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∙ A data-driven technique is used for map characterisation.

∙ Minimisation of the number of operating conditions to be tested is achieved.

∙ Determination of the optimal location for testing points.

∙ The method captures the compressor efficiency with high accuracy.

∙ A trade-off between experimental effort and accuracy is evaluated.
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Compressor characterization, either by running experiments in a turbocharger test rig or by detailed CFD 
modelling, can be expensive and time-consuming. In this work, a novel method is proposed which can be 
used to build a complete compressor map from a reduced number of measured operating points combined 
with a previously collected database. The methodology is based on the application of the Singular Value 
Decomposition (SVD) method to acquire the orthonormal bases of a matrix which contains the information 
of previous compressor observations. These bases are used along with pivoted QR decomposition to obtain 
the minimum number of measurement points which are required to implement this technique as well as its 
optimal placement within the map. The reconstruction of two different compressor maps was made to validate 
the method. The results show a substantially better trade-off between number of testing points and accuracy 
compared to standard equidistributed sampling.
1. Introduction

The turbocharging system is a widespread technology used by many 
propulsive systems as it takes advantage of the energy from the exhaust 
gases to improve fuel consumption which, among other benefits, leads 
to emissions reduction. Furthermore, this system enables the down-

sizing strategy in automotive engines, increasing power density while 
maintaining the same level of performance.

An integral part of the turbocharger is the centrifugal compressor, 
understanding the performance of this system is an important factor to 
attain an optimal description of the engine behaviour. Whether for sim-

ulation purposes [1, 2] or for generating 1D-models [3, 4, 5], having 
a thorough knowledge of the compressor’s main features is required. 
These features are mostly captured in the compressor map, which re-
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lates the compressor efficiency with the compression ratio, inlet mass 
and speed. The most common approach to obtain a complete compres-

sor map is by means of extrapolation or interpolation techniques [6, 
7, 8] using look-up tables mostly obtained with experimental testing. 
Numerical methods are also used frequently [9, 10], although they re-

quire detailed knowledge of the compressor’s geometry. In either case, 
obtaining complete maps may result in high computational efforts for 
compressor CFD modelling or high economic cost for experimental test-

ing.

As a result, many research projects have focused on the development 
of alternative methodologies to estimate the compressor characteristics. 
Some studies rely on data-driven techniques such as neural networks 
or regression algorithms which take advantage of an already existing 
database. Yu et al. [11] use back-propagation neural networks for an 
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Table 1. Compressor database operating ranges.

Parameter Range Units

Corrected speed 47.10 - 237.67 [krpm]

Corrected mass flow 0.010 - 0.220 [kg/s]

Pressure ratio 1.04 - 3.91 [–]

Efficiency 0.30 - 0.82 [–]

axial-compressor map prediction. However, in addition to the actual 
map data, it also requires experimental data provided by the manufac-

turer. Azzam et al. [12] use artificial neural networks (ANN) to predict 
the loss coefficient and the pressure ratio as well as some basic geom-

etry parameters from an axial compressor. This technique also requires 
a large database, which was created based on compressors with differ-

ent geometries. In both cases, the amount of training data is crucial for 
learning precision and to an adequate approximation.

As for regression models, partial least squares (PLS) modelling meth-

ods have also been used as these require a low sample number and 
promote robustness [13]. For instance, compressor pressure ratio and 
efficiency were predicted in [14] using kernel PLS. Peng et al. [15] 
used three different methods to make a component characteristic re-

construction. Results showed PLS achieves better accuracy compared to 
traditional methods and back propagation, although the application of 
PLS depended on the shape of compressor characteristic curves as well 
as the number of samples available.

In this framework, this paper proposes a data-driven concept to es-

timate a complete compressor map from a limited number of testing 
points. The method is based on the study made by Manohar et al. [16] 
where SVD coupled with QR pivoting is used to optimize the sensor 
placement for signal reconstruction based on features extracted from a 
database. SVD can be found in the literature for various uses such as 
face recognition analysis [17, 18, 19] or for information reconstruction 
from sparse data in fluid dynamics [20, 21]. Regarding QR, this ma-

trix factorization has proven to be useful in data science applications, 
particularly for dimension reduction [22, 23].

The scope of this research work is to apply a method, based on 
SVD and pivoted QR decomposition, capable of estimating a compres-

sor map with a reduced number of samples. Results demonstrate that 
employing an available experimental database comprised from different 
compressor types and experimental conditions may reduce testing and 
computational effort. Besides the introduction, this article is organized 
as follows: section 2 describes the experimental facilities used for data 
acquisition. Section 3 is devoted to briefly introduce the main charac-

teristics of SVD and QR as well as to define how these tools are applied. 
In section 4, the results from the method implementation are presented 
and the final section concludes with the strengths of the method and its 
limitations.

2. Experimental setup

Implementation of the SVD-pQR method requires a database, which 
was generated using the information provided by different compressor 
maps obtained, over time, in the turbocharger test bench employed in 
this study. Although, each compressor used in this analysis was imple-

mented in a different ICE engine, all of them are radial flow compressors 
with similar size characterized by having a similar mass flow range and 
head coefficient, as well as a similar highest pressure ratio. Table 1

gives the complete operating range covered by the compressors in the 
database for each of the main features present in a conventional map.

The turbocharger test bench shown in Fig. 1 has been specifically 
developed to carry out characterization tests on centrifugal compres-

sors and radial turbines. Fig. 2 illustrates a schematic of the installation 
with two distinct zones. The dotted line shows the power generation 
zone defined by an engine, a brake, a gearbox and a screw compres-

sor. The engine acts as a gas flow generator, providing energy to the 
turbocharger to be tested via its exhaust gases. In particular, the en-

thalpy in the engine exhaust gases driving the turbine is controlled by 
2

Fig. 1. Global view of the experimental facility.

Table 2. Measurement sensors characteristics.

Parameter Sensor type Uncertainty

Mass flow hot mass flow meter 1.1%

Temperature type K thermocouples 1.52 K

Pressure piezoresistive transducers 12.5 hPa

acting on the engine speed and load. A screw compressor is used to su-

percharge the engine, so allowing an additional degree of freedom to 
control the engine exhaust (so turbine inlet) conditions. The solid line 
defines the experimental measurement area for the characterization of 
compressors and turbines. The volume located at the inlet of the turbine 
laminates the pulsating gas obtaining continuous flow without pulses. 
Further details on the experimental facility can be found in [24].

The position of the measurement sensors was made according to 
SAE standards for the characterization of radial compressors on a tur-

bocharger bench [25, 26]. Table 2 presents a summary of the sensors 
used during the experimental campaigns, the associated uncertainty ob-

tained with a 99.7% level of confidence is also included. Olmeda et al. 
[27] explain in more detail the quantification of the measurement un-

certainty values for the turbocharger test bench.

2.1. Compressor map

A compressor map defines the operating area of a compressor by 
comparing the main performance metrics: mass flow rate (�̇�), rotational 
velocity (𝜔), pressure ratio (𝑟𝑐) and isentropic efficiency (𝜂). Fig. 3

shows the compressor maps characterized in this bench that comprise 
the database. The dots in each map represent the measurement points 
determined by the mass flow and the rotational speed. These parame-

ters are corrected with the compressor inlet and a reference condition to 
obtain the corrected mass flow (�̇�∗

𝑐 ) and the corrected rotational speed 
(𝜔∗

𝑐 ), as defined by equations (1) and (2).

�̇�∗
𝑐 = �̇�

√
𝑇1
𝑇𝑟𝑒𝑓

𝑃𝑟𝑒𝑓

𝑃1
(1)

𝜔∗
𝑐 = 𝜔

√
𝑇𝑟𝑒𝑓

𝑇1
(2)

where, 𝑃𝑟𝑒𝑓 = 0.999 𝑏𝑎𝑟 and 𝑇𝑟𝑒𝑓 = 293 𝐾 .

The compressor efficiency surfaces were obtained using a shape-

preserving piecewise cubic interpolation. Thus, the performance map 
presents a relation between the aforementioned parameters: 𝜂 =
𝑓 (�̇�∗

𝑐 , 𝜔∗
𝑐 ).
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Fig. 2. Experimental set-up.

Fig. 3. Complete compressor maps containing the efficiency (𝜂) contour plot versus corrected mas flow (�̇�∗
𝑐
) and corrected velocity (𝜔∗

𝑐
).
3. Methodology

This paper addresses the problem of minimizing the cost of char-

acterising a compressor with a specified level of accuracy. In addition 
to being ambitious, the above statement is a vague formulation of the 
problem. On the one hand, it is difficult to properly define a cost in a 
system with so many factors (facility cost, energy cost, operating cost, 
post-processing, etc). On the other hand, the level of accuracy cannot 
be verified a priori, without carrying out validation tests. For this rea-

son, this paper will address the complementary problem of: given a 
maximum number of points to be tested, place them on the compres-

sor operation map in such a way that the expected error, according to a 
database, is minimised. Repeating this process with different maximum 
number of points, a trade-off between experimental effort and accuracy 
can be estimated. To accomplish this, the following considerations are 
taken into account:
3

• The original problem objective (i.e. cost minimization) is relaxed 
to minimise the number of operating conditions to be tested. This 
is equivalent to the assumption of a constant operating cost, inde-

pendent on the tested conditions and that the transition between 
points is negligible. A discussion on the optimization of the testing 
order may be found in [28].

• The compressor characterization is, in this paper, represented by 
the compressor map, i.e. a relation between compressor flow, pres-

sure ratio, speed and efficiency.

• The specified level of accuracy cannot be assured beforehand. In-

stead, the testing points will be placed to optimally reconstruct (in 
the sense of minimum mean-square error) the complete compres-

sor map according to a tailored set of modes (or features) extracted 
from a large set of compressors training data. Note that it is implic-

itly assumed that the database is somehow representative of the 
compressor to be characterized.
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Fig. 4. Compressor normalized database.
In order to achieve the previous objective, three main steps should 
be followed:

1. Compressor map definition and normalization, i.e. express the rela-

tion between compressor variables (mass, compression ratio, speed 
and flow) in a basis that allows to compare compressors with dif-

ferent features (sizes, geometries, etc)

2. Provided a large data-set with a high dimension (𝑚), obtain a 
low-dimensional representation (𝑝 ≪𝑚), aimed to compress the in-

formation in a low rank (𝑝) matrix containing the key features of 
the data-set. To this aim, SVD will be used.

3. Considering the low-rank representation obtained in step 2, choose 
the best 𝑝 conditions to reconstruct the complete compressor map. 
To this aim, pivoted QR decomposition will be used.

The previous three steps are described in the following subsections.

3.1. Compressor map normalization

Before performing the data factorization into its main modes, a 
database normalization was made as features can have different scal-

ing. This procedure intends to non-dimensionalize the main parameters 
required to represent the compressor map. SVD depends on the coordi-

nate system in which the data is represented, hence the importance of 
pre-processing the database.

The map is conventionally presented in a standard form with the ef-

ficiency (𝜂) as a function of the pressure ratio and the corrected mass 
flow. However, for normalization purposes the map will be analysed 
in an alternative form with the corrected rotational speed instead of 
the pressure ratio (see Fig. 3), then 𝜂 = 𝑓 (�̇�∗

𝑐 , 𝜔∗
𝑐 ). For each iso-speed 

line, normalization was made using the corresponding minimum and 
maximum �̇�∗

𝑐 , assuming that both increase linearly with 𝜔∗
𝑐 . For this 

procedure, at least the extreme values of the mass flow should be mea-

sured; the surge line will define the lower mass flow rate points and the 
choke line the higher mass flow rate.

The normalized range of both variables, 𝜔∗
𝑐 and �̇�∗

𝑐 , lies between 
0 and 1 following equations (3) and (4), respectively. The compressor 
maps after the normalization are shown in Fig. 4.
4

�̂�∗
𝑐 =

𝜔∗
𝑐 −𝜔

∗
𝑚𝑖𝑛

𝜔∗
𝑚𝑎𝑥 −𝜔

∗
𝑚𝑖𝑛

(3)

̂̇𝑚∗
𝑐 =

�̇�∗
𝑐 − �̇�

∗
𝑚𝑖𝑛

�̇�∗
𝑚𝑎𝑥 − �̇�

∗
𝑚𝑖𝑛

(4)

3.2. Singular value decomposition

Consider a matrix 𝑋 ∈ℂ𝑛×𝑚 as shown in equation (5).

𝑋 =
⎡⎢⎢⎣
↑ ↑ ↑ ↑

𝑥1 𝑥2 ⋯ 𝑥𝑗 ⋯ 𝑥𝑚
↓ ↓ ↓ ↓

⎤⎥⎥⎦ (5)

𝑋 is a collection of m column vectors, where m is the number of 
species in the database (in this case the amount of compressor maps) 
and n is the number of points employed to represent each compressor 
map. The representation consists on a grid of 25 points in the cor-

rected flow axis and 50 points in the corrected speed axis depicting 
the efficiency value. This grid is reshaped into a column that will be 
used to generate the X matrix. In this sense, each column 𝑥 will have 
𝑛 = 25 × 50 = 1250 elements.

Then, the SVD of 𝑋 performs a factorization into the product of 
three other matrices as shown in equation (6).

𝑋 =𝑈Σ𝑉 𝑇 (6)

where 𝑈 ∈ℝ𝑛×𝑛, Σ ∈ℝ𝑛×𝑚 and 𝑉 𝑇 ∈ℝ𝑚×𝑚.

𝑈 and 𝑉 are unitary and orthogonal matrices hierarchically ar-

ranged in terms of their ability to describe the variance in the columns 
and rows of 𝑋 respectively. Σ is a diagonal matrix with decreasing, 
non-negative singular values. In this sense, The SVD is a matrix de-

composition method that reduces some real or complex matrix into key 
features which can be used to make a better analysis or description of 
the original data.

The diagonal values in the Σ matrix are known as the singular values 
of the original matrix 𝑋. The columns of the 𝑈 matrix are called the left-

singular vectors of 𝑋, and the columns of 𝑉 are called the right-singular 
vectors of 𝑋.
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Fig. 5. Reduced SVD scheme.

Usually, there are more measurements than species 𝑛 ≫𝑚. However, 
as there are only m non-zero singular values, 𝑈 and Σ can be reduced 
by selecting the first m columns in 𝑈 and the first 𝑚 ×𝑚 sub-matrix from 
Σ to obtain an economic version from the SVD, an schematic represen-

tation of the process can be seen in Fig. 5.

This reduced version is still an exact decomposition of the original 
matrix 𝑋, then equation (7) is equivalent to equation (6).

𝑋 =𝑈 Σ̂𝑉 𝑇 =𝑈Σ𝑉 𝑇 (7)

where 𝑈 ∈ℝ𝑛×𝑚, Σ̂ ∈ℝ𝑚×𝑚 and 𝑉 𝑇 ∈ℝ𝑚×𝑚.

3.3. Compressor map reconstruction

Once the base matrix 𝑈 for the compressor database was obtained, 
two subjects must be addressed:

• The first one refers to the number of elements from this base that 
should be used. A trade-off between precision and time exists, as a 
large number of elements will ensure a better precision but will be 
time consuming and can even cause overfitting, considering that 
the database may have several number of features.

• The other subject refers to the amount and location of the testing 
points from the new compressor to have the better map estimation. 
The testing point placement will not be unique, varying from one 
case to another.

3.3.1. Reduced rank model

To obtain the optimal number of features to use, an SVD trunca-

tion was applied. According to the Eckhart-Young theorem [29], given 
a defined rank 𝑝 <𝑚, the SVD provides the best possible rank-p approx-

imation to matrix 𝑋 in a least square error sense.

Since both the singular vectors 𝑈 and 𝑉 are unitary, only the sin-

gular values in Σ̂ represent the weights of the different modes. If most 
of the information given by 𝑋 is captured in the first 𝑝 singular values, 
then a reduced rank approximation to 𝑋 only in terms of these domi-

nant values can be made. This rank truncation threshold has to ensure 
that the signal content is preserved by the SVD, then equation (8) can 
be used to obtain the number of modes (p) that returns a certain level 
of representation ℎ.

100% ×
∑𝑝

1 𝜎𝑘∑𝑚
1 𝜎𝑘

≥ ℎ (8)

Once the rank of the model is decided, 𝑈 can be resized by using 
only the first 𝑝 columns, similar to what has been done for the reduced 
SVD representation.

3.3.2. Optimal testing points placement

The last topic to be addressed is to find the operating points that 
need to be measured from the new compressor to obtain an optimal 
map estimation. Provided that 𝑈𝑛×𝑚 is a base for the space of all the 
possible compressor maps, then, a given compressor map (𝑥) can be 
expressed as:

𝑥𝑛×1 =𝑈𝑛×𝑚𝛼𝑚×1 (9)
5

with 𝛼 ∈ℝ𝑚 the coefficients of 𝑥 in the 𝑈 basis.

Based on the previous subsection, consider using a 𝑈 subset of rank 𝑝
as a basis, then, 𝑚 = 𝑝 in equation (9). In addition, from all the available 
measurements in 𝑥 only a limited set 𝑦𝑝×1 was selected. In this sense, 
one can define a sparse matrix 𝐶 , whose entrances are zeros or ones, to 
obtain 𝑦 by pre-multiplication of vector 𝑥:

𝑦𝑝×1 = 𝐶𝑝×𝑛𝑥𝑛×1 (10)

Combining equation (9) and (10), a relation is defined between the 
location of the optimal points, given by 𝐶 matrix, and the basis 𝑈𝑛×𝑝
obtained previously.

𝑦𝑝×1 = 𝐶𝑝×𝑛𝑈𝑛×𝑝𝛼𝑝×1 (11)

As equation (11) can be solved for 𝛼, the question arising is the 
structure of matrix 𝐶 , which entrances should be zeros and ones, to 
make the inverse of 𝐶𝑈 as well-conditioned as possible. To do that, 
𝐶 should be chosen in a way that minimizes the condition number of 
𝐶𝑈 . Considering that the condition number is related to the spectral 
characteristics of the matrix, a general approximation for the condition 
matrix minimization is the determinant maximization (that leads to D-

Optimal Design of Experiments).

3.3.3. QR decomposition

In this work, instead of using complex Design of Experiments tech-

niques, pivoting QR decomposition is used to obtain the proper matrix 
𝐶 . This method consists on a factorization of an 𝑛 × 𝑝 matrix 𝐴 into the 
product of orthonormal (𝑄) and upper triangular (𝑅) matrices through 
a column permutation (pivoting) matrix 𝑃 (see equation (12)), which is 
mainly used for system equation solving by elimination [30].

𝐴𝑃 =𝑄𝑅 (12)

The resulting pivot matrix 𝑃 orders the elements in the triangular 
matrix 𝑅 in decreasing order (|𝑅11| ≥ |𝑅22| ≥⋯ |𝑅𝑝𝑝|). To do that, the 
pivoting method is based on maximizing |𝑅𝑖𝑖| at each step of the fac-

torization, so becomes a greedy approximation to the determinant of 𝑅
[31]. For the case at hand, permutation matrix 𝐶 , which approximates 
the best sampling for the 𝑝 basis modes, can be obtained by perform-

ing pivoted QR decomposition [32, 33] over the transpose of singular 
vector matrix 𝑈 .

𝑈𝑇
𝑛×𝑝 =𝑄𝑅𝐶 ⇔𝑈𝑇

𝑛×𝑝𝐶
𝑇 =𝑄𝑅 (13)

Once the 𝐶 matrix is defined, the coefficients 𝛼 can be obtained with 
an inversion as in equation (14).

𝛼𝑝×1 = (𝐶𝑝×𝑛𝑈𝑛×𝑝)−1𝑦𝑝×1 (14)

At last, the compressor map can be reconstructed with equation (9) 
considering 𝑚 = 𝑝. Fig. 6 depicts a scheme of the steps followed through-

out the methodology.

4. Analysis and results

To validate the method, two different compressors were selected 
randomly (for example purposes compressors 2 and 11 have been ex-

tracted). With the complete normalized database, the 𝑋′ matrix was 
defined using all the compressors but the one selected for validation. 
The 2D information from each map, portrayed in the aforementioned 
grid (see section 3.2), was reshaped into the 𝑚 = 13 columns of 𝑋′. The 
final 𝑋 matrix was obtained subtracting the mean compressor matrix to 
the 𝑋′ matrix, then, the economic SVD was applied over 𝑋.

This strategy was implemented for the reconstruction of each of the 
compressor maps selected. In both cases, at least 6 modes are required 
to capture more than 90% of the original map, according to the rank 
evaluation (see Fig. 7). The main modes obtained from this procedure 
are shown in the lower plot with its corresponding singular value. As 
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Fig. 6. Model scheme.
Fig. 7. Upper: SVD rank evaluation for 90% representation. Lower: The main 
modes associated to the first singular values represent most of the original 
database variations, whereas the last modes present mostly noise.

was mentioned in section 3.3, the first modes are more representative 
of the original matrix. Information is indeed less significant for higher 
modes, such as in mode 13 which shows mostly noise. In the case at 
hand, the method will be applied using from 2 up to 12 modes, to check 
the method accuracy depending on the number of modes chosen.

The first estimated map corresponds to compressor 2, which was 
originally obtained by interpolation with 84 measurement points. Fig. 8
6

(upper plot) shows the reconstructed maps using 2, 10 and 12 testing 
points. As can be seen in the upper figures, the method is able to cap-

ture some general trends. For instance, the region corresponding to the 
maximum efficiency can be identified, as well as most of the efficiency 
islands. However, near the surge line some discrepancies can be ob-

served, in fact, the points that present more than a 5% error are mostly 
located in this area and also along the choke limit. Regarding the num-

ber of testing points, the lower plots show an increase of the accuracy 
as the number of measurements increase. Although beyond 10 points 
no significant change is observed in the mean absolute error (MAE), the 
predictability seems to decrease for a large number of testing points. An 
analysis on the residuals indicates that over-fitting may occur beyond 
𝑝 = 7. Fig. 10 displays the residuals standard deviation (𝜎𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠) for the 
case at hand.

The second map estimation was made for compressor 11, which was 
originally obtained by interpolation with 70 measurements points. Re-

sults are presented in Fig. 9, overall, the estimation is accurate for most 
of the efficiency values. The map is correctly captured showing most of 
the differences near the boundary areas. In contrast with the previous 
compressor, this map presents a lower efficiency range which allows an 
easier detection. It is worth mentioning that despite compressor 11 was 
taken out of the database, the same compressor with a different inlet 
remained in the database unlike compressor 2 which did not have any 
similar one. This will also explain why this compressor was better esti-

mated. As with the previous compressor, the 𝜎𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 analysis in Fig. 10

indicates that larger number of testing points are prone to over-fitting. 
This can be attributed to the fact that the last modes contain more noise.

Finally, a comparison between the SVD-pQR method and progressive 
testing is made. For progressive testing interpolation was made taking 
equidistant points from matrix 𝑋. Since the result of the progressive 
testing will depend on the position of the testing points, several com-

binations have been tested for a given number of tests. The MAE was 
used to compare the results as shown in Fig. 11. The efficiency of the 
SVD-QR method is clearly appreciated. For compressor 2 a minimum 
absolute error of 0.02 is attained using at least 6 testing points, whereas 
using progressive testing more than 12 points are needed to achieve the 
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Fig. 8. Upper: Compressor 2 reconstruction for different testing points. Lower: Comparison between measured and estimated efficiency values. Black lines represent 
the ±5% error limit.

Fig. 9. Upper: Compressor 11 reconstruction for different testing points. Lower: Comparison between measured and estimated efficiency values. Black lines represent 
the ±2% error limit.
same error. As for compressor 11, the same trend is observed; in this 
case the minimum error was below 0.01 which corresponds with the 
previous analysis. However, progressive testing seems to have a similar 
response regardless of the compressor, then, it requires more than 30 
testing points to reach a similar relative error.

The point reduction (PR) percentage compared to progressive test-

ing is analysed in Fig. 12. This reduction is measured as described in 
equation (15), where 𝑁𝑠𝑣𝑑 and 𝑁𝑝𝑡 refers to the number of points used 
with the SVD+pQR method and with progressive testing, respectively.

𝑃𝑅[%] = 100
|||𝑁𝑠𝑣𝑑 −𝑁𝑝𝑡

|||
𝑁𝑝𝑡

(15)
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For comparison purposes, the mean error was obtained for the pro-

gressive testing combinations with the same number of points. Results 
show the effectiveness of the SVD-pQR method to optimally place the 
measuring points: to attain the same MAE, the method requires over 
60% less points compared to progressive testing for both of the com-

pressors estimation. Certainly, the reduction is limited by the number 
of available test points, as this is related to the level of accuracy that 
the method is able to reach.

5. Conclusions

In this paper, a new method for estimating compressor maps with 
reduced testing information was proposed. This method uses SVD and 
pivoted QR decomposition to reconstruct a compressor map based on a 
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Fig. 10. Residuals standard deviation for both validation tests, shown in loga-

rithmic scale.

Fig. 11. Estimation error comparison for the SVD-pQR method against progres-

sive testing.

previous database. The importance of this procedure is that it minimizes 
the compressor estimation error given a reduced number of testing 
points which is an advantage in terms of time and resources needed.

The method was applied in two different compressors, demonstrat-

ing an optimal capability to estimate both maps. In both compressors 
tested, the mean absolute error represented less than 2% of the effi-

ciency with at least 6 measurement points, while standard progressive 
testing shows errors above 5% for the same number of points. More im-

portantly, the method was able to capture most of the map information 
8

Fig. 12. Point reduction attained with SVD+pQR method comparing with pro-

gressive testing method.

using between 6 to 10 points. Results also highlight the importance of 
assembling a suitable database that is representative of the compressor 
to be analysed.

Overall, this method can be used to obtain a complete compressor 
map when some of the information is missing or few experimental op-

erating points are available. It can also be useful in applications with 
low computational resources where using a high amount of data points 
may be detrimental.
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