area_storage area_transit)[5.0000]

a29 : 201.0050 : (load av bosch_id3400 area_transit)[1.0000]

a30 : 202.0052 : (move av area_transit area_inspect)[5.0000]

a31 : 207.0055 : (unload av bosch_id3400 area_inspect)[1.0000]

a32 : 208.0058 : (repair av bosch_id3400 area_inspect)[80.0000]

a33 : 287.0060 : (load av bosch_id3400 area_inspect)[1.0000]

a34 : 288.0063 : (move av area_inspect area_storage)[5.0000]

a35 : 293.0065 : (unload av bosch_id3400 area_storage)[1.0000]

a36 : 294.0067 : (dummy bosch_id3400 area_storage)[0.0000]

Figure B.12: The temporal plan: π2

Similarly, if new objects of the new types range_hood, fridge, freezer or tv

are received during the execution, the agent would be able to integrate the
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new objects of these new types, formulates new goals and generate new plans

as long as the planner can generate plans for these opportunistic goals.

At the end of the robot’s operational day, the agent can filter out irrelevant or

unmanageable objects and extends its planning knowledge autonomously to

integrate relevant and manageable objects and generate new opportunistic

goals.

B.2 A Tourist Assistant Application

We revisit the tourism example, which considered a tourism planning task ϕ, in

which a tourist wishes to make a one-day tour to visit several points of interest

(POIs) in Valencia city, the jewel of the Mediterranean on Spain’s southeastern

coast.

B.2.1 The Planning Task

Initially, the system retrieves a set of recommended places (attractions) ac-

cording to the user profile and a set of restaurants. The predefined categories

of types T are shown in Figure B.13. As noted, T is defined in a reasonable

hierarchy.

(:types

person accommodation attraction restaurant - object

hotel - accommodation

aquarium architecture cathedral park tower zoo - attraction)

Figure B.13: PDDL types,T , of the tourist assistant domain Dom

The set of variables in V is shown with comments explaining each variable in

Figure B.14.
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(:predicates

; A tourist is at a location

(be ?per - person ?loc - (either accommodation attraction restaurant))

; A tourist has visited an attraction

(visited ?per - person ?loc - attraction)

; A tourist has eaten

(eaten ?per - person)

; An attraction or a restaurant is open

(open ?loc - (either attraction restaurant))

; To specify the tourist eating time window

(time_for_eat ?per - person)

; A restaurant has free tables

(free_table ?loc - restaurant)

; To specify the one-day tour time window

(active ?per - person)

; The tourist is walking

(walking ?per - person))

(:functions

; Travelling time between two locations

(moving_time ?to - (either accommodation attraction restaurant)

?from - (either accommodation attraction restaurant))

; Visit duration of an attraction

(visit_time ?mo - attraction ?per - person)

; Eating duration for a tourist

(eat_time ?per - person ?rest - restaurant)

; The total moving time of a person to minimise travelling time

(total_moving_time ?per - person))

Figure B.14: The variables V of the tourism planning task

The operations that a tourist can perform in this example domain are the

generic operations move, visit and eat. move is a generic operator that allows

a tourist to move between locations as long as the time is within the one-day

defined time window of the tour. visit is a generic operator that allows a

tourist to visit an attraction as long as the attraction is open, the tourist is at

the attraction, and the time is within the one-day defined time window. eat is

a generic operator that allows a tourist to eat at a restaurant as the tourist is

at the restaurant, the restaurant is not closed or fully booked, and the time is
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within the one-day defined time window as well. The operators OP heads of

the tourism planning task are shown in Figure B.15.

; Allows the tourist to move between locations

(:durative-action move :parameters (?per - person

?to - (either accommodation attraction restaurant)

?from - (either accommodation attraction restaurant))

; Allows the tourist to visit an attraction

(:durative-action visit :parameters (?per - person ?mon - attraction)

; Allows the tourist to eat at a restaurant

(:durative-action eat :parameters (?pers - person ?loc - restaurant)

Figure B.15: The operators OP heads of the tourism planning task

The tourist’s initial location is at caro_hotel. The tourist is active between

10:00 and 23:00, defined as a time window using TILs (at 0 (active tourist))

and (at 730 (not (active tourist))). The tourist wishes to eat between

13:00 and 19:00, specified using (at 412 (time_for_eat tourist)) and (at

604 (not (time_for_eat tourist))). The opening/closing times of the POIs

and the restaurants (also defined as TILs), the recommended durations of POIs

visits, and the duration of movement between locations are imported from Open

Data platforms and included in I. The predefined list of objects O is shown in

Figure B.16. As noted, O contains the tourist and proper nouns objects of the

attractions, restaurants and the hotel.

For each o ∈ O of type t ∈ T , an OWL individual λ is created in ηϕ of the class

t; e.g., Lonja is an object of the PDDL type architecture, and the system

creates lonja as an individual of the class architecture as shown in Figure B.17.

The list of goals G is shown in Figure B.18. The hard goals are at the end of the

day, the tourist has eaten and has returned to caro_hotel. On the other hand,

the tourist wishes to visit eight attractions; these are modelled as soft goals

(preferences) that the planner will try to satisfy according to their proprieties

within the limited one-day tour.

219



Chapter B. Case Study: Context-aware Knowledge Acquisition for Planning Applications

(:objects

tourist - person

caro_hotel - hotel

valencia_cathedral - cathedral

lonja - architecture

serrano_towers - tower

valencia_oceanografic - aquarium

valencia_bioparc - zoo

quart_towers - tower

viveros_garden - park

valencia_town_hall - architecture

ricard_camarena la_cantinella navarro la_salita el_bolon_verde

el_pedernil el_celler_del_tossal gordon mood_food blanqueries - restaurant)

Figure B.16: PDDL objects of a particular tourism planning problem Prob

Figure B.17: The ontological representation of the PDDL object Lonja

(:goals (and (eaten tourist) (be tourist caro_hotel)))

(:constraints (and

(preference v1 (sometime (visited tourist valencia_cathedral)))

(preference v2 (sometime (visited tourist lonja)))

(preference v3 (sometime (visited tourist serrano_towers)))

(preference v4 (sometime (visited tourist oceanografic)))

(preference v5 (sometime (visited tourist bioparc)))

(preference v6 (sometime (visited tourist quart_towers)))

(preference v7 (sometime (visited tourist viveros_garden)))

(preference v8 (sometime (visited tourist town_hall)))))

Figure B.18: The goals G of a particular tourism planning problem Prob
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On the other hand, the metric is shown in Figure B.19. The metric consists of

the penalties for not visiting the attractions and the penalty for the time spent

on moving.

(:metric minimize (+

; penalties for not visiting the attractions

( * ( / (* 280 (is-violated v1)) 1980) 100)

( * ( / (* 290 (is-violated v2)) 1980) 100)

( * ( / (* 250 (is-violated v3)) 1980) 100)

( * ( / (* 300 (is-violated v4)) 1980) 100)

( * ( / (* 210 (is-violated v5)) 1980) 100)

( * ( / (* 200 (is-violated v6)) 1980) 100)

( * ( / (* 250 (is-violated v7)) 1980) 100)

( * ( / (* 200 (is-violated v8)) 1980) 100)

; penalising the time spent on movement

( * ( / (total_moving_time tourist) 730) 100)))

Figure B.19: The metric of a particular tourism planning problem Prob

The scenario is formulated as a planning task ϕ then a planner is called to

solve this task by producing a plan. Figure B.20 shows PLAN1 generated

by OPTIC, which includes a total of five attractions visits (viveros_garden,

valencia_cathedral, lonja, quart_towers and serrano_towers), eating at

the restaurant (el_celler_del_tossal) and returning to the hotel (caro_-

hotel).

Figure B.21 shows a map demonstrating PLAN1. The visits included in PLAN1

are marked with red location pins in the snapshot. The tour starts from the

original location of the tourist, i.e., caro_hotel in which the user is staying

(green location pin), and includes visits to the five attractions (red pins) and

one stop at a restaurant (orange pin).

While the plan is being executed, the tourist receives a cellphone notification

that includes opening a new attraction of a new object type not previously
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a1 : 0.001 : (move tourist caro_hotel viveros_garden)[11.000]

a2 : 11.002 : (visit tourist viveros_garden)[75.000]

a3 : 86.002 : (move tourist viveros_garden valencia_cathedral)[11.000]

a4 : 97.003 : (visit tourist valencia_cathedral)[120.000]

a5 : 217.003 : (move tourist valencia_cathedral lonja)[5.000]

a6 : 222.004 : (visit tourist lonja)[80.000]

a7 : 302.004 : (move tourist lonja quart_towers)[7.000]

a8 : 309.005 : (visit tourist quart_towers)[30.000]

a9 : 339.005 : (move tourist quart_towers el_celler_del_tossal)[4.000]

a10 : 343.000 : (eat tourist el_celler_del_tossal)[60.000]

a11 : 403.000 : (move tourist el_celler_del_tossal serrano_towers)[7.000]

a12 : 410.001 : (visit tourist serrano_towers)[80.000]

a13 : 490.001 : (move tourist serrano_towers caro_hotel)[9.000]

Figure B.20: The temporal plan: PLAN1

Figure B.21: PLAN1: The pins (A/H) Caro hotel, (B) Viveros Garden, (C) Cathedral,

(D) Lonja, (E) Quart towers, (F) El Celler del Tossal (restaurant), and (G) Serrano towers.

considered in the planning task. The new objects may present an opportunity

222



B.2 A Tourist Assistant Application

to the tourist if the goal can be aligned with the modelling of the planning

task and triggers a plan compliant with the current goals resulting in a better

tourism experience for the tourist.

B.2.2 Execution Simulation and Context-aware Knowledge

Acquisition

The simulation system presented in Chapter 4 is utilised to simulate the execu-

tion of PLAN1. The simulator starts the execution simulation. After visiting

the first attraction viveros_garden (a2 of PLAN1 in Figure B.20 and after pin

(B) at the end of the red line in Figure B.21), new information is received (open

virgen_plaza), which contains a new object virgen_plaza.

The system creates the ontological representation of the types of the planning

task (explained in Section 5.5.1) ΩT in ηϕ, as shown in Figure B.22, respecting

the exact hierarchy defined in T .

Figure B.22: The OWL representation ΩT in ηϕ

The system accesses several remote ontologies available in online-repositories

R∆ = {B,C,D,E, F} (shown in Figure B.23)
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Figure B.23: The remote ontologies R∆ = {B,C,D,E, F}

The ontology ηϕ and the ontologies R∆ are augmented using ConceptNet

(explained in Section 5.5.2). Figure B.24 shows a small portion of the twenty-

one annotations attached to the class attraction.

Figure B.24: Annotations sample assigned to Class attraction

Afterwards, the VSM distance (described in Section 5.5.3) is calculated between

ηϕ and each ontology in R∆, the distances are respectively: 0, 0, 0.64, 0.79, and

0.78. Therefore, R′ = {D,E, F} is recognised as the set of remote ontologies

most similar to ηϕ.
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The system tries to find the individual virgen_plaza representing the new object

virgen_plaza in R′ and creates R′
o = {E,F}, the set of ontologies that are

most similar to ηϕ and contain the individual virgen_plaza

The system applies the semantic variance to select the most specialised ontology

(explained in Section 5.6). The SV distance is measured to find whether E or F

better describes the semantics of the application domain, and the values are

0.25 and 0.16 since E is more hierarchical. Therefore, ηo = E is the remote

ontology with the highest semantic insight, most similar to ηϕ, and contains

virgen_plaza. Next, the system retrieves the class of the individual virgen_plaza

from ηo and finds it to be plaza ̸∈ T .

The system attempts to position plaza in ηϕ by applying an alignment with

neighbourhood constraint (explained in Section 5.6.1). By aligning ηϕ and ηo,

the system finds that parent(plaza) in ηo is must_see, and it matches the class

attraction in ηϕ; therefore, the system asserts attraction :: plaza inside ηϕ. An

individual virgen_plaza of the class plaza is created in ηϕ. Correspondingly, a

new entry plaza - attraction is added to T , and virgen_plaza is added to

O. The information required for integrating virgen_plaza in ϕ is automatically

identified and requested from Open Data platforms; e.g. movement durations

between the new location and the existing locations. This information is

added to I. Since plaza is a sibling of a type that is involved in a goal g ∈ G

thus, the system formulates a new g′ =(visited tourist virgen_plaza),

and G′ = g′ ∪ G. Finally, the system updates I with the current state at the

time the new information was received. The planner is called to generate a new

plan (PLAN2 shown in Figure B.25), allowing the tourist to visit the original

POIs plus the new POI virgen_plaza of the new type plaza.

Figure B.26 shows a map demonstrating PLAN2.
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a3 : 86.000 : (move tourist viveros_garden virgen_plaza)[13.000]

a4 : 99.001 : (visit tourist virgen_plaza)[5.000]

a5 : 104.001 : (move tourist virgen_plaza valencia_cathedral)[3.000]

a6 : 107.002 : (visit tourist valencia_cathedral)[120.000]

a7 : 227.002 : (move tourist valencia_cathedral lonja)[5.000]

a8 : 232.003 : (visit tourist lonja)[80.000]

a9 : 312.003 : (move tourist lonja quart_towers)[7.000]

a10 : 319.004 : (visit tourist quart_towers)[30.000]

a11 : 349.004 : (move tourist quart_towers el_celler_del_tossal)[4.000]

a12 : 353.000 : (eat tourist el_celler_del_tossal)[90.000]

a13 : 443.000 : (move tourist el_celler_del_tossal serrano_towers)[7.000]

a14 : 450.001 : (visit tourist serrano_towers)[80.000]

a15 : 530.001 : (move tourist serrano_towers caro_hotel)[9.000]

Figure B.25: The temporal plan: PLAN2.

Figure B.26: PLAN2: The pins (A/I) Caro hotel, (B) Viveros Garden, (C) Virgen plaza,

(D) Cathedral, (E) Lonja, (F) Quart towers, (G) El Celler del Tossal (restaurant), and (H)

Serrano towers.
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The simulation continues. After the tourist has eaten in the restaurant el_-

celler_del_tossal (after a12 of PLAN2 in Figure B.25 and after pin (G) at the

end of the red line in Figure B.26), new information is received open jimmy_-

glass_jazz_bar. Similarly, the system deals with the new information and

extends the knowledge of the planning task, a new plan is obtained (PLAN3

shown in Figure B.27) and demonstrated in the map of Figure B.28.

a13 : 443.000 : (move tourist el_celler_del_tossal serrano_towers)[7.000]

a14 : 450.001 : (visit tourist serrano_towers)[80.000]

a15 : 530.001 : (move tourist serrano_towers jimmy_glass_jazz_bar)[5.000]

a16 : 535.002 : (visit tourist jimmy_glass_jazz_bar)[45.000]

a17 : 580.002 : (move tourist jimmy_glass_jazz_bar caro_hotel)[9.000]

Figure B.27: The temporal plan: PLAN3.

Figure B.28: PLAN3: The pins (A/J), B, C, D, E, F, G, H are the same as PLAN2 and

(I) Jimmy Glass Jazz bar

The execution simulation continues until PLAN3 ends. The tourist ends up

visiting seven attractions instead of five attractions, eating in the restaurant,

and returning to the hotel.
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B.3 Conclusion

In this appendix, the author has demonstrated in a step-by-step fashion the

behaviour and validity of the context-aware knowledge acquisition approach for

planning applications in two different application domains: a repairing agency

application domain and a tourist assistant application domain. Drawing upon

the richness and expressivity of standard ontologies, semantic measures and

operations, the agent can integrate new objects of new types not previously

considered in the agent’s model into the planning task. Consequently facilitates

the anticipation of opportunities.

It can be noted that the tourist assistant application domain, detailed in Section

B.2, have generic (non-specialised) actions such as move, visit and eat actions.

In addition, the objects in this application domain are proper nouns, such as

Caro Hotel and Lonja. Therefore, we did not need to apply the TSM and

working on the level of the types was sufficient. On the other hand, applying a

TSM similarity measure would have been a better option if the scenario were

to include specialised actions requiring specialised conditions. Such as hiking

and canoeing actions that require hiking or canoeing types of equipment, as

the case with the repairing agency application detailed in Section B.1, in which

the agent is equipped to repair a mobile phone, is distinguished from that agent

that is not using TSM.

Our approach is domain-independent, only requires the planning task of the

agent as input, and does not require prior knowledge of exogenous events or

possible opportunities since the agent can extend its knowledge autonomously

without being programmed to handle every potential situation. To do so, the

system uses remote ontologies or the public planning information shared by

semi-cooperative agents, translates this information into ontologies, and applies

various semantic operations. Furthermore, the agents would share information
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only about types, relationships between types, and heads of operations applied

to types, not private details such as objects, state variables, state goals, state

states, or how operations are performed.

Having an ontological representation of their public planning information would

assist agents in communicating, collaborating, and autonomously extending

their knowledge without being programmed to handle every possible situation.

However, that is a gap between the planning community and the knowledge

community, which is being progressively bridged by recent research efforts.
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Case Study: Assisted Living Homes

D
ERIVED from the contributions presented in this PhD the-

sis, namely: the intelligent system for execution simula-

tion in a dynamic environment (presented in Chapter 4)

and the context-aware knowledge acquisition approach for planning applica-

tions (presented in Chapter 5), and other AI techniques that will be presented

in this appendix, this appendix presents an integrated deliberation architecture

for Ambient Intelligence (AmI) healthcare application (Babli, Rincon, et al.

2021).

Monitoring wellbeing and stress is one of the problems covered by ambient

intelligence, as stress is a significant cause of human illnesses directly affecting

our emotional state. The proposed architecture provides a plan for comfort-

ing stressed seniors suffering from negative emotions in an assisted living

home and executes the plan considering the environment’s dynamic nature.

Literature was reviewed to identify the convergence between deliberation and



C.1 Introduction

ambient intelligence and the latter’s latest healthcare trends. A deliberation

function was designed to achieve context-aware dynamic human-robot inter-

action, perception, planning capabilities, reactivity, and context awareness

concerning the environment.

C.1 Introduction

Population ageing has become a global phenomenon, bringing challenges and

increasing the demand for healthcare solutions. According to the UN (United

Nations Department of Economic and Social Affairs 2020), the population aged

80 years or older nearly tripled between 1990 and 2019 and is projected to

triple between 2019 and 2050 to reach 426 million. In addition, according to

the American Medical Association, stress is the cause of more than 60 per cent

of all human illnesses (Rabin 2002).

AmI refers to intelligent software that supports people in their daily lives by

sensibly assisting them (Augusto, Callaghan, et al. 2013). AmI has proven

helpful for healthcare and senior citizens. It has been used in a broad spectrum

of related applications, such as monitoring seniors and alerting caregivers,

recognising seniors’ activities, Alzheimer detection, managing stress, and

empowering people living with the early stages of dementia with autonomy

(Bozan et al. 2019; Schmidt et al. 2018; Giménez-Manuel et al. 2022).

The ability to reason and the inclusion of cognitive tasks are increasingly de-

manded in AmI to deal with stress-related disorders and other health issues. At

least one of the following features is highlighted for the successful application

of AmI in healthcare: context awareness, learning, reactivity and proactivity,

reasoning with dynamic environments and reasoning with time. These five
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features and human interaction converge toward the intelligent deliberation

notion.

Context awareness is the capability of a system to understand the current

situation (environment context), track changes, and relate this knowledge to

the system to produce proactive reactions (Augusto, Callaghan, et al. 2013).

Learning how the senior feels (personal context), planning what the senior

needs (Ramoly et al. 2018), and reasoning about time to maintain an orderly

schedule of the senior activities are also crucial functionalities (Pollack et al.

2003).

Whether in open or closed well-structured environments such as Assisted

Living (AL), autonomously performing tasks and interacting with humans

require deliberation capabilities to adapt to circumstances. In this work,

we adopt the deliberation definition of Ingrand and Ghallab (Ingrand et al.

2017), which conceptually distinguishes six functions required for successful

deliberation: planning, acting, perceiving, monitoring, learning, and goal

reasoning.

The convergence between the desired features in AmI and deliberation is

natural due to the technologies being used. The combination of learning

and perception provides context awareness, and the combination of planning,

acting, and monitoring provides reactivity/proactivity to deal with incomplete

knowledge and dynamic environments.

Despite promising, current AmI solutions for seniors’ healthcare lack a bal-

anced, integral deliberative function. Planning-focused approaches are useful

for proactivity and reactivity but fall short of semantic knowledge reasoning

and vice versa. On the other hand, methods that focus on cognition, context

awareness, learning, activity recognition, and sensors tend to lack planning

capabilities (Meditskos et al. 2017; Chen and Nugent 2019; Rocco et al. 2014).
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Typically, approaches that emphasise learning and recognising seniors’ activi-

ties provide real-time responses but fall short of planning, such as in the work

of (Miguez et al. 2019), where the automation module is a communication

organiser. In other cases, the focus is on sensors, data collection and com-

munication. Such as the work (Wood et al. 2006), which provides simplistic

assistance of the form if-then, based on the processing of sensor data, such as,

if a senior falls, then the system alerts medics or if the temperature increases,

then the system activates the air conditioner. Depending only on sensors can

provide imperfect data since assisted living houses’ environments are dynamic

as other actors, in particular seniors and caretakers, can alter the environment;

moreover, sensor readings may be incomplete or even faulty.

This work’s scope is on human-centric technologies that require close align-

ment of the seniors and the AI interacting with the environment to provide

context awareness. To tackle the challenges above, this appendix proposes

a deliberation architecture for an AmI healthcare application that provides

comfort to stressed seniors suffering from negative emotions in an AL environ-

ment. The deliberation architecture makes a balanced synthesis of data and

knowledge, learning, perception, dynamic goal generation, planning, acting,

and monitoring functionalities required to detect, address, and follow up on

the senior status evolution.

The rest of the appendix is organised as follows. The related work section

reviews the importance of the various components to achieve deliberation

in AmI and the most advanced methods for detecting stress and recognising

emotions. The concept design section describes our AL environment and its

components. We also explain the planning task representing the suggested

concept design. We provide the system schema and briefly explain our delib-

erative function architecture and its five layers in the proposed methodology

section. Afterwards, we describe the details of the deliberation function. We
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demonstrate the behaviour and validity of the approach and the proposed

methods in the validation section. Then, we outline areas for improvement and

other implications in the discussion section and finally, we conclude.

C.2 Related Work

Context awareness enhances AmI applications for elderly healthcare and stress

management in particular (Burns et al. 2011). They enable such systems to

recognise seniors, their status, and the surrounding environment, allowing

richer reasoning and better-informed decisions and actions. Perception, also

known as observing, is a critical component in deliberation (Ingrand et al.

2017). IoT advances and the scarce availability of human assistance have led to

AL. Such environments may be equipped with IoT sensors for determining the

availability and location of the objects and for sensing anomalies, such as when

a senior suffers stress or falls, making them appealing for seniors’ healthcare

applications.

Planning, acting, monitoring, and reasoning are crucial for deliberation in AmI

healthcare systems to handle time as well as the dynamic environment when

a plan is executed. The AmI homecare system for diabetic patients (Amigoni

et al. 2005) utilises a distributed hierarchical task network to coordinate a plan,

monitors its execution and the environment to adjust the room temperature,

suggests insulin injection, or alerts the user on the need for medical atten-

tion. COACH (Mihailidis et al. 2004) relies on planning and computer vision to

support ageing-in-place safety. The framework (Ramoly et al. 2018) for domes-

tic healthcare robots generates a goal dynamically according to a cognition

layer and uses a task planner to plan actions. The generalised argumentation

framework (Oguego et al. 2018) takes adaptive decisions and reasons with the

evolution of inhabitants’ preferences over time on lighting, healthy eating, and
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leisure inside a smart home. The framework in (Augusto and Nugent 2004)

utilises temporal reasoning with a rule-based system to recognise hazardous

situations in a smart home environment, facilitating decision-making that re-

solves the anomaly and returns the environment to a safe state. PEAT (Levinson

1997) and Autominder (Pollack et al. 2003) both utilise automated planning to

provide daily activities reminders to adjust schedules due to changes in the

observed activities.

Ontologies are helpful informally defining the terms and relationships rep-

resenting the vocabulary of a domain and its context, allowing the reuse of

richer, fine-grained knowledge to assist in the performance of everyday tasks

and promoting context awareness toward everyday environments (Babli and

Onaindia 2019; Daoutis et al. 2009; Nguyen, Loke, et al. 2011).

Machine learning has recently been popular for context recognition, recognis-

ing human activities and emotions and observing environment objects (Howard

et al. 2017). A variation in stress levels directly affects the emotional state

and negatively influences physical and mental health. A recent study (Bozan

et al. 2019) shows that negative emotions are the top problem-related category

for AL. Stress is detected through a variety of bio-signals such as electroen-

cephalography (EEG), photoplethysmography (PPG) and electrocardiogram

(ECG), and facial expressions analysis, which is contactless, allowing detecting

a larger spectrum of emotions (Gradl et al. 2019).

C.3 Concept Design of the AL Environment

Helping clients understand self-care is vital in relapse prevention and recovery

facilities, AL or nursing homes. Emotions such as terror, sadness, and boredom

can also occur in response to trauma. The recovery process requires acknowl-

235



Chapter C. Case Study: Assisted Living Homes

edging these emotions as they could be signs of stress disorders (Yehuda 2002).

If taken into consideration, simple self-care indicators could prevent accidents

(Abbas et al. 2017) or improve fall prevention plans by paying attention to

hydration (Benelam et al. 2010). To this extent, we aim to design a plan to

provide hydration, cheering, or entertainment when a stressed senior feels

terrified, sad, or bored. The plan is then executed, considering the dynamic

nature of the AmI environment.

Figure C.1 shows the AL environment’s concept design, whereas the planning

task’s description is explained in the next section.

Figure C.1: Concept design of an AL home using the system

The environment consists of four bedrooms, two sunrooms, a music room, a

dining room, a kitchen, a library, three corridors linking the above spaces, a

robot, and several senior citizens wearing IoT wristbands. The environment

features a set of IoT objects of different categories (types) distributed in the

AL home. Drinking glasses fall under the category of drinking vessels in the

kitchen. A violin and a guitar fall under the category of musical instruments in

the music room. Entertainment objects in the library are to be given, such as
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magazines and books, or to be suggested for use, such as PCs and TVs. There

are two types of actions by the robot in the environment: doing an activity

(moving between rooms, carrying an object, giving an object, filling a drinking

vessel) and suggesting an activity. Due to the environment’s dynamic nature,

existing IoT objects could become unavailable (being unexpectedly used by

other seniors or due to a malfunction). Additionally, new non-IoT objects that

have no connection to the grid and were not previously introduced in the

environment may also be encountered (added by the caretakers) during the

plan’s execution and could be used to repair failures.

C.4 Planning Task of the AL Concept Design

We represent the AL environment’s concept design as a temporal planning task

using version 2.2 of the popular planning domain definition language (PDDL).

Temporal planning involves selecting and organising actions to satisfy the goals

and assigning a start time and duration to each action. The planning domain

and the planning problem describe a temporal planning task. The planning

problem varies depending on the particular problem to be solved. In contrast,

the planning domain is a fixed description of what the planner can do to achieve

a set of goal conditions starting from an initial state. The planning domain

characterises the planning task behaviour, comprises the model (shown in

Figure C.2) of the AL environment, and consists of the following:

1. Set of object types, such as robot, senior, location, drinking_vessel,

making_music and entertainment.

2. Set of variables such as (path ?loc1 ?loc2 - location) to indicate

that two locations are linked and (moving_time ?loc1 ?loc2 - location),

representing the moving time between two locations.
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Figure C.2: T , V and OP heads of the AL environment domain Dom

3. Action schemas representing operations that can be performed, e.g.,

(move ?robot - robot ?loc1 ?loc2 - location)..., which allows the

robot to move between locations

The planning domain is designed to penalise the actions of suggestion (action

costs) in the metric to favour actions that include providing an object to seniors

rather than merely suggesting an activity. Suggesting an activity is left as a

last resort when there are no available objects to comfort the senior.
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On the other hand, the planning problem represents a particular problem ins-

tance to be solved, specified by the initial state and the goal. The information of

the basic planning problem includes three corridors; corridor1 . . . 3, four bed-

rooms; bedroom1 . . . 4, one kitchen kitchen1, one music room music_room1,

one library library1, one dining room dining_room1, and two sunrooms;

sunroom1 and sunroom2. The paths between locations (the layout), e.g., (path

sunroom1 corridor1). Eight seniors; senior1 . . . 8. One robot robot1. Eight

glasses; glass_id01 . . . 08. One violin violin_id01 and one guitar guitar_-

id01. Two desktops, pc_id01 and pc_id02, and one television, tv_id01. One

book book_id01 and one magazine magazine_id01. The information of the

planning problem specifies the initial state; that is, the locations of the envi-

ronment objects, the seniors and the robot, and the availability of objects will

be sensed and filled from IoT objects. The goal condition will be dynamically

generated, as explained in the following section.

C.5 Proposed methodology

To achieve our aim, we designed the deliberation function schema (sketched

in Figure C.3). The function consists of five layers. The offline layer (layer

0 learning and knowledge augmentation) consists of four modules: learning

stress, learning emotions, types augmentation, and learning types. On the other

hand, the online layers are the perception layer (layer 1), the goal generation

layer (layer 2), the planning layer (layer 3), and the acting and monitoring layer

(layer 4).

Figure C.3 in Roman numerals shows the input to our system. The input

consists of the following: (I) a multi-modal database for stress classification;

(II) a dataset with 4,900 images of human facial expressions; (III) the basic

planning domain model follows our AL environment concept design and a
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Figure C.3: Schematic view of the deliberation function system architecture.

repository of several semi-cooperative agents’ remote partial planning tasks;

(IV) the data related to the IoT objects (e.g., glasses, violins, guitars, magazines,

books, televisions, and computers) and IoT wristbands. Details about the input

are found in the system details section.

For context-aware human-robot interaction with seniors, the system can deter-

mine online whether seniors wearing an IoT wristband suffer from stress. Then

the system recognises the stressed senior negative emotion and dynamically

generates a goal that corresponds to the negative emotion. This is achieved by

the perception layer and the goal generation layer shown in Figure C.3. The
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system utilises the learning stress and emotions modules to train the system

offline and prepare to perform them online.

The system utilises perception, planning, and acting and monitoring layers,

shown in Figure C.3, to achieve perceptiveness, planning capabilities, and re-

activity when handling failures and context awareness toward the environment

online. The system uses types augmentation and learning types modules to

train it offline to be prepared to perform these tasks online.

The deliberation layers depicted in Figure C.3 are as follow:

1. Layer 0: learning and knowledge augmentation, executed offline to pro-

duce three classification models for recognising stress, emotions, and

objects. Layer 0 consists of four modules:

(a) Learning stress: processes the multi-modal database for stress and

trains the system to prepare it to detect stress by providing the stress

classifier model.

(b) Learning emotions: processes the dataset of images of facial expres-

sions and trains the system to prepare it to recognise emotions by

providing the emotions classifier model.

(c) Types augmentation: is a cognitive semantic module that dynami-

cally augments the predefined list of object types of the planning

task with relevant new object types; to be context-aware toward

the environment and the task being performed and reason with in-

complete knowledge, thereby boosting the system’s autonomy and

context awareness.
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(d) Learning types: trains the system on the augmented set of object

types to prepare it to recognise objects of the relevant types by

providing the objects classifier model.

2. Layer 1: perception provides our system with the critical capability of

observing by:

(a) Reading the seniors’ bio-signals using the IoT wristbands and send-

ing these signals to the service in charge of the analysis using the

stress classifier for stress detection; then recognising the negative

emotion of the stressed senior using the emotions classifier model.

(b) Sensing the IoT objects’ values characterising the environment’s

actual state, e.g., the seniors’ locations, the robot’s location, and the

objects’ availability.

(c) If a failure occurs, perception provides reactivity. During the plan’s

execution, the robot may encounter new non-IoT objects of the

relevant types not predefined in the model. The robot uses the

objects classifier to recognise such objects dynamically, integrates

them into the planning problem, and uses them to repair failures.

3. Layer 2: goal generation is responsible for dynamically generating the

goal associated with resolving the recognised negative emotion.

4. Layer 3: planning is responsible for:

(a) Formulating the planning problem.

(b) Reformulating the planning problem (in case of failure) starting from

the state where the failure occurred, considering the new observed

state and the newly integrated objects.
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(c) Calling an external planner to synthesise a plan of actions to be

executed by the robot to achieve the goal and comfort the senior

suffering from negative emotions.

5. Layer 4: acting and monitoring are responsible for executing the plan,

monitoring action, and detecting failures that may occur when an IoT

object used in the plan becomes unavailable.

The logic behind recognising the emotion in addition to sensing stress for goal

generation is that the IoT wristband is prone to noise, thus, affecting the stress

classification process, as shown in the validation section. The technical details

of the deliberation function are shown in the next section.

C.6 System details

This section details the proposed deliberation function. It describes the wrist-

band hardware used in the perception layer, stress learning and detection,

emotions learning and recognition, semantic knowledge augmentation, object

types learning, planning, acting, and monitoring.

C.6.1 Stress Detection and Emotions Recognition

The aim is to train the system to prepare it to detect stress and recognise nega-

tive emotions to generate the goal corresponding to comforting the negative

emotion dynamically.

The wristband we used has a PPG sensor, and it was designed using an ESP32

Oled Lora TTGO LoRa32 development board (Figure C.4). The TTGO is re-

sponsible for acquiring the PPG sensor signal. The signal is processed and
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sent through the Wi-Fi module to the web service that was programmed using

Flask1 and is in charge of signals analysis and detection of stress levels.

Figure C.4: The wristband hardware. (a) Cardiac pulse sensor, (b) ESP-32 developer

board and (c) ESP-32 developer board.

Since our system only incorporates a single PPG sensor, and it is possible

to detect stress levels using the heart rate (HR) and the interval between

the PPG signal peaks (less intrusive than ECG), a new database was created

from the multi-modal WESAD dataset 2 (Schmidt et al. 2018). Figure C.5

shows two signals (ECG, PPG) captured by our system to show the relationship

between the cardiac and the PPG signals. This new database has only two

inputs and one output (stressed or unstressed). The new database was divided

into two parts to carry out the training process: 80% for training and 20% for

testing. A k-fold cross-validation statistical method (Ling et al. 2019) was used

to independently determine the partitions between training and test data and

estimate the learning model’s ability. The best results were obtained with a

k=4. The obtained results obtained are shown in Section C.7.2.

Our system incorporates a convolutional neural network (CNN) of three convo-

lutional layers [3, 32, 32] to classify human emotions. To perform the training

1Flask https://flask.palletsprojects.com/en/1.1.x/
2Stress classifier with AutoML https://github.com/chriotte/wearable_stress_classification
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Figure C.5: The relationship between ECG and PPG signals.

and the test, we used the Karolinska Directed Emotional Faces (KDEF) database

(Calvo et al. 2018). KDEF has 4,900 images of facial expressions of 70 actors

(35 men and 35 women) showing seven different emotions: terror, anger, dis-

gust, happiness, neutral, sadness, and surprise. Since the KDEF database

does not include the boredom emotion, a new class has been created using the

UMB-DB database (Colombo et al. 2011). The new dataset was divided into

two parts: 80% of the images were used for training, and 20% were used for

testing. The images were re-sized to 48×48 pixels. The CNN hyper-parameters

are as follows: 0.01 for the l2 regularisation or l2-penalty, [32, 64, 128, 64, 32]

as hidden layers, 0.2 for the dropout rate, val_loss for the monitor, and 10 for

the min delta. The obtained results are shown in Section C.7.3.

Two examples of the emotions recognised by the system are shown in Figure

C.6 and C.7 for detecting the emotions of terrified and bored, respectively.

Once the emotion of a stressed senior is recognised, the system dynamically

generates the goal corresponding to the emotion (soothed senior) if terrified,

245



Chapter C. Case Study: Assisted Living Homes

(cheerful senior) if sad, and (entertained senior) if bored. The variable

(soothed senior) represents the goal that needs to be accomplished by the

plan computed by the planning solver to set the variable (soothed senior) to

true.

Figure C.6: An example of the emotions recognised by the system: terrified

Figure C.7: An example of the emotions recognised by the system: bored
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C.6.2 Semantic Knowledge Augmentation and Types Learning

For the deliberation function to recognise new relevant objects and be context-

aware of the execution environment and the task it performs, it needs to extend

its knowledge dynamically, then it needs to be trained to recognise objects of

relevant types, so it can observe relevant objects when a failure occurs that

could be used to repair the failure. This layer aims to provide the agent context

awareness of the execution environment and boost the agent’s autonomy for

repairing failures. This is achieved by extending the agent’s knowledge and

correspondingly its planning domain, with types similar to T and also operable

by the agent capabilities, i.e. using the agent’s existing operators OP .

It might be tempting to think that a solution to suggest alternatives to types

of objects in a domain model is a mere traversal of hypernyms (more general

terms) and hyponyms (more specific terms) hierarchies from online linguistic

resources or lexical databases. However, this solution has two limitations. The

first limitation is that the newly imported types would require an evaluation

from a human domain modeller or an expert for each application domain,

degrading the agent’s autonomy. The second limitation, there is no guaran-

tee that the newly suggested types can be handled by the agent capabilities

(compatible with the agent’s operators). For that purpose, we adapted the

context-aware knowledge acquisition method using the ontologies approach

presented in (Babli and Onaindia 2019) and explained in Chapter 5. This

chapter has abstracted out the details of the ontological representation, the

preliminary similarity measure (VSM), and the tailored similarity measure for

planning dynamics (TSM). We refer the reader to Chapter 5 for their detailed

description.

In the work of (Babli, Rincon, et al. 2021), the author has adapted the context-

aware knowledge acquisition approach presented in (Babli and Onaindia 2019).
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The adaptation was required as the original system receives as input a new

object and requests its type either from the agent that delivered it or by finding

the class to which the individual (representing the object) belongs from a

remote ontology, which is not available in the case of the AL environment

domain. Instead, in the AL environment domain, we have a robot that moves

around, and we want to teach it to recognise the object’s relevant types.

Therefore, the agent:

1. Creates a preliminary OWL ontological representation called ηϕ of only

the types T of ϕ.

2. Retrieves a set of partial remote planning tasks ∆, specifically the types

of several semi-cooperative agents from online repositories, and creates

their OWL ontological representation R∆.

3. Augments the types classes of ηϕ and R∆ using ConceptNet.

4. Applies a quick vector space distance (VSM) similarity measure to R∆ and

obtain the set R′, that contains ontologies most similar to ηϕ according to

types.

As explained in Section 5.4 of Chapter 5, when we do not know the type of

the new object upfront, we prepare the agent to be capable of recognising

the objects’ types that are relevant and manageable. Thereby comes the main

difference: for each ti ∈ T (each type within the agent’s predefined list of

types), the agent will attempt to find a specified number of relevant types.

Therefore, for each ti ∈ T the agent:

1. Filters out the remote ontologies that do not contain ti to obtain R′
ti .

2. Extends ηϕ and R′
ti to represent not only types T but also variables V

and the heads part of actions schemas OP .

248



C.6 System details

3. Augments the variables and operators classes of ηϕ and R′
ti using Con-

ceptNet.

4. Applies a tailored semantic similarity (TSM) measure between ηϕ and

ontologies in R′
t (to take into account the planning dynamics of V and

OP and obtain Nϕ. An ontology in Nϕ with a high similarity value means

that the remote agent is equipped with similar capabilities.

Since these steps above are going to be applied for each type ti ∈ T , the agent is

going to end up with multiple sets of remote ontologies {Nϕ
t1 . . . N

ϕ
ti . . . N

ϕ
tn}, as

explained in the offline usage of Phase 2: Thorough identification of similar on-

tologies in Section 5.4 of Chapter 5. These ontologies represent the ontologies

of the remote agents equipped with similar capabilities to the agent with the

planning task ϕ and contain ti and other classes similar to ti (ti siblings). We are

interested in these sibling classes because they represent prospect types. The

agent chooses the most similar ontology from each set in {Nϕ
t1 . . . N

ϕ
ti . . . N

ϕ
tn}

and attempts an alignment of a specified number of classes from these ontolo-

gies with ηϕ. The agent aggregates a specified number of types classes (which

has a successful alignment) and generates the list of augmented types, which

the agent will be trained to recognise (offline and only once). Figure C.8 shows

the output for our healthcare application domain.

The left side of Figure C.8 shows the original hierarchy of types of ηϕ, whereas

the right side of Figure C.8 shows the extended hierarchy of types T ′ useful

for repairing failures. Note the new types; jar, cup, and mug under the super-

class drinking_vessel; journal, newspaper, and story under the superclass

reading; sudoku and magic_cube under the superclass solving; and drum and

clarinet under the superclass making_music. The system will train the agent

on the extended set of types T ′ (as shown in the following section) to achieve

smart environment monitoring during plan execution.
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Figure C.8: OWL Representation of the hierarchy of the predefined types and the

augmented types

C.6.3 Learning objects

The training for the recognition of objects is performed using the sub-classes

located within the ontology that represents the extended knowledge T ′ that the

system possesses. Learning is done dynamically and only once per planning

task.
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The system extracts the subclasses’ names of the augmented set of types. It

uses Google Images Download3, a command-line Python program to download

200 images from Google of each subclass. We have developed a CNN composed

of three convolutional layers for object recognition [3, 32, 32]. The best results

were obtained using three convolutional filters for each layer. The filter for

each layer has the architecture [32, 32, 32, 32]. Finally, the fall rate was 0.2.

Once the training is complete, the perception layer will be ready to observe

new objects of the relevant types when the plan is executed. For example,

later, during execution, the system can autonomously recognise the new object

mug_id01 of the type mug, incorporate its related information, and integrate it

within the planning task. The results obtained are shown in Section C.7.4.

C.6.4 Planning, Acting, Failure Detection, and Monitoring

The planner provides a personalised plan that must reflect seniors’ satisfaction

with the AL home. To build the plan, the planner needs to consider the activities’

durations and the IoT objects’ availability. Solving this problem requires

using a planning system capable of dealing with durative actions to represent

the duration of actions and hard goals according to seniors’ emotions. For

the implementation, among the few automated planners capable of handling

temporal planning problems with time windows, we opted for the planner

OPTIC because it handles PDDL 2.2.

The values of the planner’s variables are read using the perception layer and

compiled into a planning problem. The planner is called to generate plan π1

(shown in Figure C.9). π1 consists of twelve actions for the robot robot1 to

move from bedroom1 to kitchen1, carry and fill glass_id05, and then return

to comfort terrified senior senior1.

3Google Images Download®https://google-images-download.readthedocs.io/en/latest/index.html
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a1 : 0.000 : (move robot1 bedroom1 corridor1)[30.000]

a2 : 30.002 : (move robot1 corridor1 corridor2)[50.000]

a3 : 80.004 : (move robot1 corridor2 dinning_room1)[40.000]

a4 : 120.006 : (move robot1 dinning_room1 kitchen1)[20.000]

a5 : 140.008 : (carry robot1 glass_id05 kitchen1)[10.000]

a6 : 150.010 : (fill robot1 glass_id05 kitchen1)[10.000]

a7 : 160.012 : (move robot1 kitchen1 dinning_room1)[20.000]

a8 : 180.014 : (move robot1 dinning_room1 corridor2)[40.000]

a9 : 220.016 : (move robot1 corridor2 corridor1)[50.000]

a10 : 270.018 : (move robot1 corridor1 bedroom1)[30.000]

a11 : 300.020 : (give robot1 senior1 glass_id05 bedroom1)[10.000]

a12 : 310.022 : (soothed_received senior1 glass_id05)[30.000]

Figure C.9: The temporal plan π1. For the robot to go to kitchen1, carry and fill glass_-

id05, go back to senior1’s location, bedroom1, and provide the required comforting

To simulate actions execution monitoring while the robot is executing plan π1,

our simulator transforms π1 and the planning task into an infrastructure called

the timeline, similar to the work of (Babli, Ibáñez-Ruiz, et al. 2016) explained in

Chapter 4. However, the timeline is only a collection of chronologically ordered

conditions that must be satisfied in the observed world-state. The simulation

starts at time = 0, with the simulator’s internal state equal to the initial state.

Next, the idea is that the simulator advances through time in every execution

step. Every execution step at instance timei involves:

1. Moving through time timei = timei + stepsize.

2. Using the perception layer to read the observed state of the world.

3. Checking if a failure is detected: a condition in the timeline is not satisfied

in the observed state.
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• The robot checks if it can recognise new objects of the augmented

set of types and integrates them into the planning task along with

their corresponding information.

• Goal generation is re-invoked to ensure the goal is still active.

• The planning layer is re-invoked; the planning problem is reformu-

lated with the new initial state set to the observed state, the newly

integrated objects’ information, and the goal. The planner is called

to generate a new plan to achieve the goal. The acting layer is

re-invoked.

4. If no failure is detected, the simulation continues from step 1 until all the

conditions are monitored.

C.7 Validation

This section aims to demonstrate the validity of the following: (1) the be-

haviour of our system using three simulated scenarios for fixing failures; (2) the

proposed method for stress detection; (3) the proposed method for emotions

recognition; and (4) the proposed method for classifying new objects.

C.7.1 Validity of Behaviour of the System

For simplicity, we show the behaviour of the system for one senior. The failure

is repaired using the observed new objects in the first and second scenarios. In

contrast, it is fixed by suggesting activity in the third scenario.

Scenario 1. Considering the healthcare scenario described in the concept

design and the planning task sections. When perception detects a stressed

senior, the robot recognises the senior’s emotion, as explained in the stress
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detection and emotions recognition section, which is terrified in this case.

The system dynamically generates a new goal to comfort the terrified senior

(soothed senior1) and adds the new goal to the planning problem.

Perception reads the origin places from the IoT environment objects (shown

in Figure C.1) and adds them to the planning problem: the robot is at bed-

room1 (be robot1 bedroom1). The origin locations of each senior, e.g., (be

senior1 bedroom1). The origin locations for glasses in the kitchen, e.g., (be

glass_id05 kitchen1). The origin locations of instruments in the music room

(be violin_id01 music_room1) and (be guitar_id01 music_room1). The

origin locations of the entertainment objects in the library (be book_id01

library1) and (be magazine_id01 library1). The origin locations of com-

munication devices (PCs and TV) in the library, (be pc_id01 library1), (be

pc_id02 library1), and (be tv_id01 library1). The availability of objects,

(available glass_id05), (available glass_id06), (available glass_id07),

and (available glass_id08). In addition to actions’ durations, such as the

duration of movements between the locations, there are carrying and giving an

item, filling drinking vessels, and suggesting an activity.

The planner is called to generate plan π1 (Figure C.9) consisting of 12 actions to

comfort the terrified senior by providing the glass glass_id05 filled with water.

The system transforms π1 to a timeline of events (chronologically ordered

conditions). π1 execution starts, the robot executes the first four actions

correctly (a1, a2, a3 and a4), an exogenous event occurs, and all drinking

vessels become unavailable. When the observed state is read at time 140.008,

the system detects a violated condition (available glass_id05) required by

a5. Subsequently, a failure is detected.

The robot executes perception to read the IoT objects new values and recognise

new objects. A new object of type mug is recognised. The object is named
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mug_id01 and integrated into the planning problem along with its location

(be mug_id01 kitchen1) and availability (available mug_id01). The goal

generation layer indicates that the senior is still terrified (the goal is still

active). The planning problem is reformulated with the new observed state as

the new initial state and the information of the new object mug_id01 and the

goal (soothed senior1). The planner is called to fix the failure, and a new

plan π′
1 is generated (Figure C.10). The new object mug_id01 is carried and

filled, and then the robot moves to provide the terrified senior with the filled

mug.

a1 : 140.008 : (carry robot1 mug_id01 kitchen1)[10.000]

a2 : 150.010 : (fill robot1 mug_id01 kitchen1)[10.000]

a3 : 160.012 : (move robot1 kitchen1 dinning_room1)[20.000]

a4 : 180.014 : (move robot1 dinning_room1 corridor2)[40.000]

a5 : 220.016 : (move robot1 corridor2 corridor1)[50.000]

a6 : 270.018 : (move robot1 corridor1 bedroom1)[30.000]

a7 : 300.020 : (give robot1 senior1 mug_id01 bedroom1)[10.000]

a8 : 310.022 : (soothed_received senior1 mug_id01)[30.000]

Figure C.10: The temporal plan π′
1. For the robot to carry and fill mug_id01, go back

to senior1’s location and provide the required comforting

Scenario 2. In this scenario, plan π2 (shown in Figure C.11) was generated to

cheer up a sad senior, senior1, located in bedroom1. The robot moves from the

senior’s location to music_room, carries guitar_id01, and then moves back to

cheer up the sad senior by giving guitar_id01.

The robot executes the first three actions correctly (a1, a2, and a3), an exoge-

nous event occurs, and all musical instruments become unavailable. When

the observed state is read at 120.006, the system detects a violated condition

(available guitar_id01) required by action a4 in π2. Subsequently, a failure

is detected due to the discrepancy. Perception recognises a new object of
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a1 : 0.000 : (move robot1 bedroom1 corridor1)[30.000]

a2 : 30.002 : (move robot1 corridor1 corridor2)[50.000]

a3 : 80.004 : (move robot1 corridor2 music_room1)[40.000]

a4 : 120.006 : (carry robot1 guitar_id01 music_room1)[10.000]

a5 : 130.008 : (move robot1 music_room1 corridor2)[40.000]

a6 : 170.010 : (move robot1 corridor2 corridor1)[50.000]

a7 : 220.012 : (move robot1 corridor1 bedroom1)[30.000]

a8 : 250.014 : (give robot1 senior1 guitar_id01 bedroom1)[10.000]

a9 : 260.016 : (cheer_received senior1 guitar_id01)[30.000]

Figure C.11: The temporal plan π2. For the robot to go to music_room1, carry guitar_-

id01, go back to senior1’s location bedroom1 and provide the guitar_id01 to cheer up

the sad senior

type clarinet. The object is named clarinet_id01 and is integrated into the

planning task with its location (be clarinet_id01 music_room1) and avail-

ability (available clarinet_id01). The goal generation layer indicates that

the senior is still sad. The planning problem is reformulated, and the planner

is called to generate a new plan π′
2 (shown in Figure C.12) that cheers up the

sad senior by providing the clarinet_id01.

a4 : 120.006 : (carry robot1 clarinet_id01 music_room1)[10.000]

a5 : 130.008 : (move robot1 music_room1 corridor2)[40.000]

a6 : 170.010 : (move robot1 corridor2 corridor1)[50.000]

a7 : 220.012 : (move robot1 corridor1 bedroom1)[30.000]

a8 : 250.014 : (give robot1 senior1 clarinet_id01 bedroom1)[10.000]

a9 : 260.016 : (cheer_received senior1 clarinet_id01)[30.000]

Figure C.12: The temporal plan π′
2. For the robot to carry clarinet_id01, go back to

senior1’s location, bedroom1, and cheer up the sad senior

Scenario 3. In this scenario, plan π3 (shown in Figure C.13) was generated to

comfort a bored senior by providing the object book_id01 of the type book.
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a1 : 0.000 : (move robot1 bedroom1 corridor1)[30.000]

a2 : 30.002 : (move robot1 corridor1 corridor2)[50.000]

a3 : 80.004 : (move robot1 corridor2 library1)[40.000]

a4 : 120.006 : (carry robot1 book_id01 library1)[10.000]

a5 : 130.008 : (move robot1 library1 corridor2)[40.000]

a6 : 170.010 : (move robot1 corridor2 corridor1)[50.000]

a7 : 220.012 : (move robot1 corridor1 bedroom1)[30.000]

a8 : 250.014 : (give robot1 senior1 book_id01 bedroom1)[10.000]

a9 : 260.016 : (entertainment_received senior1 book_id01)[30.000]

Figure C.13: The temporal plan π3. For the robot to go to library1 carry book_id01,

go back to senior1’s location, bedroom1, and provide the required entertainment.

During the execution, entertainment objects become unavailable. A discrep-

ancy is detected due to book_id01. The system detects a failure. This time,

the difference is that perception does not find any alternative objects in the

execution environment; alternative objects cannot repair the failure. The plan-

ning task is reformulated. The planner is called from the state wherein the

failure occurred to generate a new plan. The newly generated plan π′
3 (shown

in Figure C.14) includes a suggested action for the bored senior to watch TV (a

different course of action).

a1 : 0.000 : (suggest_entertainment2 robot1 senior1 tv_id01 bedroom1)[5.000]

a2 : 5.002 : (entertainment2_suggested senior1 tv_id01)[30.000]

Figure C.14: The temporal plan π′
3. For the robot to suggest using tv_id01 to senior1

and get the required entertainment.
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C.7.2 Validation of Stress Detection

Detecting stress is complicated mainly due to two factors; the determination as

to which external elements are necessary to experience stress and the noise

introduced when the seniors move their hands.

The dataset we used was divided into two parts: 80% for training and 20%

for testing. The confusion matrix obtained using the database as validation is

presented in Table C.1.

Table C.1: Confusion matrix for the validation of stress detection using the dataset

Predicted

Stressed Un-stressed

Real Stressed 95.0 5.0

Un-stressed 11.0 89.0

When validating using the data acquired by the wristband (shown in Table C.1),

a reduction in classification was observed, reducing it to 70%, due mainly to

the two factors explained earlier. However, this is not an issue for our system

as we do not depend solely on stress but instead continue to recognise the

emotion and, only then, generate the goal.

Table C.2: Confusion matrix for the validation of stress detection using the wristband

Predicted

Stressed Un-stressed

Real Stressed 75.0 25.0

Un-stressed 20.0 80.0

The statistical data obtained from the stress classification process are analysed

to determine if our system performs the classification correctly. The dataset’s
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classification is 85%, with an average precision-recall of 0.8. However, it is

70% without the dataset with an average precision-recall of 0.65.

C.7.3 Validation of Emotions Recognition

A series of experiments were performed to validate the classification of emo-

tions to determine classification accuracy. The robot captured images wherein

a person could be observed, trying to imitate a particular emotional state.

These images were sent to the web service for analysis.

The result of these experiments is shown in Table C.3, wherein the confusion

matrix obtained from our validation process can be seen. The accuracy obtained

by the validation with our model is 93.6%. It is important to note that, in

some emotions, some values are lower than other emotions due to their facial

similarities, such as sadness and anger.

Table C.3: Confusion matrix for the validation of emotion classification

Predicted

Terrified Angry Disgusted Happy Neutral Sad Bored

Real Terrified 98.0 3.1 0.0 2.0 1.3 0.0 0.87

Angry 0.68 89.0 1.1 1.0 1.3 0.0 0.0

Disgusted 0.0 1.1 94.0 0.0 1.3 5.1 0.87

Happy 0.34 2.1 3.3 94.0 2.6 5.1 1.7

Neutral 0.68 1.1 1.1 3.0 91.0 1.7 0.0

Sad 0.34 1.1 0.0 0.0 0.65 81.0 0.87

Bored 0.34 2.1 0.0 0.0 2.0 6.8 96.0
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C.7.4 Validation of Objects Classification

Not all the objects used in our system are found in typical datasets. Thus, we

decided to build our 17-class dataset. For each class, a total of 200 images

were downloaded. A MobileNet (Howard et al. 2017) network was used, and

the classification results can be seen in the confusion matrix presented in Table

C.4. Some values of the objects in the confusion matrix were lower than others.

The objects associated with these values, such as glass bottles, jars, and mugs,

have a certain resemblance. This is not an issue for our system as these objects

belong to the same category –a drinking vessel– and are intended to be used

interchangeably. The lowest rating percentage (79.2%) is associated with the

yo-yo, which is difficult to rate due to its shape.
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Table C.4: Confusion matrix for the validation of objects classification

Predicted

book clarinet cup drinking_glass drum glass_bottle guitar jar journal magazine magic_cube mug newspaper puzzle story sudoku violin yo-yo

Real book 90 2.0 1.0 1.0 1.5 0.5 0.36 0.36 0.65 0.99 0.36 0.56 0.36 0.36 0.36 0.36 0.96 3.5

clarinet 1.0 87 2.0 0.95 0.65 0.36 0.45 0.23 0.45 0.56 0.45 0 0.25 0.3 0 0.25 0.36 3.0

cup 0.25 1.0 90 0.65 0.45 1.5 0.25 0.58 0.32 0.48 0.98 0.15 0.36 0.54 0.36 0.12 0.48 1.5

drinking_glass 0.5 0.25 0.56 88 0.36 0.35 0.45 0.36 0.12 0.57 0.14 0.19 0.87 0.36 0.36 0.36 0.75 0.35

drum 0.35 0.89 0.68 3.0 92 2.3 0.6 0.45 0.14 0.89 0.56 0.25 0.45 0.9 0.45 0.95 0.35 0.99

glass_bottle 0.27 0.25 0.47 0.24 0.45 88 0.87 0.98 0.36 0.78 0.78 0.36 0.98 2.0 0.71 0.4 0.48 0.78

guitar 0.5 0.36 0 0.45 0.25 0.69 90 0.78 0.98 0.65 0.9 0.98 0.78 0.36 0.56 0.84 3.0 2.5

jar 0.5 0.48 0 0 1.5 0.95 2.3 88 1.5 0.56 0.65 0.31 0.36 0.97 0 3.0 0.34 3.6

journal 1.5 0.9 0 0.92 0.9 0.35 0.23 2.3 90 0.36 0.78 2.5 0.29 0.45 0 0.45 0.14 0.58

magazine 1.5 1.0 0 0.9 0.45 0.45 0.6 0.12 0.31 90 0.7 0.36 0 0.65 0 0.68 0.25 0.56

magic_cube 0.68 0.96 0.56 0 0 0.67 0.78 0.36 0.98 0.45 88 0.45 0 0.31 0.3 0.99 0.89 0.14

mug 0.25 0.78 0.9 0 0 0.68 0.89 0.69 0.36 0.87 0.98 88 0 0.45 0 0 0.35 0.23

newspaper 0.55 0.95 0.65 0.24 0 0.69 0.45 0.97 0.93 0.98 1.5 2.5 95 1.8 0 0 0.35 0.69

puzzle 0.1 1.0 0.35 0.35 0 0.99 0.63 0.45 0.45 1.0 0.36 0.36 0 88 0 0 0.99 0.99

story 0.1 0.44 0.9 0.32 0 0.78 0.45 0.63 0.99 0 0.97 0.78 0 0.23 96 0 0.87 0.58

sudoku 0.36 0.58 0.8 0.9 0 0.45 0.23 0.48 0.45 0 0.35 0.98 0 0.45 0 92 0.45 0.36

violin 0.36 1.0 0.93 0.98 0 0.36 0.36 1.5 0.36 0 0.9 0.45 0 2.3 0 0 88 0.45

yo-yo 0.98 0.56 0 1.5 0.99 0.43 0.1 0.69 0.25 0.36 0.36 0.32 0 0.07 1.3 0 1.5 79

2
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C.8 Discussion

Abstractly, the system can be looked at as providing members of a target

group with objects depending on their dynamically recognised emotions and

following up on their status evolution in a dynamic execution environment.

Since our deliberative function is domain-independent, the system can be

further specialised depending on the target group.

The system was not validated with elders in a real AL home, mainly due to

the robotic platform we used and the safety regulations. We used the RobElf

robotic platform from Robotelf Technologies 4, shown in Figure C.15. RobElf

does not have a clamp to pick up objects; it executes voice interaction to

simulate actions that require a gripper, such as carrying a glass.

Figure C.15: RobElf robotic platform

4Robotelf Technologies https://www.robelf.com
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C.8 Discussion

The system was presented to a group of users. They were all researchers in

the Department of Computer Systems and Computation. For future research,

the system can be adapted following a user-centric methodology to survey

impressions from real caregivers in a seniors’ living home, acquire approval

to conduct live laboratory demonstrations with senior citizens attended by

health professionals, and further analyse the demonstrations data to adjust the

performance and avoid unforeseen inconvenient situations.

We opted for reactivity to reduce the information load in the current implemen-

tation. The system looks for alternative objects only when a failure occurs. On

the other hand, the system can proactively look for alternative objects every

time the observed state is read. The newly integrated objects can be considered

information overload when there are no failures, and they end up being unused.

The reactive-proactive design detail is left to the system administrators to meet

their execution environment needs.

In the validation section, the system’s behaviour was demonstrated with one

senior for simplicity; however, the implementation has multi-user capabilities.

Temporal planning limited time windows (TILs) supported by PDDL 2.2 were

utilised to deal with multiple seniors suffering from negative emotions. When

using such literals in actions’ conditions, time windows allow priorities. Com-

forting the terrified emotion is assigned a shorter time window than the ones

assigned for comforting the sadness or boredom emotions. The planner handles

these constraints when generating the plan. In the current implementation,

durative actions are generated to provide a physical object to serve the senior

suffering from negative emotions; the work can be extended by adding instan-

taneous responses, such as turning on the TV and modifying lights intensity,

as in (Quinde et al. 2020), and further increasing multi-user capability as the

robot is no longer a bottleneck resource.
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Our system provides a contextualised explanation when it deviates from the

expected behaviour. The explanation is threefold: (1) based on the dynamically

generated goal (reason for the original plan); (2) based on what went wrong

(violated condition leading to the failure); and (3) based on the plan’s fix (reason

for fixing using an alternative object or via a recommendation). In the current

implementation, we assume that a senior is comforted after a duration of time

from receiving the object to soothe the negative emotion. If not comforted,

the senior will be detected as stressed, and the process will start again. For

future work, this is an area for improvement using explainable AI as people

react differently. The system must learn why the suggested solution did not

comfort the senior and adapt for future runs.

The solution to certain classes’ similarity in classifying emotions and objects is

to add more images wherein a marked differentiation between the classes can

be observed. Adding more images in which the actors emphasise anger and sad

emotions would allow the system to identify these emotions correctly. Similarly,

introducing images from different perspectives or rotating the images can

improve the classification of the glass bottle, the jar, and the cup. The noise

to the wristband when the senior moves the hand can lead to false positives.

A possible solution is to incorporate a breathing frequency measurement in

the wristband. Thus, the system would have one more variable to infer if the

user is exhibiting a state of stress. Another possible solution is to calculate the

HR measurements’ average over time and send the result to the system for

classification.

Concerning new unknown objects’ recognition, it is essential to note that we

have presented a basic object recognition mechanism with some limitations

and assumptions. For example, suppose several new non-IoT objects of the

same type are introduced. In that case, the system cannot differentiate them

or their states. Although it is not important which object the planner will use
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since they are of the same type; however, our basic recognition method does

not distinguish whether the mugs are full or empty, and we assume that the

caretakers handle this. In future work, this must be investigated, and other

advanced techniques (Pang et al. 2021) can be used for safe human-to-robot

handovers with estimations of the physical properties (such as empty or full)

of cups and objects with estimations of the human hands manipulating the

container.

C.9 Conclusion

The use of AmI and AL systems is increasing in line with the growing ageing

population. Stress is a significant cause of human illnesses directly affecting

the emotional state. Literature was reviewed to identify the convergence be-

tween deliberation and AmI’ latest healthcare trends and the lack of a balanced

deliberative function. As the contribution of this study, it describes an integral

deliberation function architecture that provides comfort to stressed seniors suf-

fering from negative emotions in an AL environment. The integral deliberation

function makes a balanced synthesis of data and knowledge, learning, percep-

tion, dynamic goal generation, planning, acting, and monitoring functionalities.

Such functionalities are required to detect, address, and follow up on the

senior’s status evolution in a dynamic execution environment. The five layers

constituting our intelligent deliberation pillars are learning and knowledge

augmentation, perception, goal generation, planning, acting, and monitoring.

Our contribution’s differential value lies in the integral view of the architecture:

(1) integrates learning, perception, and dynamic goal generation to achieve

context-aware human-robot interaction; (2) integrates cognitive knowledge

augmentation, learning, and perception to achieve context awareness toward

the execution environment; and (3) integrates perception, planning, acting,
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and monitoring to achieve planning capabilities and reactivity when handling

failures.

The behaviour and the approach’s validity were demonstrated in three experi-

mental case studies in a simulated AL home scenario. Moreover, the proposed

methods for stress detection, emotions, and object recognition were validated

to show classification accuracy. The validation demonstrated that the proposed

deliberation function has effectively achieved its deliberative objectives in the

AL home: perceptiveness and context-aware dynamic human-robot interaction;

planning, acting, and monitoring capabilities to achieve reactiveness; and

environment context awareness to adapt to the change in the environment.

This chapter of the PhD thesis demonstrates the usefulness and the validity of

using the execution simulation system, presented in Chapter 4, the context-

aware knowledge acquisition approach, presented in Chapter 5, and other AI

techniques in an AmI healthcare application. More importantly, it demonstrates

how the author allows an autonomous agent to deal with the dynamic envi-

ronment change, not depending solely on the prior knowledge of designers

but instead relying on its own percepts to provide context-aware deliberative

responses for repairing a failure.
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AI Artificial Intelligence

AP Automated Planning

KR Knowledge Representation

IPC International Planning Competition

HTN Hierarchical Task Network

HTN Hierarchical Task Networks

PDDL Planning Domain Definition Language

STRIPS the input language to the Stanford Research Institute Problem Solver

TILs timed initial literals

TIL timed initial literal

POP Partial-Order Planning

ICAPS International Conference on Automated Planning and Scheduling

DL Description Logic

RDF Resource Description Framework

303



Acronyms

OWL Web Ontology Language

W3C World Wide Web Consortium

IoT Internet of Things

GPS The Global Positioning System

GLASS Goal-management for Long-term Autonomy in Smart citieS

RS Recommender System

AmI Ambient Intelligence

AL Assisted Living
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