

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/198864

Martí, P.; Jordán, J.; Palanca Cámara, J.; Julian, V. (2022). Charging Stations and Mobility
Data Generators for Agent-based Simulations. Neurocomputing. 484:196-210.
https://doi.org/10.1016/j.neucom.2021.06.098

https://doi.org/10.1016/j.neucom.2021.06.098

Elsevier

Charging Stations and Mobility Data Generators for

Agent-based Simulations

Pasqual Mart́ıa, Jaume Jordána, Javier Palancaa, Vicente Juliana

aValencian Research Institute for Artificial Intelligence (VRAIN)
Universitat Politècnica de València

Camino de Vera s/n, 46022 Valencia (Spain)
pasmargi@vrain.upv.es, {jjordan,jpalanca,vinglada}@dsic.upv.es

Abstract

Current traffic congestion and the resulting carbon emissions are two of the
main problems threatening the sustainability of modern cities. The chal-
lenges facing today’s cities focus primarily on the optimization of traffic flow
and the transition to electric vehicles. The latter aspect implies the need
for an adequate deployment of the infrastructure of charging stations. The
inherent complexity in today’s cities and the difficulty in implementing new
policies whose benefits are difficult to measure and predict has led in recent
years to consider the enormous potential of simulation tools and in particular
of the agent-based simulation (ABS). ABS allows the specification of complex
models that reflect the complexity and dynamism of urban mobility. Cur-
rent technology in ABS has evolved and matured sufficiently to provide very
sophisticated tools but lacking facilities for a flexible and realistic generation
of input data in the execution of the experiments. In line with this, this
paper introduces two configurable generators that automatize the creation
of experiments in agent-based simulations. The generators have been devel-
oped with the SimFleet simulation tool enhancing the simulation of realistic
movements and location of vehicles, passengers and other users of the urban
traffic system within a city. The generators proved to be useful for compar-
ing different distributions of locations as well as different agent movement
behaviors based on real city data.

Keywords: multi-agent system, simulation, transportation, electric vehicle,
smart city, urban fleets

Preprint submitted to Neurocomputing November 18, 2021

1. Introduction

The International Telecommunication Union (ITU) and the United Na-
tions Economic Commission for Europe (UNECE) defined, in 2015, a smart
sustainable city as an innovative city that uses Information and Communi-
cation Technologies (ICTs) to improve quality of life, the efficiency of urban
operations and services, and competitiveness, while ensuring that it meets
the needs of present and future generations concerning economic, social, en-
vironmental and cultural aspects. Currently, the list of challenges for keeping
current cities sustainable has grown, and consequently, so has the need to
establish appropriate intervention policies with the lowest possible risk.

One way of researching how to deal with such challenges is through the
use of simulators [1], and specifically agent-based simulation (ABS) [2]. ABS
integrates an interesting number of properties which makes it useful for a wide
range of domains, supporting structure preserving modeling of the simulated
reality, parallel computations, simulation of proactive behavior, and flexible
and dynamic simulation scenarios [3]. All these properties can be clearly
observed in the domain of today’s cities, where we find multiple autonomous
entities that move around the city and make use of a collection of resources
located according to certain policies, such as policies for the deployment of
new electric vehicle charging stations. Currently, we can find a multitude
of agent-based simulation tools [4], some of them specifically designed for
traffic or urban mobility management. Using these tools, it is possible to
see the effect that the changes would have on the city after defining them,
thus avoiding a possible unsuccessful deployment. However, as current cities
are very complex systems, it is necessary to have a complete simulator that
allows experimentation with big and complex configurations inside the city.
The more realistic the simulator, the more accurate and useful experiments
would be for real-world applications.

In this work, we propose different ways to generate more realistic data
as input for agent-based simulation experimentation, extending a previous
work presented in [5]. More specifically, we focus the processes of generating
more realistic data on two problems: the generation of possible locations for
electric vehicle charging stations, and the generation of realistic movements
of entities in a city to have an appropriate representation of its traffic flow. To
do this, we use SimFleet simulator [6], which is able to place different varieties
of agents with custom behaviors over real-world cities to develop and test any
type of strategies. Over SimFleet we have developed two generators for the

2

above commented problems. On the one hand, a charging stations generator
to create several distributions of these infrastructures, and make comparisons
and simulations with well-informed charging stations emplacing systems such
as the one in [7], which uses several data sources to feed a genetic algorithm
that obtains solutions. On the other hand, a mobility data generator of
entities that move in a city such as delivery transports, private vehicles, or
taxi fleets, among others. Moreover, these mobility data generators makes
use of real data of the city, which implies a more informed approach to the
generation of realistic traffic in a city to be used in dynamic simulations. To
do this, different generators of each type have been developed, where the most
sophisticated ones are based on different AI techniques and are explained in
detail further in this paper.

In order to illustrate the use of the proposed generators, the paper in-
cludes a case study in the city of New York, concretely in the Manhattan
Island area. The study has been made using available data such as popula-
tion, traffic, and tweets, from open data portals, or gathered with other tools
like U-tool [8].

The rest of this paper is structured as follows. Section 3 presents the
SimFleet simulator, on which the proposal presented in this paper has been
developed. Sections 4 and 5 explain the two main generators proposed in
this work, that is, the charging stations simulator and the mobility data
generator. Section 6 illustrates through a case study the use of the proposed
generators. Finally, some conclusions are presented in Section 7.

2. Related work

Agent-based simulation has become in recent years a key aspect for the
development of more realistic simulations with high scalability. In the envi-
ronment of urban mobility, there are many works that try to perform simu-
lations to study aspects such as traffic, movement of citizens, crowds, emer-
gency situations, or the optimal location of different services.

To support the modeling and development of these simulations, different
tools have been appearing that facilitate the execution of experiments for the
study of mobility both at urban and interurban level. A review on agent-
based simulation tools for traffic and transportation can be consulted in [9].

In traffic simulation, one of the most well-known tools is SUMO [10].
SUMO is an open-source traffic simulation framework which includes net im-
port and demand modeling components. SUMO helps in several research top-

3

ics such as traffic light algorithm, the choice of routes, and in the simulation
of vehicular communication with other vehicles or with the infrastructure.
The framework is used in different projects to simulate traffic management
or autonomous driving. SUMO employs origin/destination matrices to de-
scribe the movement between traffic assignment zones in vehicle number per
time in large-scale scenarios. Moreover, SUMO can be extended through new
applications in order to extend how to generate traffic information for the
simulation process.

Another well-known simulation framework is MATSim [11]. MATSim is
a framework that allows the implementation of large-scale agent-based trans-
port simulations. The framework is mainly employed for demand-modeling
and traffic flow simulation. MATSim offers several extensions which en-
hance the functionality with additional features, one example is the package
that allows to convert Google Transit Feed Specification (GTFS) data into a
MATSim transit schedule. The GTFS is an extension of the General Tran-
sit Feed Specification which is a data specification that allows public transit
agencies to publish their transit data in a format that can be consumed by
a wide variety of software applications. Other example we can highlight is
SIMmobility [12], which is a simulation framework that helps in the predic-
tion of the impact of mobility demands on intelligent transportation services,
vehicular emissions and transportation networks, or its specific version for
logistics called SimMobility Freight [13]. VISSIM [14] is another well-known
commercial simulator that provides an ecosystem of products that can be
integrated to provide solutions to solve different mobility and transportation
challenges. VISSIM is the only one that offers real-time knowledge acquisi-
tion. Lastly, Matisse 3.0 [15] is the last version of a microscopic simulator
for agent-based intelligent transportation systems which includes intersection
controllers and enables V2X and I2I [16] communication mechanisms.

Another widely used framework is AnyLogic1. AnyLogic is a general pur-
pose simulation software but includes specific extensions for mobility man-
agement that allows to simulate aspects such as transportation planning,
fleet management, and traffic flow. As facilities for data generation, Any-
Logic allows the import of databases as well as the generation from scratch
of different components of the simulation. There exists numerous examples
of mobility simulation models in AnyLogic, in [17] a simulation model is used

1https://www.anylogic.com

4

as a decision support tool for estimating efficiency of vehicle schedules with
time windows. Another example is the work presented [18] which is a study
of passenger flow in urban subway stations which makes use of the Anylogic
pedestrian library.

From another perspective, new agent-based simulators for the generation
and testing of autonomous driving strategies have recently appeared. These
simulators are based more on providing mechanisms for sensing, monitoring,
communication and action at the level of autonomous vehicles in order to
provide solutions for the problem of autonomous driving. One of the best-
known examples is CARLA2 [19]. CARLA allows controlling aspects such
as traffic generation, pedestrian behaviors, weathers and vehicle sensors. Its
main goal is to allow the learning of new driving policies or the training of new
perception algorithms. Other similar simulation frameworks are AIRSim3

[20] (a simulator developed by Microsoft as a platform to experiment with AI
learning algorithms), TORCS4 [21] (an Open Racing Car Simulator which is
an open source 3D car racing simulator that is designed to enable AI-based
strategies for competing drivers), and in [22] an urban traffic simulation
framework is presented for helping the development and test of automated
driving vehicles.

As can be observed there exist different agent-based simulation tools that
offer several facilities for the generation of highly accurate simulations with
high scalability. However, most of these tools do not offer specific facilities
for a flexible and realistic generation of input data in the simulation. Usually,
the analyzed approaches incorporate the possibility of generating third-party
software or simply include database import modules. Accordingly, in our
proposal we make use of different approaches, including AI techniques, that
make use of real-world data as input to improve simulations both by posi-
tioning elements, such as electric charging stations, in a more informed way,
and by generating new, more realistic input data, such as the most feasible
traffic routes.

3. Extending the SimFleet simulator

SimFleet [6] is a simulator based on SPADE [23] (a multi-agent system

2http://carla.org
3https://microsoft.github.io/AirSim/
4https://sourceforge.net/projects/torcs/

5

development environment) specialized in testing different mobility strategies
where vehicles that belong to different fleets interact in the simulation. This
simulation tool has been chosen because of its features. It allows you to
manage simulated fleets in an easy and very flexible way. This is thanks to
the agent architecture provided by the SPADE platform, which allows every
actor in the simulation to be a proactive and independent agent which can
have its own strategy and behavior. Also, scaling the simulation is simple. In
SimFleet each simulation counts for a number of clients (Customer agents),
transport operators (Transport agents) and fleet managers (FleetManager
agents), where Customer agents serve individuals who need to be shipped
from their place of origin to their place of destination in the region. In order
to do so, each Customer agent demands a single transport service offered
by the Transport agent. Then, it is the duty of the FleetManager agent to
get the clients in need of a transport service and the transport providers
that might be required to provide such services into touch. In short, the
FleetManager agent serves as a command and control center for transports.
It acknowledges the incoming customer requests and forwards those requests
to the relevant transport providers.

For passenger transportation across the region, SimFleet uses the OSRM5

routing software to locate the shortest routes in the road network. A query
to OSRM receives the origin and destination points and returns the shortest
route between the two points.

A SimFleet user needs to develop the behavior of each agent in the sim-
ulation in order to define their negotiation policy. Throughout this research
we have ignored the development and testing stages in order to concentrate
on the simulation development, a function in which much of this sort of
simulators have limitations, as presented in the related work.

We must clarify how the experiments are represented in order to under-
stand the limitations of SimFleet in conjunction with the development of
simulations. To load a simulation into SimFleet the user must write a JSON
file where the details of each actor of the simulation (this is, the agents) are
described (position, initial data, goals, etc.). These parameters may vary
depending on the type of agent.

The only way to fill in the configuration file at the moment is to build each
agent manually, providing values to their attributes. This presents a problem

5http://project-osrm.org/

6

http://project-osrm.org/

for developing simulations with a huge amount of vehicles, consumers or
packages. In addition, SimFleet is likely to be used by users to replicate
static elements such as charging (or gas) stations and movements around a
city in a simulated environment. On the one side, it may be of interest for
urban planners to measure how each distribution can influence the mobility
of the city by using a generator to put charging (or gas) stations in different
configurations. Mobility modeling, on the other hand, involves introducing
several agents that appear in the system during the simulation time, as well
as the mobility information of agents around the area, based on real data
measured from the city. Via the implementation of generators that simplify
the development of simulation configurations, our work intends to solve those
needs.

Two global generators are the key contribution of this work, enabling the
setup of larger and more realistic simulations with SimFleet. The generators
are an instrument not only for helping the user write big files, but also for
creating realistic configuration files based on the actual target city details.
These informed generators are designed to produce configuration files that
are as similar to reality as possible (i.e. simulating vehicles mobility with
real traffic data from the city).

The first generator is a generator for charging stations that populates
the simulation area with a defined number of charging stations following
a specified template. The second generator is a mobility data generator
that fills the simulation space with various types of moving agents that can
be pseudo-random or informed. In addition, in order to compare informed
versions against them, entirely random versions of both generators were also
introduced.

Next sections present these two generators in depth. First we present
the charging stations generator, which allows selecting different approaches
(from less informed to more informed) to place stations in the city map.
Next, a mobility data generator is presented, which allows to create realistic
movements along the city map.

4. Charging stations generator

The charging stations generator is in charge of placing a certain number
of charging (or petrol) stations in the city according to a certain technique or
distribution. The generator has the following main parameters: n charging
stations to place; p charging poles to locate in the stations; and distribution

7

type, {random, uniform, radial, genetic}, that determines the technique
used to place the stations in the city. The first three types of distributions
correspond to non-informed charging station generators, i.e. they only use
the parameters of the number of charging stations and poles to be placed on
the city map according to the specified distribution (random, uniform, or
radial). However, the so-called genetic distribution uses information about
the city (population, traffic, and activity in social networks) to distribute the
charging stations by means of a genetic algorithm that optimizes utility and
cost.

The charging stations generator receives the number of charging poles as
an input parameter. The charging poles are the spots that can be used by a
vehicle in a charging stations, so a station consist of at least a charging pole.
In the genetic distribution, the genetic algorithm receives as parameter the
maximum charging poles per station, and hence, it allocates the charging
poles p in the specified n stations depending on the utility and cost that the
complete distribution provides. However, the random, uniform, and radial
distributions allocate one pole in each station, and the remaining poles are
placed using one of the following alternatives:

• In the first case, the list of stations is shuffled and the poles are dis-
tributed following the order of the list. This process is repeated shuf-
fling again the list until all poles are distributed.

• The second case makes a pseudo-random distribution that allocates the
remaining poles by selecting a random station and placing a random
amount of poles in it. However, the random number of poles is limited
to a percentage of the total poles to avoid uneven distributions.

The output of the charging stations generator is a GeoJSON file with
the position and number of poles of each station. However, the position
given by the generator is processed using the getValidPoint function of the
service nearest of OSRM, which obtains a valid point situated in a street
near the given coordinates. In the case of the genetic algorithm, this process
is performed before to ensure that the set of Points of Interest (PoIs) that
have to be provided to the genetic algorithm (it must be an amount of PoIs
significantly larger than the stations to place) are already valid.

4.1. Random distribution

This distribution generates a set of n valid points in the city map that
will be the positions of the charging stations. For each point, coordinates x

8

and y are randomly generated within the bounds of the city map defined by
its polygon: xmin, ymin, xmax, ymax. The valid point of these coordinates is
obtained and if it is not inside the city map, it is discard. So, until there are
n valid points, this process is repeated.

Figure 1: Random distribution of stations.

Algorithm 1 shows a pseudo-code which operates as described. In addi-
tion, an example of a random distribution with 50 stations in Manhattan is
shown in Figure 1. A random distribution is useful to serve as a baseline for
comparisons with other more informed distributions.

Algorithm 1 Allocates n stations in random points within the city map

Require: city map, n
valid points← []
xmin, ymin, xmax, ymax ← city map.bounds()
while length(valid points) < n do

(x, y) ← randomPoint(xmin,ymin, xmax, ymax)
if city map.contains((x, y)) then
valid points← valid points ∪ (x, y)

end if
end while

9

4.2. Uniform distribution

In this distribution, the city map (Figure 2a) is divided uniformly6 into
rectangular cells of equal size. The grid (see Figure 2b) is a wider working
are created from the bounds of the city map with the points of the polygon
{(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin)}.

The grid size can be obtained depending on the amount of stations (n) as
specified in Equation 1. The number of rows and columns will be the square
root if n is a perfect square. Otherwise, there will be more rows or more
columns if the grid is higher or wider.

rows = cols =
√
n n is perfect square

rows = b
√
nc, cols = d

√
ne height < width

rows = d
√
ne, cols = b

√
nc otherwise

(1)

Nevertheless, as the shape of the city map can be very irregular and
a significant part of the grid may be outside the boundaries, the user can
also define the number of rows and columns to find a more suitable cell
distribution instead of using the method of Equation 1.

Once the grid has been obtained, it is trimmed with respect to the city
map and the cells outside the borders are discarded as in Figure 2c. The
cells of the grid are traversed and a station is placed in the nearest valid
point to the centroid of the cell. In the case of any remaining stations to be
distributed, they would be placed at random valid points within randomly
selected cells. Figure 2d shows an example of this distribution and Algorithm
2 describes its operation by means of pseudo-code.

There is an alternative version of this distribution in which all stations
are directly placed in randomly chosen cells at a random valid point.

4.3. Radial distribution

The radial distribution aims to adapt the charging station infrastructure
to certain urban areas which present greater activity towards its center in
contrast to the outskirts. It makes use of a new parameter c, which defines
the number of circles in which the city map will be divided.

6The name “Uniform distribution” does not refer to a probability distribution but to
how stations are divided in the city map.

10

Algorithm 2 Distributes n stations uniformly within the city map

Require: city map, n
valid points← []
xmin, ymin, xmax, ymax ← city map.bounds()
grid← Polygon(xmin, ymin, xmax, ymax)
grid← grid ∩ city map
for all cell in grid do

(x, y)← cell.centroid()
valid points← valid points ∪ (x, y)

end for
Place leftover station in random points inside random cells
while length(valid points) < n do
cell← randomCell(grid)
(x, y)← randomPoint(cell)
valid points← valid points ∪ (x, y)

end while

The distribution procedure begins by defining two copies of a wider work-
ing area, created as detailed for the uniform distribution. The first copy gets
divided into a configurable number of triangles, 8 by default, as it is shown
in Figure 3a. These are created by joining the working area vertex and sides’
middle points with the centroid of the city map. As for the second copy, it
gets partitioned by c concentric circles, each with a larger radius than the
previous. The initial radius r is calculated according to the dimensions of
the map. Each circle gets trimmed against its previous one, starting with the
last (and larger) created, so as to avoid overlap among them. The resulting
polygons are also trimmed against the city map, obtaining an area with a
central circle and many outer rings, as shown in Figure 3b. Bear in mind
that we will be referring to both circles and rings just as circles from now
on. Finally, the two modified areas are intersected, dividing each circle into
up to 8 parts, obtaining a city map similar to that shown in Figure 3c.

Stations are assigned to the nearest valid point to the centroid of the poly-
gons. To assign the stations as evenly as possible among each circle and the
city map, both the number of stations per circle (n/c) and the subdivisions
a circle has are taken into account. Each triangle is populated beginning
from the inner circle and heading towards the outer. Once a station has
been allocated to all polygons of a triangle, the next triangle will be picked

11

(a) City map (b) Working area or
Grid

(c) Grid trimmed
against city map

(d) Cells populated
with stations

Figure 2: Uniform distribution of stations process.

with respect to the number of stations and the total number of subdivisions
to evenly spread the stations within a circle. This process is described by
Algorithm 3. An example of a finished distribution is shown in Figure 3d.

The procedure explained above allocates only one station inside each
polygon. However, there may be a higher number of stations to allocate
than polygons in the map, as the granularity of the division is decided by
the user. For such cases, the leftover stations are positioned by arbitrary
selecting a polygon and a valid point inside it.

A completely random variant of this distribution has also been introduced.
The city map is split in the same manner and the ratio of stations per circle
is considered as well. The allocation of stations, however, is performed in
random valid points of arbitrary subdivisions of each circle.

12

(a) Triangle division
of working area

(b) 8-circles division
of city map

(c) Final city map
division

(d) 50 stations be-
tween 8 circles

Figure 3: Radial distribution of stations process.

Algorithm 3 Distributes n stations following a radial pattern with c circles
within the city map

Require: city map, n, c, num triangles
valid points← []
xmin, ymin, xmax, ymax ← city map.bounds()
working area← Polygon(xmin, ymin, xmax, ymax)
triangle area← divideInTriangles(working area, num triangles)
circle area← divideInCircles(working area, c)
working area ← triangle area ∩ circle area ∩ city map # Calculate the
number of stations to place in each circle
stations per circle← bn/cc
while length(valid points) < n do

Select next triangle to populate
triangle ← triangleSelection(stations per circle, num triangles)
for all cell in triangle do
(x, y)← cell.centroid()
valid points← valid points ∪ (x, y)

end for
end while
Place leftover station in random points inside random cells
while length(valid points) < n do
cell← randomCell(grid)
(x, y)← randomPoint(cell)
valid points← valid points ∪ (x, y)

end while

13

4.4. Genetic algorithm distribution

An alternative to placing charging stations or petrol stations in a city
in an intelligent way is to use genetic algorithms. Thus, this option of the
generator is based on the genetic algorithm presented in the papers [24,
25]. In the previous random, uniform, and radial alternatives, the only
necessary data are the map itself and the city limits together with the number
of charging poles to be placed. This has the advantage that if no more data
is available, a set of stations in the city can also be generated following
the chosen distribution, which in some cases may be sufficient. However,
these approximations may be unrealistic to the reality of the city, since a
uniform or radial distribution may not correspond to the actual distribution
and movements of the potential users of the stations.

Thus, when relevant data from the city is available the solution that the
genetic algorithm can provide might be more realistic. Particularly, these
data must be referred to the possible users of the stations. Hence, the data
considered relevant to obtain the most accurate solution are:

• Population or cadastral information: It shows the amount of peo-
ple that live in different zones of a city. The population information (P)
is defined as: P = {(C1, p1), (C2, p2), . . . , (Cn, pn)}, where Ci is a closed
polygon representing a zone in the city together with its population pi.

• Traffic information: It shows the number of vehicles moving around
a certain area. The traffic information (T) is defined as: T = {(R1, t1),
(R2, t2), . . . , (Rn, tn)}, where Ri is a polyline that follows a street or
road indicating the volume of traffic ti.

• Twitter activity: Information about the amount of geo-located tweets,
from the social network Twitter, tweeted from a certain location. This
information can be used to determine where a representative percent-
age of the population is spending their time. The Twitter activity (A)
is defined as: A = {(Q1, a1), (Q2, a2), . . . , (Qn, an)}, where Qi is a point
represented as a latitude-longitude tuple and ai the number of tweets
in such coordinates.

The sum of the population, traffic and activity data of the area covered
by each of the charging poles (cp) of a solution or individual (ind) defines the
utility of the solution. In addition, each of the data is balanced by a weight

14

ω to give it more or less importance.

utility(ind) =
∑

∀cpi>0∈ind

(pi · ωP + ti · ωT + ai · ωA) (2)

On the other hand, the distribution of charging stations in a city also
implies high costs, so this becomes an additional criterion for the optimal
distribution of charging stations. Therefore, the data to take into account in
relation to costs are: cost of each station cs and charging pole ccp (additional
charging pole to a station have a lower cost than the installation of the first
point/station), cost per distance to transformer substation cdt, and positions
of transformer substations.

cost(ind) =
∑

∀cpi>0∈ind

cs + (cpi · ccp) + (distenergy(s) · cdt) (3)

Considering the population, traffic and social network data, that is, the
utility of placing charging stations, and the costs of placing them according
to their position and number, the genetic algorithm obtains a solution in
which it optimizes its fitness function, which is formed by the utility and
cost. Since this is a multi-criteria optimization, the genetic algorithm tries
to obtain the maximum utility and the minimum cost to place the required
charging stations and points.

The process of the genetic algorithm to generate the set of charging sta-
tions in the city is detailed below.

Firstly, the genetic algorithm starts from a set of Points of Interest (PoIs)
that must be provided. This set of PoIs must be considerably larger than the
number of stations to be placed so the genetic algorithm can select the final
subset where the charging stations will be placed, and thus make sense for
its application in this context. The set of PoIs can be specified by the user,
or on the contrary, it can be created using different types of points such as
those extracted from open data of the city of study. The set of PoIs provided
defines the individual of the genetic algorithm, which is an array with the
length of the set of PoIs. Then, each position of the array represents each
PoI in the city, and the integer number inside will be the amount of poles
to install in the PoI. This number can be from 0 to the maximum poles
per station specified by the user. Therefore, the genetic algorithm generates
different individuals simply by changing the integer numbers of the array and
evaluating the fitness of each of them.

15

Secondly, all possible geographical data (in GeoJSON) must be provided
so that the genetic algorithm can obtain informed solutions: cadastral data
specified in number of inhabitants by areas or polygons (P); traffic data
specifying a number for each street (at least the main roads) (T); geo-located
activity in social networks (A); and transformer substations. In addition,
the weights ω with which the cadastral, traffic and social network activity
information is valued can be provided, along with the monetary costs per
station (cs), per charging pole (ccp), and per distance to the transformer
substation (cdt).

Finally, the genetic parameters themselves such as the initial population
of individuals and number of generations must be provided. In this case,
the higher the values, the greater the exploration of the genetic algorithm
will be; however, its computing time will also increase. These are some
parameters that should be tested with low values in order to increase them
according to the execution times. In our case, as the computation of fitness
is relatively complex, we can start from 100 population and 50 generations,
which should be computed in minutes at most. In addition, the probabilities
of crossover and mutation, together with their operators, can be specified,
however, the default values for this generator should be enough (see [25] for
more information).

With all the parameters specified above, it is possible to run the genetic
algorithm that will provide a distribution of charging stations in the city that
is as optimal as possible with respect to fitness, i.e. maximizing the value
of the utility, and minimizing the cost values. An example of 50 stations
placed in Manhattan with the genetic distribution is represented in Figure
4. This figure shows both the location of the stations within the boundaries
of the city map, as well as the Voronoi polygons that determine the areas
of influence (along with a 300-meters radius circular area that intersects the
Voronoi polygon) of each of the stations.

In this section, different charging station generators have been presented.
The first generators, corresponding to the random, uniform, and radial dis-
tributions, serve as a baseline or for situations when no city data is available.
On the other hand, the generator based on the genetic algorithm, i.e., the
distribution that we have named as genetic, has all the available information
of the city where it is applied. This means that the charging station dis-
tribution solutions obtained by the genetic-based generator are potentially
more realistic, that is, adapted to the demand for this type of service in the
city. A detailed example of the genetic-based charging stations generators is

16

Figure 4: Genetic distribution of stations example.

shown in Section 6.1.
In addition, the electric vehicle charging station (or petrol station) gen-

erators presented in this section could also be used as a method for deciding
the location of other types of services, either fixed or dynamic. For example,
any other type of infrastructure such as bicycle stations or taxi ranks, as well
as distribution of ambulances or emergency services, positioning of open-fleet
vehicles or car-sharing services, among others.

5. Mobility data generator

With the mobility data generator, we aim to create either random or
real-life inspired movement of agents for SimFleet’s simulations. To generate
realistic movement data, from the point of view of an agent-based simulator,
means to create movements around the city which are inspired by its citizens
and other users of the traffic system such as private vehicles, taxi fleets, etc.
This movement can be adapted to any of the agent types that SimFleet offers
by creating routes for them which have their origin and destination points
located in certain areas of the city in which there is more activity. Both
the areas and the type of activity are dependent on the data source we use.
For instance, we could have data indicating the amount of population in a

17

specific neighborhood at a precise time of the day; similarly, we could gather
the number of delivery vehicles that depart from a certain zip code area
at a certain weekday. There are many possibilities and depending on data
availability one could apply the principles of our generator to create mobility
data for different situations.

Hereunder are presented random and informed versions of the mobility
data generator. The random version simply creates valid routes and assigns
them to the agents. The informed versions of the mobility data generators,
which create realistic routes, are inspired by the work in [26], which presents
an approach based on the creation of a mobility graph with real traces.

The mobility data generator develops routes of at least min dist meters
long for n agents of type t within the borders of a given city map. The delay
parameter d determines the point of the simulation in which the agents will
start their execution; by default, at the beginning of the simulation (d = 0).
The number of agents per batch, agents per batch, is introduced to give
different delays to groups of agents that will start executing simultaneously.
This is most useful for scenarios with a great number of agents. If indicated,
the first batch of agents will have a delay of d seconds; the following batch,
a delay of 2d, and so on. As indicated above, all generators are prepared
to receive an existing SimFleet configuration file as input and fill it with
agent definitions and their routes. This enables the use of the mobility data
generator to introduce, in the same simulation, different types of agents in
diverse quantities, with different delays and batch sizes, achieving a complex
simulation scenario.

5.1. Random movement generator

The movement of the random generator is created by designating a ran-
dom route (random origin and destination points) for the agents to follow.
Both the origin and destination points must be valid points inside the city
map, and they must be a minimum of min dist meters apart. This process is
repeated to create and assign routes for n agents of type t. The origin point
indicates the agent the location in which it will spawn, whereas the destina-
tion point determines the place where the execution will finish. Transport
type agents can travel by themselves. However, if the agent is of customer
type or a package, the movement will actually be performed by the transport
agent that carries it after picking it up.

18

Figure 5: 50 randomly generated routes in Manhattan, indicated by a line connecting
origin and destination points.

5.2. Informed movement generator

The mobility data generator’s informed variant attempts to replicate more
accurate movements across the city map. For this, it is important to provide
relevant data to the generator on which to base the agents’ routes. This
data can be accessed from different sources; often open data portals the
government of a city or nation provides to its inhabitants. For our generator,
we used the following data (already presented in Section 4.4): population or
cadastral information (P); traffic information (T); and Twitter activity (A).

The data is used to establish a probability distribution between a series
of points available in the city map. The assignment of the routes’ origin and
destination will be carried out according to the distribution. The process
starts by generating a collection of available points. As described for the
uniform distribution (see Section 4.2), the city map (M) is split as a grid
obtaining M = {(G1, O1), (G2, O2), . . . , (Gn, On)}; where Gi is a closed poly-
gon and Oi the closest valid point to the centroid of Gi. The grid is divided
by a configurable number of rows and columns. Such a number directly af-
fects the granularity of the system, as a larger number of cells implies more
accessible points (see Figure 6). The more points, the more distributed will
be the probability.

19

(a) 10 rows and cols (b) 20 rows and cols (c) 30 rows and cols (d) 40 rows and cols

Figure 6: Number of available points according to map division granularity.

By combining the city data with M , we join, for every polygon Gi, the
population, traffic and Twitter activity volumes that occur inside its area:
M = {(G1, O1, {p1, t1, a1}), (G2, O2, {p2, t2, a2}), . . . , (Gn, On, {pn, tn, an})} and
compute the likelihood associated with each point Oi as in Equation (4):

prob(Oi) = wp ·
pi∑n
j=1 pj

+wt ·
ti∑n
j=1 tj

+wa ·
ai∑n
j=1 aj

; with wp +wt +wa = 1

(4)
where wp, wt and wa are weights that control the effect on the probability of
each of the variables. By having wp + wt + wa = 1 we obtain a probability
distribution among points that ensures that the addition of the probability
of each point is equal to 1. An intuitive example of this can be seen in Table
1 and Equation 5. Finally, the set of available points (S) and their resulting
probabilities: S = {(O1, p(O1)), (O2, p(O2)), . . . , (On, p(On))}; are taken into
account for route generation.

prob(O1) = 0.5 · 5000

10000
+ 0.3 · 1500

8000
+ 0.2 · 3500

5000
= 0.44625 (5)

When all points in S have an associated probability, the process to define
the n routes starts (see Figure 7 for examples). The approach is very similar
to the one described for the random mobility data generator, except this

20

Point (Oi) Population in Oi (pi) Traffic in Oi (ti) Activity in Oi (ai) Probability (prob(Oi))

O1 5000 1500 3500 0.44625∗

O2 3700 4500 1000 0.39375
O3 1300 2000 500 0.16

Total values 10000 8000 5000 1.0

Weights 0.5 (wp) 0.3 (wt) 0.2 (wa)

Table 1: Example of a probability distribution among 3 points. ∗Value obtained according
to Equation 5.

time the origin and destination points are picked from S with respect to
their probability and guaranteeing the min dist between both points.

(a) 10x10 map (b) 20x20 map (c) 30x30 map (d) 40x40 map

Figure 7: 50 routes examples in Manhattan with different granularity.

5.3. Regression mobility data generator

The regression version of the mobility data generator creates a data model
and makes use of it to enrich the simulations with a real-life inspired move-
ment of agents.

In this work, using New York City as an example, we used the regression
mobility data generator to reproduce a realistic taxi demand across the city
map. For this, we employ the TLC Trip Record Data7 of the city of New York.

7https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

21

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

This dataset contains records of taxi services which are defined, among other
parameters, by the service start date (month, day and time of the day) as
well as an origin and destination taxi zone identifiers. With this information,
we divided our simulation’s city map into its corresponding taxi zones and
created a regression model which can estimate the amount of demand in each
taxi zone for a specific month, weekday and time of the day. Please refer to
Section 6.2 for a detailed explanation of how the data was processed.

Therefore, the generated movement is represented by a certain number of
customer agents that will spawn distributed among the different taxi zones
according to the predicted value of each zone. Additionally, as the dataset
includes not only the origin but the destination taxi zone of each service, we
can also estimate a service destination. According to the observed services,
we can assign a probability to every taxi zone that indicates how likely it
is to be the destination of a service originated in a specific taxi zone at a
certain month, weekday and time of the day. By pseudo-randomly choosing
a destination according to such probabilities, we complete the routes of the
customer agents.

The customers will be picked up and driven to their destinations by trans-
port agents. Consequently, we have generated mobility data which is in line
with real-life taxi demand as well as origin and destination areas. Optionally,
we could develop a relocation service for transport agents, using the same
regression model, which sent idle taxis to zones where more demand is likely
to appear in the next minutes or hours; although that is outside of the scope
of this work, as it has more to do with transport agent strategic behavior.

As can be seen, we have designed and implemented three approaches to
mobility data generation with different levels of complexity. The random
movement generator may be useful to establish baseline measurements in
simulations, so as to compare them against other systems. As for the more
informed versions, they make use of real-world data, processing it with dif-
ferent techniques to create realistic routes. Assigning such routes to agents
in our simulations we obtain a better representation of the real urban traffic
system. The regression mobility data generator employs the most complete
approach, although in a very general perspective, as it can be used with many
types of input data. In the following Section 6.2 we illustrate the use of the
latter generator with a detailed example.

22

6. Case study

In this section, we present a case study on the island of Manhattan in
order to illustrate the use of the charging stations generator as well as the
mobility data generator described in Sections 4 and 5. Throughout the pre-
vious sections we have shown illustrative examples of how each of the gener-
ators works, i.e., each of the distributions of the charging stations generator
(random, uniform, radial, genetic), and the mobility data generators (ran-
dom, informed, and regression). Thus, in this case study we focus on what we
can consider to be the most informed and potentially most realistic generator
for each case. Thus, Section 6.1 details the use of the genetic algorithm-based
charging station generator, and Section 6.2 details the use of the regression-
based mobility data generator to generate a realistic demand for taxis in the
Manhattan island.

6.1. Genetic generation of stations

In this section we present the use and results obtained from the charging
stations generator based on the genetic algorithm of Section 4.4 on the case
study located in Manhattan. Concretely, we specify the pre-processing of
the Manhattan data as well as the parameters used to prepare the experi-
mentation with the generator. Then, the results of executions with different
number of charging stations are shown.

6.1.1. Data pre-processing

One of the crucial parts for a successful operation of the charging stations
generator based on the genetic algorithm is the data on which it is based.
For the genetic algorithm we will use data on population, traffic, and social
media activity (in this case, Twitter). The population and traffic data have
been extracted from the New York open data portal8. Regarding the Twitter
data, it has been obtained using uTool [8], a tool that captures geo-located
tweets during a specific period of time.

The population data of Manhattan has been extracted from two different
datasets. On the one hand, the 2010 Census tracts9 are used as the division
of different areas of Manhattan. Then, this data is processed and merged

8https://opendata.cityofnewyork.us/
9https://data.cityofnewyork.us/City-Government/2010-Census-Tracts/

fxpq-c8ku

23

https://opendata.cityofnewyork.us/
https://data.cityofnewyork.us/City-Government/2010-Census-Tracts/fxpq-c8ku
https://data.cityofnewyork.us/City-Government/2010-Census-Tracts/fxpq-c8ku

with the census demographics at the neighborhood tabulation area (NTA)
level10. Concretely, the number of population at 2010 of each NTA code
from the last dataset is assigned to the corresponding polygon that defines
the NTA (extracted from the first dataset). This produces a GeoJSON file
with the population by areas of Manhattan (represented in Figure 8a) that
can be provided to the genetic algorithm.

(a) Manhattan population
by neighborhood tabula-
tion areas

(b) Manhattan traffic by
streets

Figure 8: Manhattan population and traffic.

Regarding the traffic data of Manhattan, two different datasets have also
been used. On the one hand, the New York City street centerline dataset11

has been used for having the polylines that define the streets of Manhattan.
On the other hand, the traffic volume counts from 2014 to 201912 have been

10https://data.cityofnewyork.us/City-Government/

Census-Demographics-at-the-Neighborhood-Tabulation/rnsn-acs2
11https://data.cityofnewyork.us/City-Government/

NYC-Street-Centerline-CSCL-/exjm-f27b
12https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/

24

https://data.cityofnewyork.us/City-Government/Census-Demographics-at-the-Neighborhood-Tabulation/rnsn-acs2
https://data.cityofnewyork.us/City-Government/Census-Demographics-at-the-Neighborhood-Tabulation/rnsn-acs2
https://data.cityofnewyork.us/City-Government/NYC-Street-Centerline-CSCL-/exjm-f27b
https://data.cityofnewyork.us/City-Government/NYC-Street-Centerline-CSCL-/exjm-f27b
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r

used to have the number of cars moving through the streets of Manhattan.
These data have been processed to establish a correspondence between the
street names represented in both datasets, as there is no compatible iden-
tification or code that we can use for our needs. All traffic volume counts,
which are separated by date and hour from 2014 to 2019 are aggregated to
have a single number per street. This aggregation gives a global picture of
the traffic volume in Manhattan that allows the genetic algorithm to dis-
criminate between different streets or areas. All this process ends up with a
GeoJSON file (represented in Figure 8b) which is ready to be used by the
genetic algorithm.

The geo-located tweets to use with these experiments are from 2017 to
2019, that is, 3 complete years. The total number of geo-located tweets
is roughly 4.5 million for New York City. However, this volume of data is
difficult for the genetic algorithm to process, as it would be very slow for
each of the solution evaluations. It is therefore more appropriate to reduce it
by using the geohash system[27], which allows the encoding of a geographical
location using a string of characters. In our case, the advantage lies in using
a certain precision (7 characters) to reduce the 4.5 million points at which
the tweets are located to a smaller set. Hence, all tweets that have the same
geohash are grouped together in the same “bucket”, so that we end up with a
set of points that represent each of the geohashes with the number of tweets
that have been made in that area. Thus, by applying geohash with precision
7 we reduce the 4.5 million tweets of New York City to 41194 geohash areas,
and specifically, 5467 are the geohash areas corresponding to the island of
Manhattan that group together around 1.8 million tweets.

The genetic algorithm needs to start from a set of points of interest (PoIs)
in the city where it is applied. This set of PoIs must be considerably larger
than the number of stations to be placed in order for the genetic algorithm
to determine which combination of points is the most appropriate. In other
words, if the set of PoIs were very similar to the number of stations to be
placed, a genetic algorithm would not be necessary and could be obtained
by brute force. For these experiments, we composed a set of 409 PoIs in
the main isle of Manhattan which are separated at least 150 meters. These
PoIs represent areas in which a charging station could be considered given
their interest and the activity generated around them. Examples include

ertz-hr4r

25

https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r
https://data.cityofnewyork.us/Transportation/Traffic-Volume-Counts-2014-2019-/ertz-hr4r

existing petrol stations, museums, monuments, tourist attractions, cinemas
or theaters, shopping areas, restaurants, among others.

The parameters used to configure the genetic algorithm to obtain the
charging stations to be placed in Manhattan are the following:

• Population of individuals is set to 100. This parameter determines the
number of individuals (potential solutions) that are maintained and
used during the evolution.

• The number of generations in which the genetic algorithm evolves the
individuals is established at 50. The evolution is made by applying
crossover and mutation operators with some probabilities, and selecting
the best individuals of each generation.

• The weights to balance the importance of the population, traffic, and
Twitter activity are: ωP = 0.4, ωT = 0.3, and ωA = 0.3, respectively.
These weights are chosen by the user depending on the problem to be
optimized. Different values may give better or worse solutions. In this
case it has been decided, after a few tests, to give a little more weight
to population versus traffic and social networks.

• The cost of each station is cs =AC40000, and the cost of a charging pole
is ccp =AC10000.

• The influence radius that each PoI considers about the area that covers
(with the intersection of the Voronoi polygon) is set to 300 meters.

• The crossover and mutation probabilities during the evolution are 0.5
and 0.2, respectively. The crossover operator is the graph operator
presented in [24] (Section 3.4). The mutation operator is the uniform
with a mutation probability of each gene of 0.05.

The rest of the parameters remain with default values since they are out
of the scope of these experiments. Additionally, the transformer substations
or any forbidden areas have not been considered. For more information about
all the genetic algorithm parameters we refer the reader to [25].

6.1.2. Execution and results

With all the population, traffic, and Twitter data for Manhattan Island
extracted and processed along with the set of PoIs, as well as the other pa-
rameters specified in the previous section, we can proceed to run the genetic

26

algorithm. Specifically, we have performed different runs in which we placed
25, 50, 100, and 200 charging stations in Manhattan. The representation of
the charging stations that have been placed along with the resulting Voronoi
diagram can be seen in Figure 9.

(a) 25 stations (b) 50 stations (c) 100 stations (d) 200 stations

Figure 9: Charging stations in Manhattan obtained by the genetic-based generator.

In the example with 25 charging stations in Figure 9a it can be seen that
the charging stations are quite dispersed, although some are more concen-
trated in the southern area, probably due to the higher activity in the area.
However, as there are few stations to be placed there are some areas that are
certainly far away from any stations.

The example depicted in Figure 9b with 50 charging stations presents
a distribution that apparently better covers the island of Manhattan, and
especially the southern part, in this case, below Central Park. However,
there are still some large areas without adequate charging station coverage.

The example of 100 charging stations in Figure 9c already shows a much
larger coverage of the entire island of Manhattan, except for the part of
central park, where it is not possible to place many charging stations, and
also some areas in the north that have fewer stations than in the south,
probably due to relatively less activity.

Finally, the example in Figure 9d with 200 charging stations already shows
a much larger coverage of Manhattan compared to the previous examples. In
this case, it becomes more evident that the southern area is fully populated

27

with charging stations, as well as the northern area. In fact, the only gaps
that can be seen are in the central park area where it is not possible to
place too many stations, and the amount of population and traffic in that
particular area is much smaller as it is a significantly large park with no
housing or roads.

stations cost (AC)
25 1,250,000
50 2,500,000

100 5,000,000
200 8,600,000

Table 2: Monetary cost of each of the charging station distributions in Manhattan.

Table 2 shows the monetary cost of each of the Manhattan charging sta-
tion distributions seen in Figure 9. For the cases of 25, 50, and 100 stations,
the monetary cost is the result of multiplying the number of stations by
AC50000, since in all three cases stations with only one charging point have
been placed (the cost of one station has been set at AC40000, and the cost of
each charging point at AC10000). For the case of 200 stations, 165 stations
are placed, in which several of them have 2-3 charging points. This implies
a cost of AC40000 for each of the 165 stations (without considering the charg-
ing points), and then AC10000 for each of the 200 charging points in total.
This happens because the genetic algorithm tries to maximize the coverage
of the stations to have more utility, so in cases with 100 stations or less,
it only places one charging point per station. However, when it can place
200 charging points, it can afford to place more than one charging point per
station.

Table 3 summarizes the results obtained concerning the utility and cost
of running the genetic algorithm for 200 charging points in Manhattan. Each
row of Table 3 corresponds with a pair of crossover and mutation probability
values. Note that the sum of both values must not be greater than 1. In
addition, results for values cxpb = 1,mutpb = 0 and cxpb = 0,mutpb = 1
have been excluded since they did not arrive at any feasible solution. The
best results are obtained with the crossover probability at cxpb = 0.5 and
the mutation probability at mutpb = 0.2. Although also the values cxpb =
0.5,mutpb = 0.05 and cxpb = 0.75,mutpb = 0 obtain similar results with
which there is no significant difference. Thus, we can conclude that any of

28

cxpb mutpb utility cost (AC)
0 0.05 0.03068 9,130,000
0 0.2 0.03195 8,850,000
0 0.5 0.03351 8,650,000
0.25 0 0.03741 8,890,000
0.25 0.05 0.04110 9,410,000
0.25 0.2 0.03978 8,920,000
0.25 0.5 0.04317 8,760,000
0.5 0 0.04156 8,880,000
0.5 0.05 0.04831 8,930,000
0.5 0.2 0.05230 8,600,000
0.5 0.5 0.03923 8,930,000
0.75 0 0.04943 8,970,000
0.75 0.05 0.04263 8,930,000
0.75 0.2 0.04516 8,890,000

Table 3: Utility and cost results for different runs of the genetic algorithm varying the
crossover (cxpb) and mutation (mutpb) probabilities for the case with 200 charging points.

these 3 combinations of crossover and mutation probability can obtain the
best results for the problem we are dealing with.

6.2. Realistic route generation

To illustrate the use of our regression mobility data generator, in this
section we describe a complete example in which the TLC Trip Record Data
of New York City is used to train a regression model that predicts the taxi
demand per taxi zone in a concrete date. The predictions are then used to
reproduce the demand on SimFleet’s simulations by generating routes for taxi
service customers.

6.2.1. Data pre-processing

From the many parameters by which a taxi service is characterized, only
the service start date and the origin taxi zone ID are kept. Then, the date
is split in month (1-12), weekday (0-6) and hour (0-23). The minutes and
seconds values of the service start date are discarded so as to group together
all services which started during the same hour. Next, the taxi services
get grouped by month, weekday, hour and origin taxi zone id and a new
column demand is created by counting the services being joined together

29

(see Table 4). By doing this, the demand value indicates the number of taxi
services that started during the indicated month, weekday and hour on the
corresponding taxi zone. Dividing the demand value by the total demand
(sum of all demand values) we obtain instead an estimation of the percentage
of total demand that occurs in each zone.

Month Weekday Hour Origin Demand
1 0 0 4 41
1 0 0 13 59
1 0 0 24 48

...
6 6 23 261 18
6 6 23 262 12
6 6 23 263 76

Table 4: Clean taxi service dataset grouped by month, weekday, hour and origin taxi zone
ID. The demand column indicates the number of trips departing from the origin taxi zone
at the indicated date and time.

The process mentioned above can be applied to datasets with services
from many months or even many years, as long as they get merged together in
the final data model. Optionally, it would be possible to create an individual
data model for each month with its corresponding regression model. We
decided to build a data model with yellow taxi services of the months of
January to June of 2019. Also, to restrain the simulation city map to a
smaller area, we considered a restricted set of taxi zones inside the Manhattan
borough as can be seen in Figure 10.

The last step of the pre-processing is to treat the origin taxi zone identi-
fiers as categorical variables, which we do by encoding them into a one-hot
encoding (see Table 5). The data is then ready to be divided into training
and test sets and feed to our regression model.

6.2.2. Execution and results

We used an automated Machine Learning process (included in the TPOT
tool [28]) to find the most adequate regression model to train with our data.
This process automates the pipeline design of machine learning models by
performing a search using genetic algorithms to combine and evaluate differ-
ent models and hyper-parameters.

30

Figure 10: Restricted set of taxi zones of the Manhattan borough.

The pipeline found was composed by a Stacking Estimator with a Decision
Tree Regressor followed by a Random Forest Regressor. These models are
part of the scikit-learn toolkit [29]. The concrete parameters of each model,
also tuned by the automated Machine Learning process, are presented in
Table 6. This model achieved an accuracy of 0.95 over the test set, which we
consider enough given its purpose, which is to generate realistic data.

Once the regression model has been trained, we can generate mobility
data as a prediction of taxi demand over the different taxi zones. To do so
we first define the simulation time span, the amount of time we want our
simulation to model. In the following example, we model a simulation which
takes place over a Monday (weekday 0) of January (month 1), from 9:00
to 14:00. In addition, we indicate a number of customers per hour, which
will inform the simulator about the number of customer agents we want our
system to spawn each simulation hour13. For our example, we set the number
of customers per hour to 1000. Let it be noted that such a number could be
indicated for longer time periods like many days or even a whole month; the
simulator would then adjust the duration of the simulation accordingly.

13The real-time duration of an hour of simulation can be adjusted by the user.

31

Month Weekday Hour 4 13 24 ... 261 262 263 Demand
1 0 0 1 0 0 ... 0 0 0 1.093e-06
1 0 0 0 1 0 ... 0 0 0 1.066e-07
1 0 0 0 0 1 ... 0 0 0 1.230e-06

...
6 6 23 0 0 0 ... 1 0 0 4.798e-07
6 6 23 0 0 0 ... 0 1 0 3.198e-07
6 6 23 0 0 0 ... 0 0 1 2.026e-06

Table 5: Dataset formatted to train a regression model. The origin taxi zone ID values
have been converted to one-hot encoding and the demand presented as a percentage of
the total demand.

Decision Tree Regressor Random Forest Regressor

max depth = 10 max features = 0.5
min samples leaf = 17 min samples leaf = 1

min samples split = 7 min samples split = 15
n estimators = 100

accuracy = 0.95

Table 6: Best pipeline found for our dataset.

With the simulation characterized by the aforementioned parameters, the
generator builds the samples to pass to the regression model. As our example
takes place in different hours, the model builds, for each hour, samples of
services which depart from every taxi zone considered in the simulation. If
the simulation was set in different days or months, the generator would create
samples in a similar manner to the one described, making sure every possible
combination of the parameters is considered.

The samples are passed to the regression model, which outputs a per-
centage of demand for each one of them. As we mentioned on the data
pre-processing (Section 6.2.1), our model was trained with data belonging
to 6 months. This means the predicted demand is a percentage of the total
demand of 6 months. Because of that, we decided to normalize the demand
percentage across all samples with the same month, weekday and hour. For
our example, that implies normalizing the demand across samples with the
same hour, which gives us 6 sets of data, each corresponding to an hour (9:00
to 14:00), with normalized demand. Each of the 6 datasets indicates the per-

32

centage of demand to be expected in each taxi zone during the same hour.
Following, the demand percentage is multiplied by the number of customers
per hour (1000), finally obtaining the number of customers that will spawn
in each taxi zone during every hour of the simulation. A representation of
the dataset for the 9:00 hour can be seen in Table 7.

Month Weekday Hour Origin Demand Customers
1 0 9 4 0.002154 2
1 0 9 13 0.013161 13
1 0 9 24 0.003504 3

...
1 0 9 261 0.003842 3
1 0 9 262 0.023182 23
1 0 9 263 0.026261 26

Table 7: Data predicted by our regression model. The demand column indicates the
percentage of the hourly demand that occurs in a determined taxi zone. The customers
column expresses such demand in terms of the number of customers departing from the
determined taxi zone.

As it can be inferred, the normalization of data can be adapted to a con-
crete simulation setup; i.e., a concrete set of values for the month, weekday,
hour and customer amount parameters. If a simulation was defined to take
place over many days, and the number of customers was also indicated by
day, the demand percentage could be normalized across a day instead of an
hour.

As for the last step, the route creation, the generator defines a route
for each customer which starts in a random valid location inside its origin
taxi zone. The destination taxi zone can be chosen semi-randomly according
to the observed taxi services (as commented in Section 5.3) or completely
random among all considered taxi zones. Once the destination is set, a
random valid point inside it is fixed. The origin and destination points are
then passed to our routing service and the final route is obtained. During
the simulation development, the customer agents will spawn in their origin
points. To divide the demand of a single simulation hour into different time
intervals the delay parameter (commented in Section 5.2) can be used.

33

7. Conclusions

This paper has presented a proposal for the generation of more realistic
data in agent-based simulation tools related to mobility and transportation.
Specifically, the data generation has been focused on the location of EV
charging stations and on the generation of routes within the urban environ-
ment, but it can be easily adapted to generate other types of infrastructure
or data to be required in the urban environment. For the development of
the proposal, the simulation tool SimFleet has been used, on which different
generators of each kind have been integrated.

We highlight the development of two more complex generators based on
artificial intelligence techniques. In the case of the generation of charging sta-
tions, a genetic algorithm has been used to optimize the location of stations
in the city based on information from open data and other data sources. In
the case of route generation, a regression algorithm has been used to gener-
ate more realistic routes from historical mobility data. With both generators,
the users can simulate different distributions over a city or metropolitan area
by recreating mobility, using real data to analyze and compare each distri-
bution. This improves the simulation results facilitating the decision making
in municipalities.

Moreover, a case study has also been developed in order to illustrate the
use of such generators in common. Specifically, an example has been devel-
oped on the island of Manhattan in New York using different sources of real
data. Results allow to ensure the usefulness of these generators. As a future
work we aim to propose an evolution of the proposed generators for their pos-
sible adaptation and integration in other simulation tools similar to SimFleet.
The work of adaptation to other tools would mainly consist of transforming
the input data generated in our proposal into the appropriate format in each
case. As an example, work has begun on developing a data transformation
algorithm for the MatSim tool, which requires the input information in xml
format divided into different files. On the other hand, we also propose the
integration of vehicle reallocation strategies for open fleets in the generators.

Acknowledgments: This work is partially supported by grant RTI2018-
095390-B-C31 funded by MCIN/AEI/ 10.13039/501100011033 and by “ERDF
A way of making Europe”. Pasqual Mart́ı is supported by grant ACIF/2021/259
funded by the “Conselleria de Innovación, Universidades, Ciencia y Sociedad
Digital de la Generalitat Valenciana”.

34

References

[1] H. Noori, Realistic urban traffic simulation as vehicular ad-hoc network
(vanet) via veins framework, in: 2012 12th Conference of Open Innova-
tions Association (FRUCT), IEEE, 2012, pp. 1–7.

[2] A. Drogoul, D. Vanbergue, T. Meurisse, Multi-agent based simulation:
Where are the agents?, in: International Workshop on Multi-Agent Sys-
tems and Agent-Based Simulation, Springer, 2002, pp. 1–15.

[3] P. Davidsson, Multi agent based simulation: beyond social simulation,
in: International workshop on multi-agent systems and agent-based sim-
ulation, Springer, 2000, pp. 97–107.

[4] S. Abar, G. K. Theodoropoulos, P. Lemarinier, G. M. O’Hare, Agent
based modelling and simulation tools: A review of the state-of-art soft-
ware, Computer Science Review 24 (2017) 13–33.

[5] P. Mart́ı, J. Jordán, J. Palanca, V. Julian, Load generators for automatic
simulation of urban fleets, in: International Conference on Practical
Applications of Agents and Multi-Agent Systems, Springer, 2020, pp.
394–405.

[6] J. Palanca, A. Terrasa, C. Carrascosa, V. Julián, Simfleet: A new trans-
port fleet simulator based on mas, in: International Conference on Prac-
tical Applications of Agents and Multi-Agent Systems, Springer, 2019,
pp. 257–264.

[7] J. Jordán, J. Palanca, E. Del Val, V. Julian, V. Botti, A multi-agent sys-
tem for the dynamic emplacement of electric vehicle charging stations,
Applied Sciences 8 (2) (2018) 313.

[8] E. del Val, J. Palanca, M. Rebollo, U-tool: A urban-toolkit for enhancing
city maps through citizens’ activity, in: International Conference on
Practical Applications of Agents and Multi-Agent Systems, Springer,
2016, pp. 243–246.

[9] A. L. Bazzan, F. Klügl, A review on agent-based technology for traffic
and transportation, The Knowledge Engineering Review 29 (3) (2014)
375.

35

[10] M. Behrisch, L. Bieker, J. Erdmann, D. Krajzewicz, Sumo–simulation of
urban mobility: an overview, in: Proceedings of SIMUL 2011, The Third
International Conference on Advances in System Simulation, Think-
Mind, 2011.

[11] K. W Axhausen, A. Horni, K. Nagel, The multi-agent transport simu-
lation MATSim, Ubiquity Press, 2016.

[12] M. Adnan, F. C. Pereira, C. M. L. Azevedo, K. Basak, M. Lovric,
S. Raveau, Y. Zhu, J. Ferreira, C. Zegras, M. Ben-Akiva, Simmobil-
ity: A multi-scale integrated agent-based simulation platform, in: 95th
Annual Meeting of the Transportation Research Board Forthcoming in
Transportation Research Record, 2016.

[13] T. Sakai, A. R. Alho, B. Bhavathrathan, G. Dalla Chiara, R. Gopalakr-
ishnan, P. Jing, T. Hyodo, L. Cheah, M. Ben-Akiva, Simmobility freight:
An agent-based urban freight simulator for evaluating logistics solutions,
Transportation Research Part E: Logistics and Transportation Review
141 (2020) 102017.

[14] M. Fellendorf, Vissim: A microscopic simulation tool to evaluate actu-
ated signal control including bus priority, in: 64th Institute of Trans-
portation Engineers Annual Meeting, Vol. 32, Springer, 1994, pp. 1–9.

[15] B. Torabi, M. Al-Zinati, R. Z. Wenkstern, Matisse 3.0: A large-scale
multi-agent simulation system for intelligent transportation systems, in:
International Conference on Practical Applications of Agents and Multi-
Agent Systems, Springer, 2018, pp. 357–360.

[16] J. M. Lozano Domı́nguez, T. J. Mateo Sanguino, Review on v2x, i2x, and
p2x communications and their applications: A comprehensive analysis
over time, Sensors 19 (12) (2019).
URL https://www.mdpi.com/1424-8220/19/12/2756

[17] G. Merkuryeva, V. Bolshakovs, Vehicle schedule simulation with any-
logic, in: 2010 12th International Conference on Computer Modelling
and Simulation, IEEE, 2010, pp. 169–174.

[18] Y. Yang, J. Li, Q. Zhao, Study on passenger flow simulation in urban
subway station based on anylogic, Journal of Software 9 (1) (2014) 140–
146.

36

https://www.mdpi.com/1424-8220/19/12/2756
https://www.mdpi.com/1424-8220/19/12/2756
https://www.mdpi.com/1424-8220/19/12/2756
https://www.mdpi.com/1424-8220/19/12/2756

[19] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, V. Koltun, Carla: An
open urban driving simulator, arXiv preprint arXiv:1711.03938 (2017).

[20] S. Shah, D. Dey, C. Lovett, A. Kapoor, Airsim: High-fidelity visual
and physical simulation for autonomous vehicles, in: Field and service
robotics, Springer, 2018, pp. 621–635.

[21] B. Wymann, E. Espié, C. Guionneau, C. Dimitrakakis, R. Coulom,
A. Sumner, Torcs, the open racing car simulator, Software available
at http://torcs. sourceforge. net 4 (6) (2000) 2.

[22] C. Sippl, B. Schwab, P. Kielar, A. Djanatliev, Distributed real-time
traffic simulation for autonomous vehicle testing in urban environments,
in: 2018 21st International Conference on Intelligent Transportation
Systems (ITSC), IEEE, 2018, pp. 2562–2567.

[23] J. Palanca, A. Terrasa, V. Julian, C. Carrascosa, SPADE 3: Supporting
the New Generation of Multi-Agent Systems, IEEE Access 8 (2020)
182537–182549. doi:10.1109/ACCESS.2020.3027357.

[24] J. Jordán, J. Palanca, E. del Val, V. Julian, V. Botti, Localization of
charging stations for electric vehicles using genetic algorithms, Neuro-
computing (2020). doi:https://doi.org/10.1016/j.neucom.2019.

11.122.

[25] J. Palanca, J. Jordán, J. Bajo, V. Botti, An energy-aware algorithm
for electric vehicle infrastructures in smart cities, Future Generation
Computer Systems 108 (2020) 454 – 466. doi:https://doi.org/10.

1016/j.future.2020.03.001.

[26] A. Förster, A. Bin Muslim, A. Udugama, Trails - a trace-based proba-
bilistic mobility model, in: Proceedings of the 21st ACM International
Conference on Modeling, Analysis and Simulation of Wireless and Mo-
bile Systems, MSWIM ’18, Association for Computing Machinery, New
York, NY, USA, 2018, p. 295–302. doi:10.1145/3242102.3242134.

[27] G. Niemeyer, Geohash, http://geohash.org/site/tips.html, ac-
cessed on 23-01-2019 (2008).

[28] R. S. Olson, N. Bartley, R. J. Urbanowicz, J. H. Moore, Evaluation of
a tree-based pipeline optimization tool for automating data science, in:

37

https://doi.org/10.1109/ACCESS.2020.3027357
https://doi.org/https://doi.org/10.1016/j.neucom.2019.11.122
https://doi.org/https://doi.org/10.1016/j.neucom.2019.11.122
https://doi.org/https://doi.org/10.1016/j.future.2020.03.001
https://doi.org/https://doi.org/10.1016/j.future.2020.03.001
https://doi.org/10.1145/3242102.3242134
http://geohash.org/site/tips.html

Proceedings of the Genetic and Evolutionary Computation Conference
2016, GECCO ’16, ACM, New York, NY, USA, 2016, pp. 485–492.
doi:10.1145/2908812.2908918.

[29] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay,
Scikit-learn: Machine learning in Python, Journal of Machine Learning
Research 12 (2011) 2825–2830.

38

https://doi.org/10.1145/2908812.2908918

