
����������
�������

Citation: Song, L.; García-Valls, M.

Improving Security of Web Servers in

Critical IoT Systems through

Self-Monitoring of Vulnerabilities.

Sensors 2022, 22, 5004. https://

doi.org/10.3390/s22135004

Academic Editors: Katarzyna Antosz,

Jose Machado, Yi Ren, Rochdi El

Abdi, Dariusz Mazurkiewicz, Marina

Ranga, Pierluigi Rea, Vijaya Kumar,

Emilia Villani and Erika Ottaviano

Received: 31 May 2022

Accepted: 21 June 2022

Published: 2 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Improving Security of Web Servers in Critical IoT Systems
through Self-Monitoring of Vulnerabilities
Linxuan Song 1 and Marisol García-Valls 2,*

1 Beijing University of Posts and Telecommunications, Beijing 100876, China; 2018213147@bupt.cn
2 Universitat Politècnica de València, 46022 Valencia, Spain
* Correspondence: mgvalls@dcom.upv.es

Abstract: IoT (Internet of Things) systems are complex ones that may comprise large numbers of
sensing and actuating devices; and servers that store data and further configure the operation of such
devices. Usually, these systems involve real-time operation as they are closely bound to particular
physical processes. This real-time operation is often threatened by the security solutions that are
put in place to alleviate the ever growing attack surface in IoT. This paper focuses on critical IoT
domains where less attention has been paid to the web security aspects. The main reason is that, up
to quite recently, web technologies have been considered unreliable and had to be avoided by design
in critical systems. In this work, we focus on the server side and on how attacks propagate from
server to client as vulnerabilities and from client to unprotected servers; we describe the concerns and
vulnerabilities introduced by the intensive usage of web interfaces in IoT from the server templating
engines perspective. In this context, we propose an approach to perform self monitoring on the server
side, propagating the self monitoring to the IoT system devices; the aim is to provide rapid detection
of security vulnerabilities with a low overhead that is transparent to the server normal operation.
This approach improves the control over the vulnerability detection. We show a set of experiments
that validate the feasibility of our approach.

Keywords: security; web technology; web servers; web programming; vulnerability detection; self
monitoring; IoT; IIoT; Cyber Physical Sytems; critical systems

1. Introduction

The IoT paradigm is a key step in the way that modern systems are conceived and
architected. The union of smart devices and servers connected to a potential myriad of
sensing and actuating nodes constitutes a powerful infrastructure to develop applications
and systems that enhance the intelligence and capacities of the human users. This spans
from eHealth [1], to smart manufacturing [2] and automation, smart cities, and many more.

The core concept at the heart of IoT has been the ultra-fast end-to-end interconnection
across all devices, built on the advances in networks such as 5G technology and the new
conception of 6G. The integration with other ICT paradigms and technologies like Cloud
Computing, Fog Computing, DevOps, and software frameworks have provided a set of
tools to build unprecedented applications [3].

Today, most IoT systems are either intensive in the usage of web interactions or, at least,
have some part that uses web protocols and tools. Not only the usability of these systems
and applications, but also the communication across devices is based on web technologies
and web protocols thanks to the W3C [4] standards. Web interactions rely on HTTP [5] and
HTTPS [6] protocols and the REST [7] scheme. Additionally, most IoT platforms are built
on a web interface that acts as a centralized dashboard and a unified managing server to
communicate with the system devices.

Why IoT systems security is increasingly compromised is inherent to their nature.
They are composed of large numbers of heterogeneous devices like sensors, actuators,

Sensors 2022, 22, 5004. https://doi.org/10.3390/s22135004 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22135004
https://doi.org/10.3390/s22135004
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2383-5310
https://doi.org/10.3390/s22135004
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22135004?type=check_update&version=2

Sensors 2022, 22, 5004 2 of 17

computer nodes, and servers; they are highly interconnected (which includes Internet
access) and rely on software platforms, mostly developed as accidental systems. On top of
this, incorporating web technologies has enlarged the attack surface for cyber criminals.

Existing approaches to improving security in IoT focus on a subset of the components
that these systems contain, mostly related to cryptography, networking transmission,
routing, etc. The software security side has also been researched with code analysis
techniques, operating system security, forensics, etc. This is not sufficient in critical IoT
subsystems as an error may have catastrophic consequences. However, there is a difficult
equilibrium: on the one hand, critical IoT systems need to provide safety guarantees
therefore reducing their exposure to vulnerabilties, but, on the other hand, IoT servers may
need to intensively use web technologies, software frameworks, and libraries that allow
the developer to build functionality that would not be possible otherwise.

In this work, we provide an approach to improve the security of the web servers
acting as entry points to a critical IoT; we design a light middleware that actively performs
self monitoring of the whole system and allows the system operators to launch tests that
detect vulnerabilities in the nodes. This contributes to raising awareness about particular
vulnerabilities of some accidental IoT software constituents, e.g., platforms such as Python
Flask, Node.js, etc., to detect and even prevent the main vulnerabilities that may be exposed.

In this approach, servers have two main functions. First, they monitor and control
a number of IoT devices guided by the action of a remote operator. Second, servers
provide the front-end to the clients (i.e., to the operators). The security is analysed from the
perspective of prevention of injection attacks for a particular development platform using a
specific templating engine. The server incorporates an additional logic and functionality
that allows for actively self-monitoring injection vulnerabilities. In case some vulnerability
is detected, the server triggers an alarm and provides recommendations on how to eliminate
it. We validate the execution of our software by analysing the performance of the system to
ensure that it is not degraded by the addition of the security self-monitoring functionality.

1.1. Terminology and Threats in Web Security

A threat is any possible danger that can exploit a vulnerability, damage or destroy
an asset intentionally or accidentally. According to [8], a threat is a potential for security
violation; this includes unauthorized access or denial of service. In a manufacturing
system, an asset can range from some collected data reading, to a software piece, or to a
physical device impact. Threats may negatively affect the security of the systems; they exist
constantly regardless of whether they will succeed or not in the end.

A vulnerability is the weakness or flaw in a system that reduces its security. The key
difference with respect to a threat is that a vulnerability does exist in the system while
a threat probably does. A vulnerability can exist in any part of the system (for example,
hardware, software, network, server, etc.) and can be exploited by an external force like an
attacker, a script, or some tools.

A risk is the potential that a threat can exploit a vulnerability to damage the assets in
the system. It can be seen as the combined realization of the two concepts above: threat
and vulnerability. According to ISO/IEC 27005 [9], a risk in Information Technology can be
measured by the combination of the probability of occurrence of an event and its consequence.

Main bodies like the International Organization for Standardization (ISO) 27001 have
listed the requirements to implement and improve the security settings for web appli-
cations [10]. The top ten most critical security risks [11] are regularly published for the
companies and developers to raise the awareness of web application security in order to re-
duce the damage caused by potential vulnerabilities of applications. However, accordingly,
there are recommended programming patterns that help the users to repair the unsafe
configurations and minimize the risks [12].

A selected set of security risks for web interfaces are listed below:

• Broken access control. Access control forces users to act strictly inside the limits of the
application area to which they have been granted permission. If the applied access

Sensors 2022, 22, 5004 3 of 17

control policy is not successful for a given user, s/he will have access to valuable
resources that should be unreachable to her/him.

• Cryptographic failures yield (sensitive) data exposure. For this reason, data encryption
should be kept to the newest standards, avoiding that systems (browser, data base,
etc.) use deprecated cryptographic functions to encrypt data, passwords, etc. Clas-
sifying the security level of all the system data is also necessary to determine what
cryptographic algorithms to use and how to certify and validate the receiver.

• Injection includes a number of risks like, e.g., cross-site scripting (XSS) and SQL injection.
An injection occurs when the user input is not properly validated and filtered, and it
becomes part of either the web page or the data base; if a malicious input is directly
used by the application, hostile data may be injected to the application records or
database, causing a longer lasting damage to the system. This can be partly fixed by
separating commands from data and by input validation through proper filters; by
using safer APIs and SQL controls that limit the unauthorized operations and avoid
disclosure of sensitive data; and by reviewing the source code.

• Security misconfiguration is often introduced by enabling, disabling, installing, or dein-
stalling features; leaving a default account and password unchanged; using outdated
components; and not enabling the latest security functions.

• Identification and authentication failures are usually the result of brute-force attacks
and/or cryptographic failures, by using scripts that repeatedly attempt the validation
of combinations of usernames and passwords automatically. Such actions are known
as brute force attacks. Such risks are present when there is a credentials database with
weak secure authentication (e.g., admin user with password abc123); or when attackers
take advantage of leaked session IDs to gain control over a communication. More
steps for verification (e.g., code, secure questions, using other devices such the mobile,
face recognition, etc.) can reduce the risk of brute force attacks. Other protective
measures are to use complex passwords and remove simple test accounts.

• Software and data integrity failures are likely to take place when the application depends
on untrusted libraries, modules, and/or other resources.

• Security logging and monitoring failures has to be a constant task to detect active attacks.
Creating logs of failed login attempts is a basic strategy to prevent it; however, it
may not be sufficient for several reasons: some failed login attempts may not be
recorded; in addition, warnings and errors may not provide a clear picture of the
situation. The developer should ensure that: (1) all the access control and failures
can be recorded with sufficient user data, (2) the logged data are encrypted in case of
injection, and (3) establish an error report mechanism.

• Server-side request forgery happens when an application fetches a remote resource
without validating the URL submitted by the user. As a result, the attacker can send a
crafted request to unexpected links even if the application is protected by firewalls
or VPN. The application side has to avoid this by filtering and validating all data
submitted by the user, set a series of URL schemas, and avoid sending raw responses
to the client.

1.2. Related Work

Real-time systems, embedded systems, wireless sensor networks, and control systems
were the precursors of Cyber-Physical Systems (CPS) [13] and IoT. In such domains, web
technologies and middleware in general were disregarded as they were considered to
introduce unpredictable behavior yielding to non-stable execution times.

Since the spread of the IoT paradigm, web technologies have progressively gained
territory because they are unbeatable in providing a highly accessible collaborative platform;
they include thin clients that can access the system from anywhere, anytime, and with
solely the need of a web front-end.

Nevertheless, bringing web technologies into IoT systems enhances the attack surface
for criminals [14]; and this is still dangerous in critical IoT domains like eHealth, critical

Sensors 2022, 22, 5004 4 of 17

infrastructures, avionics, etc. This requires that the traditional functional focus of web
applications is changed. Years ago, the focus was primarily on the functional development,
and this caused a dramatic increase of successful attacks over the last few years. The white
paper of [15] shows the level of penetration of [16], the software-related vulnerabilities into
the critical IoT domain, and how this weakens the overall operation process if appropriate
measures are not put in place.

Some web platforms have become useless for this purpose, and others have increased
their security over the last few years to avoid attacks. As new IoT platforms have added a
number of functions for security, the Internet has also transitioned to security protocols
such as HTTPS [6] and TLS [17], among others. At the same time, other technologies have
appeared to provide real-time web interaction.

Platforms like [18], Datadog, Azure IoT, and many other similar initiatives are web-based,
supporting monitoring of the smart IoT devices in real-time using real-time web technology.

Now, operators can access the IoT devices from anywhere through a web interface.
Because the browser is typically used as a combined display and communication end-point
for operators (clients) to interact with the server, there is a risk that cybercriminals attempt
to use the same interface to penetrate the system. For this reason, many cyber attacks use
the browser client as an entry point to the system.

Although some general purpose security guidelines for web based systems have ap-
peared such as usage of end-to-end encrypted channels [6,17], certificate management [19],
usage of appropriate browser policies [20,21], and many others; there is a lack of detailed
analysis of particular software platforms used to develop servers. Collaborative and open
source frameworks such as SonarQube have also been enhanced to support the improve-
ment of the safety properties of the software [22] but still have not merged web interfacing
in critical IoT software.

Given the recent push of artificial intelligence and machine learning, a number of
contributions on web security have appeared in these domains. Some examples of these
are Ref. [23] that provides an intrusion identification scheme based on a convolutional
neural network to improve the accuracy of intrusion detection; in addition, Ref. [24]
explains an approach based on deep learning for the detection of different cyber attacks
in the web of things (WoT) focusing on prevention of DoS (Denial of Service attacks),
U2R (User to Root) attacks, or R2L (Remote to user); these are based on detection of
packets’ characteristics and other techniques focusing on networking security. Therefore,
this type of contribution is quite different from ours as we focus on the application and
web programming level that is not comparable to the pure network layer.

In comparison to the large amount of networking security contributions, a significantly
more reduced proportion of works have targeted web security at the application level.
Precisely, Ref. [25] compiles a list of web security criteria for tools that implement web
scanning. Ref. [26] provides a mechanism to recognize exploitable vulnerabilities but
strictly focused on websites implemented with web-content management systems. In [27],
authors provide a mechanism and tool for port scanning of web servers combined with
cross-site scripting and SQL injection; but this contribution is limited to a pure functional
perspective [28], offering a simulated exercise of cross-site scripting attacks on simulated
browsers. Ref. [29] exemplifies automated vulnerability checking but restricted to network
servers on the basis of the pure networking traffic characteristics. Ref. [30] emphasizes
the importance of proper notifications over web vulnerabilities; from this work, we can
derive that the integration of the scanning methods in the web application is most effective
for controlling and reporting vulnerabilities. Ref. [31] provides a scanning technique for
detecting IoT devices with vulnerabilities, concentrating on IP generation to launch remote
checks based on techniques similar to ZMAP [32] or Shodan [33].

In summary, our paper intends to contribute at the application level by providing an
approach to improve the security of IoT servers that use mainstream software platforms; the
idea is that the server is capable of self-monitoring vulnerabilities that are integrated in the
system and provide an alert to solve it. Instead of using general purpose web scanners, this

Sensors 2022, 22, 5004 5 of 17

approach is based on integrating the scanning mechanism inside the application to achieve
two main advantages. On the one hand, it improves the chances of finding vulnerabilities
for the particular web technologies used by the server and devices. On the other hand,
in domains requiring more control over the whole system operation such as critical systems,
this approach provides higher control over which vulnerabilities are searched for and also
allows the development team to integrate vulnerability checks as new issues are discovered.
The main differences with respect to existing works on web security scanning is precisely
the integration inside the application, the actual implementation integrated inside the
web server, and the specifics added for Python servers, e.g., by the detection of template
injection attacks when a templating engine must be used.

1.3. Paper Organization

The rest of the paper is structured as follows. Section 2 describes the baseline material
and technologies like the assumed threat model, the system requirements imposed as
derived from it, and the vulnerabilities that are considered. Section 3 describes the proposed
framework for self-monitoring that includes the IoT system model and device model,
the server design, the potential vulnerabilities that the specific server technology adds,
and the design of the self-monitoring activity. Section 4 shows the validation of our
approach, describing the experiments carried out and the analysis of the server response
times. Section 5 concludes the paper.

2. Baseline
2.1. Threat Model and System Requirements

The IoT edge nodes are subject to having hardware and software vulnerabilities. Nev-
ertheless, this paper targets the software vulnerabilities that can stem from different sources:

• Server. Attacks may be triggered by the vulnerabilities introduced by the usage of
particular software platforms for programming the backend logic. Examples of such
platforms are Node.js, Flask, Django, or PHP, among others.

• IoT sensor nodes. Attacks may come from the installed software code (or by the
particular version of a software), by intercepting the unencrypted network traffic over
a wireless channel, etc.

• Personal device. These are often inconvenient access nodes as they combine extensive
software (including apps) and wireless communications and an intensive human
usage. Here, attacks may be raised by different sources:

– the browser code as the mobile phone may access some insecure URL and down-
load malicious code, or contact an illegitimate server via HTTP;

– the installed software. The user may have installed insecure Apps. There are a
number of apps that contain well known vulnerabilities that can be exploited; For
example, some App may use an underlying HTTP communication, or may have
some permissions provided by an unconscious user that allow it to access user
private data;

– human error or misconduct. Critical IoT systems typically implement protocols
for safety assurance that include the human factor. Nevertheless, human behavior
is always accounted for some level of error either intentional or not;

• Interactions across devices. There must be a well-modeled and thought interaction pro-
tocol among all devices that comprises the security privileges of nodes, their allowed
interactions and functionality, as well as the access level rights to data and information.
Moreover, interactions should happen over a safe communication channel that relies
on integrity, confidentiality, and authenticity; this requires encryption, authentication,
access rights, and secure programming are put properly in place.

The system requirements are listed below:

Sensors 2022, 22, 5004 6 of 17

• Automated self-monitoring of vulnerabilities. The server must contain the logic to perform
fully autonomous monitoring of its security status with respect to different types of
vulnerabilities, e.g., injection;

• On demand security checks. The authorized system operators can select a specific IoT
device to check, including the server node;

• Provide access level privileges for operators. Not all clients/operators can access the
security logs and status logs of the devices produced by the server as a result of the
online checks;

• Modular design including flexible testing logic. The server software can be updated dy-
namically to enhance the number and type of tests performed on the system nodes.
Additionally, a modular design provides higher flexibility and improves maintainability.

Here, we focus on the security issues that are raised in such an environment. Applying
the suitable programming techniques are of paramount importance given the myriad of
existing software libraries, languages, constant software updates, functional upgrading, etc.

2.2. Vulnerabilitites

In this work, the analysed vulnerabilities are relative to malicious content injection.
These are explained below.

Cross-site scripting (XSS). It is the most popular injection. It occurs when malicious
contents like scripts are submitted by the user or attacker and injected to the server side.
According to the place of injection, there are three types of XSS attacks: reflected, stored,
and DOM-Based XSS. Only the first two can happen to the server side, whereas the third
one only makes changes to the client front-end. This makes it less interesting in our context.

For the stored one, the malicious content can be injected to the server side by inputting
scripts in some location that results in the storage of the user input. Examples of such
locations are mostly text input fields like those requesting the user name. There is a critical
side to this input of malicious scripting if it is fed to the database: every time the user opens
the website, the malicious content will be executed.

For the reflected one, the attacker can add the malicious content to a URL and send
the fake link to the users via e-mails, messages or some websites. When the user opens the
link and submits the specially crafted contents, the malicious script can steal the input and
call particular interfaces to attack the server.

Server-side template injection. It occurs in a similar way with respect to the reflected XSS
though only attacking the server side. Templating engines allow the developer to transmit
data between the server logic and HTML codes through a set of parameterizable constructs
known as the template language.

Typically, the templating engine provides methods allowing the server to directly
write HTML in the form of a string—for example, function render_template_string() in
Jinja2 that is often used in Python servers. If a template injection occurs at the server, mali-
cious content will become part of such a string parameter that contains HTML. Moreover,
the attacker can steal sensitive data like SESSION_KEY information by injecting particular
scripts to the original URL.

NoSQL Injection Unlike relational databases, non-SQL data bases do not require rela-
tional tables or data formats. Instead, they provide less restrictions and consistency checks,
offering better performance and scaling facilities. Nevertheless, they can be attacked from
a program built in a procedural language. For example, in the case of MongoDB, this
vulnerability is caused by the usage of the $where operator, used typically as a filter to
select by particular data attributes. However, it can also execute JavaScript code. As a
result, it is not recommended to use this operator as the attacker can inject malicious script
code to the query statements and manipulate the database content.

Sensors 2022, 22, 5004 7 of 17

3. Approach
3.1. IoT Application

The approach is exemplified on an IoT application system comprising a server (that
could also be a reduced set of servers) that are connected to the operational physical
network of IoT devices, and to a data base that stores the logs about the environment
situation. Operators interact with the server to retrieve information about the facility and
its associated variables (e.g., temperature, humidity, pressure, etc.); and to set the values of
these actuation devices when needed. Figure 1 shows the target domain.

Figure 1. System overview.

This smart building monitors the physical conditions of the space and adjusts actuation
values to keep the comfort of occupants. In this situation, we use air conditioning devices in
different rooms. The server and the devices are paired either by WiFi or Bluetooth according
to the distance. There is a router that enables the communication between the devices
and the server; the server will process requests and send commands if needed. JSON and
MongoDB are used to store the basic settings of the devices and the operator information.

Figure 2. Interaction across nodes.

Python platforms like Flask are powerful (yet small) application engines that allow the
developer to create the server logic in an IoT system. The server receives incoming triggers
from the operator in the form of HTTP requests (see Figure 2). Requests are processed
and served as indicated by the operator. If the operator requests a particular resource,
the server will provide it by means of an HTTP response to the requester that includes the
particular resource.

3.2. IoT Device Model

The modeled entities are either devices or networks. These are modeled as JSON
objects comprising a number of different attributes.

The following attributes are part of an IoT device model. Attribute name is the iden-
tification code of the particular device; category indicates whether it is a sensor, smart

Sensors 2022, 22, 5004 8 of 17

node, actuator, server, gateway, etc. Attribute net contains the network or networks that the
device is connected to (e.g., a particular wifi, a bluetooth connection, etc.). If the device is
connected to multiple networks, a JSON array object is used that contains the identification
of those networks. Attribute model provides more information about the particular subtype,
vendor model, etc., of the device. Attribute position refers to the specific space (e.g., room,
area, etc.) where the device is located in.

Additionally, modeling a network has the attribute name, which is the identification
code of that precise network; and category, which informs about the type of network
protocol that is used, e.g., WiFi, Bluetooth, etc.

An example of the above is shown in Listing 1.

Listing 1. Declaration of devices.

1 {
2 "devs": [
3 {"name": "devNameCode",
4 "category": "sensor",
5 "net": ["net1"],
6 "model": "devSubType",
7 "position": "location1"
8 },
9 {"name": "other",

10 "category": "server",
11 "net": ["net1", "net2"],
12 "model": "debSubType2",
13 "position": "location2"
14 }
15],
16 "networks": [
17 {"name": "net",
18 "category": "type"
19 },
20 {"name": "netOther",
21 "category": "type2"
22 }
23]
24 }

3.3. Server Design

The server functionality is provided to the operator and IoT devices via services.
Services are implemented through route invocations. For example, the access to a given IoT
device is defined by the Flask route instruction @app.route(’/<username>/dev’), where
<username> is the identification of requesting the operator and dev is the identification
code of the target device; statement name = f’username’ is used to extract the value of the
provided parameter to name for future use, f being a formatted string literal.

The server stores the IoT device data in JSON format in persistent storage; the corre-
sponding file is imported by the DATA BASE module; to do this, the following code is used
with open("dbsys.json","r",encoding="utf-8") as f:data=json.loads(f.read()) that re-
trieves the system database in variable data, which is of Python type dict (dictionary). The inter-
action flow of the server with the data base (DB) and client side is shown in Figure 3.

Sensors 2022, 22, 5004 9 of 17

Figure 3. Interaction sequence.

The transfer of system data to the client side is done by the server using a templating engine.
On the client side, the data are received and processed by using a combination of

HTML and templating. Listing 2 shows how this compilation and display of the device
information data are done at the client side. The text URLTEXT will be replaced by the
particular domain of the server and port, e.g., 127.0.0.1:5001 if the server is running on
the local machine.

Listing 2. Server uses a templating engine to display device information at the client.

{% for device in devices %}
<tr >

<td > { { device . category }} </ td >
<td > { { device . name }} </ td >
<td > { { device . model }} </ td >
<td > { { device . p o s i t i o n }} </ td >
<td >

<a hre f=" ht tp ://URLTEXT/ { { user } } / dev/
{ { device . name } } "> VIEW
</td >

</tr >
{% endfor %}

3.4. Potential Vulnerabilities

Flask is a Python micro framework that comprises a web environment to build web
applications. The term “micro” means that there are a number of facilities left out as
it is meant for fast development and light runtime that is very convenient for light IoT
deployments. Aspects such no form validation are not present; however there is a lively
and great community support to investigate, report, and solve security issues. There is
nothing very distinct from most web frameworks, where security is something to consider
carefully as there may be a number of vulnerabilities introduced by default.

An example, let us see Listing 3, which is a simple form for requesting user input that
is later posted in some form to the server.

Sensors 2022, 22, 5004 10 of 17

Listing 3. Form request.

<form method=" post " act ion="/Pos t In fo ">
<input type=" t e x t " name=" Info ">

<button>Post i t </button>

</form>
A simple Jinja2 template that renders the information provided by users is shown in Listing 4.

Listing 4. Data from the form is used on the server to produce a client interface.

{% f o r x in I n f o P o s t s %}
<p c l a s s = { { x } } > { { x } } </p>

{% endfor %}
The server code that handles the form data and uses the above templating of Listing 4

is shown in Listing 5.

Listing 5. Form request.

from f l a s k import Flask , request ,
render_template , make_response

app = Flask (__name__)

I n f o P o s t s= []

@app . route (’/Pos t In fo ’ ,
methods =[’GET ’ , ’POST ’])
def in fo_ pos t () :

i f request . method == ’POST ’ :
msg = request . form [’ Info ’]
I n f o P o s t s . append (msg)

return render_template (’ posted_info . html ’ ,
I n f o P o s t s=I n f o P o s t s)

Another problematic situation is derived from the usage of the requesting URL to
extract information from the server: (1) that is part of the server main memory that is not
properly hidden, or (2) from the execution environment.

The first type is due to the usage of global memory space in the server in combination
with templates that access global memory space, and in combination with the improper
processing of a variable sent as a string in the URL string (see Listing 6).

Listing 6. Form request.

@app . route (’/ a p p l i c a t i o n /reqText ’)
def process () :

serverVar = ’ Dear~User ’

i f request . args . get (’name ’)
serverVar = request . args . get (’name ’)

The t e m p l a t e
template = ’<h2>Greetings , { { other }} </h2> ’
return render_ templa te_s t r ing (
template , other = serverVar)

A variable name inside the URL can be extracted and later passed to a template with
{{ other }}. Inside the template, this causes HTML to escape all characters automatically

Sensors 2022, 22, 5004 11 of 17

by default. Thus, what came inside name as part of the URL route will show in the template
response. As a result, if an attacker feeds a script accessing some server environment
data like {{config.items()}} or <script>alert("text")</script>, this will result in
the server running the associated code.

This vulnerability can be catastrophic because it can expose sensible data. For example,
if the string "?name={{person.password}}" is appended, then the access credentials can
be stolen.

Furthermore, if an attacker injects other sensitive commands such as
"?name={{name.config.items()}}", a large number of global properties of the systems
can be exposed, e.g., SECRET_KEY.

Moreover, an attacker can also gain an advantage on this vulnerability to read, modify,
or create server files and load scripts to the server.

3.5. Self-Monitoring Design

For checking the security of web interfaces, most test methods are based on adding
payloads to the URL as input data inserted in the requests to the server. Our approach
uses this scheme as the basis, complemented with an additional middleware on the server
that performs self-monitoring. It is based on an additional module named TEST that is
parameterized with two values: (1) the URL and (2) the particular test id. In addition,
a CHECK module is implemented to control the test execution flow as follows:

1. It finds payloads suitable for the test to be run;
2. It processes the URL and conveniently crafts it with the malicious payloads.

Lastly, an INTERFACE module has been designed for managing the requests from
clients/operators. This provides the entry point to the system.

Figure 4 shows the workflow among the different modules of the server that relate to
the security checking functions.

Figure 4. Software functions on the server side concerning testing

The server contains as many routes as devices can be checked. Each route is invoked
by the operator to either present the information about a device or as a means to perform
a security check on the system. The code Listing 7 shows the server code to handle the
request for information about a particular device (e.g., a router) and how the server triggers
the security check of its code.

Sensors 2022, 22, 5004 12 of 17

Listing 7. Route /dev/router1 tests for a vulnerability in a router device.

@app . route (’/dev/router1 ’ ,
methods =[’GET ’ , ’POST ’])
def r01 () :

i f request . method == ’POST ’ :
t e s t L i s t = r r e q u e s t . values . g e t l i s t (" t1 ")
c h e c k _ l i s t (t e s t L i s t)

return render_template (’ router1 . html ")

The server returns the client page router1.html that allows the operator to select the
vulnerabilities to check. The operator selects the particular checks and triggers the test.
The test input data provided by the operator (by means of a selection of the form elements of
the page) are sent as parameter testList. Function check_list performs the actual check.

This model is flexible as it supports integrating external test code. Most third party
codes are based on Python crawlers that are easily combinable with the proposed scheme.

4. Implementation and Results

We have performed an experimental validation of the approach by a scale home setting
to which we have added the middleware modules that provide the security analysis. In
addition, we have performed a performance validation to obtain the temporal behavior of
both server and client sides. To test the full capability of the approach, we have integrated
a third party testing tool to find vulnerabilities named wgdscan; this is added as part of the
TEST module, so that it can be easily added and removed from the server functionality bulk.

As explained in Section 1.2, given the integrated nature of our approach in the applica-
tion level for restricted critical IoT domains, there is no contribution that is comparable to
ours. Other contributions found in the state of the art are either focused on network scan-
ning techniques or on mainstream decoupled scanning for general purpose domains. As a
result, in the provided implementation, we have undertaken a validation of the approach
consisting of demonstrating experimentally that our solution is feasible yielding execution
times that do not contravene the operation of the system nor overload the normal operation.

4.1. Operation Logging

The log functions of Python are used to record the operations in a log that can be
later checked for security forensics. This is used at the start of each server function that
handled a route, app.logger.info("Log text"). The log text informs about the operation
that is performed, e.g., Operator + user + checks info of + device_id. In addition, the function
logging.FileHandler(’test.log’, encoding=’UTF-8’) is used to store all the logs to a
particular file (as shown it is file test.log at the server). Figure 5 shows a screenshot of
how the log file looks like.

Figure 5. Operations log.

4.2. Service Time

The interface module handles the operator HTTP requests to obtain information from
the system configuration that comprises the device status and their configuration data.

Requests for device information are formulated to the main server route via a GET
method, exhibiting the request parameters as part of the provided URL. This ensures that,
on the server-side, there is one route per supported device; this route is generated dynami-

Sensors 2022, 22, 5004 13 of 17

cally. If the development team requires that a particular device is included (or excluded),
this can be done as simply as with the activation (or deactivation) of the associated route.

Operator requests to configure devices and other facilities such as login are imple-
mented via POST requests; this includes providing data about the tests. Tests are run
though URL crafting with convenient payloads like shown in Table 1. The payload list can
be modified at any time as new security issues are either found or discarded.

Table 1. Payloads used in the tests.

Payload Type

</script>"><script>prompt(1)</script> script with prompt box

</ScRiPt>"><ScRiPt>prompt(1)</ScRiPt> script with prompt box

"><h1 onclick=prompt(1)>Clickme</h1> HTML tag with prompt box

">Clickme link to pop-up

The validation of our approach requires running a set of experiments to obtain precise
temporal costs of the execution of our solution. In order to obtain accurate performance
behavior and execution times, the Date class and functions such as Date.getTime have
been avoided, as it yields course-grain timing outputs that correspond to mixed states of the
web-server and also of the client. The Navigation Timing API is used in order to to determine
the different phases (called blocks) undergone by the whole request–response web interaction
model. This way, it is possible to extract more accurate measures, and the temporal cost
between the occurrence of the different events that takes place in the operation of client
and server.

We have used the client side timing API [34] to automate the testing of the web
application on the server side. Additionally, we have used Selenium [35] to perform
efficient cross-browser tests and further automate the experimental process.

The server side uses Python utilities such as time.perf_counter() that returns the
time taken by the execution of a particular function. To obtain a statistical analysis, we use
Selenium to automate the process of issuing large numbers of requests.

The server application has been developed in Python, whereas the client side has
been developed using mainstream client technology such as HTML, CSS, and JavaScript.
The generation of customized client responses has been performed using a templating engine.

Figure 6 shows the response time of the server in terms of request reception and
test execution. Times are measured by taking as base points the loadEventStart and
fetchStart of [34]. Obtaining the time in Selenium is done with driver.find_element.
A log is created to gather one hundred interactions of ten repetitions each, so that each
point that is shown is the average of n measures. Figure 7 shows the cost of the server
functions involved in the login operation.

The temporal behavior of our solution is expanded in Figure 8. Figure 8 shows the
behavior of our proposed solution when tested to extract the execution times of the whole
interaction process between users and server. Ten measures are reported for each experi-
ment. Figure 9 shows the overall invocation time costs in relation to the response times in
the extensive testing performed for our solution. The temporal behavior is summarized in
Table 2, such that the average interaction time is around 120 ms, with a sustained behavior
and a few peaks of 150 ms. The cost of the overall process of request and vulnerability
check is low. The overhead of the tests and of the usage of the timing APIs is appropriate
to provide a near real-time interaction.

Sensors 2022, 22, 5004 14 of 17

Figure 6. Execution time of response.

Figure 7. Execution time of login function.

Figure 8. Interaction times.

Sensors 2022, 22, 5004 15 of 17

Figure 9. Summary of relation of invocation and response times.

To calculate server processing cost, we instrument it to record start and end time.
The start time is the moment of reception of a POST request, whereas the end time is the
instant before the next page is loaded.

Responsiveness is one of the major validation criteria for web interaction. A number
of studies have appeared over the years that quantify the maximum tolerable waiting times
of clients. These numbers take into account a general request–response–display model;
however, digging deeper into the computer software execution (from the operating system
to the browser), this whole process takes a number of phases or blocks that happen at
different levels.

According to [36], a response time in the range of 100 to 200 ms is a good response
time for a web interaction; being up to 100 ms an optimal interaction time; and above
200 ms up to 1 s an acceptable behavior with room for improvement.

Table 2. Summary of performance.

Parameter Value (ms)

Mean 119.5

Maximum 191

Minimum 83

As shown in Figures 6 and 7, the overall execution times are well below this limits;
and the overall request–response–display times are in the range of 20% above the limit
of what is considered an optimal responsiveness. Consequently, the obtained interaction
times correspond to those of a server in the optimal range. Therefore, we can say that our
solution provides improved control over vulnerability checking and offers near optimal
response times to the user.

5. Conclusions

This paper has presented an approach to design and develop a system capable of
automatically performing security checks in search of potential vulnerabilities in the IoT
nodes and the server. We have shown the workflow of the server to ensure a suitable
security level; and have presented a modular design that allows the developer to easily
introduce new tests in the server system. To prove the suitability of the approach, we
have implemented the server and have performed a set of experiments in order to find the
overhead introduced by our deployment. It can be observed that the server performance
is stable and that the obtained interaction times allow a near real-time operation with a
reduced overhead. Given the power of today’s nodes that run over inexpensive processors
that are mostly multicore, it is advisable to perform checks at least periodically. Such nodes

Sensors 2022, 22, 5004 16 of 17

may include software pieces like libraries or even microservers and microservices that
can include some vulnerabilities. For this purpose, our approach supports testing the
vulnerabilities on a per device basis within the system. In addition, we support the easy
integration of verified third party vulnerabilities testing tools through the TEST module.

Author Contributions: Conceptualization, methodology: L.S. and M.G.-V. Investigation: L.S. Graphs
and experiments: L.S. Supervision: M.G.-V. Journal version writing, reviewing, and editing: M.G.-
V. Funding acquisition: M.G.-V.; All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by project “Design of services for resilient and real-time execution of
social dispersed computing applications in cyber-physical domains”, Grant No. AICO/2021/138 funded by
Generalitat Valenciana (Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital), Spain.
The APC was funded by AICO/2021/138 (Subvenciones para grupos de investigación consolidados).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. García-Valls, M.; Calva-Urrego, C.; García-Fornes, A. Accelerating smart eHealth services execution at the fog computing

infrastructure. Future Gener. Comput. Syst. 2020, 108, 882–893. [CrossRef]
2. Monostori, L. Cyber-physical production systems: Roots, expectations and R&D challenges. Procedia CIRP 2014, 17, 9–13.
3. García-Valls, M.; Dubey, A.; Botti, V. Introducing the new paradigm of Social Dispersed Computing: Applications, Technologies

and Challenges. J. Syst. Archit. 2018, 91, 83–102. [CrossRef]
4. W3C. The World Wide Web Consortium—W3C. Available online: https://www.w3c.org (accessed on 30 May 2022).
5. Fielding, R.; Gettys, J. ; Mogul, J.; Frystyk, H.; Masinter, L.; Leach, P.; Berners-Lee, T. HyperText Transfer Protocol v1.1; HTTP (RFC

2616); The Internet Society: Reston, VA, USA, 1999.
6. Rescorla, E. HTTP over TLS—RFC 1818; RTFM, Inc.: Fürth, Germany, 2000.
7. Fielding, R.T. Chapter 5: Representational State Transfer (REST). Architectural Styles and the Design of Network-Based Software

Architectures. Ph.D. Thesis, University of California, Irvine, CA, USA, 2000.
8. Shirey, R. Internet Security Glossary (RFC 2828); The Internet Society: Reston, VA, USA, 2000.
9. ISO/IEC. Information Technology—Security Techniques—Information Security Risk Management (SO/IEC 27005:2018). Available

online: https://www.iso.org/standard/75281.html (accessed on 30 July 2018)
10. ISO/IEC 27001; Information Technology—Security Techniques—Information Security Management Systems—Requirements.

ISO/IEC International Standards Organization: Geneva, Switzerland, 2005.
11. The OWASP Foundation. Top 10 Web Application Security Ristsk. Available online: https:www.owasp.org (accessed on

30 May 2022).
12. Agreindra Helmiawan, M.; Firmansyah, E.; Fadil, I.; Sofivan, Y.; Mahardika, F.; Guntara, A. Analysis of Web Security Using

Open Web Application Security Project 10. In Proceedings of the 2020 8th International Conference on Cyber and IT Service
Management (CITSM), Pangkal, Indonesia, 23–24 October 2022; pp. 1–5.

13. Rajkumar, R.; Lee, I.; Sha, L.; Stankovic, J. Cyber-physical systems: The next computing revolution. In Proceedings of the Design
Automation Conference, Anaheim, CA, USA, 13–18 June 2010; pp. 731–736.

14. Wu, D.; Ren, A.; Zhang, W.; Fan, F.; Liu, P.; Fu, X.; Terpenny, J. Cybersecurity for digital manufacturing. J. Manuf. Syst. 2018,
48, 3–12. [CrossRef]

15. Trend Micro. White Paper: Manufacturing Cybersecurity Case Studies; Trend Micro: Taipei, Taiwan, 2021.
16. Li, Y.; Liu, Q. A comprehensive review study of cyber-attacks and cyber security; Emerging trends and recent developments.

Energy Rep. 2021, 7, 8176–8186. [CrossRef]
17. Dierks, T.; Rescorla, E. The Transport Layer Security (TLS) Protocol, Version 1.2; RFC 5246; RTFM, Inc.: Fürth, Germany, 2008.
18. ThingsBoard—Open-Source IoT Platform. Available online: https://thingsboard.io (accessed on 30 May 2022).
19. Housley, R.; Polk, W.; Ford, W.; Solo, D. Internet X.509 Public Key Infrastructure. Certificate and Certificate Revocation List (CRL)

Profile; NIST: National Institute of Standards and Technology: Gaithersburg, MD, USA, 2002.
20. Rogowski, R.; Morton, M.; Li, F.; Monrose, F.; Snow, K.Z.; Polychronakis, M. Revisiting Browser Security in the Modern Era: New

Data-Only Attacks and Defenses. In Proceedings of the 2017 IEEE European Symposium on Security and Privacy (EuroS&P),
Paris, France, 26–28 April 2017; pp. 366–381.

21. W3C. Same Origin Policy. Available online: https://www.w3.org/Security/wiki/Same_Origin_Policy (accessed on 30 May 2022).

http://doi.org/10.1016/j.future.2018.07.001
http://dx.doi.org/10.1016/j.sysarc.2018.05.007
https://www.w3c.org
 https://www.iso.org/standard/75281.html
 https:www.owasp.org
http://dx.doi.org/10.1016/j.jmsy.2018.03.006
http://dx.doi.org/10.1016/j.egyr.2021.08.126
 https://thingsboard.io
 https://www.w3.org/Security/wiki/Same_Origin_Policy

Sensors 2022, 22, 5004 17 of 17

22. García-Valls, M.; Escribano-Barreno, J.; García-Muñoz, J. An extensible collaborative framework for monitoring software quality
in critical systems. Inf. Softw. Technol. 2019, 107, 3–17. [CrossRef]

23. Patidar, S.; Bains, I.S. Web Security in IoT Networks using Deep Learning Model. In Proceedings of the 2019 International
Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 20–22 August 2020; pp. 848–855.

24. Gaurav, A.; Gupta, B.B.; Hsu, C.-H.; Peraković, D.; García Peñalvo, F.J. Deep Learning Based Approach for Secure Web of Things
(WoT). In Proceedings of the 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal,
QC, Canada, 14–23 June 2021; pp. 1–6.

25. Murthy, P.V.R.; Shilpa, R.G. Vulnerability Coverage Criteria for Security Testing of Web Applications. In Proceedings of the
2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Bangalore, India,
19–22 September 2018; pp. 489–494.

26. Cigoj, P.; Stepancic, Z.; Blazic, B.J. A Large-Scale Security Analysis of Web Vulnerability: Findings, Challenges and Remedies.
International Conference on Computational Science and Its Applications, LNTCS. In Proceedings of the 20th International
Conference, Cagliari, Italy, 1–4 July 2020; Volume 12253.

27. Chen, H.;Chen, J.; Chen, J.; Yin, S.; Wu, Y.; Xu, J. An Automatic Vulnerability Scanner for Web Applications. In Proceedings of
the 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom),
Guangzhou, China, 29 December 2020–1 January 2021; pp. 1519–1524.

28. Liu, Y.; Zhao, W.; Wang, D.; Fu, L. A XSS Vulnerability Detection Approach Based on Simulating Browser Behavior. In Proceedings
of the 2015 2nd International Conference on Information Science and Security (ICISS), Seoul, Korea, 14–16 December 2015; pp. 1–4.

29. Schagen, N.; Koning, K.; Bos, H.; Giuffrida, C. Towards automated vulnerability scanning of network servers. In Proceedings of
the 11th European Workshop on Systems Security, Porto, Portugal, 23 April 2018.

30. Stock, B.; Pellegrino, C.; Li, F.; Backes, M.; Rossow, C. Didn’t you hear me?—Towards more successful web vulnerability
notifications. In Proceedings of the Network and Distributed Systems Security (NDSS) Symposium, San Diego, CA, USA,
18–21 February 2018.

31. Kim, H.; Kim, T.; Jang, D. An Intelligent Improvement of Internet-Wide Scan Engine for Fast Discovery of Vulnerable IoT Devices.
Symetry 2018, 10, 151. [CrossRef]

32. The ZMAP Project. Available online: https://www.zmap.io (accessed on 30 May 2022).
33. Search Engine for the Internet of Everything. Available online: https://www.shodan.io (accessed on 30 May 2022).
34. Mozilla Corp. Navigation Timing API. MDN Webdocs. Available online: https://developer.mozilla.org/en-US/docs/Web/API/

Navigation_timing_API (accessed on 30 May 2022).
35. The Selenium Browser Automation Project. Available online: https://www.selenium.dev (accessed on 1 February 2022).
36. Diggity, M. Reduce Your Server Response Time for Happy Users, Higher Rankings. Available online: https://clx.com/server-

response-time (accessed on 30 May 2022).

http://dx.doi.org/10.1016/j.infsof.2018.10.005
http://dx.doi.org/10.3390/sym10050151
 https://www.zmap.io
 https://www.shodan.io
https://developer.mozilla.org/en-US/docs/Web/API/Navigation_timing_API
https://developer.mozilla.org/en-US/docs/Web/API/Navigation_timing_API
https://www.selenium.dev
https://clx.com/server-response-time
https://clx.com/server-response-time

	Introduction
	Terminology and Threats in Web Security
	Related Work
	Paper Organization

	Baseline
	Threat Model and System Requirements
	Vulnerabilitites

	Approach
	IoT Application
	IoT Device Model
	Server Design
	Potential Vulnerabilities
	Self-Monitoring Design

	Implementation and Results
	Operation Logging
	Service Time

	Conclusions
	References

