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Abstract: Lead-free piezoelectric powders (K0.44Na0.52Li0.04)(Nb0.82Ta0.10Sb0.04)O3 were obtained
by conventional and microwave-assisted reactive heating. Firstly, the synthesis of the material was
carried out following the mixed oxide route and employing both traditional methods and microwave
technology. Thermogravimetry, X-ray diffraction, field emission scanning electron microscopy and
electrical properties analyses were evaluated. X-ray diffraction of the powders calcined by the
microwave process shows the formation of perovskite structure with orthorhombic geometry, but
it is possible to observe the presence of other phases. The presence of the secondary phases found
can have a great influence on the heating rate during the synthesis on which the kinetics of the
reaction of formation of the piezoelectric compound depend. The calcined powder was sintered at
different temperatures by conventional and non-conventional processes. The microstructure of the
ceramics sintered by microwave at 1050 ◦C for 10 min shows perovskite cubes with regular geometry,
of size close to 2–5 µm. However, the observed porosity (~8%), the presence of liquid phase and
secondary phases in the microstructure of the microwave sintered materials lead to a decrease of
the piezoelectric constant. The highest d33 value of 146 pC/N was obtained for samples obtained
by conventional at 1100 ◦C 2 h compared to samples sintered by microwave at 1050 ◦C 10 min
(~15 pC/N).

Keywords: KNL-NTS ceramics; synthesis; calcination; microwave processing; piezoelectric properties

1. Introduction

Industry demands new methods of processing materials in order to improve their
properties. Priority requirements in new processes involve the reduction of energy con-
sumption and processing time. In that regard, microwave radiation heating has shown
some significant advantages over conventional heating [1–3]. Microwave heating is a non-
conventional technique that involves high heating rates and rapid processing times [4–6].
The properties of most materials heated by microwave radiation showed similar or superior
properties to those obtained by conventional processing [7–9].

Materials such as inorganic compounds have been synthetized successfully by apply-
ing different microwave heating techniques [10–14]. However, the sintering of piezoelectric
materials by microwave of energy remains without substantial research [15–17]. So far,
there is a lack of literature about the use of microwave radiation to process piezoelectric
materials, and exploration is, therefore, needed.

The good piezoelectric properties of K0.5Na0.5NbO3 (KNN) make it one of the most
promising ceramics to replace lead-based piezoelectrics [18–20]. Recent studies have shown
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that the addition of Li and Ta improve these properties [21,22]. In this work, the material
(K0.44Na0.52Li0.04)(Nb0.82Ta0.10Sb0.04)O3 (KNL-NTS) was selected to test the benefits that
microwave technology offers.

It is well known that obtaining piezoelectric ceramic powder by the traditional solid-
state reaction method from precursors is the most widespread. Precursor oxides calcination
at temperatures 700–800 ◦C for several hours is an effective method; however, it entails
long processing times as well as high energy costs. An alternative is the use of microwave
radiation as a softer technique for obtaining these materials. The solid-state reaction assisted
by microwave heating has led to the production of KNN systems at lower temperatures than
conventional methods without the presence of secondary phases [23]. It can be expected
that improving microwave heating by using single-mode systems instead of multi-mode
systems will open up the options for this technology [24].

Another fundamental factor determining the properties of KNL-NTS is the sintering
process. The ferroelectric, dielectric and piezoelectric properties are determined by the
structural heterogeneities caused during sintering. Density, grain size, and formation of
second phases depend on the sintering temperature and time, as well as on the chosen sin-
tering method. During microwave heating, the material transforms the absorbed radiation
into volumetric heat, sintering from within the individual grains. In this way, densification
is favored and the process can be completed before the grains grow [9].

In this study, the feasibility of using microwave radiation in both reactive synthesis and
sintering of KNL-NTS is analyzed. For this purpose, a single-mode microwave equipped
with a 1 kW magnetron operating at a resonant frequency of 2.45 GHz in the TE111 heating
mode has been employed. The materials obtained after the calcination and sintering
process were analyzed by X-ray diffraction and high-resolution electron microscopy. The
ferroelectric, dielectric and piezoelectric properties of these materials were determined and
compared with their counterparts obtained by conventional techniques.

2. Materials and Methods
2.1. Starting Materials

The precursors used were Nb2O5 (99.9% purity, Sigma-Aldrich, St. Louis, MO, USA),
Ta2O5 (99.0% purity, Sigma-Aldrich), Sb2O5 (99.9% purity, Alfa Aesar, Haverhill, MA,
USA), Na2CO3 (99.5% purity, Panreac M&E, Barcelona, Spain), K2CO3 (99.0% purity,
Fisher Scientific, Hampton, NH, USA) and Li2CO3 (99.5% purity, Panreac M&E). These
precursors were attrition-milled individually in a Fritsch Pulverisette 7 planetary ball using
ZrO2 stabilized with Y2O3 balls in ethanol during 2 h. This grinding step homogenized
the particle size of the different powders between 2 and 10 µm. The powders obtained
were oven dried at 80 ◦C for 24 h, were mixed according to the stoichiometry of the
(K0.44Na0.52Li0.04)(Nb0.82Ta0.10Sb0.04)O3 formula and were attrition-milled again for 2 h.

2.2. Powder Calcination

The powder mixture obtained was thermogravimetrically analysed (TGA) up to
900 ◦C in air using different heating rates; 3, 5, 20, 30 and 40 ◦C·min−1, using a Q500
thermogravimetric analyzer (TA Instruments, New Castle, DE, USA).

The calcination of mixed powders was carried out by conventional methods in air
at 700, 750 and 800 ◦C with a heating rate of 3 ◦C·min−1 and a dwell time of 2 h, and
microwave radiation in air at 650, 700, 750 and 800 ◦C with a heating rate of 30 ◦C·min−1

and a dwell time of 10 min. The microwave calcination temperature was measured directly
on the powders using an optical pyrometer (CT-Laser 2MH, Optris GmbH, Berlin, Germany)
and the previously calculated emissivity value of 0.833. Figure 1 shows the scheme of
the microwave cavity, where the different layers used are observed: alumina fiber as a
thermal insulator to protect the equipment, silicon carbide as an absorber material of excess
microwave radiation and quartz as a sample holder.
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Figure 1. Schematic of the microwave cavity for calcination and sintering of KNL-NTS powders.

2.3. Sintering Processes

(K0.44Na0.52Li0.04)(Nb0.82Ta0.10Sb0.04)O3 powders conventionally-synthesized at 800 ◦C
for 2 h were uniaxially pressed al 80 MPa. Cylindrical specimens of 10 mm diameter and
about 5 mm height were prepared and sintered by conventional and microwave processes.
The conventional sintering (Carbolite Gero, HTF 1800) was carried out at 1100 ◦C with
2 h and 16 h of dwell time and 5 ◦C·min−1 of heating rate. Microwave sintering used a
single mode cylindrical cavity operating in the TE111 mode with a resonant frequency of
2.45 GHz [9]. The samples were sintered at 950, 1000 and 1050 ◦C using a heating rate of
30 ◦C·min−1 with 10 min of holding time at the maximum temperature. The emissivity of
the material at different temperatures, needed to control the temperature, was determined
prior to sintering (0.837 at 950 ◦C, 0.841 at 1000 ◦C and 0.843 at 1050 ◦C).

2.4. Characterization Methods

In order to characterize and compare the powders calcined by the two methods used,
X-ray diffraction and microstructural characterization were carried out.

The conventionally and non-conventionally sintered materials were characterized
structurally, microstructurally, ferroelectrically, piezoelectrically and dielectrically. The
techniques, equipment and conditions used are specified below.

The X-ray diffraction measurements (Bruker D8 Advance A25 diffractometer, Cu Ka
radiation, Billerica, MA, USA) were performed in the 20–70◦ range with a step size of 0.02◦

and a reading time of 0.3 s.
The bulk density was measured using Archimedes’ principle by immersing the sample

into a water-based liquid (ASTM C373-88).
A field emission-scanning electron microscopy equipped with energy-dispersive anal-

ysis (FE-SEM, GEMINI ULTRA 55 MODEL, ZEISS, Jena, Germany) was used to determine
the morphology of the calcined powders and sintered samples. Grain size was measured
from the micrographs with an image analysis program. The grain size values presented
corresponded to the average of 50 grains measured in each sample.

The ferroelectric properties of the sintered materials were measured with Radiant
Technologies equipment (Inc. RT600HVS, Navi Mumbai, India). Samples were previously
polished to obtain parallel surfaces and then an electrode with silver paste was applied at
high temperature.

Hysteresis loops were performed in a silicon oil bath at room temperature with a
measured voltage of 3000 V. The parameter d33 was measured by placing the samples in a
Berlincourt quasi-static meter. A low frequency pressure (100 Hz) was applied.

The dielectric constant was measured at room temperature using a 4294A Precision
Impedance Analyzer (Agilent, Santa Clara, CA, USA) from 0 to 100 MHz.



Materials 2022, 15, 3773 4 of 12

3. Results

Thermogravimetric analysis was performed on the (K0.44Na0.52Li0.04)(Nb0.82Ta0.10Sb0.04)
O3 (KNL-NTS) powder mixture prior to calcination. Figure 2 shows the thermogravimetric
spectra and the corresponding derivative from room temperature up to 900 ◦C; the heating
rate used was 3 ◦C·min−1. Four weight losses are observed at the temperatures of 96, 192,
438 and 720 ◦C.
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Figure 2. Thermogravimetric analysis (weigth loss in black and its derivate in blue) of the KNL−NTS
powder mixture before calcination.

In order to determine the calcination reaction by the microwave process, a study of the
influence of the heating rate on the thermogravimetric analysis was previously carried out.
Figure 3 shows the TGA curves and derivatives performed on the uncalcined KNL−NTS
powder mixture at 3, 5, 20, 30 and 40 ◦C·min−1 of heating rates from room temperature up
to 900 ◦C.
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In Figure 4, the X-ray diffraction patterns of powders calcined by the conventional
process at 700, 750 and 800 ◦C during 2 h dwell time using a heating rate of 3 ◦C·min−1 are
shown. In the lower part of the graph, the peaks corresponding to precursors, oxides and
carbonates are observed.
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Figure 4. X-ray diffraction of KNL-NTS powders synthesized by conventional process at
different temperatures.

Figure 5 shows the X-ray diffraction peaks of the KNL-NTS powder calcined by
microwave technology at 650, 700, 750 and 800 ◦C with a dwell time of 10 min at the
maximum temperature and a heating rate of 30 ◦C·min−1. The peaks corresponding to
precursors, oxides and carbonates are observed in the lower part of the graph.
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Figure 5. X-ray diffraction of KNL-NTS powders synthesized by microwave technology at
different temperatures.

Sintering of the KNL-NTS materials was carried out from powders calcined at 800 ◦C
for 2 h by the conventional method [25,26]. This choice is due to the previous study where
it has been shown that under these conditions the pure perovskite phase predominates and
there is no formation of secondary phases. Conventional sintering of KNL-NTS powder
was carried out at 1100 ◦C for 2 h and 16 h of dwell time and 5 ◦C·min−1 of heating rate;



Materials 2022, 15, 3773 6 of 12

these parameters are within the range established in the literature [27–29]. Figure 6 shows
the X-ray diffraction patterns of KNL-NTS powders sintered by conventional process.
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Figure 6. X-ray diffraction of KNL-NTS samples sintered by conventional process at different dwell times.

Figure 7 shows the X-ray diffraction patterns of KNL-NTS powders (previously cal-
cined at 800 ◦C 2 h by conventional route) sintered by microwave at different temperatures,
namely, 950, 1000 and 1050 ◦C with 10 min dwell time and a heating rate of 30 ◦C·min−1.
The maximum sintering temperature when applying microwave technology was 1050 ◦C,
since when this temperature is exceeded, the sample starts to melt.
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Figure 7. X-ray diffraction of the KNL-NTS samples sintered by microwave at different temperatures.

Table 1 shows the different values obtained for the physical and electrical properties of
the KNL-NTS materials obtained by both sintering methods as a function of the sintering
conditions. The theoretical density of these materials has been determined by helium
pycnometry, giving a value of 4.72 g·cm−1.

Table 1. Physical and electrical properties of KNL-NTS samples.

Sintering
Process

Temperature
(◦C)

Dwell Time
(min)

Density
(g·cm−1)

Relative
Density (%)

d33
(pC·N−1)

Conventional 1100 120 4.37 ± 0.02 92.6 ± 0.1 145 ± 0.2
Conventional 1100 960 4.41 ± 0.01 93.4 ± 0.1 168 ± 0.2
Microwave 950 10 4.34 ± 0.03 92.0 ± 0.1 11 ± 0.1
Microwave 1000 10 4.35 ± 0.01 92.2 ± 0.1 13 ± 0.1
Microwave 1050 10 4.36 ± 0.02 92.4 ± 0.1 15 ± 0.1
Microwave 1050 20 4.38 ± 0.02 92.8 ± 0.1 10 ± 0.1
Microwave 1050 30 4.38 ± 0.01 92.8 ± 0.1 12 ± 0.1



Materials 2022, 15, 3773 7 of 12

The conventionally and microwave sintered KNL-NTS samples were analyzed by
FE-SEM. The images obtained (Figure 8) show the typical cuboidal structures of perovskite.
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The room temperature dielectric constant of ceramics sintered by the conventional
method at 1100 ◦C for 2 and 16 h and by microwave at 1050 ◦C for 20 min was measured.
The results are shown in Figure 9.
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The hysteresis cycle of the sintered KNL-NTS samples obtained by conventional
method at 1100 ◦C for 2 and 16 h and by microwave technology at 1050 ◦C for 20 min are
shown in Figure 10.
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4. Discussion

The thermogravimetric analysis of the KNL-NTS milled powder mixture before calcining
showed four marked peaks in the derived curve (Figure 2). The first peak appears at 96 ◦C and
corresponds to the loss of water with a weight difference of 8%. The second peak at 192 ◦C,
corresponds with the decomposition reaction of hydrated carbonate to anhydrous carbonate
with a 1.7% mass loss. The third and fourth peaks correspond with the decomposition of
carbonates to oxides, which occurs in range of the 400–760 ◦C. From 760 ◦C no further weight
loss occurs, indicating the end of the reaction. The temperature obtained agrees with the
calcination temperature reported by other authors, which is in the range of 700–800 ◦C [22,25].
Therefore, the temperature range between 650 ◦C and 800 ◦C was selected for the calcination
studies of the powders by conventional and microwave processes.

To study how the heating rate affects the calcination reaction, thermogravimetric
analyses (TGA), were performed using different heating rates; 3, 5, 20, 30 and 40 ◦C·min−1

(Figure 3a). The curves agree with a weight loss of 11.7%, very close to the theoretical one.
However, it is possible to observe that, as the heating rate increases, a higher temperature
is required to complete the reaction. This is confirmed by obtaining the derivative of
the curves shown in Figure 3b. The peak at 438 ◦C with a heating rate of 3 ◦C·min−1

corresponds to the onset of the A2CO3 to AO3 transition and undergoes a shift up to 500 ◦C
when applying 40 ◦C·min−1. The carbonate to oxide transition range, which involves the
release of CO2 occurs in the range of 400 to 690 ◦C when heating rates of 3 ◦C·min−1,
typical of conventional processing are applied. However, by increasing the heating rate to
40 ◦C ·min−1 the temperature interval increases 30 ◦C and ends at 800 ◦C, where the final
transformation can be seen [30].

Figure 3c shows the differential thermal analysis, DTA, applied at different heating
rates. The calcination reaction at 3 ◦C·min−1 presents four endothermic peaks that coincide
with the peaks identified by TGA analysis. However, with increasing speed the peaks of
the perovskite formation reactions become more endothermic, indicating that the reactions
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are not completed. New reactions are formed that may be involved with the formation
of secondary and or transient phases. At a heating rate of 40 ◦C·min−1, the formation
reaction shows exothermic peaks with the formation of different phases. These peaks
correspond with those found using the TGA derivative, indicating that the perovskite
formation has been destabilized, giving rise to various reactions involving secondary phases.
Malic et al. [31] determined that the formation process of KNN-based composites occurs
by the diffusion of alkali and oxygen ions into niobium oxide. Furthermore, perovskite
formation occurs at the interface between a transient phase and niobium oxide. Thus,
different diffusion rates can lead to concentration gradients causing the formation of
secondary phases found during sintering.

According to the analysis of the previous figure, X-ray diffraction of the powders
calcined by the conventional process at 700 ◦C for 2 h (heating rate of 30 ◦C·min−1) shows
the formation of the perovskite phase with coexistence of orthorhombic and tetragonal
symmetries (Figure 4). This is evidenced by the separation between the (002) and (200)
peaks located in the range of 2 theta angles 44–47◦ [32,33]. These peaks are broad due
to the crystallite size which is of the order of nanometers and to the presence of the
amorphous phase. As the calcination temperature increases (750 and 800 ◦C), an increase
in the crystallinity of the perovskite phase and crystal size is observed [9]. At 800 ◦C a
predominantly orthorhombic structure is shown; this is observed with the pronounced
intensity of the peak (002). The presence of secondary phases is not identified.

The microwave calcined KNL-NTS powders show the presence of peaks corresponding
to the formation of the perovskite structure (Figure 5). The dominant geometry is tetragonal,
due to a higher intensity of the peak (200) with respect to the peak (002), which is related to
the orthorhombic geometry. In addition to the perovskite phase, it is possible to observe the
presence of other phases. These can be residues of transitional phases or secondary phases.
The identification of these phases can be complex because the main peaks in most of them
are located very close to the KNN phases, in addition to the low volume mass fractions,
which makes their correct detection difficult. The formation of secondary phases during
calcination can be due to various factors. However, in complex systems such as KNL-
NTS, the presence of the secondary phases encountered can have a major influence on the
heating rate during synthesis on which the kinetics of the piezoelectric compound formation
reaction is influenced. Therefore, the application of high heating rates modifies the diffusion
capacity of the alkaline elements, promoting the formation of secondary phases. During
a conventional synthesis, long processing times produce diffusion processes between the
carbonate ions within the structure of the oxides; however, during a short microwave
calcination time, the formation of the secondary phases is observed.

The X-ray patterns of KNL-NTS materials sintered at 1100 ◦C for 2 and 16 h by con-
ventional processing are shown in Figure 6. The peaks found correspond to perovskite
formation, without the presence of secondary phases. The separation of peaks (002) and
(200) indicate the presence of a cubic structure in the samples processing during 2 h. How-
ever, if the dwell time is increased up to 16 h, a coexistence of orthorhombic-tetragonal
phases with predominance of the orthorhombic phase is observed. These results are in
agreement with the research of Rubio et al. [34], where the evolution of the structure from
tetragonal to orthorhombic with sintering time is demonstrated. There are several factors
that modify the crystalline structure of KNL-NTS-based composites during sintering: the
sintering time at the maximum temperature [34], the concentration gradients of the ele-
ments [35], and the addition of dopant elements [22,35], which hinders the reproducibility
of the results on the geometry of this system [36].

Figure 7 shows the X-ray diffraction patterns in the 950 to 1050 ◦C temperature range. It
is possible to observe the characteristic peaks of the perovskite phase from 950 ◦C to 1050 ◦C.
However, at 950 ◦C the patterns show a distortion along the whole spectrum corresponding
to an amorphous phase. This amorphous phase could be due to the relatively low sintering
temperature and may correspond to the formation of a solution-precipitation stage leading
to the liquid phase [37]. As the sintering temperature increases, the amorphous phase
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disappears, which could indicate that the coalescence stage has ended. The crystal structure
of perovskite is reflected by peaks (002) and (200) and corresponds to a cubic phase [38,39]
due to the combination of these peaks.

Microstructure images obtained by FE-SEM of KNL-NTS ceramics sintered by conven-
tional (Figure 8a) and microwave (Figure 8b) processes show cuboidal structures typical of
perovskite. Cuboids in the 5–8 µm range with well-defined grain boundaries are visible in
the samples obtained by the conventional method with a sintering time of 16 h at 1100 ◦C.
It is also possible to observe residues of the liquid phase typical of sintering of these ma-
terials [18,40]. The microstructure of the ceramics processed by microwave at 1050 ◦C for
10 min shows perovskite cubes with regular geometry, of size close to 2–5 µm; in addition,
it is possible to identify the amorphous phase found in the X-ray diffraction patterns.
The remains of the liquid phase confirm a sintering mechanism similar to conventional
processing. However, there is no heterogeneous heating causing the amorphous phases.

In all cases, the density obtained from the sintered compacts is higher than 90% with
respect to the theoretical value determined (Table 1). The densities achieved are very similar,
with hardly a 1.4% difference between the highest and lowest values. By the conventional
method, the highest density value is obtained when the sintering time is 16 h. Applying
this method, densities similar to those reported in the literature by Rubio et al. [19,26,40]
(4.47 g·cm−3) are obtained. When processing the ceramics by microwave, it is observed
that there is no dependence between the sintering time and the density obtained when the
ceramics are sintered at 1050 ◦C. However, it should be noted that microwave sintering only
requires a cycle of 40 min to obtain a material with a density similar to that of conventional
sintering, which takes approximately 20 h. The energy consumption by microwave is
approximately 80% lower than by conventional sintering, which will have an impact on the
economic cost of the final material, making it much more competitive at industrial level.

The graphs of dielectric constant as a function of frequency measured for materials sin-
tered by the conventional and microwave processes show dispersions caused by relaxation
phenomena due to dipole reorientation (Figure 9). However, the dielectric constant values
are higher for samples sintered by the conventional method compared to microwave. This
can be attributed to the defects localized by FE-SEM observation.

Figure 10 shows the ferroelectric cycles of the KNL-NTS ceramics sintered by con-
ventional and microwave methods. The KNL-NTS sintered by the conventional method
show very similar hysteresis cycles for 2 and 16 h at 1100 ◦C with saturation polariza-
tion (Ps) values at 3500 V of ~17 µC·cm−2. The remaining polarization for this voltage is
~15 µC·cm−2, while the coercive field is 10 KV·cm−1. Dwell time at maximum temperature
is not a determining factor in the ferroelectric measurements for this type of sintering.

For microwave sintered samples, the ferroelectric measurements show conduction
phenomena, because the saturation polarization is higher than the remanent polariza-
tion [36–38]. This means that the sample behaves as a conductor and loses its ferroelectric
capacity. By increasing the external electric field to 2000 V, the sample becomes a conductor.
This same phenomenon occurs in samples sintered at 1050 ◦C for 30 min.

It has been shown that there are several factors that limit the ferroelectric response
of ceramics: low densities [20,39,40], the presence of liquid phase [40] and secondary
phases [26]; in addition, the presence of the cubic phase reduces the polarization capacity
of the material. Similar phenomena have been obtained by Sridevi et al. [40] in KNN-based
materials sintered by multimode microwave.

5. Conclusions

In the present work, as an alternative to the conventional precursor calcination
method to obtain piezoelectric materials (K0.44Na0.52Li0.04)(Nb0.82Ta0.10Sb0.04)O3, KNL-
NTS, microwave-assisted reactive synthesis has been employed. The results suggest that it
is possible to synthesize such a compound from a solid-state oxide reaction. However, the
microwave heating mechanism, influenced by the high heating rate, alters the obtaining of
the pure perovskite phase.
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The samples sintered by the conventional method present a piezoelectric constant
of 146 pC·N−1 and 169 pC·N−1 for 2 and 16 h of dwell time. The microwave processed
ceramics show low piezoelectric properties ~10 pC·N−1 due to low polarization capability.
These samples behave as conductors according to the obtained ferroelectric cycles. The use
of microwave technology generates secondary phases and defects which restrict the final
properties, including ferroelectric properties.
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