
1726
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.10 OCTOBER 2022

PAPER

Evaluation and Comparison of Integer Programming Solvers for
Hard Real-Time Scheduling

Ana GUASQUE†a) and Patricia BALBASTRE†b), Nonmembers

SUMMARY In order to obtain a feasible schedule of a hard real-time
system, heuristic based techniques are the solution of choice. In the last few
years, optimization solvers have gained attention from research communi-
ties due to their capability of handling large number of constraints. Re-
cently, some works have used integer linear programming (ILP) for solving
mono processor scheduling of real-time systems. In fact, ILP is commonly
used for static scheduling of multiprocessor systems. However, two main
solvers are used to solve the problem indistinctly. But, which one is the
best for obtaining a schedulable system for hard real-time systems? This
paper makes a comparison of two well-known optimization software pack-
ages (CPLEX and GUROBI) for the problem of finding a feasible schedule
on monoprocessor hard real-time systems.
key words: integer linear programming, hard real-time scheduling, opti-
mization

1. Introduction

Modern real-time embedded systems comprise many appli-
cations executing on the same computing platform. If a
hard real-time task misses any temporal constraint in high
criticality applications, it may suppose catastrophic results.
This implies that the feasibility of the temporal model must
be assured offline. Moreover, task scheduling belong to the
class of NP-complete problems and can be solved efficiently
only by heuristics. Heuristics are able to find a feasible plan
in polynomial time. However, to further minimise or max-
imise a certain parameter (worst case response time, con-
text switch, power consumption, etc.) there are no heuris-
tics that ensure an optimal result. Brute-force algorithms
are one possibility, but they have an exponential cost, espe-
cially when the hyperperiod is large. Best-effort algorithms
are used, where there is no guarantee that the optimal solu-
tion has been found, that is, we can find a feasible plan with
low power consumption or response time but there is no way
to know if it is the minimum value.

In the last few years, optimization solvers have gained
attention from research communities due to their capabil-
ity of handling large number of constraints. The advantage
of integer linear programming (ILP) solutions is that they
can optimise an allocation toward a certain goal by changing
the optimization criteria. However, ILPs or MILPs (Mixed-
Integer Linear Programming) are more used in multi proces-
sor than in mono processor systems due to the lack of opti-

Manuscript received May 5, 2022.
Manuscript publicized July 21, 2022.
†The authors are with the Universitat Politècnica de València,

Spain.
a) E-mail: anguaor@ai2.upv.es
b) E-mail: patricia@ai2.upv.es

DOI: 10.1587/transinf.2022EDP7073

mal heuristics having a polynomial complexity in multi pro-
cessor scheduling. However, optimization techniques can
exploit the possibility of optimize a static scheduling plan
for a specific performance parameter even in mono proces-
sor systems.

Two main solvers are used to solve the problem indis-
tinctly. But, which one is the best for obtaining a schedula-
ble system for hard real-time systems? As far as we know,
there is no similar comparison specifically for hard real-time
scheduling. Moreover, in the literature, when a MILP solver
is used to obtain optimal scheduling, there is no justification
as to why one solver is used and not another.

The companies that market the most common solvers
present their own benchmarks showing that their product is
the fastest and outperforms the others. It is difficult to judge
their arguments because it seems that the effectiveness of
a solver depends very much on the type of problem it is
intended to solve.

This paper makes a comparison of two well-known op-
timization software packages (CPLEX and GUROBI) for
monoprocessor hard real-time systems. This comparison is
needed to find out which one offers the best solution in the
shortest possible time. This way, with this work we will give
to real-time systems engineers a hint about which solver is
the best for their purposes.

The rest of the papers is organized as follows: Section 2
presents the main related works on the topic, Sect. 3 de-
scribes the main characteristics of the most common solvers
used in the real-time systems community. Section 4 presents
the task model used. Section 5 describes the mathematical
model used to obtain the scheduling plan of a task set in
mono processor real-time systems. In Sect. 6 the proposed
model is evaluated for Gurobi and CPLEX while in Sect. 7
the main conclusions are pointed out.

2. Related Work

A number of papers have recently been published com-
paring different optimisation solvers under certain condi-
tions and for different types of applications. The most fre-
quent comparison is between Gurobi and CPLEX. These
two solvers are also the most widely used in the area of hard
real-time systems.

In [1], Gurobi and CPLEX are compared for a specific
problem type. The result of the comparison is that both
perform well, although CPLEX performs better when there
are many variables and the problem type is quadratic. The

Copyright c© 2022 The Institute of Electronics, Information and Communication Engineers



GUASQUE and BALBASTRE: EVALUATION AND COMPARISON OF INTEGER PROGRAMMING SOLVERS FOR HARD REAL-TIME SCHEDULING
1727

tabu search method for the boolean optimization problem is
compared in [2]. For this specific problem, Gurobi is the
fastest solver, and gives slightly better results than CPLEX.
CPLEX is a bit faster than Gurobi in terms of proving the
optimal solution.

In [3] the so-called Integer Linear Generalized Maxi-
mum Multiplicative Programs (IL-GMMP) is studied with
the development of three new multi-objective optimization
based algorithms. With 57600 experiments, the perfor-
mance of Gurobi, CPLEX and FICO Xpress is compared
when used for solving single-objective integer linear pro-
grams. As a conclusion, in general, CPLEX was shown to be
the best choice. A mixed-integer linear programming model
was proposed to solve the problem of customer scheduling
and truck assignment for hospital waste collection in [4].
The model has been implemented and the performance of
commercial solvers, GUROBI and CPLEX, to obtain an op-
timal solution were tested. GUROBI solver’s performance
was superior to that of the CPLEX solver. In the context
of non-convex QP problems, CPLEX and Gurobi are also
compared being Gurobi which presents the best results [5].
For solving the problem of mining production planning [6],
CPLEX is more efficient than Gurobi solving the proposed
model in medium-sized instances. In the case of smaller in-
stances, Gurobi obtains a solution in less time than CPLEX.
[7] focus on the performance of the two solvers working in
parallel. In this case, CPLEX outperforms Gurobi. Another
interesting comparison of both commercial solvers is pre-
sented in [8] for quadratic combinatorial optimization prob-
lems. Their conclusions were that “CPLEX prefers sym-
metric or symmetric with a diagonal perturbation yields a
positive definite matrix, whereas GUROBI prefers an upper
triangular Q matrix”. In [9], the comparison is done be-
tween CPLEX, FICO XPRESS and Gurobi using a subset
of the MIPLIB 2010 library that contains 361 test instances
of different hardness (easy, hard, and not solved). Accord-
ing to the proposed methodology GUROBI was identified as
the best MILP solver since it reached best results in 60% of
instances.

Regarding the works that obtain feasible schedules
with ILP techniques in complex real-time models includes,
among others, multiprocessor systems [10], power con-
sumption optimization [11], consideration of architectures
with local instruction or data caches [12], weakly hard real-
time systems [13], mixed criticality [14], etc. More specifi-
cally, regarding the use of ILP in real-time systems, [15] use
CPLEX to solve the scheduling of periodic real-time tasks
with duplication in heterogeneous multiprocessor. In [16],
tasks are split into read, execute and write subtasks in order
to reduce the contention delay in multicore hard real-time
systems, also using CPLEX. Regarding the use of ILP in
real-time systems with Gurobi, this solver is used for gen-
erating communication schedules in multi-mode distributed
real-time applications in [17]. And in [12], Gurobi is used to
obtain a schedule that takes into account the effect of cache
in the WCET so the length of the schedule is significantly
reduced.

As a conclusion of the previous work, although Gurobi
performs better in many cases, there is no one solver that
dominates completely the others. Furthermore, none of the
above-mentioned works compare solvers for the specific do-
main of real-time systems scheduling.

3. Optimization Solvers

Available optimization solvers differ in many ways. They
come with different licenses and different features, for ex-
ample in terms of how problems can be specified. There are
several commercial or free solvers but, taking a look at the
literature of the real-time research area, the following are the
most used.

The IBM ILOG CPLEX Optimization Studio [18]
which is often referred to simply as CPLEX is a commer-
cial solver designed to tackle (among others) large scale
(mixed integer) linear problems. CPLEX is now actively
developed by IBM. The software also features several inter-
faces so that it is possible to connect the solver to different
program languages and programs. However, also a stand-
alone executable is provided. The optimizer is also accessi-
ble through modeling systems. CPLEX provides three fami-
lies of heuristics to find integer solutions at nodes during the
branch & cut procedure:

• Node heuristic: employs techniques to try to construct
a feasible solution from the current branch & cut node.

• Relaxation Induced Neighborhood Search (RINS)
Heuristic: explores a neighborhood of the current in-
cumbent solution to try to find a new, improved incum-
bent.

• Solution Polishing: can be used to improve the best
known solution at the end of branch & cut if optimality
has not been proven.

• Feasibility pump ([19]) is a heuristic that finds an ini-
tial feasible solution even in certain very hard mixed
integer programming problems

With default parameter settings, CPLEX automatically in-
vokes the heuristics when they seem likely to be beneficial.
Last version is 20.1.

The Gurobi Optimizer [20] is a modern solver for
(mixed integer) linear as well as other related (non-linear,
e.g.) mathematical optimization problems. The Gurobi Op-
timizer is written in C and it is available on all comput-
ing platforms and accessible from several programming lan-
guages. Standard independent modelling systems can be
used to define and to model problems. Gurobi provides
general-purpose heuristics. As it is a commercial product,
there is not detailed information about how it works but the
company claims that quickly finding feasible solutions. By
default, the heuristic run at the beginning of a solve, after
the LP relaxation and within the branch and cut tree. Last
version is 9.5.

Both solvers have interfaces to program in C, C++,



1728
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.10 OCTOBER 2022

Matlab and Python and have academic, free licenses. In the
next sections, we are going to present the problem that we
want to solve, and the mathematical model presented as a
MILP.

4. Task Model

Our task model is composed by n periodic real-time tasks
that we assume that are independent (no shared resources
nor precedence relationship).

τ = [τ1, . . . , τn] (1)

A task τi is a tuple with the following parameters:

τi = (Ci,Di,Ti) (2)

being Ci the execution time of each activation in the worst
case, Di is the due time or relative deadline and Ti is the task
period.

The absolute due time of activation a is dia = a ·Ti+Di.
We may assume, without loss of generality, that all previous
parameters are integer values. The task utilization Ui is the
ratio between the execution time and the period, Ui =

Ci

Ti
. As

we focus on hard real-time systems, we assume that Di ≤ Ti.
Without loss of generality, we assume that the tasks are

ordered by increasing deadline. If the deadline of two tasks
coincide, an increasing period order is assumed. We define
the hyperperiod (lcm) of the set of tasks as the time at which
the release of tasks coincide in time. It corresponds with the
least common multiple of the tasks periods.

Another important parameter is the time it takes for
a task τi to finish execution at a given activation a. This
time is wia. Moreover, it is important to quantify the highest
value of all completion times of all activations throughout
the hyperperiod. This maximum completion time is called
the worst case response time (WCRT) defined and calcu-
lated in [21], [22]. It can be calculated as:

WCRTi = max{wia} (3)

On the contrary, the minimum completion time of
all activations is defined as the best case response time
(BCRTi = min{wia}). The relationship between both param-
eters is:

BCRTi ≤ WCRTi (4)

And if WCRTi ≤ Di, the task set will be feasible.
Figure 1 shows the parameters that define a real-time

periodic task.
We assume that this work is applied to hard real-time

systems that are scheduled by means of a static scheduler,
i.e. the generation of the plan takes place a priori, in an off-
line manner.

The problem to solve is to obtain the schedule of the
task set, that is, the instants in which each task has to be
executed to meet the deadlines and to optimize some addi-
tional parameter.

Fig. 1 Real-time task definition

Table 1 Task set example

C D T
τ1 1 4 4
τ2 2 5 5
τ3 2 8 8

Fig. 2 Chronogram of the example under DM

Fig. 3 Chronogram of the example with slight change

4.1 Example

Consider the set of periodic tasks in Table 1.
Figure 2 shows the execution chronogram when the

task set is scheduled under a fixed priority algorithm. In
this case, priorities are inversely proportional to deadlines
(Deadline Monotonic algorithm [23]). When using DM, the
WCRT of a task coincides with the response time of the first
activation (wi0). As we can observe in the figure, wi0 of tasks
is 1, 3 and 8.

However, we can see in Fig. 3 how a slight change in



GUASQUE and BALBASTRE: EVALUATION AND COMPARISON OF INTEGER PROGRAMMING SOLVERS FOR HARD REAL-TIME SCHEDULING
1729

the scheduling can improve the WCRT of some tasks. As it
can be seen, if task 2 is delayed 1 instant of time, WCRT of
task 3 improves considerably. This way, this second sched-
ule obtains 1, 3, and 6 as WCRT. Note that now the WCRT
does not coincide with the first activation.

In the next section, we will approach the problem of
real-time systems scheduling as an optimization problem
with the goal of improving the scheduling obtained with tra-
ditional real-time schedulers.

5. MILP Model

In this section, the optimisation problem of obtaining the
scheduling plan of a task model as presented in Sect. 4 will
be detailed. The goal is to minimise the worst case response
time of all tasks or, more precisely, the average worst case
response time normalized over the deadline. Low response
times have several advantages, for example, in control appli-
cations, where the system’s stability is assured if variation in
response time is low [24].

Table 2 introduces the model details.

min Obj =
∑

∀(i,ai)

wiai

Di

s.t:
∑

t∈Riai

xit = Ci ∀i, ai (5)

t · xit ≤ diai − 1 ∀t ∈ Riai (6)∑

i

xit ≤ 1 ∀t ∈ {0, 1, . . . , lcm} (7)

wiai ≥ t · xit − ai · Ti + 1 ∀t, i, ai (8)

xit ∈ {0, 1} (9)

wiai ≥ 0 (10)

We want to obtain the task execution matrix (xit) which
is a binary matrix that represents whether or not a task τi

executes at time t. With the content of this matrix we are
able to know the task response times, which are the variables

Table 2 MILP model notation

Sets and Indices
i Tasks τi ∈ {1, 2, . . . , n}
ai Activations of τi ∈ {0, 1, . . . ,Ni − 1}
Parameters
Ci Worst case computation time of τi
Di Relative deadline of τi
Ti Period of τi
lcm Hyperperiod of the task set
Ni Number of activations of τi (lcm/Ti)
diai Due date of τi in activation ai

Riai [ai ·Ti, (ai+1) ·Ti] Possible execution time interval
for task i in activation ai

Decision variables
xit Task execution matrix. 1 if τi is executed at time t

and 0 otherwise.
wiai Response time matrix. Response time of τi in ac-

tivation ai

to minimize. The scheduling has to meet some rules, that are
expressed by the constraints. As the model includes both
integer and binary variables, it is a MILP problem.

Constraints 5, 6 and 7 are related to the schedulabil-
ity conditions that the scheduling plan must accomplished.
Constraint 5 assures that the task executes Ci units of time
inside each activation of period Ti. Constraint 6 ensures that
the task is schedulable, that is, the task finishes its execu-
tion in all activations before the due time Di. Constraint 7 is
related to the scheduling in mono processor systems since,
at each instant of time, no more than one task can execute.
Constraint 8 calculates the response time of each task in all
activations. Equations (9) and (10) define the decision vari-
able domains.

This model has been implemented in two of the most
common used solvers for MILP. The description of the eval-
uation and obtained results is presented in Sect. 6.

6. Evaluation

The simulation process followed in this paper is showed in
Fig. 4. It is divided in three steps:

• Synthetic random generation of the task sets.

• Execution of MILP solvers.

• Validation.

The load is generated using a synthetic task generator.
A number of tests have been run, specifically, 10000 syn-
thetic task sets have been generated for system utilizations
varying from 0.2 to 0.8 in steps of 0.1. The total number
of tasks varies from 2 to 6. Each task τi was generated by
randomly choosing the worst case execution time (Ci) as an
integer between 2 and 10 and periods are deduced from the
system utilization (Ui) using the following expression (see
Sect. 4):

Ti =
Ci

Ui
(11)

We assume that deadlines are equal to periods. The
total utilization is shared among the tasks using the popu-
lar UUniFast discard algorithm [25]. To limit the maximum
runtime of the simulations, which is highly dependent on

Fig. 4 Experimental evaluation overview



1730
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.10 OCTOBER 2022

the hyperperiod, we restrict the hyperperiod to be not larger
than 200, so we discard the sets that exceed this limit, re-
peating the generation again until enough feasible instances
are found. Although this upper bound of the hyperperiod
may seem small, there are techniques to reduce it when this
value is larger by modifying the values of the task periods
slightly. A very effective technique for drastically reducing
the hyperperiod is presented in [26].

The validation consists of two steps: on the one hand,
feasibility is checked so all deadlines are met in all task sets.
On the other hand, some performance parameters are ob-
tained to compare the two solvers. Specifically, these are
the parameters obtained for each set:

• Response time: we calculate the average response time
as defined in Sect. 4 respect to the deadline of the task,
that is,

∑
i,ai
wi,ai /Di. This is the same expression as the

objective function that the MILP problem tries to min-
imize.

• Solution time: For both solvers, we calculate the time
spent to obtain a solution and to confirm that this
is the optimum. As simple MILP models are too
computationally-intensive as the number of tasks, lcm
or Ui increases, both solvers have a configurable pa-
rameter which is the time limit. After this time, the
solution is stored.

• Optimality gap: If the time limit commented previ-
ously is reached, the solution has not been proved to
be optimal but it might be. Therefore, the distance to
a lower bound on the optimal solution is also stored.
This distance is called the gap hereafter. It is the es-
timated distance between the lower bound on the best
possible objective and best found objective. As look-
ing for proven optimal solutions takes a long time to
compute, a common practice is look for a solution that
guarantees not worse than x% (gap) from the optimal
solution. A significant advantage is that most of the
gap is often reduced quite early.

For all the experiments, CPLEX 20.1 and GUROBI
9.5 are used with a Free Academic License. Python inter-
face has been used for both solvers. The experiments are
executed in a Acer Aspire V5-591G with 2 Intel Core i7-
6700HQ 2.60GHz and 16.0 GB RAM memory.

These experiments were run with a time limit of 500
seconds and a reached gap of 1% for both solvers. This
means that when the solvers find a solution with a gap less
that this reached gap, it stops. The statistics of the whole
experiments are shown in Table 3.

As it can be seen in the table, CPLEX presents better
results (on average value) in solution times and gap while
both present very similar results in response time.

Raw values of solution times are represented in Figs. 5
and 6. We can see that for few tasks CPLEX and Gurobi ob-
tain the optimum quickly. However, as the number of tasks

Fig. 5 Solution time vs number of tasks for Gurobi

Fig. 6 Solution time vs number of tasks for CPLEX

Fig. 7 Solution time vs number of tasks

increases, it becomes more expensive to find the optimal so-
lution for both solvers, although CPLEX is faster.

In order to see the relationship between the obtained
values for both solvers, and the temporal parameters of the
model, we have graphically represented this relationship in
the following figures. All the figures represent the average
values of response time, solution time and gap of all the
task sets executed. The results regarding solution times are
shown in Fig. 7. Figure 7 represents the time that Gurobi



GUASQUE and BALBASTRE: EVALUATION AND COMPARISON OF INTEGER PROGRAMMING SOLVERS FOR HARD REAL-TIME SCHEDULING
1731

and CPLEX need to obtain the solution as a function of the
number of tasks. In both solvers, from 4 tasks, the more
number of tasks, the more time to find a solution. It shows
the same behaviour as in Figs. 5 and 6.

The solution time is also depicted vs. utilization and
hyperperiod in Figs. 8 and 9. We choose these parameters
(U, N and H) because these parameters are directly related
to the dimension of the problem. For xit, N is the number
of rows of the matrix, and lcm is the number of columns.
Therefore, the higher these two parameters are, the longer it
will take to obtain a solution. U is directly proportional to
the number of non-zero elements of xit. However, with re-
gard to utilization, CPLEX outperforms Gurobi in all cases.
Regarding the hyperperiod, CPLEX is observed to be faster
from a hyperperiod of 180. Up to that point, the behaviour
is very similar.

Fig. 8 Solution time vs hyperperiod

Fig. 9 Solution time vs utilization

Table 3 Gurobi and CPLEX results statistics

Response time Solution time gap (%)
CPLEX Gurobi CPLEX Gurobi CPLEX Gurobi

Mean 14.084 14.1 38.874 61.146 0.8118 1.1104
Std. deviation 19.343 19.406 116.909 148.491 1.0920 2.0995

Min 0.285 0.285 0.0035 0.0016 0 0
Max 150.884 151.43 500 500 1.73172 3.40386

To know if this obtained solution is the optimal, we can
see the results obtained for the response time, which is the
objective that both solvers attempt to minimize. These re-
sults are depicted in Fig. 10 with respect to the utilization of
the task set. We can see in the graph how the results of Ta-
ble 3 are confirmed as both solvers obtain the same results.
Figure 11 shows the obtained gap for both solvers. Again,
results are very similar for few tasks but in this case the most
significant differences occur where there are 6 tasks. The
difference can be explained by the fact that in those cases
where the time limit of 500 seconds is reached, the gap will
be larger than 1%. Since Gurobi takes longer to find the opti-
mum, presumably there will be more cases where it reaches
the time limit and gets a larger gap.

It seems clear that the most significant differences be-
tween Gurobi and CPLEX are observed for more than 4
tasks. To investigate behaviour with more tasks, new exper-
iments have been done with 7, 8, 9 and 10 tasks. However,
the time to reach the optimal solution is very long (more than
500 seconds in most cases) taking several days to obtain the
optimum for a significant number of simulations. To com-
pare both solvers with 7, 8, 9 and 10 tasks, the time limit has
been reduced to 10 seconds and the gap and response time
obtained between Gurobi and CPLEX will be observed. We
know that 10 seconds is not enough time to find the optimum
but we want to know how close each solver is to finding it
in this time.

So for this second set of experiments, 10000 synthetic
task sets have been generated for system utilizations varying
from 0.2 to 0.8 in steps of 0.1. The total number of tasks
varies from 7 to 10. Each task τi was generated by randomly
choosing the worst case execution time (Ci) as an integer

Fig. 10 Response time vs utilization



1732
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.10 OCTOBER 2022

Fig. 11 gap vs number of tasks

Table 4 Gurobi and CPLEX results statistics for 7–10 tasks (time limit
= 10 seconds)

Response time gap (%)
CPLEX Gurobi CPLEX Gurobi

Mean 58.767 131.737 52.662 72.518
Std. deviation 59.518 157.765 27.462 2.0995

Min 0.973 1.099 0.917 0.825
Max 550.47 858.794 99.86 99.97

Fig. 12 Response time vs number of tasks for time limit of 10 seconds

Fig. 13 Response time vs utilization for time limit of 10 seconds

between 1 and 99 and periods are deduced from the system
utilization (Ui) using Eq. (11).

The statistics of these experiments are shown in Ta-
ble 4. We can see how, when there is not enough time to
find the optimum, CPLEX is able to find a lower value for
the response time than Gurobi.

The response time results vs. utilization and number
of tasks are presented in Figs. 12 and 13. The figures con-
firm the better performance of CPLEX in terms of finding a
lower value of the objective function as the number of tasks
increases. The difference between the two solvers also be-
comes more pronounced as utilization increases.

7. Conclusion

In this paper, the problem of finding a feasible schedule of a
hard real-time monoprocessor system has been addressed as
a mixed integer linear programming problem. The goal of
this paper was to compare two optimization solvers (Gurobi
and CPLEX) which are the most commonly used in this type
of problems. The comparison has been made in terms of
time to reach the optimal solution, the solution obtained and
the distance to the optimal. The results show how CPLEX
performs better than Gurobi on average. Depending on
the number of tasks and the hyperperiod, results may vary
but, in general, both solvers behave very similarly although
CPLEX performs faster than Gurobi in some cases.

As a conclusion to this work, we would recommend
using Gurobi or CPLEX interchangeably when the load is
low (few tasks or low hyperperiod). However, when there
are more than 4 tasks, it is better to use CPLEX because of
its shorter time to reach the optimal solution. Even when
the time to reach the optimum is limited, CPLEX obtains a
lower value of the objective function.

Further work includes to extend the use of MILP to
multiprocessor systems in general and to partitioned sys-
tems in particular and exploring different mixed optimiza-
tion functions such as context switches, jitter or power con-
sumption.

Acknowledgments

This work was supported under Grant PLEC2021-007609
funded by MCIN/ AEI/ 10.13039/501100011033 and by the
“European Union NextGenerationEU / PRTR”.

References

[1] R. Anand, D. Aggarwal, and V. Kumar, “A comparative analysis of
optimization solvers,” Journal of Statistics and Management Sys-
tems, vol.20, no.4, pp.623–635, 2017.

[2] L.M. Hvattum, A. LÃžkketangen, and F. Glover, “Comparisons of
commercial mip solvers and an adaptive memory (tabu search) pro-
cedure for a class of 0–1 integer programming problems,” Algorith-
mic Operations Research, vol.7, 2012.

[3] P.G. Saghand and H. Charkhgard, “Exact solution approaches for in-
teger linear generalized maximum multiplicative programs through
the lens of multi-objective optimization,” Computers and Operations
Research, vol.137, p.105549, 2022.

http://dx.doi.org/10.1080/09720510.2017.1395182
http://dx.doi.org/10.1016/j.cor.2021.105549


GUASQUE and BALBASTRE: EVALUATION AND COMPARISON OF INTEGER PROGRAMMING SOLVERS FOR HARD REAL-TIME SCHEDULING
1733

[4] R. Linfati, G. Gatica, and J.W. Escobar, “A mathematical model for
scheduling and assignment of customers in hospital waste collection
routes,” Applied Sciences, vol.11, no.22, 2021.

[5] G. Liuzzi, M. Locatelli, V. Piccialli, and S. Rass, “Computing mixed
strategies equilibria in presence of switching costs by the solution of
nonconvex QP problems,” Computational Optimization and Appli-
cations, vol.79, no.3, pp.561–599, July 2021.

[6] C. Flores-Fonseca, R. Linfati, and J.W. Escobar, “Exact algorithms
for production planning in mining considering the use of stockpiles
and sequencing of power shovels in open-pit mines,” Operational
Research, vol.22, no.3, pp.2529–2553, 2022.

[7] M. González, J.J. López-Espın, and J. Aparicio, “A parallel algo-
rithm for matheuristics: A comparison of optimization solvers,”
Electronics, vol.9, no.9, 2020.

[8] A.P. Punnen, P. Pandey, and M. Friesen, “Representations of
quadratic combinatorial optimization problems: A case study using
quadratic set covering and quadratic knapsack problems,” Comput-
ers and Operations Research, vol.112, p.104769, 2019.

[9] J. Jablonský, “Recent optimization packages and their comparison,”
Hradec Economic Days, vol.7, no.1, 2017.

[10] S. Baruah, “Feasibility analysis of preemptive real-time systems
upon heterogeneous multiprocessor platforms,” 25th IEEE Interna-
tional Real-Time Systems Symposium, pp.37–46, 2004.

[11] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M.B. Srivastava,
“Power optimization of variable-voltage core-based systems,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol.18, no.12,
pp.1702–1714, 1999.

[12] V.A. Nguyen, D. Hardy, and I. Puaut, “Cache-conscious off-line re-
al-time scheduling for multi-core platforms: algorithms and imple-
mentation,” Real-Time Systems, vol.55, no.4, pp.810–849, 2019.

[13] Y. Sun and M.D. Natale, “Weakly hard schedulability analysis for
fixed priority scheduling of periodic real-time tasks,” ACM Trans.
Embed. Comput. Syst., vol.16, no.5s, pp.1–19, 2017.

[14] T. Fleming and A. Burns, “Investigating mixed criticality cyclic ex-
ecutive schedule generation,” Proc. Workshop on Mixed Criticality
(WMC), 2015.

[15] W. Zhang, Y. Hu, H. He, Y. Liu, and A. Chen, “Linear and dy-
namic programming algorithms for real-time task scheduling with
task duplication,” The Journal of Supercomputing, vol.75, no.2,
pp.494–509, 2019.

[16] B. Rouxel, S. Derrien, and I. Puaut, “Tightening contention delays
while scheduling parallel applications on multi-core architectures,”
ACM Trans. Embed. Comput. Syst., vol.16, no.5s, pp.1–20, 2017.

[17] A. Azim, G. Carvajal, R. Pellizzoni, and S. Fischmeister, “Gener-
ation of communication schedules for multi-mode distributed real-
time applications,” Proceedings of Design, Automation and Test in
Europe (DATE), Grenoble, France, pp.1–6, March 2014.

[18] I.I. Cplex, “V12. 1: User’s manual for cplex,” International Business
Machines Corporation, 2019.

[19] M. Fischetti, F. Glover, and A. Lodi, “The feasibility pump,” Math-
ematical Programming, vol.104, no.1, pp.91–104, Sept. 2005.

[20] Gurobi, Gurobi optimizer reference manual, Gurobi Optimization,
2019.

[21] P.K. Harter, Jr., “Response times in level-structured systems,” ACM
Trans. Comput. Syst., vol.5, no.3, pp.232–248, Aug. 1987.

[22] M. Joseph and P. Pandya, “Finding response times in a real-time
system,” The Computer Journal, vol.29, no.5, pp.390–395, 1986.

[23] C.L. Liu and J.W. Layland, “Scheduling algorithms for multipro-
gramming in a hard-real-time environment,” J. ACM, vol.20, no.1,
pp.46–61, Jan. 1973.

[24] P. Balbastre, I. Ripoll, J. Vidal, and A. Crespo, “A task model to
reduce control delays,” Real-Time Syst., vol.27, no.3, pp.215–236,
2004.

[25] E. Bini and G.C. Buttazzo, “Measuring the performance of schedu-
lability tests,” Real-Time Systems, vol.30, pp.129–154, 2005.

[26] V. Brocal, P. Balbastre, R. Ballester, and I. Ripoll, “Task period se-
lection to minimize hyperperiod,” ETFA2011, pp.1–4, 2011.

Ana Guasque was born in Valencia, Spain,
in 1987. She received a B.S. degree in industrial
engineering from the Universitat Politècnica de
València (UPV) in 2013; and an M.S. degree in
automation and industrial computing from the
UPV in 2015. She received a Ph.D. degree in in-
dustrial engineering from the UPV in 2019. She
is currently working as a researcher in the Uni-
versitat Politècnica de València. Her main re-
search interests include real-time operating sys-
tems, scheduling, and optimization algorithms

and real-time control.

Patricia Balbastre is an associate profes-
sor of computer engineering at the Universitat
Politècnica de València (UPV). She graduated in
electronic engineering at the UPV in 1998 and
obtained the Ph.D. degree in computer science
in 2002. Her main research interests include
real-time operating systems, dynamic schedul-
ing algorithms and real-time control, which has
resulted in publications in prestigious journals
and conferences in the field.

http://dx.doi.org/10.3390/app112210557
http://dx.doi.org/10.1007/s10589-021-00282-7
http://dx.doi.org/10.1007/s12351-020-00618-x
http://dx.doi.org/10.3390/electronics9091541
http://dx.doi.org/10.1016/j.cor.2019.104769
http://dx.doi.org/10.1109/real.2004.20
http://dx.doi.org/10.1109/43.811318
http://dx.doi.org/10.1007/s11241-019-09333-z
http://dx.doi.org/10.1145/3126497
http://dx.doi.org/10.1007/s11227-017-2076-9
http://dx.doi.org/10.1145/3126496
http://dx.doi.org/10.7873/date2014.306
http://dx.doi.org/10.1007/s10107-004-0570-3
http://dx.doi.org/10.1145/24068.24069
http://dx.doi.org/10.1093/comjnl/29.5.390
http://dx.doi.org/10.1145/321738.321743
http://dx.doi.org/10.1023/b:time.0000029049.50766.fa
http://dx.doi.org/10.1007/s11241-005-0507-9
http://dx.doi.org/10.1109/etfa.2011.6059178

